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Abstract. The issue of this work is how to type mobility, in the sense tha
tackle the problem of typing not only mobile agents but alseirt movement.
This yields higher-order types for agents. To that end we firevide a new
definition of the Seal Calculus that gets rid of existing seggtial features while
preserving the distinctive characteristics of the Seal@hothen we discuss the
use of interfaces to type agents and define the type systeenintdrpretation
induced by this type system is that interfaces describedat®n effectsrather
than, as it is customary, providegrvices We discuss at length the difference of
the two interpretations and justify our choice of the former

1 Introduction

In concurrent languages based on communication over clgitne customary to type both
channels and messages in order to assure that only appeopéasages will transit over channels
of a given type. When these languages are endowed agémtsand locations we also need
typing information about the agents that are moved aroueddbations. Hence, we have to
decide what is described by the type of an agent, and whetyfieds checked.

Our proposal is expressed in terms of a simplified versioh@8eal CalculusThe Seal Cal-
culus was defined in [19] as a set of primitives for a securguage of mobile agents to be used
to develop commercial distributed applications at the ©rdity of Geneva; these primitives con-
stitute the core of the JavaSeal language [18, 2]. It can hsidered a safety-oriented calculus.
From the Ambient Calculus [6], it borrows the idea that loas are places with a “boundary”,
which can only be crossed with some effort. In the Seal Ca;Woundaries can only be crossed
when two parties, one inside the boundary and the other aiseeyagree. Moreover, this move-
ment operation takes place over a support layer, conditute set of channels. Communication
takes place over channels too, as in4healculus [11], and the dangeroapenoperation of the
Ambient Calculus is not present.

In our proposal the type of an agent is a description of thaests that it may accept from its
enclosing environment. This is similar to an object typarirobject-oriented language; however,
we will show that the subtype relation goes “the other waynSu We will discuss this fact,
which means that, while an object type describes a subskésétviceghat an object offers, our
interface types describe a superset ofdffectsof an agent on its environment. We shall be more
precise about it later on, but for the time being the readeitemk of servicesas interactions that
must eventuallpccur and okffectsas the interactions thatay possiblyccur.

Our main results are the following ones. First, we define @&wof the Seal Calculus, which
retains its essential security-oriented features butnigpkd enough to be suited to foundational
studies. Then, in this context, we define a type system wherares able both to type mobile
agents and to “type their mobility”, i.e., to allow one to thee, for each location, the types of
the agents that can enter or exit it. This yields to the firstiaa as we know, higher order type
system for agent mobility.

The article is structured as follows. In Section 2 we definevaniant of the Seal Calculus. In
Section 3 we introduce the typed calculus and justify ouicd® In Section 4 we define the type
system, a sound and complete type-checking algorithm, andtate some relevant properties
they satisfy. In Section 5 we analyze our system and distiessluality ofeffectsvs. services



Section 6 describes an example that uses the key features oélaulus, while in Section 7 we
hint at how our work can be used to provide the an Java agenékerth a minimal type system.
A summary and directions for future work conclude the agticl

Related Work

Many works extend the basic type systemsfecalculus as described in [12, 15] giving more
informative types to processes. We comment those closesirtwork.

Yoshida and Hennessy propose in [20] a type system for a higjider w-calculus that can
be used to control the effects of migrating code on local renvhents. The type of a process
takes the form of an interface limiting the resources to Wliihias access, and the type at which
they may be used. In their type system both input and outmnrodls can appear in the interface,
appearing strictly more expressive than the system we gmpere, where input channels are
only considered. However, they do not allow active agents,obly pieces of code, to be sent
over a channel. When code is received it can be activatedjlppsfter parameter instantiation.
Besides, their type system limits the application of depaindtypes to the instantiation of param-
eters, resulting in the impossibility of giving an inforrivet type to processes in which an output
operation depends on an input one.

In [8] Hennessy and Riely definerd) a distributed variant of the-calculus where agents
are “located” (i.e., “named”) threads. The main differemgth respect to our work is that loca-
tions cannot be nested (that is, locations are not threadd)therefore mobility in [8] consist in
spawning passive code rather than migrating active agenif8] locations types have the form
loc{z1: Th,...zn: Ty} wherez;’s are channels belonging to the location (they are located r
sources and as suchrds much closer to the Seal Calculus as defined in [19], thang@¢rsion
we introduce here: see Footnote 2). These types are syratiictiery close to those we introduce
here for Seal but they have different use. Location typesjrfe intended both to describe the
effectsprovided by a location and to regulate access to them (thel asviewsin databases).
Thus they embrace an object-oriented perspective (latégiees are subtyped as record types)
without fully assuming it (interface descrileéfectsrather tharservices; the difference between
theeffectand theserviceperspectives is broadly discussed in Section 5).

Types for locations have been extensively studied in asefipapers [7, 5, 4] on the Ambient
Calculus. Seal Calculus differs from Ambient Calculus innmaspects: seals cannot be opened
(i.e. they boundaries cannot be dissolved), many chanrisls and moves are performedjec-
tively (i.e., agents are passively moved by their environmenterahansubjectively(i.e., agents
autonomously decide to move to a different location) —adogytb the terminology of [6]. From
this work’s viewpoint the prominent difference between Aerth and Seal Calculus is that the
former does not provide an explicit “physical” support foohility, while in the latter this support
is provided by channels. In other words while in Ambients itightake place on some unma-
terializedeetheraltransport medium, in Seal the medium is materialized by bk Therefore
the main novelty of this work is that not only we type locasdagents or seals), but we also type
mobility (more precisely, its support). In some sense weihice higher-order typing: while in
Ambient Calculus an agent can not discriminate which agesmsraverse its boundaries, this is
possible in our type system. For the same reason we can makéikerocation become immo-
bile, while this is not possible in the cited works on Ambi€&lculus. Moreover, the mobility
model of Ambient Calculus had to be extended with objectivees in [4], since the interac-
tion of subjective moves with thepenoperation tends to produce typings where every ambient
is typed as mobile. We show here that the mobility model ofl &dculus is free from this
problem.

! This is to solve the type dependency problem we describedtid®e4. 1.



2 Revising Untyped Seal Calculus

Seal Calculus is basicallyzacalculus extended withested hamed locatiorfdubbedseald and
mobility primitives. In Seal, interaction consists of syincnous communication of a value or
of a whole seal. Both forms of interaction take place over @drohannels. Thus, mobility is
obtained by communicating a seal on a channel. The existfreeparate locations constraints
the possible interactions: a channel can only allow intévas either among processes in the
same seal, or among processes in two seals that are in gightelationship.

Two basic security principles underlay the design of thd Sadculus: first, each seal must
be able to control all interactions of its children, bothiwihe outside world and one with the
other; second, each seal must have total control over itersgrace and therefore must determine
the names of its children.

Besides these two basic features the Seal Calculus defirj@ééllimcluded some other fea-
tures dictated by implementation issues. More precisedycticulus in [19] allowed seal dupli-
cation and destruction, and a strictly regulated accessnmte channets

In what follows we define a lighter version of Seal where sesdtion and destruction is not
possible and the access to remote channels is replaced yrisauction of shared channéls

The syntax of the language (parametric on an infinite seaaiesranged over by, v, z, y,
andz) is defined as follows:

Processes Actions L ocations
P:=0 inactivity a == z"(y) input n = * local
O P| P composition O z"(y) output O tup
a'p replication 0 z"y0Osend 0O z down

O (v x)P restriction O z"yOreceive
O a.P action
O z[P] seal

The first five process constructs have the same meaning asindalculus, namely: thé pro-
cess does nothing, the compositiBr @) denotes two processésand(@ running in parallel, the
replication P unleashes an unbounded number of copieB,ahe restrictionv ) P introduces
a new namer and limits its scope tdP (the scoping is lexical), and the prefix allows one to
construct complex processes using the base actiomsseal z[P] is the representation in the
syntax of a place named that is delimited by boundaries and where the computakicdiakes
place. The bare syntax of processes is the same as Ambienti@Gal

The basic computational steps in Seal esenmunicatiorand movementCommunications
(inputs/outputs on channels) are asricalculus with the only difference that channel names are
super-scripted by location denotations. These are eithart, or z, and denote respectively the
current seal (i.e. the seal where the action occurs), thenpaeal, and a child-seal namedrhus
an action onz* synchronizes only with local processas, means that: is a channel shared
between the current seal and the parent seal and that aotiohwill synchronize with processes
in the parent, and finally the shared channeladmits interactions between the current seal and
a child-seal named. These interactions are expressed by the first three rulegine 1.

Mobility is achieved in a similar way: seal bodies, ratheartmames, are moved over chan-
nels. It should be remarked that, contrary to input, rec&wveot a binding actiony is free in
z"yO A seal identified by its name is sent over a localized namedhiobl: the seal together

2In [19] channels are considered as resources. Each chaeloglgls to one and only one seal. Some syn-
tactic constructs allow the owner of a channel to regulateote accesses to it and, thus, to control both
remote communication and mobility.

8 A similar solution was independently proposed for a calswilithout agent mobility in [17].



z"(u). P|z"(v). Q O P{’/}| @ (write local)
w(u). P|y[z'(v). Q| K] O P{°f}|y[Q|B]  (write out)
T (v). Plyle’ (). Q| RO P|y[Q{*/} | R]  (writein)
O P|z°O Q | v[R] O Pl u[R]|Q (move local)
w0 P | y[Z'0O Q | w[R] | S] O P | u[R]|y[Q|S] (move out)
YO P | o[R] | y[z"0 Q| S0 P|y[Q]|S|u[R]] (move in)

Fig. 1. Reduction rules.

with its contents will disappear from the location of the dieg processes and will reappear in
the location of the receiving process. The receiving precas give a new name to the received
seal: seal names are seen as local pointers to the locatidriha actual name of a seal makes
no sense outside the current location. Thus the aatidy[Jsends the body of the seal named
y over the channet”, while 2" [yOwaits for a body on:” and reactivates it as a seal named
The precise semantics is given by the last three rules inr€ityu

As customary, reduction uses structural congruendhat is the smallest congruence that is
a commutative monoid with operation and unit0, and is closed for the following rules:

IP=IP|P (vz)0=0 (vz)(P|Q)=P|(vz)Q forz ¢f(P)
(wa)(vy)P = (vy)(vz)P (v 2)y[P] = y[(v )P forz # y
The reduction semantics is completed by standard rulesofttegt and congruence:
POQ = (P|R)O (Q|R) POQ = (vo)PO (va)Q
POQ = u[P]0O u[Q] P=P APOQ ANQ =Q = POQ

3 Typing Moability

In the introduction we anticipated that our solution foritygpmobility was to type the transport
media of mobility, that is, channels. We follow the standardalculus solution to type channels:
a channel named has typech V if V is the type of thevaluesallowed to transit ovez. We saw
that in Seal channels are used both for communication (irchvbase they transpomiessages
i.e., base values, or names) and mobility (in which case titaggportagentsi.e., seal bodies).

It is easy to type base values (in this work the only base gakeconsider are synchroniza-
tion messages typed Isgh) and we just saw how to type channel names. So to défime still
have to define the typd of agents and, consequently, the tyjdeA of names denoting agents of
type (more precisely, of interface).

3.1 Intuition about interfaces

Seals are named agents. The idea is to type them by descabingeractions a seal may have
with the surrounding environment. We know that such intéoas have to take place over the
channels that cross the seal boundary. Thus these charamg#dlyp specify the interaction pro-
tocol of an agent. Keeping track of the set of upward comnatitos (that is, communications
with the parent) that a seal may establish can be staticaliigaed by keeping track of the chan-
nels that would be employed: this gives rise to a notion affate of an agent as a setugfward
channeld(i.e., characterized by locations). Actually not all the upward channels are irgéng
for describing the interaction protocol of a seal. Thosest is listening on suffice:

Theinterfaceof a seal is the set of upward channels that the process loctile seal

may be listening on, with the type expected from interast@mmthem.
We will discuss this choice later on (see Sections 4.1 andif&r the moment, to see why such
a definition is sensible we can consider as an example a nad/onachine. For the outer world
the interface of such a machine —the description of how it ssfide to interact with it— is given



by the set of ports on which a deemon is listening, togethdn ti¢ type of messages that will
be accepted on them. So the interface of a machine can béleebas a set of pairpért:typd.

For example in our system a typical ftp and mail server wodatharacterized by a type of the
following form [21:ftp; 23:telnet; 79:finger; 110:pop3; 143:imap; ...]. Similarly, if you
consider a seal as an object, then a process contained at listiens on a upward channél can

be assimilated to a method associated with a messadgeother words the sending of a message
m With argumentv to an object: (that is,x. n{v) in Java syntax) can be modeled in Seal by
the actionm” (v), which would be allowed, in our type system, by a paiM in the type of the
sealz.

Hence, we consider interfaces suchasShh; z2:Ch V; z3:A; x4:1d A] that characterizes
agents that may: 1) synchronize with an input operation erugpward channet;; 2) read over
x2 a channel name of typgh V' (the name of a channel that transports messages ofifyp8)
receive over:; a seal whose interface i$; 4) read over:4 a seal name of typed A. Itis impor-
tant to stress the difference between what can be transhutterz; andz4, respectively seals
and seal names: the former requires mobility primitives, lttiter communication primitives.

3.2 Syntax
The syntax of the types is reported in the following table.

Types Annotations
V=M messages Z = mobile
O A agents Y immobile
M essage Types I nterfaces
M ::= Shh silent A o= [z1:Vh;- - 520:V,]  agents

O chV channel names
0 1d%A agent names

There are four syntactic categories in the type syntaxM, Z, and A respectively denoting
types, message types, mobility annotations and agentielprevious section we informally
described three of them, omitting annotations. Let us sem @l in more detail:

V. TypesV classifyvalues that is computational entities that can be sent over a éiawthile
in w-calculus values are just channel names, in Seal we haverbetisages (classified by
message type&/) —which includes base values, channel names and agent naare$-seals
(more precisely seal’s bodies, classified by interfadgs

M: Message typed/ classifymessageshat is entities that can lmmmunicatedsent by an
i/o operation) over channels. A message can be either a gymizhtion message (without any
content) of typeshh, or a name. In the syntax there is no distinction betweenradammes
and seal names. This distinction is done at the type level:i€h V, thenz is the name of a
channel that transports values of tyigeif z : I1d”?A, thenz is the name of a seal with interface
A and with mobility attributeZ.

Z: On the lines of [4] we use mobility attributes to specifyratntal mobility properties of
seals: a~ attribute characterizes a mobile seal, whilg attribute characterizes an immobile
one. Being able to discriminate between mobile and immaglents is one of the simplest
properties related to mobility. Contrary to what happen§4in adding this feature does not
require any syntax modification for Seal.

A: InterfacesA classify theagentsof the calculus, keeping track of their interface. The riotat

[x1:V1;--- ;2,:V4] is used to record the information about the interface of aenagit is
syntactic sugar for a set of paichannelname: type that represent a functional relation. If



a process has this interface, then it can be enclosed in am agé the same interface, that
is whose name has tyf@?[z1:V1; - - - ; z,:V,]. This agent may listen from the upward level
only on channels, ... ,z,.

The introduction of types requires a minimal modificatiorttie syntax of the untyped calculus
of Section 2. We have to add (message) type annotations twthéinders of the language:
(v x:M) andz"(y: M), and to redefine free namésas follows.

fn(z) = {z} fn((v z:M)P) = (fn(P) \ {z}) U fn(M) fn(1) = fn(x) = fn(Shh) =
fn(z" (y:M).P) = (fn(P) \ {y}) UTn(M) U fn(n) U {z} fn(Id A) = fn(A)
fn([z1:Vh;. . 520 Va]) = {z1,. ..,z P UM(V) U - UN(V,) fn(Ch V) = fin(V)
The rule of structural congruence that swaps binders has thanged too

(ve:M)vyM)P=(wvyM)veM)P forzgin(M)Aygi(M)Az#y
The reduction rules as well as the other rules and definigmasinchanged.

4 The Type System

In this section we define the type system we informally désctiin the previous section. How-
ever, before that, we need to add a last ingredient in ordde#&b with the technical problem of
type dependencies.

4.1 Typedependencies

The notion of interface introduces names of the calculubatype level. Since names are first
order terms, type dependencies may arise. Consider foreatme following terms.

P' = " (y:Ch M).y" (2:M) P=z"(w)| P
P’ offers upwards input on channgl Hence, a naive syntax based analysis would assaEiate
and P with the interfacdy: M, producing the following typing judgment:
z:Ch(Ch M), y:Ch M , w:Ch M + P : [y:M].

However, the procesB may perform an internal reduction on the channgand then it would
offer upwards input on channel, hence changing its interface type:

T (w) | 2" (y:ch M).y" (M) O w'(z:M)
N . N ,
[y:M] [w:M]

This is the recurrent problem when trying to define non-#dighannel-based types for processes:
to solve it one may consider using dependent types and dphtidy with types that change
during computation. Dependent types work fine for calculevehthe notion of interaction is syn-
tactically well-determined, as ik-calculus. Unfortunately in process calculi, where intgin

is a consequence of parallel composition (which admitdranyi rearrangements of sub-terms),
all the tries are somewhat unsatisfactory: they are usuadljricted to a subset of the calculus,
allowing dependent types only in particular, well-deterad constructions [20].

Following a suggestion of Davide Sangiorgi, we decide taltbss input action on names
bound by an input action. In this way interfaces cannot chahgring reduction: for example
the process above is not well-typed, sincgis first bound by an input om and then used to
perform an input front.

To make the type system uniform, we impose this conditionIbtha input operation, not
only on the input operations fromry which are the only ones determining the interface.

There is no harm in doing that since this restriction doeslingt the expressive power of
the calculus: besides being theoretically well studie@ §se example [10]), nearly all program-



ming languages based ancalculus impose this constraint, while programs writtenoncurrent
languages that do not, mostly seem to obey to the same aamditi

4.2 Typingrules
Judgments have the forii F= &, whereS is eithero, or V, orz: M, or P: A. The pairl’, £
will be referred to asyping environmerdnd the judgments have the following standard meaning:

I'kF=zo well-formed environment r'k=Vv well-formed type
I'+=z z:M  x has message typd I'k=z P: A P hasinterfaced

I' is a function (actually, an ordered list) that assigns typpasames. At the same time, we need
some machinery to enforce the restriction on input chanmnelgdescribed above, that is, that
only namesiotbound by an input action (i.e., names introduced/pware used to perform input
operations. Thus we use the set of narBe® record thev-introduced names:

I':=o 0IxM Sr=2 UE«x

The typing and subtyping rules are:

[
(Env Empty ) (Env Add) (Env Add Xi)

I'r=M _ k=M
Gty o rzMbFzo " ¢ dom(I’, =) TzMbF=,o0 ¢ dom(I’)
(Typeshh) (Typeld) (Typech) (Type Interface)
I'kF=zo 'z A I'F=Vv I'k=zo Yiel.n 'tz z;:Ch V; z;€dom(=)
r |—5 Shh r "E IdZA r |—5 Ch V I "5 [.711:‘/'17 .. ,TnVn]
(Var) (Dead) (Par) (Bang)

FI—EO F|_5<> F'_E.PliA F'_E.leA F"EPA
Fl—gxl"(z) F"EO[] F"EP1|P2A Fl—ElPA
(Res) (Seal)

NeMbFz, P: A I'tzz:1d%A TI'h+=P:A

- - fn(A = =

Tr=@wap. 4 “¢MA Trz 2P| ]

(Output Local)

I'F=z:Ch M 'r=y:M TI'FzP:A
I't=z*(y).P: A

(Input Local)

I'F=xz:Ch M 'yMF=zP: A

I'tzaz*(y:M).P:A

(Output Up)

I'F=xz:Ch M 'tzy: M I'F=P: A
'=z"(y).P: A

x € dom(Z)

(Input Up)
I'kF=zx:Ch M ''yMF=zP: A

'tz a™(y:M).P: (A& [z:M])
(Output Down)
I'bz z: 1d%4' I'kFy: M I'F=P: A
Tr=z(y).P: A

x € dom(Z)

(z:M) € A’



(Input Down)
I'bz z: 1d%4' I'kF=xz:Ch M 'yMF=zP: A

Trza(y:M).P: A T e doms)
(Rev Local)
- . = : Z = : !
Prezichd Prey:I&d IrEsP:A o yoms)
Ttz 2*y0OP : A’
(Snd Local)
I'rsz:ChA Trsy:1d"A T'FsP: A
r'r=z*kh0OP : A’
(Rcv Up)
- . = : Z = : !
Prezichd Prey:I&d PrEsP:A o yome)

I'k=z 2"YOP : (A’ @ [2:4])
(Snd Up)
Fl—gﬁlchA Fl—gyZIdmA F"EPZA’
Ib=z'QOoP: A’

(Rcv Down)
Fl—gz:IdZIA' I'F=x:ChA Fl—gy:IdZA k= P: A"

redom =
I'kzz2y0OP: A" mE)

(Snd Down)
—_ . Z = . ~ = . D
F";Z.IdAl Fl:fyIdA Fl‘:PAg (.TZA)EAl
r+=z*y0pP: A
(Subsumption) (Sub Interface)
'~=P:A TFkz A A<A ACA
'tz P: A A< A

We discuss the most important rules:

(Env Add _): Itis possible to add names with their typesfpand also ta= (rule (Res)),
provided that they are not already In Notice that dort=) C dom(I") holds for well-formed
environments.

(Type Interface): An interface type is well-formed if every name in it has beeavipusly
declared with the correct type and appearsir(i.e., it is not bound by an input action). The
premisel’ = o ensures the well formation of the type environment for theecaf the empty
interface.

(Res): Particular attention must be paid to restrictions of chanaees, as channels may occur

in the interface. A first idea could be to erase the newly
restricted name from the interface as in the rule aside,(WronlgiéghC‘? L. P4

but this rule is not sound with respect to the structural
congruence relation: ifyou consider the processes ! "= (W ZCh V)P (A —[z:V])
(v y:1d”[])y[(v 2:Ch Shh)zT()] and(v y:1d”[]) (v x:Ch Shh)y [z ()] they are structurally equiv-
alent, but while the former would be well-typed, the latteruld not.

Therefore we rather use tH&es)rule that imposes that a restricted name can not appear
in the interface of the process (see also comments rightbBloperty 1 Section 4.4). As all




the names must be declarediin it may seem that this condition forces all the interfacebdo
empty. But note that this restriction applies only to pracieserfaces not to seal identifiers. The
reader must avoid confusion between the narméhich has typad”A (whereA may be a very
complex interface) and the procesg’] which, as stated by the rul&éa), has type]. What
is necessary is that the type &f (rather than the one of[P]) has interfaced. That is, that
the processP inside a seak[P] respects the interface declared for its namé herefore the
side condition of Reg simply demands that the upward channels: @fre not restricted inside
a[P]. In other words, a channel appearing in an interface musiréady known to the enclosing
environment. This is a very desirable feature of the typaesysthe interface’s names must be
somewhat public.

A brief example can clarify what “somewhat” means. Consither following two terms in
the light of the(Res)rule, and notice that they are structurally equivalent:

1) y[(v 2:Ch Shh) 2" ()] 2) (vz:Ch Shh)y[z"()]

Clearly, the first is not well-typed, since the process iaside seal should offer a restricted
channel in the interface, and this is forbidden by (Res)rule. Interestingly, the latter is not
well-typed either: the type of the namyeshould include the channelin the interface, buy is
defined out of the scope af; therefore process in the scope of the restriction couldyped
only under a context in which is declared twice, which is impossible (see Property 1(c) in
Section 4.4). The correct term & x:Ch Shh)(v y:1d [2:Shh]) y[z"()] in which the channet
is declarecbeforethe sealy. Briefly, a name that is used by a seal to read from its enviemmim
must already exist in the environment where the seal is detla

In terms of the examples in Section 3.1, this means that welealare that a machinehas
interface[23 : telnef only if the channel name@3 and the typdelnetare both already known
(that is, declared) in the environment.

(Input _): All the rules for typing a process of the form P follow a common pattern: this is
especially true if we consider input and output rules sepra

The actionz” (y:M).P bindsy in P. Thusy must be added to the environment®f pro-
vided that its type matches the type ©f y is not added ta= since it is bound by an input
operation. Because we are doing an input, we also have t& thatr is av-introduced name,
that isx € dom(Z). In (Input Local) the input operation is local and nothing more has to be
done. In(Input Down)we also check that the name of the seal from which the procaagsvo
read is declared ifi". In (Input Up)the input is fromt, therefore the channel the process wants to
read from must be added to the interface already deduceH.fdhis is done by theb operator,
which computes the union of two interfaces, but is not defimbdn the result would contain two
different pairsy: M andy: M’ with the same namg but differentM, M.

(Output _): Inthe case of local and upward output actions the r(@rgput Localjand(Output
Up) check that the types of the channel and of the argument ma&iteh rule (Output Down)
furthermore checks that the channel appears in the ineedhthe target seal with the right type.
This enforces the interpretation of the interfaces: a @samn write inside a seal only if the
processes local to the seal are possibly going to read it.

(Rev _): The typing rules for mobility actions do not differ from thespective communication
actions. The main point is that in a receive operation theahjame is not bound, so it is not
added to the names in the scope of the continu&tRemark that in order to send a seal on a chan-
nel, it must be declared to be mobile (attributd. In the Seal’s model of mobility, when a seal is
received it gets a name chosen by the receiver process. Whisiseature, together with the fact

4 This is due to the specificity of the receive action: when &ise&ceived it is activated at the same level
as the process that received it. The movement actions |kekriteractions in the Fusion Calculus [14].



that the mobility attribute is tied to seals names, to turnadbite seal into an immobile one. For
instance(v z:Ch A)(v a:1d™A) (v b:1d%A) Z* 0| 2" 0| «[P] O (v b:1d%A) b[P] turns
the mobile seal named into an immobile seal namdd(the opposite is also possible). This is
achieved by imposing no constraints on the mobility attetnf the receiving name in the receive
typing rule. Neither this nor the opposite is possible in [4]

(Subtyping) During reductions, actions can be consumed. Consider fample the process
P = z"(y:M).z"(y). It is ready to input a name of typ& on channel: and its type is
[z:M]. Now place it in the context#’[—] = Z°%(w) | a[—] and consider the type d? and of its

reductum: ().Q | alz' (M) ()] O Qa7 (w)]
[2:M] [

To satisfy the subject reduction property we introduce ayqibg relation. We already discussed
that the interface of a process should be regarded as théd®rmels on which the procesgy
perform input operations frorh. This suggests that the addition of new channels in thefater
of a process should not be considered as an error, since thashannels on which interaction
will never take place. This is formalized by the subtypingdio defined in thgSub Interface)
rule, that allows channels to be added to the interface obegss.

This possibility of extending the interface is limited t@tprocess types, and is not extended
to seal interfaces. The interface of a seal is associatdditgsiname and is immutable, hence it
characterizes forever the range of interactions admitjetthat seal. At the same time, subsump-
tion allows a process with a smaller interface to be placsilathe seal. This is essential, since
the more limited interface may be a consequence, as in thépeeexample, of the “consump-
tion” of some actions. In this way, actions can get consumsidé a seal, while the seal preserves
its crystallized interface.

4.3 Typing algorithm

The type rules in the previous section just need some sligitifimation to be converted into a
type algorithm. As usual in type systems with subtyping, wesheliminate the subsumption rule
by embedding subtyping in the other rules. Actually theeeanly two rules that need modifica-
tions. The first is théPar) rule: in order to type-checl: | P in the environmenf’, = both P,
and P, are checked resulting respectively in the two tygesand A». If the process; | P> can
perform an input at then eitherP; or P, must be able to perform it, and so it has been registered
in one of A; and A». Thus we have to merge the type informations keptlinand A-, and this
is achieved by means of the operator.

The second rule we need to modify is tf&eal)rule, to take into account that the interface
of the process inside a seal may be a subtype of the interfsoeiated with the seal name.

(Par Algo) (Seal Algo)
I'>=s P A I'>=P,: A I'>bzxz:I1dA TI'>=P: A W< A
I'>zP |P: At A 'z z[P]:[] -

4.4 Properties
The typing algorithm defined above is sound and complete rgitpect to the type system.

Theorem 1 (Soundnessand completeness).
1. fI'b=P: AthenI' k= P : A.
2. fI'F= P: AthendA' suchthatd’ < AandI'>=z P: A'.

A corollary of this theorem is the minimality of the algorittic type:

Corollary 1. I'>= P : min{A | I' F= P : A}, if the set is not empty.



In order to prove the subject reduction property we need a&tgubion lemma that states that
substituting names for names of the same type in well-typeds yields well-typed terms. This
would fail if we allowed names that appear in interfaces tablestituted, hence we have to add
a conditionz ¢ dom(Z) in the theorem hypothesis. This restriction is not a problsimce, as
formalized by the management &fin the (Input ) rules, interactions can only substitute names
that do not appear in doff).

Thanks to Theorem 1, the substitution lemma can be statedtljiron the type algorithm
rather than on the type system.

Lemmal If[z:M>=P: Az ¢domZ),andl’ >=y: M, thenl’ >= P{¥/.}: A.

This lemma is used to prove the subject reduction propertytfe algorithmic system whence
subject reduction for the type system can be straightfaiyaterived:

Theorem 2 (Subject Reduction). If I'>= P: AandP 0O Q thenI'>= Q : A.

Besides the characteristics discussed in Section 4.2 teweral subtleties hidden in the type
system that make subject reduction hold while keeping tlesmelatively simple. Among these
it is noteworthy to remark that the provability of a judgmdntt-= < implies the following
properties:

Property 1. If I' = S si provable then:
a. I, = are well formed (i.e.]" F= ¢ is provable);
b. dom &) C dom(I');
c. each variable has at most one type assignmefit in

These three properties allowed us to omit several sensiloldittons from the typing rules since
they are implicitly satisfied. So for example in the (Reskritlis useless to require that ¢
dom(=) since this already holds by the well-formation of the erviment. Indeed”, x: M += .

o implies thatr ¢ dom(I, =). Even more[’, z:M t= , o implies thatz does not occur id”,
since by constructiod” is an ordered list; this rules out envirements sucly:ag[z:M'], z: M.
Similarly, in all the rules (Input) it always holds thay does not occur i”". This implies that
y ¢ dom(Z) since otherwisd t/= ¢ which contradicts thaf’ -= z : Ch M is provable.

5 Servicesvs. Effects

In the introduction we hinted at two possible interpretasi@f agent interfaces. Interfaces may
describe eitheservicesthat is the interactions thatust eventuallpccur, oreffects that is the
interactions thaiay possiblyccur.

The former interpretation is the one that characterizesythe systems for object-oriented
languages, while the latter is the one of our system. Indsepgerficially our interfaces look
like the types of the objects in the “objects as records” @yl just an array of methods one
can invoke (in fact, the analogy between agents and objsatstia piece of news). However,
there is an important difference. In the object framewodgding a message should result in a
method being activated: the type of an object reports thefssiessages the object will answer
to. We can say that the interface of an object characterieesetrviceshat the object offers to its
environment.

According to our definition, a channel that appears in therfate of an agent (a seal) does
not guarantee that interaction on this channel is alwaysgym happen (indeed the channel may
be guarded or already be consumed by a previous action). & precise intuition of our system

5 The first property follows by straightforward induction wdebase are the rules (Typah), (Var), and
(Dead). The other two are equally straightforward.



is that an interface limits theffectsthat the agent can have on the environment: if an interaction
occurs, it occurs on a channel defined in the interface andmother channels.

There is a clear tension between the two interpretationsiratiis paper we opted for the
second one. The reason for such a choice resides in the &et-ttalculus channels are essen-
tially consumable resources. One of the clearest lessorgrave from this work is that there is
an inherent difference between requiring a service (sucteading a message) and writing on
a channel: the former does not affect the set of admissilbdedations, while the latter does (by
consuming a channel).

This tension is manifest at the level of subtyping: in

case of effects the “may-provide” interpretation is embod- (effects) (services)
ied by a subtyping relation typical @ariant typeswhile in ACA A CA
the case of services, we recover the classical record types A < A’ A< A

relation that characterizes objects and their “must-mteVi
interpretation, as expressed by the rules on the side.

Our analysis clearly shows that the two approaches are iheclusive, and that either
one or the other has to be adopted according to the “conslitgabf the communication layer.

In our system it is possible to recover the object/servi¢esacteristics by imposing restric-
tions to ensur@eceptivenes§l6] of channels in the interfalewhich roughly corresponds to
make all the external interactions of an agent unconsumahlke intuition is that in this way we
transform interface channels into (object) methods. Réeapess can be ensured by imposing
restrictions such as those presented in [1] or, in a coapg@oach, by requiring that all receive
and input actions on upper channels are guarded by replistthat is they must all be of the
form !z (y).P and &"yOP. In the latter case some simple modifications to our typeesyst
allow us to recover the service interpretation togethehwts (services) subtyping rule. It just
suffices to straightforwardly modify the typing rules (Infudp) and (Rcv Up) to account for the
new syntax, and the results of the previous section brirtfp fétowever we decided to follow the
other approach since the presence of concurrency does sureethat services will be eventually
satisfied. Indeed, even if the remote interactions areaafg@d they may still be guarded. There-
fore a complete treatment would require further restritgion these interactions bringing us too
far from our original subject. Nevertheless we believe thath a direction is worth exploring.

6 Example: aweb crawler

In this section we give a simple example that uses mobilighér-order types, and parametric
write channels. Chapter 5 of [21] contains a much more coxgi@mple we did not include
here for lack of space: in that example the toy distributedjleage introduced in [4] to show the
expressivity of typed ambients is encoded in the Seal aagougrsion presented here.

In order to show a possible application of higher order tgpamd mobility attributes, we
suggest the specification of a possitleb crawlingprotocol. Currently, most commercial web
search engines periodically access all the web pages thaeachable by some starting pages
and index them in a database. Web searches access the datalastrieve relevant entries.

This technique is a greed bandwidth consumer. It may bedstieig to define an alterna-
tive protocol where mobile agents are spawned over the web, sihere they collect and pre-
elaborate the relevant information, so that the computatieffort is distributed, and bandwidth
consumption is dramatically reduced.

The Seal specification of this protocol is depicted in Figtireshere top level represents the
network and hosts are immobile seals that lie inside it; tzesvare modeled by mobile seals,
being able to navigate among hosts.

6 An alternative solution is to use the object framework bigite up with the “must provide” interpretation.



SysTEM = HOME ONETSUPPORTO WebSite 1[WEBSITE] O0... OWebSite.n[WEBSITE]

CRAWLER(start) = cd' (start).
repeat ( in'(info:info) . <PROCESSNFO> .
if nextDest then cd (nextDest)el se resulf (k:Ch info).k' (crawledinfg )

HoME = craw[CRAWLER(WebSite_ 1)] O... Ocraw[CRAWLER(WebSiten)] O
repeat ( (v k:Ch info) resulf " (k).k"® (crawledInfoinfo). < STORECRAWLEDINFO> )

—Craw

WEBSITE = 437" [erawdin™ " (info). 437" [traw0 < OTHERSERVICES>

NETSUPPORT=r epeat ( (v z:Ch craw)
(7" Ceraw(T (v c:Id " craw) = [E0cd®(desthostName 437°** e 04379 TrawD) )

Fig. 2. A web crawler protocol

HoMmE, which is a process that lives at the network level, spawnmawler for each root web
site. The crawler will go away and come back, to tetbte about its findings, as we will see
later.

CRAWLER communicates on channel “cd” (“crawler destination”) ttaeme of the first site
it wants to visif. This information is received by BrSupporTWhich first renames the crawler
with a fresh name; this renaming is performed by sending the crawler alonddhel channel
z. Then, NETSUPPORTsends the crawler to the requested destination, via thelpdrtOnce the
crawler is in the site, it reads the information via the pant’;'and is sent out of VEBSITE along
channel 437. The crawler processes the information (whiferates a list of other possible
destinations), then checks whether it has to visit moressifat does not, it uses the channel
“result” to ask HOME for a secure channél and sends the result on it.

HoME sends the secure channel naknalong the resuft?” channel, reads the collected
information fromk, and stores it.

A generic WEBSITE must have a deemon that is ready to receive crawlers ordparand,
after having provided them with information on channel jisends them out via the pott3
again.

The interface that characterizes a crawleciaw = [in: info ; result ch (info)]. All the
crawlers in the toplevel have the namraw, of typeId™[in: info; result Ch (info)]. The other
relevant interface in the example is the one of the hosts:thiigher-order type, since it contains
the interfacecraw, i.e. it specifies the protocol of the agents it is willing tzapt. This interface
has the following formi437 : craw ; < OTHERPORTS >]. Since hosts are immobile, they are
denoted by names whose typéhisstName= 1d*]437 : craw; < OTHERPORTS >].

7 Practical Applications

In order to show the potential of our type system we hint at fitovan be used to provide the
JavaSeal Agent Kernel [2, 18] with a minimal type systema3aal is an experimental platform
that provides several abstractions for constructing necagent systems in Java. JavaSeal uses
relatively coarse grained types; in particular, objectshexged during interaction are encapsu-
lated inCapsul es. Capsules are the only entities liable to be sent over chianfiee contents
of a capsule are widening to the generic tfjig ect thus loosing all static information. Further-
more, the system does not distinguish between channel ahilsatifiers as both are denoted

Ty epeat is syntactic sugar fol andi f _t hen_el se can be easily encoded. We use italics for types,
roman font for channels, small capitals for metavariatéesi boldface font for seal names.



by objects of the clagdane. In other words, JavaSeal does little type checking and whlaes
is mostly performed at run time through dynamic type cadtés Mmeans that JavaSeal agents are
prone to errors.

In particular, each object exchanged during interactioanisapsulated with typ€bj ect
into aCapsul e, being capsules the only entities liable to be sent overmdianAlso there is
not a clear distinction between channels and seal ideistifiece they are generically classified
by the clasfNane. In other words JavaSeal type checking is rather weak sirioeaivily relies
on the use of dynamic type casts, and as such it is quite poosredrs.

JavaSeal is based on the primitives of the original Sealitac Therefore it does not provide
shared channels: channels are localized and access tostgranied via portals opening oper-
ations. More precisely this signifies that for example a deaml output operation on channel
z¥ synchronizes only with local input operation orin the sealy, and that the interaction needs
presence iy of an explicit permissionpen ,z that authorizes the parent to use the local channel
x. That is the (write in) becomes the following three partieduction rule:

7'(v). P | y[z*(u). Q |openz |R] O P|y[Q{"/u}|R] (write in)
It is quite straightforward to adapt our interfaces typedomated channels and portals: recall
that interfaces trace all the channels on which there is fornmation flow from the parent to
the child. Therefore the interface of a (Java)Seal agent oargain all channels the agent may
perform input on and that (a) either are located in the p&it®ndr are local and have a matching
upward portal open operations.

Our proposal is then to endow the actual JavaSeal syntaxsaitte type informations that
will be processed by a preprocess to type-check the souncetheen will be erased yielding a
standard JavaSeal program. In order to enhance readabdityrite the information that are to
be erased by the preprocessor in boldface. More partigweel propose to add the following
(preprocessor) types:

NaneCh[ T] itis used to classify channabmeqit corresponds t@h T'). The type parf 7] is
optional (its absence means that the content of the chaneslmbt need to be checked)

NameSeal] A] itis used to classify seal names (it correspondsdtod). Both the immobility
attribute” and the interface paftA] are optional (the absence aforresponding t6*, and
the one of the interface meaning that outputs towards tHelsa#ot need to be checked).

In order to have backward compatibility and let the progranmiecide how fine-grained the
preprocessor analysis should be, we order the newly intedlitypes according to the subtyping
relation described by the diagram below. Nane

Thus theNane type that in the current
JavaSeal implementation identifies all names, / \
will be refined by separating channel names
from agent names. Agent names will allow a
second refinement by specifying their inter- T / \
faces or its mobility attribute. A similar spe-
cialization is possible by specifying or nottidaneCh[ 7] NaneSeal NaneSeal[ A]

content of the channel.
The idea is that the programmer is free
to decide whether the preprocessor has just to NameSeal] A

check that, say, the name used to denote a
channel is indeed a channel name, or also match the typeaafritent. Similarly the programmer

may force the check of downward write operations, or justinegthat they are directed to some

named seal. The more the leaves of the hierarchy are useddtteetine check will be complete.
Thus theNan® type that in the current JavaSeal implementation identfilasames, will be

refined by separating channel names from agent names. Ageraswill allow a second refine-



ment by specifying their interfaces or its mobility attribuA similar specialization is possible
by specifying or not the content of the channel.

The idea is that the programmer is free to decide whetherrgrpcessor has just to check
that, say, the name used to denote a channel is indeed a thanme or also match the type of
its content. Similarly the programmer may force the checdlafinward write operations, or just
require that they are directed to some named seal. The meledkes of the hierarchy are used
the more the check will be complete.

This system is particularly interesting when it is used injoaction with parametric classes
such as they are defined for example in Pizza [13]. SdCdesul e andChannel classes of
JavaSeal could be rewritten as follows

final class Capsul e<X> inplenents Serializable {
Capsul e( X obj);
final X open();

}

final class Channel <X> {
static void send(NaneCh[X] chan, NanmeSeal seal, Capsul e<X> caps);
static Capsul e<X> recei ve(NaneCh[X] chan, NanmeSeal seal);

}

Itis interesting to notice that after preprocessing, bylgipg the Pizza homogeneous translation
of [13] to all non-erased occurrences of the type variabites @covers the original interface of
JavaSeal:

final class Capsule inplements Serializable {
Capsul e( Cbj ect obj);
final Object open();

}

final class Channel {
static void send(Nanme chan, Name seal, Capsul e caps);
static Capsul e recei ve(Nane chan, Name seal);

}

8 Conclusion

In this work we presented a new definition of the Seal Calctlas gets rid of existing inessen-
tial aspects while preserving the distinctive featureshef $eal model. We used it to tackle the
problem of typing not only mobile agents but also their moeetmso that the latter can be con-
trolled and regulated. The solution we used, typed chanien old one —it is standard in
m-calculus— but its use for typing mobility is new, and resitiitto a higher order type systems
for agents (as [20] is a higher order type system for pros#e the same time, we designed
our type system so that it induces an interpretation of faters as effects and we discussed its
distinctive features.

This work is just a starting point and for some aspects itiiswstsatisfactory. For example
more work is needed to define a type system that captures dhe peculiar security character-
istics of the Seal Calculus, that is the name-spaces saparat the actual version if two agents
residing in different locations have the same name, theyie system forces them to have the
same type too.

At the same time this work already constitutes an excitirggfptm whence further investi-
gation can be started. In particular we are planning to useeform of grouping similar to those



in [5, 3] for a different solution to the problem of type depencies, as well as to investigate a
distributed version of the type system, on the lines of [Bjvduld also be interesting to verify
what thesingle threaded typemtroduced in [9] for the Ambient Calculus with co-actiomsould
bring forth in the Seal Calculus, where co-actions are iehty present.
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