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Abstract. Theories identifying well-formed systems of processes—those that
are free of communication errors and enjoy strong properties such as deadlock
freedom—are based either on session types, which are inhabited by channels, or
on contracts, which are inhabited by processes. Current session type theories im-
pose overly restrictive disciplines while contract theories only work for networks
with fixed topology. Here we fill the gap between the two approaches by defining
a theory of contracts for so-called mobile processes, those whose communica-
tions may include delegations and channel references.

1 Introduction
Research on communicating processes has recently focused on the study of static anal-
ysis techniques for characterizing those systems that enjoy desirable properties such as
the conformance to specifications, the absence of communication errors, and progress.
By progress we mean the guarantee that the system will either evolve into a so-called
successful state, in which all of its components have completely carried out their task,
or that the system will continue to evolve indefinitely, without ever getting stuck.

Two approaches have been studied in great depth: those based on session types, and
those based on behavioral contracts. Session types arise in a type theoretic framework
as an evolution of standard channel types [29], by taking into account the fact that the
same channel can be used at different times for sending messages of different kind and
type. For example, session types defined in [21] describe potentially infinite, dyadic
conversations between processes as sequences of messages that are either sent or re-
ceived. The same approach has been applied to multi-threaded functional programming
languages [30], as well as to object-oriented languages [15, 3]. Behavioral contracts
arise in a process algebraic framework where the behavior of the component of a sys-
tem is approximated by means of some term in a process algebra. The contract does
not usually reveal how the component is implemented, but rather what its observable
behavior is. Theories of contracts for Web services have been introduced in [12] and
subsequently extended in [25, 14, 28]. Independently, theories of contracts have been
developed for reasoning on Web service choreographies in [6, 7].

Traditionally, the approaches based on session types have always allowed the de-
scription of systems where channels and opened sessions can be communicated and
delegated just as plain messages. Conversely, all of the works on contracts mentioned
above rely on CCS-like formalisms, which makes them suitable for describing systems
whose topology is fixed and where the role of each component does not change over
time. This work aims at being a first step in filling the gap that concerns the expressive-
ness of the two approaches and in defining a contract language to describe processes
that collaborate not only by exchanging messages, but also by delegating tasks, by dy-
namically initiating new conversations, by joining existing conversations.
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Since we want to describe conversations where exchanged messages may include
channels, it is natural to propose a contract language based on the π-calculus. However,
quite a few aspects force us to depart from standard presentations. The first aspect re-
gards the interpretation of actions. A contract should permit to describe not only the
communication of channels, but also of other kinds of messages. Thus we will have
actions of the form c?Int or c!String for denoting the ability to receive (resp. send)
a value of type Int (resp. String). In fact, we will generalize input and output ac-
tions so that their subjects are possibly structured patterns describing all and only the
messages that can be exchanged on a channel at a given time. Since we are interested
in describing the observable behavior of a process rather than its internal structure, we
will mostly focus on two operators + and ⊕ representing external and internal choices
respectively. This is consistent with the works on session types and is also the approach
taken in some presentations of CCS [17, 20] and of π-calculus [26]. For example, the
contract c?Int.T + d?String.S describes a process that behaves as T if it receives a
number on the channel c, and that behaves as S if it receives a string on the channel d.
Dually, the contract c!Int.T ⊕ d!String.S describes a process that internally decides
whether to send an integer or a string, and that behaves as T or as S accordingly. Addi-
tionally, we let branching be dependent also on the (type of) exchanged messages, not
just on the channel on which communication occurs. This allows us to model behaviors
that are affected by the actual values that are communicated, which is just what hap-
pens in session type theories with branching and selection constructs whose behavior is
driven by labels. For instance, the contract c?Int.T + c?String.S describes a process
that behaves either as T if it receives an integer value on the channel c or as S if it
receives a string value on the same channel. Unlike the π-calculus and along the lines
of [1], we distinguish several “terminal” behaviors: 0 represents a deadlock process that
cannot make any further progress; 1 represents successful termination; Ω represents an
autonomous process that is capable of making indefinite progress.

With respect to current literature on session types we innovate also from the method-
ological point of view. Current presentations of session type theories begin by defining
the semantics of types and then prove that well-typed processes enjoy certain proper-
ties. We embrace a testing approach [17, 5, 20] and go the other way round: we start by
defining the properties we are interested in and then study the types that ensure them.
More precisely, we start from the concept of well-formed system, which is a parallel
composition of participants—each one abstracted by means of its contract—that mutu-
ally satisfy each other: no participant ever gets stuck waiting for messages that are never
sent or trying to send messages that no one else is willing to receive. Well-formedness
gives us the one essential notion that drives the whole theory: a component T is viable
if there is a well-formed system that includes T . Viability roughly corresponds to the
notion of well-typed process in session type theories. Also, well-formedness gives us
a semantic way of relating contracts: T and S are equivalent if they yield well-formed
systems when combined with the same components. The equivalence relation induced
by well-formedness can be used for verifying whether a participant respects its speci-
fication given as a contract, or for understanding when two participants are equivalent
by comparing their contracts, or for querying a database of participants by means of
their contract, along the lines of what has been done in the CCS context. Additionally,
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the very same equivalence relation can be used for assessing properties of participants
and systems: a contract T is viable if and only if it is not equivalent to 0; a system S is
well-formed if S' 1+S; a system S has indefinite progress if S'Ω+S.

We can identify three main contributions of this work. First, we propose a natural
extension of the contract language presented in [12, 25, 14] for describing processes
that communicate channels in addition to plain messages. Second, we define a notion
of well-formed system as a system whose stable states, those not allowing any fur-
ther progress, are such that all components have terminated successfully. The resulting
equivalence relation is inspired to the classical must preorder for mobile processes [5,
26], except that we shift the attention from the success of a particular process (the
“test” in the classical framework), to the success of all the components in the system.
Well-formedness extends the notion of correct composition in [6, 7] to a name-passing
scenario. Finally, we show how contracts provide an alternative and somehow naı̈ve ap-
proach to the typing of processes. Indeed we believe that the increasing complexity of
session type systems comes from the fact that they are used for guaranteeing properties
they were not originally designed for. Session types, which characterize channels, are
types with a behavioral flavor. We say “flavor” because, as a matter of facts, channels
(like any other value) do not expose any behavior per se. Session types do not character-
ize the behavior of the channels they type; they just reflect the behavior of the processes
that use those channels. This is evident in the inference rules of every session type sys-
tem, where a process is not associated with a type that abstracts its behavior, but with
a set of type assignments that provides a partial and distributed description of how the
process independently uses each of its channels. It is thus unsurprising that session types
systems guaranteeing global properties—most notably progress—must necessarily rely
on draconian restrictions on the usage of sessions (see [18, 4, 13] for a showcase of such
conditions). Conversely, contracts faithfully capture the behavior of processes and the
temporal dependencies between communications occurring on different channels. This
significantly widens the spectrum of systems that are declared well formed.

Overview. We develop our theory of contracts in §2 and put it at work on a core
session calculus in §3, where we encode various examples, most of which from exist-
ing bibliography. §4 discusses differences between our approach and those with session
types, presents more related work and hints at future research. For space reasons proofs,
alternative characterizations, decidability, and deduction systems for the relations de-
fined in §2 are omitted and can be found in the extended version available online.

2 Contracts
The syntax of contracts makes use of an infinite set N of channel names ranged over by
a,b,c, . . . and of an infinite set X of channel variables ranged over by x,y,z, . . . ; let V
be the set of basic values ranged over by v,u, . . . ; we let α,β , . . . range over elements
of N ∪X and m,n, . . . range over messages, namely elements of N ∪V . Contracts,
ranged over by T,S, . . . , action prefixes, ranged over by π,π ′, . . . , and patterns, ranged
over by f ,g, . . . are defined by the rules below:

T ::= 0 | 1 | Ω | π.T | T +T | T ⊕T | T |T | (νa)T
π ::= α? f | α! f | α!(a)
f ::= 0 | x | m | B | (x) | f ∨ f | f ∧ f | ¬ f
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The syntax of patterns makes use of a fixed set of basic types ranged over by B such
as Int,Bool,Real, . . . . Patterns describe the (possibly infinite) set of messages that are
sent or received by an action occurring in a contract. Their semantics is fairly standard
and pattern matching rules, described below, derive matching relations of the form m ∈
f ; σ where σ : X →N is a substitution whose domain dom(σ) is always finite:

m ∈ m ; /0 a ∈ (x) ; {a/x}

v : B
v ∈ B ; /0

m ∈ f ; σ

m ∈ f ∨g ; σ

m ∈ f ; σ m ∈ g ; σ
′

m ∈ f ∧g ; σσ
′

m 6∈ f

m ∈ ¬ f ; /0

The empty pattern 0 is the one that matches no message. The singleton pattern m
matches the message m. The type pattern B matches all and only basic values of type B.
The variable pattern x represents a singleton pattern that is going to be instantiated (x
must be bound at some outer scope), whereas the capture pattern (x) binds the variable x
and matches every channel. The disjunction, conjunction, and negation patterns imple-
ment the standard boolean operators and must obey the standard syntactic constraints:
the two branches of a disjunction must bind the same variables and the two branches
of a conjunction must bind disjoint variables. We write fv( f ) and bv( f ) for the sets
of free and bound variables occurring in a pattern. Their definition is standard, here we
just recall that bv(¬ f ) = /0 regardless of f . Also, we write f \g for f ∧¬g. Let f be a
closed pattern, namely a pattern such that fv( f ) = /0; the semantics of f , notation J f K,
is the set of messages that are matched by f , that is J f K = {m | ∃σ : m ∈ f ; σ}. We
impose an additional constraint on patterns occurring in output actions, which we call
output patterns from now on. An output pattern f is valid if it matches a finite number
of names, that is J f K∩N is finite. Basically this means that a process cannot “guess”
channel names. If it sends a channel, then either it is a public channel, or a channel it
has received earlier, or it is a fresh channel (pattern validity is formalized in the long
version of the paper).

Contracts include three terminal behaviors: 0 is the behavior of a deadlocked pro-
cess that executes no further action; 1 is the behavior of the successfully terminated
process; Ω is the behavior of a process that can autonomously evolve without any fur-
ther interaction with the environment. A contract π.T describes a process that executes
an action π and then behaves according to T . There are three kinds of actions: an input
action α? f describes the ability to input any message that matches f on the channel
α; output actions α! f —i.e., free outputs—describe a similar output capability. Actions
of the form α!(a)—i.e., bound outputs—describe the creation and extrusion of a fresh,
private channel a, namely the establishment of a connection between the sender of the
message and the receiver of the message. The contracts T + S and T ⊕ S respectively
describe the external and internal choices between the behaviors described by T and S.
In an external choice, the process will behave as either T or S according to the environ-
ment. In an internal choice, the process will internally and autonomously decide to be-
have as either T or S. We also include two static operators for combining contracts, but
only as a convenient way of describing systems as terms (νa1) · · ·(νan)(T1 |T2 | · · · |Tm)
where Ti is a description of the i-th participant, which is essentially a sequential pro-
cess, the ai’s are the private channels used by the participants to communicate with
each other, and the participants execute in parallel. It can be shown that restriction and
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parallel composition are redundant and their effects can be expressed by suitable com-
binations of actions (including bound output actions) and the two choice operators.

To cope with infinite behaviors we use a technique we introduced in [14] and al-
low contracts (but not patterns) to be infinite, provided that they satisfy the following
conditions: (1) their syntax tree must be regular, namely it must be made of a finite
number of different subtrees; (2) the syntax tree must contain a finite number of occur-
rences of the parallel composition operator and of the restriction operator. The reason of
such a choice is that we want to account for infinite behaviors in a syntax-independent
way. In process algebra literature infinite behaviours are obtained by adding syntax for
defining recursive processes: usually these appear in the form of recursively defined
processes rec X .T , or of starred processes T ∗, or of a separate set of mutually recur-
sive declarations. These are nothing but finite representations of the infinite (syntax)
trees obtained by unfolding or expanding them. We believe that it is far simpler and
enlightening to get rid of syntactic constraints and work directly on infinite trees by
relying on the theory developed by Bruno Courcelle [16]. In our theory we do not con-
sider every possible infinite tree but just those that satisfy the two conditions above.
The first condition – regularity – powers down the expressiveness of the language to
include only and all contracts that can be generated by the rec-expressions or mutually
recursive declarations customary in the process algebra literature (it is well-known that
in a nondeterministic setting the ∗ operator is not as expressive as recursive definitions).
Nevertheless all results stated in this work hold also for non regular trees, except the de-
cidability ones of course. The second condition, which requires that only finitely many
restrictions and parallel compositions occur in a contract, ensures that every contract
describes a finite-state system (and, incidentally, keeps the whole theory decidable).
Once the results are established for infinite trees, then it is straightforward to transpose
them to any concrete syntax chosen and verify the consequences of this choice (see [14,
13] for a more detailed discussion on similar restrictions).

We give contracts the labeled operational semantics defined by the rules below, plus
the symmetric of the rules for the binary operators. Labels are generated by the grammar
µ ::= X | c?m | c!m | c!(a) and we use standard definitions bn(·) and fn(·) of bound
and free names for labels and contracts:

Ω−→Ω 1
X−→ 1 T ⊕S−→ T c!m.T

c!m−→ T
m ∈ f ; /0 m 6= f

c! f .T −→ c!m.T

a 6= c

c!(a).T
c!(a)−→ T

m ∈ f ; σ

c? f .T
c?m−→ T σ

T
µ−→ T ′

T +S
µ−→ T ′

T −→ T ′

T +S−→ T ′+S

T −→ T ′

T |S−→ T ′ |S

T
µ−→ T ′ µ 6=X bn(µ)∩fn(S) = /0

T |S µ−→ T ′ |S

T
X−→ T ′ S

X−→ S′

T |S X−→ T ′ |S′

T
c!m−→ T ′ S

c?m−→ S′

T |S−→ T ′ |S′
T

c!(a)−→ T ′ S
c?a−→ S′ a 6∈ fn(S)

T |S−→ (νa)(T ′ |S′)

T
µ−→ T ′ a 6∈ fn(µ)∪bn(µ)

(νa)T
µ−→ (νa)T ′

T
c!a−→ T ′ a 6= c

(νa)T
c!(a)−→ T ′

T −→ T ′

(νa)T −→ (νa)T ′
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The contract Ω provides an unbound number of internal transitions, while no tran-
sition stems from 0. The contract 1 emits a label X denoting successful termination
and reduces to itself. The internal choice T ⊕S may silently reduce to either T or S. A
contract c! f .T first silently chooses one particular message m that matches f , and then
emits it. The operational semantics requires that no name is captured (the substitution
resulting from matching must be /0) but this follows from validity of output patterns.
A contract c!(a).T emits a fresh (a 6= c) channel name a and reduces to T . A contract
c? f .T is capable of receiving any message m that matches f and reduces to T where
all the captured channel names in m are substituted for the corresponding capture vari-
ables. We omit the precise definition of substitution, which is standard except that it
applies also to free variables occurring in patterns. An external choice T + S offers all
visible actions that are offered by either T or S. Both the external choice and the parallel
composition are preserved under internal choices of their component contracts. In par-
ticular, the rule for + indicates that this operator is a truly external choice. Any visible
action emitted by either T or S is also emitted by their parallel composition, provided
that the action is different fromX and that no capture of free names occurs. The parallel
composition of two contracts is successfully terminated only if both contracts are. Then
we have the usual synchronization rules for parallel composition, where pairs of dual
actions react and give rise to an internal action. Finally, visible transitions whose labels
have names that differ from a restricted one are propagated outside restrictions, and so
are invisible transitions. The output of a channel name becomes a connection whenever
it escapes its restriction. In the following we write T X−→ (respectively T X

µ−→) if there is
no T ′ such that T −→ T ′ (respectively T

µ−→ T ′); if T X−→, then we say that T is stable;
we write =⇒ for the reflexive, transitive closure of −→; we write

µ
=⇒ for =⇒ µ−→=⇒.

Remark 1. Our syntax is redundant insofar as 0 and Ω can be encoded respectively
as the infinite processes (solution of the equations) X = X + X and X = X ⊕X . Both
are regular and finite state and, according to the LTS, the former cannot perform any
transition while the latter can only perform internal transitions and rewrite to itself. �

Remark 2. Patterns allow us to capture different flavors of the π-calculus: standard π-
calculus is obtained by using variable and singleton patterns in outputs and capture
patterns in inputs. Adding singleton patterns in inputs gives us the π-calculus with
matching ([x = y]T can be encoded as (νc)(c!x | c?y.T ) for c not free in T ); negation
adds mismatch (([x 6= y]T ≡ (νc)(c!x |c?¬y.T )); the polyadic π-calculus is obtained by
adding the product constructor to patterns. �

Example 1. The contract

TSeller
def= store?(x).x?String.(x!error.1⊕ x!Int.(x?ok.ship!x.1+ x?quit.1))

describes the behavior of a “seller” process that accepts connections on a public channel
store. The conversation continues on the private channel x sent by the “buyer”: the
seller waits for the name of an item, and it sends back either the value error indicating
that the item is not in the catalog, or the price of the item. In this case the seller waits for
a decision from the buyer. If the buyer answers ok, the seller delegates some “shipper”
process to conclude the transaction, by sending it the private channel x via the public
channel ship. If the buyer answers quit, the transaction terminates immediately. �
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We now formalize the notion of well-formed system and we do so in two steps. First
we characterize the compliance of a component T with respect to another component
S, namely the fact that the component T is capable of correct termination if composed
with another component that behaves according to S; then, we say that a system is well
formed if every component of the system is compliant with the rest of the system.

Definition 1 (compliance). Let # be the least symmetric relation such thatX#X, c!m#
c?m, and c!(a) # c?a. Let [T | S] stand for the system T | S possibly enclosed within
restrictions. We say that T is compliant with S, notation T / S, if T |S =⇒ [T ′ |S′] and
T ′ X−→ implies that there exist µ1 and µ2 such that µ1 # µ2 and T ′

µ1−→ and S′
µ2=⇒.

According to the definition, T is compliant with S if every computation of T |S leading
to a state where the residual of T is stable is such that either the residual of T has suc-
cessfully terminated and the residual of S will eventually terminate successfully, or the
two residuals can eventually synchronize. The transition labeled by µ2 is weak because
the synchronization may only be available after some time. Notwithstanding this, the
availability of µ2 is guaranteed because compliance quantifies over every possible com-
putation. Observe that Ω is compliant with every S (but not viceversa). This is obvious,
since Ω denotes indefinite progress without any support from the environment.

Compliance roughly corresponds to the notion of “passing a test” in the classical
testing framework [20, 5, 26]: T compliant with S is like saying that S must pass the test
T . There is an important difference though: in the classical framework, divergence is
a catastrophic event that may prevent the test from reaching a successful state. This is
sometimes justified as the fact that a diverging component may eat up all the computa-
tional power of a system, making the rest of the system starve for progress. In a setting
where processes run on different machines/cores this justification is not applicable. Ac-
tually, divergence turns out to characterize good systems, those that do have progress. In
particular, divergence of the test T is ignored, since it implies that T is making progress
autonomously; divergence of the contract S being tested is ignored, in the sense that all
the visible actions it provides are guaranteed. For example, we have c?a.1 / c!a.1+Ω.
In this sense, + is a “strongly external” choice (if compared to the external choice
in [20, 26]) since it guarantees the visible actions in the converging branches.

Definition 2 (well-formed system). Let ∏i∈{1,...,n}Ti stand for the system T1 | · · · |Tn,
where ∏i∈ /0 = 1 by definition. Let S ≡ ∏i∈{1,...,n}Ti. We say that the system S is well
formed if Tk / ∏i∈{1,...,n}\{k}Ti for every 1 ≤ k ≤ n. We say that T and S are dual,
notation T ./ S, if T |S is a well-formed system.

For example, we have that c?a.1+c?b.1 |c!a.1⊕c!b.1 is well formed but c?a.1 |c!a.1⊕
c!b.1 is not. Similarly, c!Int.1 | c?Int.1 + c?¬Int.0 is well formed but c!Int∨ a.1 |
c?Int.1 + c?¬Int.0 is not because c!Int∨ a.1 | c?Int.1 + c?¬Int.0 =⇒ 1 | 0. The
systems 1 and Ω are trivially well formed: the former has terminated, and hence is
compliant with the rest of the system, which is empty and consequently terminated as
well; the latter is compliant with every system, and thus with the empty system as well.

Duality is the symmetric version of compliance, namely it considers the success of
the test as well as of the contract being tested. Technically this corresponds to restricting
the set of tests (or observers) of a contract T to those contracts that not only are satisfied
by T but that additionally satisfy T .
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Example 2. The contracts

TBuyer
def= store!(c).c!String.(c?error.1+ c?Int.c!ok.c!String.1)

TShipper
def= ship?(x).x?String.1

describe the behavior of a client that is always willing to buy the requested item re-
gardless of its price, and of a shipper that asks the buyer’s address before terminating
successfully. The system TBuyer |TShipper |TSeller is well formed since the only maximal
computation starting from these contracts ends up in 1 |1 |1. �

Well-formedness is a property of whole systems, but it is of little help when we
want to reason about the single components of a system. For example, the contract Ω

by itself is a well-formed system and any system in which one of its components has
contract 0 is clearly ill formed. The contract TBuyer in Example 2 is not a well-formed
system by itself, yet it is very different from 0: there exist components that, combined
with TBuyer, make a well-formed system, while this is impossible for 0. In this sense we
say that TBuyer is viable and 0 is not.

Definition 3 (viability). We say that T is viable, notation T ./, if T ./ S for some S.

Our notion of viability roughly corresponds to the notion of well-typed process in
theories of session types. There is a fundamental difference though: a locally well-typed
process (in the sense of session types) yields a well-typed system when completed by
any context that is itself well-typed, whereas for a contract to be viable it suffices to find
one particular context that can yield a well-formed system. This intuition suggests that
well-typedness of a process is a much stricter requirement than viability, and explains
why the guarantee of global properties such as system well-formedness comes at the
cost of imposing severe constraints on the behavior of the single components. As an
example that shows the difference between well-typedness and viability, consider the
contracts T def= c?a.1 + c?b.0 and S def= c?a.0 + c?b.1. Both are viable when taken in
isolation, but their composition is not: an hypothetical third component interacting with
T | S cannot send c!b because T might read it and reduce to 0, and symmetrically it
cannot send c!a because S might read it and reduce to 0.

Duality induces a semantic notion of equivalence between contracts. Informally,
two contracts are equivalent if they have the same duals.

Definition 4 (subcontract). We say that T is a subcontract of S, notation T � S, if
T ./ R implies S ./ R for every R. Let ≈ be the equivalence relation induced by �.

For example T ⊕ S � T , namely it is safe to replace a process with a more deter-
ministic one. Then we have T � 1 + T and T � Ω + T , namely it is safe to replace a
process with another one that, in addition to exposing the behavior of the original pro-
cess, is also able to immediately terminate with success or is immediately able to make
autonomous progress. Observe that 0, 1, and Ω are pairwise different: 0 is the least el-
ement of � and T ≈ 0 means that there is no context that can guarantee progress to T ,
hence the process with contract T is ill-typed; 1 6≈Ω because 1 ./ 1 but 1 6./ Ω. Indeed
1 denotes eventual termination, while Ω denotes indefinite progress.
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Just as for the π-calculus, it is easy to see that � is a precongruence for action
prefixes without bound variables, and we have that T σ � Sσ for every σ such that
dom(σ) = bv( f ) implies c? f .T � c? f .S. Additionally, � is a precongruence with re-
spect to ⊕: it suffices to observe that R ./ T ⊕ S if and only if R ./ T and R ./ S. It is
equally easy to see however that� is not a precongruence with respect to +, because of
the relation 0 � T . For example 0 � c?a.0, but c?a.1 + 0 6� c?a.1 + c?a.0. This makes
it difficult to axiomatize �, since it is not possible to replace equals for equals in arbi-
trary contexts. Furthermore, the usefulness of the relation 0 � T is questionable, since
it allows the replacement of a deadlocked process with anything else. But if the process
is already deadlocked, for sure the system it lives in is ill-formed from the start and it
makes little sense to require that the system behaves well after the upgrade. Thus, we
will also consider the closure of � with respect to external choice.

Definition 5 (strong subcontract relation). Let v be the largest relation included in
� that is a precongruence with respect to +, namely T v S def⇐⇒ T + R � S + R for
every R. We write ' for the equivalence relation induced by v.

Unlike�, we have 0 6v T in general, but π.0v π.T does hold. In fact, it is interesting
to investigate whether the loss of the law 0 � T in particular, and the use of v instead
of � in general, have any significant impact on the theory. The following result shows
that this is not the case:

Theorem 1. If T ./ and T � S, then T v S.

Namely, � and v may differ only when the �-smaller contract is not viable. In
practice, the use of v over � has no impact: the relation T v 0 completely charac-
terizes non-viable contracts and upgrading, specialization, and searching based on the
subcontract relation make sense only when the smaller contract is viable. In fact, v
allows us to reason on the properties of a process by means of its contract:

Proposition 1. The following properties hold: (1) T ./ iff T 6v 0; (2) 1+T v T iff T =⇒
T ′ implies T ′ X=⇒; (3) Ω+T v T iff T =⇒ T ′ implies T ′ −→.

Item (1) characterizes viable contracts, and hence describe processes that are well typed.
Item (2) characterizes those contracts that, when reaching a stable state, are in a success-
ful state; consequently, the property gives us a sufficient (but not necessary) condition
for well-formedness. Item (3) characterizes those contracts that never reach a stable
state, and hence describe processes that are capable of making indefinite progress.

3 Typing a core language of sessions

One possible way to assess the expressiveness of the contract language would be to
provide a contract-based type system for one of the latest session type calculi in the
literature. Unfortunately, this would spoil the simplicity of our approach: existing ses-
sion type calculi are of increasing complexity and include ad-hoc operators designed to
adapt session types to new usage scenarios. Typing such operators with our types would
require twisted encodings, bringing back that very kind of complexity that our contracts
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aim to avoid. For these reasons we prefer to introduce yet another session core calcu-
lus, use it to encode examples defined in other papers to motivate the introduction of
restrictions and specialized constructs, and finally show that our types allow us to prove
progress for these examples (and for more complex ones that escape current session
type systems) without resorting to ad-hoc linguistic constructions.

The calculus we propose here—just as a proof-of-concept, not as an object of
study—is a streamlined version of several calculi introduced in the literature (eg, [4,
18, 21]) and is defined by the following productions, where t is either Bool or Int and
e ranges over unspecified expressions on these types:

P ::= 0 | α!(a).P | α!〈e〉.P | α?(x : t).P | α!LαM.P | α?LxM.P
| α / `.P | α .{`i : Pi}i∈I | P |P | (νa)P | if e then P else P

For a reader knowledgeable of session types literature the syntax above needs no
explanation. It boils down to a π-calculus that explicitly differentiates (channel) names,
ranged over by a,b,c, . . . from variables, ranged over by x,y,z, . . . (only the former can
be restricted, only the latter can be abstracted) and enriched with specific constructions
for sessions, namely actions α!LαM and α?LxM for session delegation3 and actions α / `
and α . {`i : Pi}i∈I for label-based session branching. The calculus also includes both
bound and free outputs, the former being used for session connection, the latter for
communication. Infinite behaviour is obtained by considering terms coinductively gen-
erated by the productions, in the same way as we did for contracts and with the same
restrictions.The semantics of the calculus is defined by an LTS whose most important
rules are (see the online extended version for all rules):

c!LaM.P
c!a−→ P c?LxM.P

c?a−→ P{a/x} c/ `.P
c!`−→ P

a 6= c

c!(a).P
c!(a)−→ P

e ↓ v

c!〈e〉.P c!v−→ P

v : t

c?(x : t).P
c?v−→ P{v/x}

k ∈ I

c.{`i : Pi}i∈I
c?`k−→ Pk

The typing relation for the process calculus is coinductively defined by the following
rules (where Ch≡¬¬(x) is the type of all channel names and the various `’s are reserved
names that cannot be restricted or appear as subject of a communication).

END
Γ ` 0 : 1

NAME
Γ ` a : Ch

VAR
Γ ` x : Γ (x)

F-OUTPUT
Γ ` α : Ch Γ ` e : t Γ ` P : T

Γ ` α!e.P : α!t.T

INPUT
Γ ` α : Ch Γ ,x : t ` P : T

Γ ` α?(x : t).P : α?t.T
B-OUTPUT
Γ ` α : Ch Γ ` P : T

Γ ` α!(a).P : α!(a).T

C-SEND
Γ ` α,β : Ch Γ ` P : T

Γ ` α!Lβ M.P : α!β .T

C-RECV
Γ ` α : Ch Γ ,x : Ch ` P : T

Γ ` α?LxM.P : α?(x).T

3 In our case one should rather speak of “session forwarding” or “session sharing” since, con-
trarily to session type systems, we do not enforce channel bi-linearity.
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CHOICE
Γ ` α : Ch Γ ` P : T

Γ ` α / `.P : α!`.T

BRANCH
Γ ` α : Ch Γ ` Pi : Ti

Γ ` α .{`i : Pi}i∈I : ∑
i∈I

α?`i.Ti

NEW
Γ ` P : T

Γ ` (νa)P : (νa)T

PAR
Γ ` P : T Γ ` Q : S

Γ ` P |Q : T |S

IF
Γ ` e : Bool Γ ` P : T Γ ` Q : S

Γ ` if e then P else Q : T ⊕S

The rules are straightforward since they perform a very simple abstraction on the con-
tent of communications. Although this typing permits a quite liberal usage of channels,
it is sufficient to verify the progress property, as stated by the following theorem:

Theorem 2 (progress). We say that a process has succeeded whenever it contains no
action. If ` P : T and 1+T v T and P τ=⇒ Q X τ−→, then Q has succeeded.

In words, for any residual Q of a process whose contract T satisfies 1 + T v T , if Q
cannot make further progress (Q X τ−→), then it contains no further actions (i.e., it is a
possibly restricted parallel composition of null processes 0) that is to say that all its
components have successfully terminated.

We devote the rest of the section to the encoding of a few examples in our process
language, some are taken from existing bibliography, others are new. The motivating
example of [18] is (in our syntax) the following pair of processes

P = a?LxM.b?LyM.x!3.x?(z : Int).y!true.0
Q = a!(c).b!(d).c?(z : Int).d?(z′ : Bool).c!5.0

The two processes initiate two sessions on (public) channels a and b and they ex-
change two integers over the former and a boolean value over the latter. The paral-
lel composition of these two processes deadlocks. This composition type-checks in
simple session type theories that verify the order of messages in each single session.
The system in [18] ensures progress and thus rejects this composition. Progress is
enforced by establishing a partial order on sessions and requiring that the usage of
session channels respects this order. So in [18] the process P can be composed with
Q′ = a!(c).b!(d).c?(z : Int).c!5.d?(z′ : Bool).0 since in both processes the communi-
cation on b follows all communications on a. In our system the two processes have
respectively type:

TP = a?(x).b?(y).x!Int.x?Int.y!Bool.1 TQ = a!(c).b!(d).c?Int.d?Bool.c!Int.1

We have TP |TQ v 0, hence the composition does not satisfy progress. In fact we can
tell something more: TP |TQ is not viable, namely there is no process, that composed
with P and Q, allows us to obtain a well-formed system. As in [18] our system detects
that P |Q′ is well formed, since 1 + (TP | TQ′) v TP | TQ′ (we let the reader figure out
TQ′ ). Furthermore while the system in [18] rejects the composition of Q with P′ =
a?LxM.b?LyM.x!3.y!true.x?(z : Int).0, since it is not possible to order the actions of the
two sessions, our system instead proves progress for this composition too.

Other restrictions introduced for session types to enforce progress are useless in
our framework. In particular, we do not require linearity of session channels: a process
can still use a channel that it has “delegated” without necessarily jeopardizing progress.
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Consider the following two processes P′ = a?LxM.b?LyM.x!LyM.x?(z : Int).y!true.0 and
Q′ = a!(c).b!(d).c?LzM.c!5.z?(z′ : Bool).0. Although P′ uses y after having delegated
it, the contract T of P′ |Q′ satisfies 1 +T v T . This freedom from linearity constraints
instantly enables multi-party sessions, without the need of any dedicated syntax. Con-
sider for instance the “Two Buyers” protocol of [22], which describes a conversation
between a seller and two buyers, the first buyer being the initiator of the multi-party
session. It can be rendered in our language as follows

Seller = a?LxM.x?(title : String).x!〈quote〉.x!〈quote〉.
x.{ok : x?(addr : String).x!〈date〉.0, quit : 0}

Buyer1 = a!(c).a!LcM.c!〈“War and Peace”〉.c?(quote : Int).b!(d).d!〈quote/2〉.0
Buyer2 = a?LxM.x?(quote : Int).b?LyM.y?(contrib : Int).if quote− contrib≤ 99

then x/ok.x!〈address〉.x?(d : Date).0 else x/quit.0

Buyer1 initiates the session on the public channel a by broadcasting twice the session
channel c. This channel is received by Seller and Buyer2, used by Buyer1 to request a
title to Seller, and used by Seller to send the price to both buyers and to conclude the
transaction with Buyer2. As for [22] the communication between the two buyers takes
place on a separate private channel y initiated on the public channel b. The three agents
are really the same as the corresponding ones in [22] except that (i) connections are
dyadic and do not have to explicitly state the name of the intended partner and (ii) Seller
is not aware of the private channel used by the buyers to communicate together. As [22]
our type system: (1) it ensures that the composition of the above agents is well typed
since their contracts are

Seller : a?(x).x?String.x!Int.x!Int.(x?ok.x?String.x!Date.1+ x?quit.1)
Buyer1 : a!(c).a!LcM.c!String.c?Int.b!(d).d!Int.1
Buyer2 : a?(x).x?Int.b?(y).y?Int.(x!ok.x!String.x?Date.1⊕ x!quit.1)

and the parallel composition T of these contracts satisfies the law 1+T v T and (2) it
would reject the protocol if the channel c were also used for the inter-buyer communi-
cation. Of course the property 1 + T v T ensures that the system formed by the three
agents has also progress, as does the system of [4] which extends [22] with progress.

The full expressive power of contracts emerges when specifying recursive protocols.
To illustrate the point we encode a well-known variant of the Diffie-Hellman protocol,
the Authenticated Group Key Agreement protocol A-GDH.2, defined in [2]. This proto-
col allows a group of n processes P1 . . .Pn to share a common authenticated key sn. The
protocol assumes the existence of n channels c1 . . .cn each ci being shared between Pi−1
and Pi (for the sake of the simplicity we use a bootstrapping process P0 absent in the
original presentation). The original algorithm also assumes that the process Pn shares a
secret key Ki with process Pi for i ∈ [0,n). We spice up the algorithm so that the sharing
of these keys is implemented via a private channel that is delegated at each step along
the participants:

P0 = c1!〈d〉.c1?LyM.y/ok.0

Pi = ci?(x : data).ci+1!〈 f (x)〉.ci+1?LyM.y/key.y!〈Ki〉.y?(s : Int).ci!LyM.0 i∈[1,n)

Pn = cn?(x : data).cn!(c).Q with Q = c.{ok : 0 , key : c?(k : Int).c!〈g(x,k)〉.Q}
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In a nutshell, P0 starts the protocol by sending some data d to P1; each intermediate
process Pi receives some data x from Pi−1, uses this data to compute new data f (x) that it
forwards to Pi+1; the terminal process Pn receives the data x from Pn−1, generates a new
private channel c used for retrieving from every process Pi the key Ki and sending back
an integer g(x,Ki) (from which Pi can deduce the key sn). Each intermediate process
delegates the channel y to its predecessor and P0 notifies to Pn the successful termination
of the protocol (refer to Figures 2 and 3 of [2] for precise definitions of f and g).

The algorithm is quite complex to analyse for at least two reasons: (i) Pn is re-
cursively defined since it does not know a priori how many processes take part in the
protocol (actually it statically knows just the existence of channel cn), and (ii) all the
shared keys are transmitted over the same channel c (generated in the second action of
Pn) which constitutes a potential source of interference that may hinder progress.

All the session type systems that enforce progress we are aware of fail to type check
the above protocol. In particular the progress type systems for dyadic sessions [18] and
multi-party ones [4] fail to type Pi because, as long as the ci are considered private
channels, it performs an output on a channel ci in the continuation of the reception of a
delegation; also, the protocol ends by emitting ok on the channel y, but every Pi process
uses ci before and after a synchronization on y, so it is not possible to find a well-
founded order on y and the various ci’s since there is a double alternation of actions on
y and ci. Likewise, conversation types [11] can type all the processes of the protocol
but progress cannot be ensured because there is no well-founded order for channels. As
a matter of facts, in all these works progress is enforced by the techniques introduced
by Kobayashi [23, 24] where types are inhabited by channels on which a well-founded
usage (capability/obligation, in Kobayashi’s terminology) order can be established. By
inhabiting types by processes we escape the need of such an order and thus can type the
processes of the protocol.

Classical Sessions Typing. The type system presented earlier in the section is enough
to ensure the progress property stated in Theorem 2. However, in some contexts it
may be desirable to enforce a stricter typing discipline in order to impose a particular
communication model. Let us clarify this point with an example. Consider the system
c?(x : Int).0 |c?(x : Bool).0 |c!〈3〉.0 |c!〈true〉.0 which is composed of four processes,
two of which are sending on the channel c messages with different types (Int and
Bool) while the remaining processes are waiting for two messages on the channel c (of
type Int and Bool). Its contract is S def= c?Int.1 | c?Bool.1 | c!Int.1 | c!Bool.1 which
satisfies 1 + S v S. Namely, the above system is free from communication errors de-
spite it contains processes that are sending and receiving messages of different types
on the same channel at the same time. Technically this happens because the operational
semantics of contracts (and of processes) does not distinguish between communication
and matching. In practice, the typing rules we have given reflect a particular communi-
cation model: a receiver waits until a message of the expected type is available. Thus, a
well-formed system is such that any process that is blocked waiting for a message will
eventually read a message of the expected type, and any process that is blocked trying
to send a message will eventually deliver it to someone who is able to handle it.

This communication model is not the only reasonable one, especially in a distributed
setting where asynchrony decouples communication from the ability to inspect the con-
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tent of messages. In this setting, it could be reasonable to assume that a process waiting
for messages sent on some channel c should be ready to handle any message sent on
that channel at that particular time. Somewhat surprisingly, this communication model
can be implemented without any change to the operational semantics of contracts and
processes, but merely adjusting a few typing rules, those that deal with input actions:

INPUT
Γ ` α : Ch Γ ,x : t ` P : T

Γ ` α?(x : t).P : α?t.T +α?¬t.0

C-RECV
Γ ` α : Ch Γ ,x : Ch ` P : T

Γ ` α?LxM.P : α?(x).T +α?¬Ch.0

BRANCH
Γ ` α : Ch Γ ` Pi : Ti

Γ ` α .{`i : Pi}i∈I : ∑
i∈I

α?`i.Ti +α?
∧
i∈I
¬`i.0

Intuitively, the contract of a process waiting for messages states that the process is
capable of receiving any message, but only those of some particular type will allow the
process to continue. If the process receives a message that it is not able to handle, the
process deadlocks, therefore compromising well-formedness of the system it belongs
to. With these typing rules in place, we are making the assumption that at each step of a
computation any channel is implicitly associated with a unique type of its messages (i.e.,
a set of labels, a set of values, a finite set of channel names, or a combination of these in
case the language provides for boolean operators over types) and that every process that
at that step waits for messages on that channel must be able to handle every message
that is or may be sent on it. With the modified typing rules, the above system is typed
by the contract S′ def= c?Int.1 + c?¬Int.0 | c?Bool.1 + c?¬Bool.0 | c!Int.1 | c!Bool.1
and it is immediate to see that this system no longer enjoys progress, since S′ v 0.

Interestingly, this modified typing discipline gives rise to the same subtyping rela-
tion as the one defined by Gay and Hole for session types [19]. In particular, we have
contravariance for outputs, covariance for inputs, and width subtyping for branching.
More precisely if we define the subtyping relation for patterns (and thus for types) as
f ≤ g def= J f K⊆ JgK, then it is not difficult to verify the soundness of the rules

f ≤ g T v S
c!g.T v c! f .S

f ≤ g T v S
c? f .T + c?¬ f .0v c?g.S + c?¬g.0

The two rules state that the implicit type of a channel (in the sense of session types:
we do not assign any type to channels) can be contravariantly specialized for emission
actions (F-OUTPUT), (C-SEND), (CHOICE) and covariantly specialized for reception
actions (INPUT), (C-RECV), (BRANCH). For instance, when in the system above we
deduce for the process c?(x : t).P the contract c?t.T +c?¬t.0 we are implicitly assuming
that the channel c in the system of Gay and Hole would have type ?[t].T ′ for some T ′

(which would be the projection of T over c); the rule on the right hand side states that it
can be safely replaced by a channel whose (implicit) type is ?[s].T ′, provided that t ≤ s.

The language proposed in this section is just an example of how our contracts can
be used. But one can, and indeed should, imagine to use them to type advanced process
calculi with, for instance, type driven synchronization (e.g., the language PiST for ses-
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sions defined in [13]) or first-class processes (contracts being assigned to processes, a
typed calculus with higher-order processes looks as a natural next step).

4 Related Work and Conclusions

The latest works on session types witness a general trend to use more and more informa-
tive types, a trend that makes these approaches closer to the techniques of specification
refinement. Here we push this trend to an extreme. Contracts are behavioral types that
accurately capture the behavior of participants in a conversation by providing a rela-
tively shallow abstraction over processes that respect them. We are at the edge between
behavioral types, specification refinements, and abstract interpretation: contracts record
the flow of communications only when channels are passed around and they abstract
communication content into patterns; values are abstracted into possibly infinite set of
values (i.e., types) and names into finite sets of names (i.e., valid output patterns). Inas-
much as shallow this abstraction is, it is enough to define a theory of contracts (whose
comparison with testing theories was discussed in Sections 1 and 2) that allows us to
reason effectively (see the online extended version for decidability results) about the
correctness of systems and about the safe substitutability and well-typedness of com-
ponents of a system: it makes us switch from undecidability to decidability. A similar
approach is followed by [9], where the content of messages can be made opaque and
thus abstracted; this is closer to, though grosser than, the refinement approach. The cru-
cial difference between our approach and all other theories of contracts, [9] included, is
that we keep track of names passed around in communications.

We discussed technical differences between contracts and session types all the pre-
sentation long. The key point is that contracts record the overall behavior of a process,
while session types project this behavior on the various private channels the process
uses. Providing partial views of the behavior makes session types more readable and
manageable. At the same time it hinders their use in enforcing global properties—
notably, progress—whence the need for awkward restrictions such as channel linearity,
controlled nesting, scarce session interleaving, and global order on channel usage. In
practice, the two approaches have both pros and cons. The contract approach is “op-
timistic” in that a process is considered well typed as long as there exists at least one
context that composed with it yields a well-formed system; session types, instead, ac-
count for the nastier possible context. Thus, the contract-based approach widens the
spectrum of well-typed (viable) processes but, as we have seen, the composition of vi-
able processes is not necessarily viable. This implies that to prove viability of a parallel
composition of processes our approach requires a global system analysis that effectively
enumerates all control-flow paths, whereas session types allow each process component
to be verified independently. However, if a process is not viable, then it is easy to ex-
hibit a trace of actions that leads the process into an error state by looking at its contract.
The session-based approach restricts the set of well-typed processes, but makes it easy
to compose them. However, if the type checker detects an ill-typed process, it may be
unable to provide any sensible information to help the programmer fix the problem.

An interesting, related approach is the one of Conversation Types [11]. Conversation
Types are close to contracts, inasmuch as types provide a global and unique description
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of the processes involved in a composition. The difference resides mainly in the formal-
ism used to describe the behavior: contracts stick as close as possible to the π-calculus,
while Conversation Types draw their inspiration from the structural features of spatial
logic [10] and Boxed Ambients [8] by organizing behavior around places of conversa-
tion (which thus generalize sessions) and describing communications relatively to them
(local vs. external). As in our case the approach of Conversation Types is optimistic
and does not require awkward usage conditions: for instance Conversation Types allow
processes to still use a channel after having delegated it, as for contracts. Conversation
Types do not ensure progress, which is instead enforced via an auxiliary deduction sys-
tem that exploits an order relation on channels. In this respect Conversation Types seem
more basic than contracts. The authors say that the Conversation Calculus they type can
be seen as a π-calculus with labels and patterns, as our calculus is. It will be interest-
ing to check whether/how contracts can type the conversation calculus and deduce an
in-depth comparison of the two approaches. We leave this as future work.

A problem that is connected with but orthogonal to the ones studied here is the
global specification of choreographies. Contracts are subjective descriptions of (com-
ponents of) systems, but cannot be used to give a global specification of a choreography
to which every acceptable implementation (decomposition) must conform. As a matter
of facts, in our theory a closed, well-formed system is typed by either 1 or Ω. There
exist two main proposals of languages for high-level specification of the structure of
conversation within a choreography against which the components of the choreogra-
phy must be validated. The first proposal, issued from the literature of session types, is
based on the definition of “global types” that describe the structure of conversation by
listing for each session the sender, receiver and content of each communication [22, 27].
The second proposal is directly embedded into conversation types, since they describe
the global structure of the conversation by providing a set of traces in which internal
transitions are labeled by the synchronization that generated them. Whether these two
approaches fit our setting is matter of future research.

Alternative characterizations of viability and of the subcontract relations, as well as
the proof system forv, shed light on important aspects of the theory, yet we had to omit
them because of the page limit: they can be found in the online extended version. We are
currently extending the completeness proof of the deduction system to an algorithm for
deciding v. In this respect, the constraint of working with regular (hence finite-state)
contracts plays a crucial role and may prove fundamental in comparing the expressive
power of our theory with alternative theories that share common goals. The exact im-
plications of this constraint are currently unclear and subject of in-depth investigations.
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