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Abstract

This paper is the extended introduction of a series of papers about modelling T-homotopy by refinement of
observation. The notion of T-homotopy equivalence is discussed. A new one is proposed and its behaviour
with respect to other construction in dihomotopy theory is explained.
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1 About deformations of HDA

The main feature of the two algebraic topological models of higher dimensional
automata (or HDA) introduced in [8] and in [4] is to provide a framework for mod-
elling continuous deformations of HDA corresponding to subdivision or refinement
of observation. Globular complexes and flows are specially designed to modelling
the weak S-homotopy equivalences (the spatial deformations) and the T-homotopy
equivalences (the temporal deformations). The first descriptions of spatial defor-
mation and of temporal deformation dates back from the informal and conjectural
paper [3].

Let us now explain a little bit what the spatial and temporal deformations consist
of before presenting the results. The computer-scientific and geometric explanations
of [8] must of course be preferred for a deeper understanding.

In dihomotopy theory, processes running concurrently cannot be distinguished
by any observation. For instance in Figure 1, each axis of coordinates represents
one process and the two processes are running concurrently. The corresponding
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Fig. 1. Two concurrent processes

geometric shape is a full 2-cube. This example corresponds to the flow C2 defined
as follows:

• Let us introduce the flow ∂C2 defined by (∂C2)0 = {0, 1, 2, 3}, P0,1∂C2 = {U},
P1,2∂C2 = {V }, P0,3∂C2 = {W}, P3,2∂C2 = {X}. The flow ∂C2 corresponds to
an empty square, where the execution paths U ∗ V and W ∗ X are not running
concurrently.

• Then consider the pushout diagram

Glob(S0)

��

q �� ∂C2

��
Glob(D1) �� C2

with q(S0) = {U ∗ V,W ∗ X} (the globe functor Glob(−) is defined below). The
presence of Glob(D1) creates a S-homotopy between the execution paths U ∗ V

and W ∗ X, modelling this way the concurrency.

It does not matter for P0,2C2 to be homeomorphic to D1 or only homotopy equiv-
alent to D1, or even only weakly homotopy equivalent to D1. The only thing that
matters is that the topological space P0,2C2 be weakly contractible. Indeed, a hole
like in the flow ∂C2 (the space P0,2∂C2 is the discrete space {U ∗ V,W ∗ X} )
means that the execution paths U ∗V and W ∗X are not running concurrently, and
therefore that they are distinguishable by observation. This kind of identification is
well taken into account by the notion of weak S-homotopy equivalence. This notion
is introduced in [8] in the framework of globular complexes, in [4] in the framework
of flows and it is proved that these two notions are equivalent in [5].

In dihomotopy theory, it is also required to obtain descriptions of HDA which
are invariant by refinement of observation. The simplest example of refinement of
observation is represented in Figure 2, in which the directed segment U is divided
in two directed segments U ′ and U ′′. This kind of identification is well taken into
account by the notion of T-homotopy equivalence. This notion is introduced in [8]
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Fig. 2. The most simple example of T-homotopy equivalence

in the framework of globular complexes, and in [5] in the framework of flows. The
latter paper also proves that the two notions are equivalent. In the case of Figure 2,
the T-homotopy equivalence is the unique morphism of flows sending U to U ′ ∗U ′′.

Each weak S-homotopy equivalence as well as each T-homotopy equivalence
preserves as above the initial states and the final states of a flow. More generally, any
good notion of dihomotopy equivalence must preserve the branching and merging
homology theories introduced in [7]. This paradigm dates from the beginning of
dihomotopy theory: a dihomotopy equivalence must not change the topological
configuration of branching and merging areas of execution paths [9]. It is also
clear that any good notion of dihomotopy equivalence must preserve the underlying
homotopy type, that is the topological space, defined only up to weak homotopy
equivalence, obtained after removing the time flow. In the case of Figure 1 and
Figure 2, this underlying homotopy type is the one of the point.

2 Prerequisites and notations

The initial object (resp. the terminal object) of a category C, if it exists, is denoted
by ∅ (resp. 1).

Let C be a cocomplete category. If I is a set of morphisms of C, then the
class of morphisms of C that satisfy the RLP (right lifting property) with respect
to any morphism of I is denoted by inj(I) and the class of morphisms of C that
are transfinite compositions of pushouts of elements of I is denoted by cell(I).
Denote by cof(I) the class of morphisms of C that satisfy the LLP (left lifting
property) with respect to any morphism of inj(I). It is a purely categorical fact
that cell(I) ⊂ cof(I). Moreover, any morphism of cof(I) is a retract of a morphism
of cell(I). An element of cell(I) is called a relative I-cell complex. If X is an object
of C, and if the canonical morphism ∅ −→ X is a relative I-cell complex, one says
that X is a I-cell complex.

Let C be a cocomplete category with a distinguished set of morphisms I. Then
let cell(C, I) be the full subcategory of C consisting of the objects X of C such
that the canonical morphism ∅ −→ X is an object of cell(I). In other terms,
cell(C, I) = (∅↓C) ∩ cell(I).

Possible references for model categories are [11], [10] and [2]. The original ref-
erence is [14] but Quillen’s axiomatization is not used in this paper. The axiom-
atization from Hovey’s book is preferred. If M is a cofibrantly generated model
category with set of generating cofibrations I, let cell(M) := cell(M, I). A cofi-
brantly generated model structure M comes with a cofibrant replacement functor
Q : M −→ cell(M).
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A partially ordered set (P,�) (or poset) is a set equipped with a reflexive an-
tisymmetric and transitive binary relation �. A poset is locally finite if for any
(x, y) ∈ P × P , the set [x, y] = {z ∈ P, x � z � y} is finite. A poset (P,�) is
bounded if there exist 0̂ ∈ P and 1̂ ∈ P such that P ⊂ [0̂, 1̂] and such that 0̂ �= 1̂.
Let 0̂ = minP (the bottom element) and 1̂ = maxP (the top element).

The category Top of compactly generated topological spaces (i.e. of weak Haus-
dorff k-spaces) is complete, cocomplete and cartesian closed (more details for this
kind of topological spaces in [1,13], the appendix of [12] and also the preliminaries
of [4]). For the sequel, any topological space will be supposed to be compactly
generated. A compact space is always Hausdorff.

The time flow of a higher dimensional automaton is encoded in an object called
a flow [4]. A flow X consists of a set X0 called the 0-skeleton and whose elements
correspond to the states (or constant execution paths) of the higher dimensional
automaton. For each pair of states (α, β) ∈ X0 × X0, there is a topological space
Pα,βX whose elements correspond to the (nonconstant) execution paths of the higher
dimensional automaton beginning at α and ending at β. If x ∈ Pα,βX , let α = s(x)
and β = t(x). For each triple (α, β, γ) ∈ X0×X0×X0, there exists a continuous map
∗ : Pα,βX × Pβ,γX −→ Pα,γX called the composition law which is supposed to be
associative in an obvious sense. The topological space PX =

⊔
(α,β)∈X0×X0 Pα,βX is

called the path space of X. The category of flows is denoted by Flow. A point α of
X0 such that there are no non-constant execution paths ending to α (resp. starting
from α) is called an initial state (resp. a final state). A morphism of flows f from X

to Y consists of a set map f0 : X0 −→ Y 0 and a continuous map Pf : PX −→ PY

preserving the structure. A flow is therefore “almost” a small category enriched in
Top.

The category Flow is equipped with the unique model structure such that [4]:

• The weak equivalences are the weak S-homotopy equivalences, i.e. the morphisms
of flows f : X −→ Y such that f0 : X0 −→ Y 0 is a bijection and such that
Pf : PX −→ PY is a weak homotopy equivalence.

• The fibrations are the morphisms of flows f : X −→ Y such that Pf : PX −→ PY

is a Serre fibration.

This model structure is cofibrantly generated. The set of generating cofibrations is
the set Igl

+ = Igl ∪ {R,C} with

Igl = {Glob(Sn−1) ⊂ Glob(Dn), n � 0}

where Dn is the n-dimensional disk, where Sn−1 is the (n − 1)-dimensional sphere,
where R and C are the set maps R : {0, 1} −→ {0} and C : ∅ −→ {0} and where for
any topological space Z, the flow Glob(Z) is the flow defined by Glob(Z)0 = {0̂, 1̂},
PGlob(Z) = Z, s = 0̂ and t = 1̂, and a trivial composition law. The set of generating
trivial cofibrations is

Jgl = {Glob(Dn × {0}) ⊂ Glob(Dn × [0, 1]), n � 0}.
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Fig. 3. The full 3-cube

3 Why adding new T-homotopy equivalences ?

It turns out that the T-homotopy equivalences, as defined in [5], are the deforma-
tions which locally act like in Figure 2 1 . So it becomes impossible with this old
definition to identify the directed segment of Figure 2 with the full 3-cube of Fig-
ure 3 by a zig-zag sequence of weak S-homotopy and of T-homotopy equivalences
preserving the initial state and the final state of the 3-cube since any point of the
3-cube is related to three distinct edges (cf. Theorem 3.4). This contradicts the
fact that concurrent execution paths cannot be distinguished by observation. More
precisely, one has:

Proposition 3.1 Let X and Y be two flows. There exists a unique structure of
flows X ⊗ Y on the set X × Y such that

(i) (X ⊗ Y )0 = X0 × Y 0

(ii) P(X ⊗ Y ) = (PX × PY ) ∪ (X0 × PY ) ∪ (PX × Y 0)

(iii) s(x, y) = (s(x), s(y)), t(x, y) = (t(x), t(y)), (x, y) ∗ (z, t) = (x ∗ z, y ∗ t).

Definition 3.2 The directed segment I is the flow Glob(Z) with Z = {u}.
Definition 3.3 Let n � 1. The full n-cube Cn is by definition the flow Q(I⊗n),
where Q is the cofibrant replacement functor.

Notice that for n � 2, the flow I⊗n is not cofibrant. Indeed, the composition law
contains relations. For instance, with n = 2, one has (0̂, u) ∗ (u, 1̂) = (u, 0̂) ∗ (1̂, u)

Theorem 3.4 Let n � 3. There does not exist any zig-zag sequence

Cn = X0
f0 �� X1 X2

f1�� f2 �� . . . X2n = I
f2n−1��

where each Xi is an object of cell(Flow) and where each morphism fi is either a
S-homotopy equivalence 2 or a T-homotopy equivalence.

We must suppose in the statement of Theorem 3.4 that each flow Xi belongs to
cell(Flow) because T-homotopy is only defined between this kind of flow.

1 This fact was of course not known when [8] was being written down. The definition of T-homotopy
equivalence presented in that paper was based on the notion of homeomorphism and it sounded so natural...
2 Recall that a morphism between two objects of cell(Flow) is a weak S-homotopy equivalence if and only
if it is a S-homotopy equivalence.
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Fig. 4. Example of finite bounded poset

4 Full directed ball

We need to generalize the notion of subdivision of the directed segment I.

Definition 4.1 A flow X is loopless if for every α ∈ X0, the space Pα,αX is empty.

A flow X is loopless if and only if the transitive closure of the set {(α, β) ∈
X0 × X0 such that Pα,βX �= ∅} induces a partial ordering on X0.

Definition 4.2 A full directed ball is a flow D such that:

• the 0-skeleton D0 is finite
• D has exactly one initial state 0̂ and one final state 1̂ with 0̂ �= 1̂
• each state α of D0 is between 0̂ and 1̂, that is there exists an execution path from

0̂ to α, and another execution path from α to 1̂
• D is loopless
• for any (α, β) ∈ D0 × D0, the topological space Pα,βD is empty or weakly con-

tractible.

Let D be a full directed ball. Then the set D0 can be viewed as a finite bounded
poset. Conversely, if P is a finite bounded poset, let us consider the flow F (P )
associated to P : it is of course defined as the unique flow (up to isomorphism)
F (P ) such that F (P )0 = P and Pα,βF (P ) = {u} if α < β and Pα,βF (P ) = ∅

otherwise. Then F (P ) is a full directed ball and for any full directed ball D, the
two flows D and F (D0) are weakly S-homotopy equivalent.

Let E be another full directed ball. Let f : D −→ E be a morphism of flows
preserving the initial and final states. Then f induces a morphism of posets from
D0 to E0 such that f(minD0) = minE0 and f(max D0) = maxE0. Hence the
following definition:

Definition 4.3 Let T be the class of morphisms of posets f : P1 −→ P2 such that:

(i) The posets P1 and P2 are finite and bounded.

(ii) The morphism of posets f : P1 −→ P2 is one-to-one; in particular, if x and y

are two elements of P1 with x < y, then f(x) < f(y).

(iii) One has f(minP1) = min P2 and f(max P1) = maxP2.

Then a generalized T-homotopy equivalence is a morphism of cof({Q(F (f)), f ∈
T }) where Q is the cofibrant replacement functor of Flow.
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In a HDA, a n-transition, that is the concurrent execution of n processes, is
represented by the full n-cube Cn. The corresponding poset is the product poset
{0̂ < 1̂}n. In particular, the poset corresponding to the full directed ball of Figure 3
is {0̂ < 1̂}3 = {0̂ < 1̂} × {0̂ < 1̂} × {0̂ < 1̂}.

The poset corresponding to Figure 1 is the poset {0̂ < 1̂}2 = {0̂ < 1̂}× {0̂ < 1̂}.
If for instance U is subdivided in two processes as in Figure 2, the poset of the full
directed ball of Figure 1 becomes equal to {0̂ < 2 < 1̂} × {0̂ < 1̂}.

One has the isomorphism of flows I⊗n ∼= F ({0̂ < 1̂}n) for every n � 1. The flow
Cn (n � 1) is identified to I by the zig-zag sequence of S-homotopy and generalized
T-homotopy equivalences

I Q(I)��� Q(F (gn)) ��Q(I⊗n),

where gn : {0̂ < 1̂} −→ {0̂ < 1̂}n ∈ T .

5 Is this new definition well-behaved ?

First of all, we must verify that each old T-homotopy equivalence as defined in [5]
will be a particular case of this new definition. And indeed, one has:

Theorem 5.1 Let X and Y be two objects of cell(Flow). Let f : X −→ Y be a
T-homotopy equivalence as defined in [5]. Then f can be written as a composite
X −→ Z −→ Y where g : X −→ Z is a generalized T-homotopy equivalence and
where h : Z −→ Y is a weak S-homotopy equivalence.

The two other tests consist of verifying that the branching and merging homology
theories [7], as well as the underlying homotopy type functor [5] are preserved with
this new definition of T-homotopy equivalence. And indeed, one has:

Theorem 5.2 Let f : X −→ Y be a generalized T-homotopy equivalence. Then
for any n � 0, the morphisms of abelian groups H−

n (f) : H−
n (X) −→ H−

n (Y ) and
H+

n (f) : H+
n (X) −→ H+

n (Y ) are isomorphisms of groups where H−
n (resp.H+

n )
is the n-th branching (resp. merging) homology group. And the continuous map
|f | : |X| −→ |Y | is a weak homotopy equivalence where |X| denotes the underlying
homotopy type of the flow X.

6 Conclusion

This new definition of T-homotopy equivalence seems to be well-behaved. It will
hopefully have a longer lifetime than other ones that the author proposed in the past.
It is already known after [6] that it is impossible to construct a model structure on
Flow such that the weak equivalences are exactly the weak S-homotopy equivalences
and the generalized T-homotopy equivalences. So new models of dihomotopy will
be probably necessary to understand the T-homotopy equivalences.
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