Behavioural Typing for Safe Ambients*

Michele Bugliesi Giuseppe Castagna
Dipartimento di Informatica C.N.R.S.
Universita Ca’ Foscari di Venezia Laboratoire d’Informatique, ENS, Paris

Abstract

We introduce a typed variant &afe AmbientsiamedSecure Safe AmbierSSA), whose type sys-
tem allows behavioral invariants of ambients to be expigasel verified. The most significant aspect of
the type system is its ability to captupethexplicit andimplicit process and ambient behavior: process
types account not only for immediate behavior, but also lier hehavior resulting from capabilities a
process acquires during its evolution in a given contextseéBiaon that, the type system provides for
static detection of security attacks suchlagian Horsesand other combinations of malicious agents.

We study the type system of SSA, define algorithms for typeking and type reconstruction, define
languages for expressing security properties, and studstibdited version of SSA and its type system.
For the latter, we show that distributed type checking eeswecurity even in ill-typed contexts, and
discuss how it relates to the security architecture of thva 3értual Machine.

1 Introduction

Mobile Ambientg6] are named agents or locations that enclose collectibnsnming processes, possibly
including nested sub-ambientSafe AmbientgL2] are a variant of Mobile Ambients. The two calculi differ
in the underlying notion of interaction: in Mobile Ambienisteraction is “one-sided”, in that one of the
two partners in anoveor openaction simply undergoes the action. In Safe Ambients, atstéhe reduction
relation requires actions to synchronize with correspogaio-actions. To exemplify, consider the ambients
a andb described below:

Mobile Ambients afopen b.in ¢] | bin a.in d].

The bracketg. . . | represent ambient boundaries| * denotes parallel composition, and “.” enforces se-
guential execution. Given the above configuration, the antlimay entera, by exercising theapability
“in a”, and reduce ta[open b.in ¢ | b[in d]]. Thena may dissolve the boundary provided by exercising
open b, and reduce ta[in ¢ | in d].

Neither of the two reductions is legal in Safe Ambients. Ttaobthe behavior we just described, the
two ambients: andb should be written as follows:

Safe Ambients a[coin a.open b.in ¢] | b[in a.coopen b.in d].

*To appear in ©MPUTERL ANGUAGES, Elsevier Science. Extended version of the art®éeure Safe Ambieriteluded in the
Proc. of the 28th ACM Symposium on Principles of ProgramrhemguagegPOPL '01), pages 222-235, ACM Press

Now the move ofb into a arises as the result of a mutual agreement between the tvilwepsirb exer-
cising the capabilityin a, anda exercising theco-capability coin a. The resulting configuration, that is,
afopen b.in ¢ | b[coopen b.in d]], reduces tai[in ¢ | in d], again as the result of the synchronization between
open b andcoopen b.

1.1 Motivations

Secure Safe Ambier(SSA) are a typed variant of Safe Ambients whose type systeamdefined as to allow
behavioral invariants of ambients to be expressed andegrifihe most significant aspect of the type system
is its ability to tracebothexplicit andimplicit process behavior and ambient mobility: the typsigised to a
process accounts not only for the behavior resulting froenctipabilities that process possesses in isolation,
but also from the capabilities the process may acquire lgyacting with the surrounding environment. This
degree of accuracy is useful for a sound verification of sgcpolicies, as implicit (i.e., acquired) mobility

is at the core of a number of security attacks sucfTragan Horsesor other combinations of malicious
agents.

ExAMPLE 1.1. Consider again the two (safe) ambiemtzndb introduced above, now running in parallel
with a third ambient as in the following configuration, whei® and() are arbitrary processes:

a[coin a.open b.in¢] | b[ina.coopen b.ind] | ¢[coinc.P | d[coind.Q]]

For the purpose of the example, assume thabntains confidential data, which should be made available
to ambients runningvithin ¢ (which may enter, as signaled by the co-capabiliin d), but not to ambients
enteringc. Given this security policy, the question is whetleshould leta in without fear thata may
access the confidential datadnIf we only look at explicit mobility, that is at the capalbidis immediately
available fora, then the move ofi into ¢ seems safe, asdoes not make any direct attempt to move itto
However,a can be used as a Trojan Horse §ow can letb in, then enter and, once inside, openb to gain
access tal. O

ExAamPLE 1.2. A different way that: may attacke is by letting b out after having entered. The two
ambients: andb would then be written as shown below:

a[coin a.in c.coout a] | b[ina.outa.ind] | ¢[coinc.P | d[coind.Q]]

Again, if we only look at the capabilities available forwe are mislead to let into ¢. Yet, a could letb in,
then entek, and finally letb out handing over té the capability to ented. O

1.2 Overview

The type system we discuss in this paper provides for stgpe;driven verification of security. It allows the
definition of security policies for ambients, and providesamanisms for static detection of any attempt to
break those policies. In particular, the type system deteeturity attacks based on implicit (and undesired
or malicious) acquisition of capabilities by hostile agestich as those described in the previous examples.
As argued in [12], the presence of co-capabilities is egsefor an accurate static characterization of pro-
cesses in the type system: our choice of Safe Ambients asatig for our type system is motivated by the
same reasons.

There are three key ingredients to the type system.

Ambient Domains. Ambients are classified blgmbient domaingalso calledprotection domaingr simply
domaing: each domain has an associaethaviorthat ambients in the domain share and must comply with,
and an associategkecurity policythat protects the ambients in the domain from undesiredaoti®ns with

the surrounding context.

Type-level capabilities and Process Types?rocess types describe process behavior using domaine as th
unit of abstraction. The term-level capabilities avaiéatul processes are abstracted upon in the type system
by resorting to type-level capabilities. Process typesdafined in terms of sets of type capabilities: to
exemplify, if a is, say, an ambient of domait and P is a (well-typed) process exercising the term-level
capabilityin a, then the type of traces this behavior by including the type-level capabilit A.

To gain accuracy in the description of ambient behaviorfype system traces theesting leveat which
the effect of exercising a capability may be observed. Th&ccomplished by introducing chemical abstract
model, where exercising a capability corresponds, in tipityrules, to releasing a type-level capability,
or molecule Molecules are classified gain, light, andheavy plain molecules are released at the nesting
level of the process exercising the corresponding capgbiljht molecules at upper level (the level of the
enclosing ambient), while heavy molecules are releasddmaimbients. Molecules react with co-molecules
(corresponding to co-capabilities) released at the sarsingdevel. Thus, in the chemical metaphor, type
checking corresponds to a chromatographic analysis intwééch element of different weight is precisely
determined.

Security Constraints. Each ambient domain has an associated set of security amtstthat define the
security policy for that domain: the constraints estabiishaccess rights for ambients crossing the boundary
of any of the ambients in the domain.

1.3 Contributions

We prove two main results for our type system. The first is ectbjeduction, the second is a rather strong
form of type safety showing that types provide a safe appnation of behavior. specifically, we show
that if a process” running inside a contex¢#” may (after any number of reduction steps#f exercise a
capability on some name, afdis well-typed, then the corresponding type capability é&&d by the static
type of P. For that we introduce a new and powerful notionredidual As a corollary, we then deduce that
well-typed processes comply with the security policieslelsthed by ambients.

We also define a type-checking algorithm that computes minmintypes and, more importantly, an
algorithm for type reconstruction: we prove both sound aochglete. Type reconstruction is particularly
important for our purposes, as it infers the behavior of @anbdomains, thus leaving the programmer with
the only task of specifying the domains of ambients, and #msociated security policies.

We continue by studying a distributed variant of SSA, wheaeheambient carries its own type envi-
ronment along with it, and type-checking is performed lhcaly the ambient at any time other ambients
cross its own boundaries. The distributed variant of thewabk and its type system are particularly in-
teresting in perspective, in view of a practical impleménta In a highly distributed system it is clearly
unrealistic to rely on the assumption that type checking m@gess information on all the components of
the system. Accordingly, in the distributed version of tlaécalus, we dispense with global security and
type soundness, and replace them by local type checkingemmnudity analysis. A typed version of reduction
complements these analyses by allowing ambient boundaries crossed only by ambients satisfying the
type and security checks performéuaist in time by the ambient whose domain is being crossed.

The study of the distributed version yields, as a byprodadtrther interesting result. Looking at the
dynamic checks performed upon reduction, one discoverstliey correspond to the type and security

3

checks performed by the three components of the securityitacture of the Java Virtual Machine: the
Class LoadertheBytecode Verifierand theSecurity Manager

Finally we study the system in the presence of communicgpigmitives. This extension, absent
from [3], is non-trivial, as capabilities, as well as namean be exchanged in communications. There-
fore characterizing ambient and process behavior in theegmee of communications involves tracing not
only the capabilities a process may acquire by mobilityrexddons with the environment, but also those
that may be obtained via explicit communication.

1.4 Plan of the paper

Section 2 reviews the syntax and reduction semantics oLf8e&afe Ambients. Section 3 defines the type
system, while Section 4 focuses on type soundness and.saétijon 5 introduces the algorithmic systems,
and proves them sound and complete. Section 6 shows how tedeBecurity layer on top of the type
system, and how the type system may be used enforce and secifyity properties. In Section 7 we define
a distributed version of SSA, and discuss how it relatesecstturity architecture of the JVM. in Section 8
we extend our system with communications. A short sectioriticmles the presentation. Proofs of the main
results are given in separate appendixes.

2 The language

The terms of our language are thoseSaife Ambientsvith the only difference that the types of (ambient)
names aréomains These are type-level constants used to identify ambibatsatisfy the same behavioral

invariants and share common security policies: insteacgssb@ating such invariants and policies to each
ambient we rather define them for domains, and then groupemtshin domains.

Processes
P:=00aP 0O (waD)P OP|P 0Oa[P] O!P

Capabilities
a ::=ina Ucoina Oout a Ocoout a Uopen a U coopen a

Besides being a design choice, the introduction of domainsotivated by technical reasons. An alternative,
and more informative, notion of ambient type could be defipgdssociating each ambient with the set of
term-level capabilities that ambient may exercise. Thalteg type system would certainly provide a more
accurate characterization of process and ambient behawibit would also incur into a number of technical
problems arising from the dependency of these types on ter@s the other hand, our use of protection
domains is well motivated and justified by what is nowadaysmmn practice for languages and systems
supporting code mobility [10].

lone problem with that solution is that types are not preserdey structural congruence. For instance, the term
(va:A)(vb:B)alin b] | b[coin b] would not be typeable, as the typé should contain all the capabilities can exercise: yetA cannot
containin b, asb is in the scope of a nested binder. If we exchange the posifitite two binders, as ifwb: B)(va:A)a[in b] | b[coin b] the term
becomes typeable. The use of domains resolves the probletn:tdrms are well-typed wheA and B are domains (thus type constants rather
than sets of term-level capabilities).

Reduction

The reduction relation for SSA derives from the one defingdSafe AmbientsWe let(), R and.S range
over arbitrary processes.

(in) blin a.P | Q]| alcoin a.R| SO alR|S|b[P|Q]
(out) a[blouta.P | Q] | coouta.R | S] O b[P | Q]| alR | 5]
(open) open a.P | alcoopen a.QQ |R]0 P|Q|R
(context) POQ = &[POEQ]

(struct)? P =POQ = POQ

where&’[| denotes an evaluation context defined as

Evaluation Contexts
&) ==1] O (waD)&[] O P| &[] O &[] P O a[&])]

and= is the standard structural equivalence relation for antbjehat is the least congruence relation that
is a commutative monoid fd¥ and | and closed under the following rules:

P =IP| P

(va:D)0 =0

(va:A)(vb:B)P = (vb:B)(va:A)P fora #b
(va:D)(P | Q) =P | (va:D)Q for a ¢ fn(P)
(va:D)b[P] = b[(va:D)P] fora #b

Herefn(P) denotes the set of free namesiafdefined as:

fn(0) = @ fn(capa.P) = fn(P) U{a} fn((va:D)P) = fn(P) \ {a}
(P | Po) = (P) Ufn(P) f(a]P]) = n(P) U {a} fn(1P) = f

Herecap € {in, coin, out, coout, open, coopen } and, as it is costumary, we work moduleconversion of
bound names and variables.

3 Type System

Ambient domains, ranged over by— H, provide the type-level unit of abstraction: in the typeteys, the
effect of exercising a capability is observed on domainselathan on ambients. We define process types in
terms of type-level capabilities as follows:

Type Capabilities
M ::=in D | coin D | out D | coout D | open D | coopen D

Process Types
P:= (L, M,N) (L, M, N ¢ 2M)

2\We use this definition of structural reduction instead ofrifere standard®’ =P O Q=Q' = P' 0 Q' to ease the proof of type safety (see
Section 4).

Notation. The following conventions are used throughout. We oftertentap D (respectivelycap a) to
denote an arbitrary type-level (respectively, term-lpwapability. IfP = (L, M, N), we write PT for L,
P= for M, andP* for N, and often abuse this notation usifg, P= andP' both as projections of the type
P, and directly as sets, as in : (PT,P~,P}). Also, we use set-theoretic notation for various operation
on process types: B andQ are process type3 C Q denotes component-wise inclusion. Similafly Q
denotes component-wise union. Given alkbf type capabilities and a process typewe define® Ut M
(respectivelyP U= M andP U TM) as the process type resulting from the unioMbfandP+ (respectively,
P=andP'): PU‘M £ (PT,P=,P*UM),PU~M £ (PT,P=UM, P})andPuU™ £ (PTUM, P~,P").
Finally, given a type-level capabiliti/, a type-level co-capability, and two sets of type capabilitids
andM, we writeM € sync(L, M) as a shorthand favl € L andM € M. Finally, the set of free domains
(names) of a process type is defined as follofméP) = {D | 3n € {1,=,]} such thatap D € P"}. O

Process types describe the capabilities that processegxaggise, and trace thmesting leveht which
the effect of exercising a capability may be observed. Thestikomponents of process types identify those
levels: if P has typeP, thenP T describes the effects that can be observed at the level aitiéent enclos-
ing P, P~ describes the capabilities observed at the levaPpand finally, P+ represents the capabilities
that are exercisedithin P, wheneverP is an ambient of the form[P’]. To exemplify, giver : A:

e ina.P:P =inAc P since the effect of exercisinig a is observed at the level of the ambient (if
any) enclosingP

e h[ina.P]: P =inA € P=,since now itish[in a.P] that exercises a

e open a.P : P = open A € P~, sinceopen «a is exercised (and its effect observed) at the level of the
processes running in parallel witipen a. P

e blopen a.P] : P = open A € P, sinceopen a is exercised withirb.

3.1 Environments and Type Rules

We define two classes of environments, namBtpe Environmentsdenoted by~E, and Domain Environ-
ments denoted byT:

Type Environments E : Ambient Names— Ambient Domains
Domain EnvironmentsTl : Ambient Domains— Process Types

Type environments associate to each ambient name the ddntglongs to, while domain environments
associate to each domain the type that is shared by all itseatsb Thus, while type environments parti-
tion ambients into domains, domain environments convegrinition about potential interactions among
domains, and enforce behavioral invariants for processel®sed in ambients in each domain.

Definition 3.1 (Closure and Boundedness)Let IT be a domain environmen®, a process type, anB and
H be ambient domains. We define the following notation:

I+ P closed £ open H € sync(P~,TI(H)~) = (H) CP

[T+ DboundsP 2 PTCII(D)~ A P~ CII(D)* A (coopen D € II(D)~ = P C II(D))

in H € sync(II(D)=,I1(H)~) = Il + H bounds II(D)

IT+ D closed = { out H € sync(II(D)=,I(H)Y) = II(D) C II(H) [

The closure condition on process types formalizes thetintuithat processes may exercise all the capa-
bilities of the ambients they may open. The boundednes3mf D ensures that the process tyd¢D)
provides a sound approximation of the typef any process enclosed in (ambients of) domainThis is
expressed by the first two inclusions, which reflect the diiffié nesting level at which one may observe the
behavior of ambients and their enclosed processes. Thatdssion handles the case of domains whose
ambients may be opened: in that case ambient boundariessaodved, and consequently the behavior of
the processes unleashed as a result of the open may be abaéthe nesting level of the ambients where
they were originally enclosed. Finally, the closure coiogitfor domains enforces the previous invariants
in the presence of mobility: the behavior of an ambierdf domain D must account for the behavior of
ambients entering, as well as for the behavior of ambients exitingsincea lets these ambients out,
then it is virtually responsible for their behavior). Theport of the closure and boundedness conditions is
exemplified in Section 3.2 by the typing of Example 1.1 andripie 1.2 from the introduction.

Definition 3.2 (Coherence).Let I be a domain environment. We define the notafibr- ¢ (readIl is
coherent as follows:

I+ o £ fn(IT) € Dom(IT) A VD € Dom(II). (IT - D closed A IT - TI(D) closed)

where, with an abuse of notation, we ds€éll) to denote the setD | cap D € Img(II)}. O

The typing rules are given in Figure 1. They derive judgmefithe formIl, £ - P : P, whereE is a type
environment][I is a domain environment, archg(%) C Dom(II) (that is, theimageof FE is contained in
thedomainof IT).

The rules (EAD), (PAR), (REPL), and (RESTR) are standard. The typing of prefixes (in theqAON)
rules) is motivated by the observations we made earliereffieet of exercising the capabiliti@sa, out a, coin a
andcoopen a may be observed at the level of the enclosing ambient. Dualhh a, andcoout a may be
observed at the level of the continuation process.

As for (AmB), the rule stipulates that an ambiertP] hasat leastthe type thafl associates with the
domainD of a, i.e.TI(D), provided thatD bounds the type of in I1. The (AmB) rule is technically inter-
esting, as, unlike its companion rule in previous type systér Mobile (and Safe) Ambients, it establishes
a precise relationship between the type of an ambient angrtess running inside it. This relationship,
which is essential for tracing implicit behavior, can be gsed in our type system thanks to the three-level
structure of our process types.

The format of the rules (BAD) and (AvB) could be simplified and made perhaps more intuitive, by
stipulating that the types deduced in the consequencesdivh rules are the typesy, @, @) andII(D)
respectively. More precisely, we could have used the fallgwiwo rules instead of the respective rules in
Figure 1 (note the simpler premises):

(DEAD) (AMB)
I,EFo ILEFP:P II,EFa:D 1IIF D boundsP
ILEFO0: (9,9,9) II,E+ a[P] : 1I(D)

As a matter of facts, these rules are those used for the typeeite algorithm defined in Section 5. On the
other hand, here this simplification would require the idtrction of a subsumption rule like the following
one:

ILEFP:P TIFQ PCQ
MEFP:Q

7

(TYPE PROC) (ENV) (NAME)

ko fn(P) C Dom(Il) TIF P closed ko Img(E) C Dom(II) I,EFo a€ Dom(FE)
MmEP ILEFo ILEFa: E(a)
(DEAD) (PAR) (REPL)
ILEFo IIFP ILEFP:P ILEFQ:P ILEFP:P
ILEFO:P ILE-P|Q:P ILEFP:P
(RESTR)

M,E,a:DFP:P DeDom(ll) a¢Dom(E)

I,E+ (va:D)P: P

(AcTion™)
ILE-P:P HOEFraD capDeP?

cap € {in, coin, out, coopen }
II,E+Fcapa.P:P

(ACTION™)
ILE-P:P II,Era:D capD € P~

cap € {coout,open }
II,E+capa.P:P

(AmB)
ILEFP:P T,EFta:D TFDboundsP TIFQ TI(D)CQ

I,E+ a[P]:Q

Figure 1: Typing Rules

which is easily shown to be admissible in the type systemreseptly defined (Lemma A.7).
We conclude with the statement of the subject reductionrémpwhose proof in Appendix A.

Theorem 3.3 (Subject Reduction).If TI, E+ P : Pand POQ, thenll, E+ Q : P. O

3.2 Examples

We illustrate the behavior of the typing rules with the twestgyns of Examples 1.1 and 1.2. Assume
E=a:A,b:B, c:C,d:D, and consider the attack

a[coin a.open b.in ¢] | b[in a.coopen b.in d].

Let P, be the type of the process enclosedirit is easy to verify that coopen B,in D} C P,T. From

IT F B bounds Py, one hasoopen B € TI(B)~, and hencén D € TI(B)*. Let nowP, be the type of the
process enclosed in Sinceopen B € sync(P;, II(B)~), then a consequence of the closurePgfis that

(B)" € P,T C I(A)~ (the last inclusion holds becauBer A bounds P,). Hencein D € TI(A)~ and

the attack is detected.

A similar analysis applies to the attack
a[coin a.in c.coout a] | b[in a.out a.in d].

Herein D € TI(A)~ results fromout A € sync(I1(B)~, I(A)}), which impliesIT(B) C TI(A) by closure.
4 Type Safety

The operational import of the type system is establishecthbwing that process types provide a safe approx-
imation of process behavior. In that direction, we introgltice relation” | «" that defines the behavior of
a procesd” in terms of the capabilities that P may exercise (at nesting levele {1, =, | }) while evolving

in a context. Then we connect the type system with this natioprocess behavior by means of a safety
result stating that, given a well-typed procd3sn a well-typed context, for every such thatP || ", the
type capability corresponding tis traced by the type aP: in other words, no action goes untraced by the
type system.

Below, we focus on a simplified case of type safety, one theurass that processes are “normalized”
to the form(ud’:ﬁ)P where P contains no restrictiow. This assumption simplifies the statement and the
proof of the type safety theorem: in Appendix D we show howrémult can be generalized to arbitrary
processes.

We start by introducing a relation of “immediate exhibitipnoted P | «: the relation is defined in
Figure 2 by induction on the structure of the proc&ssNext we define a tagging mechanism for processes,

a € {in a,out a,coin a,coopen a} a € {open a,coout a} Pl a" (=12
a.Plal a.Pla” P | Py] a" ‘
Pla" P | cap b" Pla' Pla™
P | o (va:D)P | cap b 7 alP] L a~ a[P] | ot

Figure 2: Exhibiting a capability

by a technique similar to the one in [18]. Let us start withiggvthe intuition first. Given a proceds, we
consider its syntax tree and tag some of its nodes with théslfn So for example, ifP is the process
Py | a[P, | (vb:B)Ps] then, say,P; | fa[P> | (vb:B)§P;] denotes the proced3 in which we tagged the
ambienta and the subproced?; occurring therein.

Having tagged a particular occurrence iof we instrument reduction so that every process interacting
with this occurrence gets tagged: if the tag is initially bggb to an ambient, this technique allows us to
trace all the processes that “got in touch” with that ambieriiags are propagated based on the idea of an
ambient as a paint pot: any ambient exiting a tagged amlsgagped:

fla[blout a.P | Q] | coouta.R| S| — #b[P | Q] | fa[R | 5]

3This corresponds to tracing the interactions considergldrChinese Wall Security Policy [2]

and so is every process unleashed by opening a tagged ambient
open a.P | fa[coopen a.Q | R] — P |#(Q | R).

Following the intuition that a process exercises all theat@fies of the processes it opens, we also have:
fopen a.P | alcoopen a.QQ | R] — #(P | Q | R).

Technically, the definition is only slightly more complexrgt we defingagged processes

Tagged Processes
P:=00apP OP|P 0OaP] O'P OYP

We use the convention thabounds more than the parrallel composition. Therefdéte () denotesfP) | Q
(and, of coursefa[P] andf«. P respectively denotf{ o[P]) andf(a.P)). We calluntagged processéisose
processes in which no tag occurs.

Second, we need to extend structural congruence to taggedgses. Given our assumption that pro-
cesses are in “normal” form, structural congruence is edddnto tagged processes by simply adding the
following additional clausés

=0 H(P[Q)=4P[1Q ¢!P=I4P

The structural congruence relation on tagged processhsristihhe smallest congruence on tagged processes
that is a commutative monoid férand | and is closed under the rules above and those of Section 2.

Third, we define the reduction rules for all possible casasrégsult from whether the processes involved
in a reduction step are tagged or not. To ease the definitierindicate withf® a possibly absent tag, and
with ; thei-th occurrence of the tagy With this notation, the tagged version of reduction is dediby the
rules in Figure 3 plus the rules (context) and (struct) oftfeac2.

(in) 0 t3in a.P | Q]| fal ficoin a.R|S] — #3a[#3R | S | #bli5P | QI
(out) al #5b[#30ut a.P | Q]| fcoout a.R|S] — B[#5P | Q]| alt5R | S
(open) fropen a.P | af f3coopen a.Q | R] — (P |#Q | R)
(out tag) fal #3b] f30ut a.P | Q] | fcoout a.R|S] — HB[#3P | Q)| talt3R | S]
(open tag) fropen a.P | fa f5coopen a.Q | Rl — #5P |4(Q | R)

Figure 3: Tag propagation via reduction

Now we can give a precise definition of thesidualsof a process evolving in a context: intuitively these
are all the tagged processes that result from tagging theepsoin question, and reducing it in the given
context. The definition relies on the following notion ofgtection-free) context:

¢l == []OP|¢]] 0%[|P O 4[] O sl

Definition 4.1 (Residuals).Let (ud’:ﬁ)P be a process, witl? containing no restrictions.

“In Appendix D the definition is refined to handle restrictiemsl scope extrusion.

10

1. An occurrenceof P is a pathA in the syntax tree o?. We denote withPA the subprocess aP
occurring atA, and with@’{’[] the context obtained fron® by substituting a hole for the subprocess
occurring atA. HenceP = € [Pa].

2. Given a tagged proce$3 we denote byP| the process obtained by erasirajl tags occurring inP.

3. LetA be an occurrence of an untagged prodess he set ofesiduals ofA in P is defined as follows:
(1) Pa is aresidual oA in P
(2 If €L [1Pa] — Q andQa- is tagged (that isp o = §R for someR), then every residual A’ in
|Q| is also a residual of\ in P. O

We can finally generalize the notion of capability exhihbitim process occurrences.

Definition 4.2 (Residual Behavior). Let (v@: D) P be a process, witl® containing no restriction, anfl be
an occurrence oP. Then,A || " if and only if there exists a residué of A in P such that? | «"7. O

The definitions above hide several subtilities. First ofralte that the definition of structural equivalence
for tagged processes allows us to use the informal notgfiBri @ | R), to denote eithef(P | (Q | R)) or
1((P | Q) | R). The choice of one of the two is not important as both of theenstnucturally equivalent to
all the possible distributions of the tags over the subtesush as irf(P | Q) | R orin P | (4Q | {R).
This for example is used in the following instance of the Kgpen}

fopen a.P | a[coopen a.QQ | R] — #(P|Q|R)

However it is important to notice that according to Definitié.1 while the process” |) | R) is a residual
of open a.P in the redex, but neithefP | @), nor P, nor @, nor R are residuals of that occurence. The
reason resides in the reduction ri#ruct) in Section 2 which applies structural equivalence to thexed
but not to the reductum. Even thoughor @) are not residuals afpen «.P their behavior is included in
the behavior of P | @Q | R). This holds thanks to the Definition 4.2 and the rules in Fég2r We gave
our definitions as such, since we wanted that in a one stegtiedievery tagged process had at most one
residual, so that to be able to easily follow in the proofstiebavior of the residuals. In order not to loose
any behavior, we defined our reduction rules in Figure 3 soiththe reductum we tagged the “most general”
residual. This explains why, saypen a.P | fa[coopen a.Q | R] reducesn one stego P | §(Q | R) rather
than toP | {Q | §R.

The last step consists in using this definition to state tpe safety theorem, whose proof is given in
Appendix B.

Theorem 4.3 (Type Safety).Let (vd:D)P be a process, with containing no restrictionA be an occur-
rence ofP and letF = E’', d:D for a type environmenk’. Assume thall, E += P : P’ and II, E - Pa : P.
If AJ (capa)”, thencap E(a) € P". O

To exemplify, consider the ambien{coin a.open b]. If taken in isolation, this ambient only exhibits the
capabilitiescoin a andopen b. If, instead, we take the parallel composition

a[coin a.open b] | b[in a.coopen b.in c] 1)

5Technica||y, tags are annotations on the syntax tree andatrgart of the syntax. Thus the notion of occurrence is pveseby tag-
ging/untagging, that is, for every taggé&tand occurrenceé\, | Pa| = |P|a.

11

then the ambient|. . .] also exhibitsin ¢ as a result of the interaction with the context. In fact, if start
taggingal. . .] in (1) above, the result of tagged reduction is as follows:

fla[coin a.open b] | b[in a.coopen b.in (]
— fa[open b | b[coopen b.in ¢]]
— fa[in c]

Now, Theorem 4.3 ensures that if we type the process (1) atteliat the residual[in ¢] of a exhibitsin ¢

is traced by the type associated to the domain.dh fact, the result is even stronger, as it ensures that the
type system traces the behavior of any process that ingeveithh the process occurrence of interest. For
example, if we take the compositi¢ia[coin a.coout b] | b[in a.out a.in ¢], the result of tagged reduction is
fla[] | #b[in ¢], and Theorem 4.3 ensures that the type of (the domain tBces the type-level capability
corresponding tan ¢, since it is exhibited by the residuélin c].

5 Algorithmic Systems

The type system given in Figure 1 is not algorithmic as thesDeEAD) and (AMB) are not syntax-directed.
However, it is easy to state the type rules so that they formlgorithmic system.

5.1 Typing Algorithm

The algorithmic type system finds the minimal type of a terrdara given set of domain assumptidis
and type assumptions. The system results from the type system of Figure 1 by regdeabe rules ([EAD)
and (AvB) by those stated at the end of Section 3.1, and replacingAtbeiON) and (RAR) with the rules in
Figure 4: the only subtlety is the side condition to the rdefioNs), which defined’ as the minimun®’
that containg® and is closed il (i.e. such thatl - P’ is derivable). Collectively, the new rules constitute
the core of an algorithm that givdh, £, andP as input, returns the type as output. The side condition to
the rule (ACTION;) uses the following closure operator for process types.

Definition 5.1 (Process Type Closure)LetI1 be a domain environment such thiatlT) C Dom(II). Then
defineProcClosure(P,II) £ N{P’ | P’ D P UTI(A)for all A such thabpen A €sync(P’'~,TI(A)")} O

Theorem 5.2 (Soundness and completenesdj. I, E +, P : P, thenlIl, E + P : P. Conversely, if
I, E+ P:P,thenll, B+, P:P andP’' C P

Proof sketch.To prove soundness one first has to prove thai,it/ -, P : P, thenIl -+ P. The only
non-trivial part of this is to prove thdl - P closed. The latter can be proved by induction on the deduction
of I, +, P : P and a case analysis on the last applied rule: the result hafgs the last rule is
(AcTioN;) and (AcTioN') since the added capability types do not interfere with tgpecess closure;

it holds for (ACTION;) by the very definition ofP’ which effectively closed; it is a consequence of
Proposition A.1(5) when the last rule isAR). Then, soundness can be easily proved by induction, by
repeated use of the subsumption admissibility property noegin Lemma A.7. Completeness also follows
by induction on the derivation dfl, £ + P : P. O

Corollary 5.3 (Minimal typing). II, E', P : min{P | II, E - P: P} if this set is non-empty. O

12

(PAR) (ACTIONT)

ILLEFy P:P ILEF, Q:Q ILEFy P:P E(a):A
ILEFy PlQ:PUQ II. Bt coout a.P: PU™ {coout A}
(ACTIONS)

ILEFy P:P E(a)=A
II,E F, opena.P:P

P’ £ ProcClosure(P U= {open A}, TI)

(AcTionT)
EFyP:P E(a)=A

II,E . capa.P:PU{cap A}

cap € {in, coin ,out , coopen }

(DEAD) (AmB)
ILEFy, o ILE+, P:P II,Era:D 11+ D boundsP
ILEr,0:(2,0,9) I,E ,y a[P]: I(D)

Figure 4: Algorithmic Typing

The existence of minimum (with respect to point-wise setaimment) types and of an algorithm computing
them are interesting and useful properties. Yet, leavingpgnammer with the task of providing a domain
environmentll as input to the type checking algorithm is a very strong negment. Below, we show that
this task can be dispensed with, as domain environments eaacbnstructed automatically. In principle,
providing a coherentl for which the typing algorithm does not fail is straightfawl. Given a procesg,

let 7 be the set of domain names occurringfin and letE be a type environment that assigns a domain
in 2 to every name inP. Now, denote byP$a the process type whose components contain all the possi-
ble type capabilities ove®, and letl15® be thesaturatedtype environment such th&tom(I1) = 2 and
158 D) = PSafor all D € Dom(II). It is easy to verify that there always exists a process B/geach that
153t P . P is derivable: to see that, observe thi&f'(D) provides a sound approximation of the behavior
of every ambient (and process) occurringfir(indeed,I158 - P : PS3tholds). On the other hand, it is also
clear thafiI®®is not very useful as a domain environment, as it providestaesest possible approximation
of behavior: this is problematic in view of our perspectivaewf types to check and enforce security, as the
coarser the approximation of a process’ behavior, the IksbyIfor the process to pass the security checks
imposed by its environment.

5.2 Type Reconstruction

Type reconstruction computes the minimum coherent domanr@mentIl such that a given term type
checks. The ordering over environments derives by extgntlie containment relation to environments,
using point-wise ordering as followstl C II' if and only if Dom(II) = Dom(II') and for allD €
Dom(II), I(D) C II'(D). We use(\{a | #(a)} as a shorthand fof.(, »(,), €. and similarly for the
union. Then we have the following definition.

13

Definition 5.4 (Domain Closures).Let IT be a domain environment sf(11) C Dom(IT). Then define:
EnvClosure(I1) 2 N{I IO, I F o}

DomClosure(P, A,T1)£ ({I' | II' D T, T'(A) D (@,P!,P=) UP'} withP' = { P if coopen AETI(A)™

@ otherwise
[l

Both these operators, as well as thecClosure operator of Definition 5.1, are easily seen to be well-
defined and monotone: furthermore they can be effectivelgymded by (always terminating) algorithms.
An example is given in Figure 5.

EnvClosure(IT : DomEnv):DomEnv :=

1 2 = Dom(1l);

2 while 2+ @ do

2 chooseD in 2; 9 := 9\ {D}

3 for cap H in TI(D)~ do

4 .=

5 casecap of

6 out :

7 if coout H € TI(H)* thenTI(H) := TI(H) UTI(D)

8 in:

9 if coin H € II(H)~ then

10 begin

11 (H)= :=I(H)=ull(D)";, (H)* :=II(H)*UIl(D)=
12 if coopen H € II(H)= thenII(H) := II(H) UTII(D)
13 end

14 open :

15 if coopen H € II(H)~ then II(D) :=II(D) UII(H)
16 esac

17 if I#1II'"then 2 := 2 U {H}

18 done

19 done

20 return (II)

Figure 5: A closure algorithm

The system for type reconstruction is defined in Figure 6:(ReACTION) rules are the same as the corre-
sponding algorithmic (&TION) rules, R-REPL) and R-RESTR) are defined as their corresponding rules
in Figure 1. In all the rules, the subscriftindicates a finite set of ambient domains: R-DEAD), @ is
the domain environment defined by, (D) = (@, @, @) foreveryD € 2. The rules describe an algorithm
that, given a procesB and a type environmerif such thafn(P) C Dom(FE) returns a process tygeand

a domain environmenitl. More precisely, given a proceg3and a type environment, let Z be the set of
ambient domains occurring in the type assumptiong @nd in the types of restrictions iR. Then, there
exists one and only one process typand environmentl such thafl, ¥ 4 P : P. we denote this process
type and domain environment respectively Withpe (£, P) andZenv(E, P).

Theorem 5.5 (Soundness and Completenesd)et P be a process, and a type environment such that
fn(P) C Dom(E). ThenZen (E, P),E ko P : Zype(E, P). Furthermore, for anyll and P such that

14

(R-DEAD) (R-ACTIONY)
MEF, P:P E()=A

P9, E+50:(2,0,9) II, E ko coout a.P: P U™ {coout A}

(R-ACTIONS)
ILEry P:P E(a)=A

II,E F, opena.P: P

P’ £ ProcClosure(P U= {open A}, II)

(R-AcTIiONT)
ILEFy P:P Ea)=A4

cap € {in, coin ,out ,coopen }
I,Et,ycapa.P:PU T{cap A}

(R-PAR)

I, EFg Pr:Py Mo, EFg Py:P2 12 EnyClosure(IT; UTL),
I,Elgy P |Ps: P P £ ProcClosure((P;UP,), II)

(R-AMB)

I,Ety P:P Ea)=A

IT"=DomClosure(P’, A,)
IT*, E g a[P] : II*(A)

P’=ProcClosure(P, IT")

1" =EnvClosure(IT")
I* £ ﬂ o

Figure 6: Type Reconstruction Algorithm

Proof. See Appendix C. O

Corollary 5.6 (Minimal typing). LetP be a process and a type environment such thatfh) C Dom(F).
Then(Zen (E, P), Zype (E, P)) = min{(IL,P) | II, E+ P : P} O

Accordingly, in the typed syntax it is enough to specify thmdins of the ambients occurring id: the
type checker will then generate the minimal types for eacghalo and forP.

6 Security

Security policies are expressed by means of security @nggr and new environments help associate secu-
rity constraints with ambient domains:

Security Environments Y. : Ambient Domains— Security Constraints

A security environment establishes the security structarea given system of processes and ambients.
Given domain and type environmeriisand F, and a well-typed procesB, we may then verify thaP
is secure inX by checking thaf satisfies¥. The definition of satisfaction, denotéddl |= 3, requires

15

Dom(X) = Dom(IT) and depends on the structure of the security constraintshvi turn depend on the
sort of security policy one wishes to express. We discusetbptions below.

Domain Constraints yield rather coarse security policies whereby one can iffetrustedanduntrusted
domains and, for each domain, allow interactions only witisted domains. These security constraints may
be expressed by tables of the fofim= (in = Z,, out = Zout). If D is a domain and(D) = S, then%;,
(respectively,%.,:) is the set of trusted domains whose ambients can entere@isgly, exit) the ambients

of D. In this optionlI = ¥ if and only if, for all D in Dom(IT), one has

(i) {A]in D € sync(II(A)=, (D)7} C B(D).in, and
(i3) {A | out D € sync(II(A)=,II(D)})} C £(D).out.

The security model arising from domain constraints is eglab the security policy of the JDK 1.1.x. In
JDK 1.0.x all non local definitions are considered as inseclihe same applies under JDK 1.1.x with the
difference that a class loaded from the network can becouseetl if it is digitally signed by a party the user
has decided to trust (in our case a domaiwjp).

Capability Constraints lead to finer protection policies that identify the typedkcapabilities that en-
tering and exiting ambients may exerfiseThese constraints may be expressed by tables of the form
S = (in = Pj,, out = Pyyt), Whose entries are process typesDIfs a domain, and:(D) = S then:

e P;, defines the only capabilities that processes entering antsbad domainD have permission to
exercise: the three seis, T, P;, =, andP;,* specify the capabilities that can be exercised, respégtive
at the level of the entering process, at the level of the aemujpambient, and inside the entering
process. The first specification is useful to prevent infdiomaleakage, the second to control the
local interactions of the entering ambient, and the thirdiseful when opening (or entering) the

entered process.
e Po.: IS the table defining the capabilities that are granted tagsses exiting out of ambients of

domainD, with the three entrieBo. T, P5., andPﬁut defined as above.

In this optionII = ¥ if and only if, for all A, B in Dom(II), in A € sync(II(B)=,II(A)~) implies
[I(B) C %(A).in, and,out A € sync(I1(B)~,I(A)+) impliesTI(B) C ©(A).out. Capability constraints
are loosely related to thgermission collectionsised in the JDK 1.2 architecture (also known as Java 2) to
enforce security policies based on access control and stapkction.

Constraint Formulas. More refined policies can be expressed by resorting to a feagrof first order
logic. The fragment is given below, wheké ranges over type capabilities) over ambient domain names
(and domain variables), andovert, =, and].

Syntax
¢ == MeD"O-¢p DN OdVe OVD: ¢

6AIternativer, we could define what ambients should not tewadd to do, but our choice complies with well-establishedwsity principles

(8.

16

Semantics

MME=MeD" & Mell(D)"

Il = —¢ < 1II = ¢ does not hold

11 |: ¢] A (,252 s 10 ‘: (,ZS] andIl ‘: (,252

OE# Ve & II=g¢grorll = e

M=VD:¢ <« II=¢{D:=A}forall A€ Dom(II)

The notion of formula satisfiability is easily extended te ecurity environments, namely = X if an
only if for all D in Dom(II), IT |= 3(D). Since we work on finite models, satisfiability is always dedie.
Note that the first-order fragment is powerful enough to elecguantification on actions as well as formulas
such agapD € synch(L, M). Based on that, we can express refined security properbegxémple, the
formulaVB,C :in D € synch(B=,D~) Ain B € synch(C=,B~) = in D € C~ allows one to prevent
arbitrary nested Trojan Horses (an ambient entering a seaorbient that enters a third ambient that can
enterD), since it requires that all ambients that are granted tif& to enter domai® may only be entered
by ambients that already have the right to erder

Independently of the structure of constraints, given a @se® and a type environmen' for the names
occurring free inP, we say thaty and P satisfy a security policy if and only if Zenv(E, P) E . As a
corollary of Theorem 4.3 we have th#. (¥, P) = X implies that no ambient occurring il can violate
the security policies defined .

7 Distributed SSA

The type systems presented in the previous sections haresting properties and significant operational
impact. Yet, there is also a fundamental weakness to thethairthey rely on the assumption that global
information is available on ambient domains and their tyjgederivation for a typing judgment, £ + P :
P requires that the environmenisand £ contain assumptions for all the ambients occurring’iand for
all those ambients’ domains. This is clearly unrealisticddoundational calculus for wide-area distributed
computations and systems.

In this section we address the problem by presenting a lolisérdl variant of SSA. In the distributed
version, which we call DSSA, each ambient (i.e. each “lagdtin the system of processes) carries a type
and a domain environment. The syntax of DSSA processes isedefly the following productions:

Distributed Processes
P:=00aP O(waD)P OP|P O "’[P]IS'[,E Ol'p
wherecq, 11, andE are defined as in the previous sections, anmsla capability constraint.

To get an intuition of DSSA ambients, it is useful to think afvdcl ass files. Class files include
applet bytecode together with type and security informrmatised for bytecode verification and dynamic
linking. In particular acl ass file declares the types of all methods and fields the assdotddiss defines
(the type assertions and the types of all the identifiers the class refers to {ipe assumptiong13].
When downloading a class file, the verifier checks (amongrgitmperties) that the bytecode satisfies the
type assertions under the type assumptions. A DSSA amb[é?il?[can be understood as a class file,
whereq[P] represents the bytecode, and the pai# corresponds to the type assertions and assumptions.
Intuitively, for any name occurring ina[P], the process typH(FE (b)) may be thought of as a type assertion,
if b = a or b is the name of an ambient containedAnor else as a type assumptior ibccurs in a capability
of P but P contains no ambient nameéd

17

7.1 Typed Reduction

The type system for DSSA is the same as that defined for SSAARSIients are typed, statically, by sim-
ply disregarding their associated environments: therate used in the dynamic type-checks performed
upon reduction. The new reduction relation is based on tstralccongruence, which is defined as in Sec-
tion 2 with the only exception of the following rule:

(va: D)b[P]nFanb[(V” D)P]HF a7b
that replaces the corresponding rule for SSA. Typed rednds then defined by th@pen), (struct), and
(context) rules of Section 2, plus the rules in Figure 7.

(in) blina.P| QI3 & |alcoina.R| S5t o O a[R|S|b[P| QY plie (%)

(x) provided that, givenll, E = I1,-I1,, E}-E,, one has
ILEF b[ina.P|Q]:II(E(D)), I(E(D)) C Sq.in, and IT+ E(a) bounds II(E(b))

(ou) afcooutaP|Q|bout a.R| Skt nlfp O bRISKE 5, [alP|Qp (=)
(xx) provided thatlIl, E + blout a.R | S]: II(E(b)), and II(E(b)) C S.out

Figure 7: New reduction rules for DSSA

The notatiorlI - IT" indicates the environment that results from appendihgp IT so that assumptions i’
hide corresponding assumptionslin Hence, in the rules of Figure 7:

moy & {0 DRI ey

The rule(in) extends the corresponding rule for SSA with additional ¢ ensuring that the reduction
takes place only when the local environments of the two antbigvolved in the move are mutually com-
patible and the security constraints fulfilled. First, théerrequires the environment ofto be extended
by the environment ob (in the reductunmz carries the environment, £ that extendd1,, £,). Second,
the reduction requires the entering ambiérb (i) be well-typed in the extended environments, &gl
to satisfy the security constraints @f Finally, the conditionI - E(a) bounds II((b)) requires that the
entering ambienk does not modify the external behavior @f a lets new ambients in only if they comply
with its own local behavior discipliné.

The rule(out) performs similar type and security checks: note, in palicuhat if « were well typed
then the type check olwould be unnecessary. Yet, we cannot make apyiori assumption about and
its type, and therefore we must check that the exiting antiias the type it is supposed to have (otherwise
the security check would be of no use).

A closer look at the rul€in) shows an interesting correspondence between the consteaiforced by
the target of the move and the functions implemented by treetbomponent of the JVM security system:
the Class Loaderthe Bytecode Verifierand theSecurity Managef13].

"In the rules we considered that ambients are indexed by @apdkonstraints. IfS’'s were instead Domain Constraints the security require-
mentsTI(E (b)) C Sq.inandTI(E (b)) C S.out in (in) and(out) would change respectively #(b) € S,.in andE(b) € S.out. If instead, the
constraints were expressed by formulas, we could considerdiaded security constraints of the fofm:= (in = ¢, out = ¢), and the security
conditions in(in) and(out) would change tdT = S,.in andIl |= S.out, respectively.

1>

E'(a) ifa € Dom(E')
E(a) otherwise

18

Im, £ =11,-11,, Fy-FE, : Local (toa) assumptions on the type of each name hide remote assusfbion
that name. As a consequence, the entering ageamnot spoof a definition of the target hastThis
is the security policy implemented by the JVM Class Loadériclv provides name-space separation
and prevents type-confusion attacks for spoofing.

blina.P | Q]?ﬁ,,Eb : II(E(b)) : The target of the move, ambieat checks that the entering agérthas the
type it declares to have, in cabeZz Dom(E,), or thata expects it to have, whene Dom(E,). This
is the security policy enforced by the bytecode verifier.

[I(E (b)) C S,.in: The ambientz checks that the entering agent performs only actions tteaesplicitly
permitted by the security constraints defined3gyin. This is essentially the security policy enforced
by the Security Manager: the difference is that the Seciinager performs these checks dynam-
ically (when the agent is already entered and requires timgerthe action), whereas in our system
they are performed at load time.

Note that, intuitively, all the above checks are performed jthe ambient whose boundary is crossed. That
ambient does not trust foreign code, it just trusts, of ceuits own implementation of the type checking
algorithm which is used to dynamically verify foreign coderification is based on the (type) information
foreign code carries along with it, according to the commmofpcarrying-code practice [14].

7.2 Type Safety

Most of the properties relating the type system and redact@rry over from SSA to DSSA. However
the key property of DSSA, where the essence of distributesides, is the following, stronger, version of
Theorem 4.3. Again, the theorem is stated for the simplifi@skecof “normalized” distributed processes,
i.e. for processes with all restrictions extruded to theeombst scope. It is based on the same definitions
of residual and exhibition of the previous section (butedafior the new typed reduction): the additional
information attached to ambients is simply disregarded.

Theorem 7.1 (Local Type Safety).Let (ud’:ﬁ)P be a DSSA process, with containing no restriction, and
A be an occurrence aP such thatPy = a[Q]Sn,E. Assumdl, E + Pa : Pis derivable. If A || (cap b)",
thencap F(b) € P". O

The difference between this theorem, whose proof is skdtahéheorem B.5, and Theorem 4.3 is
that the statement of the former does not require the cortext be well typed, but just that the ambient
occurrence can be typed under the assumptions it comesAutiordingly, every ambient that type-checks
under the environment it carries along with it will only eltiicapabilities that are already in its static type,
even though the context it interacts with is not well-tyfed

This is an interesting result for wide-area distributedteyss, where global typing may not be possible:
for example, distinct subsystems may have incompatible ggsumptions. Even then, typed reduction
allows secure interactions provided that local type saédigts or can be ensured. Hence, an agent can
confidently let another ambient in or out even if the formeevwslving in a possibly ill-typed context: as
long as typed reduction is respected, the security conssrétiat agent defines are never violated. The dual
view holds as well: an agent can confidently enter or exitlaoambient even if the latter is ill-typed: the
reduction semantics ensures that the security constrdgfiised by the former are never violated.

8This property does not hold for the non-distributed calsulihe proof fails in the case f¢in) as it is not possible to deduce the well-typing of
the ambienb.

19

8 Communications

The analyses we developed in the previous sections wergeartp the combinatorial kernel of Safe Ambi-
ents. We now discuss their extension to the case of ambiéthts@mmunication primitives: the extension is
nontrivial, as communication may involve exchange of cdjigs which, once received, may be exercised
and thus affect the behavior of the ambient where they arsved.

We first briefly introduce the constructs for communicatiwadich are directly inherited from the cor-
responding constructs defined for Mobile Ambients in [6]eTipe analyses for the extended calculus are
developed in two steps: first we define a type system that aolyiges for exchange of capabilities; then
we introduce a full-fledged system, where the exchange oiegahlso includes ambient names, and study
its properties in detail.

8.1 Safe Ambients and Communication

In addition to their ability to move, ambients and processesnow endowed with primitives for communi-
cation. As in the original proposal by Cardelli and Gordammenunication is anonymous and asynchronous,
and takes place inside ambients. The new typed syntax iseddfyithe following extensions to the produc-
tions given in Section 2:

Processes P = ... as in Section 2
(M) asynchronous output
(z:V)P input

as in Section 2

Capabilities «

Terms M = a,bc,...,x,y,z Vvariables
0 « capabilities
0 MM paths

First, nowa, b, ¢, ..., x,y, z are used to range over variables, with the usual convertti@ncbnstant names
are variables we commit not to abstract upon. We will ratiser-4-quite informally—e, b, ¢, . . . for ambient
names and variables, amdy for generic variables bound in input processes.

The productions introduce two new process fornis:V) P inputs a value of typé’ (defined next)
and then continues &3 (with every free occurrence of the variabtesubstituted by the input term), while
(M) denotes asynchronous output. The intuitive semanticsrahwanication is that an output procesy)
simply “drops” the termM which may then be input by any process running at the samagdsvel, as in
(x:V)P | (M). Terms that may be exchanged are names and capabilitieg|leasswathsof capabilities of
the form M. M'.

The intuitive semantics of communication we just outlinéoisnalized by two simple extensions of the
relations of structural equivalence and reduction. Stmadtcongruence is defined as in Section 2, with the
addition of the following clause:

Ml(MQP) = (MlMQ)P

Reduction also in defined as in Section 2, with a new rule fonoinication, namely:
(comm) (z:V)P | (M) O P{z:=M}
Note that communication is purely local, as it only happerenrvthe input and output processes are at

the same nesting level, hence within the same ambient.althst®@mmunication across ambient boundaries

20

requires mobility and is effectively enabled by thgen capability. To exemplify, consider two ambients
running in parallel as in the following configuratiari(z : V)P | Q] | b[(M) | R]. The exchange of the
value M from b to the process” enclosed i happens as a result offirst moving insides, and ther:
openingb (or vice-versa, by enteringb and being opened there). Thusgifis the processpen b, andR is

in ¢, communication is the result of the following sequence diiions:

a[(z: W)P |openb] | b[(M) |ina] O af[(x:V)P |openb|b[(M)]] by exercisingna
O a[(z:V)P | (M)] by openingb
O a[P{z:= M}]

8.2 Exchanging Capabilities

As advocated by Cardelli and Gordon [6], communication ahaa should be rare in distributed systems,
because knowing the name of an ambient gives full controt ibvestead, communication of capabilities
should be commonplace, as it allows controlled interackietween ambients. Our first type system takes
this view to its extreme, and limits communication to theesskchange of capabilities.

The resulting system is somewhat restrictive, but nevistisanteresting as it is based on a rather smooth
and simple extension of the system discussed in Sectiong&basic observation for the new system is that
capabilities and processes can be typed uniformly: in faeen that process types describe the behavior of
processes in terms of the capabilities those processes xeagis®, it is natural to associate process types
to capabilities as welP. Based on this observation, the type system is easily defipedking the typd’
of exchange values to be the typeof processes, and by introducing new rules for typing cédjieisi in
isolation. These rules, together with a newr@®ix) rule replace the previous @ioN') and (ACTION™)
rules from Section 3. In addition, of course, we have newrtgpules for input and output processes.

(CapT) (CAP™)
I,E+FaD capDeP?! I,E+FaD capD e P~
cap € {in, coin, out, coopen} cap € {coout, open}
II,Etcapa:P II,EFcapa:P
(PATH) (PREFIX)
ILE-M,:P ILEF M,:P ILEFM:P ILE-P:P
ILEE M .My :P E-FM.P:P
(INPUT) (OuTPUT)
ILE,z:QFP:P QCP z¢Dom(E) ILEFM:P
ILEF(z:Q)P:P ILEF(M):P

The intuition underlying the new system can be explainedbess. Process types now trace two different
kinds of information: (i) the (implicit and explicit) behavior of a process, afid) the behavior resulting
from the exchange of capabilities via communication.

The typing of capabilities, in the rules &B) characterizes capabilities as directly determining pssc
behavior, observable at different nesting levels. The &irof the rules is consistent with the format we
used in Figure 1 and will use in the full-fledged system of BecB8.3: the algorithmic version of the rules

This does not allow process exchanges and hence affect shefiter nature of the calculus. In fact, the syntax insties
only terms may be output, and hence by itself prevents psogeshanges via communication.

21

(CaP™) and (CaP~) would derive the minimum typegcap, D}, @, @) and(@, {cap, D}, @), respectively.
The rule (RTH) simply collects the behavior associated with the capadslion the path, and the rule
(PREFIX) combines the behavior determined by the prefix with the biehaf the continuation process.
Again, we have given the non-algorithmic versions of theesulin the algorithmic versions of the rules
(PATH) and (RREFIX) the type deduced by the conclusions would be the union aktbeéypes deduced by
the two respective premises.

The rule (NPUT) implicitly assumes that every capability input by a pracesay potentially be exer-
cised: this is enforced by the constra@tC P, requiring that the process exhibit in its type the behathat
may result from exercising any capability that is input bg girocess. Dually, the rule (@PuT) identifies
the type of the capability being output with the type of thegass that outputs it: this is required for type
safety. To see that, assum€ : P, and consider the proceés : Q)P | (M). This process type-checks with
the rules above only iQ C P, and the type assigned féis a super-type oP, which therefore provides a
safe approximation for the behaviét may acquire in the exchange bf.

Notice that the type used for the parameter of input prosesar be any type, not necessarily a closed
one. This is convenient, as it allows a more liberal typedtaynn which the type annotations are not
necessarily closed, and their closure is automaticallymded by the system. In Section 5, we showed that
this can indeed be accomplished by the type reconstruckimmigom: in the new system, the type closure is
implicitly computed by the rule §PuT) which subsumes the possibly ill-formed parameter pé¢o the
well-formed (i.e., closed) typB. From the last observation, it directly follows that theitygprules can be
reformulated and based on an untyped syntax, by simplyceggINPUT) rule above with the rule given
next:

(CURRY-STYLE INPUT)
ILE,z:PFP:P

ILEF (z)P:P

Discussion. While easily accommodated in the basic type system, thdigolwe just outlined is some-
what unsatisfactory. The problem is that representing \iehand exchange with process types effectively
amounts to identifying the communication of a capabilitghnthe act of exercising it. Clearly, this leads to

a rather coarse type analysis, because an ambient couldregela capability without ever exercing it. A
further source of unwanted approximation arises from typswe: take for instance the ambiert’] : P,

and assume thd? opens another ambient enclosing an output pro¢gss: Q. Then, type closure implies
thatP must subsume the tyg@, even thoughP does not include any input process, and therefore it has no
way to effectively exercise the capability.

8.3 Exchanging names and capabilities

A more effective analysis results from distinguishing the tforms of behavior a process exhibits: the
capabilities it may exercise from the capabilities it maghenge. This can be accomplished by enriching
the syntax of types as defined by the following productiorst A_denote the usual triplgd., M, N), with
L.M,N € 2M andM denoting type capabilities, exactly as in Section 3. Thdmde

Exchanges W D[W] exchange of names

o 7 exchange of capabilities
O Shh no exchange
Processes T = P[W]

22

In addition, we define the types of values, as expected:
Values V o= DW]OT

The structure of types is similar to that of the original tygestem for Mobile Ambients by Cardelli and
Gordon [7]. Process types describe the two components okpsobehavior: the direct behavior resulting
from exercising capabilities, traced By and theexchange behaviaesulting from communication, traced
by W. As we anticipated, communication can now exchange eitqgalailities (of typel”) or ambient names
(of type D[W]). The typeD[W] is assigned to ambients names of dom&imvhose internal exchanges, if
any, are of typd¥. The typed syntax is similar to the previous, with the onlgtrietions that new names
may only be declared at types of the foiiv/].

Processes
Pu=00M.P O @waDW)P OP|P O(M)QO(x: V)P Oa[P] O!P

8.4 Environments and Typing Rules

The binding environments of the new type system are stilheeffias pairs ofype Environmentsdenoted
by E, andDomain Environmentsdenoted byil. Domain Environments defined as in Section 3, as finite
maps from domain names to the comportewf process types. Type environments, instead, have aefiffer
structure as they now map ambient names to the newly definb@atrtypes of the fornD[IW], and input
variables to value typeg.

Interestingly the definition of closure, boundedness arftegence from Section 3 work just as well
with the new structure of types. The typing rules, instead,different: they derive five different forms of
judgments, thati§l - oorII, EFoorlI-Torll, E+- P:TorIl, E - M:W.

Type and Environment Formation

(TYPE Shh) (TYyPEMESSQ (TyPE PROC)

Imro II-W D e Dom(Il) MW fn(P) C Dom(II) IIF P closed
T F Shh I+ D[W] T+ P[W]

(ENvy) (ENV>)

mkEo ILEFo MEFW z¢ Dom(E)
Lok Im, E,xzW ko

Typing of Terms

(NAME)
II,EFo x€ Dom(E)

ILEFz: E(x)
(Cap™)
M,EFa:DW'] TFPW] capDeP!

cap € {in, coin, out, coopen }
II,E + cap a : P[]

23

(CaPT) (CaPy)
I,E+Fa:DW'] TFP[W] cooutDeP~ TL,EFaD[W] MFP[W] openD P~

II, E - coout a : P[W] II,E + opena: P[W]

(PATH)
ILEFM :T ILEF-My:T

MEFM.M:T

Typing of Processes

(DEAD) (REPL) (RESTR)
MEFo MET MEFP:T I,E,a:D[W]F P:T T+ D[W] a¢ Dom(E)
MEFO:T MEHP:T I, E + (va:D[W]))P : T
(PAR) (PREFIX)
ILEFP:T ILEFQ:T ILE-FP:T WE-M:T
ILEFP|Q:T ILEFMP:T
(INPUT) (OuTPUT)
ILE,z:VFP:PV] z¢Dom(E) MEFM:V TFP[V]
ILEF (z:V)P:P[V] I, E + (M) : P[V]
(AmMB)

N E+P:PW] M,EFa:D[W] T+ DboundsP TIFQ[W'] TI(D)CQ

I, E + a[P] : QW]

The rules for typing capabilities mimic those defined in [@] Mobile Ambients. In particular the rule for
open demands that the exchange types of the opened and the oaninignt coincide: this explains why
the rule (G&P™) is split into two rules. Note that all types occurring in pesses are required to be well
formed. This is unfortunate, as it requires the typing aations for terms to be built around closed types,
but at the same time necessary for safety.

8.4.1 Type Safety

The proof of type safety follows essentially the same argurdescribed in Section 4, based on subject re-
duction. For the latter, Lemma A.6 is easily proved for thevisgstem: one only needs an additional case for
the new structural rule for paths, which follows immedigtey an inspection of the typing rules. In addition,
one needs the following revised form of Lemma A.7 and a stilisth lemma, to handle communication.
In both cases the proof is standard.

Lemma 8.1 (Subsumption Admissibility). If II, £ = P : P[W], thenlIl, E + P : Q[W] for everyQ such
thatP C Q andIl, E - Q[W]. O

Lemma 8.2 (Substitution). If II, £, z:V - P: TandIl,E+- M : V,thenll, E+ P{z:=M}:T O
Theorem 8.3 (Subject Reduction).If II, F + P: T andPOQ, thenll, K+ Q : T.

Proof. A straightforward modification of the proof in Appendix A. O

24

The definition ofimmediate exhibitiorof a capability of Figure 2 does not change, because the enpait
output processes {«:V') P and(M)— do contribute to any immediate exhibition of capabilitidhe same
is true of processes in prefix fordf. P when (the first capability of) is a variable.

The definition of tagged reduction is directly derived frohe tcorresponding definition in Figure 3
with the addition of the structural rul§ M) = (M), and of a new reduction for communication, namely:
H(z:V)P O (M) O §P{x := M}. Finally, one needs an additional context form to accountémtexts
built around the input constructz: V)%].

Given these extensions, the notions of residual and reldigétnavior are defined exactly as in Definitions
4.1 and 4.2, respectively. Then we have:

Theorem 8.4 (Type Safety).Let (ud‘:ﬁ)P be a process, witl® containing no restrictionA be an occur-
rence ofP and letE = E’, a:D for a type environmenk’. Assume thall, E + P : P'and I, E + Pa : P.
If Al (capa)?, thencap E(a) € P".

Proof. (Sketch) A direct extension of the proof of Theorem 4.3. Bhisrno change for any of definitions
related to behavior types. The only novelty is that now psses may have the form P. On the other
hand, such processes do not, in fact, have any immediatbitahi they only exhibit a capability when
the variable in the prefix is eventually substituted. Heriicee can prove that the type af P takes into
account the type capabilities of all possible substitigtiéor z, then type safety follows. But this follows
directly from subject reduction property and an inspectbthe typing rule (REFIX). O

9 Related Work

We have showed that classical type theoretic techniquesdereffective tools for characterizing behavioral
properties of mobile agents. Capturing implicit behaveessential to ensure secure agent interactions: to
our knowledge, ours is the first among type systems for Mobitebients to have this property. Also, we
have showed that in the design of a distributed implememntaif the calculus and its type system one finds
back features distinctive of real systems. We conclude wothparisons with related work.

9.1 Type Systems for Mobile Ambients

Type systems for Mobile Ambients and related calculi havenbstudied in several papers. The first paper
on the subject is by Cardelli and Gordon [7], where typesrreduced to discipline the exchange of values
inside ambients. In [4], Cardelli, Ghelli and Gordon extehd type system of [7] to account for ambient
mobility. The new type system provides for a classificatidrambients according to simple behavioral
invariants: specifically, the type system identifies amisie¢hat remain immobile, and ambients that may
not be dissolved by their environment. In [12], Levi and Sarg define a suite of type systems for their
Safe Ambients, which also characterize behavioral pragggedf ambients, such as immobility asghgle-
threadednessbased on these invariants, they prove interesting eaerieals for well-typed processes. In[1],
Amtoft, Kfoury and Pericas develop a type and effect systeniiobile Ambients that provides support for
polymorphic exchanges within ambients. Work on combinhmgjrtitype system with the one presented here
is part of our and their current collaborative research.

The type system closest to ours is the one presented by Ga@letlli, and Gordon in their recent paper
on Ambient Groups [5]. Although their and our motivatione aomewhat orthogonal —they refine previous
work on static detection of ambient mobility, we give a tytheoretic account of security by defining and

25

enforcing security policies for ambients— the two solutidrave several similarities. If we disregard the
security layer of our type system, our notion of ambient dionis essentially the same as their notion of
group. Also, ambient behavior is characterized in both type sgysten terms of sets built around domains
(or equivalently groups). In [5] each group is associated with sets that identify which groups ambients
of groupG may potentially cross or open. In our type system, we diyessociate ambient domains with
type-level capabilities with similar information conteiowever, our type system is superior in precision,
as our type-capability sets are constructed in ways thawvalnplicit and hidden mobility to be statically
detected. That is not always the case in the type system:obfb} the first of the two attacks we discussed
in the examples of Section 1.1 is detected by the type syst¢5}’8.

A further difference is the presence in [5] of a novel (andejunteresting) construct for dynamic group
creation, a primitive that is not available for our versiohneobile ambients. While we believe that this
construct could be included in our type system, it wouldaialy complicate type reconstruction. Besides
our specific interests in security issues, that are somedisetgarded in [5], type reconstruction and the
distributed version of the system (neither of which is dgs®d in [5]) represent further important differences
between the two papers.

9.2 Static Analysis for Mobile Ambients

Although developed in a different framework, and based dfermint techniques, our work on type-based
analysis has the same goals as F. and H.R. Nielson’s studyofarol and data flow analysis for Mobile
Ambients [15, 17] and achieves similar results.

In fact, our type reconstruction algorithm may be seen adatract control flow analysis where ambient
behavior is abstracted upon in terms of domain behavior.altiqular if we consider the work in [15] the
resulting analysis is very similar to the one detailed hgreauSection 5. In some respects, our analysis is
more precise as we use co-capabilities and the three-lstreisture of types to refine it. Furthermore, as
we have shown, out analysis scales to the distributed verdithe calculus, an issue that is not discussed
in in [15]. In other respects, however, the analysis preseirt [15] is finer than ours since they collect not
only the actions emitted by an ambient, as we do, but alsoghefsts possible parents. This information
is then used to refine the analysis as it allows one to disdegmpabilities that may not be exercised: for
example, the capabilityut a is included in an ambient’s behavior only if the target ambieis among the
current ambient’s parents. In fact, there seems to be naafuedtal impediment in refining our system to
perform the kind shape analysis proposed in [15]. Planstoféuresearch work may include work in that
direction.

The analyses of [15, 17] have been enhanced in [9, 11] by theiabstract interpretation. In these
works, as in [16] the complexity of the analyses is also gdidan issue that we completely overlooked here
and leave for future work.

Acknowledgments

Work partially supported by the Italian MURST Project 9903824 003 “Automatic Program Certification
by Abstract Interpretation”, by the French CNRS ProgregtecommunicationsCollaborative, distributed,
and secure programming for Internet” and by the European ¢dbiractMyThS IST-2001-32617.

This is because in the system of [5] the type associated vgitb@pG only traces the capabilities of the ambients that members
of G' may open, not those of the ambients exiting membefs.of

26

References

[1] T. Amtoft, A. Kfoury, and S. Pericas-Geertsen. What anéymorphically-typed ambients? BSOP
2001, volume 2028 ot ecture Notes in Computer Scienpages 206—220. Springer, 2001.

[2] D. Brewer and M. Nash. The chinese wall security poliay.Proc. of IEEE Symposium on Security
and Privacy pages 206—214, 1982.

[3] M. Bugliesi and G. Castagna. Secure safe ambientBrdn. of the 28th ACM Symposium on Principles
of Programming Languagepages 222-235, London, 2001. ACM Press.

[4] L. Cardelli, G. Ghelli, and A. Gordon. Mobility types fdfdobile Ambients. InProceedings of ICALP
'99, number 1644 in Lecture Notes in Computer Science, pages2330 Springer, 1999.

[5] L. Cardelli, G. Ghelli, and A. D. Gordon. Ambient groupsdamobility types. Ininternational
Conference IFIP TCSwumber 1872 in Lecture Notes in Computer Science, pages3333 Springer,
2000.

[6] L. Cardelliand A. Gordon. Mobile Ambients. Ieroceedings of FOSSaCS 98umber 1378 in Lecture
Notes in Computer Science, pages 140-155. Springer, 1998.

[7] L. Cardelli and A. Gordon. Types for Mobile Ambients. Rroceedings of POPL '99ages 79-92.
ACM Press, 1999.

[8] P.J. Denning. Fault tolerant operating syste®€M Computing Survey8(4):359—-389, Dec. 1976.

[9] J. Feret. Abstract interpretation-based static angalysmobile ambients. I&ighth International Static
Analysis Symposium (SAS '0humber 2126 in Lecture Notes in Computer Science. Sprirger.

[10] L. Gong.Inside Java 2 Platform SecurityAddison-Wesley, 1999.

[11] F. Leviand S. Maffeis. An abstract interpretation frwwork to analyse mobile ambients. Eghth In-
ternational Static Analysis Symposium (SAS, @i)mber 2126 in Lecture Notes in Computer Science.
Springer, 2001.

[12] F. Levi and D. Sangiorgi. Controlling interference imfients. INPOPL '00, pages 352-364. ACM
Press, 2000.

[13] T.Lindholm and F. Yellin.The Java Virtual Machine Specificatiodava series. Addison-Wesley, 1997.

[14] G. Necula. Proof carrying code. B4th Ann. ACM Symp. on Principles of Programming Languages
ACM Press, 1997.

[15] F. Nielson, H. R. Nielson, R. R. Hansen, and J. G. Jengelidating firewalls in mobile ambients. In
Proc. CONCUR '99number 1664 in LNCS, pages 463—-477. Springer, 1999.

[16] F. Nielson and H. Seidl. Control-flow analysis in cubicé. In Proc. ESOP’01 number 2028 in
Lecture Notes in Computer Science, pages 252-268. Spyidget .

[17] H.R. Nielson and F. Nielson. Shape analysis for mobiiignts. IlPOPL '0Q, pages 142-154. ACM
Press, 2000.

27

[18] P. Sewell and J. Vitek. Secure composition of untrustede: Wrappers and causality types.18th
IEEE Computer Security Foundations Worksha@00.

A Subject Reduction

We first prove a few simple and useful properties for domaimrenments and process types. In that
direction, we extend the set-theoretic notation used ongages to domain environments as follows. Given
two domain environmentsl, andIl, such thatDom(II;) = Dom(Ily), we definell; N I, (respectively,

[T, UII,) to be the domain environment that maps evr¢ Dom(I1;) into the process typH; (D) NIy (D)
(respectively]l, (D) U Ily(D)).

Proposition A.1 (Boundedness and Closedness)et IT and IT' be domain environmentg) an ambient
domain, andP, P’ two process types.

1. If T+ D bounds P andIl - D bounds P’, thenIl - D bounds (P U P’)

If II - D bounds P andP’ C P, thenII - D bounds P’.

If IT - D bounds P and II' - D bounds P, then alsoII N IT' - D bounds P.
If TT - D closed andIl’ - D closed, then alsoll N IT’ - D closed.

If II - P closed andII - P’ closed, then alsdl - P U P’ closed.

aprwn

Proof. In all cases, the proof is by a direct application of the dé6ins. O
Corollary A.2 (Coherence). LetIl, IT' be domain environments. If - o andIl’ F o, thenlINII' Fo. O

Lemma A.3 (Process Types)LetIl be a domain environment, aid, P, be two process types such that
I+ Py andIl + Py. ThenIl = Py U Py

Proof. By Proposition A.1. O
Lemma A.4 (Type Formation). If II, E + P : P, thenIl - o andII - P.

Proof. By induction on the derivation dfi, £ - P : P. O
Lemma A.5 (Generation).

1. f II,E+Fa: D,thenD = E(a).

2. fILEFP|Q:Pthenll, EF- P:PandIl,E+Q : P;

3. If I,EHP:Pthenl,E P: P;

4, If I, F +capa.P : P, thenll, E+ P : P,andIl, F a : A for some ambient domaid. Further-

more, either(i) cap € {in, coin ,out ,coopen } andcap A € PT, or (ii) cap € {coout ,open } and

cap A € P=

If I, E - (va:D)P : P, thenIl, E,a:D - P: P

6. Assumell, E + a[P] : P. ThenII(E(a)) C P and there exist®’ such thatll, £ - P: P’, and
IT+ E(a) bounds P'.

o

Proof. In each case, by an inspection of the typing rules. O

28

Lemma A.6 (Subject Congruence).If I, E+ P:PandP = Q, thenll, E - Q : P.
Proof. By simultaneous induction on the derivationsio Q and@ = P. O

Lemma A.7 (Subsumption Admissibility). If TI, E + P : P, thenIl, E + P : Q for everyQ such that
P C QandIl F Q.

Proof. An easy induction on the derivation di, £ - P : P. O
Theorem A.8 (Subject Reduction).If TI, E+ P : Pand PO Q, thenIl, E + Q : P.

Proof. The proof is by induction on the depth of the derivation of teduction, and by a case analysis on
the last rule in the derivation.

Case (open)open a.P; | a[coopen a.Py | P3] O Py | Py | Ps
FromIl, E F open a.P; | a[coopen a.P, | Ps] : P, by repeated applications of Lemma A.5:2, A.5:4,
and A.5:6, there exist an ambient domaine Dom (IT) with TI(D) C P, and a process tyge, such
that the following are all verified:

ILEFP :P)
II, E + coopen a.Py | P5 : P, 3)
M,EFP,:P, and TLEF P;:P, (4)
IM,EFa: D and I+ D boundsP,)

From (3 and the first judgment in (4), by Lemma A.5:4, we knoattlvopen D € P,*. From this,
and from (5), we know thatoopen D € II(D)~, and henceP, C II(D) again from (5). Then
P, C P sincell(D) C P. By subsumption, which is admissible by Lemma A.7, from (&) ¢he two
judgments in (4), we then derivé, £ + P; : P fori = 1,2,3. ThenIl, E+ P, | P, | P; : P derives
by two applications of (EBR).

Case (In) a,[coin a.Py ‘ P2] ‘ b[ln (I,.Ql | QQ] 0 (],[Pl ‘ Py ‘ b[Ql | QQ]]
FromIl, ' afcoin a.P; | P5] | b[in a.Q1 | Q2] : P, by Lemma A.4 we know thail - <. By re-
peated applications of Lemma A.5:2, A.5:4, and A.5:6 theist@mbient domainsl, B € Dom(II),
with TI(A), I1(B) C P, and process typd3, andQ, such that the following are all verified:

ILEFinaQ|Q2:Qp (1)
ILEFQ@Q:Q and IILEF Qs : Qy (2)
IILEFb: B and IIF B boundsQ 3

II,E+coina.P | Py: P, 4)
ILEFP :P, and ILEF P, :P, (5)
II,EFa:A and I+ AboundsP, (6)

From (1), the left judgments of (2) and (6), by Lemma A.5:4, kmew thatin A € Q,'. From this
and from (3),in A € II(B)=. From the left judgment of (5), we also know thain A € P,T. From
this and from (6)coin A € T1(A)~. Summarizing we haveén A € sync(I1(B)~,I1(A)~). From this,

29

and fromII I o, we know thafil - A bounds IT(B). From this, and from the right judgment of (6),
by Proposition A.1.1, we have

[T+ A bounds (II(B) U P,) @)
From the two judgments in (2), by AR), II, £ + Q1 | Q2 : Q. From this, and (3), by (A&B)
ILEFb[Q1| Q] : TI(B) (8)

From the two judgments in (5), by AR), II, E + P, | P, : P,. From (8) and the last judgment, by
subsumption and @R),

H,E"P]‘P]|b[Q]|QQ]H(B)Upa (9)
Now, the type of the reduct derives from (9), (7), and thejledgment of (6) by (AB).

Case (Out): a[coout a.P; | Py | b[OUt a.Qq | QQ]] O a[P] ‘ PQ] ‘ b[Q] | QQ]
As in the previous cases, by repeated applications of Lemradofthe typing judgment of the redex,
there exist process typdy, andQ;,, and ambient domaind, B € Dom(II) with TI(A) C P and
II(B) C P,, such that the following are all verified:

ILE+Fouta.Qq | Qa: Qp 1)
IMLEFQ:Q and TLEF Q9: Qy (2
ILEFb:B and I+ B bounds Q, 3)

II, B+ coout a.Py | Py | blout a.Qq | Q2] : P, 4)
MEFP :P, and TLEF P,:P, (5)
II,E+a:A and I+ AboundsP, (6)

From the left judgments of (2) and (6), by Lemma A.5:4, we kribatout A € Q,. From this and
from (3),out A € II(B)=. From the left judgment of (5), we also know tlzabut A € P, . From this
and from (6),coout A € TI(A)*+. Thus,out A € sync(II(B)~,(A)}). From this, and fronil F o,
we know thatlI(B) C II(A). Itis now easy to check that the judgmeltsE + b[Q1 | Q2] : II(B)
andIl, F + a[P; | P2] : II(A) are both derivable. The typing judgment for the reductunivdsrthen
by subsumption and an application oR¢B.

Case (context):Standard, by induction hypothesis.

Case (struct):by Lemma A.6 and the induction hypothesis. O

B Type Safety

Lemma B.1. Let%[] be a restriction-free context, and be a restriction-free process. Assume thatE
¢[P] : PPand II,E - P : P. Consider a generic one-step of tagged reduction fféffP], that is:
CHP] = €1 [iR] — %2[iQ] for some context®’[| and%>[]. ThenIl, E - |Q] : P.

30

Proof. We first show that the lemma holds for the preliminary steptofctural rearrangement, i.e. that
I, E + |R| : P. This can be done by induction on the depth of the derivatfagheocongruence. Sincé[fi P]
contains a single tagged occurrengg[f R] results from either rearranging only untagged occurrences
from rearrangingi P. In the first case the claim is trivially true. Then, consitlex case whetiP matches
either side of a congruence rule. Sinkds restriction-free by hypothesis, we have only four basesdo
consider, namely P = {0, {P = (P, | P»), for given P, and P, and finallyfP = §!P,, orfP =!{P;.

In all cases the claim follows by Lemma A.6. The first case isueas, as there is no tagged process
corresponding td0. The second case follows by the type ruleRl and the last two cases follow by
(RepPL). For the inductive cases, the only subtlety is transitjvits the intermediate tagged process may
contain more than one tagged occurrence. However, sinceithenly one tag it¥’[{ P], it is not difficult to
see that#; [§ R] can always be obtained by a sequence of rearrangementsthatse the congruence law
H(P | Py) = 4P | P, from left to right.

Next, consider one step of tagged-reduction friénfi). If § R is not a sub-occurrence of the redex nor
is the redex a suboccurencefdt, then the proof is trivial. The same holdgiiR is a sub-occurrence of the
redex but it is not one of the tagged processes involved imgthection. If the redex is a sub-occurrence of
fR, then the proof follows by subject reduction. The remainiages are whefR is one of the processes
involved in the reduction: we work out the interesting cabebw, the remaining cases are similar and
simpler.

(open tag)open .S | fa[coopen a.R; | Ro] — S| §(R1 | R2), whereR = a[coopen a.R; | Ry] and@ =
Ry | Ry. From the hypothesis, we know thit £ + a[coopen a.R; | Re] : II(E(a)). From Lemma
A.5:6, there exist®’ such thafl, F - coopen a.R; | Ry : P’ with IT F E(a) bounds P’. By repeated
applications of Lemma A.5 we also have thBtE - Ry | Ry : P'. FromIl, E - coopen a.Ry | Ry :
P’ the typing rules tell us thatoopen E(a) € P’ 1 and by the definition of boundness this implies
coopen E(a) € TI(E(a))=. FromIl, E + Ry | Ry : P, and fromcoopen E(a) € II(E(a))~, by
closure it follows thaP’ C TI(E(a)) as desired.

(out tag) fa[blout a.Ry | Ra] | coout a.Rs3 | Ry] — #b[R1 | R2] | #a[Rs | R4]. The proof follows the
pattern of the case(it) in the proof of Theorem A.8.

(In) b[ln a.Sq ‘ SQ} | lja,[coina,.Rl ‘ RQ} — Ij(l,[Rl | Ry ‘ b[Sl | SQH, whereR = a[coin a.Rq | RQ] and
Q = a[Ry | R2 | b[S1 | S2]]. Again, the proof follows the pattern of the case) (of Theorem A.8.
From the hypothesis, we know thit E + b[in a.S; | So| : II(E(b)). Hence alsdl, E + b[Sy | So] :
II(E(b)). To conclude, it is enough to show that+ E(a) bounds IT(E(b)). But this follows from
the coherence dil, given thatin E(a) € sync(II(E(b))=, [I(E(a))7).

U
LemmaB.2. If II,EF P:PandP | (capa)” thencap E(a) € P".

Proof. By a direct inspection of the typing rules and a straightfandvinduction on the depth of the deriva-
tion of P | (capa)”. O

The proof of Type Safety is a corollary of the following Lemma

Lemma B.3. Let P be a restriction-free procesg) be an occurrence aP and letE a type environment.
Assume thall, £+ P : P’ and 11, E + Pa : P are derivable. If A |} (cap a)”, thencap E(a) € P".

31

Proof. Follows by Lemma B.1 and Lemma B.2 by induction on the humbheeduction steps needed to
reach the residual aPa that emits(cap a)"”. The base case is proved by Lemma B.2, while the inductive
case is obtained by considering the residuals after a operstieiction. The proof of the inductive case is
eased by the definition of residuals in terms of one-stepatémhs of processes that have at most one tag,
and that structural congruence is applied only before (ftet)ea reduction step. O

Theorem B.4 (Type Safety).Let (vd:D)P be a process, it containing no restrictionA be an occur-
rence ofP and letF = E’', d:D for a type environmenk’. Assume thall, E += P : P’ and II, E - Pa : P.
If AJ (capa)”, thencap E(a) € P".

Proof. A corollary of the previous lemma. O
Finally let us consider the safety for the the distributestsn:

Theorem B.5 (Local Type Safety).Let (ud:ﬁ)P be a DSSA process, with containing no restriction,
and A be an occurrence aP of the fOI’ma[P']%’E. Assumdl, £ = Pa : P is derivable, and¥(b) = B. If
A | (cap b)", thencap B € P".

Proof. (Sketch The proof is based on the analogue of Lemmas B.2 and B.3 f@AD&ocesses, and a
different version of Lemma B.1 that handles the new form ef(thut) and(in) reductions. The only critical
case is the subcase (ih) in which §R (i.e., A) is the entered ambient. For DSSA, this case follows
by two side conditions of thén) rule: II, E F b[in a.P | Q]?{’bﬁb : TI(E(b)), that ensures that the local
environment of the reductum can type its body, dhd- FE(a) bounds II(F(b)), that ensures that the
behavior of the entering ambient is already accounted fdahbyocal environments of the reductum. Then,
the result follows from the observation thHa{ £ (a)) = 11, (FE,(a)).

Note that the theorem is stated for ambient occurrences angemeric occurrences. Indeed the result
does not hold for generic processes since in DSSA we did ndifyntne (open)rule to check that opened
ambients are well-typed. O

C Type Reconstruction

Proposition C.1. LetII be a domain environment with(fii) C Dom(IT). ThenEnvClosure(II) is the least
coherent domain environment containifg

Proof. To prove the claim it is enough to show tHat’ | IT C IT" andIl’ I- ¢} is not empty and finite. The
proof follows then by Corollary A.2. That this set is not emfdllows by observing that the environment
I1#%* that results frond1 by saturating1(D) for every D € Dom(I1) is contained in it. That the set is finite
follows from the fact thaDom(II) is finite. O

Proposition C.2. LetII a coherent domain environment adde Dom(II). Then for every process tyje

1. EnvClosure(II) = II.
2. I + ProcClosure(P, IT) closed.
3. DomClosure(P, A, IT) - A bounds P. O

To prove the reconstruction algorithm sound, we need tHeviahg additional lemmas.

32

Lemma C.3. LetII be a be domain environmem,be a process, and lét* = ProcClosure(P, IT). Then
P*=N{P" | P' > PandIl - P’ closed}.

Proof. IT + P* closed follows by Proposition C.2. Tha®* is the minimum superset d? closed inIl
follows by observing thaP* is the minimum fixed-point of the following monotone operatpc;;(P) =
P U{II(A) | open A€sync(P~,II(A)7)}. O

Lemma C.4. LetII be a be domain environmerit; and P, process types. Then:
ProcClosure(P1, IT) U ProcClosure (P4, IT) = ProcClosure(P; U P9, IT)

Proof. We prove the double inclusion. The directign)(follows by monotonicity. The directionX) follows
(i) by Proposition C.2(2) by whichl ~ ProcClosure(P;,II) closed (i = 1,2), then(ii) by Proposition
A.1(5) by whichII - ProcClosure (P4, IT) U ProcClosure (P4, IT) closed, and finally(iii) by Lemma C.3, as
ProcClosure(P1,II) U ProcClosure(Pg, IT) D Py U Ps. O

Lemma C.5. Assumdl, F +,, P : P, and letll’ be any coherent domain environment containihgThen
', E o P : P*whereP* = ProcClosure(P, IT").

Proof. By induction on the derivation dfi ., P : P. O

Theorem C.6 (Soundness and completenesd)et P be a process, and’ a type environment such that
fn(P) C Dom(E). ThenZen(E, P), E o P : Zype(E, P) (soundness). Furthermore, for aflyand P
such thatll, £ -, P : P, one hasZen (E, P) C Il and Zype (E, P) C P (completeness).

Proof. By induction on the structure a?.

P =0 In this caseZen(F,P) = @9 and Zype(E, P) = (@,@,@). By construction,@, - o, and
Img(E£) C Dom(@4). Hence@y, £ F o by (ENV), and Zen(E, P), E g P @ Zype(E, P)
derives by (IEAD). Completeness is trivial.

P =capa.P' Letll = Zen(E, P') andP = Zype(E, P'). By induction hypothesis, we haié E .,
P' : P, and for anyll’ and P’ such thatll’, ¥ ~, P’ : P’, we havell C II' andP C P’. By
construction, there existd such thatE(a) = A. There are now three cases, depending on the
structure ofcap.
If cap € {in, coin ,out, coopen }, by definitionZeny (E, P) = Il andZype (£, P) = PU T{cap A}.
Then the desired judgment derives fromgAoONT).
If cap = coout A, by definitionZen (E, P) = II and Zype(E, P) = P U~ {coout A}. Then the
desired judgment derives from GXION]).
If cap = open A, by definition Zeny (E, P) = II and Zype(E, P) = P’ as defined by the side-
condition of R-ACTION;). The desired judgment derives from¢AIONS).

In all three cases completeness follows from the inductigpothesis and the fact that set-union is
monotonic.

P =!P" and P = (va:A)P' Directly, by induction hypothesis.

33

P =P ‘ Py Let I, = ,@env(E,P]), P] = ,@type(E,P]), 11, = ,@env(E,Pg) andPQ = r%type(E", Py
By induction hypothesisil;, £+, P; : Py, andlly, E -, P, : Po. Let nowIl = Zeny(E, P)
EnvClosure(IT; UIIy). By Proposition C.111;, 1T, C II, andII F <. From the last two judgments, by
Lemma C.5

)A.

II,Et, P, : P} with P} = ProcClosure(Py,1I) (7
II,EF, Py: P5 with P35 = ProcClosure(Py, IT) (8)

From (7) and (8) above, by &R), II, E ., P, | P, : (P} U P3). By Lemma C.4 we know thdt} U
P35 = ProcClosure((P; U P3), II) and hence conclude @ype (£, P) = ProcClosure((P; UPy), II).
Completeness follows by induction hypothesis and monoityndf the EnvClosure andProcClosure
operators. In fact, for anjl’ andP’ such thatll’, E ., P, | P, : P, by induction hypothesis one
hasIl; C ITI' andIl; C II', which impliesIl; U II, C II'. Furthermore sincél’ is coherent, by
Proposition C.2(1) we obtaifi’ = EnvClosure(IT’'). From these last two points and the monotonicity
of EnvClosure we haveZeny (E, P) £ EnvClosure(IT; U II;) C EnvClosure(IT') = II'. A similar
reasoning yieldsZype (E, P) C P'.

P = a[P'] Letll = Zen(E, P') andP = Zype(E, P'). By construction there existd such thatF/(a) =
A, and by induction hypothesid, £ +_, P’ : P. Then alsdll F ¢, andIl - P closed. LetIT* be
defined as in the side condition dRfAmMB) and seP* = ProcClosure(P, IT*). By the construction
of IT*, noting thatEnvClosure is idempotent, we have

P* = ProcClosure(P, IT*) 9)
IT* = DomClosure(P*, A,II) (20)
IT* = EnvClosure(IT*) (11)

From (11) and Proposition C.1, we dedudééet- <. From this, (Ev), and (NAME) we obtain:
", Eta:A (12)
By constructionlI C IT*. Thus by (9), the induction hypothesis, and Lemma C.5 we ckedu
II*,Ety P :P* (13)
Finally from (10) and Proposition C.2(3) we have
IT* + A bounds P* (14)

The result follows from (12), (13), and (14) by (8). For completeness, consider afy and P’
such thafll’, £ -, P’ : P’ and redo the proof above usihff andP’ instead ofil andP. The result
follows from the monotonicity oEnvClosure, ProcClosure, andDomClosure. O

D Generalized Type Safety

The generalized version of type safety, for processes itranp form, is subtler and requires more complex
definitions. The problem is that restrictions may extrudggtd processes and thus inherently change the
set of actions exhibited by the latter. For example condiderfollowing process:

b[(ve:C)afout binc] | ...] (15)

34

Imagine that we want to consider the set of residuals éfccording to the actual definition we have to tag
b, that is,fib[(vc:C)alout b.in ¢] | ...], and apply the reduction rul@pen tag) But to apply this rule we
must first extrude the restrictiopvc:C') from b. The final result is:

(ve:C) (D[..] | Halin €])

Now according to the previous definition$in ¢] is a residual ob, and the former emits ¢ (more precisely
alin ¢] | in ¢™). However it is clear thak cannot emitin ¢~ as the extruded restrictions always blocks this
action. And indeed the type system does not requik€ to belong to the type df.

The above example shows that scope extrusion requires Xtraded restrictions are traced by the
extruded tags. Thus, the general form of tagged procesdebenip P, whereE is a type environment.
Given the extended notion of tags, we then define a congrueihedor scope extrusion:

ir(va:D)P = (va:D)ig.pP (16)

In the following, we omit the type environment in tags unlésgally matters. The tagged-reduction rules
and the remaining structural congruence rules are as hefotie the only exceptions that now tags carry
type environments with them.

The definition of#’[| must be extended to include restrictions:

%[== [JOP|%]] O[] P Oa[¢]]] Oa?]] OwaD)¥[]

Given a contex¥’[| we denote by, the type environment formed by all the declarations intoetlin the
context byv's that have the context’s hole in their scope. For brevityuseE~ to denoteEﬁa.

We can now state the new definition of setresiduals which is modified so that type-environments
annotations are traced during the reduction. For this reassiduals will be tagged processes rather than
just processes:

Definition D.1 (Residuals). Let P be a process.

1. LetA be an occurrence of an untagged procBsand £ a type environment. The set éfresiduals
of A'in P is defined as follows:
(1) iz Pa is anE-residual ofA in P
(2 If €L[tePa] — Q andQar = tir R for someR, then everyE'-residual ofA’ in |Q| is also an
FE-residual ofA in P.

2. LetA be an occurrence of an untagged procBsg he set ofresiduals ofA is the set ofz-residuals
of Ain P. O

We extend the type system with an additional type rule fogéagprocesses and define theelation also
for tagged processes:

(TYPE TAG)
ILE-P:P P | cap a”
—— a ¢ Dom(E)
ME-fgP:P fuP | cap a"

The way capability exhibition is defined for tagged processistifies why residuals are now defined as
tagged processes and why tags have to store environmenmtg: dfd not, then by the rule (16) a residual
could exercise a capability that in the original occurrenerild have been blocked by a restriction. If we
consider again the example (15) and the sepaksiduals ofb, then this set containg..ca[in ¢] which,
according to the new rule fdrdefined above, no longer emitsc=.

Finally, the definition of|} is as before, but now it uses the new definitions of exhibitiod residual.

35

Definition D.2 (Residual Behavior). Let P be a process\ and an occurrence d@?. A || «" if and only if
Q | «", for some residual) of A. O

The general version of Theorem 4.3 stated for generic psgseisolds for this new definition d¢f.

Theorem D.3 (General Type Safety).Let P be a process and\ be an occurrence of. Assume that
ILEFP:Pand ILE-EX - Pa:P.If Al (capa)”, thencap E(a) € P". O

To prove it we must first lift the subject reduction theorentagged processes and tagged reduction.

Theorem D.4 (Tagged Subject Reduction)Let P be a tagged process. If, E - P : Pand P — @,
thenIl, E+ @ : P. O

Then the General Type Safety theorem follows from an an&agu_emma B.2 on tagged processes,
and the following version of Lemma B.1.

Lemma D.5. Let P be an untagged process arxlan occurrence of?. Assume thall, £ + P : P and
IL (E-EX) & Pa P f €L (R, Pa] — €[5, P2), for some contex#’, thenll, (E - B4,) b g, P> : Py.

Proof. (Sketch) The proof is in two steps. First we prove that théntlaolds for structural congruence,
i.e. that if6X [ir, Pa] = %[ir, Ps), thenll, (E - Egr) F g, P53 1 Py. This follows by a case analysis on
the possible occurrences fjf, Pa: the proof makes a crucial use of the assumption ihi untagged and
that thereforef;, P is the only tagged occurrence of the starting processese(iiad several tags then the
statement would not hold because of the tife]| fQ = #(P | Q) which could then be applied from right to
left making other tags “pollute” the tagged occurrence aered in the statement).

Then, we observe all possible one step reductions stantomg €/ [fi 2, P3] and ending intc¢; [i, P»).
This part of the proof is very much the same as the correspgrptart in the proof of Lemma B.1, once we
note that iff , P is directly issued fromig, P», thenEy, = E(gll. O

36

