
Formal Aspects of Computing (1995) : To appearc
 1995 BCS
Integration of parametric and \ad hoc"second order polymorphism in acalculus with subtyping1Giuseppe Castagna2C.N.R.S. Laboratoire d'Informatique de l'Ecole Normale Sup�erieure, 45 rue d'Ulm, Paris.Keywords: type theory, typed foundation of object-oriented programming, second
order �-calculus, bounded polymorphism.Abstract.In this paper we define an extension ofF� [CG92] to which we add functions
that dispatch on different terms according to the type they receive as argument. In other
words, we enrich the explicit parametric polymorphism of F� by an explicit “ad hoc”
polymorphism (according the classification of [Str67]). We prove that the calculus we
obtain, called F&� , enjoys the properties of Church-Rosser and Subject Reduction and
that its proof system is coherent. We also define a significant subcalculus for which the
subtyping is decidable.
This extension has not only a logical interest but it is strongly motivated by the foundation
of a broadly used programming style: object-oriented programming. The connections
between F&� and object-oriented languages are widely stressed, and the modeling byF&� of some features of the object-oriented style is described, continuing the work
of [CGL92].

In this paper we present a calculus where the computation of a function can depend on
the type the function is applied to. There are two main motivations to this work. The
first is to start a type theoretic foundation of second order “ad hoc” polymorphism. The
second is to solve the problem of the “loss of information” in the overloading based
model of object-oriented programming [CGL92] in the same way as F� solved it for
the record-based one [GM94].1 Part of this work has appeared under the title \F&� : integrating parametric and `ad hoc'second order polymorphism" in the 4th International Workshop on Database ProgrammingLanguages. New York City, August 19932 The author was supported by the grant n. 203.01.56 of the Consiglio Nazionale delle Ricerche- Comitato Nazionale delle Scienze Matematiche to work at LIENSCorrespondence and o�print requests to: Giuseppe Castagna, LIENS, 45 rue d'Ulm, 75005Paris, FRANCE. e-mail: castagna@dmi.ens.fr.

2 Giuseppe Castagna
The overloading-based model has as advantage with respect to the record-based one

that it can model multiple dispatch3 , and therefore it gives a typed account both for the
class-based object-oriented languages (such as Smalltalk) and for the generic-functions-
based ones (such as CLOS). However we do not lean for any of the two styles: multiple
dispatch is indeed essential for generic functions, but it is of great importance also in
class-based languages (see [Cas95a]).

The awkwardness of the theory developed in this paper is an example of the disad-
vantages of the overloading-based with respect to the record-based one1. Introduction
SystemF is a language that allows us to write functions that take types as inputs; however
these functions depend on their input in a very strict way: computation does not depend
on the input type in the sense that different input types will return always the same (type-
free) result but in different types. The practical counterpart of this observation is given
by the fact that types are thrown away during the computation which is then performed
on the erasure of the terms. F� is a conservative extension of F , which allows the
specification of bounds on the types that are passed to a function; the type-checker uses
this further information to type the body of the function. But the functions of F� still
have the same kind of dependence as in System F , since types again disappear during
the computation. Here we want to extend F� by a type dependency also affecting the
computation. We want to have functions that dispatch on different codes according to
the type passed as argument. As a side effect, types will no longer be erasable at runtime.

This research fits into a larger framework: In language theory, polymorphism has
two orthogonal classifications: “parametric vs. ad hoc” (see [Str67]) and “explicit vs.
implicit”. Parametric polymorphism, i.e. the capability of performing the same code
on different types, has been widely studied, both in the explicit form (where types
participate directly in the syntax; e.g. System F) and in the implicit one (where types
participate via the terms they type; e.g. ML). “Ad hoc” polymorphism, i.e. the capability
of performing a different code for each different type, has not received the same attention.
In [CGL92], with the definition of the �&-calculus, we started a theoretical analysis of
implicit “ad hoc” polymorphism (on the line of some ideas in [Ghe91]). In this paper
we tackle the explicit counterpart, by defining F&� a calculus with subtyping, which
integrates parametric and “ad hoc” explicit polymorphism. The practical counterpart is
the definition of a type discipline that avoids the loss of information in object-oriented
programming and fits the paradigms based on generic functions, as explained right
below.Object-oriented programming
This extension is not of mere logical interest but is strongly motivated by the modeling
of object-oriented languages and the definition of a type discipline to strongly type them.
Let us try to be more specific. In object-oriented languages the computation evolves on
objects. Objects are programming items grouped in classes and possessing an internal
state that is modified by sending messages to the object. When an object receives a
message it invokes the method (i.e. code or procedure) associated to that message. The
association between methods and messages is described by the class the object belongs3 In object-oriented languages, multiple dispatch is the capability of performing the selectionof the method not only on the class of the receiver but also on the classes of further parameters.

Parametric and \ad hoc" polymorphism 3
to. Now, there are two possible ways to implement message-passing: the first is to
consider objects as records that associate to each message a method. Thus messages are
labels of a record, methods are the values in the fields and message passing corresponds
to field selection. This implementation has been extensively studied and corresponds to
the “objects as records” analogy of [Car88]. The second way is to consider messages
as (identifiers of) special functions which take an object as argument and are able to
dispatch on different codes according to the class of that argument (this is done in
CLOS: [DG87]). This is the approach taken in [CGL92] where classes are used to
type objects and messages are thus overloaded functions, i.e. functions that dispatch on
different codes according to the type (the class) of their arguments. There, an overloaded
function is a finite collection of ordinary functions (�-abstractions) that are grouped
together to form the different branches, and its type is the set of the types of its branches.
More precisely the different branches are glued together by means of “&” (whence the
name of �&-calculus); thus m = (a1&a2& : : :&an)
is an overloaded function with n branches a1 : : : an. If ai:Ci ! Ti then the type of m
is m : fC1! T1; : : : ; Cn! Tng
In object-oriented terms, this means that the “message” m has been associated to a
method in the “classes” C1; ::; Cn, each method returninga result of type Ti respectively.
If we apply m to a value b of type Cj (i.e. if we pass the message m to an object b of
class Cj) then the branch (method) aj is selected and aj(b) is executed.Example 1.1. Suppose that we have defined the following (class) types:2DPoint := hhx : Int; y : Intii3DPoint := hhx : Int; y : Int; z : Intii
A simple example of a method for these classes is Norm that can be implemented by the
following overloaded function:Norm� (�self 2DPoint:p self:x2 + self:y2

& �self 3DPoint:pself:x2 + self:y2 + self:z2
)

whose type is f2DPoint! Real; 3DPoint! Realg. In this case if we apply Norm to
an object of type 2DPoint (i.e. we pass the message Norm to that object) then the first
branch is selected; if the object has type smaller than or equal to 3DPoint the second
branch is executed.Inheriting methods
In this calculus a subtyping relation is defined on types. Intuitively, a type is smaller
than another typer when every value of the former type can be safely used where a value
of the latter is expected. Thus in the case as before it may happen that the type C of b
does not exactly match one of the Ci’s but it is a subtype of one of them. In this case
the selected branch is the one that best approximates the type of the argument, i.e. the
branch j such that Cj = mini=1::nfCijC � Cig. On this selection of the minimum
relies the mechanism of inheritance, and it corresponds to the usual method look-up
of object-oriented languages: in object-oriented terms if we send the message m to the
object b of class C then the method defined in the class Cj = mini=1::nfCijC � Cig is
executed: if this minimum is exactly C, this means that the receiver b uses the method
that has been defined in its class; otherwise, that is if this minimum is strictly greater
than C, then the receiver uses the method that its class, C, has inherited from the classCj, which is the least super-class of C in which the message m has been (re)defined.

4 Giuseppe CastagnaExample 1.2. [continued] Suppose that 3DPoint � 2DPoint; this means that3DPoint has been defined as a subclass of 2DPoint and that the method defined forNorm in 2DPoint (first line of the definition) has been redefined (overridden) by a
new method in 3DPoint (second line of the definition). Suppose now to have a third
class 3DColorPoint � 3DPoint. If an object of this new class is applied to that
same Norm then, by the selection of the minimum, the method defined in 3DPoint is
executed; this means that the class 3DColorPoint has inherited the method defined in
its superclass 3DPoint.The problem of loss of information
Suppose we have a message m0 which modifies the internal state of a class C1. Since
we are in a functional approach the method in C1 returns a new object of class C1. Thusm0: f:::; C1 ! C1; :::g. Let C2 be a subclass of C1 from which it inherits the method
at issue. If we pass the message m0 to an object of C2 then the branch defined in C1 is
selected. Since this branch has type C1 ! C1, the result of message passing has typeC1, rather than C2 as would be natural. This problem was already pointed out for the
record-based model in [Car88] and it is known as the “loss of information problem”.
In our case the problem is less serious than in Cardelli’s calculus: indeed, in the case
above we could imagine to add tom0 a fake branch C2! C2 which would be used only
during the phase of type-checking and then it would be discarded4 (this has been done
in [Cas92]). However this solution is interesting only in practical cases, where there is
a finite number of classes; otherwise an infinite branching would be required. Although
this solution works whenever the set of classes has a well-founded ordering (as it is
always the case in practice) it becomes unmanageable when one starts to distinguish
subtyping from subclassing (as done in [CHC90]). In conclusion we need a new type
system to account for this problem.

For the record-based model there the solution adopted was to pass to a second order
formalism. This yielded the definition of Fun in [CW85], which was further developed in
many works (a non exhaustive list includes [CCH+89, Ghe90, CHC90, CL91, CMMS91,
BTCGS91, Bru94, PT93]) and, in particular, which gave raise to the definition of F�
in [CG92].

Here we adopt the same solution w.r.t. the �&-calculus, and we pass to a second
order formalism to avoid the problem of loss of information. The idea is to have a type
system which types the previous m0 in the following way:m0: f:::; 8X�C1:X ! X; :::g
For this reason in this paper we define F&� where this type dependency is dealt with in
an explicit way5.Type dependency
In a programming language a function which performs a dispatch on a type passed as
argument would be probably be written as:4 Note that such a solution cannot be used also for the record-basedmodel. We cannot replacethe function, say, �x:C1:x by �x:C2 :x since the latter would no longer accept inputs of typeC1.5 The other solution is to deal with it in an implicit way by introducing type schemas �a laML, with bounds on the generic variables.

Parametric and \ad hoc" polymorphism 5Fun(X:*) = case X<T1: exp1| X<T2: exp2::| X<Tn: exp_n
This function executes exp1 if we pass a type less than or equal to T1, exp2 if it is less
than or equal to T2 and so on. The case structure suggests a parallel testing. Thus, if
there is more than one candidate we select among them the branch with the least bound.
In F&� this function is denoted by:(�X�T1:exp1 & �X�T2:exp2 & : : :& �X�Tn:expn)
and its type is 8XfT1:S1; T2:S2; : : : ; Tn:Sng (where expi:Si). However this type is a
rough approximation yet. Indeed, to obtain a coherent and expressive system, we need
strong restrictions on the Ti’s and the Si’s.

First of all note that the selected branch may change during the computation. For
example take a function f of type 8XfT1:S1; T2:S2g with T2� T1. Consider now the
expression (�Y � T1:f [Y]) . Since Y � T1 we guess that the branch selected in f [Y]
will be the one associated to T1 and thus the type of this expression will be 8(X�T1)S1
(more exactly 8(Y � T1)S1[X := Y]). But if we pass to the function above the typeT2 then, as Y is bound to T2, the selected branch will be the second one and the result
will have type S2. System F and F� satisfy the subject reduction property, i.e. types are
preserved under reductions. If we want reductions to preserve the type also in the new
system we must require S2 to be the same type as S1. But, it turns out that this is too
strong a condition to model object-oriented languages (see the examples in section 6).
Thus we adopt a less restrictive discipline, according to which types are allowed to
decrease during computation. Thus in the example above it must be possible to deduceX� T2 ` S2�S1. Summing up, the first restriction we impose on an overloaded type8XfTi:Sig is that if ` Ti� Tj then X� Ti ` Si� Sj (we call it the covariancecondition, since it accounts for a longstanding debate on covariance vs. contravariance
in the subtyping of the arrow types: see more on it in [CGL92]). Note the use of
sequents: the premise records the subtyping relation on the type variables; we call it a
type constraint system.De�nition 1.3. Ø is a type constraint systems (tcs); dom(Ø)=Ø. If C is a tcs, X 62dom(C) and for every Y 2 FV (T), Y 2 dom(C) thenC[fX�Tg is a type constraint
system and dom(C [fX�Tg)=dom(C)[fXg.
Sometimes we will use the notation C(X) to denote the bound associated to X in C.
By the definition above for a given tcs C and a type variable X 2 dom(C) there always
exists a least non variable type T greater than X. We denote it by B(X)C (the B stands
for bound). More precisely we have the following definition.De�nition 1.4. Let C be a tcs and T a raw6 type such that FV (T) � dom(C) then
1. B(T)C= T if T is not a type variable.
2. B(T)C=B(C(T))C otherwise.

In the rest of the paper we omit the subscript C in B(T)C when it is clear from the
context.

We limit our study to the case where the bounds of an overloaded function range
over basic types (e.g. Bool, Int, Real ...). Indeed, the use of arrow types in the bounds6 A raw type is a type that may be not well formed. See section 2

6 Giuseppe Castagna
poses many non-trivial problems, due to the contravariance of the left argument in the
subtyping relation. Therefore the second restriction we impose is that 8XfTi:Sigi2I is
well-formed only if for every i2I B(Ti) is a basic type7.

range of XB AB(X) CTTTTTTTTTTTTTTTTTTTT TTTTTTTTTTT�� ��� �����������
Thus every bound Ti must be an atomic type,
i.e. either a basic type or a type variable.
When the bound is a type variable, say X, the
basic type B(X) plays an important role, since
the set of its subtypes (denoted by P(B(X))
) is the range of X. When we apply an over-
loaded function to a type, a selection rule picks
the branch to execute. As we already said, this
rule selects the branches with a bound provably
larger than or equal to the type passed as the
argument, and among them it chooses the one
with the least bound.
Some conditions are required to assure that this
minimum exists. In �&-calculus this existence
was assured by requiring that the bounds had to
form a partial downward semi-lattice.8

But there we had only closed types. Now with type variables this restriction no longer
suffices: consider the example of the figure above; it is clear that X and A have no
common lower bound (since the only judgment we can prove for X is thatX � B(X)).

Nevertheless if X takes the value B, it can enter in conflict with A since they have
a common lower bound C.

Thus if a variable X appears in an overloaded type as a bound then conflicts must
be checked taking into account every type in P(B(X)). To this purpose we require that
every set of bounds satisfies the property of \-closure, defined as follows:De�nition 1.5. LetC be a type constraint system. Given a set of atomic types fAigi2I
we write C ` fAigi2I\-closed iff for all i; j 2 I if B(Ai)C+B(Aj)C then there existsh 2 I such that C ` Ah = Ai \Aj .
Here C ` Ah = Ai \Aj means that from C it is provable that Ah is the g.l.b. of Ai
and Aj (i.e. we need a derivation for C ` Ah � Ai, one for C ` Ah � Ah and one forC ` A � Ah for every A which is a common lower bound of Ai and Ah—note that
they is a finite number of such A), and B1 + B2 that B1 and B2 have a common lower
bound (in this case we need the proof only for two judgments).

Note that \-closure is quite a draconian restriction. Indeed \�closed sets of bounds
have a very precise form (see proposition 2.5): they are partial downward semi-lattices,
i.e. formed by disjoint unions of downward semi-lattices. These semi-lattices are divided
in two parts: the upper part is a semi-lattice formed only by basic types; the lower part
is formed by a chain of type variables starting from the least element of a semi-lattice
of basic types. Any of these two parts may be missing. A pictorial representation of the
situation is given in figure 1.7 The major drawback of this restriction is that we cannot obtain the quanti�cation of SystemF as a special case of the overloaded one and thus we will be obliged to add it explicitly. Seealso sections 6.3 and 78 A set S is a partial downward semi-lattice i� for all a; b 2 S if a + b then a \ b 2 S. Herea + b means that a and b have a common lower bound (in S) and a \ b denotes their greatestlower bound.

Parametric and \ad hoc" polymorphism 7� � � � � �I@@ ��� ��� I@@ I@@ ���� � � � �6I@@ ��� YHHHH ����*� �6 6�6 �6� � Basic types (semi-lattices)6 � � Type variables (chains)� Fig. 1. Meet-closed sets of atomic types
Remark that \�closure is always relative to a tcs C since it determines the order for

type variables (we assume that the order on basic types is predefined).2. Type system
In this section we describe the type system. We first define the raw types. Among them we
select the types, i.e. those raw types that do not contain overloaded types not satisfying
the three rules we hinted in the introduction. In other terms 8XfAi:Tigi2I must:

1. have bounds ranging over basic types, i.e. for each i2I, B(Ai) must be a basic type.
2. have a \-closed set of bounds.
3. satisfy covariance, i.e. if Ai � Aj then X�Ai ` Ti�Tj

We suppose we have a predefined ordering on basic types which forms a partial lattice.
This partial order is extended to higher types by a set of subtyping rules that are mutually
recursive with those selecting the types.Raw TypesA ::= X j B (atomic types [B basic types])T ::= A j Top (raw F&� types)j T ! Tj 8(X�T)Tj 8XfA1:T1; : : : ; An:Tng (also denoted by 8XfAi:Tigi=1::n)Judgments
We have three kinds of judgment: for type well-formedness (C ` T type), for the
subtyping relation (C ` T� T 0) and for the typing relation (C ` a:T). We call the
first two kinds of judgments type judgments. Throughout the paper we also use some
informal judgements: for example “C ` T = mini2IfTig” stands for “T 2 fTigi2I
and for all i2I C ` T � Ti”.

8 Giuseppe CastagnaTypes
(Basictype) C ` B type

(Toptype) C ` Top type

(Varstype)
C ` T typeC [fX�Tg ` X type

(�)
(!type) C ` T type C ` T 0 typeC ` T ! T 0 type

(8type)
C [fX�Tg ` T 0 type C ` T typeC ` 8(X�T)T 0 type

(�)
(f gtype) C ` Ai typeC ` fAigi=1::n \-closedC [fX�Aig ` Ti type

if C ` Ai � Aj then C [fX�Aig ` Ti�TjC ` 8XfA1:T1; : : : ; An:Tng type
(��)

(�) X 62 dom(C)
(��) B(Ah)C is a basic type for h = 1::n and X 62 dom(C) and i; j 2 [1::n]Subtyping
(refl)

C ` T typeC ` T�T
(trans)

C ` T1 � T2 C ` T2 � T3C ` T1 � T3
(taut)

C ` T typeC [fX�Tg ` X�T (�)
(Top)

C ` T typeC ` T�Top
(!)

C ` T 01�T1 C ` T2�T 02C ` T1 ! T2�T 01 ! T 02
(8) C ` T 01�T1 C [fX�T 01g ` T2�T 02 C ` 8(X�T1)T2 typeC ` 8(X�T1)T2�8(X�T 01)T 02 (�)
(f g) C ` 8XfAj :Tjgj2J type C ` 8XfA0i:T 0igi2I type

for all i 2 I exists j 2 J s.t.C ` A0i�Aj C [fX�A0ig ` Tj�T 0iC ` 8XfAj :Tjgj2J�8XfA0i:T 0igi2I (�)

Parametric and \ad hoc" polymorphism 9
Types are considered equal modulo the order in overloaded types. The substyping rules
above define a pre-order. Antisymmetry does not hold but on atomic types (therefore
lub’s and glb’s are univocally defined).2.1. Some useful resultsTheorem 2.1. If C ` T�T 0 then C ` T type and C ` T 0 type
Proof. By induction on the depth of the proof of C ` T�T 0.
Let us introduce some terminology: we say that two types have the same shape if they
are both constant types or both type variables, or both Top, or both arrow types, or they
are both overloaded or both parametric types

The following result on the form of the judgements will be frequently used in the
rest of the paperProposition 2.2. Let C ` T1 � T2. Then1. If T1 is not a variable then T2 either is Top or it has the same shape as T12. If T2 is not Top then T1 either is a variable or it has the same shape as T2
Proof. By induction on the depth of the proof of C ` T1 � T2, performing a case
analysis on the last applied rule of the proof.

Another useful fact that will be extensively used in the proofs of this paper is the
following one:Proposition 2.3. If C ` T1 � T2 then C ` B(T1)C � B(T2)CLemma 2.4. If C ` X � Y then B(X)C = B(Y)C
Proof. An easy induction on the number of steps of the definition of B(X)C .

The following proposition describes the the form of the \-closed set of types:Proposition 2.5. If C ` fAigi2I\-closed then for any pair of elements Ai andAj such that B(Ai)C + B(Aj)C one of these cases must hold:1. B(Ai)C and B(Aj)C are unrelated (w.r.t. the subtyping relation), Ai and Ajare both basic types and their g.l.b. is in fAigi2I2. B(Ai)C � B(Aj)C and both Ai and Aj are basic types (or the reverse).3. B(Ai)C � B(Aj)C , Ai is a variable and Aj is a basic type.4. B(Ai)C � B(Aj)C , Ai and Aj are both variables and C ` Ai � Aj (or thereverse).
Proof. Let us examine all the possible cases:

1. Ai and Aj are both basic types. Then all the possible cases are covered by the first
two points of the proposition.

2. Ai is a variable and Aj is a basic type.8 Then we want to prove that B(Ai)C � Aj .
ConsiderAh = Ai\Aj. SinceC ` Ah�Ai then by proposition2.2 Ah is a variable
too. By lemma 2.4 B(Ah)C = B(Ai)C . Since C ` Ah�Aj then by proposition 2.3
we obtain the result8 Without loss of generality, we can consider for this case and for the case 4 that B(Ai)C �B(Aj)C holds. Thus in this proof and in those that follow we will skip the reverse case.

10 Giuseppe Castagna
3. Ai and Aj are both variables. Consider Ah = Ai \ Aj. By proposition 2.2 Ah

is also a variable and by lemma 2.4 B(Ah)C = B(Ai)C = B(Aj)C . Thus both Ai
and Aj appear in the chain from Ah to B(Ah)C . Therefore either C ` Ai�Aj orC ` Aj�Ai holds, according to the order they appear in the chain.2.2. Transitivity elimination

The rules of subtyping given above do not describe a deterministic algorithm: a subtyping
judgment does not univocally determine neither the rule to prove it nor the parameters
that such a rule must have. In particular non-determinism is introduced by the rules (refl)
and (trans):

Consider the judgment C ` T�T ; if T is not a variable nor Top then the judgment
can be proved by at least two different derivations, one consisting just of the rule (refl)
the other obtained by applying the structural rule for T (e.g. (!) if T is an arrow type)
and the rule (refl) to the components of T . This kind of non-determinism can be easily
solved by choosing either to use (refl) as soon as possible or to use it as late as possible
(i.e. only on atomic types). We choose this second solution thus we substitute the rule
(refl) above by the following one:

(refl)
C ` A typeC ` A�A

It is then very simple to prove that this new system is sound and complete w.r.t. the
previous one: soundness is obvious and completeness is given by the following lemma:Lemma 2.6. For each C and T such that C ` T type the judgment C ` T�Tis provable using re
exivity only on atomic types.
Proof. A straightforward induction on the structure of T
Also the rule (trans) produces a non-determinism similar to the one of (refl): we have
always the choice to apply transitivity or to push it to the subcomponents. But, besides
that, (trans) introduces a deeper form of non-determinism quite harder to eliminate.
Indeed, the (trans) rule does not respect the so-called “sub-formula property”, according
to which all the types appearing at the premises of a rule must appear in its consequence,
too. When proving T1�T3 by transitivity, a new level of non-determinism is introduced
by the choice of the intermediate type T2 such that T1�T2 and T2�T3.

The reader will have recognized in it a cut elimination problem. Indeed, transitivity
elimination in subtyping systems corresponds to cut elimination in Gentzen’s sequent
calculus for the first order logic. Both of them lead to a coherence result of the corre-
sponding proof system, by returning a canonical derivation for each provable judgment.
The resemblance is even stronger since we can use the Gentzen’s technique for cut elim-
ination to prove also transitivity elimination. Namely, we define a weakly normalizing
rewriting system on the derivations of subtyping judgments. This system will push the
transitivity rules towards the leaves of the derivation; whenever it has to choose between
pushing transitivity up into a left or a right subderivation it (arbitrarily) chooses the one
on the right. The derivations in normal form will have all the (trans) rules applied to a
leaf of the derivation tree.

Since it is difficult to work directly with derivations, we use the Curry-Horward iso-
morphism [How80] to define a set a terms to univocally codify subtypingderivations. We
follow for their definition [CG92], where these terms are called coercion expressions.

Parametric and \ad hoc" polymorphism 11
The syntax of the coercion expressions is:c : : = KB1B2 j IdA j XT j TopT j c! c0 j 8(X�c)c0 j c c0 j 8�TXfc1:c01; :::; cn:c0ng

where � denotes a total function between two sets of indexes � : I ! J .
We next show how to use coerce expressions to codify derivations. In the rules

that follow we do not consider the judgements of type formation (C ` T type) and
we concentrate only on the subtyping judgements. Considering them would greatly
complicate the exposition, without bringing any benefit: firstly the rules defining type
formation describe a deterministic algorithm (note indeed that type formation uses
subtyping only on atomic types, thus there is not a real mutual recursion), and thus they
do not pose any coherence problem; secondly, all the proofs in the rest of this section will
work on a given type and on its syntactical sub-formulas; if we suppose by hypothesis
that the type is well formed then the proofs will be valid also when restricted to well
formed types (sub-formulae of well formed types are well formed types).

Thus the derivations we codify involve only subtyping judgements and work under
the hypothesis that all the types appearing in them are well-formed. We also use (refl)
defined only for atomic types.

(basic) C ` KB1B2 :B1 � B2 (y)
(refl) C ` IdA:A�A
(trans)

C ` c:T1 � T2 C ` c0:T2 � T3C ` c0 c:T1 � T3
(taut) C [fX�Tg ` XT :X�T
(Top) C ` TopT :T�Top
(!)

C ` c1:T 01�T1 C ` c2:T2�T 02C ` c1 ! c2:T1 ! T2�T 01 ! T 02
(8) C ` c1:T 01�T1 C [fX�T 01g ` c2:T2�T 02C ` 8(X�c1)c2: 8(X�T1)T2�8(X�T 01)T 02
(f g) 8i 2 I C ` ci:A0i�A�(i) C [fX�A0ig ` c0i:T�(i)�T 0iC ` 8�8XfAj:TjgX:fci:c0igi2I : 8XfAj:Tjgj2J�8XfA0i:T 0igi2I (yy)
(y) for all basic types B1; B2 such that B1�B2
(yy) �: I ! J total
Note that the term associated to transitivity is the composition of the terms associated
to the sub-derivations.

The last rule shows the use of the function �: during the subtyping of two overloaded
types, � associates each branch of the greater overloaded type with the branch in the
smaller type to which it has been compared in the proof of subtyping. Note that this
information would not suffice to univocally determine the derivation codified by a given

12 Giuseppe Castagna
coercion expression; in case of overloaded types we need also to know the type on the
left-hand side of the relation, which is recorded in the lower index of 8.Proposition 2.7. There is a 1-1 correspondence between well-typed coerce ex-pressions and subtyping derivations.
Proof. A simple induction on the rules9.2.2.1. The rewriting system
We now define a rewriting system on the derivations of subtyping judgements. In view
of the proposition 2.7 this is equivalent to defining it directly on the coerce expressions.
We borrow the rewriting system from [CG92], to which we add the rules (fg’) and (fg”)
to deal with overloaded types. In the rules that follow we suppose that C ` c:S�T andC ` ci:Ai � A0�(i):

(Assoc) (c d) e ; c (d e)(!0) (c! d) (c0 ! d0) ; (c0 c)! (d d0)(!00) (c! d) ((c0 ! d0) e) ; ((c0 c)! (d d0)) e(80) (8(X�c)d) (8(X�c0)d0) ; 8(X�c0 c)(d d0[XT : = cXS])(800) (8(X�c)d) ((8(X�c0)d0) e) ; (8(X�c0 c)(d d0[XT : = cXS])) e(fg0) (8�TXfci:digi2I) (8 T 0Xfc0j :d0jgj2J); 8 ��T 0 Xfc0�(i) ci:di (d0�(i)[XA0�(i) := XAi]gi2I(fg00) (8�TXfci:digi2I) ((8 T 0Xfc0j :d0jgj2J) e); (8 ��T 0 Xfc0�(i) ci:di (d0�(i)[XA0�(i) := XAi]gi2I) e
A simple analysis of the rules shows that the normal forms of this rewriting system are
subterms of (c! d) e1 : : : en or of (8(X�c)d) e1 : : : en or of (8�TXfci:dig) e1 : : : en
where c; ci; d; di are in normal form and e1; : : : ; en are either Xt or TopT of KBB0
(composition is right associative). These normal forms correspond to derivations in
which every left premise of a (trans) rule is a leaf. Thus the rewriting system pushes the
transitivity up to the leaves. It remains to prove two facts:

1. The rewriting system is sound, i.e. it rewrites a valid derivation for a certain judg-
ment into another valid derivation for the same judgment. By the Curry-Howard
isomorphism this is equivalent to proving the subject reduction theorem for the cal-
culus of the coercion expressions; namely we have to show that a well typed coerce
expression rewrites only to well typed coerce expressions of the same type.

2. The rewriting system is weakly normalizing. In this case there exists a reduction strat-
egy which transforms every derivation into another that proves the same judgment
and is in normal form (i.e. with the (trans) rules at the right places).9 Strictly speaking this theorem is true modulo weakenings of the tcs'

Parametric and \ad hoc" polymorphism 132.2.2. Soundness of the rewriting system
The proof of the soundness of the rewriting system is very similar to the corresponding
one in [CG92]. We first have to prove the following lemmas:Lemma 2.8. (weakening) If C ` c:� is provable and C [fX� Tg is a tcsthen also C [fX�Tg ` c:� is provable.
Proof. By a simple induction on the proof of C ` c:�Lemma 2.9. (substitution) If C [fX� Tg ` c:U � V and C [fX� Sg `d:X � T are provable then C [fX�Sg ` c[XT : = d]:U � V is provable too.
Proof. By induction on the structure of c. We only detail the proof when c is a variable;
all the other cases are either trivial (KBB0 ;TopT and IdA) or they are solved by a
straightforward use of the induction hypothesis (!, 8, 8�T).
There are two subcases:
1. c�XT . The result becomes C[fX�Sg ` d:X � T which is satisfied by hypothesis.
2. c�YV . The hypothesis becomes C[fX�Tg ` YV :Y � V . Therefore C ` YV :Y �V . By a weakening (lemma 2.8) we obtain the result C [fX�Sg ` YV :Y � V .

Now we are able to prove the soundness of the rewriting systemTheorem 2.10. If c �; d and C ` c:� then C ` d:�
Proof. Follow the proofof section 5.2 in [CG92]. For the cases (fg’) and (fg”) lemma 2.9.
The detailed proof of these cases can be found in [Cas94].2.2.3. Weak normalization
The task of proving that the rewriting system is weakly normalizing is very simple since
all the work has already been done in [CG92]: definesize(A) = size(Top) def= 1size(S ! T) = size(8(X�S)T) def= size(S) + size(T)size(8XfAi :Tigi2I) def= Xi2I (size(Ai) + size(Ti))
Let m and m0 be two multisets of natural numbers; definem < m0 def() 8n0 2 m09n 2 m n < n0De�nition 2.11. ([CG92]) Define the intermediate type of a coerce compositiond e, where e:S� T and d:T� U , as the type T . Then the complexity measure of a
coerce expression c is the multiset of the sizes of the intermediate types of all the redexes
of c, modulo (Assoc).Theorem 2.12. Every innermost strategy for; strictly decreases the complex-ity measure and thus terminates.
Proof. The proof is strictly the same as the one of section 5.3.3 in [CG92] modulo some
slight modifications for the cases involving overloaded types.

14 Giuseppe Castagna2.3. Subtyping algorithm and coherence of the system
Consider the following rewriting rules

(idl) IdT c ; c
(idr) c IdS ; c
(bas0) KBC KAB ; KAC
(bas00) KBC (KAB c) ; KAC c
(top) TopT c ; TopS
(varTop) XTop ; TopX

These rules perform some cleaning of the derivations, basically by erasing useless
coercions.

This set of rules clearly constitutes a strongly normalizing rewriting system (use as
metrics for the coercion expressions the lexicographical order of the pairs formed by the
number of compositions in the expression and by the number of variables occurring in
it). Furthermore no rule increases the complexity measure given in the previous section
for weak normalization, and they are all sound. Therefore we can safely add these rules
to the previous rewriting system: all the results of the previous section still hold. In the
rest of this section we will always consider the rewriting system formed by the old rules
and those introduced above.2.3.1. The shape of the normal forms
It is very important to analyze the shape of the normal forms of the composed rewriting
system. We have the following theorem:Proposition 2.13. Every well-typed coerce expression in normal form has theform c0 c1 : : : cn with n � 0, where c0 can be any coerce expression di�erent fromcomposition, whose subformulae are in normal form, and c1 : : : cn are variables.
Proof. This proposition can be easily proved by induction on n (where n is the number
of outer compositions of the normal form at issue). For n = 0 the result is obvious.
The inductive case (n > 0) is proved by a case analysis on the shape of c0, by using
proposition 2.2 and the reduction rules. First of all note that because of the rewriting
rules (top) and (idl) c0 can be neither TopT nor IdA:c0�XT . Consider c1. It cannot be a compositionbecause of (Assoc). By proposition2.2

it can be nothing but a variable: indeed we have that c1:S � X thus S must be a type
variable, say, Y and therefore c1 � YX . The result follows by induction hypothesis.c0�KB1B2 . Consider c1: it cannot be a composition because of (Assoc); it cannot be
a constant because of (bas0) if n = 1, because of (bas00) if n > 1; it cannot be TopT
or c! c0 or 8(X�c)c0 or 8�TXfc1:c01; : : : ; cn:c0ng because of proposition 2.2. Thus
it can be but a variable. The result follows by induction hypothesis.c0�c! c0 . Consider c1: it cannot be a composition because of (Assoc); it cannot be ad ! d0 because of (!0) if n = 1, because of (!00) if n > 1; it cannot be TopT orc! c0 or 8(X�c)c0 or 8�TXfc1:c01; : : : ; cn:c0ng because of proposition 2.2. Thus it
can be but a variable. The result follows by induction hypothesis.

All the other cases are solved as the last two cases.

This theorem has two important consequences: the coherence of the proof system for
the subtyping relation and the definition of a subtyping algorithm.

Parametric and \ad hoc" polymorphism 152.3.2. CoherenceLemma 2.14. For every provable subtyping judgment there exists only one co-erce expression in normal form proving it.
Proof. We follow the pattern of the proof of the corresponding proposition in [CG92]. Letc be a well typed coercion expression in normal form. From propositions 2.13 and 2.2
it follows almost immediately that we have only these possible cases:

1. if c:A � A then c�IdA
2. if c:X � Y then c is a composition of variables, which is determined in an unique

way by the tcs.
3. if c:B1 � B2 then c�KB1B2
4. if c:S ! S0�T ! T 0 then c is a! coercion.
5. if c: 8(X�S1)S2�8(X�T1)T2 then c is a 8 coercion.
6. if c: 8XfAj:Tjgj2J�8XfA0i:T 0igi2I then c is a 8�T coercion.
7. if c:X � B then c is a composition of variables, which is determined in an unique

way by the tcs, composed with a coercion of class 3 if B(X) 6= B
8. if c:X� T ! T 0 then c is a composition of variables, which is determined in an

unique way by the tcs, composed with a coercion of class 4 if B(X) 6= T ! T 0
9. if c:X�8(X�T1)T2 then c is a composition of variables, which is determined in an

unique way by the tcs, composed with a coercion of class 5 if B(X) 6= 8(X�T1)T2
10. if c:X�8XfA0i:T 0igi2I then c is a composition of variables, which is determined

in an unique way by the tcs, composed with a coercion of class 6 if B(X) 6=8XfA0i:T 0igi2I
11. if c:T � Top then c is TopT
After this simple observation then the result can be proved by induction on the structure
of c.Theorem 2.15. (coherence) Let �1 and �2 be two proofs of the same sub-typing judgment C ` �. If c1 and c2 are the corresponding coerce expressionsthen c1 and c2 are equal modulo the rewriting system.
Proof. By the weak normalization there exist two coercion expressions in normal formd1 and d2 such that c1 �; d1 and c2 �; d2. By the soundness of the rewriting system
(theorem 2.10) it follows that C ` d1:� and C ` d2:�. But then by lemma 2.14 we
have that d1�d2 (note that this constitutes also a proof that; is Church-Rosser.)2.3.3. Subtyping algorithm
Consider once more the normal forms of proposition 2.13. These correspond to deriva-
tions in which every application of a (trans) rule has as left premise an application of
the rule (taut). From this observation one directly derives the definition of the following
subtyping algorithm:

(AlgRefl) C À X�X
(AlgTrans)

C À C(X) � TC À X � T
(AlgTop) C À T�Top

16 Giuseppe Castagna
(Alg!)

C À T 01�T1 C À T2�T 02C À T1 ! T2�T 01 ! T 02
(Alg8) C À T 01�T1 C [fX�T 01g À T2�T 02C À 8(X�T1)T2 � 8(X�T 01)T 02 (�)
(Algf g) for all i 2 I exists j 2 J s.t.C ` A0i�Aj C [fX�A0ig ` Tj�T 0iC ` 8XfAj :Tjgj2J�8XfA0i:T 0igi2I (�)
(�) X 62 dom(C)
This set of rules denotes a deterministic algorithm since the form of the input —the
judgment one has to prove— unequivocally determines the rule that must be used and
all the parameters of any recursive calls

This algorithm (which is a semi-decision procedure) is sound and complete w.r.t.
our first system. This means that the sets of provable judgments of the two systems are
the same. This is stated by the following theorem:Theorem 2.16. C À �() C ` �
Proof. Soundness ()) is easily proved by induction on the depth of the derivation ofC À �. Completeness (() stems directly from the work of this section: take any proof
of C ` �, apply to it the complete rewriting system with an innermost strategy; replace
in the obtained normal form all the sequences of (taut) (trans) rules by an (AlgTrans)
rule; add the index A to every turnstile and you have obtained a proof for C À �.3. Terms
In this section we describe the terms of the language. We start by the definitionof the rawterms, among which we distinguish the terms, i.e. those raw terms that possess a type.
Roughly speaking, (raw) terms are divided in three classes: terms of the simply typed�-calculus, terms for parametric polymorphism and terms for overloading. Overloaded
functions are built in a list fashion, starting by an empty overloaded function " and
concatenating new branches by &. The &’s are indexed by a list of types which is used
to type the term and to perform the selection of the branch.Indexes I: : = [A1:T1 k : : : k An:Tn]Raw Terms a ::= xT j (�xT :a) j a(a) simply typed �-calcj top j �X�T:a j a(T) F�j " j (a&Ia) j a[A] overloading
We required that the bounds of an overloaded function range over atomic types. Therefore
the argument of an overloaded function can be restricted to be an atomic type (a[A])
since a term of the form, say, a[S ! T] would be surely rejected by the type checker.Terms
We use the meta notation:a[x := b]; a[X := S]; T [X := S] for substitutions and [for

Parametric and \ad hoc" polymorphism 17
set-theoretic union. Also we use C ` a:S�T to denote that C ` a:S and C ` S�T .
Type substitutions are performed on indexes, too. Terms are selected by the rules below;
since term variables are indexed by their type, the rules do not need assumptions of the
form (x:T):
[Vars] C ` xT :T C ` T type[!Intro] C ` a:T 0C ` (�xT :a):T ! T 0 C ` T type[!Elim] C ` a:T 0 C ` b:S0�SC ` a(b):T B(T 0)C= S ! T[Top] C ` top:Top[8Intro] C [fX�Tg ` a:T 0C ` �X�T:a: 8(X�T)T 0 C ` T type[8Elim] C ` a:T 0 C ` S0�SC ` a(S0):T [X := S0] B(T 0)C= 8(X�S)T["] C ` ": 8Xfg[fgIntro] C ` a:S1�8XfAi:Tigi�n C ` b:S2�8(X�A)TC ` (a&[A1 :T1k:::kAn:TnkA:T]b): 8X(fAi:Tigi�n [fA:Tg) (z)[fgElim] C ` a:T C ` Aj = mini2IfAijC ` A�AigC ` a[A]:Tj[X := A] (zz)
(z) C ` 8X(fAi:Tigi�n [fA:Tg) type
(zz) B(T)C= 8XfAi:Tigi2I
Note the form of the premises in the rule [fgIntro]; we cannot require that the com-
ponents of an & must have the same type as the one specified in the index: since it is
possible to reduce inside an & then the types of the components may decrease (see the
subject reduction theorem 4.6) and cannot be fixed (the index does not change with the
reduction thus even if types are equal modulo the ordering in overloaded types, terms
are not equal modulo index reordering).

A first non trivial result for this system is given by the following theorem.Theorem 3.1. If C ` a:T then C ` T type
Proof. The proof is an easy inductionon the depth of the proof ofC ` a:T by performing
a case analysis on the last applied rule. The cases for [8Elim] and [fgElim] are solved
by using the lemma 4.3.

As the careful reader will have noticed, we do not use subsumption in the type checking;
since the selection of a branch is done according to the type of the argument we want,

18 Giuseppe Castagna
to avoid ambiguities, that every well typed term has a unique type. This is stated by the
following theorem:Theorem 3.2. If C ` a:T1 and C ` a:T2 then and T1 = T2
Proof. An easy induction on sum of the depths of the derivation of C ` a:T1 andC ` a:T2, by performing a case analysis on the structure of a
By theorem 2.15, we can associate to every provable judgment a canonical derivation.Theorem 3.3. Let �1 and �2 be two derivations for the same judgment C `a:T . Let (�i)� (i = 1; 2) denote the derivation �i in which every (sub-)derivationof a subtyping judgment has been replaced by its canonical form. Then �1 � �2.
Proof. By induction on the structure of a (which univocally determines the typing rule
to apply).

By combining the result of this two theorems we obtain that every well typed term has
a canonical derivation for its type.

Thus one would expect that it is possible to define a type-checking algorithm for the
raw terms. This is the case, indeed: if in the system above you replace every subtyping
judgment C ` S� T by C À S� T you have a type-checking algorithm that can be
easily proved sound and complete w.r.t. the original system.4. Reduction
In this section we give the equational theory of the terms of F&� . We present it under the
form of reduction rules. We assume we work modulo �-conversion for term variables;
note that no clash is possible for type variables because of the definition of tcs. The
reduction rules are context dependent.Notions of reduction

(�) C ` (�xT :a)(b) > a[xT := b]
(�8) C ` (�X�T:a)(T 0) > a[X := T 0]

(�fg) If A;A1 : : : ; An are closed thenC ` (a&[A1:T1k:::kAn:Tn]b)[A]>� b(A) if An = min1�i�nfAijC ` A�Aiga[A] otherwise

Note that the selection of the branch is made on the index. Therefore while overloaded
types are equal module reordering of their components, in indexes the order is meaningful
since to a different ordering may correspond a different selection.

Besides these rules there are the usual rules for the context; among these the only
one that deserves a note is the rule for �, for it changes the tcs of the reduction:C [fX�Tg ` a > a0C ` (�X�T:a) > (�X�T:a0)
For what it concerns the rules note that in �fg we require that the types involved
in the selection of a branch are closed. In this way we always select the most precise
branch (i.e. the one with the smallest possible bound). This correspond in object-oriented
programming to the implementation of the dynamic binding (for a wider discussion on
this topic see [CGL93].)

Parametric and \ad hoc" polymorphism 194.1. Subject Reduction
In this section we prove that the type-checking system of F&� is well behaved w.r.t. the
reduction rules. More precisely we prove that every (well-typed) term rewrites to another
(well-typed) term, whose type is smaller than or equal to the type of the former. The
proof of subject reduction is very technical and complex. The crux of the problem is to
prove that the property of \-closure is conserved under reductions, more precisely under
(feasible) substitutions. For this reason we suggest the reader to skip at first reading the
proofs of the three lemmas that follows.

We need first some notation:Notation 4.1. Let C [fX � Tg be a tcs. De�ne (C [fX� Tg)[Y : = S] as(C[Y : = S] [fX � T [Y : = S]g) and �[X: = S] as �. Let C ` � be a typejudgment. Then C ` �[X: = S] is de�ned as C ` T [X: = S] type if ��T type,as C ` T1[X: = S] � T2[X: = S] if ��T1�T2.
The proof of subject reduction requires an assumption and three technical lemmas:Assumption 4.2. Recall that the proof of C ` fAigi=1::n\-closed is indeed anappropriate set of proofs with �nal judgments of the form C ` Ah�Ak provingthe meet closure of fAigi=1::n. In particular we suppose that this set contains atleast one proof of C ` Ai�Aj for every i; j in [1::n] for which such a proof exists.Lemma 4.3. (main lemma) If C [fX�Sg ` � is a provable type judgment,X 62FV (S0) andC[X: = S0] ` S0�S is also provable, then C[X: = S0] ` �[X: = S0]is provable, too.
Before proving the lemma, we want clarify a point: indeed the reader may wonder why in
this lemma, as well as in lemma 4.5, we used the tcsC[X: = S0] rather thanC. Actually if
you replace C[X: = S0] by C the theorem can no longer be proved, since at some points
it is not possible to use the induction hypothesis (more precisely when you introduce a
new variable in the tcs). The intuitive reason is that even if C[fX�Sg andC[X: = S0]
are well formed tcs’s this does not imply the good formation of C. For example takeS0� S�B and C � fY �Xg: C is not well formed but C[X: = S0] � Y � B andC [fX� Sg � fY � Xg [fX � Bg are well formed.10 We can now prove the
lemma.Lemma 4.4. (term substitution) If C ` b:T 0 � T and C ` a:S then C `a[xT : = b] : S0�S.Lemma 4.5. (type substitution) If C [fX�Sg ` a:T , C[X: = S0] ` S0� Sand X 62FV (S0) then C[X: = S0] ` a[X: = S0]:T 0 � T [X: = S0]
Lemmas 4.3 and 4.5 constituted the hard part of the proof. It is then rather straightforward
to prove the theorem of subject reduction by using the same technique of [CGL92].Theorem 4.6. (subject reduction) If C ` a:T and C ` a > b then C ` b:T 0and C ` T 0�T
Proof. The proof is by induction on the depth of the proof of C ` a > b. Instead
of presenting the proof for the base case (the rules (�), (�8) and (�fg)) and for the
inductive case (the context rules), we think that a case analysis on the structure of a is
more intelligible. However we change only the order of presentation of the proof not the
proof itself:10 The order in tcs is not important

20 Giuseppe Castagnaa�xT trivial.a�" triviala�Top triviala��xT1:a0 , C ` a0 > b0 and b � �xT1:b0. This case is solved by a straightforward use
of the induction hypothesis.a��X�T1:a0 C [fX�T1g ` a0 > b0 and b � �X�T1:b0. This case is solved by a
straightforward use of the induction hypothesis.a� (a1&Ia2) just note that whichever reduction is performed the reductum is well-typed
and the type does not changea�a1(a2) where C ` a1:W , C ` a2:S0� S and B(W)C = S ! T . Then there are
three possible subcases:

1. a1 � �xS :a3 and b � a3[xS: = a2]. this case follows from lemma 4.4
2. C ` a1 > a01. Then by induction hypothesis we have C ` a01 : T 00�W . By

proposition 2.3 C ` B(T 00)C � B(W)C . Since B(T 00)C is a not a type variable
then it is of the form S00 ! T 0 with C ` S0�S�S00 and C ` T 0�T . Thus b is
well-typed and with type T 0�T .

3. C ` a2 > a02. Then by induction hypothesis we have C ` a02 : S00 � S0 � S.
Thus C ` b:Ta�a0(S) where C ` a0:W , C ` S � S0, B(W)C = 8(X�S0)S00 and T � S00[X: =S]. Since B(W)C = 8(X�S0)S00, thenC ` 8(X�S0)S00 type

this holds only if C [fX�S0g ` S00 type
from which we deduce that X 62 dom(C). From this and from C ` S� S0 we
deduce that X 62 FV (S).
Now there are two possible subcases:

1. a0 � �X�S0:a00 and b � a00[X: = S]. But since C ` S � S0 and X 62 FV (S)
we can apply lemma 4.5. The result follows from X 62 dom(C).

2. C ` a0 > b0. thus by induction hypothesis and by proposition 2.3 we obtainC ` b0 : T 00� W and C ` B(T 00)C � B(W)C . Since B(T 00)C is not a
type variable then it is of the form 8(X� U 0)U 00 with C ` S� S0� U 0 andC [fX� S0g ` U 00�S00. Thus b is well typed and C ` b : U 00[X: = S]. The
result follows from the main lemma applied to C ` U 00� S00 and the fact thatX 62 dom(C)a�a0[A] where C ` a0:W and B(W)C = 8XfAi:Tigi2I. As in the case before

it is possible to prove that X 62 dom(C) and that X 62 FV (A). Let Ah =mini2IfAi jC ` A�Aig. Then T � Th[X: = A]. Again we have two subcases:

1. a0� (a1&[A1 :T1k:::kAn:Tn]a2) and A;A1; : : : ; An are closed and a �fg-reduction
is performed. Then either b � a1[A] (case Ah 6= An) or b � a2(A) (caseAh = An). In both cases, by [fgElim] or by [8Elim] according to the case, it is
easy to prove that the terms have type T 0 � Th[X := A]: just use the induction
hypothesis and then apply the main lemma.

2. C ` a0 > a00. Then by induction hypothesis C ` a00:W 0�W and by propo-
sition 2.3 C ` B(W 0)C � B(W)C . Since B(W 0)C is not a type variable8XfA0j :T 0jgj2J. Thus by the subtyping rule (fg) there exists ~h 2 J such thatC ` A � Ah � A0~h. Therefore the set fA0j jC ` A � A0j; j 2 Jg is not empty,

Parametric and \ad hoc" polymorphism 21
and by the meet-closure of fA0jgj2J it has also a minimum. Call this minimumA0k. Then C ` b : T 0k[X: = A]. Since S�Th[X: = A] we have to prove thatC ` T 0k[X: = A] � Th[X: = A]
Take again the previous ~h; by the rule (fg) we haveC ` 8(X�A0~h)T 0~h � 8(X�Ah)Th (1)
By the definition of Ah: C ` A � Ah (2)
From (1): C ` Ah � A0~h

From (trans): C ` A � A0~h (3)
From (1): C [fX � Ahg ` T 0~h � Th (4)
From the definition of A0k and from (3) we obtainC ` A0k � A0~h

and from this and the rule (fgtype) applied to 8XfA0j :T 0jgj2J it followsC [fX � Ahg ` T 0k � T 0~h (5)
By (2) and by the choice of k we respectively have that C ` A � Ah andC ` A � A0k; thus we can apply the main lemma to (4) and (5) to obtain:C[X: = A] ` T 0~h[X: = A] � Th[X: = A]C[X: = A] ` T 0k[X: = A] � T 0~h[X: = A]

But X 62 dom(C), thus the judgments above getC ` T 0~h[X: = A] � Th[X: = A]C ` T 0k[X: = A] � T 0~h[X: = A]
Finally by (trans) we obtain the result:C ` T 0k[X: = A] � Th[X: = A]4.2. Church-Rosser

In section 2.3 we proved the syntactic coherence of the proof system of F&� . In this
section we prove the syntactic coherence of the reduction system of F&� .

In the reductions that follow we omit, without loss of generality, all the tcs11. To
prove the Church-Rosser property (CR) we use a method of Hindley [Hin64] and
Rosen [Ros73]:Lemma 4.7. (Hindley-Rosen) Let R1 and R2 be two notions of reduction. IfR1 and R2 are CR and >�R1 commutes with >�R2 then R1 [R2 is CR.11 The only place where this omission really matters is in the lemma 4.10 whose completestatement should be If C [fX�Sg ` a >�fg a0 then C ` a[X:= T] >��fg a0[X:= T].

22 Giuseppe Castagna
Set now R1 � �fg and R2 � � [�8; if we prove that these notions of reduction satisfy
the hypotheses of the lemma above then we proved CR. It is easy to prove that �[�8 isCR: indeed in [Ghe90] it is proved that � [�8 is terminating; by a simple check of the
conflicts it is possible to prove that it is also locally confluent; since it has no critical pair
then by the Knuth-Bendix lemma ([KB70]) it is locally confluent; finally by applying
the Newman’s Lemma ([New42]) we obtain CR.Lemma 4.8. �fg is CR.
Proof. By lemma 3.2.2 of [Bar84] it suffices to prove that the reflexive closure of >�fg
(denoted by >=�fg) satisfies the diamond property. Thus by induction on a >=�fg a1 we
show that for all a >=�fg a2 there exists a common >=�fg reduct a3 of a1 and a2. We can
assume that a1 6� a, a2 6� a and a1 6� a2, otherwise the proof is trivial. Let examine all
the possible cases:

1. (b1&b2)[A] >=�fg b1[A]. If a2 � (b1&b02)[A] then a3 � a1; else a2 � (b01&b2)[A]
then a3 � b01[A].

2. (b1&b2)[A] >=�fg b2(A). If a2 � (b01&b2)[A] then a3 � a1; else a2 � (b1&b02)[A]
then a3 � b02(A).

3. b1(b2) >=�fg b01(b2). If a2 � b1(b02) then a3 � b01(b02); else a2 � b001(b2): then
by induction hypothesis there exists b3 common >=�fg reduct of b01 and b001 ; thusa3 � b3(b2)

4. b1(b2) >=�fg b1(b02) as the case before.
5. (b1&b2)[A] >=�fg (b01&b2) as the case before.
6. (b1&b2)[A] >=�fg (b1&b02) as the case before.

7. �xT :a >=�fg �xT :a0. Then a2 � �x:a00 and by induction hypothesis there exists b3
common >=�fg reduct of a0 and a00. Thus a3 � �xT :b3.

8. �X� T:a >=�fg �X� T:a0. as the case before (apart from the change of tcs in the
induction hypothesis.

9. a(T) >=�fg a0(T) as the case before.
10. a[A] >=�fg a0[A] as the case before.

To prove that the two notions of reduction commute we need three technical lemmas:Lemma 4.9. If a >�fg a0 then a[x: = b] >��fg a0[x: = b]Lemma 4.10. If a >�fg a0 then a[x: = T] >��fg a0[x: = T]Lemma 4.11. If b >�fg b0 then a[x: = b] >��fg a[x: = b0]
These lemmas can be proved by a straightforward use of induction (on a >�fg a0 for the
first two and on a for the third). Just for the proof of the second, note that in �fg, the
atomic types A;A1; : : : ; An are required to be closed. We can now prove that the two
notions of reduction commute.Lemma 4.12. If a >�[�8 a1 and a >�fg a2 then there exists a3 such that a1 >��fg

Parametric and \ad hoc" polymorphism 23a3 and a2 >�[�8 a3. Pictorially: a >�[�8 > a1_>�fg _>��fga2 >�[�8 > a3(Where full arrows are used for the hypotheses and dashed arrows for the theses.)
Proof. A proof of this lemma can be given by a simple diagram chase. Let C[] be a
context (in the sense of [Bar84])12. Then we have the following cases:C[(�x:a)b]������>�fg ����� ?>�HHHHH >�fgHHHHHjC[(�x:a0)b] C[a[x: = b]] C[(�x:a)b0]@@@>� @@@R 	���lemma 4.9 >��fg��� @@@>��fglemma 4.11@@@R 	��� >����C[a0[x: = b]] C[a[x: = b0]]C[(�X�S:a)(T)]	���>�fg ��� @@@ >�8@@@RC[(�X�S:a0)(T)] C[a[X: = T]]@@@>�8 @@@R 	���lemma 4.10 >��fg���C[a0[X: = T]]12 Avoid confusion between a context, denoted by C[] and a type constraint system, denotedby C.

24 Giuseppe CastagnaC[(a1&Ia2)[A]])�������>�[�8 �������	��� >�fg��� @@@>�fg @@@RPPPPPPP >�[�8PPPPPPPqC[(a1&Ia02)[A]] >�fg- C[a1[A]] C[a2[A]]�>�fg C[(a01&Ia2)[A]]QQQQ>�fg QQQQs PPPPPPP >�[�8PPPPPPPq)�������>�[�8 ������� +���� >�fg����C[a02[A]] C[a01[A]]Corollary 4.13. >��fg commutes with >��[�8
Proof. By lemma 3.3.6 in [Bar84].

In conclusion all the hypotheses of lemma 4.7 are satisfied, and we can conclude thatF&� is CR.5. A decidable subcalculus
It is well known that the type system of F� is undecidable and that this problem comes
from the subtyping system [Pie93]. Of course undecidability is inherited by F&� . The
crux of the problem is the (8) rule, which is responsible for the loss of many other
syntactical properties (for a review see [CP94]).

In [CP94] we have defined a restriction of the subtyping system of F�, called F>� ,
which enjoys many of the syntactical properties that F� lacks, foremost decidability of
subtyping. Furthermore nothing seems to be lost from a pragmatical viewpoint since
all the programs that in our ken have been written for F� are well typed also in our
restriction.

The definition of this restriction is very easy: just substitute the incriminated (8) rule
by the following one

(8-new) C ` T 01�T1 C [fX�Topg ` T2�T 02C ` 8(X�T1)T2 � 8(X�T 01)T 02 X 62 dom(C)
in which the right-hand premise requires that the bodies be (covariantly) related underno assumption about the bound variable. This essentially amounts to considering the
subtyping relation relative to an unchanging context, since the type variables added to
the context always have trivial bounds; the only type variables with interesting bounds
will be those already present in the environment at the point where a subtyping check is
required. (These are introduced, as usual, by the quantifier introduction rule.)

This simple change makes the subtyping relation decidable; thus one may wonder
if by the same change in F&� one obtains decidability. This is indeed the case, as we
show in this section. As we already did when dealing with the transitivity elimination,
we concentrate our attention on the subtyping rules, forgetting the type good formation;
thus once more we suppose that all the types that appear below are well formed. By
analogy with [CP94] we call it F&>� .

Parametric and \ad hoc" polymorphism 255.1. Subtyping algorithm
In order to verify the decidability of the subtyping relation ofF&>� , one has first to define
a subtyping algorithm which is sound and complete with respect to the type system. This
is obtained by replacing the (Alg8) rule in the algorithm of section 2.3 by the new rule:

(Alg8-new) C À T 01�T1 C [fX�Topg À T2�T 02C À 8(X�T1)T2 � 8(X�T 01)T 02 X 62 dom(C)
Note that we do not change the rule (Algfg); one might expect that also the bound inC [fX�A0ig ` Tj�T 0i should be changed form A0i to Top. This is not necessary to
obtain decidability: indeed the bounds used in the overloaded quantification are far less
general than those used in standard quantification, since the former can range only on
constant types while the latter can range on all types (whence the undecidability). Thus
we leave (Algfg) as it is; in section 6 we will show how to use its full expressiveness,
by defining some methods that would not be typed if (Algfg) used the bound Top in
comparing the types of different branches (see the definition of Erase). This however
has a minor drawback, since we are not allowed to use the simple technique of [CP94]
to prove transitivity elimination and thus the completeness of the algorithm. We are
obliged to use the technique of [CG92] and prove again all the theorems of sections 2.2
and 2.3 from scratch.

We will not rewrite them here since actually very few modifications to the proofs in
section 2.2 suffice to do the work. The main modification is in the rewriting system of
section 2.2.1 where you have to substitute the rules(80) (8(X�c)d) (8(X�c0)d0) ; 8(X�c0 c)(d d0[XT : = cXS])(800) (8(X�c)d) ((8(X�c0)d0) e) ; (8(X�c0 c)(d d0[XT : = cXS])) e
by the following ones(80) (8(X�c)d) (8(X�c0)d0) ; 8(X�c0 c)(d d0)(800) (8(X�c)d) ((8(X�c0)d0) e) ; (8(X�c0 c)(d d0)) e
Of course now (8(X�c)d) codifies the new (8) rule:

(8-new) C ` c1:T 01�T1 C [fX�Topg ` c2:T2�T 02C ` 8(X�c1)c2: 8(X�T1)T2�8(X�T 01)T 02
The reader can now move across the proofs of section 2.2 and check the obvious
modifications; the proofs of section 2.3 are essentially unchanged.5.1.1. Termination
We now prove that this algorithm terminates.De�nition 5.1. LetC be a tcs and T a type such thatFV (T) � dom(C) then defineL(T)C = � 0 if T is not a type variableL(C(T))C + 1 otherwise

(L stays for “length”)Notation 5.2. Let C be a tcs; we denote by bC a type variable Y 2 dom(C)such that L(Y)C = maxX2dom(C)fL(X)Cg

26 Giuseppe CastagnaIf there is more than one such a variable then choose any of them (e.g. use thetextual order)
We can now define a weight T for a type T with respect to a tcs C (such that T is well
formed in C): T(B)C def= 1T(Top)C def= 1T(X)C def= T(C(X))C + 1T(S1 ! S2)C def= T(S1)C + T(S2)CT(8(X�S1)S2)C def= T(S1)C + T(S2)C[fX�S1gT(8XfAi:Tigi2I)C def= maxi2I fT(Ai)C ; T(Ti)C[fX�bCgg+ 1Lemma 5.3. For each type T well formed in a tcs C, the weight T(T)C is �niteand positive.
Proof. First, it is obvious that the weight T(T)C is always positive. Now to prove that
it is also finite, we give a well founded rank for T(T)C (i.e. we define a weight for the
definition of the weight) and we show that it decreases at each stage in the definition
of T . To define the rank of T(T)C consider all the variables that appear in T and C
(no matter whether they appear free or bounded, only in a quantifier or in a bound).
Since T is well formed in C, every variable is associated to a unique bound (either in C
or in T) apart those appearing in T as a quantification of an overloaded type; to these
variables associate as bound bC. Furthermore it is also possible to totally order these
variables in a way that if Xi is defined in the bound of Xj then Xi precedes Xj (C
is a tcs so it is C [fX� bCg —with X 62 dom(C)—, T is well formed in C, thus
loops are not possible). If there is more than one order satisfying this condition then
choose one arbitrarily. Define the depth of each variable as the number of variables that
precede it in this order. Then the rank of T(T)C is the lexicographical size of the pair(D;L), where D is the maximum depth of any of the variables that appear in T , and L
is the textual length of T . This rank is well founded (the least element is (0; 1)). Take
now the definition of T : it easy to see that for the subproblems on the right-hand side
of T(S1 ! S2)C , T(8(X�S1)S2)C and T(8XfAi:Tigi2I)C , the componentD either is
the same or it decreases, while the L component always strictly decreases; for the caseT(X)C , the component D strictly decreases.

The weight of the types is extended to a weight for type judgments in the obvious way:J(C ` S1 � S2) = T(S1)C + T(S2)C :
Now we can show the termination of the algorithm.Lemma 5.4. Given a tcs C and a type variableX, for all types T1; T2 such thatFV (Ti) � dom(C) (i = 1; 2) T(T1)C[fX�Topg � T(T1)C[fX�T2g.
Proof. A simple induction on the definition of T(T1) (note that one of the consequences
of lemma 5.3 is that it is possible to use induction on T).Lemma 5.5. Given a tcs C, a type variable X 62 dom(C), two atomic typesA and A0 such that B(A)C and B(A0)C are constant types, if L(A)C � L(A0)Cthen:

Parametric and \ad hoc" polymorphism 27(a) T(A)C � T(A0)C(b) for all T such that FV (T) � dom(C)[fXg, T(T)C[fX�Ag � T(T)C[fX�A0g
Proof. there are three possible cases:

1. Both A and A0 are constant types: (a) is trivial; (b) follows by a straightforward
induction on T(T)C[fX�Ag + T(T)C[fX�A0g, performing a case analysis on T .

2. A is a constant type and A0 is a type variable: as the previous case
3. Both A and A0 are type variables: we prove (a) by induction on L(A)C + L(A0)C .

The base case is when L(A)C = L(A0)C = 1. In that case it is easy to check thatT(A)C = T(A0)C = 2. When that sum is strictly larger than 2 then by definition ofT T(A)C � T(A0)C () T(C(A))C � T(C(A0))C
By definition of L, L(A)C � L(A0)C implies L(C(A))C � L(C(A0))C ; therefore
we can apply the induction hypothesis to obtain the result.

Once more, (b) follows by a straightforward induction on T(T)C[fX�Ag+T(T)C[fX�A0g,
performing a case analysis on T : use the case (a) of this lemma when T � X.Theorem 5.6. At every step of the subtyping algorithm, the weight of each ofthe premises is strictly smaller than the weight of the conclusion.

Proof. The verification is easy in most cases. The only non-trivial cases are (Alg8) and
(Algfg). The first case is proved by the following inequalities:J(C [fX�Topg ` S2�T2) == T(S2)C[fX�Topg + T(T2)C[fX�Topg� T(S2)C[fX�S1g + T(T2)C[fX�T1g by lemma 5.4< T(S1)C + T(T1)C + T(S2)C[fX�S1g + T(T2)C[fX�T1g= T(8(X�S1)S2)C + T(8(X�T1)T2)C= J(C ` 8(X�S1)S2 � 8(X�T1)T2)
For (Algfg) the proof is given by these inequalities:J(C [fX�A0ig ` Tj�T 0i) == T(Tj)C[fX�A0ig + T(T 0i)C[fX�A0ig� T(Tj)C[fX�bCg + T(T 0i)C[fX�bCg by lemma 5.5� maxj2J fT(Aj)C ; T(Tj)C[fX�bCgg+maxi2I fT(A0i)C ; T(T 0i)C[fX�bCgg< J(C ` 8XfAj :Tjgj2J�8XfA0i:T 0igi2I)Corollary 5.7. The algorithm terminates5.2. Terms and reduction
Up to now we dealt with the types of F&>� . To end with it, it still remains to describe
its terms and reduction rules. The task is easy for the raw terms, which are exactly the

28 Giuseppe Castagna
same as those for F&� . More difficult is instead the case for reduction rules and typing
rules; we have two different choices: either we use the same typing rules as for F&� and
we do not allow reductions involving free type variables, or we add to these rules the
rule of subsumption and we leave the reduction unchanged. As in F>� , in the first case
we are not able to prove the subject-reduction property (but we gain the decidability of
the typing relation), while in the second, as recently remarked by Giorgio Ghelli, the
minimal typing property does not hold and the decidability of type checking is an open
problem (see also [CP95]).

Note that in both cases there will be less well-typed terms than in F&� , since the
subtyping relation of F&>� (with or without subsumption) is strictly contained in that
of F&� : therefore there will be less well-formed types (some types well-formed in F&�
may not satisfy the covariance rule) and some functional applications may no longer
result well-typed.

Since subject-reduction is very important from both a theoretical and a practical
point of view, we prefer to use the subsumption rule to define the type system of F&>� ;
in this case the property of subject-reduction still holds. It just requires some work to
adapt to the subcalculus the proof of subject reduction of section 4.1: essentially you
have to modify the various cases of a�a0(T) to take into account the new subtyping rule
(8-new), and use the subsumption rule in the cases a��X � S1:a0 to show that the typeis preserved; in the case of lemma 4.5 the proof results even simplified. The proof of
Church-Rosser for F&>� is then a consequence of its subject reduction property, and of
the fact that F&� isCR: given a term M of F&>� , ifM >�N1 and M >�N2 then there
exists N3 in F&� such that N1 >�N3 and N2 >�N3. But, since the notion of reduction
is the same in both calculi, the subject reduction theorem for F&>� guarantees that N3
is a term of F&>� , too. However decidability of type-checking is an open problem.

Of course, we would choose not to use the subsumption as soon as we proved that F&>�
without subsumption and reductions involving free type variables satisfies the subject-
reduction property, since, in this system, the decidability of the subtyping relation implies
the decidability of the typing relation. We are comforted in this choice by the fact that
the tests we did to check the expressiveness of F>� in [CP93] have been performed by
modifying the subtyping algorithm for F�, i.e. by using a system that does not use the
subsumption rule.

Clearly with F&>� we lose in expressive power since the terms (and the reductions) ofF&>� are strictly contained in those of F&� . Thus some terms are lost; but are those terms
really interesting? We cannot answer this question as we did in [CP94], where we tried
to type-check existing libraries of F� programs, by F>� : there is no library for F&� since
we have just defined it. However we think that for object-oriented programming F&>�
is a good calculus to start from. We will give an idea of this it in the next section where
we show how to use this calculus to model object-oriented features; all the examples we
will show are typable in F&>� .6. Object-oriented programming
In this section we want to sketch how the theory developed so far can be used to type
object-oriented languages. We mainly consider class-based object-oriented languages

Parametric and \ad hoc" polymorphism 29
since their modeling in the overloading-based model seems less natural than for lan-
guages based on generic functions. We will give few hints about generic functions at the
end of the section.

From the examples given in the introductionit should be clear that we use the name of
a class to type the objects of that class. A message then is (an identifier of) an overloaded
function whose branches are the methods associated to that message. The method to be
executed is selected according to the type (the class-name) passed as argument which
will be the class of the object the message is sent to. Thus the sending of a messagemesg to an object a of class A will be modeled by (mesg[A])a.

Class-names are basic types. We want to associate to each basic type a represen-tation type; in particular we want to associate to each class(-name) the type of the
internal state of its objects (i.e. the type of the instances variables). The way to formalize
it does not concern the subject of this paper (this is done in [Cas95b]); thus here we
follow the rudimentary approach of [CGL92]: we suppose that a program (a F&� -term)
may be preceded by a declaration of class types: a class type is a basic type, that is
associated by its declaration to a unique representation type, which is a record type.
Two class types are in subtyping relation if this relation has been explicitly declared
and it is feasible, in the sense that the respective representation types are in subtyping
relation too. There is an operation classType to transform a record value r:R into a
class type value rclassType of type classType, provided that the representation type ofclassType is R.

We use italics to distinguish class types from the usual types, and
:= to declare a

class type and to give it a name; we will use � to associate a name to a value (e.g. to a
function). For example we can declare the following class types:2DPoint := hhx : Int; y : Intii3DPoint := hhx : Int; y : Int; z : Intii
and then impose on them that 3DPoint � 2DPoint (which is feasible since it respects
the ordering of the record types these class types are associated to)13 . We can define a
message Norm working on these class types14:Norm � (�MyType�2DPoint :�self MyType:pself:x2 + self:y2

&�MyType�3DPoint :�self MyType:pself:x2 + self:y2 + self:z2)
Whose type is 8MyType:f2DPoint:MyType! Real; 3DPoint:MyType ! Realg
We have used the variable self to denote the receiver of the message and, following the
notation of [Bru94], the type variable MyType to denote the type of the receiver. Note
however that we do not need, as in [Bru94], recursion for these features since they are
just parameters of the message.

Let us consider the meaning of the covariance condition of section 2 in this frame-
work. Define the message Erase that set to zero the internal state of an objectErase � (�MyType�2DPoint:�self MyType:hself x = 0; y = 0i2DPoint

&�MyType�3DPoint:�self MyType:hself x = 0; y = 0; z = 0iMyType)
it has type:8MyType:f2DPoint:MyType! 2DPoint; 3DPoint:MyType!MyTypeg
Since 3DPoint � 2DPoint we check that the covariance condition is satisfied:fMyType�3DPointg ` MyType! MyType � MyType! 2DPoint13 Note that records are encodable in F�, and thus in F&� too.14 In the examples we will omit " and the indexes of &

30 Giuseppe Castagna
In general if a method has been defined for the message m in the classes Bi for i 2 I
then its type is of the form 8MyType:fBi:MyType ! Tigi2I. If Bh�Bk that means
that the method defined for m in the class Bh overrides the one defined in Bk. SinceMyType is the same in both branches then the covariance condition reduces to prove
that fMyType�Bhg ` Th�Tk
In other terms the covariance condition requires that an overriding method returns a type
smaller than or equal to the type returned by the overridden one. Note that if a method
returns a result of type MyType then a method that overrides it has to return MyType
too and it is not allowed to return say the class-name of the class in which the method
has been defined (since, by inheritance, this could be a type larger then the actual value
of MyType)15.

Suppose now that 3DColoredPoint is a subclass of 3DPoint from which it inherits
the method for Erase; then the definition of Erase persists unchanged. If an object b
of type 3DColoredPoint receives the message Erase then the method selected is the
one for 3DPoint; but since Erase[3DColoredPoint](b) : 3DColoredPoint the loss of
information is avoided.

In this framework bounds are always basic types (more precisely class-names); thus
the \-closure reduces to impose that if a message has type 8X:fBi:Tigi2I and there
exists h; k 2 I such that Bh and Bk have a common subclass then there must be a
method defined for the message, in the class that is the g.l.b. of Bh and Bk. In other
terms, in a class defined by multiple inheritance if two common ancestors can respond
to a same message, then the method for that message cannot be inherited but must be
explicitly redefined, as in [CGL92].

The way we have written these methods may seem complicated with respect to the
simplicity and modularity of object-oriented languages. Indeed the terms above can be
regarded as the result of a compilation (or translation) of the following higher-level
object-oriented program:class 2DPoint class 3DPoint is 2DPointstate statex:Int; z:Inty:Int methodsmethods Norm = sqrt(x^2+y^2+z^2);Norm = sqrt(x^2 + y^2); Erase = update(x=0;y=0;z=0);Erase = update(x=0;y=0); interfaceinterface Norm: RealNorm: Real; Erase: MytypeErase: 2DPoint endclassendclassclass 3DColorPoint is 3DPointstatecolor:Stringendclass15 Of course in the previous example it would have been more reasonable that Erase returnedMyType rather than 2DPoint.

Parametric and \ad hoc" polymorphism 316.1. Extending classes
Inheritance is not the only way to specialize classes: if every time we had to add a
method to a class we were obliged to define a new class, the existing objects of the old
class could not use the new method. The same is worth also in the case that a method
of a class must be redefined: overriding would not suffice. For this reason some object-
oriented languages such as Objective-C [NeX91], Dylan [App92] and CLOS [DG87]
offer the capability to add new methods to existing classes or to redefine the old ones.
The extension of the set of the methods of a class affects all its subclasses, in the sense
that when a class is extended with a method then that method is available to the objects
of every subclass. For example in Dylan the following expression(define-method isOrigin (self <2DPoint>)(and (zero? self.x) (zero? self.y)))
adds to the class 2DPoint a method responding to the message isOrigin16. If a method
for that message has already been defined in the class then it is replaced by the new one.

This can be implemented in our system by adding a new branch to the overloaded
function denoted by the message at issue:let isOrigin = (isOrigin& �MyType�2DPoint:�selfMyType:(self:x = 0) ^ (self:y = 0)

)

That is, the new definition of isOrigin is given by the old definition of isOrigin con-
catenated with the new method (if isOrigin was undefined we consider it as equal to").

Remark that by this construction one does not define a new class but only new
methods; in other terms one does not modify the existing types but only (the environment
of) the expressions. This is possible in our system since the type of an object is not bound
to the procedures that can work on it (and for this reason it differs from abstract data
types and, for those who know, the theoretical “objects as records" approach). Of course
this flexibility is paid by a minor protection. For that reason for example Dylan has a
function freeze-methods which prevents certain methods associated to a message to
be replaced or removed.6.2. First class messages
In this model messages are identifiers of overloaded functions. Since overloaded func-
tions have first class citizenship, then also messages are first class. Thus it is possible
to model functions that take as parameter a message, or functions whose result is a
message. A trivial example is the implementation of a super-like function: suppose that
in the definition of a method you want to send a message to self but that the method
selected must be the one defined for the objects of a certain class C. This can be obtained
by the following function:let super C = �m8XfC:Tg:m[C]self
This function takes a message m accepting objects of class C and sends it to self but16 This is not the standard Dylan's syntax where record (slot) selection of the �eld x of self iswritten (x self)

32 Giuseppe Castagna
selecting the method defined for the object of class C (of course this function is well
typed if MyType � C).6.3. Multiple dispatch
In this paper we have studied a very kernel calculus. A simple extension of this calculus
allows us to model multiple dispatch, i.e. a mechanism of selection of methods (in this
case called multi-methods), based not only on the class of the receiver but also on the
class of further parameters. The simplest extension of F&>� to obtain multiple-dispatch
consists in allowing as bounds of an overloaded function products of basic types. Thus
we redefine atomic types in the following wayA ::= X j B j B � : : : � B (atomic types [B basic types])
we modify the condition in the rule of good formation for overloaded types as follows:

(f gtype) C ` Ai typeC ` fAigi=1::n \-closedC [fX�Aig ` Ti type
if C ` Ai � Aj then C [fX�Aig ` Ti�TjC ` 8XfA1:T1; : : : ; An:Tng type

X 62 dom(C)B(Ai)C basic typeor Ai = B1 � :::�Bmfor i; j 2 [1::n]
and of course we add tuples to terms:a ::=< a; : : : ; a >
There are other more general extensions: for example we can change the condition in
the good formation of overloaded types into “B(Ai)C basic type or product of atomic
basic types” allowing as bounds variables ranging on the product of basic types; or we
can allow as bounds products formed by type variables and basic types.

However the extension above largely suffice to model multi-methods, and further-
more it is very easy to check that it enjoys all the properties we have already proved forF&� (and F&>�): just run through the proofs by taking into account that now proposi-
tion 2.5 has the following fourth case:

4. Ai and Aj are both products of basic types and their g.l.b. is in fAigi2I
One example of use of multiple dispatch is the method Equal : you want to extend
the class 2DPoint with a method that compares two points and to redefine it for3DPoint ; furthermore you want that in comparing a 2DPoint with a 3DPoint the
method for 2DPoint is used. In �& we had that a function Equal of type f2DPoint!2DPoint ! Bool; 3DPoint ! 3DPoint ! Boolg would not have a well-formed
type since covariance is not respected. So in �& we definedEqual : f(2DPoint� 2DPoint)! Bool; (3DPoint � 3DPoint)! Boolg
obtaining in this way multiple dispatching. When Equal is applied to 2DPoint and a3DPoint or viceversa the first branch is executed.

In F&� the difference is subtler: indeed8Xf2DPoint:X ! X ! Bool; 3DPoint:X ! X ! Boolg
is well formed. However to select the right branch you have to pass to a function of this
type the greater of the types of the two actual parameters. This is not what one would
like to have: one would like to pass to the function both the types of the arguments

Parametric and \ad hoc" polymorphism 33
and leave to the system the task to select the right branch. This can be done by using
multi-methods and defining Equal with the following type:8Xf2DPoint � 2DPoint:X ! Bool; 3DPoint � 3DPoint:X ! Boolg
A possible implementation of Equal is thenEqual � (�X � 2DPoint�2DPoint:�pX :(�1(p):x = �2(p):x)^(�1(p):y = �2(p):y)

& �X � 3DPoint� 3DPoint:�pX :(�1(p):x = �2(p):x)^(�1(p):y = �2(p):y)^(�1(p):z = �2(p):z)
)

If we want to use multiple dispatch in class-based languages then the type above must
be slightly changed. In class-based languages the method is always chosen according
to the class of the receiver but in with multiple dispatching a class may have different
specifications for the method; one of these specifications will be selected according to
the class of some extra parameters. Thus for example the equality function could be
added to 2DPoint and 3DPoint in the following way:class 2DPoint class 3DPoint is 2DPointstate statex:Int; z:Inty:Int methodsmethods Equal(p:2DPoint)= ...Equal(p:Mytype)= ... Equal(p:Mytype)= ...: :: :interface interfaceEqual: Mytype -> Bool Equal:{2DPoint->Bool,: Mytype ->Bool}: :endclass :endclass
where horizontal and vertical dots are substituted for the method bodies and the further
methods, respectively.

When the messageEqual is passed to an object of class 3DPoint then if the argument
is of class 2DPoint then the first definition of Equal is executed. The second definition is
executed if the argument is of a type smaller than or equal to 3DPoint. This correspond
to have an Equal overloaded function of the following type.8Xf 2DPoint: X ! 8Y fX: Y ! Boolg ;3DPoint: X ! 8Y f2DPoint: Y ! Bool;X: Y ! Boolgg
Here the variable X stands for MyType.

In case of languages with generic functions the application of the theory is easier.
Consider the language Cecil [CL94, Cha92] and the following subtyping relation:natural � integer � rational � real

34 Giuseppe Castagna
In Cecil it is possible to define a generic function (multi-method in Cecil’s jargon) plus
with the following signature:signature plus(natural,natural):natural;signature plus(integer,integer):integer;signature plus(real,real):real;
This correspond to have three different implementations for the operator plus, one for
each signature. This corresponds to have in �& the following typingplus : fnatural � natural ! natural ; integer � integer ! integer ; real � real ! realg
If a and b are two terms of type rational then in Cecil (as well as in �&) plus(a; b) has
type real intead of rational . If instead we had typed it asplus : 8Xfnatural : X �X ! X ; integer : X �X ! X ; real : X � X ! Xg
then plus[rational](a; b)would have type rational . However, some more work is needed
in order to define a modification of the Cecil’s syntax to take into account type variables.
To that end it would be interesting to explore the extension of F&� with the intersection
types. A possible syntax for the signature would then be:signature plus(X<natural,Y<natural):X/\Y;signature plus(X<integer,Y<integer):X/\Y;signature plus(X<real,Y<real):X/\Y;
But this is subject for future work.7. Future work
In this and in the previous chapter we defined and studied F&� and its decidable variant,
and we sketched how they can be used to model object-oriented features. We showed
that they account for many features of object-oriented programming and that they also
suggest new features to add to the existing paradigms. However there are some features
that are not easily handled (e.g. the keyword super ; see at this purpose [Cas95b]).

The major restriction is that meet-closure allows overloading only on atomic types. In
the last section we showed how to weaken this condition to model multiple dispatching;
thoughalso this definitionstill prevents us to model the generic classes of Eiffel [Mey88].
A generic class is a class parameterized by a type variable. For example if X is a
type variable, one would like to define a class Stack[X] with methods pop:X andpush:X ! (), and then obtain a stack of integers by instantiating the type variable X
in the following way: new(Stack[Int]). We believe that it is not difficult to further
weaken meet-closure to allow among the bounds of an overloaded function, monotonic
type constructors. But we are at a loss to think how to allow non monotonic type
constructors. In the same way it should be possible to extend meet-closure to closed
types and to add recursive types to implement recursive objects (even if we think that
recursive types are not indispensable: see [PT93]).

Meet closure constitutes an even more serious limitation from a proof-theoretical
point of view. It would be very interesting to let bounds range over all the types; this
would require a suitable definition of \-closure assuring consistency also for higher
order bounds. Note that the proof theory would be greatly complicated since a new
level of impredicativity would be added. However this would correspond to a major
increase of the expressive power. In that case, indeed, by a slight weakening of the �fg

Parametric and \ad hoc" polymorphism 35
rule, it would be possible to obtain parametric functions as a special case of overloaded
functions with only one branch.

To the end it seems very promising the extension of F&� by intersection types hinted
in the last section. The \-closure would then correspont to requiring that the set of
domains is closed for intersections.

Despite these problems F&� is a step forward in the research of the overloading-
based model for object-oriented programming, since it gives us the basic type checking
rules to deal the problem of the loss of information. At the moment of the redaction of
this paper we are studying the integration of generic functions (i.e. overloaded functios
with late binding) into the core of ML [MH88], in order to add object-oriented features
to the languages of this family. Also underway is the definition of an object-oriented
database programming language, whose type system is based on F&� .Acknowledgments
I am very grateful to Martı́n Abadi and Florian Matthes for their valuable suggestions
on an earlier draft. Many thanks also to the two referees of this journal for their valuable
advice. I want also to thank Giuseppe Longo for his constant advice, for his patient in
reading the proofs and : : : a lot more.References[App92] Apple Computer Inc., Eastern Research and Technology.Dylan: an object-orienteddynamic language, April 1992.[Bar84] H.P. Barendregt. The Lambda Calculus Its Syntax and Semantics. North-Holland,1984. Revised edition.[Bru94] K.B. Bruce. A paradigmatic object-orientedprogramming language:Design, statictyping and semantics. Journal of Functional Programming, 4(2):127{206, 1994.[BTCGS91] V. Breazu-Tannen, T. Coquand, C. Gunter, and A. Scedrov. Inheritance as im-plicit coercion. Information and Computation, 93(1):172{221, July 1991.[Car88] Luca Cardelli. A semantics of multiple inheritance. Information and Computation,76:138{164, 1988. A previous version can be found in Semantics of Data Types,LNCS 173, 51-67, Springer-Verlag, 1984.[Cas92] G. Castagna. Strong typing in object-oriented paradigms. Technical Report 92-11,Laboratoire d'Informatique, Ecole Normale Sup�erieure - Paris, June 1992.[Cas94] G. Castagna. Overloading, subtyping and late binding: functional foundation ofobject-oriented programming. PhD thesis, Universit�e Paris 7, January 1994. Ap-peared as LIENS technical report.[Cas95a] G. Castagna. Covariance and contravariance: con
ict without a cause. ACMTransactions on Programming Languages and Systems, 1995. To appear. Avail-able by anonymous ftp from ftp.ens.fr in �le/pub/dmi/users/castagna/covariance.dvi.Z.[Cas95b] G. Castagna. A meta-language for typed object-oriented languages. Theoreti-cal Computer Science, 1995. To appear. An extended abstract of this paper hasappeared in the Proceeding of the 13th Conference on the Foundations of Soft-ware Technology and Theoretical Computer Science; Lecture Notes in ComputerScience number 761, December 1993.[CCH+89] P.S. Canning, W.R. Cook, W.L. Hill, J. Mitchell, and W.G. Oltho�. F-boundedquanti�cation for object-oriented programming. In ACM Conference on Func-tional Programming and Computer Architecture, September1989. Also in [GM94].[CG92] P. L. Curien and G. Ghelli. Coherence of subsumption, minimum typing and thetype checking in F� . Mathematical Structures in Computer Science, 2(1), 1992.[CGL92] G. Castagna, G. Ghelli, and G. Longo. A calculus for overloaded functions withsubtyping, 1992. To appear in Information and Computation. An extended ab-stract has appeared in the proceedings of the ACM Conference on LISP andFunctional Programming, pp.182-192; San Francisco, June 1992.

36 Giuseppe Castagna[CGL93] G. Castagna, G. Ghelli, and G. Longo. A semantics for �&-early: a calculus withoverloadingand early binding. InM. Bezem and J.F. Groote, editors, InternationalConference on Typed Lambda Calculi and Applications, number 664 in LectureNotes in Computer Science, pages 107{123, Utrecht, The Netherlands, March1993. Springer-Verlag.[Cha92] C. Chambers. Object-orientedmulti-methods in cecil. In ECOOP'92, number 615in LNCS. Springer Verlag, 1992.[CHC90] W.R. Cook, W.L. Hill, and P.S. Canning. Inheritance is not subtyping. 17th Ann.ACM Symp. on Principles of Programming Languages, January 1990.[CL91] L. Cardelli and G. Longo. A semantic basis for Quest. Journal of FunctionalProgramming, 1(4):417{458, 1991.[CL94] Craig Chambers and Gary T. Leavens. Typechecking and modules for multi-methods. In OOPSLA'94, 1994.[CMMS91] L. Cardelli, S. Martini, J.C. Mitchell, and A. Scedrov. An extension of systemF with subtyping. In T. Ito and A.R. Meyer, editors, Theoretical Aspects ofComputer Software, pages 750{771. Springer-Verlag, September 1991. LNCS 526(preliminary version). To appear in Information and Computation.[CP93] A. Compagnoni and B.C. Pierce. Multiple inheritance via intersection types.Unpublished manuscript, 1993.[CP94] G. Castagna and B.C. Pierce. Decidable bounded quanti�cation. In 21st AnnualSymposium on Principles Of Programming Languages, pages 151{162, Portland,Oregon, January 1994. ACM Press. POPL'94.[CP95] G. Castagna and B.C. Pierce. Corrigendum: Decidable bounded quanti�cation.In 22nd Annual Symposium on Principles Of Programming Languages, San Fran-cisco, January 1995. ACM Press.[CW85] L. Cardelli and P. Wegner. On understanding types, data abstraction, and poly-morphism. Computing Surveys, 17(4):471{522, December 1985.[DG87] L.G. DeMichiel and R.P. Gabriel. Common lisp object system overview. InB�ezivin, Hullot, Cointe, and Lieberman, editors, Proc. of ECOOP '87 EuropeanConference on Object-Oriented Programming, number 276 in LNCS, pages 151{170, Paris, France, June 1987. Springer-Verlag.[Ghe90] G. Ghelli. Proof Theoretic Studies about a Minimal Type System Integrating In-clusion and Parametric Polymorphism. PhD thesis, Dipartimento di Informatica,Universit�a di Pisa, March 1990. Tech. Rep. TD-6/90.[Ghe91] G. Ghelli. A static type system for message passing. In Proc. of OOPSLA '91,1991.[GM94] Carl A. Gunter and John C. Mitchell. Theoretical Aspects of Object-OrientedProgramming: Types, Semantics, and Language Design. The MIT Press, 1994.[Hin64] R. Hindley. The Church-Rosser property and a result of combinatory logic. Dis-sertation, 1964. University of Newcastle-upon-Tyne.[How80] W.A. Howard. The formulae-as-types notion of construction. In J.R. Hindleyand J.P. Seldin, editors, To H.B. Curry: Essays in Combinatory Logic, LambdaCalculus and formalism. Academic Press, 1980.[KB70] Donald E. Knuth and Peter B. Bendix. Simple word problems in universal al-gebras. In J. Leech, editor, Computational Problems in Abstract Algebra, pages263{297. Pergamon Press, 1970.[Mey88] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall Interna-tional Series, 1988.[MH88] J.C. Mitchell and R. Harper. The essence of ML. 15th Ann. ACM Symp. onPrinciples of Programming Languages, January 1988.[New42] M.H.A. Newman. On theories with a combinatorial de�nition of \equivalence".Annals of Math., 43(2):223{243, 1942.[NeX91] NeXT Computer Inc. NeXTstep-concepts. Chapter 3: Object-Oriented Program-ming and Objective-C, 2.0 edition, 1991.[Pie93] Benjamin C. Pierce. Bounded quanti�cation is undecidable. Information andComputation, 1993. To appear. Also in [GM94]. Preliminaryversion in proceedingsof POPL '92.[PT93] B.C. Pierce and D.N. Turner. Simple type-theoretic foundations for object-oriented programming. Journal of Functional Programming, 1993. To appear;a preliminary version appeared in Principles of Programming Languages, 1993,and as University of Edinburgh technical report ECS-LFCS-92-225, under thetitle \Object-Oriented Programming Without Recursive Types".

Parametric and \ad hoc" polymorphism 37[Ros73] B. K. Rosen. Tree manipulation systems and Church-Rosser theorems. Journalof ACM, 20:160{187, 1973.[Str67] C. Strachey. Fundamental concepts in programming languages. Lecture notes forInternational Summer School in Computer Programming, Copenhagen, August1967.A. ProofsA.1.Proof of Lemma 4.3. By induction on the depth of the proof of C [fX�Sg ` �.
For depth=1 there are only two possible cases: ��B type or ��Top type. In both
cases the result is trivially satisfied. For depth>1 we perform a case analysis on the last
rule of the proof:(re
) a straightforward use of the induction hypothesis(trans) a straightforward use of the induction hypothesis(taut) suppose that � � Y�T then there are two possible subcases:

1. Y 6� X: a straightforward use of the induction hypothesis
2. Y � X: then the hypothesis gets C [fX�Sg `X�S; since X 62 FV (S) the

result reduces to C[X: = S0] ` S0�S which holds by hypothesis(top) a straightforward use of the induction hypothesis(!) a straightforward use of the induction hypothesis(8) suppose that � � 8(Y�T1)T2 � 8(Y�T 01)T 02. Recall that C[X: = S0] ` S0�S.
Thus by theorem 2.1 C[X: = S0] ` S0 type and therefore FV (S0) � dom(C[X: =S0]). By hypothesis we have that both C [fY � T 01g [fX� Sg and C[X: = S0]
are tcs’s. Since X 62FV (S0) then FV (T 01[X: = S0]) = (FV (T 01)[FV (S0))nfXg;
thus also C[X: = S0][fY�T 01[X: = S0]g is a tcs. Once this remark done, then the
result follows by a straightforward use of the induction hypothesis.(f g) As the previous case.(Varstype) suppose that � � Y type. Then there are two possible subcases:

1. Y 6� X: a straightforward use of the induction hypothesis
2. Y � X: then the result reduces to C[X: = S0] ` S0 type which follows fromC[X: = S0] ` S0�S and theorem 2.1(!type) a straightforward use of the induction hypothesis(8type) After having done the same remark as in the case (8) the thesis follows from a
straightforward use of the induction hypothesis.(fgtype) This is the hard case. The pattern of the proof of this case is essentially the same
as that of the case (8). The hard task is to prove that C [fX�Sg ` fAigi=1::n\-
closed, C[X: = S0] ` S0�S and the induction hypothesis implyC[X: = S0] ` fAi[X: = S0]gi=1::n \�closed
This is equivalent to prove that wheneverB(Ai[X: = S0])C[X:=S0] + B(Aj [X: = S0])C[X:=S0] (6)
then there exists h 2 [1::n] such thatC[X: = S0] ` Ah[X: = S0] = Ai[X: = S0] \Aj[X: = S0]

38 Giuseppe Castagna
Suppose that (6) holds, and examine all the possible cases for Ai and Aj:
i. (Ai and Aj basic). Then Ai[X: = S0] = Ai = B(Ai[X: = S0])C[X:=S0] =B(Ai)C[fX�Sg and the same for j. From the meet-closure of fAigi=1::n follows

that there exists a basic type Ah = Ah[X: = S0] = Ai \ Aj = Ai[X: = S0] \Aj [X: = S0] independently from the tcs we are taking into account.
ii. (Ai�Aj�X) trivial

iii. (Ai�X and Aj 6� X). Then the hypothesis getsB(S0)C[X:=S0] + B(Aj)C[X:=S0] (7)
We prove the result by showing that S0 \Aj is always either S0 or Aj .

From C[X: = S0] ` S0�S and proposition 2.3 we deduce that B(S0)C[X:=S0] �B(S)C[X:=S 0] and then from (7) follows thatB(S)C[X:=S0] + B(Aj)C[X:=S0] (8)
Now, first of all note that by definition ofBone hasB(X)C[fX�Sg=B(S)C[fX�Sg .
Then observe that B(S)C[fX�Sg = B(S)C[X:=S 0]: this is obvious if S is a ba-
sic type; when S is a variable this follows from the fact that the substitution[X: = S0] does not affect the definition of B(S) . Indeed ifC[X: = S0] � C 0 [fS�X1g [fX1�X2g [:::[fXn�B(S)g (n�0)
then X 6� Xi for all i 2 [1::n] otherwise C [fX�Sg would not be a tcs.
Thus fromB(X)C[fX�Sg=B(S)C[fX�Sg and B(S)C[fX�Sg = B(S)C[X:=S0] we
deduce B(X)C[fX�Sg = B(S)C[X:=S 0] (9)
Now there are two possible subcases:

a. Aj is a basic type: then B(Aj)C[fX�Sg = Aj = B(Aj)C[X:=S0] and thus (8)
gets B(X)C[fX�Sg + B(Aj)C[fX�Sg
but since C [fX�Sg ` fAigi=1::n\-closed (and X 2 fAigi=1::n) we have
that C [fX � Sg ` X � Aj (by proposition 2.5 the variable must be
smaller than the basic type) and therefore B(S)C[X:=S 0] =B(X)C[fX�Sg �B(Aj)C[fX�Sg = Aj.
Thus C[X: = S0] ` S0�S�B(S)C[X:=S0]� Aj whence we can conclude
that C[X: = S0] ` S0 = S0 \Aj (10)

b. Aj is a variable: then we have thatC[X: = S0] � C 00[fAj�X1g[fX1�X2g[:::[fXn�B(Aj)g (n�0)
If S0 � Xi for some i 2 [1::n] then C[X: = S0] ` Aj � S0 and thereforeC[X: = S0] ` Aj = S0 \Aj (11)
Otherwise if S0 6� Xi for all i 2 [1::n] then the substitution [X: = S0] does

not affect the definition of B(Aj) and thusB(Aj)C[fX�Sg = B(Aj)C[X:=S0]
Thus once more (8) and (9) yieldB(X)C[fX�Sg + B(Aj)C[fX�Sg

Parametric and \ad hoc" polymorphism 39
Recall that both X and Aj are variables contained in fAigi=1::n and thatC [fX�Sg ` fAigi=1::n\-closed. Thus by proposition 2.5 eitherC [fX�Sg ` X � Aj
or C [fX�Sg ` Aj � X
must hold. Whichever judgment holds, we supposed in the assumption 4.2
that its proof is contained in the proof of meet closure of fAigi=1::n; thus we
can apply the induction hypothesis obtaining either (10) or (11), respectively.

iv. (Aj and Aj are both di�erent from X and at least one of them isa variable)ThusAi[X: = S0] = Ai andAj [X: = S0] = Aj and the hypothesis
becomes B(Ai)C[X:=S0] + B(Aj)C[X:=S0]
Let us open a short parenthesis: suppose to have a type variable Y 6� X withY 2 dom(C) and consider B(Y)C[fX�Sg. Then ifC[fX�Sg � C 0[fY�X1g[fX1�X2g[:::[fXn�B(Y)C[fX�Sgg (n�0)
there are two possible cases(1) X � Xh for some h 2 [1::n] and in this case note thatB(Y)C[X:=S0] = B(S0)C[X:=S0](2) X 6� Xh for all h 2 [1::n] and in this caseB(Y)C[X:=S0] = B(Y)C[fX�Sg
After this short remark we can now consider the various cases for Ai and Aj
a. Ai is a variable in the situation like Y in (1) and Aj is a basic type. But then

by the point (1) the hypothesis becomesB(S0)C[X:=S0] + B(Aj)C[X:=S0]
which has already been solved in (iii).

b. Ai is a variable in a situation like Y in (2) and Aj is a basic type. By the
meet-closure of fAigi=1::n and by the point (2) we deduce thatB(Ai)C[X:=S0] = B(Ai)C[fX�Sg � Aj = B(Aj)C[fX�Sg
and thus C[X: = S0] ` Ai � Aj

c. Ai is a variable in the situation like in (1) and Aj is a variable in the situation
like in (2); but then we are in a case similar to the one of (a.)

d. Ai andAj are both variables in the situation like in (1). Then B(Ai)C[X:=S0]
= B(S0)C[X:=S0] = B(Aj)C[X:=S0]. Thus either C[X: = S0] ` Ai � Aj orC[X: = S0] ` Aj � Ai holds.

e. Ai andAj are both variables in the situation like in (2). ThusB(Ai)C[fX�Sg+ B(Aj)C[fX�Sg and by the meet-closure eitherC [fX�Sg ` Ai �Aj orC [fX�Sg ` Aj � Ai holds. But since they are variables like in (2) this
come to say that either C[X: = S0] ` Ai � Aj or C[X: = S0] ` Aj � Ai
holds.A.2.Proof of Lemma 4.4. By induction on the structure of a:a�y if y � x then S�T and S0�T 0; else if y 6� x the result trivially holds.

40 Giuseppe Castagnaa�" triviala�Top triviala��yS1 :a0 if y � x then the result trivially holds; otherwise S � S1 ! S2 andC ` a0:S2. By induction hypothesisC ` a0[xT : = b] : S02�S thusC ` a[xT : = b] � �yS1 :a0[xT : = b] : S1 ! S02 � S1 ! S2a� (a1&Ia2) just note that by induction hypothesis (a1[xT : = b]&Ia2[xT : = b]) is
well-typed, and that its type is S.a��X�S1:a0 then C [fX� S1g ` a0:S2 with S � 8(X� S1)S2. By induction
hypothesis C [fX�S1g ` a0[xT : = b] : S02 � S2. ThusC ` a[xT : = b] � �X�S1:a0[xT : = b] : 8(X�S1)S02 � 8(X�S1)S2a�a1(a2) then C ` a1:S3, B(S3)C = S1 ! S and C ` a2:S2� S1. By induction
hypothesis C ` a1[xT : = b] : U3� S3 and C ` a2[xT : = b] : U2� S2� S1. By
proposition 2.3 C ` B(U3)C � B(S3)C . Since B(U3)C is not a type variable then
by proposition 2.2 it is of the form U1 ! U with C ` S1�U1 and C ` U�S. Thus
we have:
- C ` a1[xT : = b] : U3
- C ` a3[xT : = b] : U2�U1
- B(U3)C = U1 ! U
Then by [!Elim(�)] we obtainC ` a[xT : = b] � a1[xT : = b](a2[xT : = b]) : U�Sa�a0(U) then C ` a0:S3, B(S3)C = 8(X� S1)S2, C ` U� S1 and S � S2[X: =U]. Note that X 62 dom(C) and thus X 62 FV (U). By induction hypothesisC ` a0[xT : = b] : U3� S3 and by proposition 2.3 C ` B(U3)C � B(S3)C . SinceB(U3)C is not a type variable then by proposition 2.2 it is of the form 8(X�S01)S02.
Since C [fX�S1g ` S02 � S2, C ` U�S1�S01 and X 62 FV (U) we can apply
the main lemma and obtainC[X := U] ` S02[X := U] � S2[X := U]
But X 62 dom(C) thus C[X := U] = C, from which it followsC ` a[xT : = b] : S02[X := U] � S2[X := U]a�a0[A] then C ` a0:S3, B(S3)C = 8XfAi:Tigi2I and S � Th[X: = A] whereC ` Ah = mini2IfAi jC ` A�Aig.
By induction hypothesis C ` a0[xT : = b] : U3 � S3 and by proposition 2.3C ` B(U3)C � B(S3)C . Since B(U3)C is not a type variable then it is of the
form 8XfA0j :T 0jgj2J . Thus by the subtyping rule (fg) there exists ~h 2 J such thatC ` A � Ah � A0~h. Therefore the set fA0j jC ` A � A0j ; j 2 Jg is not empty, and
by the meet-closure of fA0jgj2J it has also a minimum. Call this minimumA0k. ThenC ` a0[A][xT : = b] : T 0k[X: = A]. Since S�Th[X: = A] we have to prove thatC ` T 0k[X: = A] � Th[X: = A]
Take again the previous ~h; by the rule (fg) we haveC ` 8(X�A0~h)T 0~h � 8(X�Ah)Th (12)
By the definition of Ah: C ` A � Ah (13)
From (12): C ` Ah � A0~h

Parametric and \ad hoc" polymorphism 41
From (trans): C ` A � A0~h (14)
From (12): C [fX � Ahg ` T 0~h � Th (15)
From the definition of A0k and from (14) we obtainC ` A0k � A0~h
and from this and the rule (fgtype) applied to 8XfA0j :T 0jgj2J it followsC [fX � Ahg ` T 0k � T 0~h (16)
From X 62 dom(C) and from (13) we deduce that X 62 FV (A); by (13) and by the
choice of k we respectively have that C ` A � Ah and C ` A � A0k; thus we can
apply the main lemma to (15) and (16) to obtain:C[X: = A] ` T 0~h[X: = A] � Th[X: = A]C[X: = A] ` T 0k[X: = A] � T 0~h[X: = A]
But X 62 dom(C), thus the judgements above getC ` T 0~h[X: = A] � Th[X: = A]C ` T 0k[X: = A] � T 0~h[X: = A]
Finally by (trans) we obtain the result:C ` T 0k[X: = A] � Th[X: = A]A.3.Proof of Lemma 4.5. By induction on the structure of a:a�xT then T 0 � T [X: = S0].a�" triviala�Top triviala��xT1:a0 where T � T1 ! T2 and C [fX�Sg ` a0:T2. Thus by induction hy-
pothesis we deduce that C[X: = S0] ` a0[X: = S0] : T 02 � T2[X: = S0]. There-
fore C[X: = S0] ` a[X: = S0] = �xT1[X:=S0]:a0[X: = S0] : T1[X: = S0] ! T 02�T [X: = S0].a��Y�T1:a0 First of all note that Y 6� X, since by hypothesis C [fX�Sg ` �Y�T1:a0:T and we have made the assumption of having all the type variables different
in a tcs. Thus C [fX� Sg [fY � T1g ` a0:T2 and T � 8(Y � T1)T2. Note
that C[X: = S0] and C [fX� Sg are tcs’s, and also that FV (S0) � C[X: = S0]
(since C[X: = S0] ` S0�S). Thus we can conclude that also C[X: = S0] [fY �T1[X: = S0]g is a tcs, being dom(C) = dom(C[X: = S0]) andFV (T1[X: = S0]) =(FV (T1) [FV (S0))nfXg (the latter because X 62 FV (S)). Then by a weakening
we can prove that (C [fY�T1g)[X: = S0] ` S0�S. By induction hypothesis thus
we have C[X: = S0] [fY�T1[X: = S0]g ` a0[X: = S0]:T 02 � T2[X: = S0]. Thus
by [8Intro] and (8) we have thatC[X: = S0] ` �Y�T1[X: = S0]:a0[X: = S0]: 8(Y�T1[X: = S0])T 02 � T [X: = S0]

42 Giuseppe Castagnaa� (a1&[A1:T1k:::kAn:Tn]a2) Thus T � 8Y fA1:T1; : : : ; An:Tng, C [fX�Sg ` a1 :S1�8Y fAi:Tigi=1::n�1 and C [fX�Sg ` a2:S2�8(Y�An)Tn.
Since C [fX�Sg ` S0�S we can apply the main lemma (lemma 4.3) to the two
judgements above obtaining respectivelyC[X: = S0] ` S1[X: = S0]�8Y fAi[X: = S0]:Ti[X: = S0]gi=1::n�1C[X: = S0] ` S2[X: = S0]�8(Y�An[X: = S0])(Tn[X: = S0])
Furthermore by induction hypothesisC[X: = S0] ` ai[X: = S0] : S0i � Si[X: = S0] i = 1; 2
Recall that by definitiona[X: = S0] = (a1[X: = S0]&[A1[X:=S0]:T1[X:=S0]k:::kAn[X:=S0]:Tn [X:=S0]]a2[X: = S0])
Therefore using transitivity and the rule [fgIntro] we can conclude thatC[X: = S0] ` a[X: = S0] : 8Y fAi[X: = S0]:Ti[X: = S0]gi=1::n = T [X: = S0]a�a1(a2) LetC [fX�Sg ` a1:W ,C [fX�Sg ` a2:U 0�U andB(W)C[fX�Sg =U ! T . By induction hypothesis we have:C[X: = S0] ` a1[X: = S0] :W 0 �W [X: = S0]C[X: = S0] ` a2[X: = S0] : U 00 � U 0[X: = S0]
Applying the main lemma (4.3) to C [fX�Sg ` U 0�U and (trans) we obtainC[X: = S0] ` U 00 � U [X: = S0]
By proposition 2.3C[X: = S0] ` B(W 0)C[X:=S0] � B(W [X: = S0])C[X:=S0] (17)
Set W � W [X: = S0]. We want to prove thatC[X: = S0] ` B(W)C[X:=S0] � B(W)C[fX�Sg [X: = S0] (18)
If W is not a variable this follows from (refl). Otherwise letC[fX�Sg � C 0[fW�X1g[fX1�X2g[: : :[fXn�B(W)C[fX�Sgg (n�0)
There are two subcases:

1. X 6� Xi for all i 2 [1::n]; then B(W)C[fX�Sg = B(W)C[X:=S0]
2. X � Xi for some i 2 [1::n]; thenB(W)C[X:=S0] = B(S0)C[X:=S0]B(W)C[fX�Sg = B(S)C[fX�Sg

Now it is easy to check that B(S0)C[X:=S0] = B(S0)C[fX�Sg (otherwise C[X: =S0] and C [fX� Sg could not both satisfy the conditions of tcs). Thus by
proposition 2.3 we obtainC [fX�Sg ` B(W)C[X:=S0] = B(S0)C[X:=S0]= B(S0)C[fX�Sg� B(S)C[fX�Sg= B(W)C[fX�Sg

Thus in both cases we have that

Parametric and \ad hoc" polymorphism 43C [fX�Sg ` B(W)C[X:=S0] � B(W)C[fX�Sg
We can then apply the main lemma and obtainC[X: = S0] ` B(W)C[X:=S0][X: = S0] � B(W)C[fX�Sg[X: = S0]
By hypothesisX 62 FV (S0); this implies that X 62 FV (C[X: = S0]) and thusB(W)C[X:=S0] [X: = S0] = B(W)C[X:=S0]. Therefore to conclude the proof of (18)
it just remains to prove the following equation:C[X: = S0] ` B(W)C[fX�Sg[X: = S0] � B(W)C[fX�Sg[X: = S0] (19)
This is obvious if W is not a variable (since X 62 FV (S0) then the substitution[X: = S0] is idempotent) or if it is a variable different from X (then W = W). IfW�X then just note that (19) getsC[X: = S0] ` B(S0)C[fX�Sg[X: = S0] � B(X)C[fX�Sg [X: = S0]

by observing that B(X)C[fX�Sg = B(S)C[fX�Sg this judgments becomes:C[X: = S0] ` B(S0)C[fX�Sg[X: = S0] � B(S)C[fX�Sg [X: = S0] (20)
To prove it first apply proposition 2.3 to the hypothesis C[X: = S0] ` S0�S and

obtain C[X: = S0] ` B(S0)C[X:=S0] � B(S)C[X:=S0] (21)
Assume now that we have proved that B(S0)C[X:=S0] = B(S0)C[fX�Sg[X: = S0]

and B(S)C[X:=S0] = B(S)C[fX�Sg [X: = S0]. In this case (21) implies (20). So let
us prove the assumption: we start with S0. When S0 is not a type variable then the
result follows from the definition of B and the fact that X 62 FV (S0). If S0 is a type
variable thenC[X: = S0] � C 0 [fS0�X1g [: : : [fXn�B(S0)C[X:=S0]g
Since C [fX�Sg is a tcs then X 6� Xi for all i 2 [1::n]. By thisC [fX�Sg � C 00 [fS0�X1g [: : : [fXn�T 00g [fX�Sg
Note thatT 00 cannot be a type variable: it cannot beX otherwiseB(S0)C[X:=S0] = S0
(a loop in a tcs); it cannot be another variable otherwise C[X: = S0](Xn) would
be a variable, too. Therefore T 00 is not a type variable which implies that T 00 =B(S0)C[fX�Sg and thus B(S0)C[X:=S0] = B(S0)C[fX�Sg[X: = S0]. A similar proof
holds for S, too.
This ends the proof of (18)

From (17) and (18) we obtain:C[X: = S0] ` B(W 0)C[X:=S0] � U [X: = S0]! T [X: = S0]
Since B(W 0)C[X:=S0] is not a variable then it must be of the form U 000 ! T 0 withC[X: = S0] ` U [X: = S0] � U 000 and C[X: = S0] ` T 0 � T [X: = S0].
Summing up we have:
- C[X: = S0] ` a1[X: = S0] :W 0
- C[X: = S0] ` a2[X: = S0] : U 00�U 000
- B(W 0)C[X:=S0] = U 000! T 0
Then by[!Elim(�)] we obtainC[X: = S0] ` a[X: = S0] � a1[X: = S0](a2[X: = S0]) : T 0 � T [X: = S0]

44 Giuseppe Castagnaa�a0(U) LetC [fX�Sg ` a0 :W ,C [fX�Sg ` U�U 0,B(W)C[fX�Sg = 8(Y�U 0)U 00 and T � U 00[Y : = U]. First of all note that Y 62 dom(C) [fXg; then by
induction hypothesisC[X: = S0] ` a0[X: = S0] :W 0 � W [X: = S0]
By the main lemma we have thatC[X: = S0] ` U [X: = S0] � U 0[X: = S0] (22)
Proceeding exactly as in the previous case we can prove thatC[X: = S0] ` B(W 0)C[X:=S0] � B(W)C[fX�Sg [X: = S0]
Since B(W 0)C[X:=S0] is not a variable then it is of the form 8(Y�V 0)V 00 withC[X: = S0] ` U 0[X: = S0] � V 0C[X: = S0] [fY�U 0[X: = S0]g ` V 00 � U 00[X: = S0] (23)
Thus we have:
- C[X: = S0] ` a0[X: = S0] :W 0
- C[X: = S0] ` U 0[X: = S0] � V 0
- B(W 0)C[X:=S0] = 8(Y�V 0)V 00
Therefore by [8Elim] we obtain:C[X: = S0] ` a[X: = S0] = a0[X: = S0](U [X: = S0]) : V 00[Y : = U [X: = S0]]
Now from the hypothesis C[X: = S0] ` S0�S and from Y 62 dom(C) we deduce
that Y 62 FV (S0); from C [fX�Sg ` U � U 0 and Y 62 (dom(C) [fXg) we
deduce that Y 62 FV (U). Thanks to this and to (22) we can apply the main lemma
to (23) and obtainC[X: = S0][[Y : = U [X: = S0]] ` V 00[Y : = U [X: = S0]] � U 00[X: = S0][Y : = U [X: = S0]](24)
Since Y 62 FV (S0) then([X: = S0][Y : = U [X: = S0]]) = ([Y : = U][X: = S0])
and then (24) rewrites toC[Y : = U][X: = S0] ` V 00[Y : = U [X: = S0]] � U 00[Y : = U][X: = S0] = T [X: = S0]
and since Y 62 dom(C) it becomesC[X: = S0] ` V 00[Y : = U [X: = S0]] � T [X: = S0]
i.e. the result.a�a0[A]
Let C [fX�Sg ` a0:W , C [fX�Sg ` Ah = mini2IfAi jC [fX�Sg ` A�Aig, B(W)C[fX�Sg = 8Y fAi:Tigi2I and T � Th[Y : = A]. Again Y 62 dom(C) [fXg. By induction hypothesisC[X: = S0] ` a0[X: = S0] :W 0 � W [X: = S0]
Applying the main lemma we also obtain thatC[X: = S0] ` mini2IfAi[X: = S0] jC[X: = S0] ` A[X: = S0]�Ai[X: = S0]g �Ah[X: = S0]
Proceeding as in the two previous cases we have thatC[X: = S0] ` B(W 0)C[X:=S0] = 8Y fA0j:T 0jgj2J � 8Y fAi[X: = S0]:Ti[X: = S0]gi2I(25)

Parametric and \ad hoc" polymorphism 45
By the rule (fg) for each i 2 I there exists j 2 J such thatC[X: = S0] ` Ai[X: = S0] �A0j . Thus by the main lemma we have that fA0j jC[X: = S0] ` A[X: = S0] �A0j ; j 2 Jg is not empty, and by the meet-closure of fA0jgj2J it has also a min-
imum. Therefore ifC[X: = S0] ` A0k = minj2JfA0j jC[X: = S0] ` A[X: = S0] � A0jg
then C[X: = S0] ` a[X: = S0] : T 0k[Y : = A[X: = S0]]. Consider now (25); by the
rule (fg) one has that there exists ~h 2 J such thatC[X: = S0] ` 8(Y�A0~h)T 0~h � 8(Y�Ah[X: = S0])(Th[X: = S0]) (26)
Since C [fX�Sg ` A � Ah then by the main lemmaC[X: = S0] ` A[X: = S0] � Ah[X: = S0] (27)
From (26): C[X: = S0] ` Ah[X: = S0] � A0~h
From (trans): C[X: = S0] ` A[X: = S0] � A0~h (28)
From (26): C[X: = S0] [fY � Ah[X: = S0]g ` T 0~h � Th[X: = S0] (29)
From the definition of A0k and from (28) we obtainC[X: = S0] ` A0k � A0~h
and from this and the rule (fgtype) applied to 8Y fA0j :T 0jgj2J it follows thatC[X: = S0] [fY � A0kg ` T 0k � T 0~h (30)
From (27) and Y 62 dom(C) (and thus Y 62 dom(C[X: = S0])) follows thatY 62 FV (A[X: = S0]); by (27) and by the choice of k we respectively have thatC[X: = S0] ` A[X: = S0] � Ah[X: = S0] and C[X: = S0] ` A[X: = S0] � A0k;

thus we can apply the main lemma to (29) and (30) to obtain:C[X: = S0][Y : = A[X: = S0]] ` T 0~h[Y : = A[X: = S0]] � Th[X: = S0][Y : = A[X: = S0]]C[X: = S0][Y : = A[X: = S0]] ` T 0k[Y : = A[X: = S0]] � T 0~h[Y : = A[X: = S0]]
But Y 62 dom(C), thus Y 62 dom(C[X: = S0]) and whence, by the definition of tcs,Y 62 FV (C[X: = S0]). Then the judgements above getC[X: = S0] ` T 0~h[Y : = A[X: = S0]] � Th[X: = S0][Y : = A[X: = S0]]C[X: = S0] ` T 0k[Y : = A[X: = S0]] � T 0~h[Y : = A[X: = S0]]
By (trans):C[X: = S0] ` T 0k[Y : = A[X: = S0]] � Th[X: = S0][Y : = A[X: = S0]]
From C[X: = S0] ` S0�S and Y 62 dom(C[X: = S0]) follows that Y 62 FV (S0).
Thus the last judgement becomes:C[X: = S0] ` T 0k[Y : = A[X: = S0]] � Th[Y : = A][X: = S0] = T [X: = S0]

