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Abstract.Inthispaper we definean extension of '« [CG92] towhichweadd functions
that dispatch on different terms according to the type they receive as argument. In other
words, we enrich the explicit parametric polymorphism of I« by an explicit “ad hoc”
polymorphism (according the classification of [Str67]). We prove that the calculus we
obtain, called F¥ , enjoys the properties of Church-Rosser and Subject Reduction and
that its proof system is coherent. We also define a significant subcal culus for which the
subtyping is decidable.

Thisextension hasnot only alogical interest but it isstrongly motivated by thefoundation
of a broadly used programming style: object-oriented programming. The connections
between F'¥ and object-oriented languages are widely stressed, and the modeling by

F¥ of some features of the object-oriented style is described, continuing the work
of [CGL92).

In this paper we present a cal culus where the computation of a function can depend on
the type the function is applied to. There are two main motivations to this work. The
first isto start atype theoretic foundation of second order “ad hoc” polymorphism. The
second is to solve the problem of the “loss of information” in the overloading based
model of object-oriented programming [CGL92] in the same way as F« solved it for
the record-based one [GM 94]. N
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The overloading-based model has as advantage with respect to the record-based one
that it can model multipledispatch? , and thereforeit gives a typed account both for the
class-based object-oriented languages (such as Smalltalk) and for the generic-functions-
based ones (such as CLOS). However we do not |ean for any of the two styles: multiple
dispatch is indeed essentia for generic functions, but it is of great importance also in
class-based languages (see [Cas954] ).

The awkwardness of the theory developed in this paper isan example of the disad-
vantages of the overloading-based with respect to the record-based one

1. Introduction

System F'isalanguagethat allowsustowritefunctionsthat taketypesasinputs; however
these functions depend on their input in avery strict way: computation does not depend
ontheinput typeinthe sensethat different input typeswill return alwaysthe same (type-
free) result but in different types. The practical counterpart of this observation is given
by the fact that types are thrown away during the computation which is then performed
on the erasure of the terms. F« is a conservative extension of F', which allows the
specification of bounds on the types that are passed to a function; the type-checker uses
this further information to type the body of the function. But the functions of F'« till
have the same kind of dependence as in System F, since types again disappear during
the computation. Here we want to extend I« by atype dependency aso affecting the
computation. We want to have functions that dispatch on different codes according to
thetypepassed as argument. Asaside effect, typeswill no longer be erasable at runtime.

This research fits into a larger framework: In language theory, polymorphism has
two orthogonal classifications: “parametric vs. ad hoc” (see [Str67]) and “explicit vs.
implicit”. Parametric polymorphism, i.e. the capability of performing the same code
on different types, has been widely studied, both in the explicit form (where types
participate directly in the syntax; eg. System F') and in the implicit one (where types
participateviathetermsthey type; eg. ML). “Ad hoc” polymorphism, i.e. the capability
of performing adifferent codefor each different type, has not received the same attention.
In[CGL92], with the definition of the A&-calculus, we started a theoretical analysis of
implicit “ad hoc” polymorphism (on the line of some ideas in [Ghe91]). In this paper
we tackle the explicit counterpart, by defining F& a calculus with subtyping, which
integrates parametric and “ad hoc” explicit polymorphism. The practical counterpart is
the definition of a type discipline that avoids the loss of information in object-oriented
programming and fits the paradigms based on generic functions, as explained right
bel ow.

Object-oriented programming

Thisextension is not of mere logical interest but is strongly motivated by the modeling
of obj ect-oriented languages and the definition of atype disciplineto strongly typethem.
Let ustry to be more specific. In object-oriented languages the computation evolves on
objects. Objects are programming items grouped in classes and possessing an internal
dtate that is modified by sending messages to the object. When an object receives a
message it invokes the method (i.e. code or procedure) associated to that message. The
associ ation between methods and messages is described by the class the object belongs

3 In object-oriented languages, multiple dispatch is the capability of performing the selection
of the method not only on the class of the receiver but also on the classes of further parameters.



Parametric and “ad hoc” polymorphism 3

to. Now, there are two possible ways to implement message-passing: the first is to
consider objects as records that associate to each message a method. Thus messages are
labels of arecord, methods are the values in the fields and message passing corresponds
to field selection. This implementation has been extensively studied and corresponds to
the “objects as records’ analogy of [Car88]. The second way is to consider messages
as (identifiers of) special functions which take an object as argument and are able to
dispatch on different codes according to the class of that argument (this is done in
CLOS: [DG87]). This is the approach taken in [CGL92] where classes are used to
type objects and messages are thus overloaded functions, i.e. functionsthat dispatch on
different codes according to thetype (the class) of their arguments. There, an overloaded
function is a finite collection of ordinary functions (A-abstractions) that are grouped
together to form the different branches, and itstypeisthe set of thetypes of itsbranches.
More precisdly the different branches are glued together by means of “&” (whence the
name of A&-calculus); thus
m = (a1&a28& .. . &ay)
is an overloaded function with » branches a; . . . a,,. If a;: C; — T; then the type of m

is

m: {Cl —>T1,...,C'n —)Tn}
In object-oriented terms, this means that the “message” m has been associated to a
methodinthe“classes’ €1, .., C\,, @ach method returningaresult of type7; respectively.
If we apply m to avaue b of type C; (i.e. if we pass the message m to an object b of
class C}) then the branch (method) «; is selected and «; (b) is executed.

Example 1.1. Supposethat we have defined the following (class) types:

2DPoint = {« : Int;y : Int)

3DPoint = {« : Int;y : Int; z : Int)
A simple example of a method for these classesis Norm that can be implemented by the
following overloaded function:

Norm = (Aself 2PP9t | /self.a? + self.y?

& Aself ?’DJ‘D‘”'M.\/self.ab2 + self.y? + self. 22

)
whosetypeis {2DPoint — Real, 3DPoint — Real}. In this case if we apply Norm to
an object of type 2D Point (i.e we passthe message Norm to that object) then thefirst
branch is selected; if the object has type smaller than or equal to 30D Point the second
branchisexecuted. [

Inheriting methods

In this calculus a subtyping relation is defined on types. Intuitively, a type is smaller
than another typer when every value of theformer type can be safely used whereavaue
of the latter is expected. Thusin the case as before it may happen that the type C' of &
does not exactly match one of the C;’s but it is a subtype of one of them. In this case
the selected branch is the one that best approximates the type of the argument, i.e. the
branch j such that C; = min;—1 ,{C;|C" < C;}. On this selection of the minimum
relies the mechanism of inheritance, and it corresponds to the usual method look-up
of object-oriented languages: in object-oriented terms if we send the message m to the
object b of class C' then themethod defined intheclass C; = min;—; ,{C;|C < Ci}is
executed: if thisminimum is exactly C, this means that the receiver b uses the method
that has been defined in its class; otherwise, that isif this minimum is strictly greater
than C', then the receiver uses the method that itsclass, €', has inherited from the class
C';, which isthe least super-class of C' in which the message m has been (re)defined.
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Example 1.2. [continued] Suppose that 3D Point < 2D Point; this means that
3D Point has been defined as a subclass of 2 Point and that the method defined for
Norm in 2D Point (first line of the definition) has been redefined (overridden) by a
new method in 3D Point (second line of the definition). Suppose now to have a third
class 3DColor Point < 3D Point. If an object of this new class is applied to that
same N orm then, by the selection of the minimum, the method defined in 3D Point is
executed; thismeansthat the class 3 DColor Point hasinherited the method defined in

itssuperclass 3D Point. [

The problem of loss of information

Suppose we have a message m’ which modifies the internal state of a class C. Since
weareinafunctional approach the method in €y returnsa new object of class Cy. Thus
m':{...,Cy — Cy,...}. Let Cy be asubclass of C'; from which it inherits the method
at issue. If we pass the message m’ to an object of C'; then the branch defined in C; is
selected. Since this branch has type C; — 1, the result of message passing has type
C1, rather than C'; as would be natural. This problem was aready pointed out for the
record-based model in [Car88] and it is known as the “loss of information problem”.
In our case the problem is less serious than in Cardelli’s cal culus: indeed, in the case
abovewe could imagineto add tom’ afake branch C'; — C's whichwould be used only
during the phase of type-checking and then it would be discarded* (this has been done
in [Cas92]). However this solution isinteresting only in practical cases, where thereis
afinite number of classes; otherwise an infinite branching would be required. Although
this solution works whenever the set of classes has a well-founded ordering (as it is
always the case in practice) it becomes unmanagesable when one starts to distinguish
subtyping from subclassing (as done in [CHC90]). In conclusion we need a new type
system to account for this problem.

For the record-based model there the sol ution adopted was to pass to a second order
formalism. Thisyielded thedefinition of Fun in[CW85], whichwasfurther developedin
many works (anon exhaustivelist includes| CCH*89, Ghed0, CHC90, CL91, CMM S91,
BTCGS91, Bru94, PT93]) and, in particular, which gave raise to the definition of 7'«
in[CG92).

Here we adopt the same solution w.r.t. the A&-calculus, and we pass to a second
order formalism to avoid the problem of loss of information. Theideaisto have atype
system which types the previous m’ in the following way:

m' . VX<COLX = X, ...}

For this reason in this paper we define ¥ where this type dependency is dealt with in
an explicit way®. -

Type dependency

In a programming language a function which performs a dispatch on a type passed as
argument would be probably be written as:

4 Note that such a solution cannot be used also for the record-based model. We cannot replace
the function, say, Az:C1.z by Az:Cy.x since the latter would no longer accept inputs of type
C.

5 The other solution is to deal with it in an implicit way by introducing type schemas d la
ML, with bounds on the generic variables.
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Fun(X:*) = case X<T1: expl
|  X<T2: exp2

| X<Tn: exp_n

This function executes exp; if we pass atypelessthan or equal to 71, exp, if itisless
than or equal to 75 and so on. The case structure suggests a paralld testing. Thus, if
there is more than one candidate we select among them the branch with the least bound.
In F¥ thisfunction is denoted by:

(AX<Ti.expy & AX<Th.exps & ... & AXLT,.expy)

and itstypeisVX{T1.51,75.5,...,T,.5,} (where exp;: S;). However thistypeis a
rough approximation yet. Indeed, to obtain a coherent and expressive system, we need
strong restrictions on the 7;’sand the S;’s.

First of al note that the selected branch may change during the computation. For
example take a function f of type VX {T,.51,75.52} with T, <T;. Consider now the
expression (AY<Ti.f[Y]). SinceY < T; we guess that the branch sdected in f[Y]
will bethe one associated to 77 and thusthetype of thisexpression will be V(X< T7)5;
(more exactly ¥(Y < 71)S1[X := Y]). But if we pass to the function above the type
T5 then, as Y isbound to 75, the selected branch will be the second one and the result
will havetype S2. System /" and F'« satisfy the subject reduction property, i.e. typesare
preserved under reductions. If we want reductions to preserve the type also in the new
system we must require S» to be the same type as S;. But, it turns out that thisis too
strong a condition to model object-oriented languages (see the examples in section 6).
Thus we adopt a less restrictive discipline, according to which types are adlowed to
decrease during computation. Thus in the example above it must be possible to deduce
X< Ty F §2< 51 Summing up, the first restriction we impose on an overloaded type
VX{T;.S;} isthat if - T; < T; then X < T; + S5;< S; (we cdl it the covariance
condition, Since it accounts for alongstanding debate on covariance vs. contravariance
in the subtyping of the arrow types: see more on it in [CGL92]). Note the use of
sequents: the premise records the subtyping relation on the type variables; we cdll it a
type constraint system.

Definition 1.3. @isa type constraint systems (tcs); dom(D)=@. If C'isatcs, X ¢
dom(C') andforeveryY € FV(T),Y € dom(C') thenCU{X<T}isatypeconstraint
system and dom(C' U{X<T})=dom(CYU{X}. O

Sometimes we will use the notation C'(X') to denote the bound associated to X in C.
By the definition above for agiven tcs C and atypevariable X € dom(C') there always
exists aleast non variable type 7" greater than X. We denoteit by B(X ) (the B stands
for bound). More precisely we have the following definition.

Definition 1.4. Let C'beatcsand 7" araw® type such that FV (T') C dom(C) then
1. B(T)e= T if T'isnot atypevariable.
2. B(T)c=B(C(T))c otherwise. [

In the rest of the paper we omit the subscript C' in B(7T") when it is clear from the
context.

We limit our study to the case where the bounds of an overloaded function range
over basic types (eg. Boal, Int, Red ...). Indeed, the use of arrow types in the bounds

6 A raw type is a type that may be not well formed. See section 2
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poses many non-trivia problems, due to the contravariance of the left argument in the
subtyping relation. Therefore the second restriction weimposeisthat VX {7;.5; }icr IS
well-formed only if for every i €1 B(T;) isabasic type’.
Thus every bound 7; must be an atomic type,
B(X) A i.e. either abasic type or atype variable.
When the bound is a type variable, say X, the
basic type B(X) plays animportant role, since
the set of its subtypes (denoted by P(B(X))
) is the range of X. When we apply an over-
loaded function to atype, a selection rule picks
B the branch to execute. As we already said, this
rule sel ects the branches with abound provably
larger than or equal to the type passed as the
argument, and among them it chooses the one
C with the least bound.
Some conditionsare required to assure that this
minimum exists. In A&-calculus this existence
was assured by requiring that the bounds had to
[ ] range of X form a partial downward semi-|attice.®
But there we had only closed types. Now with type variables this restriction no longer
suffices: consider the example of the figure above; it is clear that X and A have no
common lower bound (since the only judgment we can provefor X isthat X < B(X)).
Nevertheless if X takesthevalue B, it can enter in conflict with A since they have
acommon lower bound C'.
Thusif avariable X appears in an overloaded type as a bound then conflicts must
be checked taking into account every typein P (5(X)). To this purpose we require that
every set of bounds satisfies the property of N-closure, defined as follows:

Definition 1.5. Let C beatypeconstraint system. Given aset of atomictypes{ A;};cr
wewrite C' - {A4; }ieN-closed iff for all ¢, j € Iif B(A4;)cUB(A;)c then there exists
hE[SUChthatCFAhIAZ’ﬂAj. O

HereC' = A, = A; N A; means that from C' it is provable that A, isthe g.l.b. of A;
and A; (i.e. weneed aderivationfor C'= A, < A;, onefor C' F A, < Ay and onefor
CF A< A, for every A which is a common lower bound of A; and A;,—note that
they is afinite number of such A), and B; || B» that B; and B> have a common lower
bound (in this case we need the proof only for two judgments).

Notethat N-closureis quiteadraconian restriction. Indeed N—closed sets of bounds
have avery precise form (see proposition 2.5): they are partial downward semi-lattices,
i.e. formed by digjoint unionsof downward semi-lattices. These semi-latticesare divided
in two parts: the upper part is a semi-lattice formed only by basic types; the lower part
isformed by a chain of type variables starting from the least element of a semi-lattice
of basic types. Any of these two parts may be missing. A pictorial representation of the
situationisgiven in figure 1.

7 The major drawback of this restriction is that we cannot obtain the quantification of System
F' as a special case of the overloaded one and thus we will be obliged to add it explicitly. See
also sections 6.3 and 7

8 A set S is a partial downward semi-lattice iff for all a,b € S if ¢ |} b then a nb € S. Here
a {} b means that a and b have a common lower bound (in §) and a Nb denotes their greatest
lower bound.
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Fig. 1. Meet-closed sets of atomic types

Remark that N—closureisalwaysrdativeto atcs C' sinceit determinesthe order for
type variables (we assume that the order on basic typesis predefined).

2. Type system

Inthissection wedescribethetypesystem. Wefirst definethe raw types. Among themwe
select thetypes, i.e. those raw typesthat do not contain overloaded types not satisfying
the three rules we hinted in the introduction. In other terms VX { A; . T; };c; must:

1. have boundsranging over basic types, i.e. for each i €7, B(A;) must beabasic type.

2. have an-closed set of bounds.

3. satisfy covariance, i.e. if A; < A; then X< A; - 1;<T;
We suppose we have a predefined ordering on basic types which forms a partial lattice.
Thispartial order isextended to higher typesby aset of subtyping rulesthat are mutually
recursive with those selecting the types.

Raw Types
A = X | B (atomic types[ B basic types])
T == A | Top (raw F¥ types)
| T-—>T N
| V(X<I)T
| VX{Al Sy, . AnTn} (also denoted by VX{A;. T;}i=1..n)
Judgments

We have three kinds of judgment: for type well-formedness (C' + 7T type), for the
subtyping relation (C + T'<T") and for the typing relation (C' + a: 7). We cal the
first two kinds of judgments type judgments. Throughout the paper we aso use some
informa judgements: for example “C' = T' = min;¢;{7;}" stands for “T € {T; }ier
andfordl icI CHT <T;".
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C - Btype

C'+ Top type

C+ T type
CU{X<T}HF X type

(+)

C T type C+ T type
CrHT — T type

CU{XLT}+T type C + T type )
CHVY(X<T)T'type

C'F A; type
CF{A;}.2.. . N-closed
CU{X<A;} F T, type

CrVX{A,.Th,..., Ay Ty} type (%)

(%) X & dom(C)
(xx)  B(Ap)c is a basic type for h=1..n and X & dom(C) and i,j € [1..n]

Subtyping
C F T type
(refl) CrT<T
C"T1§T2 CFTZSTS
(trans) CrT <Ts
C+ T type
(tau CU{X<T}F X<T ()
C F T type
(Top) CFT<Top
) CHTI<KT,  CFT<T]
CFV(X<T)T<V(X<T)T}
CHVYX{A;.Tj}jes type CFVX{ALT}ier type
«n foralie Iexistsj € Jst.CF Ai<A; CU{XSAL}FET;<T] )

CFYX{A; T }es<VX{ALT Yier
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Types are considered equal modul o the order in overloaded types. The substyping rules
above define a pre-order. Antisymmetry does not hold but on atomic types (therefore
lub’sand glb’s are univocally defined).

2.1. Some useful results

Theorem 2.1. If C'+ T<T" then C' + T type and C' + T" type
Proof. By induction on the depth of the proof of C'+ T<T’. O

Let usintroduce some terminology: we say that two types have the same shape if they
are both constant types or both type variables, or both Top, or both arrow types, or they
are both overloaded or both parametric types

The following result on the form of the judgements will be frequently used in the
rest of the paper

Proposition 2.2. Let C' T <T5. Then
1. If T is not a variable then T3 either is Top or it has the same shape as T}
2. If T5 is not Top then T} either is a variable or 1t has the same shape as T3

Proof. By induction on the depth of the proof of C' + 71 < 75, performing a case
analysison thelast applied rule of theproof. O

Another useful fact that will be extensively used in the proofs of this paper is the
followingone:

Proposition 2.3. If C Ty < Ty then C'+ B(T1)e < B(Tz2)e

Lemma 2.4. If C F X <Y then B(X)¢ = B(Y)¢

Proof. An easy induction on the number of steps of the definitionof B(X)-. O
The following proposition describes the the form of the N-closed set of types:

Proposition 2.5. If C' + {4;};crN-closed then for any pair of elements A; and

A; such that B(A4;)c | B(A;)c one of these cases must hold:

1. B(Ai)c and B(A;)c are unrelated (w.r.t. the subtyping relation), A; and A;
are both basic types and their g.l.b. is in {A4; }ier

2. B(Ai)e < B(Aj)c and both A; and A; are basic types (or the reverse).

3. B(Ai)e < B(Aj)c, A; is a variable and A; is a basic type.

4. B(A;)e < B(45)c, Ai and A; are both variables and C' - A; < A; (or the

reverse).
Proof. Let us examine al the possible cases:

1. A; and A; are both basic types. Then &l the possible cases are covered by the first
two points of the proposition.

2. A;isavariableand A; isabasic type® Then we want to prove that B(A;)c < A;.
Consider A, = A;NA;. SinceC' = A, < A; then by proposition2.2 A, isavariable
too. By lemma2.4 B(Ax)c = B(A4;)c. SinceC' + A< A; then by proposition 2.3
we obtain the result

& Without loss of generality, we can consider for this case and for the case 4 that B(A4i)c <
B(Aj)¢ holds. Thus in this proof and in those that follow we will skip the reverse case.
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3. A; and A; are both variables. Consider A, = A; N A;. By proposition 2.2 A,
is also a veriable and by lemma 2.4 B(Ap)c = B(Ai)e = B(A4;)c. Thus both 4;
and A; appear in the chain from Aj, to B(Ap)c. Therefore either C' = A; < A; or
C = A;< A; holds, according to the order they appear in the chain.

O

2.2. Transitivity elimination

Therulesof subtyping given above do not describeadeterministic a gorithm: asubtyping
judgment does not univocally determine neither the rule to prove it nor the parameters
that such arulemust have. In particular non-determinismisintroduced by therules(refl)
and (trans):

Consider the judgment C' = 7'<T'; if T is not avariable nor Top then the judgment
can be proved by at least two different derivations, one consisting just of the rule (refl)
the other obtained by applying the structura rulefor 7" (e.g. (—) if 7" is an arrow type)
and the rule (refl) to the components of 7". This kind of non-determinism can be easily
solved by choosing either to use (refl) as soon as possible or to use it as late as possible
(i.e. only on atomic types). We choose this second solution thus we substitute the rule
(refl) above by the following one:

C'+ Atype

e | CFi<i
It is then very simple to prove that this new system is sound and complete w.r.t. the

previous one: soundnessis obvious and completeness is given by the following lemma:

Lemma 2.6. For each C and 7 such that C' = T type the judgment C'FT<T
is provable using reflexivity only on atomic types.

Proof. A straightforward induction on the structureof 7" O

Also the rule (trans) produces a non-determinism similar to the one of (refl): we have
always the choice to apply transitivity or to push it to the subcomponents. But, besides
that, (trans) introduces a deeper form of non-determinism quite harder to eiminate.
Indeed, the (trans) rule does not respect the so-called “ sub-formulaproperty”, according
towhich al the typesappearing at the premises of arule must appear in its consequence,
too. When proving 7 < T3 by transitivity, anew level of non-determinismisintroduced
by the choice of the intermediate type T> such that 77 <T5 and T5<T5.

The reader will have recognized in it acut elimination problem. Indeed, transitivity
elimination in subtyping systems corresponds to cut elimination in Gentzen's sequent
caculus for the first order logic. Both of them lead to a coherence result of the corre-
sponding proof system, by returning a canonical derivation for each provablejudgment.
The resemblance iseven stronger since we can use the Gentzen’ stechniquefor cut eim-
ination to prove also trangitivity elimination. Namely, we define a weakly normalizing
rewriting system on the derivations of subtyping judgments. This system will push the
trangitivity rulestowardstheleaves of the derivation; whenever it has to choose between
pushing transitivity up into aleft or aright subderivation it (arbitrarily) chooses the one
on the right. The derivationsin norma form will have al the (trans) rules applied to a
leaf of the derivation tree.

Sinceitisdifficult to work directly with derivations, we use the Curry-Horward i so-
morphism[How80] to define aset atermsto univocally codify subtyping derivations. We
follow for their definition [CG92], where these terms are called coercion expressions.
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The syntax of the coercion expressionsis:
ci:= Kp,p, | Ida| X1 | Topp |c— ' |V(X<c)d | ed |V?X{cl.c/1, ey CnCh }

where ¢ denotes atotal function between two sets of indexes ¢ : I — J.

We next show how to use coerce expressions to codify derivations. In the rules
that follow we do not consider the judgements of type formation (C' + 7" type) and
we concentrate only on the subtyping judgements. Considering them would grestly
complicate the exposition, without bringing any benefit: firstly the rules defining type
formation describe a deterministic algorithm (note indeed that type formation uses
subtyping only on atomic types, thusthereis not areal mutual recursion), and thusthey
do not poseany coherence problem; secondly, all the proofsin therest of thissection will
work on a given type and on its syntactical sub-formulas; if we suppose by hypothesis
that the type is well formed then the proofs will be valid also when restricted to well
formed types (sub-formulae of well formed types are well formed types).

Thus the derivations we codify involve only subtyping judgements and work under
the hypothesis that all the types appearing in them are well-formed. We & so use (refl)
defined only for atomic types.

(basc) CF [(31321 By < B, (]L)
(refl) CF Idy: A< A
C"CZT1<T2 C"C/ZT2<T3
t = >
(trans) CkhceT <73
(taut) CU{X<T}F Xp: X<T
(Top) C'F Topp: T<Top
(_)) CF CliTllSTl CF CziTzSTzl
Cr [ d CziTl — TQST{ — T2/
(V) C"ClT{STl CU{XST{}'_CZTQSTzl
Viel Ch oot Al<Ayyy CU{XSALYF o Tyn<T!
(£ - - (1)

cr V\?X{Aj.Tj}X{Cifﬁ'}ieIi VX{A; T} jes<VX{AL T Yier

) for all basic types By, B> such that B1< B,
G1)  ¢: 1 — J total

Note that the term associated to trangitivity is the composition of the terms associated
to the sub-derivations.

Thelast rule showsthe use of thefunction ¢: during the subtyping of two overl oaded
types, ¢ associates each branch of the greater overloaded type with the branch in the
smaller type to which it has been compared in the proof of subtyping. Note that this
information would not suffice to univocally determine the derivation codified by a given
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coercion expression; in case of overloaded types we need aso to know the type on the
left-hand side of therelation, which isrecorded in the lower index of V.

Proposition 2.7. There is a 1-1 correspondence between well-typed coerce ex-
pressions and subtyping derivations.

Proof. A simpleinductionon therules’. O

2.2.1. The rewriting system

We now define a rewriting system on the derivations of subtyping judgements. In view
of the proposition 2.7 thisis equivalent to defining it directly on the coerce expressions.
We borrow the rewriting system from [CG92], to which we add therules ({}') and ({}")
to deal with overloaded types. In therulesthat follow we supposethat C' | ¢: S<T"and

(Assoc) (cd)e ~  c(de)
(=) (cod)(d = d) ~ (o) (dd)
(=" (e=d)(( = d)e) ~ ()= (dd))e
(V) (V(X<e)d) (V(X<c)d') ~ V(XS o) (dd[Xp:= e Xs])
(V) (VX)) (VX)) e)  ~ (VXS e)(dd'[Xp:=cXs]))e
{) (X {eiditier) (V0 X{c)dj} e )

~ VX e eindi () [Xay = XaTher
({3 (VX {eidibien) (VX {c) dj}ier) )

~ (VP i (A [Xar = Xalber) e

A simple analysis of the rules shows that the normal forms of thisrewriting system are
subtermsof (¢ — d) e ... e, Orof (V(X<c)d) ey ... e, 0rof (VaX{c;di})er ... en
where ¢, ¢;, d, d; are in norma form and e, ... e, are ether X; or Top; of Kgp
(composition is right associative). These normal forms correspond to derivations in
which every left premise of a (trans) ruleisaleaf. Thusthe rewriting system pushesthe
trangitivity up to the leaves. It remains to prove two facts:

1. The rewriting system is sound, i.e. it rewrites a valid derivation for a certain judg-
ment into another valid derivation for the same judgment. By the Curry-Howard
isomorphism thisis equivalent to proving the subject reduction theorem for the cal-
culus of the coercion expressions; namely we have to show that a well typed coerce
expression rewrites only to well typed coerce expressions of the same type.

2. Therewriting systemisweakly normalizing. Inthiscasethereexistsareduction strat-
egy which transforms every derivation into another that proves the same judgment
and isin normal form (i.e. with the (trans) rules at the right places).

9 Strictly speaking this theorem is true modulo weakenings of the tcs’
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2.2.2. Soundness of the rewriting system

The proof of the soundness of the rewriting system isvery similar to the corresponding
onein [CG92]. We first have to prove the following lemmas:

Lemma 2.8. (weakening) If C' - ¢: A is provable and C U {X < T} is a tcs
then also C U {X<T}F ¢: A is provable.

Proof. By asimpleinductionon the proof of C'-c: A O

Lemma 2.9. (substitution) If C U{X<T}F U <V and CU{X<S} I
d: X < T are provable then C'U{X<S}F ¢[Xp:=d]:U <V is provable too.

Proof. By induction on the structure of ¢. We only detail the proof when ¢ isavariable;
al the other cases are either trivial (Kpp/, Topy and Id4) or they are solved by a

straightforward use of the induction hypothesis (—, v, V‘%).

There are two subcases:

1.¢= Xp. Theresult becomes CU{ X< S} F d: X < T whichissatisfied by hypothesis.
2.¢=Yy.Thehypothesisbecomes CU{X<T} F Yy: Y < V.ThereforeC - Yy : Y <
V. By aweakening (lemma 2.8) weobtaintheresult C U {X<S} FYy: Y <V. O

Now we are able to prove the soundness of the rewriting system

Theorem 2.10. If ¢~ d and C' F e: A then C' F d: A

Proof. Follow the proof of section5.2in[CG92]. For thecases ({}') and ({ } ") lemma2.9.
The detailed proof of these cases can befoundin[Cas94]. O

2.2.8. Weak normalization

Thetask of proving that the rewriting system isweakly normalizingisvery smplesince
all thework has aready been donein [CG92]: define
size(A) = size(Top) ©oy

size(S = T) = size(V(X< ST e size(S) + size(T)

size(WX{A Tivier) €Y (size(A) + size(T))
i€l

a

Let m and m’ be two multisets of natural numbers; define

d
m<m EL vy emInem n<n

Definition 2.11. ([CG92]) Define the intermediate type of a coerce composition
de, where e: S<T and d: T'< U, as the type T'. Then the complexity measure of a
coerce expression ¢ isthe multiset of the sizes of the intermediatetypes of all the redexes
of ¢, modulo (Assoc). O

Theorem 2.12. Every innermost strategy for ~+ strictly decreases the complex-
ity measure and thus terminates.

Proof. The proof isstrictly the same as the one of section 5.3.3 in[CG92] modul o some
dlight modifications for the cases involving overloaded types. O
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2.3. Subtyping algorithm and coherence of the system

Consider the following rewriting rules

(Idl) IdT C ~r C

(id.) eldg ~ c
(bas) Kpe Kap ~ Kac
(bas“) [(BC ([(AB C) ~ [(AC c
(top) Topyr ¢ ~  Topg
(varTop) XTo p ~  Topyx

These rules perform some cleaning of the derivations, basically by erasing useless
coercions.

This set of rules clearly congtitutes a strongly normalizing rewriting system (use as
metricsfor the coercion expressions the lexicographical order of the pairsformed by the
number of compositionsin the expression and by the number of variables occurring in
it). Furthermore no rule increases the compl exity measure given in the previous section
for wesk normalization, and they are al sound. Therefore we can safely add these rules
to the previous rewriting system: all the results of the previous section till hold. In the
rest of thissection wewill always consider the rewriting system formed by the old rules
and those introduced above.

2.8.1. The shape of the normal forms

It isvery important to analyze the shape of the normal forms of the composed rewriting
system. We have the following theorem:

Proposition 2.13. Every well-typed coerce expression in normal form has the
formegey ... e, with n > 0, where ¢y can be any coerce expression different from
composition, whose subformulae are in normal form, and ¢; . ..¢, are variables.

Proof. This proposition can be easily proved by induction on »n (where n is the number
of outer compositions of the normal form at issue). For n» = 0 the result is obvious.
The inductive case (n > 0) is proved by a case analysis on the shape of ¢g, by using
proposition 2.2 and the reduction rules. First of all note that because of the rewriting
rules (top) and (id;) ¢ can be neither Topy nor 7d 4:

co= X7 .Consider ¢, .t cannot be acompositionbecause of (Assoc). By proposition2.2
it can be nothing but avariable: indeed we havethat ¢;: § < X thus.S must beatype
variable, say, Y and therefore ¢; = Yx . The result followsby induction hypothesis.

co=Kp,n, . Consider ¢;: it cannot be a composition because of (Assoc); it cannot be
a constant because of (bas) if n = 1, because of (bas”’) if n > 1; it cannot be Top,
orc— ¢ orv(X<c)d or V?X{cl e, ..., cn.cl, } because of proposition2.2. Thus
it can be but avariable. The result follows by induction hypothesis.

co=c — ¢’ . Consider ¢;: it cannot be a composition because of (Assoc); it cannot be a
d — d' because of (—') if n = 1, because of (—”) if n > 1; it cannot be Top, or
c—cdorvV(X<e)d or V‘%X{cl e, ..., cn.ch, } because of proposition 2.2. Thusit
can be but a variable. The result follows by induction hypothesis.

All the other cases are solved asthelast twocases. 0O

This theorem has two important consequences: the coherence of the proof system for
the subtyping relation and the definition of a subtyping agorithm.
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2.8.2. Coherence

Lemma 2.14. For every provable subtyping judgment there exists only one co-
erce expression in normal form proving it.

Proof. Wefoll ow the pattern of the proof of the corresponding propositionin[CG92]. L et
¢ be awell typed coercion expression in normal form. From propositions2.13 and 2.2
it followsamost immediately that we have only these possible cases:

1l if:A<Athene=Idy
2. if e: X <Y then ¢ isacomposition of variables, which is determined in an unique
way by thetcs.
.ife: By < Bothene=Kp, B,
ife: S — 5'<T — T’ then cisa— coercion.
Cif e V(X <S1)5:<V(X<T)Ts then cisaV coercion.
Cif e VX {A; T} e s<VX{A}.T!}ic; then cisa Yy coercion.
if e: X < B then ¢ isacomposition of variables, which isdetermined in an unique
way by the tcs, composed with acoercion of class 3if B(X) # B
. if e: X<T — T’ then ¢ is a composition of variables, which is determined in an
unique way by thetcs, composed with a coercion of class 4 if B(X) # 7T — T"
9. if e: X< V(X< T))T5 then cisacomposition of variables, which isdetermined inan
uniqueway by thetcs, composed with acoercion of class5if B(X) # V(X<T1)T5
10. if : X<VX{A].T!}ier then ¢ isacomposition of variables, which is determined
in an unique way by the tcs, composed with a coercion of class 6 if B(X) #
VX {ALT Yier
11. if e: T < Top then cis Topyp

After thissimple observation then the result can be proved by induction on the structure
ofe. O

~No b w

oo

Theorem 2.15. (coherence) Let II; and IIs be two proofs of the same sub-
typing judgment C' = A. If ¢; and ¢» are the corresponding coerce expressions
then ¢; and ¢s are equal modulo the rewriting system.

Proof. By the weak normalization there exist two coercion expressions in normal form

d, and d, such that ¢; ~> dy and ¢o < ds. By the soundness of the rewriting system
(theorem 2.10) it followsthat C' - di: A and C' = ds: A. But then by lemma 2.14 we
have that d,= d, (note that this constitutes also a proof that ~- is Church-Rosser.) O

2.3.3. Subtyping algorithm

Consider once more the normal forms of proposition 2.13. These correspond to deriva-
tionsin which every application of a (trans) rule has as left premise an application of
therule (taut). From this observation one directly derives the definition of the following
subtyping a gorithm:

(AlgRefl) Chy X<X
CHCX)LT
(AlgTrans) CLX<T

(AlgTop) CF, T<Top
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CHT<T,  Ch DT}

Al
(Alg=) Ch T, > T<T| = 1}
Ch i< CU{XLSTI} b Ty
(Algv) Ch V(X< T, < V(X< 1)1} )
foralie Iexistsj € Jst.CF Ai<A; CU{X<SA}FT;<T!
(Alg{ }) s CUIXSAJ P )

CFVX{A; T5}es<VX{A T} }ier
(x) X & dom(C)

This set of rules denotes a deterministic algorithm since the form of the input —the
judgment one has to prove— unequivocally determines the rul e that must be used and
all the parameters of any recursive cals

This agorithm (which is a semi-decision procedure) is sound and complete w.r.t.
our first system. This means that the sets of provable judgments of the two systems are
the same. Thisis stated by the following theorem:

Theorem 2.16. C'H A <— CF A

Proof. Soundness (=) is easily proved by induction on the depth of the derivation of
C k. A. Completeness (<) stems directly from the work of this section: take any proof
of C'F A, apply toit the compl ete rewriting system with an innermost strategy; replace
in the obtained normal form all the sequences of (taut) (trans) rules by an (AlgTrans)
rule; add the index .4 to every turngtileand you have obtained aproof for C' -, A. O

3. Terms

Inthissection we describetheterms of thelanguage. We start by the definition of the raw
terms, among which we distinguish the terms, i.e. those raw terms that possess atype.
Roughly speaking, (raw) terms are divided in three classes: terms of the ssimply typed
A-caculus, terms for parametric polymorphism and terms for overloading. Overloaded
functions are built in a list fashion, starting by an empty overloaded function £ and
concatenating new branchesby &. The &’sare indexed by alist of types which is used
to type the term and to perform the selection of the branch.

Indexes
iz (AT . | AnTo]
Raw Terms
a = 2T | (/\l‘T.a) | a(a) simply typed A-calc
|  top | AX<ZT.a | o(T) Fe
| £ | (a&Ia) | a[A] overloading

Werequired that theboundsof an overl oaded functionrangeover atomictypes. Therefore
the argument of an overloaded function can be restricted to be an atomic type (a[A])
since aterm of the form, say, a[.S — T'] would be surely rejected by the type checker.

Terms
We usethe metanotation: a[x := b], a[X := 5], T[X := S] for substitutionsand U for
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set-theoretic union. Alsowe use C' + a: S<T' todenotethat C'F a: S and C' F S<T.
Type subgtitutionsare performed on indexes, too. Terms are selected by the rulesbel ow;
since term variables are indexed by their type, the rules do not need assumptions of the
form («: T):

[Varg] crzl.T C T type

CraT’
Ck XaTa):T—1T

[=INTRO] C + T type

Ckal CFb:S'<S

[ ELiM] BT)e=S—->T

Cta(b):T
[Tor] C F top: Top
CU{XLT}FaT
[VINTRO] CF AX<T.a:V(X<T)I" ¢ Tiype
CkaT CFES<S
E — TYe=V(X<ST
[VELIN] CFa(S): TX = ] BTe=V(X¥<5)
€] CreVX{}
Ch a:S1<YX{A;Titicn CF b So<V(X<A)T
I < "
[{}INTRO] C F (a&A T TA Tl ATy VX ({A; T bicn U{ATY) (#)
: j = min; i <4
[} ELv] CFaT CtHA; =minier{A;|CH A< A} ()

CF alA]l: T;[X = A]

) CFVYX({A:Ti}icn U{AT)) type
() B(Te=VX{A:i Ti}ier

Note the form of the premises in the rule [{}INTRO]; we cannot require that the com-
ponents of an & must have the same type as the one specified in the index: since it is
possibleto reduce inside an & then the types of the components may decrease (see the
subject reduction theorem 4.6) and cannot be fixed (the index does not change with the
reduction thus even if types are equal modulo the ordering in overloaded types, terms
are not equa modulo index reordering).

A first non trivial result for this system is given by the foll owing theorem.

Theorem 3.1. If C'F a: 7T then C'F T type

Proof. The proof isan easy inductionon thedepth of the proof of C' + a: 7" by performing
acase analysison thelast applied rule. The cases for [YELIM] and [{ } ELIM] are solved
by usingthelemma4.3. O

Asthe careful reader will have noticed, we do not use subsumption in the type checking;
since the selection of a branch is done according to the type of the argument we want,
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to avoid ambiguities, that every well typed term has a uniquetype. Thisis stated by the
following theorem:

Theorem 3.2. If C'F a:7T) and C'F a: 75 then and 77 =15

Proof. An easy induction on sum of the depths of the derivation of C' - «: 77 and
C' F a: 1%, by performing a case analysison the structureof « O

By theorem 2.15, we can associate to every provable judgment a canonica derivation.

Theorem 3.3. Let II; and II; be two derivations for the same judgment C'
a:T. Let (TI;)* (¢ = 1, 2) denote the derivation IT; in which every (sub-)derivation
of a subtyping judgment has been replaced by its canonical form. Then I1; = II,.

Proof. By induction on the structure of a (which univocally determines the typing rule
toapply). O

By combining the result of this two theorems we obtain that every well typed term has
acanonical derivation for itstype.

Thus one would expect that it is possibleto define atype-checking a gorithm for the
raw terms. Thisisthe case, indeed: if in the system above you replace every subtyping
judgment C' = S< 7T by C' F, S<T you have a type-checking algorithm that can be
easily proved sound and complete w.r.t. the original system.

4. Reduction

In this section we give the equational theory of theterms of F'§. We present it under the
form of reduction rules. We assume we work modulo «-conversion for term variables;
note that no clash is possible for type variables because of the definition of tcs. The
reduction rules are context dependent.

Notions of reduction

B Cr (AzT.a)(b) > a[zT :=b]
(By) CF (AXLT.a)(T") b a[X :=T"]
(Byy) IFA Ay .. A, areclosed then

b(A) if A, = minlsisn{Ai|C FA<A;}

C' (adt Dl Tl [4) D{ a[A] otherwise

Notethat the selection of the branch is made on the index. Therefore while overl oaded
typesareequa modul ereordering of their components, inindexestheorder ismeaningful
sinceto a different ordering may correspond a different sel ection.

Besides these rules there are the usud rules for the context; among these the only
onethat deserves anoteistherulefor A, for it changes the tcs of the reduction:

CU{X<T}Fapd
CH(AX<T.a) b (AX<T.a')

For what it concerns the rules note that in 3;; we require that the types involved
in the selection of a branch are closed. In this way we aways select the most precise
branch (i.e. theonewiththesmallest possiblebound). This correspond in object-oriented
programming to the implementation of the dynamic binding (for awider discussion on
thistopic see [CGL93].)
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4.1. Subject Reduction

In this section we prove that the type-checking system of F'¢ iswell behaved w.r.t. the
reductionrules. Moreprecisely we provethat every (well-typed) term rewritesto another
(well-typed) term, whose type is smaller than or equa to the type of the former. The
proof of subject reductionis very technical and complex. The crux of the problem isto
provethat the property of N-closureis conserved under reductions, more precisely under
(feasible) substitutions. For this reason we suggest the reader to skip at first reading the
proofs of the three lemmas that follows.
We need first some notation:

Notation 4.1. Let C U {X < T} be a tcs. Define (CU{X < T}H[Y:= 9] as
(CIY:= SJU{X < T[Y:= S]}) and O[X:= S] as O. Let C = A be a type
judgment. Then C'F A[X:= 5] is defined as C'+ T[X:= 5] type if A=T type,
as C'F Tl[XZI S] S TQ[XZI S] if AET1§T2

The proof of subject reduction requires an assumption and three technica |lemmas:

Assumption 4.2. Recall that the proof of €'+ {A;}._, .N-closed is indeed an
appropriate set of proofs with final judgments of the form C'F A< A proving
the meet closure of {A;}._, .. In particular we suppose that this set contains at
least one proof of €'+ A;< A; for every ¢, j in [1..n] for which such a proof exists.

Lemma 4.3. (main lemma) If C U{X< S} F A is a provable type judgment,
XgFV(S')and C[X:= S']F S'<Sisalso provable, then C[X: = S|+ A[X:= 5]

is provable, too.

Before proving thelemma, wewant clarify apoint: indeed the reader may wonder why in
thislemma, aswell asinlemma4.5, weusedthetcs C'[ X : = S’] rather than C'. Actudly if
youreplace C[X: = 5’] by C the theorem can no longer be proved, since a some points
it is not possible to use the induction hypothesis (more precisely when you introduce a
new variableinthetcs). Theintuitivereason isthat evenif CU{X< S} and C[X: = 5]
are well formed tcs's this does not imply the good formation of C'. For example take
S'=S=BandC = {Y< X}: Cisnotwel formed but C[X:= S =Y < B and
CU{X< S} ={Y < X} U{X < B} are well formed.'’ We can now prove the
lemma.

Lemma 4.4. (term substitution) If C' + 6:7" < T and C F a: 5 then C I
alzT:=b]: 5'<S.

Lemma 4.5. (type substitution) If CU{X<S} F a:T, C[X:=5F < S
and X € FV(S’) then C[X:= Sk a[X:= 5T <T[X:= 9]

Lemmas 4.3 and 4.5 congtitutedthe hard part of theproof. Itisthenrather straightforward
to prove the theorem of subject reduction by using the same technique of [CGL92].

Theorem 4.6. (subject reduction) If C'Fa:T and C'+ a 1> b then CF b:T"
and C'HT'<T

Proof. The proof is by induction on the depth of the proof of C' + a > b. Instead
of presenting the proof for the base case (the rules (5), (Gv) and (3;)) and for the
inductive case (the context rules), we think that a case analysis on the structure of « is
moreintelligible. However we change only the order of presentation of the proof not the
proof itself:

10 The order in tes is not important
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a=zT trivid.

a=¢ trivid

a=Top trivid

a= xTr.a’ ,C+a >b andb = Ax"r.b'. Thiscaseissolved by astraightforward use
of theinduction hypothesis.

a=AX<Ty.d CU{X<Ti}Fd b andb=AXLT).b. Thiscaseissolved by a
straightforward use of the induction hypothesis.

a=(a1&’ as) just notethat whichever reductionisperformed thereductumiswel l-typed
and the type does not change

a=aj(az) where C' - ay: W, C F ay: S'< S and B(W)¢ =S — T. Then there are
three possible subcases:

1
2.

3.

a1 = Ar®.az and b = as[z”: = a»)]. thiscase followsfrom lemma 4.4

C'F ay > ). Then by induction hypothesiswe have C' + a} : T"<W. By
proposition2.3 C'+ B(T")¢ < B(W)¢. Since B(T") ¢ isanot atype variable
thenitisof theform 5" — T’ withC' F S'<S<S5” and C' F T'<T. Thusb is
well-typed and with type 7'< T

C F as 1> df. Then by induction hypothesiswe have C' F of, : S < 5 < S.
ThusC' + b: T

a=a'(S) where C' - a/:W,CF S < S, B(W)e =V(X<S)S" and T = §[X: =
S]. Since B(W)e =V(X<S")S”, then

C'FY(X<S)S" type

thisholdsonly if

CU{XLSY}E S type

from which we deduce that X ¢ dom(C). From thisand from C' - S< S we
deducethat X ¢ FV(S5).
Now there are two possible subcases:

1.

2.

a = AX<S . d"andb=a"[X:=S].ButsinceC' - S < S and X ¢ FV(S5)
we can apply lemma4.5. Theresult followsfrom X & dom/(C').

C F « ¥ thusby induction hypothesis and by proposition 2.3 we obtain
CEV T'<WadC F B(IT")e < B(W)c. Since B(T")¢ is not a
type variable then it is of the form V(X < U")U" with C' + S< 8'< U’ and
CU{XLSTHEU"<S". Thusbiswdl typedand C' F b : U"[X:= S]. The
result follows from the main lemma applied to C' = U< 5" and the fact that
X & dom(C)

a=a'[A] where C' + o: W and B(W)¢ = VX{A:;.Ti}.c;- Asin the case before
it is possible to prove that X ¢ dom(C) and that X ¢ FV(A). Let A, =
miner{A; |CF A< A;}. ThenT = T,[X: = A]. Again we have two subcases:

1.

a'= (a &t MillanTelgy ) and A, Ay, ..., Ay, are closed and a 3y -reduction
is performed. Then either b = a,[A4] (case Ay # A,) or b = as(A) (case
Ap = Ap). Inboth cases, by [{} Euiv] or by [VELIM] according tothecase, itis
easy to prove that theterms have type 77 < T, [X := A]: just use the induction
hypothesis and then apply the main lemma.

. C'F d 1> da”. Then by induction hypothesis C' + o”: W/ < W and by propo-

stion 2.3 C F B(W')e < B(W)c. Since B(W')¢ is not a type variable
VX{A}. T}, Thus by the subtyping rule ({}) there exists & € J such that
CHA<A,< A%. Thereforetheset {A) |C'F A < A%, j € J} isnot empty,
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and by the meet-closure of { A’} it has aso a minimum. Call this minimum
AL ThenCF b : T [X:= A]. Since S=T,[X: = A] we have to prove that
CHTX:= Al < Th[X:= A]
Take again the previous /; by therule ({}) we have
CEY(XSANT; <V(X<AR)T (1)
By the definition of A :

CHA<LA (2)
From (1):

O Ay <A;
From (trans):

CHA<LAS (3)
From (1):

CU{XSAh}'_TF/LSTh (4)

From the definition of A;, and from (3) we obtain

Ok A, <AL

and from thisand therule ({}.,,.) appliedto V.X{A} .77}, it follows
CU{X <A} FTL<T] (5)
By (2) and by the choice of £ we respectively have that C' - A < Ap and
C'+ A < Aj; thuswe can apply the main lemmato (4) and (5) to obtain:
ClX:= Al FTI[X: = A] <TH[X: = A]
ClX:=A]F T[X: = A] <T7[X: = A]
But X ¢ dom(C), thusthe judgments above get
CHTIX:= Al <T,[X:= 4]
CHTX:= A < TF[X:= A]
Finally by (trans) we obtain the result:
CHT[X:= Al <T[X:= 4]
O

4.2. Church-Rosser

In section 2.3 we proved the syntactic coherence of the proof system of F¥ . In this
section we prove the syntactic coherence of the reduction system of F¥ .

In the reductions that follow we omit, without loss of generality, all the tcs't. To
prove the Church-Rosser property (CR) we use a method of Hindley [Hin64] and
Rosen [Ros73]:

Lemma 4.7. (Hindley-Rosen) Let R; and Ra be two notions of reduction. If
Ry and Ry are CR and p commutes with > then Ry U Ry is CR.

11 The only place where this omission really matters is in the lemma 4.10 whose complete

statement should be If C U{X< S} +a Dy a’ then C F a[X:=T] [>’f6{} a[X:=T].
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Setnow Ry = By and Ry = U fv; if we prove that these notions of reduction satisfy
the hypotheses of the |lemma above then we proved CR.. It iseasy to provethat U Gy is
CR:indeed in[Ghed0] itisproved that 5 U By isterminating; by asimple check of the
conflictsitispossibleto provethat itisasolocally confluent; sinceit hasno critical pair
then by the Knuth-Bendix lemma ([KB70Q]) it is locally confluent; finally by applying
the Newman's Lemma ([New42]) we obtain CR..

Lemma 4.8. Gy is CR.

Proof. By lemma 3.2.2 of [Bar84] it sufficesto prove that the reflexive closure of >s,,
(denoted by 5 {}) satisfies the diamond property. Thus by induction on « D5, @1 We
show that for al a |>73{} a- there existsa common |>73{ reduct a3 of a; and a5. We can

assumethat ay # a, az # a and a; # a2, otherwisethe proof istrivial. Let examine dl
the possible cases:

1. (bl&bz)[A] l>:ﬁ{} bl[A] If as = (bl&blz)[A] then as = ai, dse as = (bll&bz)[A]
then as = b/ [A].

2. (bl&bz)[A] l>:ﬁ{} bz(A) If as = (bll&bz)[A] then as = ai, dse as = (bl&blz)[A]
then az = b} (A).

3. bl(bz) I>:ﬁ{} bll(bz) If as = bl(blz) then ag = bll(blz), dse as = blll(bz): then
by induction hypothesis there exists b3 common 15 - reduct of b7 and b7; thus

as = bg(bz)
by(bs) D5, b1 (b%) asthe case before.

(b1&b2)[A] D3, (b} &b5) asthe case before.

(b1&b2)[A] D3, (b1&bY) asthe case before.

AzeT a 53, AzT .a'. Then as = Az.a” and by induction hypothesisthere exists b3
common b5 reduct of «’ and ¢”’. Thus as = AzT .b3.

8. AX<Tua D5, AX<T.d. asthe case before (apart from the change of tcsin the

induction hypothesis.
9. a(T) D5, a'(T') asthe case before.

10. «a[4] D5, a'[A] asthe case before.

{3

N o ok

O
To prove that the two notions of reduction commute we need three technical lemmeas:
Lemma 4.9. If a >y, ' then a[z: = b] I>*ﬁ{} a'le:=b]
Lemma 4.10. If a by, a’ then afz: =T I>*ﬁ{} a'le:=T)]
Lemma 4.11. If b g, b’ then afz:= 5] M5, alz:= V]

These lemmas can be proved by a straightforward use of induction(ona 5, o’ for the
first two and on « for the third). Just for the proof of the second, note that in 3;;, the
atomic types A, Ay, ..., A, arerequired to be closed. We can now prove that the two
notions of reduction commute.

Lemma 4.12. If a >gyp, a1 and a ) then there exists asz such that a; l>*ﬁ{}
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az and as >gug, a3. Pictorially:

>ougy
a ay
b
I>ﬁ{} : l>ﬁ{}
\%
as - ----- > a3
Psugy

(Where full arrows are used for the hypotheses and dashed arrows for the theses.)

Proof. A proof of thislemma can be given by a simple diagram chase. Let C[ ] be a
context (in the sense of [Bar84])'2. Then we have the following cases:

[(Ax.
/ N

Cl

Cl(Az.a’)b] Cla[z: = b]] Cl(Ax
Cla'[x: = b]] Clafz: =]
Cl(AX<S.a)(T)]
V \
CI(AXLS.a")(T)] Cla[X:=T]]
Cld'[X:=T]]

12 Avoid confusion between a context, denoted by C[] and a type constraint system, denoted

by C.
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a185[a2

Dsupy Dsusy
Do Do

/
& ay)] Claz[A Cl (ah & az)[A

I>ﬁ{} I>ﬁ{}
Bsupy P50y
l>ﬁ{} I>ﬁ{}

al

O

Corollary 4.13. I>*ﬁ{} commutes with B 5

Proof. By lemma 3.3.6in[Bar84]. O

In conclusion al the hypotheses of lemma 4.7 are satisfied, and we can conclude that
F%isCR.

5. A decidable subcalculus

Itiswell known that the type system of /< is undecidable and that this problem comes
from the subtyping system [Pie93]. Of course undecidability isinherited by F& . The
crux of the problem is the (V) rule, which is responsible for the loss of many other
syntactical properties (for areview see [CP94]).

In [CP94] we have defined a restriction of the subtyping system of I, called Fl,
which enjoys many of the syntactical propertiesthat F'« lacks, foremost decidability of
subtyping. Furthermore nothing seems to be lost from a pragmatical viewpoint since
all the programs that in our ken have been written for I« are well typed also in our
retriction. N

The definition of thisrestrictionisvery easy: just substitutetheincriminated (V) rule
by the following one

CEY(X<T\)T, < V(X<T)T}

(V-new) X & dom(C)

in which the right-hand premise requires that the bodies be (covariantly) related under
no assumption about the bound variable. This essentially amounts to considering the
subtyping relation relative to an unchanging context, since the type variables added to
the context always have trivia bounds; the only type variables with interesting bounds
will be those already present in the environment at the point where a subtyping check is
required. (These are introduced, as usua, by the quantifier introduction rule.)

This simple change makes the subtyping relation decidable; thus one may wonder
if by the same change in F¥ one obtains decidability. This isindeed the case, as we
show in this section. Aswe aready did when dealing with the transitivity elimination,
we concentrate our attention on the subtyping rules, forgetting the type good formation;
thus once more we suppose that al the types that appear below are well formed. By
analogy with [CP94] we call it F&T.
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5.1. Subtyping algorithm

Inorder to verify thedecidability of the subtypingrelation of F¢ T, one hasfirst to define
asubtyping agorithmwhich is sound and compl ete with respect to thetypesystem. This
is obtained by replacing the (Algv) rulein the algorithm of section 2.3 by the new rule:

(Alg¥-new) Ch Y(X<T)) Ty < V(X<T|)T}

X & dom(C)

Note that we do not change the rule (Alg{}); one might expect that also the bound in
CU{X<A} F T;<T/ should be changed form A’ to Top. This is not necessary to
obtain decidability: indeed the bounds used in the overloaded quantification are far less
genera than those used in standard quantification, since the former can range only on
constant types while the latter can range on al types (whence the undecidability). Thus
we leave (Alg{}) asitis; in section 6 we will show how to use its full expressiveness,
by defining some methods that would not be typed if (Alg{}) used the bound Top in
comparing the types of different branches (see the definition of Erase). This however
has a minor drawback, since we are not alowed to use the simpl e technique of [CP4]
to prove transitivity elimination and thus the completeness of the agorithm. We are
obliged to use the technique of [CG92] and prove again all the theorems of sections 2.2
and 2.3 from scratch.

We will not rewrite them here since actually very few modificationsto the proofsin
section 2.2 suffice to do the work. The main modification isin the rewriting system of
section 2.2.1 where you have to substitute the rules

(V) (V(X<e)d) (VX)) ~ V(X< o) (dd'[Xr:= e X5s])
(V") (V(X<e)d) (V(X<)d)e) ~ (VX< ) dd[Xp:=cXs]))e

by the following ones

V) (V(X<e)d) (V(X<)d)  ~ V(X< e)(dd)
() (VX)) (VX)) e) ~ (VX< )(dd))e

Of course now (V(X < ¢)d) codifiesthe new (¥) rule:

——

Che:TI<T CU{X<Top} F ea: To< T}
(V'new) T
CF V(XS 61)621 V(XS Tl)TzS V(XS Tl)TZ
The reader can now move across the proofs of section 2.2 and check the obvious
modifications; the proofs of section 2.3 are essentially unchanged.

5.1.1. Termination

We now prove that this algorithm terminates.
Definition 5.1. Let C' beatcsand T atypesuchthat FV (1) C dom(C') thendefine

C(T) e = 0 if 7" isnot a type variable
(T)e = L(C(T))e +1 otherwise

(£ staysfor “length”) O

Notation 5.2. Let C be a tcs; we denote by C a type variable Y € dom(C')
such that

LY)e = Xe%ii‘iim{ﬁ(x)d
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If there is more than one such a variable then choose any of them (e.g. use the
textual order)

We can now define aweight 7 for atype 7" with respect to atcs C' (such that 7" is well
formedin C):

Q.
(0
~

TV(X<51)S2)e TS1)e + T(S2)cuixzs, )
7—(VX{A T}Zej C = I?EE}X{/T(AZ)C’/T(E)CU{Xsa}}—F 1

Lemma 5.3. For each type T well formed in a tcs C, the weight 7(T)¢ is finite
and positive.

Q.
(0
~

TB)e = 1
T(Top)c “ro
TX)e € MOE)e +1
T(S1 = S2)¢ = T(S1)e + T(S2)e
) def
)

Proof. First, it is obvious that the weight 7{7") is dways positive. Now to prove that
itis aso finite, we give awell founded rank for 7{T")¢ (i.e. we define aweight for the
definition of the weight) and we show that it decreases at each stage in the definition
of 7. To define the rank of 7{T")~ consider dl the variables that appear in 7" and C'
(no matter whether they appear free or bounded, only in a quantifier or in a bound).
Since 7" iswell formed in C', every variableis associated to a unique bound (either in '
or inT") apart those appearing in 7" as a quantification of an overloaded type; to these
variables associate as bound C'. Furthermore it is also possible to totally order these
variables in a way thet if X; is defined in the bound of X; then X; precedes X; (C
isatcs s0itis C' U {X< C} —with X ¢ dom(C)—, T iswdl formed in C, thus
loops are not possible). If there is more than one order satisfying this condition then
choose one arbitrarily. Define the depth of each variable as the number of variablesthat
precede it in this order. Then the rank of 7{T)¢ is the lexicographica size of the pair
(D, L), where D isthe maximum depth of any of the variables that appear in 7", and
is the textual length of 7". This rank iswell founded (the least lement is (0, 1)). Teke
now the definition of 7 it easy to see that for the subproblems on the right-hand side
of 7(S1 — S2)¢, TIV(X<L51)S2) e and TIVX {A;.T; Yier) o, thecomponent D either is
the same or it decreases, whilethe . component always strictly decreases; for the case
T(X)¢, thecomponent D strictly decreases. O

The weight of the typesis extended to aweight for type judgments in the obvious way:
ACE S1 < 82) =T(S1)e + T(Sa)c-
Now we can show the termination of the algorithm.

Lemma 5.4. Given a tcs C' and a type variable X | for all types 77,75 such that
FV(Ti) C dom(C) (i = 1,2) T(Tl)CU{XSTOp} < TT)euix<rsy -

Proof. A simpleinduction on the definition of 7{7}) (notethat one of the consegquences
of lemmab5.3isthat itispossibleto useinductionon 7). O

Lemma 5.5. Given a tcs C, a type variable X ¢ dom(C), two atomic types
A and A’ such that B(A)¢c and B(A')¢ are constant types, if L(A)e < L(A )¢
then:
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(a) TTA)e < T(A)c
(b) for all T" such that F'V(T") C dom(C)U{X}, TT)cuixcay < T )cu{xcar
Proof. there are three possible cases:

1. Both A and A’ are constant types: (d) is trivia; (b) follows by a straightforward
inductionon 7(T") cuyx<ay + T1') cuixcary, performing acase analysison 7'
2. Aisaconstant typeand A’ isatype variable: asthe previous case

3. Both A and A’ are type variables: we prove (a) by inductionon £(A)¢ + L(A)¢.
The base case iswhen £(A4)c = L£(A')e = 1. Inthat caseit is easy to check that
T(A)e = TIA )¢ = 2. When that sum is strictly larger than 2 then by definition of
T

TA)e < TA)e <= TC(A))e < TC(A))e
By definitionof £, £(A)e < L(A')¢ impliesC(C(A))e < L(C(A"))c; therefore
we can apply the induction hypothesisto obtain the result.
Oncemore, (b) followsby astraightforwardinductionon 717") ¢y x<a1 +7(1) cugx<a’y»
performing acase analysison 1': usethe case (@) of thislemmawhen7 = X. ~
O

Theorem 5.6. At every step of the subtyping algorithm, the weight of each of
the premises 1s strictly smaller than the weight of the conclusion.

Proof. The verification is easy in most cases. The only non-trivial cases are (Algv) and
(Alg{}). Thefirst case is proved by the following inegudliities:

JACU{X<Top} F S2<Tn) =
= T(S2)cuixcTopt + T12) cuxcTop)
T(S2)cuxcs:y + TI2) cu{xer ) by lemma 5.4
TS1)e + T )e + TS2)cuixxs, ) + TTa) cuixr,y
TV(X<LS1)Sa)e + TV(XLT)T)e
AC FV(X<S1)S: < V(X<T))T3)
For (Alg{}) the proof is given by these inequalities:
ACU{X<ADFTET) =
= TTj)cuixcay + T ) cuixcary

A A

< T(Tf)()u{xga} + T(Ti/)CU{Xga} by lemma 5.5
< max{TAj)e, T cupxeay + i T e, T cupxeey
< ACHEYX{A;. T3} jes<VX{A\ T ier)

]
Corollary 5.7. The algorithm terminates

5.2. Terms and reduction

Up to now we dealt with the types of F¥T. To end with it, it still remains to describe
its terms and reduction rules. The task iSeasy for the raw terms, which are exactly the
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same as those for ¥ . More difficult isinstead the case for reduction rules and typing

rules; we have two different choices: either we use the same typing rulesas for ¥ and
we do not allow reductions involving free type variables, or we add to these rules the
rule of subsumption and we |eave the reduction unchanged. Asin F[, inthe first case
we are not able to prove the subject-reduction property (but we gain the decidability of
the typing relation), while in the second, as recently remarked by Giorgio Ghelli, the
minimal typing property does not hold and the decidability of type checking is an open
problem (see also [CP95]).

Note that in both cases there will be less well-typed terms than in F¢ , since the

subtyping relation of F£T (with or without subsumption) is strictly contained in that

of F& : therefore there will be less well-formed types (some types well-formed in F¥
may not satisfy the covariance rule) and some functiona applications may no longer
result well-typed.

Since subject-reduction is very important from both a theoretical and a practical
point of view, we prefer to use the subsumption rule to define the type system of FST;
in this case the property of subject-reduction still holds. It just requires some work to
adapt to the subcal culus the proof of subject reduction of section 4.1: essentialy you
have to modify the various cases of a= a’(7") to takeinto account the new subtypingrule
(V-new), and use the subsumptionruleinthecasesa= A X < S;.a’ to show that thetype
is preserved, in the case of lemma 4.5 the proof results even simplified. The proof of
Church-Rosser for FET is then a consequence of its subject reduction property, and of

thefact that /¢ isCR: givenaterm M of F&T,if M >* Ny and M >* N, thenthere
exists N inF_f suchthat Ny >* N3 and N2_|>* N3. But, since the notion of reduction
is the same in both calculi, the subject reduction theorem for F&T guarantees that N3
isatermof F¥T, too. However decidability of type-checking isan open problem.

Of course, we would choose not to use the subsumption as soon as we proved that F¥T

without subsumption and reductions involving free type variabl es satisfies the subject-
reduction property, since, in thissystem, thedecidability of the subtyping relationimplies
the decidability of the typing relation. We are comforted in this choice by the fact that
the tests we did to check the expressiveness of 7] in [CP93] have been performed by
modifying the subtyping algorithm for F, i.e. by using a system that does not use the
subsumption rule. N

Clearly with Fé” we lose in expressive power since the terms (and the reductions) of
FET aredtrictly containedinthoseof F& . Thussometermsarelost; but arethoseterms
realy interesting? We cannot answer this question as we did in [CP94], where we tried
totype-check existinglibrariesof F< programs, by F : thereisnolibrary for F¥ since
we have just defined it. However we think that for object-oriented programming F&T
isagood calculusto start from. We will give an idea of thisit in the next section where
we show how to use thiscal culusto model object-oriented features; al the examples we
will show aretypablein FET.

6. Object-oriented programming

In this section we want to sketch how the theory developed so far can be used to type
object-oriented languages. We mainly consider class-based object-oriented languages
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since their modeling in the overloading-based model seems less natural than for lan-
guages based on generic functions. We will give few hintsabout generic functionsat the
end of the section.

Fromtheexamplesgivenintheintroductionit should be clear that we use the name of
aclasstotypetheobjectsof that class. A message thenis(an identifier of ) an overloaded
function whose branches are the methods associated to that message. The method to be
executed is selected according to the type (the class-name) passed as argument which
will be the class of the object the message is sent to. Thus the sending of a message
mesg to an object a of class A will be modeled by (mesg[ A])a.

Class-names are basic types. We want to associate to each basic type a represen-
tation type; in particular we want to associate to each class(-name) the type of the
interna state of itsobjects(i.e. thetype of theinstances variables). Theway to formalize
it does not concern the subject of this paper (thisis done in [Cas95b]); thus here we
follow the rudimentary approach of [CGL92]: we suppose that a program (a F'<-term)
may be preceded by a declaration of class types: a class type is a basic type, that is
associated by its declaration to a unique representation type, which is a record type.
Two class types are in subtyping relation if this relation has been explicitly declared
and it is feasible, in the sense that the respective representation types are in subtyping
relation too. There is an operation _¢/4**1v¢ to transform a record value =: R into a
class type value r<t2*:Tvr¢ of type class Type, provided that the representation type of
classTypeis R.

We use italics to distinguish class types from the usual types, and = to declare a
class type and to give it a name; we will use = to associate aname to avaue (e.g. to a
function). For example we can declare the following class types:

2DPoint = {x : Int;y : Int)

3DPoint = {x : Int;y : Int; z : Int)
and then impose on them that 3D Point < 2D Point (Which isfeasible since it respects
the ordering of the record types these class types are associ ated to)'® . We can define a
message Norm working on these class types'*:

Norm = ( AMyType< 2DPoint Aself ™79 \/self.x? + self.y?
& AMyType< 3DPoint Aself M7 \/self.x? + self.y? + self.z2

WhosetypeisVMyType.{2DPoint. M yT'ype — Real, 3DPoint. M yType — Real}
We have used the variable self to denote the receiver of the message and, following the
notation of [Bru94], the type variable My Type to denote the type of the receiver. Note
however that we do not need, asin [Bru94], recursion for these features since they are
just parameters of the message.

Let us consider the meaning of the covariance condition of section 2 in this frame-
work. Define the message Frase that set to zero the interna state of an object

Erase = ( AMyType< 2DPoint. Aself *¥7¥%¢ (self + & = 0,y = 0)2DFei
& AMyType < 3DPoint. Aself V7% (self + x = 0,y = 0,z = Q)MvTvre

ithastype: V My Type.{ 2D Point. My Type — 2DPoint, 3DPoint. My Type — MyType}
Since 8D Point < 2D Point we check that the covariance conditionis satisfied:

{MyType< 8DPoint} - MyType — MyType < MyType — 2DPoint

13 Note that records are encodable in F«, and thus in Fi‘ too.

14 n the examples we will omit ¢ and the indexes of &
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In genera if amethod has been defined for the message m in the classes B; fori € I
then its type is of the form V My Type.{ B; MyType — T, }.cr. If B, < By that means
that the method defined for m in the class B;, overrides the one defined in By,. Since
MyType is the same in both branches then the covariance condition reduces to prove
that

{MyType< By} b Tp<Tj

In other terms the covariance condition requiresthat an overriding method returnsatype
smaller than or equal to the type returned by the overridden one. Note that if a method
returns a result of type My Type then a method that overrides it has to return My Type
too and it is not allowed to return say the class-name of the class in which the method
has been defined (since, by inheritance, this could be atype larger then the actual value
of MyType)'®.

Suppose now that 3D Colored Point isasubclass of 3D Point fromwhich it inherits
the method for Erase; then the definition of Erase persists unchanged. If an object b
of type 3D ColoredPoint receives the message Frase then the method selected is the
onefor 3D Point; but since Frase[3D ColoredPoint](b) : 3D ColoredPoint theloss of
information is avoided.

In thisframework bounds are always basi c types (more precisely class-names); thus
the N-closure reduces to impose that if a message has type VX .{B;.T; }.c; and there
exists h, k € I such that B, and B, have a common subclass then there must be a
method defined for the message, in the class that is the g.l.b. of B, and Bj. In other
terms, in a class defined by multipleinheritance if two common ancestors can respond
to a same message, then the method for that message cannot be inherited but must be
explicitly redefined, asin [CGL92].

The way we have written these methods may seem complicated with respect to the
simplicity and modularity of object-oriented languages. Indeed the terms above can be
regarded as the result of a compilation (or trandation) of the following higher-level
object-oriented program:

class 2DPoint
state
x:Int;
y:Int
methods
Norm = sqrt(x"2 + y~2);
Erase = update(x=0;y=0);
interface
Norm: Real;
Erase: 2DPoint
endclass

class 3DColorPoint is 3DPoint
state
color:String
endclass

class 3DPoint is 2DPoint
state
z:Int
methods
Norm = sqrt(x"2+y~2+z"2);
Erase = update(x=0;y=0;z=0);
interface
Norm: Real
Erase: Mytype
endclass

15 Of course in the previous example it would have been more reasonable that Erase returned

My Type rather than 2DPoint.
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6.1. Extending classes

Inheritance is not the only way to specialize classes: if every time we had to add a
method to a class we were obliged to define a new class, the existing objects of the old
class could not use the new method. The same is worth aso in the case that a method
of aclass must be redefined: overriding would not suffice. For thisreason some object-
oriented languages such as Objective-C [NeX91], Dylan [App92] and CLOS [DG87]
offer the capability to add new methods to existing classes or to redefine the old ones.
The extension of the set of the methods of a class affects all its subclasses, in the sense
that when a class is extended with a method then that method is available to the objects
of every subclass. For example in Dylan the following expression

(define-method isOrigin (self <2DPoint>)
(and (zero? self.x) (zero? self.y)))

addsto the class 2D Point amethod responding to the message is Origin'®. If amethod
for that message has aready been defined in the class then it i s replaced by the new one.

This can be implemented in our system by adding a new branch to the overloaded
function denoted by the message at issue:

let sOrigin=( sOrigin
& AMyType<2DPoint AselfYTVP¢ (selfz = 0) A (self.y = 0)

That is, the new definition of «sOrigin is given by the old definition of isOrigin con-
catenated with the new method (if isOrigin was undefined we consider it as equal to
€).

Remark that by this construction one does not define a new class but only new
methods; in other terms onedoes not modify the existing typesbut only (the environment
of) the expressions. Thisispossiblein our system since the type of an object isnot bound
to the procedures that can work on it (and for this reason it differs from abstract data
typesand, for those who know, the theoretica “objects as records" approach). Of course
this flexibility is paid by a minor protection. For that reason for example Dylan has a
function freeze-methods which prevents certain methods associated to a message to
be replaced or removed.

6.2. First class messages

In thismodel messages are identifiers of overloaded functions. Since overloaded func-
tions have first class citizenship, then aso messages are first class. Thusiit is possible
to model functions that take as parameter a message, or functions whose result is a
message. A trivial example istheimplementation of a super-like function: suppose that
in the definition of a method you want to send a message to self but that the method
selected must be the one defined for the objects of acertain class C'. Thiscan be obtained
by the following function:

let super_C = Am"X{¢ T} m[C]self
This function takes a message m accepting objects of class C' and sends it to self but

16 This is not the standard Dylan’s syntax where record (slot) selection of the field x of self is
written (x self)
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selecting the method defined for the object of class €' (of course this function is well
typed if M yType < C).

6.3. Multiple dispatch

In this paper we have studied avery kernel calculus. A simple extension of thiscalculus
allows us to model multiple dispatch, i.e. a mechanism of selection of methods (in this
case called multi-methods), based not only on the class of the receiver but also on the
class of further parameters. The simplest extension of F&T to obtain multiple-dispatch
consistsin alowing as bounds of an overloaded function products of basic types. Thus
we redefine atomic typesin the following way

A = X | B | Bx...xB (atomic types [B basic types])

we modify the condition in the rule of good formation for overloaded types asfollows:

CF A; type
CF {Ai}zzl..n N-closed X ¢ dom(C)
cu {XS Az} F 7 type B(A;)¢ basic type

ifCFA <AjthenCU{X<A}FTi<Ty ©FAi=Bix .. xBn

(U ) CHVX{A T, ..., A, T type for i, j € [1.n]

and of course we add tuplesto terms:

a=<a,...,a>
There are other more general extensions: for example we can change the condition in
the good formation of overloaded typesinto “ 5(A; )¢ basic type or product of atomic
basic types’ allowing as bounds variables ranging on the product of basic types; or we
can alow as bounds products formed by type variables and basic types.

However the extension above largely suffice to model multi-methods, and further-
moreit isvery easy to check that it enjoysall the properties we have aready proved for
F& (and F&T): just run through the proofs by taking into account that now proposi-
tion 2.5 has the following fourth case:

4. A; and A; are both products of basic typesand their g.l.b. isin {4;};er

One example of use of multiple dispatch is the method Equal: you want to extend
the class 2DPoint with a method that compares two points and to redefine it for
3D Point; furthermore you want that in comparing a 2D Point with a 3DPoint the
method for 2D Point isused. In A& we had that afunction Equal of type {2D Point —
2DPoint — Bool,3DPoint — 3DPoint — Bool} would not have a well-formed
type since covariance is not respected. So in A& we defined

Equal : {(2DPoint x 2DPoint) — Bool, (3D Point x 3DPoint) — Bool}

obtaining in this way multiple dispatching. When Equal is applied to 2DPoint and a
3DPoint or viceversathefirst branch is executed.
In F¥ thedifferenceis subtler: indeed

VX{2DPoint. X — X — Bool,3DPoint. X — X — Bool}

iswell formed. However to select the right branch you have to pass to afunction of this
type the greater of the types of the two actual parameters. Thisis not what one would
like to have: one would like to pass to the function both the types of the arguments
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and leave to the system the task to select the right branch. This can be done by using
multi-methods and defining Fqual with the following type:

VX{2DPoint x 2DPoint.X — Bool,3DPoint x 3DPoint.X — Bool}

A possibleimplementation of Fqual isthen

Bqual = (AX < 2DPointx2DPoint.
/\pX.(ﬂ'l(p).l‘ = ma(p).2)A
(mi(p).y = ma(p).y)
& AX <3DPoint x 3DPoint.
Apx(ﬂﬂp)x::ﬂz().)A
(mi(p).y = ma(p).y)A
p).z

(m1(p).2 = m2(p).2)

5]

)

If we want to use multiple dispatch in class-based languages then the type above must
be dightly changed. In class-based languages the method is always chosen according
to the class of the receiver but in with multiple dispatching a class may have different
specifications for the method; one of these specifications will be selected according to
the class of some extra parameters. Thus for example the equality function could be
added to 2DPoint and 3DPoint in thefollowing way:

class 2DPoint class 3DPoint is 2DPoint
state state
x:Int; z:Int
y:Int methods
methods Equal(p:2DPoint)= ...
Equal(p:Mytype)= ... Equal(p:Mytype)= ...
interface interface

Equal: Mytype —-> Bool Equal:{2DPoint->Bool,
: Mytype ->Bool}

endclass
endclass

where horizontal and vertical dots are substituted for the method bodies and the further
methods, respectively.

When themessage Fqual ispassed to an object of class3DPoint thenif theargument
isof class 2DPoint then thefirst definition of Equal isexecuted. The second definitionis
executed if the argument is of atype smaller than or equal to 3DPoint. This correspond
to have an Equal overloaded function of the following type.

VX{2DPoint. X - VY{X.Y — Bool} ,
3DPoint. X - VY {2DPoint. Y — Bool, X. Y — Bool}
}

Herethevariable X standsfor MyType.

In case of languages with generic functions the application of the theory is easier.
Consider the language Cecil [CL94, Cha92] and the foll owing subtyping rel ation:

natural < integer < rational < real
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In Cecil it ispossibleto define a generic function (multi-method in Cecil’ sjargon) plus
with the following signature:

signature plus(natural,natural) :natural;
signature plus(integer,integer):integer;
signature plus(real,real):real;

This correspond to have three different implementations for the operator plus, one for
each signature. This corresponds to havein A& thefollowing typing

plus : {natural x natural — natural, integer x integer — integer, real x real — real}

If « and b are two terms of type rational then in Cecil (aswell asin A&) plus(a, b) has
type real intead of rational. If instead we had typed it as

plus : VX{natural. X x X — X integer. X x X — X real. X x X = X}

then plus[rational] (a, b) would havetype rational . However, somemorework isneeded
in order to define amodification of the Cecil’ s syntax to takeinto account type variables.
Tothat end it would be interesting to explore the extension of F¥ with theintersection
types. A possible syntax for the signature would then be: -

signature plus(X<natural,Y<natural):X/\Y;
signature plus(X<integer,Y<integer):X/\Y;
signature plus(X<real,Y<real):X/\Y;

But thisis subject for future work.

7. Future work

In thisand in the previous chapter we defined and studied F'¢ and its decidable variant,
and we sketched how they can be used to model object-oriented features. We showed
that they account for many features of object-oriented programming and that they aso
suggest new features to add to the existing paradigms. However there are some features
that are not easily handled (e.g. the keyword super; see at this purpose [Cas95h]).

Themajor restriction isthat meet-closurea lows overloading only on atomictypes. In
the last section we showed how to weaken this condition to model multipledispatching;
thoughal so thisdefinitionstill preventsusto model the generic classes of Eiffel [Mey88].
A generic class is a class parameterized by a type variable. For example if X isa
type variable, one would like to define a class Stack[X] with methods pop: X and
push: X — (), and then obtain a stack of integers by instantiating the type variable X
in the following way: new(Stack[Int]). We believe that it is not difficult to further
weaken meet-closure to allow among the bounds of an overloaded function, monotonic
type constructors. But we are a a loss to think how to alow non monotonic type
congtructors. In the same way it should be possible to extend meet-closure to closed
types and to add recursive types to implement recursive objects (even if we think that
recursive types are not indispensable: see [PT93]).

Meet closure constitutes an even more serious limitation from a proof-theoretical
point of view. It would be very interesting to let bounds range over all the types; this
would require a suitable definition of N-closure assuring consistency also for higher
order bounds. Note that the proof theory would be greatly complicated since a new
level of impredicativity would be added. However this would correspond to a major
increase of the expressive power. In that case, indeed, by a slight weakening of the 3y
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rule, it would be possible to obtain parametric functions as a special case of overloaded
functionswith only one branch.

Tothe end it seems very promising the extension of ¥ by intersection types hinted
in the last section. The N-closure would then correspont to requiring that the set of
domainsis closed for intersections.

Despite these problems F¥ is a step forward in the research of the overloading-
based model for object-oriented programming, since it gives us the basi c type checking
rules to deal the problem of the loss of information. At the moment of the redaction of
this paper we are studying the integration of generic functions (i.e. overloaded functios
with late binding) into the core of ML [MH88], in order to add object-oriented features
to the languages of this family. Also underway is the definition of an object-oriented
database programming language, whose type system isbased on F¥ .
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A. Proofs

Al

Proof of Lemma 4.3. By induction on the depth of the proof of C' U { X< S} F A.
For depth=1 there are only two possible cases: A= B type or A= Top type. In both
cases theresult istrivially satisfied. For depth>1 we perform a case analysis on the | ast
rule of the proof:

(refl) astraightforward use of theinduction hypothesis
(trans) astraightforward use of the induction hypothesis
(taut) supposethat A = Y <T then there are two possible subcases:

1. Y # X: astraightforward use of the induction hypothesis
2. Y = X: thenthehypothesisgets C' U { X< S} F X< S; since X ¢ FV(S) the
result reducesto C'[X: = S'] + S'< .S which holds by hypothesis

(top) astraightforward use of theinduction hypothesis

(—) adtraightforward use of theinduction hypothesis

(V) supposethat A = V(Y <T1)Ts < V(Y <TY)T. Recall that C[X:= S+ S'<S.
Thus by theorem 2.1 C[X: = S| - S’ type and therefore FV(S’) C dom(C[X:=
S’]). By hypothesis we have that both C U {Y<T{} U{X< S} and C[X: = &
aretcs's. Since X ¢ FV(S') then FV (T [X:= 5]) = (FV(T{) UFV(S)\{X};
thusalso C[X:= S'|U{Y<T{[X:= S|} isatcs. Oncethisremark done, then the
result followsby a straightforward use of the induction hypothesis.

({}) Asthe previouscase.

(Varsyy,.) supposethat A =Y type. Then there are two possible subcases:

1. Y # X: astraightforward use of the induction hypothesis
2. Y = X: then the result reduces to C[X: = S’] F S’ type which follows from
C[X:= 5k 5'< S and theorem 2.1

(—¢ype) astraightforward use of the induction hypothesis

(Viype) After having done the same remark as in the case (V) the thesis followsfrom a
straightforward use of the induction hypothesis.

({}+ype) Thisisthehard case. The pattern of the proof of thiscaseisessentially thesame
as that of the case (V). The hard task isto prove that C' U {X<S} + {A;}.-,. .M~
closed, C[X: = 5] F 5'<.S and the induction hypothesisimply

CIX:= 8 E{4[X:= 5} o .. N —closed
Thisisequivaent to prove that whenever
B(Ai[X:= S epr=s U BA;X: = S)erx =51 (6)
then thereexists i € [1..n] such that
ClX:=S5TFAX: =58 =A4X:= 5] Nn4X:= 5]



38

Giuseppe Castagna

Suppose that (6) holds, and examine all the possible cases for A; and A;:

(A; and A; basic). Then A;[X:= 5] = A; = B(A;[X:= 5])cx=s1] =
B(A;)cugxcsy and thesame for j. From the meet-closureof {A; };-1. ., follows
that there existsabasictype A, = A,[X:= 5] = 4, NA4; = 4[X:= 51N
A;[X:= S'] independently from the tcs we are taking into account.
(AZ'E AjE X) trivid
(A;=X and A; # X). Then the hypothesisgets

B(S")epx=s I B(Aj)cpx=s1 (7)
We prove theresult by showing that S* N A; isawayseither S* or A;.

From C[X: = 5'] F .5'<.S and proposition 2.3 we deducethat 5(.5" ) ¢ x.=s/] <
B(S)crx:=s1 and then from (7) followsthat

B(S)erx:=s1 4 B(Aj)crx=s1] (8)

Now, first of al notethat by definition of Bonehas B(.X) cuix<sy =B(S) cu{x<sy -
Then observe that 5(5)cuixcsy = B(S)crx.=s1- thisis obviousif S isaba
sic type; when S is a variable this follows from the fact that the substitution
[X: = S’] does not affect the definition of 5(.5) . Indeed if

then X # X, foral ¢ € [1..n] otherwise C'U { X< S} would not be atcs.
ThUSfromB(X)CU{XSS} :B(S)Cu{XSS} and B(S)CU{XSS} :B(S)C[X::S’] we
deduce
B(X)cugxesy = B(S)epx=s] (9)

Now there are two possible subcases:
a Aj; isabasictype: then B(A;)cuixcsy = A5 = B(A;j)crx.=s/1 and thus (8)

gets

B(X)cupxesy ¥ B(Aj)euixes)

butsince C U {X< S} F {A4;},-,. .N-closed (and X € {A4;},_,..) wehave
that C U{X < S} + X < A; (by proposition 2.5 the variable must be
smaller than the basic type) and therefore 5(.5) cx.=s/] =B(X) cugacs <
B(Aj)cuxcsy = Aj-

Thus C[X:= S F S'<S<B(S)¢x:=s11< A; whence we can conclude
that

ClX:=91F S5 =5NA; (10)
b. A; isavariable: then we have that
If $' = X; forsomei € [1..n]then C[X:= S’ F A; < 5’ and therefore
C[X:IS/]FAJ'IS/QAJ' (11)
Otherwiseif S’ # X, for al ¢ € [1..n] then the substitution [ X : = S’] does
not affect the definition of B(A,) and thus
B(Aj)cuxsy = B(Aj)crxi=s1
Thus once more (8) and (9) yield
B(X)cuixzsy ¥ B(Aj)ouxgs)
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Recall that both X and A; are variables contained in {A4,}._, , and that
CU{X<S}F{A;}.-.. .N-closed. Thus by proposition 2.5 either
CU{X<SHEX < 4
or
CU{X<SIHA <X
must hold. Whichever Judgment holds, we supposed in the assumption 4.2
that its proof is contained in the proof of meet closure of { 4;},_,....; thuswe
can apply theinduction hypothesisobtaining either (10) or (11), respectively.

iv. (4; and A; are both different from X and at least one of them is

A2,

a variable) Thus4;[X:= 5] = A; and 4;[X: = 5'] = A; andthehypothesis
becomes

B(Aj)erx=s ¥ B(Aj)erx=s1
Let us open a short parenthesis: suppose to have a type variable Y £ X with
Y € dom(C') and consider B(Y ) cuqx<sy- Thenif

there are two possible cases

(1) X = X, forsome h € [1..n] and in this case note that
B(Y)ex.=s = B(S")erx =51
(2) X £ X, fordl h € [1..n]and inthiscase
B(Y)crx:=s51 = B(Y)cuixcs)
After this short remark we can now consider the various cases for A; and A;

a A;isavarisbleinthesituationlikeY in (1) and A; isabasic type. But then
by the point (1) the hypothesisbecomes
B(S")crx:=s11 b B(Aj)cpx.=s1
which has already been solved in (iii).
b. A; isavariablein asituation likeY in (2) and A; isabasic type. By the
meet-closure of {4;},_,. .. and by the point (2) we deduce that

B(Ai)eix =51 = B(Ai)cugxesy < A5 = B(Aj)cuacsy

andthusC[X:= S| F A; < A4;

c. A |savar|able|nthe5|tua¢|onI|ke|n(1) and A; isavariableinthesituation
likein (2); butthenWearelnacasesmllartotheoneof (a)

d. A; and A; arebothvariablesinthesituationlikein (1). Then B(A; ) cpx:=s1]
= B(S/)C[X:Sl] = B(Aj)C[X::S’]- Thus either C[X = S/] FA; < Aj or
C[X:I S/] [ Aj < A holds.

e. A; and A; arebothvariablesinthesituationlikein (2). Thus B(A;) cuyx<sy
I B(A;)cugxsy and by the meet-closureeither C' U { X< S} = A; < A; or
CU{X<S}F A; < A holds. But sincethey are variableslikein (2) this
come to say that either C[X:= 5] A4; < A; or C[X:=5FA; < 4
holds.

Proof of Lemma 4.4. By induction on the structure of a:
a=y ify = zthen S=T and S'=T"; dseif y # = theresult trivially holds.
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a=c¢ trivia
a=Top trivid
a=Xy®t.a’ if y= 2 then the result trivialy holds; othewise S = S, — S, and

C' F a':S5. By induction hypothesisC' F a'[z7: = b] : $4< S thus

CraleT:=b =My r.d[zT:=b]: 51 = S, < S = S

a=(a;&%as) just note that by induction hypothesis (a;[z7: = b]&!as[zT: = b]) is

well-typed, and that itstypeis S.
a=AX<S1.a then CU{X< S} F a5 withS = V(X < 51)S2. By induction

hypothesisC U {X< S;} F a/[zT:=b] : S, < S,. Thus

CralzT:=b = AX< S .a[z1: =] : V(X< 51)S, <V(XLS))S,
aEal(az) then C' + ay: Ss3, B(Sg)c =5 =5 and C' + GQZSQS Si. By induction
hypothesis C' - ay[z7:=b] : U3< Sz and C' + as[z?:= b] : Us< S9< S;. By
proposition 2.3 C' + B(Us)¢ < B(Ss3)c¢. Since B(Us) ¢ is not atype variable then
by proposition2.2 itisof theform Uy — U withC + 5;<U; and C' + U< S. Thus
we have:
-Chap[el:=0]: Us
-CFagleT:=b]: Us<U;
'B(Ug)c = U1 —U
Then by [ ELiM <] we obtain
CralzT:=b = ar[zT: = b](ag[zT:=b]) : UL S

a(U) thenC' + a': S5, B(S5)c = V(X< 51)S:, C FULS; and S = S3[X: =
Ul. Note that X ¢ dom(C) and thus X ¢ FV(U). By induction hypothess
CF a'[z7:=b] : Us< S5 and by proposition2.3 C' + B(Us)¢ < B(S3)c. Since
B(Us)¢ isnot atype variablethen by proposition2.2 itis of theform V(X< 57)S5.
SinceCU{X<S1}E S, <8, CHULS S and X ¢ FV(U) we can apply
the main lemma and obtain

CIX :=UlF SX = U] < S[X = U]
But X ¢ dom(C) thusC[X := U] = C, fromwhichit follows
Cralzl:=b]: S[X := U] < S2[X =]

a=ad'[A] then C' + a': S5, B(S3)c = VX{A;. T;}ie; and S = T[X:= A] where
C " Ah = minieI{Ai |C " ASAZ}
By induction hypothesis C' + a'[z7:= b] : U3z < S3 and by proposition 2.3
C + B(Us)e < B(Ss)c. Since B(Us)c is not a type variable then it is of the
form VX {A}.T}},¢,. Thusby the subtyping rule ({}) there exists h € J such that
CHA<A,< A%. Thereforetheset { A’ |C'+ A < A%, j € J} isnot empty, and
by the meet-closureof { A’ },¢, it hasalso aminimum. Call thisminimum Aj . Then
Ct+ '[Al[2T:=b] : T\[X:= A]. Since S=T},[ X: = A] we have to prove that

CHTX:= Al < TH[X: = A]

a=

Take again the previous /; by therule ({}) we have
CEV(XSAL)T; < V(XS AT, (12)
By the definition of Ay:
CHA<LA, (13)

From (12): /
CH Ay <A
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From (trans):

CHALAS (14)
From (12):
From the definition of A and from (14) we obtain

CF A, <A

and from thisand therule ({}.,,.) appliedto V.X{A} .77} ¢, itfollows
CU{X <A} FT, <T7 (16)

From X ¢ dom(C') and from (13) wededucethat X ¢ F'V/(A); by (13) and by the
choice of & we respectively havethat C' - A < A, and C' - A < A/ ; thuswe can
apply the main lemmato (15) and (16) to obtain:

ClX:=A]FTI[X: = A] < T, [X: = A]

ClX:=A]F TH[X: = A] < T7[X: = A]

But X ¢ dom(C), thusthe judgements above get
CHTIX:= Al < TH[X: = 4]
CHTX:= A <T[X:= A]

Finally by (trans) we obtain the result:
CHT[X:= Al <T[X:= 4]

O

A.3.

Proof of Lemma 4.5. By induction on the structure of a:

a=zT thenT' = T[X:= 5.

a=¢ trivid

a=Top trivid

a=XzTr.a’ whee T=T, — Ty and C U {X<S} F a’:T. Thus by induction hy-
pothesis we deduce that C[X:= S|k a'[X:= 5] : T) < Ta[X:= S5']. There-
fore C[X:= S Fa[X:= 5] = D=1 ¢/[X:= & : Ty [X:= §] = T4<
T[X:=95].

a=AY<Ti.d' Firstof dl notethat Y # X, since by hypothesisC' U { X< S} F AY<
T;.a’: T and we have made the assumption of having al the type variables different
inates Thus CU{X< S U{Y<Ti}Fa:Teand T = V(Y <T1)T>. Note
that C[X:= S]and C U{X< S} aretcs's, and dso that FV(S') C C[X:= 5]
(since C1X:= S+ 5’<.S). Thus we can conclude that dlso C[X:= S'TU{Y <
Ty [X:= 5]} isatcs beingdom(C) = dom(C[X: = S'))ad FV(T1[X: = 5']) =
(FV(Th) UFV(S)\{X} (thelatter because X ¢ F'V(S)). Then by aweakening
we can provethat (C'U{Y<T;})[X:= 5] F 5’< 5. By induction hypothesisthus
wehave C[X:= SNU{Y<T[X: =5} F a[X:= 5']: Ty <Ty[X:= S5']. Thus
by [VInTRO] and (V) we have that
CIX:=SNFAY<ST[X:= 5d[X:= SV LT[ X: = ST, < T[X:= 5]
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a= (al&[Al'Tlll”'llA"'T"]az) Thus T' = VY{Al.Tl, e AnTn}, c'u {XS S} Fap :
Since C' U {X< S} F .5’<.S we can apply the main lemma (lemma 4.3) to the two
judgements above obtai ning respectively

C[X:= Sk S1[X:= S'I<VY{A[X: = S)T[X: = STzt nt

CIX:=85F So[X:= YKV <AL X = SNTL[X:=5)
Furthermore by induction hypothesis
ClX:= 9k a;[X:=87: 8 <S5 [X:=9] i=1,2

Recall that by definition
alX:= 9= (¢[X: = S/]&[A1[XZ:SI]~T1[X1=51]||~~~||An[X1=SI]~Tn[X1=SI]]a2[X:: )
Therefore using transitivity and therule [{ }INTRO] we can conclude that

CLX:= 8TF a[X:= 8] VY {4[X: = S)TX: = §'}im1 0 = T[X:= 5]

aEal(az) LetC' U {XSS} F CllZW,CU {XSS} F aZZU/SUandB(W)CU{XSS} =
U — T. By induction hypothesiswe have:
CX:=5Faq[X: =57 W <W[X:= 95
CX:= 95k as[X:= 57U <U'[X:= 5]
Applyingthemain lemma (4.3) to C' U {X< S} F U'<U and (trans) we obtain

ClX:=SFU" <U[X:= 5]

By proposition 2.3

LY = STF BV )epxms) < BVIX = Sexasy (17)
St W = W[X: = S5]. Wewant to prove that

ClX:= 9Tk BW)cpx=s < BW)eupxsy [X:= 5] (18)

If W isnot avariable thisfollowsfrom (refl). Otherwise let
There are two subcases:
1. X 3_/—' X; fordlie [1 n] then B(_)CU{XSS} = B(W)C[X::S’]
2. X = X, forsomei € [1..n]; then
B(VK)C[X::S’] = B(S")erx:=s1
B(W)cugxcsy = B(S)cuixcsy
Now it iseasy to check that B(S’)cix.=s:1 = B(S") cuqxcs) (otherwise C[X: =
ST and C'U {X < S} could not both satisfy the conditions of tcs). Thus by

proposition 2.3 we obtain
CU{XSSHEBW)ex=s1 =

=

S erxi=s1]

S euxcs)

IN
= =

S)euxcs)

l
=3

(
(
(
(W)cugxsy
Thusin both cases we have that
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CU{X<S}FBW)ex=s < BW)cupxs)

We can then apply the main lemmaand obtain o
ClX:= STEBW)ex=sn[X:= ST < B(W)cugasy [ = 9]

By hypothesis X ¢ FV(S'); thisimpliesthat X ¢ FV(C[X:= S']) and thus
B(W)crx.=s [X:= S = B(W)cpx .=s1. Therefore to conclude the proof of (18)
it just remains to prove the following equation:

C[XZ = S/] " B(W)CU{XSS}[X3 = S/] S B(W)CU{XSS}[X3 = S/] (19)

This is obvious if W isnot avariable (since X ¢ FV(.S’) then the substitution
[X:= 9] isidempotent) or if it is a varidble different from X (then W = W). If
W= X then just notethat (19) gets

ClX:=5"TE B ) cupxesy [X:= ST < B(X) cugxgsy [X: = 9]

by observing that B(X)cuqx<sy = B(S)cuxcs) thisjudgmentsbecomes:
C[XZ = S/] " B(S/)CU{XSS} [XZ = S/] S B(S)CU{XSS} [XZ = S/] (20)

To prove it first apply proposition 2.3 to the hypothesis C[X: = 5] F 5'< .S and
obtain

CX:=STEB(S)epx=s1 < B(S)epx=s (21)
Assume now that we have proved that B(S’)cx.=s17 = B(S")curxsy [X:= 5]
and B(S)C[X::S’] = B(S)CU{XSS} [X = S/] In thiscase (21) |mp||eS (20) So let
us prove the assumption: we start with 5”. When S’ is not a type variable then the

result followsfrom the definition of B and thefact that X ¢ FV (). If " isatype
variable then

C[X = S/] =C'U {S/SXl} U...u {XHSB(S/)C[X::S’]}
SinceC'U{X<S}isatcsthen X # X, foral i € [1..n]. By this
CU{XZSS=C"U{9<X 1 U, U{X,<T"} u{X<S}

Notethat 7" cannot be atypevariable: it cannot be X otherwise 5(.5" ) cx.=s/7 = S’
(aloop in atcs); it cannot be another varigble otherwise C[X: = S'](X,) would
be a variable, too. Therefore 7” is not a type variable which implies that 7" =
B(S/)CU{XSS} and thUSB(S/)C[X:SI] = B(S/)CU{XSS} [X:=5"]. A similar proof
holdsfor S, too.

This ends the proof of (18)

From (17) and (18) we obtain:
C[XZ = S/] F B(W/)C[X:Sl] < U[X = S/] — T[X: = S/]

Since B(W')¢cx =51 isnot avariable then it must be of the form U"" — 1" with
CX:=95FUX:=5]<U"andC[X: = 5T <T[X:= 5.
Summing up we have:
-OX=Y o[ Xi=5] W
-OX:= 8 Fa[ X =8 U<U
_ B(W/)C[X::S'] = U/// — T
Then by[— ELiM(<)] we obtain
ClX:=5kaX:=5=a1[X:= T(a2[X:=8)) : T' < T[X:= 5]
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aEa’(U) LetC'U {XSS} Fa:W,CU {XSS} F USU/nB(W)CU{XSS} = V(YS
UNYU"and T = U"[Y:= U]. First of dl notethat Y ¢ dom(C) U {X}; then by
induction hypothesis
CIX:=85NFd[X: =5 W <W[X:= 5]
By the main lemma we have that
CIX:=5HU[X:= < U'[X:= 5] (22)

Proceeding exactly asin the previous case we can prove that
ClX:=95TFBW)cx=s1 < BW)cugxsy [X:= 5]

Since B(W')cx.=s] isnot avariablethenitis of theform V(Y <V7)V" with
ClX:=5FU[X:=5]<V/

C[X:= S U{Y<U'[X:= S} F V' < U"[X:= &] (23)

Thus we have:

-CX: =9 [X= 5w

-OX:=5RU X =8 < V!
- B(W/)C[X::S’] = V(YS V/)V//

Therefore by [VELIM] we obtain:

CIX:=9taX: =5 =d[X:=5UX:=5]) : V'Y:=U[X:= 5]
Now from the hypothesis C[X: = S|+ $’<.S and from Y ¢ dom(C') we deduce
that Y ¢ FV(S'), from CU{X<SIFU <U'andY ¢ (dom(C)U{X}) we
deducethat Y ¢ F'V(U). Thanks to thisand to (22) we can apply the main lemma
to (23) and obtain

CIX:=9Y:=UX: =95 V'Y= U[X: =8 <U'[X: = ][Y:=U[X:= 9]
24
SinceY ¢ FV(S’) then Y
([X:=5Y:=UX:=5) = ([YV:=U)[X:=5)
and then (24) rewritesto
ClY:=U][X: =58+ V'Y= U[X: =95 <U"[Y:=U][X: =5 =T[X: = 5]

andsinceY ¢ dom(C) it becomes
CX:=5EV'Y:=U[X: =5 <T[X:= 5]
i.e. theresult.
a=a'[A]
Let CU{XSS}IFd" W, CU{XLSE A = minge{4; |CU{XZS}F A
Ai}! B(W)CU{XSS} :VY{AZ'.E},GI and7T = Th[Yi = A] AgalnY ¢ dom(C)
{X}. By induction hypothesis
CIX:=85NFd[X: =5 W <W[X:= 5]
Applying the main lemma we & so obtain that
C[X:= 8Tk mine {A;[X:= 5| C[X:= 5TF A[X: = &<A[X:= 5]} <
Ah[XZI S/]

Proceeding as in the two previous cases we have that

CIX:= ST F BW )opxmsn = VY {AL T jer S VY{ALX: = S1TX: = b
(25)

<
U
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Bytherule({})foreachi € Ithereexistsj € Jsuchtha C[X:= S| F A;[X:= 5] <
A%, Thus by the main lemma we have that {A |C]X:= STk A[X:= 5] <
Af,j € J} isnot empty, and by the meet-closure of {4 },c, it has also a min-
imum. Thereforeif

ClX:= 9k A} = minje  {A) [C[X:= 9] F A[X: = S'] < A%}
then C[X:= St alX:= 5] : T[Y:= A[X: = 5']]. Consider now (25); by the
rule ({}) one hasthat there exists i € .J such that
ClX:= SRV <AL <V(Y<A[X:= STh[X: = 9) (26)
SinceC'U{X<S} + A < Ay then by themain lemma
CIX:=5NFAX: =5 < Ap[X:= 9] (27)
From (26):
— ! — ! /
ClX:=5TF A (X = 9] < A
From (trans):
ClX:=9TFA[X:= 9] < A7 (28)
From (26):
ClX:=STU{Y < Ap[X:= I T <Th[X:= 5] (29)
From the definition of A/ and from (28) we obtain
ClX:= 9k A < A?
and from thisand therule ({}.,,.) appliedto VY { A.77},c, it followsthat
ClX:=8TU{Y <A FT < T5 (30)

From (27) and Y ¢ dom(C) (and thus Y ¢ dom(C[X:= S'])) follows that
Y ¢ FV(A[X:= 5']); by (27) and by the choice of k we respectively have that
CX:=S5MFAX: =5 < Ap[X:= S and C[X:= 5 FA[X: = 5] < A
thuswe can apply the main lemma to (29) and (30) to obtain:
ClX:=5Y:=AX: = S FT;[Y:= A[X: = S < TH[X: = S'[Y: = A[X: = 5']]
ClX:=5Y:=AX: =9 FT[Y: = A[X: = 5] <7 [YV: = A[X: = 5]

ButY ¢ dom(C),thusY ¢ dom(C[X:= S’]) and whence, by the definitionof tcs,
Y ¢ FV(C[X:= 5']). Then thejudgements above get

ClX:=5TFTY: = AX: = S| < T [X: = S[Y: = A[X: = 5]

ClX:=5TF Y= A[X: = S| < T [Y: = A[X: = 5]

By (trans):

CX:=5ETY: = AX: = 5] < TH[X:= 9[Y: = A[X: = 5]
From C[X: = S1F S'<SandY ¢ dom(C[X:= 5']) followsthat Y ¢ FV(5').
Thus the last judgement becomes:

CX: =5tV =AX: =5 <T[Y:=A|[X:=5]=T[X:= 5]

O



