
Behavioural Typing for Safe Ambients�
Michele Bugliesi

Dipartimento di Informatica
Università Ca’ Foscari di Venezia

Giuseppe Castagna
C.N.R.S.

Laboratoire d’Informatique, ENS, Paris

Abstract

We introduce a typed variant ofSafe Ambients, namedSecure Safe Ambients(SSA), whose type sys-
tem allows behavioral invariants of ambients to be expressed and verified. The most significant aspect of
the type system is its ability to capturebothexplicit and implicit process and ambient behavior: process
types account not only for immediate behavior, but also for the behavior resulting from capabilities a
process acquires during its evolution in a given context. Based on that, the type system provides for
static detection of security attacks such asTrojan Horsesand other combinations of malicious agents.

We study the type system of SSA, define algorithms for type checking and type reconstruction, define
languages for expressing security properties, and study a distributed version of SSA and its type system.
For the latter, we show that distributed type checking ensures security even in ill-typed contexts, and
discuss how it relates to the security architecture of the Java Virtual Machine.

1 Introduction

Mobile Ambients[6] are named agents or locations that enclose collections of running processes, possibly
including nested sub-ambients.Safe Ambients[12] are a variant of Mobile Ambients. The two calculi differ
in the underlying notion of interaction: in Mobile Ambients, interaction is “one-sided”, in that one of the
two partners in amoveor openaction simply undergoes the action. In Safe Ambients, instead, the reduction
relation requires actions to synchronize with corresponding co-actions. To exemplify, consider the ambientsa andb described below:

Mobile Ambients a[open b:in
℄ j b[in a:in d℄:
The brackets[: : : ℄ represent ambient boundaries, “j ” denotes parallel composition, and “.” enforces se-
quential execution. Given the above configuration, the ambient b may entera, by exercising thecapability
“ in a”, and reduce toa[open b:in
 j b[in d℄℄. Thena may dissolve the boundary provided byb by exercisingopen b, and reduce toa[in
 j in d℄.

Neither of the two reductions is legal in Safe Ambients. To obtain the behavior we just described, the
two ambientsa andb should be written as follows:

Safe Ambients a[
oin a:open b:in
℄ j b[in a:
oopen b:in d℄:�To appear in COMPUTERLANGUAGES, Elsevier Science. Extended version of the articleSecure Safe Ambientsincluded in the
Proc. of the 28th ACM Symposium on Principles of ProgrammingLanguages(POPL ’01), pages 222–235, ACM Press

1

Now the move ofb into a arises as the result of a mutual agreement between the two partners: b exer-
cising the capabilityin a, anda exercising theco-capability
oin a. The resulting configuration, that is,a[open b:in
 j b[
oopen b:in d℄℄, reduces toa[in
 j in d℄, again as the result of the synchronization betweenopen b and
oopen b.
1.1 Motivations

Secure Safe Ambients(SSA) are a typed variant of Safe Ambients whose type system is so defined as to allow
behavioral invariants of ambients to be expressed and verified. The most significant aspect of the type system
is its ability to tracebothexplicit and implicit process behavior and ambient mobility: the type assigned to a
process accounts not only for the behavior resulting from the capabilities that process possesses in isolation,
but also from the capabilities the process may acquire by interacting with the surrounding environment. This
degree of accuracy is useful for a sound verification of security policies, as implicit (i.e., acquired) mobility
is at the core of a number of security attacks such asTrojan Horsesor other combinations of malicious
agents.

EXAMPLE 1.1. Consider again the two (safe) ambientsa andb introduced above, now running in parallel
with a third ambient
 as in the following configuration, whereP andQ are arbitrary processes:a[
oin a:open b:in
℄ j b[in a:
oopen b:in d℄ j
[
oin
:P j d [
oin d:Q℄ ℄
For the purpose of the example, assume thatd contains confidential data, which should be made available
to ambients runningwithin
 (which may enter, as signaled by the co-capability
oin d), but not to ambients
entering
. Given this security policy, the question is whether
 should leta in without fear thata may
access the confidential data ind. If we only look at explicit mobility, that is at the capabilities immediately
available fora, then the move ofa into
 seems safe, asa does not make any direct attempt to move intod.
However,a can be used as a Trojan Horse forb: a can letb in, then enter
 and, once inside
, openb to gain
access tod.

EXAMPLE 1.2. A different way thata may attack
 is by letting b out after having entered
. The two
ambientsa andb would then be written as shown below:a[
oin a:in
:
oout a℄ j b[in a:out a:in d℄ j
[
oin
:P j d [
oin d:Q℄ ℄
Again, if we only look at the capabilities available fora, we are mislead to leta into
. Yet,a could letb in,
then enter
, and finally letb out handing over tob the capability to enterd.

1.2 Overview

The type system we discuss in this paper provides for static,type-driven verification of security. It allows the
definition of security policies for ambients, and provides mechanisms for static detection of any attempt to
break those policies. In particular, the type system detects security attacks based on implicit (and undesired
or malicious) acquisition of capabilities by hostile agents such as those described in the previous examples.
As argued in [12], the presence of co-capabilities is essential for an accurate static characterization of pro-
cesses in the type system: our choice of Safe Ambients as the basis for our type system is motivated by the
same reasons.

There are three key ingredients to the type system.

2

Ambient Domains. Ambients are classified byambient domains(also calledprotection domainsor simply
domains): each domain has an associatedbehaviorthat ambients in the domain share and must comply with,
and an associatedsecurity policythat protects the ambients in the domain from undesired interactions with
the surrounding context.

Type-level capabilities and Process Types.Process types describe process behavior using domains as the
unit of abstraction. The term-level capabilities available to processes are abstracted upon in the type system
by resorting to type-level capabilities. Process types aredefined in terms of sets of type capabilities: to
exemplify, if a is, say, an ambient of domainA andP is a (well-typed) process exercising the term-level
capabilityin a, then the type ofP traces this behavior by including the type-level capability in A.

To gain accuracy in the description of ambient behavior, thetype system traces thenesting levelat which
the effect of exercising a capability may be observed. This is accomplished by introducing chemical abstract
model, where exercising a capability corresponds, in the typing rules, to releasing a type-level capability,
or molecule. Molecules are classified asplain, light, andheavy: plain molecules are released at the nesting
level of the process exercising the corresponding capability, light molecules at upper level (the level of the
enclosing ambient), while heavy molecules are released within ambients. Molecules react with co-molecules
(corresponding to co-capabilities) released at the same nesting level. Thus, in the chemical metaphor, type
checking corresponds to a chromatographic analysis in which each element of different weight is precisely
determined.

Security Constraints. Each ambient domain has an associated set of security constraints that define the
security policy for that domain: the constraints establishthe access rights for ambients crossing the boundary
of any of the ambients in the domain.

1.3 Contributions

We prove two main results for our type system. The first is subject reduction, the second is a rather strong
form of type safety showing that types provide a safe approximation of behavior: specifically, we show
that if a processP running inside a contextC may (after any number of reduction steps ofC) exercise a
capability on some name, andC is well-typed, then the corresponding type capability is traced by the static
type ofP . For that we introduce a new and powerful notion ofresidual. As a corollary, we then deduce that
well-typed processes comply with the security policies established by ambients.

We also define a type-checking algorithm that computes minimum types and, more importantly, an
algorithm for type reconstruction: we prove both sound and complete. Type reconstruction is particularly
important for our purposes, as it infers the behavior of ambient domains, thus leaving the programmer with
the only task of specifying the domains of ambients, and their associated security policies.

We continue by studying a distributed variant of SSA, where each ambient carries its own type envi-
ronment along with it, and type-checking is performed locally by the ambient at any time other ambients
cross its own boundaries. The distributed variant of the calculus and its type system are particularly in-
teresting in perspective, in view of a practical implementation. In a highly distributed system it is clearly
unrealistic to rely on the assumption that type checking mayaccess information on all the components of
the system. Accordingly, in the distributed version of the calculus, we dispense with global security and
type soundness, and replace them by local type checking and security analysis. A typed version of reduction
complements these analyses by allowing ambient boundariesto be crossed only by ambients satisfying the
type and security checks performed,just in time, by the ambient whose domain is being crossed.

The study of the distributed version yields, as a byproduct,a further interesting result. Looking at the
dynamic checks performed upon reduction, one discovers that they correspond to the type and security

3

checks performed by the three components of the security architecture of the Java Virtual Machine: the
Class Loader, theBytecode Verifier, and theSecurity Manager.

Finally we study the system in the presence of communicationprimitives. This extension, absent
from [3], is non-trivial, as capabilities, as well as names,can be exchanged in communications. There-
fore characterizing ambient and process behavior in the presence of communications involves tracing not
only the capabilities a process may acquire by mobility interactions with the environment, but also those
that may be obtained via explicit communication.

1.4 Plan of the paper

Section 2 reviews the syntax and reduction semantics of (Secure) Safe Ambients. Section 3 defines the type
system, while Section 4 focuses on type soundness and safety. Section 5 introduces the algorithmic systems,
and proves them sound and complete. Section 6 shows how to define a security layer on top of the type
system, and how the type system may be used enforce and verifysecurity properties. In Section 7 we define
a distributed version of SSA, and discuss how it relates to the security architecture of the JVM. in Section 8
we extend our system with communications. A short section concludes the presentation. Proofs of the main
results are given in separate appendixes.

2 The language

The terms of our language are those ofSafe Ambientswith the only difference that the types of (ambient)
names aredomains. These are type-level constants used to identify ambients that satisfy the same behavioral
invariants and share common security policies: instead of associating such invariants and policies to each
ambient we rather define them for domains, and then group ambients in domains.

ProcessesP ::= 0  �:P  (�a:D)P  P j P  a[P ℄  !P
Capabilities� ::= in a 
oin a  out a 
oout a  open a 
oopen a

Besides being a design choice, the introduction of domains is motivated by technical reasons. An alternative,
and more informative, notion of ambient type could be definedby associating each ambient with the set of
term-level capabilities that ambient may exercise. The resulting type system would certainly provide a more
accurate characterization of process and ambient behavior, but it would also incur into a number of technical
problems arising from the dependency of these types on terms1. On the other hand, our use of protection
domains is well motivated and justified by what is nowadays common practice for languages and systems
supporting code mobility [10].

1One problem with that solution is that types are not preserved by structural congruence. For instance, the term(�a:A)(�b:B)a[in b℄ j b[
oin b℄ would not be typeable, as the typeA should contain all the capabilitiesa can exercise: yetA cannot
containin b, asb is in the scope of a nested binder. If we exchange the positionof the two binders, as in(�b:B)(�a:A)a[in b℄ j b[
oin b℄ the term
becomes typeable. The use of domains resolves the problem: both terms are well-typed whenA andB are domains (thus type constants rather
than sets of term-level capabilities).

4

Reduction

The reduction relation for SSA derives from the one defined for Safe Ambients. We letQ;R andS range
over arbitrary processes.

(in) b[in a:P j Q℄ j a[
oin a:R j S℄ ➞ a[R j S j b[P j Q℄℄
(out) a[b[outa:P j Q℄ j
oouta:R j S℄ ➞ b[P j Q℄ j a[R j S℄
(open) open a:P j a[
oopen a:Q j R℄ ➞ P j Q j R
(context) P➞Q) E [P ℄➞E [Q℄
(struct)2 P 0 � P➞Q) P 0➞Q

whereE [℄ denotes an evaluation context defined as

Evaluation ContextsE [℄ ::= [℄  (�a:D)E [℄  P j E [℄  E [℄ j P  a[E [℄℄
and� is the standard structural equivalence relation for ambients, that is the least congruence relation that
is a commutative monoid for0 and j and closed under the following rules:!P �!P j P(�a:D)0 � 0(�a:A)(�b:B)P � (�b:B)(�a:A)P for a 6= b(�a:D)(P j Q) � P j (�a:D)Q for a 62 fn(P)(�a:D)b[P ℄ � b[(�a:D)P ℄ for a 6= b
Herefn(P) denotes the set of free names ofP , defined as:

fn(0) = ? fn(
ap a:P) = fn(P) [fag fn((�a:D)P) = fn(P) n fag
fn(P1 j P2) = fn(P1) [fn(P2) fn(a[P ℄) = fn(P) [fag fn(!P) = fn(P)

Here
ap 2 fin ;
oin ; out ;
oout ; open ;
oopen g and, as it is costumary, we work modulo�-conversion of
bound names and variables.

3 Type System

Ambient domains, ranged over byA�H, provide the type-level unit of abstraction: in the type system, the
effect of exercising a capability is observed on domains rather than on ambients. We define process types in
terms of type-level capabilities as follows:

Type CapabilitiesM ::= inD j
oin D j out D j
oout D j open D j
oopen D
Process TypesP ::= (L;M;N) (L;M;N 2 2M)

2We use this definition of structural reduction instead of themore standardP 0�P ➞ Q�Q0) P 0 ➞ Q0 to ease the proof of type safety (see
Section 4).

5

Notation. The following conventions are used throughout. We often write
ap D (respectively,
ap a) to
denote an arbitrary type-level (respectively, term-level) capability. IfP = (L;M;N), we writeP" for L,P= for M, andP# for N, and often abuse this notation usingP", P= andP# both as projections of the typeP, and directly as sets, as inP : (P";P=;P#). Also, we use set-theoretic notation for various operations
on process types: ifP andQ are process typesP � Q denotes component-wise inclusion. SimilarlyP [Q
denotes component-wise union. Given a setM of type capabilities and a process typeP, we defineP [#M
(respectively,P[=M andP["M) as the process type resulting from the union ofM andP# (respectively,P= andP"): P[#M , (P";P=;P#[M), P[=M , (P";P=[M;P#) andP["M , (P"[M;P=;P#).
Finally, given a type-level capabilityM, a type-level co-capabilityM, and two sets of type capabilitiesL
andM, we writeM 2 syn
(L;M) as a shorthand forM 2 L andM 2M. Finally, the set of free domains
(names) of a process type is defined as follows:fn(P) = fD j 9 � 2 f";=; #g such that
apD 2 P�g.

Process types describe the capabilities that processes mayexercise, and trace thenesting levelat which
the effect of exercising a capability may be observed. The three components of process types identify those
levels: ifP has typeP, thenP" describes the effects that can be observed at the level of theambient enclos-
ing P , P= describes the capabilities observed at the level ofP , and finally,P# represents the capabilities
that are exercisedwithin P , wheneverP is an ambient of the forma[P 0℄. To exemplify, givena : A:� in a:P : P) in A 2 P", since the effect of exercisingin a is observed at the level of the ambient (if

any) enclosingP� b[in a:P ℄ : P) in A 2 P=, since now it isb[in a:P ℄ that exercisesin a� open a:P : P) open A 2 P=, sinceopen a is exercised (and its effect observed) at the level of the
processes running in parallel withopen a:P� b[open a:P ℄ : P) open A 2 P#, sinceopen a is exercised withinb.

3.1 Environments and Type Rules

We define two classes of environments, namelyType Environments, denoted byE, andDomain Environ-
ments, denoted by�:

Type Environments E : Ambient Names! Ambient Domains
Domain Environments � : Ambient Domains! Process Types

Type environments associate to each ambient name the domainit belongs to, while domain environments
associate to each domain the type that is shared by all its ambients. Thus, while type environments parti-
tion ambients into domains, domain environments convey information about potential interactions among
domains, and enforce behavioral invariants for processes enclosed in ambients in each domain.

Definition 3.1 (Closure and Boundedness).Let� be a domain environment,P a process type, andD andH be ambient domains. We define the following notation:� ` P
losed , open H 2 syn
(P=;�(H)=)) �(H) � P� ` D bounds P , P" � �(D)= ^ P= � �(D)# ^ (
oopen D 2 �(D)=) P � �(D))� ` D
losed , � in H 2 syn
(�(D)=;�(H)=)) � ` H bounds �(D)out H 2 syn
(�(D)=;�(H)#)) �(D) � �(H)
6

The closure condition on process types formalizes the intuition that processes may exercise all the capa-
bilities of the ambients they may open. The boundedness ofP by D ensures that the process type�(D)
provides a sound approximation of the typeP of any process enclosed in (ambients of) domainD. This is
expressed by the first two inclusions, which reflect the different nesting level at which one may observe the
behavior of ambients and their enclosed processes. The lastinclusion handles the case of domains whose
ambients may be opened: in that case ambient boundaries are dissolved, and consequently the behavior of
the processes unleashed as a result of the open may be observed at the nesting level of the ambients where
they were originally enclosed. Finally, the closure condition for domains enforces the previous invariants
in the presence of mobility: the behavior of an ambienta of domainD must account for the behavior of
ambients enteringa, as well as for the behavior of ambients exitinga (sincea lets these ambients out,
then it is virtually responsible for their behavior). The import of the closure and boundedness conditions is
exemplified in Section 3.2 by the typing of Example 1.1 and Example 1.2 from the introduction.

Definition 3.2 (Coherence).Let � be a domain environment. We define the notation� ` � (read� is
coherent) as follows:� ` � , fn(�) � Dom(�) ^ 8D 2 Dom(�): (� ` D
losed ^� ` �(D)
losed)
where, with an abuse of notation, we usefn(�) to denote the setfD j
ap D 2 Img(�)g.
The typing rules are given in Figure 1. They derive judgmentsof the form�; E ` P : P, whereE is a type
environment,� is a domain environment, andImg(E) � Dom(�) (that is, theimageof E is contained in
thedomainof �).
The rules (DEAD), (PAR), (REPL), and (RESTR) are standard. The typing of prefixes (in the (ACTION)
rules) is motivated by the observations we made earlier: theeffect of exercising the capabilitiesin a; out a;
oin a
and
oopen a may be observed at the level of the enclosing ambient. Dually, open a, and
oout a may be
observed at the level of the continuation process.

As for (AMB), the rule stipulates that an ambienta[P ℄ hasat leastthe type that� associates with the
domainD of a, i.e.�(D), provided thatD bounds the type ofP in �. The (AMB) rule is technically inter-
esting, as, unlike its companion rule in previous type systems for Mobile (and Safe) Ambients, it establishes
a precise relationship between the type of an ambient and theprocess running inside it. This relationship,
which is essential for tracing implicit behavior, can be expressed in our type system thanks to the three-level
structure of our process types.

The format of the rules (DEAD) and (AMB) could be simplified and made perhaps more intuitive, by
stipulating that the types deduced in the consequences of the two rules are the types(?;?;?) and�(D)
respectively. More precisely, we could have used the following two rules instead of the respective rules in
Figure 1 (note the simpler premises):

(DEAD)�; E ` ��; E ` 0 : (?;?;?) (AMB)�; E ` P : P �; E ` a : D � ` D bounds P�; E ` a[P ℄ : �(D)
As a matter of facts, these rules are those used for the type inference algorithm defined in Section 5. On the
other hand, here this simplification would require the introduction of a subsumption rule like the following
one: �; E ` P : P � ` Q P � Q�; E ` P : Q

7

(TYPE PROC)� ` � fn(P) � Dom(�) � ` P
losed� ` P (ENV)� ` � Img(E) � Dom(�)�; E ` � (NAME)�; E ` � a 2 Dom(E)�; E ` a : E(a)
(DEAD)�; E ` � � ` P�; E ` 0 : P (PAR)�; E ` P : P �; E ` Q : P�; E ` P j Q : P (REPL)�; E ` P : P�; E `!P : P

(RESTR)�; E; a : D ` P : P D 2 Dom(�) a 62 Dom(E)�; E ` (�a:D)P : P
(ACTION")�; E ` P : P �; E ` a:D
apD 2 P"
ap 2 fin;
oin; out;
oopen g�; E `
ap a:P : P
(ACTION=)�; E ` P : P �; E ` a:D
ap D 2 P=
ap 2 f
oout; open g�; E `
ap a:P : P

(AMB)�; E ` P : P �; E ` a : D � ` D bounds P � ` Q �(D) � Q�; E ` a[P ℄ : Q
Figure 1: Typing Rules

which is easily shown to be admissible in the type system, as presently defined (Lemma A.7).
We conclude with the statement of the subject reduction theorem, whose proof in Appendix A.

Theorem 3.3 (Subject Reduction).If �; E ` P : P andP➞Q, then�; E ` Q : P.

3.2 Examples

We illustrate the behavior of the typing rules with the two systems of Examples 1.1 and 1.2. AssumeE � a:A; b:B,
:C; d:D, and consider the attacka[
oin a:open b:in
℄ j b[in a:
oopen b:in d℄:
Let Pb be the type of the process enclosed inb: it is easy to verify thatf
oopen B; in Dg � Pb". From� ` B bounds Pb, one has
oopen B 2 �(B)=, and hencein D 2 �(B)". Let nowPa be the type of the
process enclosed ina. Sinceopen B 2 syn
(P=a ;�(B)=), then a consequence of the closure ofPa is that�(B)" � Pa" � �(A)= (the last inclusion holds because� ` A bounds Pa). Hencein D 2 �(A)= and
the attack is detected.

8

A similar analysis applies to the attacka[
oin a:in
:
oout a℄ j b[in a:out a:in d℄:
Herein D 2 �(A)= results fromout A 2 syn
(�(B)=;�(A)#), which implies�(B) � �(A) by closure.

4 Type Safety

The operational import of the type system is established by showing that process types provide a safe approx-
imation of process behavior. In that direction, we introduce the relationP + �� that defines the behavior of
a processP in terms of the capabilities� thatP may exercise (at nesting level� 2 f";=; #g) while evolving
in a context. Then we connect the type system with this notionof process behavior by means of a safety
result stating that, given a well-typed processP in a well-typed context, for every� such thatP + �� , the
type capability corresponding to� is traced by the type ofP : in other words, no action goes untraced by the
type system.

Below, we focus on a simplified case of type safety, one that assumes that processes are “normalized”
to the form(�~a: ~D)P whereP contains no restriction�. This assumption simplifies the statement and the
proof of the type safety theorem: in Appendix D we show how theresult can be generalized to arbitrary
processes.

We start by introducing a relation of “immediate exhibition”, notedP # ��: the relation is defined in
Figure 2 by induction on the structure of the processP . Next we define a tagging mechanism for processes,� 2 fin a; out a;
oin a;
oopen ag�:P # �" � 2 fopen a;
oout ag�:P # �= Pi # �� (i = 1; 2)P1 j P2 # ��P # ��!P # �� P #
ap b� a 6= b(�a:D)P #
ap b� P # �"a[P ℄ # �= P # �=a[P ℄ # �#

Figure 2: Exhibiting a capability

by a technique similar to the one in [18]. Let us start with giving the intuition first. Given a processP , we
consider its syntax tree and tag some of its nodes with the symbol ℄. So for example, ifP is the processP1 j a[P2 j (�b:B)P3℄ then, say,P1 j ℄a[P2 j (�b:B)℄P3℄ denotes the processP in which we tagged the
ambienta and the subprocessP3 occurring therein.

Having tagged a particular occurrence ofP , we instrument reduction so that every process interacting
with this occurrence gets tagged: if the tag is initially applied to an ambient, this technique allows us to
trace all the processes that “got in touch” with that ambient3. Tags are propagated based on the idea of an
ambient as a paint pot: any ambient exiting a tagged ambient is tagged:℄a[b[out a:P j Q℄ j
oout a:R j S ℄ � ℄b[P j Q℄ j ℄a[R j S℄

3This corresponds to tracing the interactions considered inthe Chinese Wall Security Policy [2]

9

and so is every process unleashed by opening a tagged ambient:open a:P j ℄a[
oopen a:Q j R℄ � P j ℄(Q j R):
Following the intuition that a process exercises all the capabilities of the processes it opens, we also have:℄open a:P j a[
oopen a:Q j R℄ � ℄(P j Q j R):
Technically, the definition is only slightly more complex. First we definetagged processes:

Tagged ProcessesP ::= 0  �:P  P j P  a[P ℄  !P  ℄P
We use the convention that℄ bounds more than the parrallel composition. Therefore℄P jQ denotes(℄P) jQ
(and, of course,℄a[P ℄ and℄�:P respectively denote℄(a[P ℄) and℄(�:P)). We calluntagged processesthose
processes in which no tag occurs.

Second, we need to extend structural congruence to tagged processes. Given our assumption that pro-
cesses are in “normal” form, structural congruence is extended to tagged processes by simply adding the
following additional clauses4:℄0 � 0 ℄(P j Q) � ℄P j ℄Q ℄ !P � ! ℄P
The structural congruence relation on tagged processes is then the smallest congruence on tagged processes
that is a commutative monoid for0 and j and is closed under the rules above and those of Section 2.

Third, we define the reduction rules for all possible cases that result from whether the processes involved
in a reduction step are tagged or not. To ease the definition, we indicate with℄Æ a possibly absent tag, and
with ℄i the i-th occurrence of the tag℄. With this notation, the tagged version of reduction is defined by the
rules in Figure 3 plus the rules (context) and (struct) of Section 2.

(in) ℄Æ1b[℄Æ2in a:P j Q℄ j ℄Æ3a[℄Æ4
oin a:R j S℄ � ℄Æ3a[℄Æ4R j S j ℄Æ1b[℄Æ2P j Q℄℄
(out) a[℄Æ1b[℄Æ2out a:P j Q℄ j ℄Æ3
oout a:R j S℄ � ℄Æ1b[℄Æ2P j Q℄ j a[℄Æ3R j S℄
(open) ℄Æ1open a:P j a[℄Æ2
oopen a:Q j R℄ � ℄Æ1(P j ℄Æ2Q j R)
(out tag) ℄a[℄Æ1b[℄Æ2out a:P j Q℄ j ℄Æ3
oout a:R j S℄ � ℄b[℄Æ2P j Q℄ j ℄a[℄Æ3R j S℄
(open tag) ℄Æ1open a:P j ℄a[℄Æ2
oopen a:Q j R℄ � ℄Æ1P j ℄(Q j R)

Figure 3: Tag propagation via reduction

Now we can give a precise definition of theresidualsof a process evolving in a context: intuitively these
are all the tagged processes that result from tagging the process in question, and reducing it in the given
context. The definition relies on the following notion of (restriction-free) context:C [℄ ::= [℄  P j C [℄  C [℄ j P  a[C [℄℄  �:C [℄
Definition 4.1 (Residuals).Let (�~a: ~D)P be a process, withP containing no restrictions.

4In Appendix D the definition is refined to handle restrictionsand scope extrusion.

10

1. An occurrenceof P is a path� in the syntax tree ofP . We denote withP� the subprocess ofP
occurring at�, and withC P� [℄ the context obtained fromP by substituting a hole for the subprocess
occurring at�. HenceP = C P� [P�℄.

2. Given a tagged processP , we denote byjP j the process obtained by erasing5 all tags occurring inP .
3. Let� be an occurrence of an untagged processP . The set ofresiduals of� in P is defined as follows:

(1) P� is a residual of� in P
(2) If C P� [℄P�℄� Q andQ�0 is tagged (that is,Q�0 = ℄R for someR), then every residual of�0 injQj is also a residual of� in P .

We can finally generalize the notion of capability exhibition to process occurrences.

Definition 4.2 (Residual Behavior).Let (�~a: ~D)P be a process, withP containing no restriction, and� be
an occurrence ofP . Then,� + �� if and only if there exists a residualR of � in P such thatR # ��.

The definitions above hide several subtilities. First of allnote that the definition of structural equivalence
for tagged processes allows us to use the informal notation℄(P j Q j R), to denote either℄(P j (Q j R)) or℄((P j Q) j R). The choice of one of the two is not important as both of them are structurally equivalent to
all the possible distributions of the tags over the subterms, such as in℄(P j Q) j ℄R or in ℄P j (℄Q j ℄R).
This for example is used in the following instance of the rule(open):℄open a:P j a[
oopen a:Q j R℄ � ℄(P j Q j R)
However it is important to notice that according to Definition 4.1 while the process(P j Q j R) is a residual
of open a:P in the redex, but neither(P j Q), norP , norQ, norR are residuals of that occurence. The
reason resides in the reduction rule(struct) in Section 2 which applies structural equivalence to the redex
but not to the reductum. Even thoughP or Q are not residuals ofopen a:P their behavior is included in
the behavior of(P j Q j R). This holds thanks to the Definition 4.2 and the rules in Figure 2. We gave
our definitions as such, since we wanted that in a one step reduction every tagged process had at most one
residual, so that to be able to easily follow in the proofs thebehavior of the residuals. In order not to loose
any behavior, we defined our reduction rules in Figure 3 so that in the reductum we tagged the “most general”
residual. This explains why, say,open a:P j ℄a[
oopen a:Q j R℄ reducesin one stepto P j ℄(Q j R) rather
than toP j ℄Q j ℄R.

The last step consists in using this definition to state the type safety theorem, whose proof is given in
Appendix B.

Theorem 4.3 (Type Safety).Let (�~a: ~D)P be a process, withP containing no restriction,� be an occur-
rence ofP and letE = E0;~a: ~D for a type environmentE0. Assume that�; E ` P : P0 and �; E ` P� : P.
If � + (
ap a)�, then
ap E(a) 2 P�.

To exemplify, consider the ambienta[
oin a:open b℄. If taken in isolation, this ambient only exhibits the
capabilities
oin a andopen b. If, instead, we take the parallel compositiona[
oin a:open b℄ j b[in a:
oopen b:in
℄ (1)

5Technically, tags are annotations on the syntax tree and arenot part of the syntax. Thus the notion of occurrence is preserved by tag-
ging/untagging, that is, for every taggedP and occurrence�, jP�j = jP j�.

11

then the ambienta[: : : ℄ also exhibitsin
 as a result of the interaction with the context. In fact, if westart
tagginga[: : : ℄ in (1) above, the result of tagged reduction is as follows:℄a[
oin a:open b℄ j b[in a:
oopen b:in
℄� ℄a[open b j b[
oopen b:in
℄℄� ℄a[in
℄
Now, Theorem 4.3 ensures that if we type the process (1), the fact that the residuala[in
℄ of a exhibitsin

is traced by the type associated to the domain ofa. In fact, the result is even stronger, as it ensures that the
type system traces the behavior of any process that interacts with the process occurrence of interest. For
example, if we take the composition℄a[
oin a:
oout b℄ j b[in a:out a:in
℄, the result of tagged reduction is℄a[℄ j ℄b[in
℄, and Theorem 4.3 ensures that the type of (the domain of)a traces the type-level capability
corresponding toin
, since it is exhibited by the residualb[in
℄.
5 Algorithmic Systems

The type system given in Figure 1 is not algorithmic as the rules (DEAD) and (AMB) are not syntax-directed.
However, it is easy to state the type rules so that they form analgorithmic system.

5.1 Typing Algorithm

The algorithmic type system finds the minimal type of a term under a given set of domain assumptions�
and type assumptionsE. The system results from the type system of Figure 1 by replacing the rules (DEAD)
and (AMB) by those stated at the end of Section 3.1, and replacing the (ACTION) and (PAR) with the rules in
Figure 4: the only subtlety is the side condition to the rule (ACTION=2), which definesP0 as the minimumP0
that containsP and is closed in� (i.e. such that� ` P0 is derivable). Collectively, the new rules constitute
the core of an algorithm that given�; E, andP as input, returns the typeP as output. The side condition to
the rule (ACTION=2) uses the following closure operator for process types.

Definition 5.1 (Process Type Closure).Let� be a domain environment such thatfn(�) � Dom(�). Then
definePro
Closure(P;�) , TfP0 j P0 � P [�(A)for all A such thatopenA2syn
(P0=;�(A)=)g
Theorem 5.2 (Soundness and completeness).If �; E `A P : P, then�; E ` P : P. Conversely, if�; E ` P : P, then�; E `A P : P0 andP0 � P
Proof sketch.To prove soundness one first has to prove that if�; E `A P : P, then� ` P. The only
non-trivial part of this is to prove that� ` P
losed. The latter can be proved by induction on the deduction
of �; E `A P : P and a case analysis on the last applied rule: the result holdswhen the last rule is
(ACTION=1) and (ACTION") since the added capability types do not interfere with typeprocess closure;
it holds for (ACTION=2) by the very definition ofP0 which effectively closesP; it is a consequence of
Proposition A.1(5) when the last rule is (PAR). Then, soundness can be easily proved by induction, by
repeated use of the subsumption admissibility property we prove in Lemma A.7. Completeness also follows
by induction on the derivation of�; E ` P : P.

Corollary 5.3 (Minimal typing). �; E `A P : minfP j �; E ` P : Pg if this set is non-empty.

12

(PAR)�; E `A P : P �; E `A Q : Q�; E `A P j Q : P [Q (ACTION=1)�; E `A P : P E(a) = A�; E `A
oout a:P : P [= f
oout Ag
(ACTION=2)�; E `A P : P E(a) = A P0 , Pro
Closure(P [= fopen Ag;�)�; E `A open a:P : P0
(ACTION")�; E `A P : P E(a) = A
ap 2 fin ;
oin ; out ;
oopen g�; E `A
ap a:P : P ["f
ap Ag
(DEAD)�; E `A ��; E `A 0 : (?;?;?) (AMB)�; E `A P : P �; E ` a : D � ` D bounds P�; E `A a[P ℄ : �(D)

Figure 4: Algorithmic Typing

The existence of minimum (with respect to point-wise set containment) types and of an algorithm computing
them are interesting and useful properties. Yet, leaving a programmer with the task of providing a domain
environment� as input to the type checking algorithm is a very strong requirement. Below, we show that
this task can be dispensed with, as domain environments can be reconstructed automatically. In principle,
providing a coherent� for which the typing algorithm does not fail is straightforward. Given a processP ,
let D be the set of domain names occurring inP , and letE be a type environment that assigns a domain
in D to every name inP . Now, denote byPsat the process type whose components contain all the possi-
ble type capabilities overD , and let�sat be thesaturatedtype environment such thatDom(�) = D and�sat(D) = Psat for all D 2 Dom(�). It is easy to verify that there always exists a process typeP such that�sat ` P : P is derivable: to see that, observe that�sat(D) provides a sound approximation of the behavior
of every ambient (and process) occurring inP (indeed,�sat ` P : Psat holds). On the other hand, it is also
clear that�sat is not very useful as a domain environment, as it provides thecoarsest possible approximation
of behavior: this is problematic in view of our perspective use of types to check and enforce security, as the
coarser the approximation of a process’ behavior, the less likely for the process to pass the security checks
imposed by its environment.

5.2 Type Reconstruction

Type reconstruction computes the minimum coherent domain environment� such that a given term type
checks. The ordering over environments derives by extending the containment relation to environments,
using point-wise ordering as follows:� � �0 if and only if Dom(�) = Dom(�0) and for allD 2Dom(�);�(D) � �0(D). We use

Tfa j P(a)g as a shorthand for
Te2fajP(a)g e, and similarly for the

union. Then we have the following definition.

13

Definition 5.4 (Domain Closures).Let� be a domain environment s.t.fn(�) � Dom(�). Then define:EnvClosure(�) , T f�0 j �0 � � ; �0 ` �gDomClosure(P; A;�), T��0 j �0 � � ;�0(A) � (?;P";P=) [P0	 with P0 = n P if
oopen A2�0(A)=? otherwise

Both these operators, as well as thePro
Closure operator of Definition 5.1, are easily seen to be well-
defined and monotone: furthermore they can be effectively computed by (always terminating) algorithms.
An example is given in Figure 5.EnvClosure(� : DomEnv):DomEnv :=

1 D := Dom(�);
2 while D 6= ? do
2 chooseD in D ; D := D n fDg
3 for
apH in �(D)= do
4 �0 := �
5 case
ap of
6 out :
7 if
ooutH 2 �(H)# then �(H) := �(H) [�(D)
8 in :
9 if
oinH 2 �(H)= then
10 begin
11 �(H)= := �(H)= [�(D)"; �(H)# := �(H)# [�(D)=
12 if
oopenH 2 �(H)= then �(H) := �(H) [�(D)
13 end
14 open :
15 if
oopenH 2 �(H)= then �(D) := �(D) [�(H)
16 esac
17 if � 6= �0 thenD := D [fHg
18 done
19 done
20 return (�)

Figure 5: A closure algorithm

The system for type reconstruction is defined in Figure 6: the(R-ACTION) rules are the same as the corre-
sponding algorithmic (ACTION) rules, (R-REPL) and (R-RESTR) are defined as their corresponding rules
in Figure 1. In all the rules, the subscriptD indicates a finite set of ambient domains: in (R-DEAD), ?D is
the domain environment defined by?D(D) = (?;?;?) for everyD 2 D . The rules describe an algorithm
that, given a processP and a type environmentE such thatfn(P) � Dom(E) returns a process typeP and
a domain environment�. More precisely, given a processP and a type environmentE, letD be the set of
ambient domains occurring in the type assumptions ofE and in the types of restrictions inP . Then, there
exists one and only one process typeP and environment� such that�; E `D P : P: we denote this process
type and domain environment respectively withRtype(E;P) andRenv(E;P).
Theorem 5.5 (Soundness and Completeness).Let P be a process, andE a type environment such that
fn(P) � Dom(E). ThenRenv(E;P); E `A P : Rtype(E;P). Furthermore, for any� andP such that�; E `A P : P, one hasRenv(E;P) � � andRtype(E;P) � P.

14

(R-DEAD)?D ; E `D 0 : (?;?;?) (R-ACTION=1)�; E `A P : P E(a) = A�; E `A
oout a:P : P [= f
oout Ag
(R-ACTION=2)�; E `A P : P E(a) = A P0 , Pro
Closure(P [= fopen Ag;�)�; E `A open a:P : P0
(R-ACTION")�; E `A P : P E(a) = A
ap 2 fin ;
oin ; out ;
oopen g�; E `A
ap a:P : P ["f
ap Ag
(R-PAR)�1; E `D P1 : P1 �2; E `D P2 : P2 � , EnvClosure(�1[�2);P , Pro
Closure((P1[P2);�)�; E `D P1 j P2 : P
(R-AMB)�; E `D P : P E(a) = A �? , T(�00 �00=EnvClosure(�0)�0=DomClosure(P0; A;�)P0=Pro
Closure(P;�00))�?; E `D a[P ℄ : �?(A)

Figure 6: Type Reconstruction Algorithm

Proof. See Appendix C.

Corollary 5.6 (Minimal typing). LetP be a process andE a type environment such that fn(P) � Dom(E).
Then(Renv(E;P);Rtype(E;P)) = minf(�;P) j �; E ` P : Pg
Accordingly, in the typed syntax it is enough to specify the domains of the ambients occurring inP : the
type checker will then generate the minimal types for each domain and forP .

6 Security

Security policies are expressed by means of security constraints, and new environments help associate secu-
rity constraints with ambient domains:

Security Environments � : Ambient Domains! Security Constraints

A security environment establishes the security structurefor a given system of processes and ambients.
Given domain and type environments� andE, and a well-typed processP , we may then verify thatP
is secure in� by checking that� satisfies�. The definition of satisfaction, denoted� j= �, requires

15

Dom(�) = Dom(�) and depends on the structure of the security constraints, which in turn depend on the
sort of security policy one wishes to express. We discuss three options below.

Domain Constraints yield rather coarse security policies whereby one can identify trustedanduntrusted
domains and, for each domain, allow interactions only with trusted domains. These security constraints may
be expressed by tables of the formS = hin = Din; out = Douti. If D is a domain and�(D) = S, thenDin
(respectively,Dout) is the set of trusted domains whose ambients can enter (respectively, exit) the ambients
of D. In this option� j= � if and only if, for allD in Dom(�), one has(i) fA j in D 2 syn
(�(A)=;�(D)=)g � �(D):in, and(ii) fA j out D 2 syn
(�(A)=;�(D)#)g � �(D):out:
The security model arising from domain constraints is related to the security policy of the JDK 1.1.x. In
JDK 1.0.x all non local definitions are considered as insecure. The same applies under JDK 1.1.x with the
difference that a class loaded from the network can become trusted if it is digitally signed by a party the user
has decided to trust (in our case a domain inDin).

Capability Constraints lead to finer protection policies that identify the type-level capabilities that en-
tering and exiting ambients may exercise6. These constraints may be expressed by tables of the formS = hin = Pin; out = Pouti, whose entries are process types. IfD is a domain, and�(D) = S then:� Pin defines the only capabilities that processes entering ambients of domainD have permission to

exercise: the three setsPin", Pin=, andPin# specify the capabilities that can be exercised, respectively,
at the level of the entering process, at the level of the enclosing ambient, and inside the entering
process. The first specification is useful to prevent information leakage, the second to control the
local interactions of the entering ambient, and the third isuseful when opening (or entering) the
entered process.� Pout is the table defining the capabilities that are granted to processes exiting out of ambients of
domainD, with the three entriesPout", P=out, andP#out defined as above.

In this option� j= � if and only if, for all A, B in Dom(�), in A 2 syn
(�(B)=;�(A)=) implies�(B) � �(A):in, and,out A 2 syn
(�(B)=;�(A)#) implies�(B) � �(A):out. Capability constraints
are loosely related to thepermission collectionsused in the JDK 1.2 architecture (also known as Java 2) to
enforce security policies based on access control and stackinspection.

Constraint Formulas. More refined policies can be expressed by resorting to a fragment of first order
logic. The fragment is given below, whereM ranges over type capabilities,D over ambient domain names
(and domain variables), and� over", =, and#.

Syntax � ::= M 2 D�  :�  � ^ �  � _ �  8D : �
6Alternatively, we could define what ambients should not be allowed to do, but our choice complies with well-established security principles

[8].

16

Semantics � j= M 2 D� , M 2 �(D)�� j= :� , � j= � does not hold� j= �1 ^ �2 , � j= �1 and� j= �2� j= �1 _ �2 , � j= �1 or � j= �2� j= 8D : � , � j= �fD := Ag for all A 2 Dom(�)
The notion of formula satisfiability is easily extended to the security environments, namely� j= � if an
only if for all D in Dom(�), � j= �(D). Since we work on finite models, satisfiability is always decidable.
Note that the first-order fragment is powerful enough to encode quantification on actions as well as formulas
such as
apD 2 syn
h(L;M). Based on that, we can express refined security properties: for example, the
formula8B;C : in D 2 syn
h(B=;D=) ^ in B 2 syn
h(C=; B=)) in D 2 C= allows one to prevent
arbitrary nested Trojan Horses (an ambient entering a second ambient that enters a third ambient that can
enterD), since it requires that all ambients that are granted the right to enter domainD may only be entered
by ambients that already have the right to enterD.

Independently of the structure of constraints, given a processP and a type environmentE for the names
occurring free inP , we say thatE andP satisfy a security policy� if and only ifRenv(E;P) j= �. As a
corollary of Theorem 4.3 we have thatRenv(E;P) j= � implies that no ambient occurring inP can violate
the security policies defined in�.

7 Distributed SSA

The type systems presented in the previous sections have interesting properties and significant operational
impact. Yet, there is also a fundamental weakness to them, inthat they rely on the assumption that global
information is available on ambient domains and their types: a derivation for a typing judgment�; E ` P :P requires that the environments� andE contain assumptions for all the ambients occurring inP and for
all those ambients’ domains. This is clearly unrealistic for a foundational calculus for wide-area distributed
computations and systems.

In this section we address the problem by presenting a distributed variant of SSA. In the distributed
version, which we call DSSA, each ambient (i.e. each “location” in the system of processes) carries a type
and a domain environment. The syntax of DSSA processes is defined by the following productions:

Distributed ProcessesP ::= 0  �:P  (�a:D)P  P j P  a[P ℄S�;E  !P
where�; �, andE are defined as in the previous sections, andS is a capability constraint.

To get an intuition of DSSA ambients, it is useful to think of Javaclass files. Class files include
applet bytecode together with type and security information used for bytecode verification and dynamic
linking. In particular aclass file declares the types of all methods and fields the associated class defines
(the type assertions), and the types of all the identifiers the class refers to (thetype assumptions) [13].
When downloading a class file, the verifier checks (among other properties) that the bytecode satisfies the
type assertions under the type assumptions. A DSSA ambienta[P ℄S�;E can be understood as a class file,
wherea[P ℄ represents the bytecode, and the pair�; E corresponds to the type assertions and assumptions.
Intuitively, for any nameb occurring ina[P ℄, the process type�(E(b)) may be thought of as a type assertion,
if b = a or b is the name of an ambient contained inP , or else as a type assumption ifb occurs in a capability
of P butP contains no ambient namedb.

17

7.1 Typed Reduction

The type system for DSSA is the same as that defined for SSA. DSSA ambients are typed, statically, by sim-
ply disregarding their associated environments: the latter are used in the dynamic type-checks performed
upon reduction. The new reduction relation is based on structural congruence, which is defined as in Sec-
tion 2 with the only exception of the following rule:(�a:D)b[P ℄S�;E;a:D � b[(�a:D)P ℄S�;E a 6= b
that replaces the corresponding rule for SSA. Typed reduction is then defined by the(open), (struct), and
(context) rules of Section 2, plus the rules in Figure 7.

(in) b[in a:P j Q℄Sb�b;Eb j a[
oin a:R j S℄Sa�a;Ea ➞ a[R j S j b[P j Q℄Sb�b;Eb℄Sa�;E (�)(�) provided that, given�; E = �b��a; Eb�Ea; one has�; E ` b[in a:P j Q℄ : �(E(b)); �(E(b)) � Sa:in; and � ` E(a) bounds �(E(b))
(out) a[
oout a:P j Q j b[out a:R j S℄Sb�b;Eb℄S�;E ➞ b[R j S℄Sb�b;Eb j a[P j Q℄S�;E (��)(��) provided that�; E ` b[out a:R j S℄ : �(E(b)); and �(E(b)) � S:out

Figure 7: New reduction rules for DSSA

The notation� ��0 indicates the environment that results from appending�0 to� so that assumptions in�0
hide corresponding assumptions in�. Hence, in the rules of Figure 7:(���0)(D) , � �0(D) if D 2 Dom(�0)�(D) otherwise

(E�E0)(a) , � E0(a) if a 2 Dom(E0)E(a) otherwise

The rule(in) extends the corresponding rule for SSA with additional conditions ensuring that the reduction
takes place only when the local environments of the two ambients involved in the move are mutually com-
patible and the security constraints fulfilled. First, the rule requires the environment ofa to be extended
by the environment ofb (in the reductuma carries the environment�; E that extends�a; Ea). Second,
the reduction requires the entering ambientb to (i) be well-typed in the extended environments, and(ii)
to satisfy the security constraints ofa. Finally, the condition� ` E(a) bounds �(E(b)) requires that the
entering ambientb does not modify the external behavior ofa: a lets new ambients in only if they comply
with its own local behavior discipline.7

The rule(out) performs similar type and security checks: note, in particular, that if a were well typed
then the type check onb would be unnecessary. Yet, we cannot make anya priori assumption abouta and
its type, and therefore we must check that the exiting ambient has the type it is supposed to have (otherwise
the security check would be of no use).

A closer look at the rule(in) shows an interesting correspondence between the constraints enforced by
the target of the move and the functions implemented by the three component of the JVM security system:
theClass Loader, theBytecode Verifier, and theSecurity Manager[13].

7In the rules we considered that ambients are indexed by Capability Constraints. IfS’s were instead Domain Constraints the security require-
ments�(E(b)) � Sa:in and�(E(b)) � S:out in (in) and(out) would change respectively toE(b) 2 Sa:in andE(b) 2 S:out. If instead, the
constraints were expressed by formulas, we could consider fine-graded security constraints of the formS ::= hin = �; out = �i, and the security
conditions in(in) and(out) would change to� j= Sa:in and� j= S:out, respectively.

18

� ; E = �b ��a ; Eb �Ea : Local (toa) assumptions on the type of each name hide remote assumptions for
that name. As a consequence, the entering agentb cannot spoof a definition of the target hosta. This
is the security policy implemented by the JVM Class Loader, which provides name-space separation
and prevents type-confusion attacks for spoofing.b[in a:P j Q℄Sb�b;Eb : �(E(b)) : The target of the move, ambienta, checks that the entering agentb has the
type it declares to have, in caseb 62 Dom(Ea), or thata expects it to have, whenb 2 Dom(Ea). This
is the security policy enforced by the bytecode verifier.�(E(b)) � Sa:in : The ambienta checks that the entering agent performs only actions that are explicitly
permitted by the security constraints defined bySa:in. This is essentially the security policy enforced
by the Security Manager: the difference is that the SecurityManager performs these checks dynam-
ically (when the agent is already entered and requires to perform the action), whereas in our system
they are performed at load time.

Note that, intuitively, all the above checks are performed by a, the ambient whose boundary is crossed. That
ambient does not trust foreign code, it just trusts, of course, its own implementation of the type checking
algorithm which is used to dynamically verify foreign code:verification is based on the (type) information
foreign code carries along with it, according to the common proof-carrying-code practice [14].

7.2 Type Safety

Most of the properties relating the type system and reduction carry over from SSA to DSSA. However
the key property of DSSA, where the essence of distribution resides, is the following, stronger, version of
Theorem 4.3. Again, the theorem is stated for the simplified case of “normalized” distributed processes,
i.e. for processes with all restrictions extruded to the outermost scope. It is based on the same definitions
of residual and exhibition of the previous section (but stated for the new typed reduction): the additional
information attached to ambients is simply disregarded.

Theorem 7.1 (Local Type Safety).Let (�~a: ~D)P be a DSSA process, withP containing no restriction, and� be an occurrence ofP such thatP� = a[Q℄S�;E. Assume�; E ` P� : P is derivable. If � + (
ap b)�,
then
ap E(b) 2 P�.

The difference between this theorem, whose proof is sketched in Theorem B.5, and Theorem 4.3 is
that the statement of the former does not require the contextP to be well typed, but just that the ambient
occurrence can be typed under the assumptions it comes with.Accordingly, every ambient that type-checks
under the environment it carries along with it will only exhibit capabilities that are already in its static type,
even though the context it interacts with is not well-typed8.

This is an interesting result for wide-area distributed systems, where global typing may not be possible:
for example, distinct subsystems may have incompatible type assumptions. Even then, typed reduction
allows secure interactions provided that local type safetyexists or can be ensured. Hence, an agent can
confidently let another ambient in or out even if the former isevolving in a possibly ill-typed context: as
long as typed reduction is respected, the security constraints that agent defines are never violated. The dual
view holds as well: an agent can confidently enter or exit another ambient even if the latter is ill-typed: the
reduction semantics ensures that the security constraintsdefined by the former are never violated.

8This property does not hold for the non-distributed calculus: the proof fails in the case for(in) as it is not possible to deduce the well-typing of
the ambientb.

19

8 Communications

The analyses we developed in the previous sections were targeted to the combinatorial kernel of Safe Ambi-
ents. We now discuss their extension to the case of ambients with communication primitives: the extension is
nontrivial, as communication may involve exchange of capabilities which, once received, may be exercised
and thus affect the behavior of the ambient where they are received.

We first briefly introduce the constructs for communication,which are directly inherited from the cor-
responding constructs defined for Mobile Ambients in [6]. The type analyses for the extended calculus are
developed in two steps: first we define a type system that only provides for exchange of capabilities; then
we introduce a full-fledged system, where the exchange of values also includes ambient names, and study
its properties in detail.

8.1 Safe Ambients and Communication

In addition to their ability to move, ambients and processesare now endowed with primitives for communi-
cation. As in the original proposal by Cardelli and Gordon, communication is anonymous and asynchronous,
and takes place inside ambients. The new typed syntax is defined by the following extensions to the produc-
tions given in Section 2:

Processes P ::= : : : as in Section 2hMi asynchronous output(x:V)P input

Capabilities � ::= : : : as in Section 2

Terms M ::= a; b;
; : : : ; x; y; z variables
 � capabilities
 M:M paths

First, nowa; b;
; : : : ; x; y; z are used to range over variables, with the usual convention that constant names
are variables we commit not to abstract upon. We will rather use —quite informally—a; b;
; : : : for ambient
names and variables, andx; y for generic variables bound in input processes.

The productions introduce two new process forms:(x:V)P inputs a value of typeV (defined next)
and then continues asP (with every free occurrence of the variablex substituted by the input term), whilehMi denotes asynchronous output. The intuitive semantics of communication is that an output processhMi
simply “drops” the termM which may then be input by any process running at the same nesting level, as in(x:V)P j hMi. Terms that may be exchanged are names and capabilities, as well aspathsof capabilities of
the formM:M 0.

The intuitive semantics of communication we just outline isformalized by two simple extensions of the
relations of structural equivalence and reduction. Structural congruence is defined as in Section 2, with the
addition of the following clause: M1:(M2:P) � (M1:M2):P
Reduction also in defined as in Section 2, with a new rule for communication, namely:

(comm) (x:V)P j hMi ➞ Pfx := Mg
Note that communication is purely local, as it only happens when the input and output processes are at
the same nesting level, hence within the same ambient. Instead, communication across ambient boundaries

20

requires mobility and is effectively enabled by theopen capability. To exemplify, consider two ambients
running in parallel as in the following configurationa[(x : V)P j Q℄ j b[hMi j R℄. The exchange of the
valueM from b to the processP enclosed ina happens as a result ofb first moving insidea, and thena
openingb (or vice-versa, bya enteringb and being opened there). Thus, ifQ is the processopen b, andR isin a, communication is the result of the following sequence of reductions:a[(x : W)P j open b℄ j b[hMi j in a℄ ➞ a[(x:V)P j open b j b[hMi℄℄ by exercisingin a

➞ a[(x:V)P j hMi℄ by openingb
➞ a[Pfx :=Mg℄

8.2 Exchanging Capabilities

As advocated by Cardelli and Gordon [6], communication of names should be rare in distributed systems,
because knowing the name of an ambient gives full control over it; instead, communication of capabilities
should be commonplace, as it allows controlled interactionbetween ambients. Our first type system takes
this view to its extreme, and limits communication to the sole exchange of capabilities.

The resulting system is somewhat restrictive, but nevertheless interesting as it is based on a rather smooth
and simple extension of the system discussed in Section 3. The basic observation for the new system is that
capabilities and processes can be typed uniformly: in fact,given that process types describe the behavior of
processes in terms of the capabilities those processes may exercise, it is natural to associate process types
to capabilities as well9. Based on this observation, the type system is easily definedby taking the typeV
of exchange values to be the typeP of processes, and by introducing new rules for typing capabilities in
isolation. These rules, together with a new (PREFIX) rule replace the previous (ACTION") and (ACTION=)
rules from Section 3. In addition, of course, we have new typing rules for input and output processes.

(CAP")�; E ` a:D
apD 2 P"
ap 2 fin;
oin; out;
oopeng�; E `
ap a : P (CAP=)�; E ` a:D
apD 2 P=
ap 2 f
oout; openg�; E `
ap a : P
(PATH)�; E `M1 : P �; E `M2 : P�; E `M1:M2 : P (PREFIX)�; E `M : P �; E ` P : P�; E `M:P : P
(INPUT)�; E; x : Q ` P : P Q � P x 62 Dom(E)�; E ` (x : Q)P : P (OUTPUT)�; E `M : P�; E ` hMi : P

The intuition underlying the new system can be explained as follows. Process types now trace two different
kinds of information:(i) the (implicit and explicit) behavior of a process, and(ii) the behavior resulting
from the exchange of capabilities via communication.

The typing of capabilities, in the rules (CAP) characterizes capabilities as directly determining process
behavior, observable at different nesting levels. The format of the rules is consistent with the format we
used in Figure 1 and will use in the full-fledged system of Section 8.3: the algorithmic version of the rules

9This does not allow process exchanges and hence affect the first-order nature of the calculus. In fact, the syntax insuresthat
only terms may be output, and hence by itself prevents process exchanges via communication.

21

(CAP") and (CAP=) would derive the minimum types(f
ap;Dg;?;?) and(?; f
ap;Dg;?), respectively.
The rule (PATH) simply collects the behavior associated with the capabilities on the path, and the rule
(PREFIX) combines the behavior determined by the prefix with the behavior of the continuation process.
Again, we have given the non-algorithmic versions of the rules: in the algorithmic versions of the rules
(PATH) and (PREFIX) the type deduced by the conclusions would be the union of thetwo types deduced by
the two respective premises.

The rule (INPUT) implicitly assumes that every capability input by a process may potentially be exer-
cised: this is enforced by the constraintQ � P, requiring that the process exhibit in its type the behaviorthat
may result from exercising any capability that is input by the process. Dually, the rule (OUTPUT) identifies
the type of the capability being output with the type of the process that outputs it: this is required for type
safety. To see that, assumeM : P, and consider the process(x : Q)P j hMi. This process type-checks with
the rules above only ifQ � P, and the type assigned toP is a super-type ofP, which therefore provides a
safe approximation for the behaviorP may acquire in the exchange ofM .

Notice that the type used for the parameter of input processes can be any type, not necessarily a closed
one. This is convenient, as it allows a more liberal typed syntax in which the type annotations are not
necessarily closed, and their closure is automatically computed by the system. In Section 5, we showed that
this can indeed be accomplished by the type reconstruction algorithm: in the new system, the type closure is
implicitly computed by the rule (INPUT) which subsumes the possibly ill-formed parameter typeQ, to the
well-formed (i.e., closed) typeP. From the last observation, it directly follows that the typing rules can be
reformulated and based on an untyped syntax, by simply replacing (INPUT) rule above with the rule given
next:

(CURRY-STYLE INPUT)�; E; x : P ` P : P�; E ` (x)P : P
Discussion. While easily accommodated in the basic type system, the solution we just outlined is some-
what unsatisfactory. The problem is that representing behavior and exchange with process types effectively
amounts to identifying the communication of a capability with the act of exercising it. Clearly, this leads to
a rather coarse type analysis, because an ambient could exchange a capability without ever exercing it. A
further source of unwanted approximation arises from type closure: take for instance the ambienta[P ℄ : P,
and assume thatP opens another ambient enclosing an output processhMi : Q. Then, type closure implies
thatP must subsume the typeQ, even thoughP does not include any input process, and therefore it has no
way to effectively exercise the capability.

8.3 Exchanging names and capabilities

A more effective analysis results from distinguishing the two forms of behavior a process exhibits: the
capabilities it may exercise from the capabilities it may exchange. This can be accomplished by enriching
the syntax of types as defined by the following productions. LetP denote the usual triples(L;M;N), withL;M;N 2 2M, andM denoting type capabilities, exactly as in Section 3. Then define:

Exchanges W ::= D[W ℄ exchange of names
 T exchange of capabilities
 Shh no exchange

Processes T ::= P[W ℄
22

In addition, we define the types of values, as expected:

Values V ::= D[W ℄  T
The structure of types is similar to that of the original typesystem for Mobile Ambients by Cardelli and
Gordon [7]. Process types describe the two components of process behavior: the direct behavior resulting
from exercising capabilities, traced byP, and theexchange behaviorresulting from communication, traced
byW . As we anticipated, communication can now exchange either capabilities (of typeT) or ambient names
(of typeD[W ℄). The typeD[W ℄ is assigned to ambients names of domainD whose internal exchanges, if
any, are of typeW . The typed syntax is similar to the previous, with the only restrictions that new names
may only be declared at types of the formD[W ℄.

ProcessesP ::= 0  M:P  (�a:D[W ℄)P  P j P  hMi  (x : V)P  a[P ℄  !P
8.4 Environments and Typing Rules

The binding environments of the new type system are still defined as pairs ofType Environments, denoted
by E, andDomain Environments, denoted by�. Domain Environments defined as in Section 3, as finite
maps from domain names to the componentP of process types. Type environments, instead, have a different
structure as they now map ambient names to the newly defined ambient types of the formD[W ℄, and input
variables to value typesV .

Interestingly the definition of closure, boundedness and coherence from Section 3 work just as well
with the new structure of types. The typing rules, instead, are different: they derive five different forms of
judgments, that is� ` � or �; E ` � or� ` T or�; E ` P :T or �; E `M :W .

Type and Environment Formation

(TYPE Shh)� ` �� ` Shh (TYPE MESSG)� `W D 2 Dom(�)� ` D[W ℄ (TYPE PROC)� `W fn(P) � Dom(�) � ` P
losed� ` P[W ℄
(ENV1)� ` ��;? ` � (ENV2)�; E ` � � `W x 62 Dom(E)� ; E; x:W ` �

Typing of Terms

(NAME)�; E ` � x 2 Dom(E)�; E ` x : E(x)
(CAP")�; E ` a:D[W 0℄ � ` P[W ℄
apD 2 P"
ap 2 fin;
oin; out;
oopen g�; E `
ap a : P[W ℄

23

(CAP=1)�; E ` a:D[W 0℄ � ` P[W ℄
ooutD 2 P=�; E `
oout a : P[W ℄ (CAP=2)�; E ` a:D[W ℄ � ` P[W ℄ openD 2 P=�; E ` open a : P[W ℄
(PATH)�; E `M1 : T �; E `M2 : T�; E `M1:M2 : T

Typing of Processes

(DEAD)�; E ` � � ` T�; E ` 0 : T (REPL)�; E ` P : T�; E `!P : T (RESTR)�; E; a:D[W ℄ ` P : T � ` D[W ℄ a 62 Dom(E)�; E ` (�a:D[W ℄)P : T
(PAR)�; E ` P : T �; E ` Q : T�; E ` P j Q : T (PREFIX)�; E ` P : T �; E `M : T�; E `M:P : T
(INPUT)�; E; x : V ` P : P[V ℄ x 62 Dom(E)�; E ` (x : V)P : P[V ℄ (OUTPUT)�; E `M : V � ` P[V ℄�; E ` hMi : P[V ℄
(AMB)�; E ` P : P[W ℄ �; E ` a : D[W ℄ � ` D bounds P � ` Q[W 0℄ �(D) � Q�; E ` a[P ℄ : Q[W 0℄

The rules for typing capabilities mimic those defined in [7] for Mobile Ambients. In particular the rule foropen demands that the exchange types of the opened and the openingambient coincide: this explains why
the rule (CAP=) is split into two rules. Note that all types occurring in processes are required to be well
formed. This is unfortunate, as it requires the typing annotations for terms to be built around closed types,
but at the same time necessary for safety.

8.4.1 Type Safety

The proof of type safety follows essentially the same argument described in Section 4, based on subject re-
duction. For the latter, Lemma A.6 is easily proved for the new system: one only needs an additional case for
the new structural rule for paths, which follows immediately by an inspection of the typing rules. In addition,
one needs the following revised form of Lemma A.7 and a substitution lemma, to handle communication.
In both cases the proof is standard.

Lemma 8.1 (Subsumption Admissibility). If �; E ` P : P[W ℄, then�; E ` P : Q[W ℄ for everyQ such
thatP � Q and�; E ` Q[W ℄.
Lemma 8.2 (Substitution). If �; E; x:V ` P : T and�; E `M : V , then�; E ` Pfx := Mg : T
Theorem 8.3 (Subject Reduction).If �; E ` P : T andP➞Q, then�; E ` Q : T .

Proof. A straightforward modification of the proof in Appendix A.

24

The definition ofimmediate exhibitionof a capability of Figure 2 does not change, because the inputand
output processes —(x:V)P andhMi— do contribute to any immediate exhibition of capabilities. The same
is true of processes in prefix formM:P when (the first capability of)M is a variable.

The definition of tagged reduction is directly derived from the corresponding definition in Figure 3
with the addition of the structural rule℄hMi � hMi, and of a new reduction for communication, namely:℄(x:V)P  hMi ➞ ℄Pfx := Mg. Finally, one needs an additional context form to account for contexts
built around the input construct:(x:V)C [℄.

Given these extensions, the notions of residual and residual behavior are defined exactly as in Definitions
4.1 and 4.2, respectively. Then we have:

Theorem 8.4 (Type Safety).Let (�~a: ~D)P be a process, withP containing no restriction,� be an occur-
rence ofP and letE = E0;~a: ~D for a type environmentE0. Assume that�; E ` P : P0 and �; E ` P� : P.
If � + (
ap a)�, then
ap E(a) 2 P�.

Proof. (Sketch) A direct extension of the proof of Theorem 4.3. There is no change for any of definitions
related to behavior types. The only novelty is that now processes may have the formx:P . On the other
hand, such processes do not, in fact, have any immediate exhibition: they only exhibit a capability when
the variable in the prefix is eventually substituted. Hence,if we can prove that the type ofx:P takes into
account the type capabilities of all possible substitutions for x, then type safety follows. But this follows
directly from subject reduction property and an inspectionof the typing rule (PREFIX).

9 Related Work

We have showed that classical type theoretic techniques provide effective tools for characterizing behavioral
properties of mobile agents. Capturing implicit behavior is essential to ensure secure agent interactions: to
our knowledge, ours is the first among type systems for MobileAmbients to have this property. Also, we
have showed that in the design of a distributed implementation of the calculus and its type system one finds
back features distinctive of real systems. We conclude withcomparisons with related work.

9.1 Type Systems for Mobile Ambients

Type systems for Mobile Ambients and related calculi have been studied in several papers. The first paper
on the subject is by Cardelli and Gordon [7], where types are introduced to discipline the exchange of values
inside ambients. In [4], Cardelli, Ghelli and Gordon extendthe type system of [7] to account for ambient
mobility. The new type system provides for a classification of ambients according to simple behavioral
invariants: specifically, the type system identifies ambients that remain immobile, and ambients that may
not be dissolved by their environment. In [12], Levi and Sangiorgi define a suite of type systems for their
Safe Ambients, which also characterize behavioral properties of ambients, such as immobility andsingle-
threadedness: based on these invariants, they prove interesting equivalences for well-typed processes. In [1],
Amtoft, Kfoury and Pericas develop a type and effect system for Mobile Ambients that provides support for
polymorphic exchanges within ambients. Work on combining their type system with the one presented here
is part of our and their current collaborative research.

The type system closest to ours is the one presented by Cardelli, Ghelli, and Gordon in their recent paper
on Ambient Groups [5]. Although their and our motivations are somewhat orthogonal —they refine previous
work on static detection of ambient mobility, we give a type-theoretic account of security by defining and

25

enforcing security policies for ambients— the two solutions have several similarities. If we disregard the
security layer of our type system, our notion of ambient domain is essentially the same as their notion of
group. Also, ambient behavior is characterized in both type systems in terms of sets built around domains
(or equivalently groups). In [5] each groupG is associated with sets that identify which groups ambients
of groupG may potentially cross or open. In our type system, we directly associate ambient domains with
type-level capabilities with similar information content. However, our type system is superior in precision,
as our type-capability sets are constructed in ways that allow implicit and hidden mobility to be statically
detected. That is not always the case in the type system of [5]: only the first of the two attacks we discussed
in the examples of Section 1.1 is detected by the type system of [5]10.

A further difference is the presence in [5] of a novel (and quite interesting) construct for dynamic group
creation, a primitive that is not available for our version of mobile ambients. While we believe that this
construct could be included in our type system, it would certainly complicate type reconstruction. Besides
our specific interests in security issues, that are somewhatdisregarded in [5], type reconstruction and the
distributed version of the system (neither of which is discussed in [5]) represent further important differences
between the two papers.

9.2 Static Analysis for Mobile Ambients

Although developed in a different framework, and based on different techniques, our work on type-based
analysis has the same goals as F. and H.R. Nielson’s study forcontrol and data flow analysis for Mobile
Ambients [15, 17] and achieves similar results.

In fact, our type reconstruction algorithm may be seen as an abstract control flow analysis where ambient
behavior is abstracted upon in terms of domain behavior. In particular if we consider the work in [15] the
resulting analysis is very similar to the one detailed here up to Section 5. In some respects, our analysis is
more precise as we use co-capabilities and the three-levelsstructure of types to refine it. Furthermore, as
we have shown, out analysis scales to the distributed version of the calculus, an issue that is not discussed
in in [15]. In other respects, however, the analysis presented in [15] is finer than ours since they collect not
only the actions emitted by an ambient, as we do, but also the set of its possible parents. This information
is then used to refine the analysis as it allows one to disregard capabilities that may not be exercised: for
example, the capabilityout a is included in an ambient’s behavior only if the target ambient a is among the
current ambient’s parents. In fact, there seems to be no fundamental impediment in refining our system to
perform the kind shape analysis proposed in [15]. Plans of future research work may include work in that
direction.

The analyses of [15, 17] have been enhanced in [9, 11] by the use of abstract interpretation. In these
works, as in [16] the complexity of the analyses is also studied, an issue that we completely overlooked here
and leave for future work.

Acknowledgments

Work partially supported by the Italian MURST Project 9901403824003 “Automatic Program Certification
by Abstract Interpretation”, by the French CNRS ProgramTelecommunications: “Collaborative, distributed,
and secure programming for Internet” and by the European FETcontractMyThS, IST-2001-32617.

10This is because in the system of [5] the type associated with agroupG only traces the capabilities of the ambients that members
of G may open, not those of the ambients exiting members ofG.

26

References

[1] T. Amtoft, A. Kfoury, and S. Pericas-Geertsen. What are polymorphically-typed ambients? InESOP
2001, volume 2028 ofLecture Notes in Computer Science, pages 206–220. Springer, 2001.

[2] D. Brewer and M. Nash. The chinese wall security policy. In Proc. of IEEE Symposium on Security
and Privacy, pages 206–214, 1982.

[3] M. Bugliesi and G. Castagna. Secure safe ambients. InProc. of the 28th ACM Symposium on Principles
of Programming Languages, pages 222–235, London, 2001. ACM Press.

[4] L. Cardelli, G. Ghelli, and A. Gordon. Mobility types forMobile Ambients. InProceedings of ICALP
’99, number 1644 in Lecture Notes in Computer Science, pages 230–239. Springer, 1999.

[5] L. Cardelli, G. Ghelli, and A. D. Gordon. Ambient groups and mobility types. InInternational
Conference IFIP TCS, number 1872 in Lecture Notes in Computer Science, pages 333–347. Springer,
2000.

[6] L. Cardelli and A. Gordon. Mobile Ambients. InProceedings of F0SSaCS’98, number 1378 in Lecture
Notes in Computer Science, pages 140–155. Springer, 1998.

[7] L. Cardelli and A. Gordon. Types for Mobile Ambients. InProceedings of POPL ’99, pages 79–92.
ACM Press, 1999.

[8] P. J. Denning. Fault tolerant operating systems.ACM Computing Surveys, 8(4):359–389, Dec. 1976.

[9] J. Feret. Abstract interpretation-based static analysis of mobile ambients. InEighth International Static
Analysis Symposium (SAS ’01), number 2126 in Lecture Notes in Computer Science. Springer, 2001.

[10] L. Gong. Inside Java 2 Platform Security. Addison-Wesley, 1999.

[11] F. Levi and S. Maffeis. An abstract interpretation framework to analyse mobile ambients. InEighth In-
ternational Static Analysis Symposium (SAS ’01), number 2126 in Lecture Notes in Computer Science.
Springer, 2001.

[12] F. Levi and D. Sangiorgi. Controlling interference in Ambients. InPOPL ’00, pages 352–364. ACM
Press, 2000.

[13] T. Lindholm and F. Yellin.The Java Virtual Machine Specification. Java series. Addison-Wesley, 1997.

[14] G. Necula. Proof carrying code. In24th Ann. ACM Symp. on Principles of Programming Languages.
ACM Press, 1997.

[15] F. Nielson, H. R. Nielson, R. R. Hansen, and J. G. Jensen.Validating firewalls in mobile ambients. In
Proc. CONCUR ’99, number 1664 in LNCS, pages 463–477. Springer, 1999.

[16] F. Nielson and H. Seidl. Control-flow analysis in cubic time. In Proc. ESOP’01, number 2028 in
Lecture Notes in Computer Science, pages 252–268. Springer, 2001.

[17] H. R. Nielson and F. Nielson. Shape analysis for mobile ambients. InPOPL ’00, pages 142–154. ACM
Press, 2000.

27

[18] P. Sewell and J. Vitek. Secure composition of untrustedcode: Wrappers and causality types. In13th
IEEE Computer Security Foundations Workshop, 2000.

A Subject Reduction

We first prove a few simple and useful properties for domain environments and process types. In that
direction, we extend the set-theoretic notation used on processes to domain environments as follows. Given
two domain environments�2 and�2 such thatDom(�1) = Dom(�2), we define�1 \ �2 (respectively,�1[�2) to be the domain environment that maps everyD 2 Dom(�i) into the process type�1(D)\�2(D)
(respectively,�1(D) [�2(D)).
Proposition A.1 (Boundedness and Closedness).Let � and�0 be domain environments,D an ambient
domain, andP, P0 two process types.

1. If � ` D bounds P and� ` D bounds P0, then� ` D bounds (P [P0)
2. If � ` D bounds P andP0 � P, then� ` D bounds P0.
3. If � ` D bounds P and �0 ` D bounds P, then also� \�0 ` D bounds P.

4. If � ` D
losed and�0 ` D
losed, then also� \�0 ` D
losed.

5. If � ` P
losed and� ` P0
losed, then also� ` P [P0
losed.

Proof. In all cases, the proof is by a direct application of the definitions.

Corollary A.2 (Coherence). Let�,�0 be domain environments. If� ` � and�0 ` �, then�\�0 ` �.
Lemma A.3 (Process Types).Let� be a domain environment, andP1;P2 be two process types such that� ` P1 and� ` P2. Then� ` P1 [P2
Proof. By Proposition A.1.

Lemma A.4 (Type Formation). If �; E ` P : P, then� ` � and� ` P.

Proof. By induction on the derivation of�; E ` P : P.

Lemma A.5 (Generation).

1. If �; E ` a : D, thenD = E(a).
2. If �; E ` P j Q : P then�; E ` P : P and�; E ` Q : P;

3. If �; E `!P : P then�; E ` P : P;

4. If �; E `
ap a:P : P, then�; E ` P : P, and�; E ` a : A for some ambient domainA. Further-
more, either(i)
ap 2 fin ;
oin ; out ;
oopen g and
ap A 2 P", or (ii)
ap 2 f
oout ; open g and
ap A 2 P=

5. If �; E ` (�a:D)P : P, then� ; E; a:D ` P : P
6. Assume�; E ` a[P ℄ : P. Then�(E(a)) � P and there existsP0 such that�; E ` P : P0, and� ` E(a) bounds P0.

Proof. In each case, by an inspection of the typing rules.

28

Lemma A.6 (Subject Congruence).If �; E ` P : P andP � Q, then�; E ` Q : P.

Proof. By simultaneous induction on the derivations ofP � Q andQ � P .

Lemma A.7 (Subsumption Admissibility). If �; E ` P : P, then�; E ` P : Q for everyQ such thatP � Q and� ` Q.

Proof. An easy induction on the derivation of�; E ` P : P.

Theorem A.8 (Subject Reduction).If �; E ` P : P andP➞Q, then�; E ` Q : P.

Proof. The proof is by induction on the depth of the derivation of thereduction, and by a case analysis on
the last rule in the derivation.

Case (open)open a:P1 j a[
oopen a:P2 j P3℄ ➞ P1 j P2 j P3
From�; E ` open a:P1 j a[
oopen a:P2 j P3℄ : P, by repeated applications of Lemma A.5:2, A.5:4,
and A.5:6, there exist an ambient domainD 2 Dom(�) with �(D) � P, and a process typePa such
that the following are all verified:�; E ` P1 : P (2)�; E `
oopen a:P2 j P3 : Pa (3)�; E ` P2 : Pa and �; E ` P3 : Pa (4)�; E ` a : D and � ` D bounds Pa (5)

From (3 and the first judgment in (4), by Lemma A.5:4, we know that
oopen D 2 Pa". From this,
and from (5), we know that
oopen D 2 �(D)=, and hencePa � �(D) again from (5). ThenPa � P since�(D) � P. By subsumption, which is admissible by Lemma A.7, from (2) and the two
judgments in (4), we then derive�; E ` Pi : P for i = 1; 2; 3. Then�; E ` P1 j P2 j P3 : P derives
by two applications of (PAR).

Case (in): a[
oin a:P1 j P2℄ j b[in a:Q1 j Q2℄ ➞ a[P1 j P2 j b[Q1 j Q2℄℄
From�; E ` a[
oin a:P1 j P2℄ j b[in a:Q1 j Q2℄ : P, by Lemma A.4 we know that� ` �. By re-
peated applications of Lemma A.5:2, A.5:4, and A.5:6 there exist ambient domainsA;B 2 Dom(�),
with �(A);�(B) � P, and process typesPa andQb such that the following are all verified:�; E ` in a:Q1 j Q2 : Qb (1)�; E ` Q1 : Qb and �; E ` Q2 : Qb (2)�; E ` b : B and � ` B bounds Qb (3)�; E `
oin a:P1 j P2 : Pa (4)�; E ` P1 : Pa and �; E ` P2 : Pa (5)�; E ` a : A and � ` A bounds Pa (6)

From (1), the left judgments of (2) and (6), by Lemma A.5:4, weknow thatin A 2 Qb". From this
and from (3),in A 2 �(B)=. From the left judgment of (5), we also know that
oin A 2 Pa". From
this and from (6),
oin A 2 �(A)=. Summarizing we have,inA 2 syn
(�(B)=;�(A)=). From this,

29

and from� ` �, we know that� ` A bounds �(B). From this, and from the right judgment of (6),
by Proposition A.1.1, we have � ` A bounds (�(B) [Pa) (7)

From the two judgments in (2), by (PAR), �; E ` Q1 j Q2 : Qb. From this, and (3), by (AMB)�; E ` b[Q1 j Q2℄ : �(B) (8)

From the two judgments in (5), by (PAR), �; E ` P1 j P2 : Pa. From (8) and the last judgment, by
subsumption and (PAR), �; E ` P1 j P1 j b[Q1 j Q2℄ : �(B) [Pa (9)

Now, the type of the reduct derives from (9), (7), and the leftjudgment of (6) by (AMB).

Case (out):a[
oout a:P1 j P2 j b[out a:Q1 j Q2℄ ℄ ➞ a[P1 j P2℄ j b[Q1 j Q2℄
As in the previous cases, by repeated applications of Lemma A.5 to the typing judgment of the redex,
there exist process typesPa andQb, and ambient domainsA;B 2 Dom(�) with �(A) � P and�(B) � Pa, such that the following are all verified:�; E ` out a:Q1 j Q2 : Qb (1)�; E ` Q1 : Qb and �; E ` Q2 : Qb (2)�; E ` b : B and � ` B bounds Qb (3)�; E `
oout a:P1 j P2 j b[out a:Q1 j Q2℄ : Pa (4)�; E ` P1 : Pa and �; E ` P2 : Pa (5)�; E ` a : A and � ` A bounds Pa (6)

From the left judgments of (2) and (6), by Lemma A.5:4, we knowthatout A 2 Qb". From this and
from (3),outA 2 �(B)=. From the left judgment of (5), we also know that
ooutA 2 P=a . From this
and from (6),
oout A 2 �(A)#. Thus,out A 2 syn
(�(B)=;�(A)#). From this, and from� ` �,
we know that�(B) � �(A). It is now easy to check that the judgments�; E ` b[Q1 j Q2℄ : �(B)
and�; E ` a[P1 j P2℄ : �(A) are both derivable. The typing judgment for the reductum derives then
by subsumption and an application of (PAR).

Case (context):Standard, by induction hypothesis.

Case (struct):by Lemma A.6 and the induction hypothesis.

B Type Safety

Lemma B.1. LetC [℄ be a restriction-free context, andP be a restriction-free process. Assume that�; E `C [P ℄ : P0 and �; E ` P : P. Consider a generic one-step of tagged reduction fromC [℄P ℄, that is:C [℄P ℄ � C1[℄R℄� C2[℄Q℄ for some contextsC1[℄ andC2[℄. Then�; E ` jQj : P.

30

Proof. We first show that the lemma holds for the preliminary step of structural rearrangement, i.e. that�; E ` jRj : P. This can be done by induction on the depth of the derivation of the congruence. SinceC [℄P ℄
contains a single tagged occurrence,C1[℄R℄ results from either rearranging only untagged occurrences, or
from rearranging℄P . In the first case the claim is trivially true. Then, considerthe case when℄P matches
either side of a congruence rule. SinceP is restriction-free by hypothesis, we have only four base cases to
consider, namely:℄P = ℄0, ℄P = ℄(P1 j P2), for givenP1 andP2, and finally℄P = ℄!P1, or ℄P =!℄P1.
In all cases the claim follows by Lemma A.6. The first case is vacuous, as there is no tagged process
corresponding to℄0. The second case follows by the type rule (PAR) and the last two cases follow by
(REPL). For the inductive cases, the only subtlety is transitivity, as the intermediate tagged process may
contain more than one tagged occurrence. However, since there is only one tag inC [℄P ℄, it is not difficult to
see thatC1[℄R℄ can always be obtained by a sequence of rearrangements that only use the congruence law℄(P1 j P2) � ℄P1 j ℄P2 from left to right.

Next, consider one step of tagged-reduction fromC1[℄R℄. If ℄R is not a sub-occurrence of the redex nor
is the redex a suboccurence of℄R, then the proof is trivial. The same holds if℄R is a sub-occurrence of the
redex but it is not one of the tagged processes involved in thereduction. If the redex is a sub-occurrence of℄R, then the proof follows by subject reduction. The remainingcases are when℄R is one of the processes
involved in the reduction: we work out the interesting casesbelow, the remaining cases are similar and
simpler.

(open tag)open a:S j ℄a[
oopen a:R1 jR2℄� S j ℄(R1 j R2), whereR = a[
oopen a:R1 j R2℄ andQ =R1 j R2. From the hypothesis, we know that�; E ` a[
oopen a:R1 j R2℄ : �(E(a)). From Lemma
A.5:6, there existsP0 such that�; E `
oopen a:R1 jR2 : P0 with � ` E(a) bounds P0. By repeated
applications of Lemma A.5 we also have that�; E ` R1 j R2 : P0. From�; E `
oopen a:R1 j R2 :P0 the typing rules tell us that
oopen E(a) 2 P0 " and by the definition of boundness this implies
oopen E(a) 2 �(E(a))=. From�; E ` R1 j R2 : P0, and from
oopen E(a) 2 �(E(a))=, by
closure it follows thatP0 � �(E(a)) as desired.

(out tag) ℄a[b[out a:R1 j R2℄ j
oout a:R3 j R4℄ � ℄b[R1 j R2℄ j ℄a[R3 j R4℄. The proof follows the
pattern of the case (out) in the proof of Theorem A.8.

(in) b[in a:S1 j S2℄ j ℄a[
oina:R1 j R2℄ � ℄a[R1 j R2 j b[S1 j S2℄℄, whereR = a[
oin a:R1 j R2℄ andQ = a[R1 j R2 j b[S1 j S2℄℄. Again, the proof follows the pattern of the case (in) of Theorem A.8.
From the hypothesis, we know that�; E ` b[in a:S1 j S2℄ : �(E(b)). Hence also�; E ` b[S1 j S2℄ :�(E(b)). To conclude, it is enough to show that� ` E(a) bounds �(E(b)). But this follows from
the coherence of�, given thatin E(a) 2 syn
(�(E(b))=;�(E(a))=).

Lemma B.2. If �; E ` P : P andP # (
ap a)� then
apE(a) 2 P�.

Proof. By a direct inspection of the typing rules and a straightforward induction on the depth of the deriva-
tion of P # (
ap a)� .

The proof of Type Safety is a corollary of the following Lemma.

Lemma B.3. LetP be a restriction-free process,� be an occurrence ofP and letE a type environment.
Assume that�; E ` P : P0 and �; E ` P� : P are derivable. If� + (
ap a)�, then
ap E(a) 2 P�.

31

Proof. Follows by Lemma B.1 and Lemma B.2 by induction on the number of reduction steps needed to
reach the residual ofP� that emits(
ap a)�. The base case is proved by Lemma B.2, while the inductive
case is obtained by considering the residuals after a one step reduction. The proof of the inductive case is
eased by the definition of residuals in terms of one-step reductions of processes that have at most one tag,
and that structural congruence is applied only before (not after) a reduction step.

Theorem B.4 (Type Safety).Let (�~a: ~D)P be a process, withP containing no restriction,� be an occur-
rence ofP and letE = E0;~a: ~D for a type environmentE0. Assume that�; E ` P : P0 and �; E ` P� : P.
If � + (
ap a)�, then
ap E(a) 2 P�.

Proof. A corollary of the previous lemma.

Finally let us consider the safety for the the distributed system:

Theorem B.5 (Local Type Safety).Let (�~a: ~D)P be a DSSA process, withP containing no restriction,
and� be an occurrence ofP of the forma[P 0℄S�;E . Assume�; E ` P� : P is derivable, andE(b) = B. If� + (
ap b)�, then
ap B 2 P�.

Proof. (Sketch) The proof is based on the analogue of Lemmas B.2 and B.3 for DSSA processes, and a
different version of Lemma B.1 that handles the new form of the (out) and(in) reductions. The only critical
case is the subcase of(in) in which ℄R (i.e., �) is the entered ambient. For DSSA, this case follows
by two side conditions of the(in) rule: �; E ` b[in a:P j Q℄Sb�b;Eb : �(E(b)), that ensures that the local
environment of the reductum can type its body, and� ` E(a) bounds �(E(b)), that ensures that the
behavior of the entering ambient is already accounted for bythe local environments of the reductum. Then,
the result follows from the observation that�(E(a)) = �a(Ea(a)).

Note that the theorem is stated for ambient occurrences and not generic occurrences. Indeed the result
does not hold for generic processes since in DSSA we did not modify the (open) rule to check that opened
ambients are well-typed.

C Type Reconstruction

Proposition C.1. Let� be a domain environment with fn(�) � Dom(�). ThenEnvClosure(�) is the least
coherent domain environment containing�.

Proof. To prove the claim it is enough to show thatf�0 j � � �0 and�0 ` �g is not empty and finite. The
proof follows then by Corollary A.2. That this set is not empty follows by observing that the environment�sat that results from� by saturating�(D) for everyD 2 Dom(�) is contained in it. That the set is finite
follows from the fact thatDom(�) is finite.

Proposition C.2. Let� a coherent domain environment andA 2 Dom(�). Then for every process typeP,

1. EnvClosure(�) = �.

2. � ` Pro
Closure(P;�)
losed.

3. DomClosure(P; A;�) ` A bounds P.

To prove the reconstruction algorithm sound, we need the following additional lemmas.

32

Lemma C.3. Let� be a be domain environment,P be a process, and letP? = Pro
Closure(P;�). ThenP? = TfP0 j P0 � P and� ` P0
losedg.
Proof. � ` P?
losed follows by Proposition C.2. ThatP? is the minimum superset ofP closed in�
follows by observing thatP? is the minimum fixed-point of the following monotone operator: p
�(P) =P [f�(A) j openA2syn
(P=;�(A)=)g.
Lemma C.4. Let� be a be domain environment,P1 andP2 process types. Then:Pro
Closure(P1;�) [Pro
Closure(P2;�) = Pro
Closure(P1 [P2;�)
Proof. We prove the double inclusion. The direction (�) follows by monotonicity. The direction (�) follows(i) by Proposition C.2(2) by which� ` Pro
Closure(Pi;�)
losed (i = 1; 2), then(ii) by Proposition
A.1(5) by which� ` Pro
Closure(P1;�)[Pro
Closure(P2;�)
losed, and finally(iii) by Lemma C.3, asPro
Closure(P1;�) [Pro
Closure(P2;�) � P1 [P2.
Lemma C.5. Assume�; E `A P : P, and let�0 be any coherent domain environment containing�. Then�0; E `A P : P? whereP? = Pro
Closure(P;�0).
Proof. By induction on the derivation of� `A P : P.

Theorem C.6 (Soundness and completeness).Let P be a process, andE a type environment such that
fn(P) � Dom(E). ThenRenv(E;P); E `A P : Rtype(E;P) (soundness). Furthermore, for any� andP
such that�; E `A P : P, one hasRenv(E;P) � � andRtype(E;P) � P (completeness).

Proof. By induction on the structure ofP .P = 0 In this caseRenv(E;P) = ?D andRtype(E;P) = (?;?;?). By construction,?D ` �, andImg(E) � Dom(?D). Hence?D ; E ` � by (ENV), andRenv(E;P); E `A P : Rtype(E;P)
derives by (DEAD). Completeness is trivial.P =
ap a:P 0 Let � = Renv(E;P 0) andP = Rtype(E;P 0). By induction hypothesis, we have�; E `AP 0 : P, and for any�0 andP0 such that�0; E `A P 0 : P0, we have� � �0 andP � P0. By
construction, there existsA such thatE(a) = A. There are now three cases, depending on the
structure of
ap.

If
ap 2 fin ;
oin ; out ;
oopen g, by definitionRenv(E;P) = � andRtype(E;P) = P["f
ap Ag.
Then the desired judgment derives from (ACTION").

If
ap =
oout A, by definitionRenv(E;P) = � andRtype(E;P) = P [= f
oout Ag. Then the
desired judgment derives from (ACTION=1).

If
ap = open A, by definitionRenv(E;P) = � andRtype(E;P) = P0 as defined by the side-
condition of (R-ACTION=2). The desired judgment derives from (ACTION=2).

In all three cases completeness follows from the induction hypothesis and the fact that set-union is
monotonic.P =!P 0 and P = (�a:A)P 0 Directly, by induction hypothesis.

33

P = P1 j P2 Let �1 = Renv(E;P1), P1 = Rtype(E;P1), �2 = Renv(E;P2) andP2 = Rtype(E;P2).
By induction hypothesis,�1; E `A P1 : P1, and�2; E `A P2 : P2. Let now� = Renv(E;P) ,EnvClosure(�1 [�2). By Proposition C.1,�1;�2 � �, and� ` �. From the last two judgments, by
Lemma C.5 �; E `A P1 : P?1 with P?1 = Pro
Closure(P1;�) (7)�; E `A P2 : P?2 with P?2 = Pro
Closure(P2;�) (8)

From (7) and (8) above, by (PAR), �; E `A P1 j P2 : (P?1 [P?2). By Lemma C.4 we know thatP?1 [P?2 = Pro
Closure((P1 [P2);�) and hence conclude asRtype(E;P) = Pro
Closure((P1 [P2);�).
Completeness follows by induction hypothesis and monotonicity of theEnvClosure andPro
Closure

operators. In fact, for any�0 andP0 such that�0; E `A P1 j P2 : P0, by induction hypothesis one
has�1 � �0 and�2 � �0, which implies�1 [�2 � �0. Furthermore since�0 is coherent, by
Proposition C.2(1) we obtain�0 = EnvClosure(�0). From these last two points and the monotonicity
of EnvClosure we haveRenv(E;P) , EnvClosure(�1 [�2) � EnvClosure(�0) = �0. A similar
reasoning yieldsRtype(E;P) � P0.P = a[P 0℄ Let � = Renv(E;P 0) andP = Rtype(E;P 0). By construction there existsA such thatE(a) =A, and by induction hypothesis�; E `A P 0 : P. Then also� ` �, and� ` P
losed. Let �? be
defined as in the side condition of (R-AMB) and setP? = Pro
Closure(P;�?). By the construction
of �?, noting thatEnvClosure is idempotent, we haveP? = Pro
Closure(P;�?) (9)�? = DomClosure(P?; A;�) (10)�? = EnvClosure(�?) (11)

From (11) and Proposition C.1, we deduce�? ` �. From this, (ENV), and (NAME) we obtain:�?; E ` a : A (12)

By construction� � �?. Thus by (9), the induction hypothesis, and Lemma C.5 we deduce�?; E `A P 0 : P? (13)

Finally from (10) and Proposition C.2(3) we have�? ` A bounds P? (14)

The result follows from (12), (13), and (14) by (AMB). For completeness, consider any�0 andP0
such that�0; E `A P 0 : P0 and redo the proof above using�0 andP0 instead of� andP. The result
follows from the monotonicity ofEnvClosure, Pro
Closure, andDomClosure.

D Generalized Type Safety

The generalized version of type safety, for processes in arbitrary form, is subtler and requires more complex
definitions. The problem is that restrictions may extrude tagged processes and thus inherently change the
set of actions exhibited by the latter. For example considerthe following process:b[(�
:C)a[out b:in
℄ j : : : ℄ (15)

34

Imagine that we want to consider the set of residuals ofb. According to the actual definition we have to tagb, that is,℄b[(�
:C)a[out b:in
℄ j : : : ℄, and apply the reduction rule(open tag). But to apply this rule we
must first extrude the restriction(�
:C) from b. The final result is:(�
:C)(℄b[: : : ℄ j ℄a[in
℄)
Now according to the previous definitionsa[in
℄ is a residual ofb, and the former emitsin
 (more preciselya[in
℄ # in
=). However it is clear thatb cannot emitin
= as the extruded restrictions always blocks this
action. And indeed the type system does not requirein C to belong to the type ofb.

The above example shows that scope extrusion requires that extruded restrictions are traced by the
extruded tags. Thus, the general form of tagged processes will be ℄EP , whereE is a type environment.
Given the extended notion of tags, we then define a congruencerule for scope extrusion:℄E(�a:D)P � (�a:D)℄E;a:DP (16)

In the following, we omit the type environment in tags unlessit really matters. The tagged-reduction rules
and the remaining structural congruence rules are as before, with the only exceptions that now tags carry
type environments with them.

The definition ofC [℄ must be extended to include restrictions:C [℄ ::= [℄  P j C [℄  C [℄ j P  a[C [℄℄  �:C [℄  (�a:D)C [℄
Given a contextC [℄ we denote byEC the type environment formed by all the declarations introduced in the
context by�’s that have the context’s hole in their scope. For brevity weuseEP� to denoteEC P� .

We can now state the new definition of set ofresiduals, which is modified so that type-environments
annotations are traced during the reduction. For this reason residuals will be tagged processes rather than
just processes:

Definition D.1 (Residuals).Let P be a process.

1. Let� be an occurrence of an untagged processP andE a type environment. The set ofE-residuals
of � in P is defined as follows:
(1) ℄EP� is anE-residual of� in P
(2) If C P� [℄EP�℄ � Q andQ�0 = ℄E0R for someR, then everyE0-residual of�0 in jQj is also anE-residual of� in P .

2. Let� be an occurrence of an untagged processP . The set ofresiduals of� is the set of?-residuals
of � in P .

We extend the type system with an additional type rule for tagged processes and define the# relation also
for tagged processes:

(TYPE TAG)�; E ` P : P�; E ` ℄E0P : P P #
ap a� a 62 Dom(E)℄EP #
ap a�
The way capability exhibition is defined for tagged processes justifies why residuals are now defined as
tagged processes and why tags have to store environments: ifwe did not, then by the rule (16) a residual
could exercise a capability that in the original occurrencewould have been blocked by a restriction. If we
consider again the example (15) and the set of?-residuals ofb, then this set contains℄
:Ca[in
℄ which,
according to the new rule for# defined above, no longer emitsin
=.

Finally, the definition of+ is as before, but now it uses the new definitions of exhibitionand residual.

35

Definition D.2 (Residual Behavior). Let P be a process,� and an occurrence ofP . � + �� if and only ifQ # ��, for some residualQ of �.

The general version of Theorem 4.3 stated for generic processes holds for this new definition of+.

Theorem D.3 (General Type Safety).Let P be a process and� be an occurrence ofP . Assume that�; E ` P : P0 and �; E �EP� ` P� : P. If � + (
ap a)� , then
ap E(a) 2 P�.

To prove it we must first lift the subject reduction theorem totagged processes and tagged reduction.

Theorem D.4 (Tagged Subject Reduction).LetP be a tagged process. If�; E ` P : P andP � Q,
then�; E ` Q : P.

Then the General Type Safety theorem follows from an analogue of Lemma B.2 on tagged processes,
and the following version of Lemma B.1.

Lemma D.5. Let P be an untagged process and� an occurrence ofP . Assume that�; E ` P : P and�; (E �EP�) ` P� : P1. If C P� [℄E1P�℄� C1[℄E2P2℄, for some contextC1, then�; (E �EC1) ` ℄E2P2 : P1.
Proof. (Sketch) The proof is in two steps. First we prove that the claim holds for structural congruence,
i.e. that ifC P� [℄E1P�℄ � C 01[℄E3P3℄, then�; (E � EC 01) ` ℄E3P3 : P1. This follows by a case analysis on
the possible occurrences of℄E1P�: the proof makes a crucial use of the assumption thatP is untagged and
that therefore℄E1P� is the only tagged occurrence of the starting processes (if we had several tags then the
statement would not hold because of the rule℄P j ℄Q � ℄(P j Q) which could then be applied from right to
left making other tags “pollute” the tagged occurrence considered in the statement).

Then, we observe all possible one step reductions starting from C 01[℄E3P3℄ and ending intoC1[℄E2P2℄.
This part of the proof is very much the same as the corresponding part in the proof of Lemma B.1, once we
note that if℄E3P3 is directly issued from℄E2P2, thenEC1 = EC 01 .

36

