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Abstract. The issue of this work is how to type mobility, in the sense that we
tackle the problem of typing not only mobile agents but also their movement.
This yields higher-order types for agents. To that end we first provide a new
definition of the Seal Calculus that gets rid of existing inessential features while
preserving the distinctive characteristics of the Seal model. Then we discuss the
use of interfaces to type agents and define the type system. The interpretation
induced by this type system is that interfaces describe interactioneffectsrather
than, as it is customary, providedservices. We discuss at length the difference of
the two interpretations and justify our choice of the former.
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1 Introduction

In concurrent languages based on communication over channels it is customary to type both
channels and messages in order to assure that only appropriate messages will transit over channels
of a given type. When these languages are endowed withagentsand locations, we also need
typing information about the agents that are moved around the locations. Hence, we have to
decide what is described by the type of an agent, and when thistype is checked.

Our proposal is expressed in terms of a simplified version of theSeal Calculus. The Seal Cal-
culus was defined in [19] as a set of primitives for a secure language of mobile agents to be used
to develop commercial distributed applications at the University of Geneva; these primitives con-
stitute the core of the JavaSeal language [18, 2]. It can be considered a safety-oriented calculus.
From the Ambient Calculus [6], it borrows the idea that locations are places with a “boundary”,
which can only be crossed with some effort. In the Seal Calculus, boundaries can only be crossed
when two parties, one inside the boundary and the other one outside, agree. Moreover, this move-
ment operation takes place over a support layer, constituted by a set of channels. Communication
takes place over channels too, as in the�-calculus [11], and the dangerousopenoperation of the
Ambient Calculus is not present.

In our proposal the type of an agent is a description of the requests that it may accept from its
enclosing environment. This is similar to an object type, inan object-oriented language; however,
we will show that the subtype relation goes “the other way round”. We will discuss this fact,
which means that, while an object type describes a subset of theservicesthat an object offers, our
interface types describe a superset of theeffectsof an agent on its environment. We shall be more
precise about it later on, but for the time being the reader can think ofservicesas interactions that
must eventuallyoccur and ofeffectsas the interactions thatmay possiblyoccur.

Our main results are the following ones. First, we define a variant of the Seal Calculus, which
retains its essential security-oriented features but is simple enough to be suited to foundational
studies. Then, in this context, we define a type system where we are able both to type mobile
agents and to “type their mobility”, i.e., to allow one to declare, for each location, the types of
the agents that can enter or exit it. This yields to the first, as far as we know, higher order type
system for agent mobility.

The article is structured as follows. In Section 2 we define our variant of the Seal Calculus. In
Section 3 we introduce the typed calculus and justify our choices. In Section 4 we define the type
system, a sound and complete type-checking algorithm, and we state some relevant properties
they satisfy. In Section 5 we analyze our system and discuss the duality ofeffectsvs. services.



Section 6 describes an example that uses the key features of our calculus, while in Section 7 we
hint at how our work can be used to provide the an Java agent kernel with a minimal type system.
A summary and directions for future work conclude the article.

Related Work

Many works extend the basic type systems for�-calculus as described in [12, 15] giving more
informative types to processes. We comment those closest toour work.

Yoshida and Hennessy propose in [20] a type system for a higher-order�-calculus that can
be used to control the effects of migrating code on local environments. The type of a process
takes the form of an interface limiting the resources to which it has access, and the type at which
they may be used. In their type system both input and output channels can appear in the interface,
appearing strictly more expressive than the system we propose here, where input channels are
only considered. However, they do not allow active agents, but only pieces of code, to be sent
over a channel. When code is received it can be activated, possibly after parameter instantiation.
Besides, their type system limits the application of dependent types to the instantiation of param-
eters, resulting in the impossibility of giving an informative type to processes in which an output
operation depends on an input one.

In [8] Hennessy and Riely define D�, a distributed variant of the�-calculus where agents
are “located” (i.e., “named”) threads. The main differencewith respect to our work is that loca-
tions cannot be nested (that is, locations are not threads),and therefore mobility in [8] consist in
spawning passive code rather than migrating active agents.In [8] locations types have the formlocfx1 : T1; : : : xn : Tng wherexi’s are channels belonging to the location (they are located re-
sources and as such D� is much closer to the Seal Calculus as defined in [19], than to the version
we introduce here: see Footnote 2). These types are syntactically very close to those we introduce
here for Seal but they have different use. Location types in [8] are intended both to describe the
effectsprovided by a location and to regulate access to them (they work asviewsin databases).
Thus they embrace an object-oriented perspective (location types are subtyped as record types)
without fully assuming it (interface describeeffectsrather thanservices1; the difference between
theeffectand theserviceperspectives is broadly discussed in Section 5).

Types for locations have been extensively studied in a series of papers [7, 5, 4] on the Ambient
Calculus. Seal Calculus differs from Ambient Calculus in many aspects: seals cannot be opened
(i.e. they boundaries cannot be dissolved), many channels exist, and moves are performedobjec-
tively (i.e., agents are passively moved by their environment) rather thansubjectively(i.e., agents
autonomously decide to move to a different location) —according to the terminology of [6]. From
this work’s viewpoint the prominent difference between Ambient and Seal Calculus is that the
former does not provide an explicit “physical” support for mobility, while in the latter this support
is provided by channels. In other words while in Ambients mobility take place on some unma-
terializedætheraltransport medium, in Seal the medium is materialized by channels. Therefore
the main novelty of this work is that not only we type locations (agents or seals), but we also type
mobility (more precisely, its support). In some sense we introduce higher-order typing: while in
Ambient Calculus an agent can not discriminate which agentscan traverse its boundaries, this is
possible in our type system. For the same reason we can make a mobile location become immo-
bile, while this is not possible in the cited works on AmbientCalculus. Moreover, the mobility
model of Ambient Calculus had to be extended with objective moves in [4], since the interac-
tion of subjective moves with theopenoperation tends to produce typings where every ambient
is typed as mobile. We show here that the mobility model of Seal Calculus is free from this
problem.

1 This is to solve the type dependency problem we describe in Section 4.1.



2 Revising Untyped Seal Calculus
Seal Calculus is basically a�-calculus extended withnested named locations(dubbedseals) and
mobility primitives. In Seal, interaction consists of synchronous communication of a value or
of a whole seal. Both forms of interaction take place over named channels. Thus, mobility is
obtained by communicating a seal on a channel. The existenceof separate locations constraints
the possible interactions: a channel can only allow interactions either among processes in the
same seal, or among processes in two seals that are in parent-child relationship.

Two basic security principles underlay the design of the Seal Calculus: first, each seal must
be able to control all interactions of its children, both with the outside world and one with the
other; second, each seal must have total control over its name-space and therefore must determine
the names of its children.

Besides these two basic features the Seal Calculus defined in[19] included some other fea-
tures dictated by implementation issues. More precisely the calculus in [19] allowed seal dupli-
cation and destruction, and a strictly regulated access to remote channels2.

In what follows we define a lighter version of Seal where seal creation and destruction is not
possible and the access to remote channels is replaced by theintroduction of shared channels3.

The syntax of the language (parametric on an infinite set ofnames, ranged over byu, v, x, y,
andz) is defined as follows:

Processes Actions LocationsP ::= 0 inactivity
 P j P composition
 !P replication
 (� x)P restriction
 �:P action
 x [P ] seal

� ::= x�(y) input
 x�(y) output
 x�y send
 x�y receive

� ::= � local
 " up
 z down

The first five process constructs have the same meaning as in the�-calculus, namely: the0 pro-
cess does nothing, the compositionP jQ denotes two processesP andQ running in parallel, the
replication !P unleashes an unbounded number of copies ofP , the restriction(� x)P introduces
a new namex and limits its scope toP (the scoping is lexical), and the prefix allows one to
construct complex processes using the base actions�. A sealx [P ] is the representation in the
syntax of a place namedx that is delimited by boundaries and where the computationP takes
place. The bare syntax of processes is the same as Ambient Calculus.

The basic computational steps in Seal arecommunicationandmovement. Communications
(inputs/outputs on channels) are as in�-calculus with the only difference that channel names are
super-scripted by location denotations. These are either�, or ", or z, and denote respectively the
current seal (i.e. the seal where the action occurs), the parent seal, and a child-seal namedz. Thus
an action onx� synchronizes only with local processes,x" means thatx is a channel shared
between the current seal and the parent seal and that actionson it will synchronize with processes
in the parent, and finally the shared channelxz admits interactions between the current seal and
a child-seal namedz. These interactions are expressed by the first three rules inFigure 1.

Mobility is achieved in a similar way: seal bodies, rather than names, are moved over chan-
nels. It should be remarked that, contrary to input, receiveis not a binding action:y is free inx�y. A seal identified by its name is sent over a localized named channel: the seal together

2 In [19] channels are considered as resources. Each channel belongs to one and only one seal. Some syn-
tactic constructs allow the owner of a channel to regulate remote accesses to it and, thus, to control both
remote communication and mobility.

3 A similar solution was independently proposed for a calculus without agent mobility in [17].



x�(u).P j x�(v).Q ➞ Pfv=ug j Q (write local)xy(u).P j y[x"(v).Q j R] ➞ Pfv=ug j y[Q j R] (write out)xy(v).P j y[x"(u).Q j R] ➞ P j y[Qfv=ug j R] (write in)x�u.P j x�v.Q j v [R] ➞ P j u[R] j Q (move local)xyu.P j y[x"v.Q j v [R] j S] ➞ P j u[R] j y[Q j S] (move out)xyv.P j v [R] j y[x"u.Q j S] ➞ P j y[Q j S j u[R]] (move in)

Fig. 1. Reduction rules.

with its contents will disappear from the location of the sending processes and will reappear in
the location of the receiving process. The receiving process can give a new name to the received
seal: seal names are seen as local pointers to the location, and the actual name of a seal makes
no sense outside the current location. Thus the actionx�y sends the body of the seal namedy over the channelx�, while x�y waits for a body onx� and reactivates it as a seal namedy.
The precise semantics is given by the last three rules in Figure 1.

As customary, reduction uses structural congruence� that is the smallest congruence that is
a commutative monoid with operationj and unit0, and is closed for the following rules:

!P � !P j P (� x)0 � 0 (� x)(P j Q) � P j (� x)Q for x 62 fn(P )(� x)(� y)P � (� y)(� x)P (� x)y[P ] � y[(� x)P ] for x 6= y
The reduction semantics is completed by standard rules for context and congruence:P ➞ Q ) (P j R) ➞ (Q j R) P ➞ Q ) (� x)P ➞ (� x)QP ➞ Q ) u[P ] ➞ u[Q] P � P 0 ^ P 0 ➞Q0 ^ Q0 � Q ) P ➞Q
3 Typing Mobility
In the introduction we anticipated that our solution for typing mobility was to type the transport
media of mobility, that is, channels. We follow the standard�-calculus solution to type channels:
a channel namedx has typeCh V if V is the type of thevaluesallowed to transit overx. We saw
that in Seal channels are used both for communication (in which case they transportmessages,
i.e., base values, or names) and mobility (in which case theytransportagents, i.e., seal bodies).

It is easy to type base values (in this work the only base values we consider are synchroniza-
tion messages typed byShh) and we just saw how to type channel names. So to defineV we still
have to define the typeA of agents and, consequently, the typeIdA of names denoting agents of
type (more precisely, of interface)A.

3.1 Intuition about interfaces
Seals are named agents. The idea is to type them by describingall interactions a seal may have
with the surrounding environment. We know that such interactions have to take place over the
channels that cross the seal boundary. Thus these channels partially specify the interaction pro-
tocol of an agent. Keeping track of the set of upward communications (that is, communications
with the parent) that a seal may establish can be statically achieved by keeping track of the chan-
nels that would be employed: this gives rise to a notion of interface of an agent as a set ofupward
channels(i.e., characterized by" locations). Actually not all the upward channels are interesting
for describing the interaction protocol of a seal. Those theseal is listening on suffice:

The interfaceof a seal is the set of upward channels that the process local to the seal
may be listening on, with the type expected from interactions on them.

We will discuss this choice later on (see Sections 4.1 and 5) but, for the moment, to see why such
a definition is sensible we can consider as an example a networked machine. For the outer world
the interface of such a machine —the description of how it is possible to interact with it— is given



by the set of ports on which a dæmon is listening, together with the type of messages that will
be accepted on them. So the interface of a machine can be described as a set of pairs (port:type).
For example in our system a typical ftp and mail server would be characterized by a type of the
following form [21:ftp; 23:telnet ; 79:�nger ; 110:pop3 ; 143:imap; : : : ]. Similarly, if you
consider a seal as an object, then a process contained in it that listens on a upward channelx" can
be assimilated to a method associated with a messagex. In other words the sending of a messagem with argumentv to an objectx (that is,x.m(v) in Java syntax) can be modeled in Seal by
the actionmx(v), which would be allowed, in our type system, by a pairm:M in the type of the
sealx.

Hence, we consider interfaces such as[x1:Shh;x2:Ch V ;x3:A;x4:Id A] that characterizes
agents that may: 1) synchronize with an input operation on the upward channelx1; 2) read overx2 a channel name of typeCh V (the name of a channel that transports messages of typeV ); 3)
receive overx3 a seal whose interface isA; 4) read overx4 a seal name of typeId A. It is impor-
tant to stress the difference between what can be transmitted overx3 andx4, respectively seals
and seal names: the former requires mobility primitives, the latter communication primitives.

3.2 Syntax
The syntax of the types is reported in the following table.

Types AnnotationsV ::= M messages Z ::= y mobile
 A agents  Y immobile

Message Types InterfacesM ::= Shh silent A ::= [x1:V1; � � � ;xn:Vn] agents
 Ch V channel names
 IdZA agent names

There are four syntactic categories in the type syntax,V , M , Z, andA respectively denoting
types, message types, mobility annotations and agents. In the previous section we informally
described three of them, omitting annotations. Let us see them all in more detail:V : TypesV classifyvalues, that is computational entities that can be sent over a channel. While

in �-calculus values are just channel names, in Seal we have bothmessages (classified by
message typesM ) —which includes base values, channel names and agent names—and seals
(more precisely seal’s bodies, classified by interfacesA).M : Message typesM classifymessages, that is entities that can becommunicated(sent by an
i/o operation) over channels. A message can be either a synchronization message (without any
content) of typeShh, or a name. In the syntax there is no distinction between channel names
and seal names. This distinction is done at the type level: ifx : Ch V , thenx is the name of a
channel that transports values of typeV ; if x : IdZA, thenx is the name of a seal with interfaceA and with mobility attributeZ.Z: On the lines of [4] we use mobility attributes to specify elemental mobility properties of
seals: ay attribute characterizes a mobile seal, while aY attribute characterizes an immobile
one. Being able to discriminate between mobile and immobileagents is one of the simplest
properties related to mobility. Contrary to what happens in[4], adding this feature does not
require any syntax modification for Seal.A: InterfacesA classify theagentsof the calculus, keeping track of their interface. The notation[x1:V1; � � � ; xn:Vn] is used to record the information about the interface of an agent. It is
syntactic sugar for a set of pairschannelname : type, that represent a functional relation. If



a process has this interface, then it can be enclosed in an agent with the same interface, that
is whose name has typeIdZ[x1:V1; � � � ;xn:Vn]. This agent may listen from the upward level
only on channelsx1, : : : ,xn.

The introduction of types requires a minimal modification tothe syntax of the untyped calculus
of Section 2. We have to add (message) type annotations to thetwo binders of the language:(� x:M) andx�(y:M), and to redefine free namesfn as follows.

fn(x) = fxg fn((� x:M)P ) = (fn(P ) n fxg) [ fn(M) fn(") = fn(�) = fn(Shh) = ;
fn(x�(y:M):P ) = (fn(P ) n fyg) [ fn(M) [ fn(�) [ fxg fn(Id A) = fn(A)
fn([x1:V1; : : : ; xn:Vn]) = fx1; : : : ; xng [ fn(V1) [ � � � [ fn(Vn) fn(Ch V ) = fn(V )
The rule of structural congruence that swaps binders has to be changed too(� x:M)(� y:M 0)P � (� y:M 0)(� x:M)P for x 62 fn(M 0) ^ y 62 fn(M) ^ x 6= y
The reduction rules as well as the other rules and definitionsare unchanged.

4 The Type System

In this section we define the type system we informally described in the previous section. How-
ever, before that, we need to add a last ingredient in order todeal with the technical problem of
type dependencies.

4.1 Type dependencies
The notion of interface introduces names of the calculus at the type level. Since names are first
order terms, type dependencies may arise. Consider for example the following terms.P 0 = x�(y:ChM):y"(z:M) P = x�(w) j P 0P 0 offers upwards input on channely. Hence, a naive syntax based analysis would associateP 0
andP with the interface[y:M ], producing the following typing judgment:x:Ch(ChM) ; y:ChM ; w:ChM ` P : [y:M ]:
However, the processP may perform an internal reduction on the channelx, and then it would
offer upwards input on channelw, hence changing its interface type:x�(w) j x�(y:ChM):y"(z:M)| {z }[y:M] ➞ w"(z:M)| {z }[w:M]
This is the recurrent problem when trying to define non-trivial channel-based types for processes:
to solve it one may consider using dependent types and deal explicitly with types that change
during computation. Dependent types work fine for calculi where the notion of interaction is syn-
tactically well-determined, as in�-calculus. Unfortunately in process calculi, where interaction
is a consequence of parallel composition (which admits arbitrary rearrangements of sub-terms),
all the tries are somewhat unsatisfactory: they are usuallyrestricted to a subset of the calculus,
allowing dependent types only in particular, well-determined constructions [20].

Following a suggestion of Davide Sangiorgi, we decide to disallow input action on names
bound by an input action. In this way interfaces cannot change during reduction: for example
the processP above is not well-typed, sincey is first bound by an input onx and then used to
perform an input from".

To make the type system uniform, we impose this condition on all the input operation, not
only on the input operations from", which are the only ones determining the interface.

There is no harm in doing that since this restriction does notlimit the expressive power of
the calculus: besides being theoretically well studied (see for example [10]), nearly all program-



ming languages based on�-calculus impose this constraint, while programs written in concurrent
languages that do not, mostly seem to obey to the same condition.

4.2 Typing rules

Judgments have the form� `� =, where= is either�, or V , or x : M , orP : A. The pair�;�
will be referred to astyping environmentand the judgments have the following standard meaning:� `� � well-formed environment � `� V well-formed type� `� x:M x has message typeM � `� P : A P has interfaceA� is a function (actually, an ordered list) that assigns typesto names. At the same time, we need
some machinery to enforce the restriction on input channelswe described above, that is, that
only namesnot bound by an input action (i.e., names introduced by�) are used to perform input
operations. Thus we use the set of names� to record the�-introduced names:� ::= ?  �; x:M � ::= ?  �; x
The typing and subtyping rules are:

(Env Empty )? `? � (Env Add)� `� M�; x:M `� � x =2 dom(�;�) (Env Add Xi)� `� M�; x:M `�;x � x =2 dom(� )
(TypeShh)� `� �� `� Shh (TypeId )� `� A� `� IdZA (TypeCh )� `� V� `� Ch V (Type Interface)� `� � 8i21::n � `� xi:Ch Vi xi2dom(�)� `� [x1:V1; : : : ; xn:Vn]
(Var)� `� �� `� x : � (x) (Dead)� `� �� `� 0 : [ ] (Par)� `� P1 : A � `� P2 : A� `� P1 j P2 : A (Bang)� `� P : A� `� !P : A
(Res)�; x:M `�;x P : A� `� (� x:M)P : A x 62 fn(A) (Seal)� `� x : IdZA � `� P : A� `� x [P ] : [ ]
(Output Local)� `� x : ChM � `� y : M � `� P : A� `� x�(y):P : A
(Input Local)� `� x : ChM �; y:M `� P : A� `� x�(y:M):P : A x 2 dom(�)
(Output Up)� `� x : ChM � `� y : M � `� P : A� `� x"(y):P : A
(Input Up)� `� x : ChM �; y:M `� P : A� `� x"(y:M):P : (A� [x:M ]) x 2 dom(�)
(Output Down)� `� z : IdZA0 � ` y : M � `� P : A� `� xz(y):P : A (x:M) 2 A0



(Input Down)� `� z : IdZA0 � `� x : ChM �; y:M `� P : A� `� xz(y:M):P : A x 2 dom(�)
(Rcv Local)� `� x : Ch A � `� y : IdZA � `� P : A0� `� x�y:P : A0 x 2 dom(�)
(Snd Local)� `� x : Ch A � `� y : IdyA � `� P : A0� `� x�y:P : A0
(Rcv Up)� `� x : Ch A � `� y : IdZA � `� P : A0� `� x"y:P : (A0 � [x:A]) x 2 dom(�)
(Snd Up)� `� x : Ch A � `� y : IdyA � `� P : A0� `� x"y:P : A0
(Rcv Down)� `� z : IdZ0A0 � `� x : ChA � `� y : IdZA � `� P : A00� `� xzy:P : A00 x2dom(�)
(Snd Down)� `� z : IdZA1 � `� y : IdyA � `� P : A2� `� xzy:P : A1 (x:A) 2 A1
(Subsumption)� `� P : A � `� A0 A � A0� `� P : A0 (Sub Interface)A � A0A � A0
We discuss the most important rules:

(Env Add ): It is possible to add names with their types to� , and also to� (rule (Res)),
provided that they are not already in� . Notice that dom(�) � dom(� ) holds for well-formed
environments.

(Type Interface): An interface type is well-formed if every name in it has been previously
declared with the correct type and appears in� (i.e., it is not bound by an input action). The
premise� `� � ensures the well formation of the type environment for the case of the empty
interface.

(Res): Particular attention must be paid to restrictions of channel names, as channels may occur
in the interface. A first idea could be to erase the newly
restricted name from the interface as in the rule aside,
but this rule is not sound with respect to the structural
congruence relation: if you consider the processes

(WrongRes Ch)�; x:Ch V `�;x P : A� `� (� x:Ch V )P : (A� [x:V ])(� y:IdZ[ ])y[(� x:Ch Shh)x"()] and(� y:IdZ[ ])(� x:Ch Shh)y[x"()] they are structurally equiv-
alent, but while the former would be well-typed, the latter would not.

Therefore we rather use the(Res)rule that imposes that a restricted name can not appear
in the interface of the process (see also comments right below Property 1 Section 4.4). As all



the names must be declared in� , it may seem that this condition forces all the interfaces tobe
empty. But note that this restriction applies only to process interfaces not to seal identifiers. The
reader must avoid confusion between the namea which has typeIdZA (whereA may be a very
complex interface) and the processa[P ] which, as stated by the rule (Seal), has type[ ]. What
is necessary is that the type ofP (rather than the one ofa[P ]) has interfaceA. That is, that
the processP inside a seala[P ] respects the interface declared for its namea. Therefore the
side condition of (Res) simply demands that the upward channels ofa are not restricted insidea[P ]. In other words, a channel appearing in an interface must be already known to the enclosing
environment. This is a very desirable feature of the type system: the interface’s names must be
somewhat public.

A brief example can clarify what “somewhat” means. Considerthe following two terms in
the light of the(Res)rule, and notice that they are structurally equivalent:

1) y[(� x:Ch Shh) x"()] 2) (� x:Ch Shh)y[x"()]
Clearly, the first is not well-typed, since the process inside the seal should offer a restricted
channel in the interface, and this is forbidden by the(Res)rule. Interestingly, the latter is not
well-typed either: the type of the namey should include the channelx in the interface, buty is
defined out of the scope ofx; therefore process in the scope of the restriction could be typed
only under a context in whichx is declared twice, which is impossible (see Property 1(c) in
Section 4.4). The correct term is(� x:Ch Shh)(� y:Id [x:Shh]) y[x"()] in which the channelx
is declaredbeforethe sealy. Briefly, a name that is used by a seal to read from its environment
must already exist in the environment where the seal is declared.

In terms of the examples in Section 3.1, this means that we candeclare that a machinex has
interface[23 : telnet] only if the channel named23 and the typetelnetare both already known
(that is, declared) in the environment.

(Input ): All the rules for typing a process of the form�:P follow a common pattern: this is
especially true if we consider input and output rules separately.

The actionx�(y:M):P bindsy in P . Thusy must be added to the environment ofP , pro-
vided that its type matches the type ofx; y is not added to� since it is bound by an input
operation. Because we are doing an input, we also have to check thatx is a�-introduced name,
that isx 2 dom(�). In (Input Local), the input operation is local and nothing more has to be
done. In(Input Down)we also check that the name of the seal from which the process wants to
read is declared in� . In (Input Up)the input is from", therefore the channel the process wants to
read from must be added to the interface already deduced forP . This is done by the� operator,
which computes the union of two interfaces, but is not definedwhen the result would contain two
different pairsy:M andy:M 0 with the same namey but differentM;M 0.
(Output ): In the case of local and upward output actions the rules(Output Local)and(Output
Up) check that the types of the channel and of the argument match.The rule(Output Down)
furthermore checks that the channel appears in the interface of the target seal with the right type.
This enforces the interpretation of the interfaces: a process can write inside a seal only if the
processes local to the seal are possibly going to read it.

(Rcv ): The typing rules for mobility actions do not differ from the respective communication
actions. The main point is that in a receive operation the object name is not bound, so it is not
added to the names in the scope of the continuation4. Remark that in order to send a seal on a chan-
nel, it must be declared to be mobile (attributey). In the Seal’s model of mobility, when a seal is
received it gets a name chosen by the receiver process. We usethis feature, together with the fact

4 This is due to the specificity of the receive action: when a seal is received it is activated at the same level
as the process that received it. The movement actions look like interactions in the Fusion Calculus [14].



that the mobility attribute is tied to seals names, to turn a mobile seal into an immobile one. For
instance,(� x:ChA)(� a:IdyA)(� b:IdYA) x�a j x�b j a[P ] ➞ (� b:IdYA) b[P ] turns
the mobile seal nameda into an immobile seal namedb (the opposite is also possible). This is
achieved by imposing no constraints on the mobility attribute of the receiving name in the receive
typing rule. Neither this nor the opposite is possible in [4].

(Subtyping) During reductions, actions can be consumed. Consider for example the processP = x"(y:M):z�(y). It is ready to input a name of typeM on channelx and its type is[x:M ]. Now place it in the contextC [�] = xa(w) j a[�] and consider the type ofP and of its
reductum: xa(w):Q j a[x"(y:M):z�(y)| {z }[x:M] ] ➞ Q j a[ z�(w)| {z }[ ] ]
To satisfy the subject reduction property we introduce a subtyping relation. We already discussed
that the interface of a process should be regarded as the set of channels on which the processmay
perform input operations from". This suggests that the addition of new channels in the interface
of a process should not be considered as an error, since they are channels on which interaction
will never take place. This is formalized by the subtyping notion defined in the(Sub Interface)
rule, that allows channels to be added to the interface of a process.

This possibility of extending the interface is limited to the process types, and is not extended
to seal interfaces. The interface of a seal is associated with its name and is immutable, hence it
characterizes forever the range of interactions admitted by that seal. At the same time, subsump-
tion allows a process with a smaller interface to be placed inside the seal. This is essential, since
the more limited interface may be a consequence, as in the previous example, of the “consump-
tion” of some actions. In this way, actions can get consumed inside a seal, while the seal preserves
its crystallized interface.

4.3 Typing algorithm
The type rules in the previous section just need some slight modification to be converted into a
type algorithm. As usual in type systems with subtyping, we must eliminate the subsumption rule
by embedding subtyping in the other rules. Actually there are only two rules that need modifica-
tions. The first is the(Par) rule: in order to type-checkP1 j P2 in the environment�; � bothP1
andP2 are checked resulting respectively in the two typesA1 andA2. If the processP1 j P2 can
perform an input at" then eitherP1 orP2 must be able to perform it, and so it has been registered
in one ofA1 andA2. Thus we have to merge the type informations kept inA1 andA2, and this
is achieved by means of the� operator.

The second rule we need to modify is the(Seal)rule, to take into account that the interface
of the process inside a seal may be a subtype of the interface associated with the seal name.

(Par Algo)� �� P1 : A1 � �� P2 : A2� �� P1 j P2 : A1 �A2 (Seal Algo)� �� x : Id A � �� P : A0� �� x [P ] : [ ] A0 � A
4.4 Properties
The typing algorithm defined above is sound and complete withrespect to the type system.

Theorem 1 (Soundness and completeness).
1. If � �� P : A then� `� P : A.
2. If � `� P : A then9A0 such thatA0 � A and� �� P : A0.

A corollary of this theorem is the minimality of the algorithmic type:

Corollary 1. � �� P : minfA j � `� P : Ag, if the set is not empty.



In order to prove the subject reduction property we need a substitution lemma that states that
substituting names for names of the same type in well-typed terms yields well-typed terms. This
would fail if we allowed names that appear in interfaces to besubstituted, hence we have to add
a conditionx 62 dom(�) in the theorem hypothesis. This restriction is not a problem, since, as
formalized by the management of� in the(Input ) rules, interactions can only substitute names
that do not appear in dom(�).

Thanks to Theorem 1, the substitution lemma can be stated directly on the type algorithm
rather than on the type system.

Lemma 1. If �; x:M �� P : A, x 62 dom(�), and� �� y : M , then� �� Pfy=xg : A.

This lemma is used to prove the subject reduction property for the algorithmic system whence
subject reduction for the type system can be straightforwardly derived:

Theorem 2 (Subject Reduction). If � �� P : A andP ➞Q then� �� Q : A.

Besides the characteristics discussed in Section 4.2 thereseveral subtleties hidden in the type
system that make subject reduction hold while keeping the rules relatively simple. Among these
it is noteworthy to remark that the provability of a judgment� `� = implies the following
properties5:

Property 1. If � `� = si provable then:
a. �;� are well formed (i.e.,� `� � is provable);
b. dom(�) � dom(� );
c. each variable has at most one type assignment in� .

These three properties allowed us to omit several sensible conditions from the typing rules since
they are implicitly satisfied. So for example in the (Res) rule it is useless to require thatx 62
dom(�) since this already holds by the well-formation of the environment. Indeed�; x:M `�;x� implies thatx 62 dom(�;�). Even more,�; x:M `�;x � implies thatx does not occur in� ,
since by construction� is an ordered list; this rules out envirements such asy:Id[x:M 0]; x:M .
Similarly, in all the rules (Input) it always holds thaty does not occur in� . This implies thaty 62 dom(�) since otherwise� 6`� � which contradicts that� `� x : ChM is provable.

5 Services vs. Effects
In the introduction we hinted at two possible interpretations of agent interfaces. Interfaces may
describe eitherservices, that is the interactions thatmust eventuallyoccur, oreffects, that is the
interactions thatmay possiblyoccur.

The former interpretation is the one that characterizes thetype systems for object-oriented
languages, while the latter is the one of our system. Indeed,superficially our interfaces look
like the types of the objects in the “objects as records” analogy: just an array of methods one
can invoke (in fact, the analogy between agents and objects is not a piece of news). However,
there is an important difference. In the object framework, sending a message should result in a
method being activated: the type of an object reports the setof messages the object will answer
to. We can say that the interface of an object characterizes theservicesthat the object offers to its
environment.

According to our definition, a channel that appears in the interface of an agent (a seal) does
not guarantee that interaction on this channel is always going to happen (indeed the channel may
be guarded or already be consumed by a previous action). A more precise intuition of our system

5 The first property follows by straightforward induction whose base are the rules (TypeShh), (Var), and
(Dead). The other two are equally straightforward.



is that an interface limits theeffectsthat the agent can have on the environment: if an interaction
occurs, it occurs on a channel defined in the interface and noton other channels.

There is a clear tension between the two interpretations andin this paper we opted for the
second one. The reason for such a choice resides in the fact that �-calculus channels are essen-
tially consumable resources. One of the clearest lessons wedraw from this work is that there is
an inherent difference between requiring a service (such assending a message) and writing on
a channel: the former does not affect the set of admissible interactions, while the latter does (by
consuming a channel).

This tension is manifest at the level of subtyping: in
case of effects the “may-provide” interpretation is embod-
ied by a subtyping relation typical ofvariant typeswhile in
the case of services, we recover the classical record types
relation that characterizes objects and their “must-provide”
interpretation, as expressed by the rules on the side.

(effects) (services)A � A0A � A0 A0 � AA � A0
Our analysis clearly shows that the two approaches are mutually exclusive, and that either

one or the other has to be adopted according to the “consumability” of the communication layer.
In our system it is possible to recover the object/services characteristics by imposing restric-

tions to ensurereceptiveness[16] of channels in the interface6, which roughly corresponds to
make all the external interactions of an agent unconsumable. The intuition is that in this way we
transform interface channels into (object) methods. Receptiveness can be ensured by imposing
restrictions such as those presented in [1] or, in a coarser approach, by requiring that all receive
and input actions on upper channels are guarded by replications, that is they must all be of the
form !x"(y):P and !x"y:P . In the latter case some simple modifications to our type system
allow us to recover the service interpretation together with its (services) subtyping rule. It just
suffices to straightforwardly modify the typing rules (Input Up) and (Rcv Up) to account for the
new syntax, and the results of the previous section bring forth. However we decided to follow the
other approach since the presence of concurrency does not ensure that services will be eventually
satisfied. Indeed, even if the remote interactions are replicated they may still be guarded. There-
fore a complete treatment would require further restrictions on these interactions bringing us too
far from our original subject. Nevertheless we believe thatsuch a direction is worth exploring.

6 Example: a web crawler

In this section we give a simple example that uses mobility, higher-order types, and parametric
write channels. Chapter 5 of [21] contains a much more complex example we did not include
here for lack of space: in that example the toy distributed language introduced in [4] to show the
expressivity of typed ambients is encoded in the Seal calculus version presented here.

In order to show a possible application of higher order typing and mobility attributes, we
suggest the specification of a possibleweb crawlingprotocol. Currently, most commercial web
search engines periodically access all the web pages that are reachable by some starting pages
and index them in a database. Web searches access the database and retrieve relevant entries.

This technique is a greed bandwidth consumer. It may be interesting to define an alterna-
tive protocol where mobile agents are spawned over the web sites, where they collect and pre-
elaborate the relevant information, so that the computational effort is distributed, and bandwidth
consumption is dramatically reduced.

The Seal specification of this protocol is depicted in Figure2, where top level represents the
network and hosts are immobile seals that lie inside it; crawlers are modeled by mobile seals,
being able to navigate among hosts.

6 An alternative solution is to use the object framework but togive up with the “must provide” interpretation.



SYSTEM = HOME  NETSUPPORT WebSite 1[WEBSITE]  : : :  WebSite n[WEBSITE]
CRAWLER(start) = cd

"(start).
repeat( in"(info:info) . <PROCESSINFO> .

if nextDest then cd
"(nextDest) else result"(k:Ch info):k"(crawledInfo) )

HOME = craw[CRAWLER(WebSite 1)]  : : :  craw[CRAWLER(WebSite n)] 
repeat( (� k:Ch info) result

craw(k):kcraw(crawledInfo:info):<STORECRAWLEDINFO> )

WEBSITE = 437"craw:incraw(info):437"craw  <OTHERSERVICES>
NETSUPPORT= repeat( (� x:Ch craw)( x�craw (� c:Idycraw) x�c:cdc(dest:hostName):437destc:437destcraw) )

Fig. 2. A web crawler protocol

HOME, which is a process that lives at the network level, spawns a crawler for each root web
site. The crawler will go away and come back, to tell HOME about its findings, as we will see
later.

CRAWLER communicates on channel “cd” (“crawler destination”) the name of the first site
it wants to visit7. This information is received by NETSUPPORTwhich first renames the crawler
with a fresh namec; this renaming is performed by sending the crawler along thelocal channelx. Then, NETSUPPORTsends the crawler to the requested destination, via the port437. Once the
crawler is in the site, it reads the information via the port “in”, and is sent out of WEBSITE along
channel 437. The crawler processes the information (which generates a list of other possible
destinations), then checks whether it has to visit more sites; if it does not, it uses the channel
“result” to ask HOME for a secure channelk and sends the result on it.

HOME sends the secure channel namek along the resultcraw channel, reads the collected
information fromk, and stores it.

A generic WEBSITE must have a dæmon that is ready to receive crawlers on port437 and,
after having provided them with information on channel “in”, sends them out via the port473
again.

The interface that characterizes a crawler iscraw = [in : info ; result: Ch (info)]. All the
crawlers in the toplevel have the namecraw, of typeIdy[in : info ; result: Ch (info)]. The other
relevant interface in the example is the one of the hosts: it is a higher-order type, since it contains
the interfacecraw, i.e. it specifies the protocol of the agents it is willing to accept. This interface
has the following form:[437 : craw ;< OTHERPORTS>]. Since hosts are immobile, they are
denoted by names whose type ishostName= IdY[437 : craw ;< OTHERPORTS>].
7 Practical Applications

In order to show the potential of our type system we hint at howit can be used to provide the
JavaSeal Agent Kernel [2, 18] with a minimal type system. JavaSeal is an experimental platform
that provides several abstractions for constructing mobile agent systems in Java. JavaSeal uses
relatively coarse grained types; in particular, objects exchanged during interaction are encapsu-
lated inCapsules. Capsules are the only entities liable to be sent over channels. The contents
of a capsule are widening to the generic typeObject thus loosing all static information. Further-
more, the system does not distinguish between channel and seal identifiers as both are denoted

7 repeat is syntactic sugar for! andif then else can be easily encoded. We use italics for types,
roman font for channels, small capitals for metavariables,and boldface font for seal names.



by objects of the className. In other words, JavaSeal does little type checking and whatit does
is mostly performed at run time through dynamic type casts. This means that JavaSeal agents are
prone to errors.

In particular, each object exchanged during interaction isencapsulated with typeObject
into aCapsule, being capsules the only entities liable to be sent over channels. Also there is
not a clear distinction between channels and seal identifiers since they are generically classified
by the className. In other words JavaSeal type checking is rather weak since it heavily relies
on the use of dynamic type casts, and as such it is quite prone to errors.

JavaSeal is based on the primitives of the original Seal calculus. Therefore it does not provide
shared channels: channels are localized and access to them is granted via portals opening oper-
ations. More precisely this signifies that for example a downward output operation on channelxy synchronizes only with local input operation onx in the sealy, and that the interaction needs
presence iny of an explicit permissionopen"x that authorizes the parent to use the local channelx. That is the (write in) becomes the following three parties reduction rule:xy(v).P j y[x�(u).Q j open"x j R] ➞ P j y[Qfv=ug j R] (write in)

It is quite straightforward to adapt our interfaces types tolocated channels and portals: recall
that interfaces trace all the channels on which there is an information flow from the parent to
the child. Therefore the interface of a (Java)Seal agent must contain all channels the agent may
perform input on and that (a) either are located in the parent(b) or are local and have a matching
upward portal open operations.

Our proposal is then to endow the actual JavaSeal syntax withsome type informations that
will be processed by a preprocess to type-check the source, and then will be erased yielding a
standard JavaSeal program. In order to enhance readabilitywe write the information that are to
be erased by the preprocessor in boldface. More particularly we propose to add the following
(preprocessor) types:

NameCh[ T] it is used to classify channelnames(it corresponds toCh T ). The type part[ T ] is
optional (its absence means that the content of the channel does not need to be checked)

NameSeal̂[ A] it is used to classify seal names (it corresponds toIdYA). Both the immobility
attributê and the interface part[ A] are optional (the absence ofˆ corresponding toy, and
the one of the interface meaning that outputs towards the seal do not need to be checked).

In order to have backward compatibility and let the programmer decide how fine-grained the
preprocessor analysis should be, we order the newly introduced types according to the subtyping
relation described by the diagram below.

Thus theName type that in the current
JavaSeal implementation identifies all names,
will be refined by separating channel names
from agent names. Agent names will allow a
second refinement by specifying their inter-
faces or its mobility attribute. A similar spe-
cialization is possible by specifying or not the
content of the channel.

The idea is that the programmer is free
to decide whether the preprocessor has just to
check that, say, the name used to denote a

Name

NameCh

>>}}}}}}}}
NameSeal

``AAAAAAAA
NameCh[ T]

OO
NameSeal̂

>>}}}}}}}}
NameSeal[ A]

``AAAAAAA
NameSeal̂[ A]

>>~~~~~~~``@@@@@@@@
channel is indeed a channel name, or also match the type of itscontent. Similarly the programmer
may force the check of downward write operations, or just require that they are directed to some
named seal. The more the leaves of the hierarchy are used the more the check will be complete.

Thus theName type that in the current JavaSeal implementation identifiesall names, will be
refined by separating channel names from agent names. Agent names will allow a second refine-



ment by specifying their interfaces or its mobility attribute. A similar specialization is possible
by specifying or not the content of the channel.

The idea is that the programmer is free to decide whether the preprocessor has just to check
that, say, the name used to denote a channel is indeed a channel name, or also match the type of
its content. Similarly the programmer may force the check ofdownward write operations, or just
require that they are directed to some named seal. The more the leaves of the hierarchy are used
the more the check will be complete.

This system is particularly interesting when it is used in conjunction with parametric classes
such as they are defined for example in Pizza [13]. So theCapsule andChannel classes of
JavaSeal could be rewritten as follows

final class Capsule<X> implements Serializable {
Capsule(X obj);
final X open();

}

final class Channel<X> {
static void send(NameCh[X] chan, NameSeal seal, Capsule<X> caps);
static Capsule<X> receive(NameCh[X] chan, NameSeal seal);

}

It is interesting to notice that after preprocessing, by applying the Pizza homogeneous translation
of [13] to all non-erased occurrences of the type variable, one recovers the original interface of
JavaSeal:

final class Capsule implements Serializable {
Capsule(Object obj);
final Object open();

}

final class Channel {
static void send(Name chan, Name seal, Capsule caps);
static Capsule receive(Name chan, Name seal);

}

8 Conclusion
In this work we presented a new definition of the Seal Calculusthat gets rid of existing inessen-
tial aspects while preserving the distinctive features of the Seal model. We used it to tackle the
problem of typing not only mobile agents but also their movement, so that the latter can be con-
trolled and regulated. The solution we used, typed channels, is an old one —it is standard in�-calculus— but its use for typing mobility is new, and results into a higher order type systems
for agents (as [20] is a higher order type system for processes). At the same time, we designed
our type system so that it induces an interpretation of interfaces as effects and we discussed its
distinctive features.

This work is just a starting point and for some aspects it is still unsatisfactory. For example
more work is needed to define a type system that captures one ofthe peculiar security character-
istics of the Seal Calculus, that is the name-spaces separation: in the actual version if two agents
residing in different locations have the same name, then thetype system forces them to have the
same type too.

At the same time this work already constitutes an exciting platform whence further investi-
gation can be started. In particular we are planning to use some form of grouping similar to those



in [5, 3] for a different solution to the problem of type dependencies, as well as to investigate a
distributed version of the type system, on the lines of [3]. It would also be interesting to verify
what thesingle threaded types, introduced in [9] for the Ambient Calculus with co-actions, would
bring forth in the Seal Calculus, where co-actions are inherently present.
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