
Type-Safe Compilation of Covariant
Specialization: A Practical Case

In European Conf. on Object-Oriented Progr. (ECOOP'96), Lecture Notes in Computer Science 1098:3-25, 1996.
John Boyland1? and Giuseppe Castagna2

1 University of California at Berkeley, Berkeley CA 94720-1776, USA
2 CNRS, LIENS-DMI, École Normale Supérieure, 45 rue d’Ulm, 75005 Paris, France

Abstract. Despite its lack of type safety, some typed object-oriented languages
use covariant specialization for methods. In this work, we show how one may
modify the semantics of languages that use covariant specialization in order to
improve their type safety. We demonstrate our technique using O2, a strongly
and statically typed object-oriented database programming language which uses
covariant specialization. We propose a modification to the O2 compiler that adds
code to correct previously ill-typed computations that arise from the use of co-
variant specialization. The modification we propose does not affect the semantics
of those computations without type errors. Furthermore, the new semantics of the
previously ill-typed computations is defined in a very “natural” way and ensures
the type safety (w.r.t. covariance) of the program. Since the solution consists of
a conservative backward-compatible modification of the compiler, it does not re-
quire, unlike other solutions, any modification of existing O2 code. Our solution is
based solely on a type-theoretic analysis and thus is general. Therefore, although
this paper applies it to a particular programming language, the same ideas could
easily be applied to other languages that use covariant specialization.

1 Introduction

Strongly-typed object-oriented languages impose conditions in order to statically ensure
type safety for method overriding. In particular, in the presence of subtyping, type safety
requires that the type of the result of the overriding method be a subtype of the type of
the result of the overridden one, and that the types of the parameters of the overridden
method are subtypes of those of the corresponding parameters in the overriding one.
In type theory, this rule is said to be covariant in the result type (since it preserves
the sense of the subtype relation) and contravariant on the parameters’ types (since it
inverts the sense of the relation). Since the parameter behavior is taken as representative,
one speaks in this case of contravariant specialization.

Although type-safe, contravariant specialization restricts the flexibility of a language
considerably. For this reason, some object-oriented language designers put expressive-
ness above strict type safety and instead adopt the more flexible covariant specialization
rule, which requires exactly the opposite subtyping relation for parameters, namely that? The work of John Boyland was supported in part by Advanced Research Projects Agency grant

MDA972-92-J-1028, and by NSF Infrastructure grant CDA-9401156. The content of this paper
does not necessarily reflect the position or the policy of the U. S. Government, and no official
endorsement should be inferred.

the type of the parameters in the overriding method are subtypes of those of the cor-
responding parameters in the overridden one. It would seem that one cannot combine
covariant specialization and inheritanced-based subtyping in a type-safe manner.

In the last years, several solutions have been suggested to retain some of the flexibility
of covariant specialization in a type-safe framework. These solutions propose new
languages constructs (e.g. [Cas95a]), or new relations on types (e.g. [Bru94]), or the
use of different typing techniques for the methods (e.g. [BHJL86]): see [BCC+96] for
a wide review. However, none of them can be directly applied to programs written in
languages that use covariant specialization. To use these solutions, one has to throw
away the programs written with covariant specialization, and to rewrite them from
scratch either in a different language or in a extended version of the old language. In
many practical cases, such as in large databases, a complete rewrite of the existing code
would be much too expensive, even if feasible. Such cases are not merely hypothetical,
since the world’s third most popular commercial object-oriented database system, O2,
uses covariant specialization.

Despite its great practical implications, nearly no work to our knowledge has tried
to handle the problem of ensuring the type safety of existing code that uses covariant
specialization. A notable exception to this is given by the work done for the language
Eiffel [Mey91, Mey96]. Eiffel uses covariant redefinition, but uses an additional check,
the “system validity” check to detect possible type errors admitted due to covariant
specialization. Currently, the definition of Eiffel gives a link-time (i.e. global) data-flow
analysis for this purpose, but Meyer has proposed a new check that can be done locally.
Due to its complexity, the current definition is not incorporated into any widely available
compiler. The new check is much less complex, but may possibly prove too strict. Either
analysis guarantees type-safety but can only reject programs with potential type errors.

In this article we propose another solution, different from Eiffel’s, but in the same
spirit, since it can be directly applied to the existing code. What we show is that
it is not necessary to rewrite or discard any programs, since by slightly changing
the interpretation of the programs, we can ensure complete type safety. Furthermore,
this change will affect only those computations that would otherwise have undefined
semantics due to a type error.

In other words, type theoretic research so far addresses the question: How should
I have written my program to obtain type safety and also the flexibility of covariant
specialization without using it? The analysis for Eiffel answers the question: Is my
program type-safe even if I used covariant specialization? The problem addressed by
this article is substantially different. This work answers the question: How can I change
the semantics of my programs that use covariant specialization in order to ensure type
safety?

Of course, the new semantics must satisfy some minimal requirements:

1. The new semantics must be conservative over (dynamically) type-safe programs,
in the sense that the programs that worked safely even with covariance must not be
affected by the change. In other words, programs that have no type problems must
have, with the new semantics, the same meaning as with the old semantics.

2. The new semantics of ill-typed computations3 must be somehow “natural”, in the
3 By an ill-typed computation we mean a computation that includes at least one ill-typed appli-

sense that the definition of the new semantics must take into account why an ill-typed
situation has been reached and what could reasonably be its intended meaning. The
new semantics must recover from the errors, not simply hide them.

We describe our solution which fulfils these requirements by applying it to O2,
a strongly-typed object-oriented database programming language [BDK92] that uses
covariant specialization together with run-time checks to ensure type safety. The choice
is not arbitrary since the question we address is acutely pertinent in the presence of
persistent data. In particular, we sketch how to modify the standard O2 compiler to
make O2’s covariant specialization rule type-safe. Our solution does not require any
source code to be changed, neither does it require the “bases” to be recompiled; a
“schema” recompilation will suffice.4

Although in this paper, we apply our ideas to a particular programming language, our
solution is general. Being based solely on type theoretic observations, it can be applied
to other languages that uses covariant specialization, to yield a type-safe semantics, or
it can be used to define a new type-safe object-oriented language that provides covariant
specialization.

The work is organized as follows. Section 2 introduces O2 and shows why covariant
specialization is not type-safe. Section 3 reviews the work on multi-methods done
in [Cas95a]. These ideas are used in Section 4 to illustrate the solution we propose here
in the case of single inheritance. Section 5 shows that the naive extension of the previous
solution to multiple inheritance doesn’t work and uses this analysis to describe a more
sophisticated solution that does work. We close our presentation by comparing our work
with other solutions presented in the literature.

2 The Language O2 and Covariance

O2 is a strongly-typed, object-oriented database programming language. The most im-
portant aspect of O2’s type system, as with most typed object-oriented languages, is its
subtyping relation. Subtyping allows a value of a subtype to be used anywhere a value
of the supertype is expected. The use of this relation enhances the flexibility of the
language since it allows the values of a given type to use operations originally defined
for a different type.

However, the O2 type discipline is not safe; type errors may occur at run-time, even
if a program has successfully passed static type checking.5 In particular, type errors

cation: an application of a function or a method to an argument whose type is not compatible
with the parameter type (the domain) of the function/method.

4 In O2 jargon, the schema of a database is the description of the structure and the behavior of the
data; it essentially consists of class and method definitions. A collection of data (objects and
values) whose structure and behavior conforms to the definitions in a schema is called base.
A schema may be created and modified without a reference to a particular base and it can be
shared by several bases, while a base must always refer to a single schema.

5 In classical languages, the definition of a type error is well-known. In addition, in object-
oriented languages, sending a message to an object that cannot respond to it is considered a
type error.

may arise due to the use of covariant specialization. We demonstrate the problem by an
example:6class Pointtype tuple (x:real,y:real)method equal(p:Point):booleanend;method body equal(p:Point):boolean in class Pointreturn(self->x == p->x && self->y == p->y);;class ColorPoint inherit Pointtype tuple(c:string) /* x and y are inherited from Point */method equal(p:ColorPoint):booleanend;method body equal(p:ColorPoint):boolean in class ColorPointreturn(self->x == p->x && self->y == p->y && self->c == p->c);
We have two classes that represent two-dimensional points and colored points respec-
tively. The class Point has two instance variables x and y of type real and a method
for the message equal that returns a boolean when applied to an argument of classPoint. Its definition compares the instance variables of the receiver of the message
(self) with the ones of the argument. The class ColorPoint is obtained by inheritance
from Point. To represent the color, it adds the instance variable c to those inherited
from Point. It redefines (or, overrides) the method for the message equal, in order to
take into account the color of the point.

In O2, an overriding method must satisfy the following covariant specialization rule:

1. It must have the same number of parameters as the method it overrides.
2. The type of each parameter must be a (possibly improper) subtype of the type of

the corresponding parameter in the overridden method.
3. The type of the result must be smaller than or equal to the type of the result of the

overridden method.

The classes Point and ColorPoint satisfy these conditions. The rule is quite intuitive,
but it is not type-safe, as can be demonstrated by adding the following method to the
class Point:method break_it(p:Point) in class Point;method body break_it(p:Point) in class Point {p->equal(self);}
This method7 sends the message equal to the parameter p and with self as argu-
ment. It is easy to verify that, although the command (new Point)->break_it(new

6 We use version 4.0 of O2 and we specify the methods in O2C.
7 In O2, methods can be declared outside class definitions, as in the example above. This allows

one to add new methods to an existing class or to redefine the old methods.

ColorPoint) is well typed according to the rules of O2 (the command new creates
a new instance of the specified class), it leads to a type error: its execution produces
the ill-typed application of the equal method in ColorPoint to an argument of classPoint.8

The problem arises from the covariance introduced in condition (2). Type theory
states that a class C2 is a subtype of another class C1 (namely, that objects of C2 can
be type-safely used wherever an object of C1 is expected) only if the methods defined
in C1 can be type-safely replaced by those of C2 [Car88]. If a method for a message is
inherited in C2, then no typing issue is raised, since the method is the same for C1 and
C2. If the method is redefined in C2, type safety is ensured only if the new method can
replace the method defined in C1 in every context. In particular, the method in C2 must
be able to handle at least the same arguments that can be passed to the method in C1.
In our example with points, the method for equal in Point accepts arguments of type
Point while the one in ColorPoint does not. The type error in the call of break_it is
caused by the fact that the method for equal in ColorPoint is applied to an argument
of type Point, a legal argument for the method it overrides.

More formally, the problem is that the type ColorPoint ! boolean of the equal
method in ColorPoint is not a subtype of Point ! boolean.9 Indeed recall that by
definition of subtyping, S ! T � S0 ! T0 holds only if every function f of type S ! T
can be used where a function g of type S0 ! T0 is expected. This implies that the result
of f (of type T) must be able to replace the result of g (of type T 0), i.e. T � T0; and
that f can handle any argument g can, i.e. S0 � S. Thus the orientation of the inequality
of the arrow is inverted on the domains: the subtyping rule is “contravariant” in the left
component of the arrow.

In conclusion, to ensure type safety in an object-oriented language (such as used
in O2), one must require that the types of the parameters of an overriding method are
supertypes of those of the parameters of the overridden method. Otherwise the subclass
cannot be considered a subtype of its superclass, and thus objects of the subclass cannot
be used where objects of the superclass are expected. This rule disallows a useful
specialization of equal in ColorPoint, because there is no way to compute the color
component of an argument known only to be a Point. Going ahead with the specialization
would mean that the class ColorPointwould not be a subtype of the class Point, and
thus that colored point could not be used where points are expected. Thus, it appears
one is left with the choice between a useful subtype relation and a useful specialization.

The designers of O2 have preferred to give up some type safety, and to adopt
covariant specialization. In the next section, we show that there is way to allow covariant
specialization without sacrificing type safety.

8 Note that the kind of error produced by break_it is not so hard to generate. Every function that
needs to test the equality of two parameters of type Point may generate a type error of this sort.

9 According to the O2’s notation, the types of the methods for equal in ColorPoint and Point are,
respectively, ColorPoint�ColorPoint ! boolean and Point�Point ! boolean since the type
of the receiver (i.e. of self) is included among the parameters of the method. In order to simplify
the exposition, we will omit the receiver’s type from the type of the methods. This omission
does not affect the core of our discussion. For more details on receiver types, see [Cas95a].

3 Multi-methods

Our solution for making covariant specialization type-safe uses multi-methods. Multi-
methods appear in the CLOS language [DG87] and their typing issues have been studied
in [ADL91, CGL95, Cas96, CL95]. However, none of these approaches can be directly
applied to the case of O2, since they do not retain the notion of method encapsulation:
there is no privileged receiver —as in O2— to which a message is sent. Thus in this article,
we utilize a different kind of multi-methods, those studied in [Cas95a, MHH91] (and,
implicitly, also in [Ing86]). These multi-methods allow the use of multiple dispatching
(i.e., the possibility that the selection of a method is also based on other arguments of
the message) even in presence of a privileged receiver. (A detailed comparison between
the two kinds of multi-methods can be found in [BCC+96]).

In particular, it is possible to have type-safe covariant specialization when using this
second kind of multi-method with late-binding [Cas95a]. We demonstrate the idea with
the Point/ColorPoint example introduced in the previous section. The problem with
the definition of equal in ColorPoint is that it cannot handle arguments of type Point.
The intuition of our solution is that some code can be added to compensate for this
deficiency. The original method definition is executed for arguments of type ColorPoint
while the new code handles arguments of type Point. In practice, this corresponds to
changing the definition of ColorPoint:class ColorPoint inherit Pointtype tuple(c:string)method equal(p:Point):boolean,equal(p:ColorPoint):booleanend;method body equal(p:Point):boolean in class ColorPoint{return(self->x == p->x && self->y == p->y);};method body equal(p:ColorPoint):boolean in class ColorPoint{return(self->x == p->x && self->y == p->y && self->c == p->c);};
There are now two different method branches (branches for short) for the messageequal in ColorPoint.Both method branches together can be considered a single multi-
method.10 When the message equal is sent to an object of type ColorPoint, one of the
two method branches is selected for execution according to the type of the argument.
If the argument is of type Point, the first branch is used; if it is of type ColorPoint,
or of a subtype, the the second method branch is used. The selection of the branch is
performed at run-time after the argument of the message has been fully evaluated. This
is a crucial feature that differentiates multi-methods from C++’s overloaded methods
(where the selection is performed at compile time), and ensures the appropriate use of
the covariant specialization. Consider the fragment p->equal(self) in the code ofbreak_it in Point; self has static type Point, therefore if the selection of the method
were performed at compile time, the first branch of equal would be always executed,
even for
10 These kinds of multi-methods are called multivariant in [MHH91] and encapsulated multi-

methods in [BCC+96] in order to distinguish them from CLOS’s multi-methods.

(new ColorPoint)->break_it(new ColorPoint)
Here, we would expect the two points to be compared also in their color component.

What then are the rules that ensure the type safety of this approach? Recall that
type safety is guaranteed only if every overriding method possesses a subtype of the
type of the method it overrides. The type of a multi-method is the set of the types of its
various branches. The subtyping relation between sets of types (not to be confused with
the type of sets) states that one set of types is smaller than another set of types only if
for every type contained in the latter, there exists a type in the former smaller than it.11

This fits the intuition that one multi-method can be replaced by another multi-method
of different type, when for every method branch that can be selected in the former, there
is one in the latter that can replace it (for subtyping, an ordinary method is considered
to be a multi-method with just one branch: its type is a singleton).

In the new version of the point example, the type of the multi-method for equal inColorPoint is fPoint ! boolean;ColorPoint ! booleang. By the rule above we havefPoint ! boolean;ColorPoint ! booleang � fPoint ! booleang
Since fPoint ! booleang is the type of the method associated with equal in Point,
the subtyping condition is fulfilled and type safety ensured.

More generally, if one wishes to override a method12 and covariantly specialize the
type of its parameters, it is necessary also to add another branch to handle the arguments
that could be passed to the overridden method.

Adding multi-method branches to achieve type safety does not require a large amount
of programming: in case of single inheritance, the number of branches sufficient to
override covariant methods is independent from both the size and the depth of the
inheritance hierarchy; it is always equal to two. Indeed, when a multi-method of typefS1 ! T1; : : : ; Sn ! Tng is applied to an argument of type U, the branch executed
is the one defined for the type Sj = mini=1::nfSi j U � Sig. Thus a single branch
with a sufficiently high (in the inheritance hierarchy) type may handle all the remaining
arguments that are not handled by the specializing code. For example, suppose that we
further specialize our point hierarchy by adding dimensions, each with their own equal
methods:class Point3D inherit Pointtype tuple(z:real)method equal(p:Point3D) : booleanend;class Point4D inherit Point3Dtype tuple(w:real)method equal(p:Point4D) : booleanend;
and so on, up to dimension n. The new classes form a chain in the inheritance hierarchy.
Each class covariantly overrides the equalmethod inherited from its superclass. It may
appear to be necessary to add n � 2 more branches to each class PointnD in order to

11 The subtyping relation for function types is, of course, the contravariant rule defined before.
12 We assume here that overriding a multi-method overrides all its branches.

guarantee safety; however, one additional branch with a parameter of type Point suffices.
This branch will handle all other possible points. For example, in the case of n = 4, one
could defineclass Point4D inherit Point3Dtype tuple(w:real);method equal(p:Point4D) : boolean,equal(p:Point) : booleanend;method body equal(p:Point4D):boolean in class Point4D{return(self->x == p->x && self->y == p->y&& self->z == p->z && self->w == p->w);};method body equal(p:Point):boolean in class Point4D{return(p->equal(self)); }
Type safety stems from the fact that the subtyping condition is satisfied.13

In conclusion, if we extend the syntax of O2 with multi-methods, we can have type
safety and covariant specialization. Every time we perform a covariant specialization in
a class with a single direct superclass, it will suffice to add one (and one only) branch
to handle all the arguments “inherited” from the superclasses, although one may wish
to add multiple branches for semantic reasons.

This still does not solve the problem we want to address with this work and which
concerns existing O2 code. In the rest of this paper, we show that a compiler can
automatically add branches that make a program type-safe. Note that the type safety is
obtained without any modification of the source code.

A more formal treatment of multi-methods can be found in [Cas95a]. For the formal
type system and the proof of its type safety see [CGL95]. Examples of type safe use
of multi-methods in programming languages with a privileged receiver are proposed
in [MHH91], [Cas95b] and [Cas96].

4 Single inheritance

We first describe our solution as it applies when there is only single inheritance. We
generalize this solution to multiple inheritance hierarchies in Section 5.

For this section, we use ς(C) to denote the unique direct superclass of C, i.e. the
class that follows the inherit keyword in the definition of C. Besides this notation, we
need to introduce some more O2 syntax.

13 In general, according to the subtyping rule for multi-methods, if T1 � T2 � : : : � Tn and
S1 � S2 � : : : � Sn then we have the following type inequalities:fSn!Tn; S1!Tn�1g� :::�fSi+1!Ti+1; S1!Tig�fSi!Ti; S1!Ti�1g� :::�fS1!T1g
The declarations of the classes for points are a special case of this, where S1 =Point, for
i 2 [3::n] Si�1 =PointiD, and for i 2 [1::n-1] Ti =boolean.

4.1 The @ notation

In O2, it is possible to invoke the method attached to a specific class by the following@-notation: r->C@m. This invokes the method attached to the message m in the class
C instead of the one attached in the class of the receiver r, provided that the latter
is a subclass of C. In particular, in this work we use the @-notation in commands of
the form self->A@m which inside a proper subclass of A dispatches the message m
to self but it starts the search for the method associated to m from the class A. This
mechanism is different from the super mechanism of, say, Smalltalk: suppose that the
class A defines a method for the message m, that the class B is defined by inheritance
from A (i.e. A = ς(B)) and that B inherits from A the method for m. Then self->A@m
always begins the search for the method for m from the class A (thus, in this case it is
equivalent to self->m), while super->m begins the search from the superclass of the
class containing the method, namely from the superclass of A (therefore, in this example
it is equivalent to self->ς(A)@m). In other words, the @-notation expresses absolute
addressing, whereas super is a relative addressing.

4.2 The solution

We start the presentation of our solution in the simplified case of methods with just one
parameter. Suppose we have two classes C0 and Cn in a chain Cn < Cn�1 < : : : < C0,
defined by the following programclass C0type ... /* The type is not important */method m(x:S0):T0end;class Cn inherit Cn�1method m(x:Sn):Tnend
where Sn < S0 and Tn � T0. Suppose also that the message m has not been redefined
in the inheritance hierarchy between Cn and C0. Our solution has the compiler add the
following method branch to Cn:method m(x:S0):T0 in class Cn;method body m(x:S0):T0 in class Cn { return(self->Cn�1@m(x)); }
The program is now type-safe since by the subtyping rule of multi-methods fS0 !
T0; Sn ! Tng � fS0 ! T0g, that is, the type of the (multi-)method in Cn is smaller
than the type of the method in C0 it overrides. Note also that since m has not been
redefined between C0 and Cn, the type of self->Cn�1@m(x) is the type of the result
of the method in C0 (that is, T0) and that therefore the body of the new method branch
conforms to its signature. This same branch must also be added to all subclasses of Cn

which invariantly override m, by which we mean that the parameter type of m remains
the same in the redefinition.

In the case in which m has been covariantly redefined multiple times in the hierarchy
between C0 and S0, our solution has the compiler add multiple branches. For example,
suppose that for a class Ci, Cn < Ci < C0, the method for m has been redefined with
signature Si ! Ti, where Sn < Si < S0, but that it is not redefined elsewhere between C0

and Cn. Then the compiler will add to the class Ci a method branch of type S0 ! T0, and
will add two method branches to Cn: one of type S0 ! T0 and another of type Si ! Ti.method m(x:Si):Ti in class Cn;method body m(x:Si):Ti in class Cn { return(self->Cn�1@m(x)); }method m(x:S0):T0 in class Cn;method body m(x:S0):T0 in class Cn { return(self->Cn�1@m(x)); }
By the multi-method subtyping rule we havefS0 ! T0; Si ! Ti; Sn ! Tng| {z }

type of m in Cn

� fS0 ! T0; Si ! Tig| {z }
type of m in Ci

� fS0 ! T0g| {z }
type of m in C0

The subtyping condition is fulfilled since the type of every overriding (multi-)method is
a subtype of the type of the (multi-)method it overrides. This guarantees type safety.14

Both added method branch bodies have the same code; each uses a different branch
of the multi-method self->Cn�1@m. We will return to this fact after describing the
algorithm more precisely.

Viewed as a top-down process over the inheritance hierarchy, our solution descends
the inheritance hierarchy looking for the first class containing a covariant redefinition
of a given message. When it finds one, it adds to the class a branch that points to
the last definition of the message, and continues to descend the hierarchy looking for
the next class where the message is redefined (either covariantly or invariantly). If the
redefinition is invariant, it adds to the class all the branches that were added to the last
definition; if the redefinition is covariant, it adds the same branches plus one branch that
points to the last definition.

The general task of the compiler can be described as follows

Algorithm 1. For every class C, for every message m overridden in C with type S ! T,
and for every superclass Ci (for which m has type Si ! Ti) where m is covariantly
redefined in the direct subclass Ci+1 to Si+1 ! Ti+1 (that is C � Ci+1 < Ci; ς(Ci+1) =
Ci; S � Si+1 < Si), add the following method branch:method m(x:Si):Ti in class C;method body m(x:Si):Ti in class C { return(self->ς(C)@m(x)); }
The intuition underlying this rule is that the compiler adds branches to handle all
possible arguments that are not handled by the original redefinition. There is a one-to-
one correspondencebetween the superclasses of a class (including itself) that covariantly
redefine a method, and method branches one has to add to it.
14 For those familiar with [Cas95a] note that O2’s covariance rule ensures that the overloaded

types are well formed.

Note that the method body declarations are well typed (this can be proved by
induction on the depth of the inheritance hierarchy). Note also that all the added branches
perform the same thing: they search up in the inheritance hierarchy for the first definition
of a method that can handle the argument. In practice, the compiler can collapse all the
added branches into a single branch to be selected when the argument is of a supertype
of that in the covariant method. This branch simply performs a lookup in the inheritance
hierarchy. This observation is used in Section 4.5 to give an implementation of our
solution. Since our methods already have multi-method type, with a little abuse of
notation, we could use multi-method typed branches as well. For the second example
with Cn, Ci and C0, the addition would look likemethod m:fS0 ! T0; Si ! Tig in class Cnmethod body m(x) in class Cn { return(self->ς(Cn)@m(x)); }
Intuitively, such a (multi-)method is selected when the type of the argument is a subtype
of Si (in which case the result will be of type Ti), or is a type included between S0 and
Si (in which case the result is of type T0)15.

More generally, when a message m has been covariantly overridden, the compiler
adds a single branch of multi-method type to the class. The type of this branch is that of
the superclass’ definition of the method, except that we ignore any method type whose
domain is the same as the one defined for this class. Intuitively, this branch handles
all the cases handled by the superclass that are not handled in the overriding method.
This understanding can be expressed by reformulating the previous algorithm in the
following implementation-oriented way:

Algorithm 1 (Implementation-Oriented Version) For every class C, for every mes-
sage m that is redefined in C whose type is not a subtype of the method defined in some
superclass, add the following branch:method m : typeof (ς(C)@m)=fSg in class Cmethod body m(x) in class C { return(self->ς(C)@m(x)); }
where S is the parameter type of m in C, typeof (.) is a meta-operator that returns the type
of a (multi-)method, and T=fSg denotes the multi-method type T in which a possible
arrow of domain S has been erased.

It is not necessary that the syntax of the language being made safe actually allow
these new multi-methods, since the method is added by the compiler as a part of
the implementation, as shown in Section 4.5. This notation is only used to express
implementation at the source level.

4.3 Naturalness

In the introduction, we state that our solution is natural. First of all, note that the semantics
of well-typed programs is not modified: indeed all the (non-functional)expressions have,
after the compiler’s completion, the same type as before the completion. Thus in the

15 Note that it is not necessary to restate the type of the branch in the body declaration since there
will be only one such branch.

case of well-typed programs, the original method definitions are always selected. For
example, if we compare a ColorPoint with another ColorPoint, after the completion,
the method written by the programmer in the ColorPoint class is executed. We give a
new semantics only to those computations that produce a run-time type error. Because
of covariant specialization, it may happen that a method is applied to an argument
that it cannot handle. In that case, an added method branch is executed: it ascends the
inheritance hierarchy to look for the last definition of that method that can handle the
argument (it knows that one exists). Thus, we have an intelligent compiler that inserts
the code the programmer has forgotten to write, thus ensuring type safety for covariant
specialization. The naturalness of our solution is given by the fact the method executed
is always the most specialized one written by the programmer for the arguments in the
call. Of course, no solution for adding multi-methods automatically can be as natural as
one in which the multi-methods are hand-written, but our solution is the most natural fix
that can be done automatically. Furthermore, the new semantics takes into account the
reason for an ill-typed application, namely the application can be ill-typed only if the
receiver is statically considered an object of a superclass of its actual class. Our solution
has the method lookup mechanism ascend the inheritance hierarchy from the receiver’s
dynamic class (where it would otherwise stop) towards the static class, looking for a
definition that supports the arguments given.

4.4 Multiple-argument methods

It is straightforward to extend this solution to covariant specialization of methods with
multiple parameters. As before, the most specific method definition will be used:

Algorithm 2. For every class C, for every message m with k parameters overridden in
C with type (S1 � � � � � Sk) ! T, and for every superclass Ci (for which m has type(S1

i �� � �� Sk
i)! Ti) where m is covariantly defined in the direct subclass Ci+1 (that is,

C � Ci+1 < Ci;Ci = ς(Ci+1); (S1
i+1�� � ��Sk

i+1) < (S1
i �� � ��Sk

i)), add the following
method branch:method m(x1:S1

i ;:::;xk:Sk
i):Ti in class C;method body m(x1:S1

i ;:::;xk:Sk
i):Ti in class C {return(self->ς(C)@m(x1;:::;xk));}

The implementation-oriented version of Algorithm 1 can be extended similarly so that
the solution works by adding a single (multi-method) branch.

The formal justification of the type safety of this second algorithm is straightfor-
wardly obtained by using cartesian products to type multi-argument methods.

4.5 Implementation

The solution admits at least two different implementation techniques.
One could change the compiler to use the observation that all the method branches

added to a method definition have the same body, thus applying the implementation-
oriented versions of Algorithms 1 and 2. The (new) compiler “marks” methods needing

extra branches, and compiles these methods differently. Either extra code may be added
which tests the argument types, or a description of the types may be used at run-
time by the message dispatcher. In any case, if a marked method does not handle its
arguments, the dispatch mechanism searches for a new method definition starting from
the superclass. If this method is also marked then the argument types must be checked
again and so on. Our solution ensures that as long as a method is marked, there is
another method for the same message higher up in the inheritance hierarchy that can
handle more argument types. It also ensures that if a method definition is not marked,
then it can handle all arguments that the static type system permits. Effectively, a marked
method overrides a previous definition for only some of its arguments.

A more conservative, but less efficient way to implement the algorithms is to
simulate multi-methods in the source language, using the technique proposed by In-
galls [Ing86]. Ingalls’ simulation, offered in the context of single-dispatching languages
such as Smalltalk-80 [GR83], uses a second message dispatch to obtain the dynamic
selection on an extra argument. Every multi-method can be simulated by several normal
method dispatches. After the first dispatch, only the type of the receiver is known. After
the second dispatch, the type of the first argument is known, and so on. The realization
of this method for the example from Section 3 is presented in Appendix A. The reader
can try to follow the execution of p->equal(q): for all the possible combinations ofp and q (both arguments instances of Point, p instance of Point and q instance ofColorPoint, and so on) the code executed is always the same as that executed with the
multi-methods defined in Section 3. Also, note that all the methods have the same types
for Point and ColorPoint. This means that covariant specialization is not used and
therefore, as expected, the class definitions are type-safe.

The advantage of using Ingalls’ simulation is that it can be implemented by a pre-
processor, rather than changing the core of the standard O2 compiler. The preprocessor
would transform the covariant specialization of a method with one argument into one
dispatching method plus one more for the original method and one more for each ad-
ditional branch determined by Algorithm 1 in any of its subclasses. This advantage,
however, must be weighed against several disadvantages. The method-marking imple-
mentation is more efficient both in terms of space (there is no code duplication) and of
time (the overhead to select the branch is much more prominent in Ingalls’ simulation).
Furthermore, Ingalls’ simulation is neither modular nor incremental. If we compiled
some classes using the marking implementation and later added some new subclasses,
we do not need to recompile the first ones. With an implementation based on Ingalls’
simulation, every new covariant redefinition would require the recompilation of every
class that implements a method for the message. Another problem is that, as shown
in [BCC+96], Ingalls’ simulation does not work properly when the result types of over-
riding methods differ from the methods they override. This problem can be fixed using
parametric polymorphism, but since O2 does not provide this kind of polymorphism, it
would be necessary to bypass the type-checking phase when compiling pre-processed
code.

Finally, note that although marked methods require extra checking to implement the
added method branches, the current O2 compiler already generates code to perform these
checks, in order to detect the run-time type-errors caused by covariant specialization.

5 Multiple inheritance

Multiple inheritance presents several obstacles to our solution as defined for single
inheritance. The most pertinent is that we do not have a privileged superclass; therefore
the notation ς(:) is undefined. To put it otherwise, there is no longer a standard place
from where to start the search for a method definition for an ill-typed application.

A second problem concerns the application of multi-methods. In Section 3, we said
that if a multi-method of type fS1 ! T1; : : : ; Sn ! Tng is applied to an argument of type
U, the branch executed is the one defined for the type Sj = mini=1::nfSi jU � Sig. With
multiple inheritance, some conditions are needed to ensure that the set fSi jU � Sig has
a least element.

These two problems are connected. Indeed, if we generalize the algorithm given for
single inheritance in a straightforward way, we run into pathological cases that break
naturalness and type safety.

In this section, we first study the cases in which the straightforward extension of
the solution for single inheritance fails. Next, we define an extension of the multi-
method syntax and behavior that allows us to generalize the single inheritance solution
to multiple inheritance in a type-safe and natural way.

5.1 Pathological cases

Consider four classes A1, A2, B, and C, with C defined by inheritance from B and B
defined by multiple inheritance from A1 and A2. This situation is graphically represented
in the figure below. Consider now the following program, where T � T1; T2 (as before,
we omit the type declarations):class Emethod m(x:A1):T1;method n(x:B):T1end;class Fmethod m(x:A2):T2;method n(x:B):T2end;class G inherit E, Fmethod m(x:C):T;method n(x:C):Tend;

A1 A2I@@@@@@ �������
B6
C

The class G inherits from E and F. Since the message m is defined in both E and F,
O2 requires the programmer to redefine the message inside G (otherwise there would
be a conflict in the choice of the method to inherit). In G, the method for m covariantly
overrides the two previous methods. In order to make this redefinition type-safe, one
must add new method branches to handle potential arguments of type A1, A2 and B. For
the arguments of type A1, our solution has the compiler use the method defined in E; it
will add to G the following method branch:

method body m(x:A1):T1 in class G freturn(self->E@m(x))g
Similarly for arguments of type A2 it will addmethod body m(x:A2):T2 in class G freturn(self->F@m(x))g
Note also that the compiler must add a branch for B, otherwise the type of the multi-
method in G would be fA1 ! T1;A2 ! T2;C ! Tg and for an argument of type B,
there would be no branch with least parameter type. So the compiler also adds a branch
for B. But what shall the compiler use as the body for this branch? There are only two
possible choices: either it uses the method in E or it uses the method in F, but both
choices are equally good (or bad). The return type for the method branch will reflect this
choice, either T1 or T2. A similar problem arises when trying to add a method branch
for n to handle arguments of type B. If one wants to use multi-methods as defined in
Section 3 then the only way out is to perform arbitrary choices that break the type safety
of our solution and, perhaps more seriously, its naturalness.

To see how arbitrary choices break type
safety, consider again the example of m. Imag-
ine that T1 and T2 are incomparable (as in the
figure to the right), and that for the body of the
code for B in G, the compiler has arbitrarily cho-
sen the method in E. Let b be an object of class B
and consider the expression o->m(b). If the static
type of o is F, then the static type of this expres-
sion is T2. But if the dynamic type of o is G (which

T1 T2I@@@@@@ �������
T

is feasible since G � F) then the method inserted for B in G is selected and, as a
consequence of the arbitrary choice, the method in E is executed. Thus the dynamic type
of the expression is T1 which is incompatible with the static type T2. This inconsistency
may lead to a run-time type error. In this case, the natural method to call would be the
one in F, but of course, choosing that method for the branch could also lead to a type
error. No automatic addition of method branches (as defined so far) can give complete
type safety.

All these pathological cases can only occur in the following situation: some class has
two incomparable superclasses each defining a method for the same message and the
domains of these two methods have a common subtype not handled by the redefinition
in the class. For some particular configurations of the result types of the two methods
there exists a type-safe and natural choice, but in the remaining cases one cannot avoid
an arbitrary choice.

This arbitrary choice breaks the naturalness of the solution and, in particular, when
it is necessary to make an arbitrary choice between methods with incomparable result
types, a run time type error may occur.

In conclusion, the analysis performed for single inheritance is no longer sufficient
to solve the problem with multiple inheritance.

5.2 The intuition of our solution

To give a solution for multiple inheritance we revisit the causes of type errors due to the
covariant specialization.

Recall that covariant specialization can lead to ill-typed applications only in the case
that an object has a (non-trivial) superclass of its true class as its static type. Consider the
following fragment in the context of the example in the Section 5.1 (where t1 is some
message that can be sent only to objects of the T1 class, and t2 is legal only for T2):o2 B b = new B; /* create an object of the B class */o2 G g = new G; /* create an object of the G class */o2 E e = g; /* treat g as an object of the E class */o2 F f = g; /* treat g as an object of the F class */(e->n(b))->t1; /* Application #1 */(f->n(b))->t2; /* Application #2 */

First, note that both applications are ill-typed in unmodified O2, despite being legal
under covariant specialization. Note also that the only way to avoid type errors in both
applications is to select a different method for each, despite the fact that both applications
have the same receiver and argument objects.

Our multi-method solution works for single inheritance by ascending the inheritance
hierarchy starting from the dynamic class of the receiver object. If the method definition
for the class can handle the parameters, it is used, otherwise the direct superclass is
examined, and so on. This solution works because eventually the search will reach
the static class of the receiver which must have a method definition that can handle
the arguments. This solution does not work for multiple inheritance because when the
search must continue from a class with multiple direct superclasses, it does not know
which of the direct superclasses to try next since it does not know the static class of the
receiver. The intuition behind our solution for multiple inheritance is to use the static
class of the receiver to direct the ascension of the hierarchy.

So the first idea for a solution for multiple inheritance is to limit the search of the
method to that part of the inheritance hierarchy that is included between the static and
the dynamic type of the receiver. Applying this restriction in the fragment above, the
method for the receiver e will not be looked for in F and the one for f will not be looked
for in E.

This idea is enough to avoid type errors, but
it does not remove the need for arbitrary choices.
Arbitrary choices interfere with naturalness and,
more seriously, with the predictabilty and under-
standability of the semantics.

Consider again the example at the beginning
of Section 5.1 and suppose that both E and F are
subclasses of some class D (as in the figure on the
side) which has methods for both m and n. Consider
further that we are sending the message m or n to
a receiver with static type D and dynamic type G.

D������� I@@@@@@
E FI@@@@@@ �������

G
If the type of the argument is B, the methods of E and F are equally applicable and
only an arbitrary choice can choose between them. Predictability can be restored in a
type-safe manner by choosing the method defined for D, but at the expense of some
naturalness, since the methods in E and F are not considered.16

16 Of course, predictability could be also be achieved by, say, searching from the first parent that

The solution we present for multiple inheritance uses both these ideas to assure
type-safety and (a certain degree of) naturalness, namely:

1. The search of the method is restricted to the portion of the inheritance hierarchy
included between the static type and the dynamic type of the receiver.

2. If this portion of the inheritance hierarchy includes a zone in which a pathological
case may happen, this zone is skipped by the search.

Note that the decision to skip a zone is based on the static type of the receiver. For
example, for m or n messages, if the receiver’s dynamic type is G then the class E must
be skipped if the receiver’s static type is D, but E must be searched if the static type of
the receiver is E.

To see the solution in a different way, consider the inheritance hierarchy between the
static and the dynamic class of the receiver. The hierarchy forms a directed acyclic graph.
There are several paths that lead from the dynamic to the static class. Consider the set of
nodes that belong to every such path. Because of the acyclicity of the graph, this set is
totally ordered (w.r.t. the subtyping relation). Therefore if we consider only the classes
of this set, we have a single-inheritance-like hierarchy going from the dynamic class to
the static class of the receiver. Our solution applies the single inheritance solution from
Section 4 to this hierarchy.

The multi-methods described in Section 3 do not suffice to implement this strategy.
A further extension and semantics must be given that permit the selection to take into
account the receivers’ static type. Before defining this extension, some further notation
is needed.

5.3 Notation

A chain from a class C to another class C0 is a set of comparable classes fCn�1; : : : ;C0g,
n > 0, where C = Cn < Cn�1 < : : : < C0. If each Ci is the direct superclass of Ci+1,
we call it a path. There are many chains in a multiple inheritance hierarchy. Thus, we
pick a particular chain (denoted κ(C;C0)), which is defined as the set of all classes that
appear in every path from C to C0, or more precisely:

κ(C;C0) � fC0 j C < C0 � C0;8T: �C < T � C0) T � C0 _ T � C0�g
We distinguish the least class in this chain, Cn�1, as ςC0(C), the direct join superclass
of C for C0, and the greatest class (other than the superclass itself), C1, as ς 0C(C0), the
direct join subclass of C0 for C:

ςC0(C) � min κ(C;C0)
ς 0C(C0) � max((fCg [κ(C;C0))nfC0g)

Intuitively, the direct join superclass of a class C for a class A is the next class up the
inheritance hierarchy that is comparable with every other class between A and C. Note

is on a path to the static class of the receiver. Such a definition, however, makes the semantics
dependent on the order of the parents in the inheritance clause which can be confusing and
inelegant.

that the direct join superclass of C for A is not necessarily a direct superclass of C and
the direct join subclass of A for C is not necessarily a direct subclass of A. Note also
that in the case of single inheritance, the direct join superclasses are simply the direct
superclasses (that is, C0 > C) ςC0(C) = ς(C))

The method branches added in the enhanced solution are restricted to calls depending
on the static class of the receiver. The notationmethod : : : in class C < C0
is used to specify that this method branch should only be considered if C0 is in the chain
from C to the static class A of the receiver, that is, C0 2 κ(C;A). The intuition is that the
body of this method has been defined in the class C0 and therefore it should be executed
(that is, C0 can be searched) only if C0 is on all paths going from the dynamic to the
static class of the receiver.

Note that in the case of single inheritance, the branch is applicable when the receiver
is of the class C0 or any superclass of C0. Since the typing rules of O2 ensure that
branches added by our solution are only needed in such situations, a restriction of this
form is vacuous.

5.4 The solution

Our solution works very similarly to the case of single inheritance, a method branch is
added for each definition in a superclass which is covariantly redefined in a subclass.
The difference is that the added branch is restricted to apply only to certain static classes
of the receiver.

For the example in the Section 5, the compiler would add the following methodsmethod body m(x:A1):T1 in class G < E {return(self->E@m(x));}method body m(x:A2):T2 in class G < F {return(self->F@m(x));}method body n(x:B):T1 in class G < E {return(self->E@n(x));}method body n(x:B):T2 in class G < F {return(self->F@n(x));}
Note that this completion avoids the arbitrary choices imposed by the pathological cases:
if an object of class G receives the message m or n with an argument of class B then the
method will be selected on the base of the static type of the receiver (if the static type is
a superclass of D —see Section 5.2— then the algorithm will add other branches that
handle it).

In general, the solution (for the single argument case) works as follows:

Algorithm 3. For every class C, for every message m overridden in C with type S ! T,
and for every superclass Ci (for which m has type Si ! Ti) where m is covariantly
redefined in the direct join subclass Ci+1 to Si+1 ! Ti+1 (that is, C � Ci+1 < Ci;Ci+1 =
ς 0C(Ci); S � Si+1 < Si), add the following method branch:method m(x:Si):Ti in class C < Ci;method body m(x:Si):Ti in class C < Ci { return(self->ςCi (C)@m(x)); }

Notes:
First note that in the case of single inheritance, this algorithm yields exactly the same

method branches as Algorithm 1 aside from “<” restrictions, all of which are vacuous.
More generally, if C has a single superclass, then despite any multiple inheritance among
its ancestors, its direct superclass is always its direct join superclass.

Secondly, note that the type safety of the method branch bodies is proved by induction
down the inheritance hierarchy. The class ςC0(C) is the first in the chain to C0, and if it
is not equal to C0, it will have a similar method branch added to it. In general, ςC0(C)@m
has multi-method type.

Lastly, and most importantly, for every receiver with static class A and dynamic class
C, the set of applicable method branches includes only the original method definition in
C and branches for classes along the chain κ(C;A). By including the original definition,
the solution ensures that well-typed applications have the same semantics as previously.
The covariant specialization rules for O2 guarantee that the domains of these branches
will form a chain themselves, and a minimum applicable branch is ensured.

So what is the exact behavior of this new al-
gorithm? Imagine that the message m has been
sent to some object whose static type was C0,
but whose dynamic type was Cn. The systems
looks for the method in class Cn but because of
covariant specialization, the method for m can-
not handle the actual argument of the method.
Our algorithm adds the branches that make the
system continue the search up in the inheri-
tance hierarchy. This search continues from the
direct join superclass of Cn for C0 (Cn�1 in the
figure on the right). Note that in the inheri-
tance hierarchy between Cn and Cn�1 (darker
in the figure) there may be some definitions for
m able to handle the argument of the method.
For precisely this reason, this particular part

Cn (a definition of m

 compatible with

 the argument type

 is not found here)

Cn-1 start the search

 of m from here

Cn-2

Co static class of

 the receiver

zone of potential

indeterminacy

(skip the m defs)

C1

C2

inheritance hierar-

chy between two

points of κ(Cn,Co)

of the inheritance hierarchy is a place of potential indeterminacies, where an arbitrary
choice might be required. Therefore the search skips this and other dangerous zones.

Since the search goes up through subclasses of the static class of the receiver even-
tually reaching this class, there will always be a method that can handle the argument.
Note that in the limit case, where ςC0(Cn) = C0, the algorithm simply executes the
method that was statically predicted for the message, that is, the one defined for the
static class of the receiver.

The solution given here does maintain a degree of naturalness: it may not perform
the most specialized method for the argument (e.g. any method that is defined in the
grey zone) but it never has to make an arbitrary choice. This property makes it behave
predictably. In the case of single inheritance, the semantics of the multi-method solution
is that each covariant specialization is only overriding part of the definition of its direct
superclass. This concept is clear and natural. Here, we are overriding the definition of the
direct join superclass, in order to avoid choosing between two direct superclasses. Note

that we have done nothing but to expand the solution we gave for single inheritance;
indeed the single inheritance solution is nothing but the special case in which all
inheritance hierarchies between two classes of the chain are replaced by a single link
(in single inheritance ςC0(Cn) = ς(Cn)).

Thus in summary, this solution is good, not merely because it avoids type errors, but
more importantly because it makes a natural and predictable completion of the class.

As with the first algorithm, it is straightforward to extend Algorithm 3 to methods
with multiple arguments by considering the arguments to be a single argument with
cartesian product type.

5.5 Implementation

There are at least two possible implementation possibilities for the enhanced solution.
The first implementation possibility involves compiling all message sends to im-

plicitly also send some indication of the static class of the receiver. As with the marking
method for single inheritance, all methods that have additional branches added are
marked. If the arguments are not handled by the method definition, then the method
must compute the direct join superclass of the class which defined the method for the
static class passed implicitly. This computation could involve a table lookup compiled
into the marked method. Once a new class was determined, the method lookup mecha-
nism could proceed from there. A compiled table lookup requires that every method in
a class be recompiled if there is any change in the inheritance hierarchy above the class.
Alternately, if the structure of the hierarchy was available at runtime, the computation
of the direct join superclasses could be deferred to this point.

The second implementation possibility involves having a different method lookup
table depending on the static class of the receiver. For example, if an object of class G
were given static class F, it would be given a different set of method definitions. The
compiler can detect these occurrences statically and arrange that the correct method
definition table be used. The original definitions would not need to be marked, because
the static typing rules of O2 would prevent any type errors. A compiled method for a
particular static non-trivial superclass would have to check its arguments and then if the
defined method was unable to handle them, would defer to the appropriate method of
the direct join superclass (known statically). The method tables for a class tailored for
two different superclasses on the same κ(:; :) chain could be identical, thus avoiding
massive code duplication. This implementation possibility does not require method
sends to implicitly send the static class of the receiver and thus should not impact the
efficiency of the dispatch mechanism. However, this possibility would require a class to
be recompiled if any class above it in the hierarchy was changed.

These two possibilities both share the advantage that they would not require the data
to have a new representation, and thus large bases would not need to be recompiled.

6 Comparison with other works and conclusion

We want to stress, once more, that our main concern for this work is to define a technique
that could be applied to the existing programs without requiring any modification of

them. This is a crucial characteristic in the field of large databases, where the rewriting
of the code would be much too expensive, even if feasible. Indeed, there already exist
several solutions that handle the problem of covariant specialization: some very “ad
hoc” like the run-time handling of exceptions [ABDS96], others much more elegant
and formal such as a relation that replaces subtyping [Bru94], or the use of less precise
types for the methods [BHJL86]. In the same spirit, we could have further developed
Section 3 and defined an extension of O2 to handle multi-methods. But all these solutions
require at least the modification of the existing code, if not the use of a totally different
paradigm. Therefore they cannot be strictly compared with the solution we propose.

The solutions proposed for Eiffel are the only other solutions that, like ours, does
not require any modification of existing code. The former definition of system valid-
ity [Mey91] would use global data-flow analysis to ensure that arguments to procedures
such as break_it in Section 3 can only be passed expressions of dynamic type Point.
The newer definition [Mey96] would disallow routines like break_it outright. If a
compiler using one of these rules detects a violation, it can only issue warnings (to little
effect) or reject the program. It cannot fix the (potential) error.

Our solution takes a different tack. Rather than disallowing potentially ill-typed
applications, our solution patches them so that they are well-typed. The patch is executed
only upon an actual ill-typed application, and could optionally generate a warning
message at this point as well. The added code uses the conditions under which application
occurred to choose the most appropriate method definition. To use a medical metaphor,
Eiffel performs a much more accurate screening process to search for type errors,
while our solution addresses more the prophylaxis by vaccinating risky situations. It is
important to stress that the solution affects only the definition of the methods. All the
existing bases are unaffected and can be used as before.

Another important remark is that our solution does not merely fix existing code,
it also provides a fix that works for possible evolutions of the system. Every use of
covariant specialization is a potential time bomb that can explode a long time after
the code has been written. This may happen, for example, because a new version of
a library is released or merely because the run-time values of the data are different.
Eiffel’s solution blocks all possible explosive situations (thus the use of a new library
version may occasion that an old program no longer type-checks). Our solution instead
defuses the time bombs.

In other words, our solution gives a predictable and type-safe semantics for covariant
specialization. Covariant specialization may be seen as partial overriding of a previous
definition, contrasting with the full overriding by an invariant (or contravariant) special-
ization. Our solution could be incorporated into a new language that permits type-safe
covariant specialization. As testimony to the practical interest of such an approach, a
note envisaging a similar solution for C++ appeared while we were preparing the final
version of this paper [BG96].

Incidentally, our paper also proposes extending O2 with multi-methods. This idea
deserves more extensive treatment, especially concerning modularity issues, which
constitute a peculiar problem of multi-methods (see [Coo91]). The great advantage of
multi-methods is that the programmer can choose the definition to be used in the case of
failure of the covariant specialization, instead of delegating this choice to the compiler.

Last but not least, our analysis is founded on well-established type-theoretic bases,
so that the correctness of our solution is formally proved and type-safety is guaranteed.

Acknowledgments

We are very grateful to Kim Bruce, Luca Cardelli, Gary Leavens, Scott Smith and
Benjamin Pierce. The joint paper [BCC+96] and the several e-mails exchanges were
crucial to the development of this work. In particular, Gary gave the pointer to Ingalls’
simulation and Scott was the first who noticed that this simulation might be used to
implement our ideas. Manuel Fähndrich, William Maddox and Tim A. Wagner read
early drafts of this paper and provided useful criticism.

References

[ABDS96] E. Amiel, M.-J. Bellosta, E. Dujardin, and E. Simon. Type-safe relaxing of schema
consistency rules for flexible modelling in OODBMS. Very Large Databases Journal,
5(2):108–119, April 1996.

[ADL91] R. Agrawal, L. DeMichiel, and B. Lindsay. Static type checking of multi-methods.
ACM SIGPLAN Notices, 26(11):113–128, 1991. Proceedings of OOPSLA’91.

[BCC+96] K. Bruce, L. Cardelli, G. Castagna, The Hopkins Object Group, G. Leavens, and
B. Pierce. On binary methods. Theory and Practice of Object Systems, 1(3), 1996.

[BDK92] F. Bancilhon, C. Delobel, and P. Kanellakis, editors. Implementing an Object-
Oriented Database System: The Story of O2. Morgan Kaufmann, 1992.

[BG96] M. F. Barrett and M. E. Giguere. A note on covariance and contravariance unification.
ACM SIGPLAN Notices, 31(1):32–35, Jan. 1996.

[BHJL86] A. Black, N. Hutchinson, E. Jul, and H. Levy. Object structure in the Emerald system.
In Norman Meyrowitz, editor, OOPSLA ’86 Conference Proceedings, volume 21(11)
of SIGPLAN Notices, pages 347–349, Nov. 1986.

[Bru94] K.B. Bruce. A paradigmatic object-oriented programming language: Design, static
typing and semantics. Journal of Functional Programming, 4(2):127–206, 1994.

[Car88] L. Cardelli. A semantics of multiple inheritance. Information and Computation,
76:138–164, 1988. A previous version can be found in Semantics of Data Types,
LNCS 173, 51-67, Springer-Verlag, 1984.

[Cas95a] G. Castagna. Covariance and contravariance: conflict without a cause. ACM Trans-
actions on Programming Languages and Systems, 17(3):431–447, 1995.

[Cas95b] G. Castagna. A meta-language for typed object-oriented languages. Theoretical
Computer Science, 151(2):297–352, Nov. 1995.

[Cas96] G. Castagna. Object-Oriented Programming: A Unified Foundation. Progress in
Theoretical Computer Science. Birkäuser, Boston, 1996.

[CGL95] G. Castagna, G. Ghelli, and G. Longo. A calculus for overloaded functions with sub-
typing. Information and Computation, 117(1):115–135, 1995. A preliminary version
was presented at the 1992 ACM Conference on LISP and Functional Programming,
San Francisco, June 1992.

[CL95] C. Chambers and G. Leavens. Typechecking and modules for multi-methods. ACM
Transactions on Programming Languages and Systems, 17(6):805–843, Nov. 1995.

[Coo91] W. Cook. Object-oriented programming versus abstract data types. In J. W.
de Bakker, W. P. de Roever, and G. Rozenberg, editors, Foundations of Object-
Oriented Languages, REX School/Workshop, volume 489 of LNCS, pages 151–178.
Springer-Verlag, 1991.

[DG87] L.G. DeMichiel and R.P. Gabriel. Common Lisp Object System overview. In Bézivin,
Hullot, Cointe, and Lieberman, editors, ECOOP ’87 Conference Proceedings, volume
276 of LNCS, pages 151–170. Springer-Verlag, 1987.

[GR83] A. Goldberg and D. Robson. Smalltalk-80: The Language and Its Implementation.
Addison-Wesley, Reading, Mass., 1983.

[Ing86] D. H. H. Ingalls. A simple technique for handling multiple polymorphism. In Norman
Meyrowitz, editor, OOPSLA ’86 Conference Proceedings, volume 21(11) of SIGPLAN
Notices, pages 347–349, Nov. 1986.

[Mey91] Bertrand Meyer. Eiffel: The Language. Prentice-Hall, 1991.
[Mey96] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, 2nd edition,

to appear 1996.
[MHH91] W. B. Mugridge, J. G. Hosking, and J. Hamer. Multi-methods in a statically-typed

programming language. In P. America, editor, ECOOP ’91 Conference Proceedings,
volume 512 of LNCS, pages 307–324. Springer-Verlag, 1991.

A Ingalls’ simulation for the Point/ColorPoint problemclass Pointtype tuple (x:real,y:real)method equal(p:Point):boolean,method equalPoint(p:Point):boolean,method equalColorPoint(p:ColorPoint):booleanend;method body equal(p:Point):boolean in class Point{return(p->equalPoint(self));};method body equalPoint(p:Point):boolean in class Point{return(self->x == p->x && self->y == p->y);};method body equalColorPoint(p:ColorPoint):boolean in class Point{return(self->equalPoint(p));};class ColorPoint inherit Point /* x and y are inherited from Point */type tuple(c:string) /* and the signature of the methods */end; /* does not change */method body equal(p:Point):boolean in class ColorPoint{return(p->equalColorPoint(self));};/* ColorPoint inherits equalPoint from Point */method body equalColorPoint(p:ColorPoint):boolean in class ColorPoint{return(self->x == p->x && self->y == p->y && self->c == p->c);};
This article was processed using the LATEX macro package with LLNCS style

