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Abstract. The paper gives an assessment of securityffobile Ambientswith
specific focus omandatory access contr@MAC) policies in multilevel security
systems. The first part of the paper reports on different &jization attempts
for MAC policies in the Ambient Calculus, and provides ardigpth analysis of
the problems one encounters. As it turns out, MAC securigysdaot appear to
have fully convincing interpretations in the calculus. T¥ezond part proposes
a solution to thismpassebased on a variant of Mobile Ambients. A type sys-
tem for resource access control is defined, and the new oalaibiscussed and
illustrated with several examples of resource managemaitigs.

1 Introduction

Distributed computation based on mobile code is alreadguitnius and represents an essential
aspect of our computing environments. Mobile computingesebn sharing of data and software
resources among computing sites distributed across wiske-gpen networks. This sharing is
successful inasmuch as it satisfies several criteria, dimdpsafety, e.g. execution of mobile code
without failure, and security, e.g. protection of sitesiagamalicious intruders and misuse of
their computing resources.

A substantial body of the research on programming langubgssecently been directed to-
wards the study of formal calculi providing high-level sappfor mobile agents. A non exhaus-
tive list of examples includes the Ambient Calculus [CG3B§ Seal Calculus [VC99,CGNO01],
the Dr-calculus [HROODb], and the Join Calculus [F&26].

The initial motivation for this paper was an assessment@iiréty in calculi for mobility. As
a preliminary step, we thought it instructive to study whéiafy) new insight and challenges
mobile code languages provide for well-established sgcuniodels. For some of the calculi
we just mentioned, notably for thesBcalculus, an in-depth study of these aspects has already
been conducted in [HROOb]. Here we present a correspondialysis for Mobile Ambients, for
which, to our knowledge, no previous attempt in this directhas been made.

The focus of our analysis is amandatory access contrpblicies (MAC) in multilevel se-
curity systems. In particular, the emphasis is on the speagfpects of MAC policies related to
confidentiality and integrity, and their different implentations asnilitary security (no read-up,
no write-down) anccommercialsecurity (no read-up, no write-up).

The first part of the papeg 2) is a survey of our formalization attempts. As it turns dhg
main problem comes far ahead the point where one starts timafiaation, because the security
concepts assumed as references do not appear to have gngointincing interpretation in the
calculus. In fact, the very meaning of basis notions suchremd'access” and “write access” by
subjects on objects, or even “ownership”, is somehow diffitugrasp and characterize when
looked at from within the Ambient Calculus. As a consequesfabese difficulties, one is led to
the conclusion that Ambients lack adequate primitives fiwa and characterize those security
concepts. While our arguments are only informal, the amsye detail in the first part of the
paper does provide convincing evidence in favor our comnafus
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The second part of the paper proposes a solution tartigassebased on a variant of Mobile
Ambients we dutBoxed AmbientsThe calculus of Boxed Ambients is introduced, formally de-
fined and studied in a companion paper [BCCO1]. Here, insteadkeep the presentation largely
informal, and put the emphasis on the role of the new calciduslescribing and expressing
resource access control policies. After a brief descniptib the calculus, we introduce a type
system for resource access contfpBj. Then § 4) we propose several examples that illustrate
what we believe to be the merits and strengths of the calcAldisal section § 5) is dedicated
to related work and conclusions.

While the second part of the paper represents the main batitn of the paper, the prelimi-
nary analysis was extremely useful to us to understand titelgms, and we hope will be equally
valuable to the reader.

2 Mobile Ambients and Multilevel Security

Standard models of security for resource access controbaite aroundsubjectsperforming
access requests atjectsby write (in some models, alsappend executeand others) andead
operations.

Multilevel security presupposes a lattice of security Isyand every subject and object is
assigned a level in this lattice. Based on these levelssadoeobjects by subjects are classified
asread-up(resp.read-down when a subject access by a read an object of higher (respr)low
level, and similarly for write accesses. Relying on thissslfication, one may distinguish two
security policiesmilitary security, which forbids (both direct and indirect) readsugnd write-
down’s, andcommercialsecurity that forbids read-up’s and write-up’s. Theseartdicover also
indirectaccesses resulting from the composition of atomic operstithus also the fact of writing
into an object of any level a piece of information read (ot fgeming) from another object whose
level is higher than the level of the first object is consideas a write-down (classic security
handles these cases by the so-calignoperty [BP76,Gol99).

2.1 Mobile Ambients

Ambients are processes of the foufiP] wherea is a name and® a process. Processes can
be composed in parallel, as in | @, exercise a capability, as . P, declare local names as in
(vx) P, they can be replicated, as!iR, or simply do nothing as if.

Mobility. Ambients may be nested to form a tree structure that can benigally reconfigured
as a result of mobility and ambient dissolution determingthle capabilitie$n, out andopen. To
exemplify, consider the ambientsandb in the configuratioru[ open b.in ¢] | b[in a.in d] . The
ambienth may enter, by exercising theapabilityin a, and reduce te[ open b.in ¢ | b[ind] ] .
Thena may dissolveé by exercisingopen b, and reduce ta[inc|ind].

Security. The ability or inability to cross boundaries, which is caméel by the capabilitiea
andout, is also at the core of the security model underlying MobilalAents. Permission to
cross ambient boundaries is given by making the name alailalthe clients willing to enter or
exit. Names are thus viewed as passwords, or alternatigebtyygtokeys: when embedded in a
capability, an ambient name provides the pass that enabtessto, or else the cryptokey that
discloses the contents of that ambient.

While this model of security is suggestive, and powerfulifesimplicity, it appears to not be
fully adequate for modeling realistic policies for resau@ccess control. The problem is that it
entirely depends on the ability by the authorization me@rarto filter out undesired clients: an

1 As a matter of fact, these references do not define precidedy awvrite-down access; instead, they give
a definition ofno-write down policy



authorization breach could grant malicious agents fuleasdo all the resources located inside
the ambient boundary. Clearly, one first has to identify whesgource access” is in the Ambient

Calculus. Entering an ambient, or opening it are all goodionstof access: in addition, there is

of course communication.

Communication.n the Ambient Calculus, communication is anonymous, arppbas inside
ambients. The configuratiofx) P | (M) represents the parallel composition of two processes,
the output proces§\) “dropping” the messag#/, and the input procegs) P reading the mes-
sageM and continuing a$’>{z := M}. Theopen capability has a fundamental interplay with
this form of communication: opening an ambient enableslsymization between the processes
located in the opening and the opened ambients. To exemg¥ifichronization between the in-
put procesgz) P and the outputM) in the systen(z)P | open b | b[ (M) | Q] is enabled by
exercising the capabilitypen b to unleash the messaga/).

Itis the interplay between communication and the primdif@ ambient mobility which makes it
difficult to reason about resource access in terms of clakssézurity models. To make our point,
we use a simple concrete example.

2.2 A simple resource access problem

Suppose we have a system consisting of a set of resofirges. ., r,, } and an agent named
that runs progran® and is willing to access any of the’s. To control the access requests by
the agent, one would typically refer to [DoD85] and set upsouece manager. In the Ambient
Calculus the system under consideration can be represastetiows:

a[PY [mlr:i[--- 1] [rl---][R]
Here,m is the resource manager running proc&sslo access, say;, the agent needs to know
the namem, to be able to move inside the resource manager. Assuminggéet knows that
name, the result of the move is the new system:

mla[P] [rai[---]1 |- [ral--- T | R]
Looking at this configuration, it is clear that the procdgsloes not have an active role in the
system: given the primitive constructs of the Ambient Chlsuthere is indeed nothing can do
to enable or control the access, as the interaction betwféh] and each of the;’s may only
result from autonomous actions by either the agent or thaure&. The role of the ambient
is therefore reduced to the role of its name: it is simply th&t fitassword required for the access.
Rather, it is each of the;’s that needs to include its own manager.

We can thus formulate the problem in simpler terms, and lamdctly at the case of the agent

a and the resource shown below:

Initial configuration: a[P] | r[R| (M)]
R is the manager for, and M is the contents: for the purpose of the example, we assunbe tha
the content is a value the agent is willing to read.

2.3 Overview of possible solutions

Having defined the problem, we now look at different ways tack it in the Ambient Calculus,
and discuss their implications for MAC security.

2.3.1. Agent dissolutionA first solution is based on the following protocol proposed b
[CG98]. In order fora to access, a first enters:

Enter: r[R|(M)|a[P]]

2 safe Ambientfl S00] would not help here, aB would still be unable to mediate the accessto



Now, the idea of the protocol is that the manageshould be the procedspen p, which un-
leashes authorized clients that entered the resourcenvdttransport ambient namedIn other
words, the protocol requires the client to know the name efréssource, as well the name of
the “port” p used for access. The agent would first rename itsgifttocomply with the rules of
the protocol, and then enter: if the access e in read mode, the agent will contain a reading
process. After renaming, the new configuration would then be

Renaming: r[!openp | (M) |p[(z)P]]
Finally, the resource manager enables the read accessehingp:

Read Access: r[!openp | (M) | p[(z)P]] O r[!openp | (M) | (z)P]
The protocol is elegant and robust, as the agent needs to tmmwasswordsr(andp). There
are, however, a number of unsatisfactory aspects to it.

A first reason for being unsatisfied with the protocol is thas ihardly realistic to assume
that agents willing to read a value should be prepared to ¢soblied. A second problem is that
openingp[ P] may be upsetting to the resource manager, or else to thercesitself, because
there is no telling whaP might do once unleashed. For what we know, the contengsooiuld
very well be the procesd’. P, with N a path ofin or out capabilities. Unleashing this process
insider could result intor being carried away to possibly hostile locations, or otlisevbeing
made unavailable to other clients requesting access to it.

Further problems arise when we try to classify the protoadloading to the principles of
MAC security. As we noted, the action in the protocol thatreually enables the access to the
resource is taken by the resource manager, which opensdbening agent. In other words, it is
the last step of the protocol that effectively determinesabcess, and since the process enclosed
in p is an input process, it is classified as a read accessy(badtained an output, it would have
been a write access). In multilevel security, it would therpbssible to further classify the access
according to the security levels associated windp, and use that definition to enforce either
the military or the commercial security policies.

However, while this form of classification is sensible foetprotocol, it becomes rather
artificial when applied to the primitives of the calculusdéed, saying thaipen p | p[ P] is a
read (or write) access fror® is rather counter-intuitive, as[ P] undergoes the action rather
than actively participating into it. The problem is that ghi®tocol is tightly dependent on the
effects ofopen, but when exercised to enable a read/write requastn exchanges the roles of
the two participants in the request, as it is the subjedterathan the object, that is accessed, in
fact, opened.

2.3.2. Resource dissolutioThe problem could be circumvented by a change of perspective
One could devise a different protocol where the active réla® subject is rendered by a combi-
nation of open and input/output. Thus, for instance, thegssopen r.(x) P could be interpreted,

in the protocol, as a read requestrorThis might work reasonably for read requests, even though
the interpretation is not too convincing given that the asdeas also the side-effect of dissolving
the resource. Even less convincing would be the interpostalf open r.(1) as a write access:
after dissolvingr the output( /) really has nothing to do with a write an

2.3.3. Agents and messengéksavoid indiscriminate dissolution upon access, [CG98} su
gests a different approach, based on a protocol similartditst one we discussed, but in which
agents rely on “special” ambients acting as messengersidEaeis to envisage two classes of
messengers:

output messengen[ M.(N)]. M is a path to the location where deliver message

input messengers[ M.(z)o[ M~" ()] ]. M is the path to the location where a value can be
read. Once read, the messenger goes back to its originadidoaghere it delivers the value.



Thus, a read access would be encoded by a protocol based fafidkaéng initial configuration:
a[openo.(z)P | i[out a.in r.(z)o[out rina.{z)] 1] | r[!openi | (N)]

The protocol still requires cooperation from the resour@neger, which is expected to open the

input messenger. Also, looking at the primitive reductiahsvould still be counter-intuitive to

say thabopen i | i[ P] is a read access. However;itould be identified as an input-messenger

within r, then the access classification would be more realistic.

The problem is that there is no way to syntactically tell neeg®rs from ambients playing
the role of “pure” agents, nor is there any way to syntadijcdétect “illegal” attempts to dis-
solve “pure” agents. Defining a notion of access, and attieigat syntactic classification would
therefore still be problematic, if at all possible.

Types could be appealed to for more satisfactory solutiore €uld devise a type system to
complement the syntax by enforcing a typed partition of amtsi into agents (i.e. ambients that
cannot be dissolved) and messengers (as above). Basedtppa@mbient classification and on
an assignment of security levels, it would then be posstttetssify access requests according to
MAC policies. There would be only one remaining problem. §idar the protocol structure and
evolution. From the initial configuratiom:[ P’ | i[ M.(z)o[ M~ *.(x)]1 11 | r[!openi | (N)]

a sequence of reductions routes the input messenger tohigsgevit it is opened and consumes
N. At this stage, the structure of the systemd§P'] | r[!openi| o[ M~ '.(N)]]. This is
the encoding of a write access byto a. In other words, a read access byncludes a write
access by if the former is, say, a read-up, then the latter is a wribgnd. In other words, the
protocol has somehow the effect of merging read-up’s antevadown’s, and dually, write-up’s
and read-down’s. Therefore, military security could dti# accounted for with this approach,
while commercial security could not.

2.4 Summary and Assessment

The survey of solutions we have given may still be incompletit we do not see any significantly
different approach to attack the problem. As to the appresete have presented, none of them
is fully adequate to reason about security. Some of themaagpéficial, since essential intuition
is lost in the encoding of the protocd 2.3.1§ 2.3.2), while in others, intuition is partially recov-
ered but only at the expenses of failing to provide full actdor both military and commercial
security § 2.3.3).

Consequently, while possibly incomplete, the analysissqmevide a basis for drawing a
conclusion. Certainly, the Ambient Calculasablesresource access control, in that it provides
constructs for encoding access protocols. On the other, hadalculugioes not, by itself, sup-
port these mechanisms and policies, as it does not provideibdatilities to make it convenient
or natural to reason about them. As we showed, the reasosipgsisible at the level of access
protocols while when we look at the accepsimitives there appears to be no general principle
to which one can steadily appeal.

The conclusion we may draw, then, is tisapportfor resource access control with Mobile
Ambients requires different, finer-grained, constructsafmbient interaction and communication.
The new constructs should be designed carefully, so as tpleoment the existing restrictions
on ambient mobility based on authorization, without bragkihem. In other words, access to
remote resources should still require mobility, hence atitation: local access, instead, could
be made primitive.

To see how that can be accomplished, consider once moredteplof§ 2.3.3, based on
messengers. We can re-state it equivalently as follows:

a[in r.open o.(x)outr.P | i[out a.(x)o[inaz)]]] | r['openi| (M)]
In other words, it is now the agent that is responsible fomttoves needed to reach the resource,



while the messenger just makes th@ndout moves needed for the, now local, access. After the
move ofa into r, and ofi out of a, the structure of the system (disregardirjgs the following:
r[openi| (M) | [ (z)P] ]. This is where the read access takes place. Now, insteadivfgco
it, via open, we can make it primitive and do without open. If we denotenwit) " input from the
enclosing ambient, the read access is simplyM) | i[ ()" P] ] . But then, the whole protocol
can be simplifieda[in r.(z)".P] | r[(M)].

A choice of communication primitives based on this obséoveled us to the design &oxed
Ambients a calculus we formally define in [BCCO01] and outline in thexingection. The new
primitives provide the calculus with what we believe to bereneffective constructs for resource
protection and access control, while at the same time iietathe expressive power and most of
the computational flavor of Mobile Ambients, as well as tregahce of their formal presentation.

3 Boxed Ambients

Boxed Ambients are a variant of Cardelli and Gordon’s MoBilabients. From the latter, they
inherit the primitivesin and out for mobility, with the exact same semantics. Instead, Boxed
Ambients rely on a completely different model of commurnimat which results from dropping
theopen capability.

As in the Ambient Calculus, processes in the new calculusntenicate via anonymous
channels, inside ambients. In addition, to compensatéhéabsence afpen, Boxed Ambients
are equipped with primitives for communication across anbboundaries, between parent and
children. Syntactically, this is obtained by means of tggec#ying thelocation where the com-
munication has to take place. So for example(ay” P the input prefix(z)™ is an input from
child ambientr, while (M)7 is an output to the parent ambient.

The choice of these primitives is inspired to Castagna aneké Seal CalculugvC99],
from which Boxed Ambients also inherit the two principlesnaeédiationandlocality. Mediation
implies that remote communication, e.g. between siblingpiants, is not directly possible: it
either requires mobility, or intervention by the ambientarent. Locality means that communi-
cation resources atecal to ambients, and message exchanges result from explidiamedwrite
requests on those resources.

As it turns out, the resulting communication model has mathteresting payoffs when it
comes to resource protection policies and security. Beémtering further details, we briefly
review the syntax and the semantics of the calculus.

Syntax and SemanticShe untyped syntax of the polyadic synchronous calculus felibows.

Expressions M := a,b,... |z,y,... |[inM|out M | M.M | (M,..., My)
Patterns T = z|X1,..., Tk
Locations n o= M| 1T |*

Processes P := 0|M.P|(vz)P| P|P |M[P] |'P|(x)"P|(M)"P
We use a number of notation conventions. We resarve g for ambient names, and, y, z
for variables. As usual we omit trailing dead processestimgiM for M.0. The superscripk
denoting local communication, is also omitted.

The operational semantics is defined by reduction, with e bf an auxiliary relation of struc-
tural congruence. All these are very standard (in fact, #xas in Ambient Calculus). We only
give the top-level reduction rules, and refer the readeBt©(01] for details.

Mobility. Reduction for thén andout capabilities is exactly as for Mobile Ambients:
(entey alinb.P Q] | B[R] O b[a[ P | Q] | ]
(exit) a[b[outa.P | Q] |R] O b[P| Q] | a[ R]



CommunicationThe primitives for local and parent-child communicatioe governed by the
following rules. Note that in all cases input-output is dyranous (se§ 4 for a brief digression
on asynchronous communication).

(local) ()P | (M)Q O P{z:=M}|Q

(input (2)"P | n[(M)Q | R] O Pz := M} | n[Q|R]
(input 1) (M)P | n[(2)'Q | R] O P | n[Q{z = M}| R]
(output (M)"P | n[(2)Q | R] O P|n[Qfz:= M} |R]
(output?) ()P | n[(M)'Q |R] O Pl := M}|n[Q]| R]

3.1 Resources and Access Control

Four different reductions for non-local exchange may beugiid of as redundant, especially
because there are only two reducts. Instead, differenttitres for input/output is a key design
choice that has a number of interesting consequences.

— First, the primitives for communication have immediate aedy natural interpretations as
access requests. To exemplify, the input préfiX* can be seen as a request to read from the
channel located into child ambient In fact, given the anonymous nature of channet$?
can equivalently be seen as an access to the ambidally, (M )" can be interpreted as
write request to the parent ambient (equivalently, its labannel§.

— Secondly, full and flexible support is how available for res@ protection. An agent en-
tering a resource needs not be opened there to enable thesatwe resource manager can
mediate and keep full control over the read and write reguestide by the agent. If we
take the resource access problent @2 we now have a fairly natural and elegant solution,
and we also find back a role for the resource manage€onsider again the configuration
m[a[P] | ri[---11---| m[---1 | R] where now all ambients are boxed, antlas en-
tered the resource manager. We need not to include a mamagach resource, & may
act as a mediator. For instandecould be defined as the parallel composit®n| - -- | R,
where eachR; is the process$(z)(z)"* waiting for upward output froma and forwarding
it to the ith resource. Some of thB;’s could be less generous with the agent, and ignore
upward input fromu to request read access eiinstead:! (z)*(x)"¢. Should any of the;’s
be made non-accessible, one would simply deftne= 0.

— The communication model fits nicely the security model of M@Bmbients which is based
on authorization and predicates in/out access to ambienp®ssession of appropriate pass-
words or cryptokeys.

— Finally, multilevel security for boxed ambients may be mledeby embedding security lev-
els in types, and using typing rules to enforce and vevindatory(system-wide)Access
Control (MAC) policies. We give a detailed account of how this can bealin§ 3.2 below.

The calculus has other interesting aspects to it. For a tigtraliscussion on these aspects, and a
detailed comparison between the communication primitdfedBoxed and Mobile Ambients the
reader is referred to [BCCO1]. Here, instead, we focus denébn to security issues, and move
on to multilevel security.

MAC Security.In MAC security, the behavior of system is described by a dimensional
Access Control MatridM indexed over a se of subjectsand a sefO of objects and whose

% The possibility to associate owners to channels is the reasgty we do not consideshared channeli
the style of [CGNO1], that is, we do not have reductions sisay,
()" P | n[{M)TQ | R] O Plz =M} |n[Q|R].



values areaccess modes/, Z € {w,r,rw,shh}. M[s,0]=w (respectivelyr, rw, shh) indicates
that subject has write (respectively, read, read&write, no) access jeato.

For multilevel security, one presupposes a lattize <) of security levelgranged over by
p,o,7), and a functiorlevel : SU O — X. A security policyis a ternary boolean predicat®
on subject levels, object levels, and access modes. Ansacoafrol matrixM satisfies a security
policy & if for every s€S, 0€0, Z(levels),leve(0),M[s,0]) holds true. Military (no read-up,
no write-down) and commercial (no read-up, no write-up)usg¢ can then be formally defined
as follows:

Pwil(p, o, 1) 245 p Peom(p,0,r) 2o< p
Pui(p,o,w) Ep=<o Peon(pyo,w) 20 <p
Pwil(p, o, rw) 25= p Pecom(p, 7, rw) 25 <p
Pl (p, o, shh) 2 true Pcom(p, o,shh) 2 true

EXCURSUS In process algebras, it is interesting to take a powersetofisty labels(2”, C)
as lattice of security levels. Based on that, it is possiblage standardr-calculus restrictions
to dynamically define security levelgz¢: L)(vz: {£})P. New formalizations dDiscretionary
Access Contropolicies (DAC) are then possible if, in addition, one alslmais security labels to
be communicated over channels. We discuss this possihittya briefapercuin Section 4.

3.2 A Type System for MAC Multilevel Security

The type system results from a rather simple refinement otytpe system for Boxed Ambi-
ents defined in [BCCO1]. As in that case, ambient and proggsstare defined as two-place
constructors describing the types of exchanges that mayrdocally and with the enclosing
context. Interestingly, this simple type structure is &littis needed to give a full account of
ambient interaction. This is a consequencéidfthere being no way for ambients to communi-
cate directly across more than one boundary, @idcommunication being the only means for
ambient to interact.

Multilevel security is accounted for in the type system bstiomenting the structure of types
to include additional information about the security leassociated with each ambient (viewed
as subject or object) and the access mode of the ambientiaege types. The resulting syntax of
types, as well as its intended meaning, are defined as fqlletwsre the metavariable’ ranges
over access modes:

Expression Types W = oAmb[E,F¥] | oCap[E¥] | Wi x --- x W,
Exchange Types E,F == shh|W
Process Types T := oPro[E, F¥]

Ambient types o Amb[E, F“]: the type of ambients with clearanegenclosing processes whose
local and upward exchanges are of typeand F'; the upward exchanges have mage

Capability types oCap[F“]: the type of capabilities exercised within an ambient oacace
o, whose upward exchanges have typand modes .

Process typeso Pro[E, F¥]: the type of processes running at clearascevhose local and up-
ward exchanges are, respectively, of tygeand F'. The tag< defines the mode in which
the process accesses the channel located in its parentrambie

In all cases, the typghh indicates no exchange, that is, absence of impgtoutput. The syntax
allows the formation of the type&mb|[E, shh®], Cap[shh’], and Pro[E, shh®]. These types
are convenient in stating definitions and typing rules: t&kensense of them, we stipulate that
shh® = shh for any accessv.



To enhance the flexibility of the type system, we introduce fitllowing subtype relation
over exchange types.

Definition 1 (Exchange Subtyping). L&t be the smallest reflexive and transitive relation over
exchange types satisfying the following axioms for everiiange typer’ and access mode’:
shh < E, shh< B, E'<E™, E"<E"™ |

Exchange subtyping is not used in conjunction with subsionpSubtyping may be lifted to ca-

pability and process types to allow sound uses of subsumpliois enhanced form of subtyping
is studied in [BCCO01], but is essentially orthogonal to thbject of our present discussion. We
therefore disregard it, and move on to illustrate the typings.

The typing rules are presented in Figure 1, and discussed He rules (N) and (QUT) define
the constraints for ambient mobility. They explain why daipiy types are built around a single
component, and motivate the subtyping relation over exgbdppes. The intuition of the Kl

is as follows: if Cap[F] is the type of the capability, say =, thenin n is exercised within an
ambient, sayn, with upward exchangeg. Now, for the move ofn into n to be safe, one must
ensure that the local exchangesndilso have typé. In fact, one may be more liberal, and only
require type compatibility between the upward exchanges:@nd the local exchanges of
this explains the premisE < G. The predicate?? provides a guarantee that after moving, the
ambient will still satisfy the security policy. Dual reasog applies to the (OT) rule: upward
exchanges by the exiting ambient must have the same (indactmpatible) type as the upward
exchanges of the ambient being exited. The security pai@nforced, in this case, directly by
the subtyping relation over exchange types. It is worthngpthat upward silent ambients (that is,
ambients whose upward exchanges have tjb¢ can freely move across ambient boundaries.
This is a consequence of our interpretation of capabilitesl of how< is defined: capabilities
exercised within upward silent ambients have tyfi&@p[shh] andshh < E for everyE.

The rule (AvB), for typing ambients, defines the constraints that mustaltiefied by P to
legally be enclosed in: specifically, the type of the upward exchanges performedbynust
comply with the security policy defined by the predicateand must be a subtype of the local
exchanges of the current ambient (that is eitdtdr or G). As an example, ifP tries to read
from the channel located in the ambient that encleseken, to avoid aead upoperation, the
clearance of (i.e. that of the ambient) must be higher than that of the accessed channel (i.e.
that of the ambient enclosing.

The other interesting rules are those for communicatiorcal@ommunication, i.e. local
access within an ambient, needs no security constraintrdles (INPUT M) and (QUTPUT M)
govern input/output to subambients. Besides connectiadyibes of the input-output processes
and their continuations, the rules also enforce the conssréhat processes at clearanceead
only from (resp. write only to) ambients of clearanceompatible withs according to the given
security policy.

We conclude with the PUT 1) and (QuTPUT 1) for upward input/output which, perhaps
surprisingly, do not impose any security constraint: tediécause security on upward communi-
cation is already regulated by the ambient rule, and by ttes governing mobility.

The type system satisfies standard properties, notablye&uReduction:
Theorem 1. If x + P : gPro[E, F¥] and PO Q, thenx + Q : oPro[E, F¥].

However, the main purpose of types is to statically detemss violations. It is a simple technical
matter to show the soundness of our type systemleveibe the function that associates the types
oAmb|[E, F¥]| andoCap[E“] to o. We decorate reduction with a functiétthat associate names
to security levels. The definition is straightforward inedises, except for the case of restrictions:



Typing of Expressions

(PrRoJECT) (TUPLE) (PATH)
*(n) =W * FM;:W; Viel.k *x F M;:0Cap[E”] i=1,2

)

x Fn:W *F(Mi,...,Mp): Wi x- - x W * I—Ml.MZ:aCap[Ed]

(IN) (OuT)
*x b M : pAmb[G, H*] P(0,p,/) E<LG *t M:pAmb]G,H*] E“ < H”

x Fin M : oCap[E”] * Fout M : 0Cap[E”]

Typing of Processes

(PREFIX) (PARALLEL)
*x £ M :oCap[F’] % b P:oProlE,F?] *x F Pi:oProlE,F¥] i=1,2
*x F M.P : ogPro[E, F¥] x F P | Py: oPro[E, F¥]
(AmB)

* Fa:oAmb[E, F”] % F P:oPro[E, F”] P(o,p,o/) F<G

* Fa[P] : pPro[G, H”]

(INPUT %) (OUTPUT %)

*,x: Wk P:oPro[W, F¥] * FM:W x F P:oPro[W,F?]
*x F (z: W)P : oPro[W, F¥] * F (M)P : oPro[W, F¥]
(INPUT?T) & € {r,rw} (Outputt) & € {w,rw}

*x,x: Wk P:oPro[E, W] x FM:W x F P:oPro[E, W]
*x F(z:W)'P:oPro[E, W] *x F(M)'P: oPro[E, W]
(INPUT M)

*x,x: Wt P:oProlE,F”] x F M: pAmb[W,U*] (0, p,r)

*x b (z: W)MP: ogPro[E, F¥)
(OuTPUT M)

*x FN:W % FP:oProlE,F?] %+ M: pAmb[W,U”] 2(a,p,w)

*x F(NY"P:oPro[E, F”]

(DEAD) (REPLICATION) (NEW)
*x b P:oPro[E,F”] x,z:W + P:oPro[E, F¥]

* F0:0Pro[E, F”] % F!P:oPro[E,F”] % (vz:W)P:oProlE, F]

Fig. 1. Typing Rules
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Also, we instrument this form of labeled reduction wétror rules

(e-inputn m[(x:W)"P | n[{(M)Q|R] |S] O err if —~2((m),ln),r
(e-inputt) m[(M)P | n[(z)'Q|R] | S] O/ err if —2(
(e-outputn  m[(M)"P|n[(z)Q|R] |S] O err if —2(
(e-outputt) m[ ()P | n[(M)'Q|R]|S] O err if —22(l(n),L(m),w)

In addition, we have structural rules that propagate effirors a process to its enclosing terms.
Finally, given a type environment, we say that is x -compatible if for allz € dom(x ), one
hast(x) = levelx (x)). If we assume thairr is a distinguished process, with no type, itis very
easy to verify that no system containing an occurrencerefcan be typed in our type system.
Absence of run time errors may now be stated as follows:

Theorem 2 (Soundness¥or everyx , P andx -compatiblel, if x - P : T, thenP [4, err.

4 Examples

In this section we consider several examples from the titegaon security and related issues,
and show how to handle them with Boxed Ambients.

Wrappers. As a solution for resource protection and access controligesarea networks,
Sewell and Vitek [SV00] propose to userappersto isolate potentially malicious programs.
Their framework is based on an extension of thealculus, known as thboxedr-calculus:
wrappersenable a programming style in which incoming code can bersddnto abox and its
interactions with the enclosing environment filtered bywhrapperthat only forwards legitimate
messages between the boxed program and its enclosing mmant via secured channels.

The paradigmatic example of that work can be rephrased isyntax as follows:

(va,b) (a[P]| (z)"(z)" | b]Q])
P and(@ are arbitrary processes encapsulated in ambients (“namezsbin [SV00] terminol-
ogy) with private namea andb, placed in parallel with a forwarder process from ambiend
ambientb. The configuration above is interesting whBrand () are distrusted processes since
ambient boundaries forbid them to interact directly, whhe restrictions ensure that the only
possible interaction with the environment is with the forder procesd(z)?(z)b. This is the
way for Boxeds to enforce a security policy that prevent¥ @ from leaking secrets t@ and
(i) P and@ from corrupting the environment. This holds true also in BdXAmbients. Besides
that, in Boxed Ambients we have the choice of other alteveatiFor example, to enforci (ve
can use military security and ensure a more general prapésye assign tos a security level
strictly greater than the level d@f then our type system statically ensures that there careot b
any unwanted access frofhto P. To enforce also (or only) the propertiy)(we can once more
rely on military (but also commercial) security, and assigrthe environment a security level
incomparable with the levels af andb. Then the two processes cannot access and corrupt the
resources of the environment.

Asynchronous CommunicationIn wide-area networks it is hardly reasonable to rely only on
synchronous communication (see [Car00] for discussiod [BR02] for experience with imple-
mentations). In [BCCO01], we show how to account for asynehus output in Boxed Ambients



and discuss the consequences of this choice. Besides bémeges, asynchronous communica-
tion results from introducing the following new reductiares

(asynch output (MY*P | n[Q] O P[n[(M)]Q]
(asynch output) n[(M)'P|Q] O (M) |n[P|Q]
to direct an output in the appropriate ambient. The enharfiexébility obtained using asyn-

chronous communications is paid by lesser security sineevm® loose the total mediation prin-
ciple. Consider the following two examples:

a[(z:W)'P[b[c[(M)"|Q]]] blal(z: W)'P] | c[(M)'Q]]
they both implement aovert channebetween ambients ande, since with asynchronous reduc-
tions, they evolve inta[ (z:W)"P | b[(M) | ¢c[Q]]] andb[ a[ (z:W)TP] | (M) | c[Q] ]
respectively. In both cases by a further reduction steprtitgienta gets hold of the messagé/)
without any mediation ob.

These kind of covert channels are two examples of securégdires that cannot be prevented
by the primitives of the calculus and it is where the use ofiggcpolicies comes to rescue. In
both cases it just suffices to assign to ambieatclearance strictly lower than that bto make
the read operation performed byllegal in both commercial and military security (since ibutd
be a read-up) and, as such, statically detected.

Firewalls We now look at the protocol for firewall crossing defined in [€35 and refined
in [LS00], and show how it can be defined with Boxed Ambientse Tdea of the protocol is to
let anAgentcross aFirewall by means of a shared kéy

Firewall = (vf)f[k[out f.(in £)*] | ...]1 Agent= a[in k.(z)out k.z.Q]

(vk)(Firewall | Agen) O (vk, f)f[...]1 | k[ Gn £)* | a[ (z)out k.z.Q] ]
0 (vk, Hf...1 | k[a[out kin £.Q] ]
0" WHfl.-- 1a[@Q]]

TheFirewall, with secret nam¢, sends out a pilot ambiehtto guide the agent inside. The name
k is a password that the agentmust know in order to enter (to acquire the path to) the firewal

Besides authenticating entering agents, the firewall mugeneral provide other security
guarantees. For example, the firewall administrator maytwarensure that processes inside
the firewall can access the resources of an entered agentpbtite converse. This can be en-
forced with commercial security, by the following type agshents:f : ¢Amb[E, F<'] and
k : kAmb[shh,shh], where E and F are appropriate types, ardandx are security levels
such thatx < ¢. To illustrate the effects of this type assignments, carsalgeneric agent
(whose definition may differ from that @gen) that wants to enter the firewall, and assume that
a : aAmb[G, H?)]. To cross the firewallg must comply with the protocol and therefore accept
write requests fronk. With commercial security, this is possible onlyif< x and this, by tran-
sitivity, implies thata: < ¢. Moreover, commercial security forbids low-level ambi(guch as
a) contained in high-level ambients (such gsto perform upward communications. But then,
a < ¢ impliesZ = shh. In summary, the type assignment enforcesufarsecurity level strictly
smaller than the level of, and the policy we choose ensures that the agents that beti@mewall
f cannot directly access to local resourced pas expected.

The protocol we just discussed depends on the assumptibthéhfirewall knows the name
of the entering agents. This is clearly unrealistic butfupately, easily remedied, as we show
next. In order to provide guarantees of commercial segitiy new protocol assumes that the
agent know two passwords; andks, to cross the firewall.

Firewall, = (vf)f [ k:[out £.(y:A)"2in f.AN)"(y)] | (y:4)"* P{y}]
Agent = a[inki. (kz[outa.{a)] | (z)out k1.Q)]



(vk, k") (Firewall, | Agent)

0% (ki k2, )f[ 1 | ki [(y:A) 2in fAN)(y) | k2[(a)] | o[ (2)out k1.Q] ]

0 whHflelQ] | P{a}]
Again, the protocol starts with the agenentering the pilot ambierit;. The ambient,, in turn,
reads fromk. the name of the agent, carries the agent inside the firewallcammunicate the
namea in order to let the firewall interact with the incoming agefihe messagéN)¥ is just
used for synchronization, to ensure that the ageakits the pilot ambienk, only afterk. is
back into the firewall. Note that the firewall may interactyonlith agents whose type is the one
used for the variablg. It would be nice to add to subtyping (and tuple?) polymaosphiother
forms of polymorphism (for example on the lines of the exai[AKPGO01]) so that to extend
the possible interactions with the incoming agents.

Trojan Horses In [BCO1] a type system that can statically detect Trojarshsiis defined. The
motivating example is the systemjin c.P] | b[in a.out a.ind.Q] | ¢c[R | d[ S]], where the
ambientd contains confidential data that should be made availablenttiemts running within
¢ but not to ambients that will enter. The question is whether should leta enter or not.
Apparentlya does not attempt to acceds nevertheless the move must be forbidden sibhice
can use it as a Trojan Horse to entexd then access

a[inc.P] | b[ina.outa.ind.Q] | c[R|d[S]] O° c¢[R]|a[P]|d[S|B[Q]]]
The attack is detected in [BCO1] by means of a type systentrds the behavior af, revealing
the move ob into a and hence a chance for the attack. In [BCO01] it is also shownthgerform
this verification even when runs in a possibly untyped context. Here we can obtain theesam
effect by setting the clearance dfto a level that is incomparable to any security level that is
defined outside:. As we hinted in the excursus in Section 3.1 this can be obthby using
security labels with limited scopgv? : L)(vd : {£}JAmb[E,shh])c[R| d[S]]. No matter
how and where the naméis communicated and whetheiis in a well typed-context or not, if
we impose commercial security only the processes that eady inside the ambienitan access
information contained in. Indeed to reproduce the initial configuratienmust communicate to
b the named. But, unlike what happens in Mobile Ambients, revealing iaene of an ambient
does not imply granting access to its resources.

5 Related work and conclusions

We have studied the problem of MAC security for Mobile Amtie(MA), and argued that the
calculus is not fully adequate to express security concefgsa solution, we have presented
Boxed Ambients (BA), whose primitives provide elegant atadural mechanisms of resource
access control. We conclude with discussion on related worecurity for calculi of mobility.

The Dr Calculus. In [HR0O0b] Hennessy and Riley discuss a type system for resqurotec-

tion in the Dx-calculus, a distributed variant afcalculus where processes are located, and may
migrate across locations. In-) communication occurs via named channels that are asedciat
with read/write capabilities: the type system controlg firacesses accessing a resource possess
the appropriate capability.

In our approach, instead, in order to classify an accessgas ¢ illegal, the type system
checks that the security levels of subject and object gatisfconstraints imposed by the security
policy for that access. A further difference is thatlinr the topology of locations is completely
flat, while in BA ambients may be nested at will: the interplastween the dynamic nesting
structure determined by moves, and the dynamic binding ®fpérent locatiort for upward
communication makes access control for BA more complex?Inthe type system for b is
extended to cope witpartially typed networksin which some of the agents (and/or locations)



are untyped, hence untrusted: type safety for such netwesdusires a form of dynamic type
checking. Plans for future work on BA include extensionsiglsimilar lines.

The Security Pi calculus. In [HR00a], Hennessy and Riely discuss sieeurityr-calculus a
variant of ther-calculus in which processes are syntactically defined asing at a given secu-
rity level, and whose type system ensures that low-levetgsses never gain access to high-level
resources. In BA, instead, we assume that clearances aifiepéy types, and the security level
associated to an ambient type represents the clearanceoofrces contained in that ambient, as
well as the clearance of the agent it implements. Besidesures protection, in [HR0Oa], the
authors also investigate non-interference, trying to jgle\guarantees against implicit informa-
tion flow from high levels to lower levels. To that end, theyeck that the clearance of values are
compatible with clearance of channels along which they\(#thges) are exchanged. Furthermore,
they show that a suitable notion of observational equivagmay teskis soundly captured by
the non-interference property checked by the type system.

We did not study these issues in detail (but $defor examples of information flow) in this
paper. In fact, in its current version, the type system ohlgoks the clearance of subjects against
the clearance of objects, disregarding the clearance ofahges. We believe that it is possible
to study BA in a similar way taking these issues into accoWe.leave this and the study of
information flow and non-interference as subject of futuceky

Typing of Mobility and Security for Mobile Ambients. Our type system is clearly re-
lated to other typing systems developed for Mobile AmbieligCG99] types guarantees ab-
sence of type confusion for communications. The type systehfCGG99] and [Zim0O0] pro-
vide control over ambients moves and opening. Furtherntbeejntroduction ofgroup names
[CGGO0] and the possibility of creating fresh group namés fexible ways to statically pre-
vent unwanted propagation of names. The powerful typeplise for Safe Ambients, presented
in [LS00], adds finer control over ambient interactions arelpnts allgrave interferences

All these approaches are orthogonal to the resource acoai®lcmechanisms we studied.
We believe that similar typing disciplines as well as the ofgroup names, can be adapted to
Boxed Ambients to obtain similar strong results. A paperandirectly related to ours is [DCS00],
where ambient types are associated with security levelsaiyswgimilar to ours. The difference
is that in [DCSO00], security checks are over opening and mowhile in our work we focus on
read and write operations.

A final mention goes to [BCO1], [NNHJ99] and [NNOO], where tohand data flow analy-
sis, rather than typing disciplines, are used to check #gqmoperties of Ambients.

Other Languages and Calculi. In the literature on language-based security, several pa-
pers deal with access control techniques and information favo examples are [DNFP99] and
[LR99]. In [DNFP99], authors take a similar approach to thilatlennessy and Riley, based on a
variant of Linda with multiple “tuple spaces”. In [LR99], k& and Rouaix focus on integrity of
typed applets via access control.

Acknowledgments. Thanks to Luca Cardelli for insightful comments and discussand
to the anonymous referees. The second author would likeatokttlaria Castagna for several
corrections she made on an early draft of the paper.
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