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Abstract. We present a streamlined theory of session types based
on a simple yet general and expressive formalism whose main fea-
tures are semantically characterized and where each design choice
is semantically justified. We formally define the semantics of ses-
sion types and use it to define the subsessioning relation. We give
a coinductive characterization of subsessioning and describe algo-
rithms to decide all the key relations defined in the article. We show
that all monomorphic dyadic session types proposed in the litera-
ture are particular cases of our session types.

1. Introduction
Sessions are a common and widespread mechanism of interaction
in distributed architectures. Two processes willing to interact es-
tablish a connection on a shared public channel. In this connection
they agree on some private channel on which to have a conver-
sation, dubbed session. The conversation follows a given protocol
which describes the kind and order of the messages exchanged on
the private channel. In general, a protocol does not specify a unique
sequence of interactions. At any point of the interaction the rest of
the conversation for a process may depend upon the kind of mes-
sages received by the process on the private channel and/or the in-
ternal state of the process. When the decision is exclusively based
on the received messages one speaks of an external choice. When
the decision is taken autonomously by the process one speaks of
an internal choice. The messages exchanged during a session may
be synchronization signals, basic values (e.g., integers, booleans,
strings), names of public channels (those used to start sessions), or
even names of private channels of already started sessions. In the
last case one speaks of delegation since by sending to some other
process the private channel of a session, the process delegates the
receiver to continue that session.

In summary, session-based interaction is obtained from two in-
gredients, each ingredient being formed by two different compo-
nents. The first ingredient is communication and takes place on
two different kinds of channels, public channels used to establish a
connection, and a private channel created at the connection of the
former and on which messages of different kinds are exchanged ac-
cording to a given protocol. The second ingredient is control, and it
is implemented by two different kinds of choices, internal choices
and external ones.

Static descriptions of the behavior of sessions (i.e., their pro-
tocol) should permit the detection of communication mismatches
and session deadlocks, ensuring successful termination of every
session. Types are a good candidate for such a description, except
that typical type systems for process algebrae are unfit to type the
private channels on which sessions take place, since these chan-
nels can carry messages of different types. To obviate this limita-
tion Honda et al. introduced session types [21, 22] that describe
the sequences of messages exchanged on a private session channel

and their possible branching based on labels. To that end they en-
rich the language of types and of processes with specialized sig-
nals for connections, for delegation, and signals carrying labels
that drive choices in combination with label-based branching prim-
itives. Since then, several variants of session types have been put
forward (see Section 3). They vary according to the programming
language they target, the type containment relations and the spe-
cific features they aim to capture. As Honda et al., they rely on
label-based primitives that tie them to the particular problem they
tackle and may hinder their adoption in general purpose languages.

In this work we present a basic and unified foundation of session
types that aims at being as much language independent as possible.
To achieve language independence, we design our types around the
standard π-calculus: session connections, interactions, and delega-
tions will be imagined as instances of π-calculus communications.
We suppose branching as being implemented by classic process
algebra internal and external choices [12], with just a single mod-
ification: we allow the branch of an external choice to be selected
according to the type of the message being communicated, as op-
posed to the channel on which communication occurs. This modi-
fication fits nicely the session-based communication model, where
messages are exchanged over a unique, private channel.

Our approach has many positive upshots. First, all monomor-
phic, dyadic session types proposed in the literature are particular
instances of the session types discussed here. Second, having dis-
sociated control from a particular linguistic construct, that is label-
driven branching, we can more easily type the native branching
constructs of a language we want to endow with session types, thus
avoiding clumsy language extensions. As an aside, the language
independence is further increased by the fact that all our defini-
tions are semantic-based, rather than syntax-oriented. Third, we en-
hance compositionality of branching constructs because the result
of the combination of different branches is automatically computed
at type level, without the need of introducing new labels or of re-
naming existing ones to avoid clashes on shared labels. Last but not
least, replacing labels with values and types increases expressive-
ness: values are first class (so they can result from computations
and communicated on channels) and types enable the definition of
finer grained disciplines for branch selection.

The rest of the paper is organized as follows. Section 2 defines
syntax and set-theoretic semantics of our session types. The subtyp-
ing and subsessioning relations that follow arise as natural conse-
quences of our semantic-based framework. We provide a coinduc-
tive characterization of subsessioning that sheds light on the proper-
ties of subsessioning and finally we describe algorithms to decide
all key relations defined in the article. Section 3 provides a more
technical discussion about how our approach subsumes and im-
proves existing session types proposals. Furthermore, it presents a
π-calculus and an object-oriented calculus along with correspond-
ing type systems guaranteeing a suitably defined progress property
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in each case. Section 4 summarizes the contributions of our work,
draws connections with some of the most closely related papers,
and sketches future directions of research.

2. Session types
2.1 Type syntax
As said in the introduction we have two kinds of channels: public
ones that are used to connect and establish a private channel for the
conversation, and these private ones. At type level this distinction
corresponds to two different syntactic categories. Public channels
are associated with a session type of the form begin.η. This type
classifies channels ready to initiate a conversation on some private
channel that will follow the description η. Thus, private channels
are classified by session descriptors, ranged over by η. Session
descriptors and types are defined by the grammar:

(types) t ::= · · · | begin.η | ¬t | t ∧ t | t ∨ t | v
(descriptors) η ::= end | α.η | η ⊕ η | η + η

(actions) α ::= !t | ?t | !χ | ?χ
(sieves) χ ::= η | ¬χ | χ ∧ χ | χ ∨ χ
Participants of a session use their (private) session channel

either to exchange values (of some type) or to delegate other session
channels (of some descriptor). In descriptors we use ?t and !t to
denote that (the process using) the channel will respectively wait
for and send some value of type t, and use ?η and !η (actually,
?χ and !χ, see later on) to denote that (the process that uses)
the channel will respectively wait for (i.e., catch) and send (i.e.,
delegate) some channel which already started a conversation and
will continue it according to the behavior described by the session
descriptor η. In particular, a descriptor α.η states that (the process
using) the channel will perform one of the communication actions
α described above and then will behave according to η; a descriptor
end states that the session on the channel has successfully ended;
a descriptor η1 ⊕ η2 states that (the process that uses) the channel
will internally choose to behave according to either η1 or η2; a
descriptor η1 + η2 states that (the process that uses) the channel
gives the communicating partner the choice to behave according to
either η1 or η2. In what follows we adopt the convention that the
prefix operator has precedence over the choice operators and we
will use parentheses to enforce precedence. For instance, (!t.η) +
end and !t.η + end denote the same session descriptor, which is
different from !t.(η + end). Types t are inherited from the host
language (this is stressed in the grammar above by the ellipsis in
the production for types), to which we add (unless they are already
provided by the host) singleton types (denoted by a value v, the
only one they contain), Boolean combinators (i.e., ∨, ∧, and ¬),
and session types of the form begin.η which classify yet-to-be-used
public channels whose conversation follows the descriptor η. The
interest of session types is that they can be used to type higher-
order communications in which the names of public channels are
communicated over other channels; session types will also extend
the type system of the host language which can thus use names of
public channels as first class values.

The importance of Boolean combinators for types is shown by
the following example where we assume Int be a subtype of Real:

?Real.!Int.end + ?Int.!Bool.end (1)

The session descriptor above declares that if a process (that uses
a channel with that behavior) receives a real number, then it will
answer by sending an integer, while if it receives an integer it will
answer by sending a Boolean. A partner process establishing a
conversation on such a channel knows that if it sends a real that
is not an integer, then it should be ready to receive an integer while
if it sends an integer, then it must be ready to receive an integer

or a Boolean value (notice how the type of the message drives the
selection of the external choice). That is, its conversation will be
represented by the following descriptor (t \ s stands for t ∧ ¬s):

!(Real \ Int).?Int.end + !Int.?(Bool ∨ Int).end (2)

We see that Boolean combinators immediately arise when describ-
ing the behavior of an interacting process. They are also use-
ful when considering equivalences. For instance, (1) is intuitively
equivalent to

?(Real \ Int).!Int.end + ?Int.!(Bool ∨ Int).end (3)

The crucial role of Boolean combinators can be further shown
by slightly modifying (1) so that it performs only input actions:

?Real.?Int.end + ?Int.?Bool.end (4)

In this case the descriptor declares that after receiving an integer
it will either wait for another integer or for a Boolean value. If
an interacting process sends an integer, then in order to be sure
that the conversation will not be stuck it must next send a value
that is both an integer and a Boolean. Since there is no such a
value, the only way to successfully interact with (4) is to make
sure that interacting processes will only send reals that are not
integers: !(Real \ Int).!Int.end. In conclusion, the only way to
describe the sessions that can successfully interact with (4) is to use
negation (for the sake of completeness note that (4) is equivalent to
?(Real\ Int).?Int.end+?Int.?(Bool∧ Int).end which is equivalent
to ?(Real \ Int).?Int.end since the right summand of the previous
choice can never successfully complete a conversation). A similar
discussion can be done for delegation, that is, when actions are
over session descriptors, rather than types. This is why we added
Boolean combinations of session descriptors too (we dub them sie-
ves) and actions have the form ?χ and !χ rather than ?η and !η.

We want both types and session descriptors to be recursively
definable. This is important for types since it allows us to represent
recursive data structures (e.g., DTDs) while for session descriptors
it allows us to represent services that provide an unbounded number
of interactions such as (the service whose behavior is the solution
of the equation) η = end + ?Int.η which describes a session that
accepts as many integers as wished by the interacting process. In
order to support recursive terms, we resort to a technique already
used in [17, 8] where instead of introducing an explicit finite syntax
for recursive terms, we directly work with possibly infinite regular
term trees that satisfy some contractivity conditions; these condi-
tions ensure that terms are semantically meaningful.

DEFINITION 2.1 (Types). The types of our system are the possibly
infinite regular trees coinductively generated by the productions
in the grammar at the beginning of this section that satisfy the
following conditions:

1. on every infinite branch of a type there are infinitely many
occurrences of “begin”;

2. on every infinite branch of a session descriptor there are in-
finitely many occurrences of “.” (the prefix constructor);

3. for every subterm of the form α.η, the tree α.η is not a subtree
of α.

The first two conditions are contractivity restrictions that rule out
meaningless terms such as (the solutions of the equations) t = t∨ t
or η = η⊕η; technically they say that the binary relation . defined
by t1∨ t2 . ti, t1∧ t2 . ti, ¬t. t, χ1∨χ2 .χi, χ1∧χ2 .χi, ¬χ.χ,
η1+η2.ηi, η1⊕η2.ηi is Noetherian (that is, strongly normalizing),
which gives an induction principle on terms that we will use in
our proofs without any further explicit reference to the relation
.. The third condition states that recursion cannot escape prefixes
and thus it rules out terms such as η = ?η.end; this restriction
generalizes the typing technique used in all works on (recursive)
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session types that forbids delegation of a channel over itself [22, 30]
(strictly speaking we disallow types that in the cited works are
not inhabited by any program) while, technically, it allows us to
stratify the definition of the subtyping and subsessioning relations,
stratification we use in the proof of Theorem 2.6.

We do not specify any particular property for the types of the
host language. If the host language has some type constructors
(e.g., products, arrows, etc.) the first contractivity condition can be
relaxed to requiring that on every infinite branch there are infinitely
many occurrences of type constructors. The only condition that we
impose on the host language is on values which must satisfy the
following strong disjunction property for unions:

` v : t1 ∨ t2 ⇐⇒ ` v : t1 or ` v : t2 (5)

This condition may be restrictive only in the case that the host lan-
guage already provides a union type combinator since, otherwise,
it can be easily enforced by requiring that every session channel is
associated with exactly one (most specific, because of subtyping)
session type.

Henceforward, we will use t to range over types, θ and η to
range over session descriptors, χ to range over sieves, ψ to range
over all of them, and often omit the word “session” when speaking
of session descriptors. We reserve v for values, whose definition
and typing is left unspecified: we assume as understood that values
for a session type begin.η are channels explicitly associated with or
tagged by that type (or, because of subtyping, by a begin.η′ subtype
of begin.η: more about that later on).

We do not include in our session descriptors a construct for
parallel composition (as opposed to [23, 5], for example). Since we
assume an interleaving semantics of parallel composition, having
two different choices is enough for faithfully describing possibly
concurrent actions by means of well-known expansion laws (see
[12] for an example).

The intuitive semantics of session descriptors we outlined above
is formalized in the following section.

2.2 Semantics of types and descriptors
The semantics of both session descriptors and types—and more
generally most of the constructions of this work—crucially relies
on the notion of duality. In this section we first informally define
duality to outline a denotational semantics for types and descrip-
tors, then we give the formal definition of duality in terms of a
labeled transition system for descriptors.

2.2.1 Set-theoretic interpretations

In the previous section we argued that a complete set of Boolean
combinators must be used if we want to describe the set of partners
that safely interact with a given descriptor. Since we want the se-
mantics of Boolean combinators to be intuitive and easy to under-
stand we base their definition on a set-theoretic interpretation. In
particular, we interpret every type constructor as the set of its val-
ues and the Boolean combinators as the corresponding set-theoretic
operations. In other terms, we seek for an interpretation of types
J.K such that JtK = {v | ` v : t} and that Jt ∧ sK = JtK ∩ JsK,
Jt∨sK = JtK∪JsK, and J¬tK = V \JtK (where V denotes the set of
all values). The same interpretation can then be used to define the
subtyping relation (denoted by “<:”) as follows:

t <: s
def⇐⇒ JtK ⊆ JsK

The technical machinery to define an interpretation with such prop-
erties and solve the problems its definition raises (e.g., the circular-
ity between the subtyping relation and the typing of values) already
exists and can be found in the work on Semantic Subtyping [17]:
we take it for granted and no longer bother about it if not for ses-
sion types that are dealt with in Section 2.3. This interpretation of

types justifies the use we do henceforward of the notation v ∈ t to
denote that v has type t.

The next problem is to give a set-theoretic interpretation to ses-
sion descriptors, as we have Boolean combinations on them too.
This interpretation is not required to be precise or mathematically
meaningful but only to ensure that conversations do not get stuck.
To this aim, rather than giving the set of values (or whatever they
would be, since session descriptors classify just “chunks” of con-
versation) contained in a descriptor, it suffices to characterize all the
possible behaviors common to all channels that implement a given
session. In other terms, the semantics of a session descriptor can be
characterized by the set of partners with whom the interaction will
never get stuck (a sort of realizability semantics). This is captured
by the notion of duality: two session descriptors η and θ are dual if
any conversation between two channels which follow respectively
the prescriptions of η and θ will never get stuck. So, for instance,
the descriptor (1) in the previous section is dual to the descriptor
(2). But !Int.?(Bool ∨ Int).end is dual to (1), too.

Note also that some session descriptors have no dual, for exam-
ple ?(Bool∧Int).end, since no process can send a value that is both
a Boolean and an integer: the intersection is empty.1 Such descrip-
tors constitute a pathological case, since no conversation can take
place on channels conforming to them. Thus we will focus our at-
tention on descriptors for which at least one dual exists, and that we
dub viable descriptors. We write η on θ if η and θ are dual (duality
is a symmetric relation). Then, we can define the interpretation of a
descriptor as the set of its duals: JηK = {θ | η on θ}; extend it set-
theoretically to sieves: Jχ∧χ′K = JχK∩Jχ′K, Jχ∨χ′K = JχK∪Jχ′K,
J¬χK = S \ JχK (where S denotes the set of all viable descrip-
tors); and use it to semantically define the subsieving (and subses-
sioning) relation (denoted by “≤”):

χ ≤ χ′ def⇐⇒ JχK ⊆ Jχ′K (6)

Duality plays a central role also in defining the semantics of
types. We said that the semantics of a type constructor is the set
of its values. Hence we have to define the values of the type con-
structor begin.η. As suggested in Section 2.1, we can take as a
value of a session type a public channel tagged by that type or by
a subtype. Therefore to define values we need to determine when
a session type is subtype of another, that is, when we can safely
use a channel of some session type where a channel of a differ-
ent (larger) type is expected. The key is to understand how a pub-
lic session channel is “used”. We make the assumption—matched
by everyday practice—that there is unique way to consume a pub-
lic channel c of type begin.η, by invoking the service associated
with c and starting a conversation that conforms to the protocol de-
scribed by η. Thus it is safe to replace c with a different channel d
of a smaller type begin.η′ only if the conversation, which follows
the protocol described by η and which was originally intended to
occur with the service associated with c, works seamlessly with
the service associated with d. This happens if at each step of the
conversation the service associated with d is willing to receive at
least all the messages accepted by c and never sends any message
that c would not send. Roughly speaking, the service associated
with d is “more tolerant” than the one associated with c. Of course,
there are fewer services that, as d, support a η′ conversation, since
they must be able to satisfy more demanding clients. Therefore,
passing from begin.η to begin.η′ corresponds to restricting the set
of possible services one can safely use, that is to say, reducing
the sets of possible duals. So the intuition—that we will formal-
ize in Section 2.3 by equation (12)—is that begin.η′ <: begin.η

1 This shows that our duality is semantically defined: ?(Bool ∧ Int).end is
not dual of !(Bool ∧ Int).end as a syntactic approach would suggest; both
descriptors have no dual.
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if and only if η′ has fewer duals than η, that is by (6), η′ ≤ η.
For instance we have that ?Int.end ≤ ?Real.end since every de-
scriptor that is dual of ?Int.end is also dual of ?Real.end. Simi-
larly begin.?Int.end <: begin.?Real.end since if a process that
uses a channel of type begin.?Real.end is well typed, then the pro-
cess obtained by replacing this channel for a different one of type
begin.?Int.end is well typed as well: it will receive an integer num-
ber in a place where it expects a real number.

Since we want our types to satisfy the strong disjunction prop-
erty (5), then a public channel c must be tagged by types of the
form begin.η (and not, say, begin.η ∨ begin.η′), which yields the
following interpretation for session types:

Jbegin.ηK = {cbegin.η′
| ∀θ, θ on η′ ⇒ θ on η}, (7)

that is by equation (6):

Jbegin.ηK = {cbegin.η′
| η′ ≤ η} (8)

The next step is to formally define the duality relation for which we
have to characterize the observables of the session descriptors.

2.2.2 Semantics of session descriptors

The formal semantics of a descriptor can be given by resorting to
the labeled transition system (LTS) defined by the rules

(TR1)

end
X−→ end

(TR2)

η ⊕ η′ −→ η

(TR3)
η −→ η′

η + η′′ −→ η′ + η′′

(TR4)

η
µ−→ η′

η + η′′
µ−→ η′

(TR5)

η
!v−→ η′′

η + η′ −→ η

(TR6)

η
!η′′
−→ η′′′

η + η′ −→ η

(TR7)
v ∈ t

?t.η
?v−→ η

(TR8)
v ∈ t

!t.η
!v−→ η

(TR9)
η ∈ χ

?χ.η′
?η−→ η′

(TR10)
η ∈ χ

!χ.η′
!η−→ η′

plus the symmetric of rules (TR2-TR6). In the rules µ ranges over
actions of the form !v, or ?v, or !η, or ?η, orX.

Rules (TR1-TR4) are straightforward: end emits a “tick” (TR1);
an internal choice silently decides the behavior it will successively
follow (TR2); an external choice either performs an internal silent
move (TR3) or it emits a signal µ that it offers as a possible choice
to the interacting partner (TR4). Note that internal moves in one
branch of an external choice do not preempt the behavior of the
other branch. This is typical of process languages with two distinct
choice operators, such as CCS without τ ’s [12].

The remaining rules are somewhat less common . Rules (TR7-
TR8) state that the synchronization is performed on single values
(strictly speaking, on singleton types) rather than on generic types.
This is closer to what happens in practice, since !t.η indicates that
the descriptor is ready to emit some value of type t (TR8), while
?t.η indicates that the descriptor is ready to accept any value of type
t (TR7). While this approach is reminiscent of the so-called early
semantics in process algebras [27] (but note that here it is applied
at type level rather than at process level), there is a technical reason
to use values rather than types, which we explain after defining the
subsessioning relation.

Rules (TR9-TR10) follow the same idea as (TR7-TR8), and state
that actions on descriptors emit a more precise information than
what they declare. To understand this point we need to give some
details. First note that a session descriptor η, despite it is usually
called “session type” in the literature, is not a “real” type since
it does not type any value. Session descriptors do not classify
values but, rather, they keep track of the residual conversation

that is allowed on a given session channel (whose “real” type
is of the form begin.η). Therefore we cannot directly apply the
same technique as for rules (TR7-TR8) since there does not exist
any value for session descriptors. To mimic the behavior of rules
(TR7-TR8) we resort to the informal semantics we described in
Section 2.2.1 where a type is interpreted as the set of its values and
a descriptor—actually, a sieve—as the set of its duals: therefore, as
an action on a type emits the same action on its values, so an action
on a sieve emits the same action on its duals, where we use η ∈ χ
to denote that η ∈ JχK.2

Rules (TR5-TR6) state that outputs are irrevocable. This is a
characteristic peculiar to our system and is reminiscent of Castel-
lani and Hennessy’s treatment of external choices in the asyn-
chronous CCS [9]. Roughly speaking, imagine a process offering
two different outputs in an external choice. Then we can think of
two possible implementations for such a choice. In one case the
choice is an abstraction for a simple handshaking protocol that the
communicating processes engage in order to decide which value is
exchanged. This implementation does not fit very well a distributed
scenario where processes are loosely coupled and communication
latency may be important. In the second—and in our opinion closer
to practice—case, the sender process autonomously decides which
value to send. Rules (TR5-TR6) state that the decision is irrevocable
in the sense that the sender cannot revoke its output and try with the
other one. This behavior is obtained by rules (TR5-TR6) by assim-
ilating an external choice over output actions to an internal choice
in which the process silently decides to send some particular value.
In this respect the symmetry of input and output actions in rules
(TR7-TR8)—but the same holds for (TR9-TR10) as well—may be
misleading: we implicitly assumed that when a process waits for a
value of type t it is ready to accept any value of type t (the choice
of the particular value is left to the sender) while when a process
sends a value of type t, it internally decides a particular value of
that type. We will break this symmetry in the formal notion of du-
ality (Definition 2.5) to be defined next.

2.2.3 Duality

The discussion on the labeled transition system suggests that two
dual descriptors can either agree on termination (so both emit X)
or one of the two descriptors autonomously chooses to send an
output that the other descriptor must be ready to receive. In order
to formalize the notion of duality it is then handy to characterize
outputs (when an output action may happen) and inputs (when an
input action must happen). As usual we write =⇒ for the reflexive
and transitive closure of −→; we write

µ
=⇒ for =⇒ µ−→=⇒; we

write η
µ−→ if there exists η′ such that η

µ−→ η′, and similarly for
µ

=⇒; we write η X−→ if there exists no η′ such that η −→ η′.

DEFINITION 2.2 (May and Must Actions). We say that η may
output µ, written η ↓ µ, if there exists η′ such that η =⇒ η′ X−→
and η′

µ−→ and µ is either !v, or !η, orX.
We say that η must input µ, written η ⇓ µ, if η =⇒ η′ X−→

implies η′
µ−→ and µ is either ?v, or ?η, orX.

As usual we write η 6↓ µ if not η ↓ µ and η 6⇓ µ if not η ⇓ µ.

Intuitively η ↓ µ states that for a particular internal choice η
will offer an output µ as an option, while η ⇓ µ states that the input
µ will be offered whatever internal choice η will do. For example
!Int.end ⊕ end ↓ !3 and !Int.end ⊕ end ↓ X; on the other hand
we have !Int.end + end 6↓ X, since !Int.end + end X−→ end.
Similarly we have ?Int.end⊕?Real.end ⇓ ?3 because the action ?3

2 Rules (TR7-TR10) hide a circularity since both values and duals are de-
fined in terms of the duality relation we are defining. Theorem 2.6 in Sec-
tion 2.2.3 shows that this circularity is only apparent.
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is always guaranteed independently of the internal choice, whereas
?Int.end⊕ ?Real.end 6⇓ ?

√
2 because ?Int.end⊕ ?Real.end −→

?Int.end and ?Int.end 6⇓ ?
√

2.
The previous definition induces two notions of convergence.

Clearly convergence is a necessary condition for a session descrip-
tor to have a dual.

DEFINITION 2.3 (May and Must Converge). We say that η may
converge, written η ↓, if for all η′ such that η =⇒ η′ X−→ we
have η′ ↓ µ for some µ. We say that η must converge, written η ⇓,
if η ⇓ µ for some µ. As usual, we use η 6↓ and η 6⇓ to denote their
respective negations.

Note that the two contractivity conditions of Definition 2.1 rule
out behaviors involving infinite sequences of consecutive internal
decisions. Therefore we will only consider strongly convergent
processes, namely processes for which there does not exist an
infinite sequence of −→ reductions.

The labeled transition system describes the subjective evolu-
tion of a session descriptor from the point of view of the process
that uses a communication channel having that (residual) type. The
last notion we need allows us to specify the evolution of a ses-
sion descriptor from the dual point of view of the process at the
other end of the communication channel. For example, we have
?Real.!Int.end + ?Int.!Bool.end

?3−→ !Bool.end (the process re-
ceiving the integer value 3 knows that it has taken the right branch
and now will send a Boolean value). However, the process sending
the integer value 3 on the other end of the communication channel
does not know whether the receiver has taken the left or the right
branch, and both branches are actually possible. From the point of
view of the sender, it is as if the receiver will behave according to
the session descriptor !Int.end⊕ !Bool.end, which accounts for all
of the possible states in which the receiver can be after the recep-
tion of 3. The objective evolution of a session descriptor after an
action µ is defined next.

DEFINITION 2.4 (Successor). Let η
µ

=⇒. The successor of η after
µ, written η〈µ〉, is defined as: η〈µ〉 = ⊕{η′ | η µ

=⇒ η′}.

For example, (?Real.!Int.end+?Int.!Bool.end)〈?3〉 = !Int.end⊕
!Bool.end but (?Real.!Int.end+?Int.!Bool.end)〈?

√
2〉 = !Int.end.

Note that η〈µ〉 is well defined because there is always a finite num-
ber of residuals η′ such that η

µ
=⇒ η′. This is a direct consequence

of the contractivity conditions on session descriptors.
We now have all the ingredients for formally defining duality.

DEFINITION 2.5 (Duality). Let the dual of a label µ, written µ, be
defined by: (i) X = X; (ii) †v = †v; (iii) †η = †η; where ! = ?
and ? = !. Then η1 on η2 is the largest symmetric relation between
session descriptors such that one of the following condition holds:

1. η1 ⇓ X and η2 ⇓ X;
2. η1 ↓ and η1 ↓ µ implies η2 ⇓ µ and η1〈µ〉 on η2〈µ〉 for every
µ.

The intuition behind the above definition is that a dual must
accept every input that its partner may output, or they must both
agree on termination. For example, we have ?Real.!Int.end +
?Int.!Bool.end on !Int.?(Int ∨ Bool).end, but ?Real.!Int.end +
?Int.!Bool.end 6on !Int.?Int.end because the descriptor on the right
is not sure that its partner will answer with an integer. However
?Real.!Int.end + ?Int.!Bool.end on !(Real \ Int).?Int.end. As an-
other example, we have ?Int.end ⊕ ?Real.end on !Int.end be-
cause ?Int.end ⊕ ?Real.end ⇓ ?v for every v ∈ Int, however
?Int.end⊕?Real.end 6on !

√
2.end because ?Int.end⊕?Real.end 6⇓

?
√

2.

The reader may have observed that there is a circularity in the
definitions of duality and of the labeled transition system. This
is evident in rules (TR9-TR10) since the rules emit a dual of the
sieve; that is, the relation η ∈ χ is defined in terms of JχK whose
definition is given in terms of the duality relation. Less evident is
the circularity of rules (TR7-TR8), which resides in the fact that
these rules emit values of a given type; if this type has the form
begin.η, then its values are all the channels of the form cbegin.η′

such that θ on η′ implies θ on η for all θ (cf. equation (7) ): so also
the definition of the relation v ∈ t depends on that of duality. The
following theorem proves that this circularity is not one.

THEOREM 2.6 (Well-foundness). The definitions of η ∈ χ, v ∈ t
and η on η′ are well founded.

PROOF. Thanks to condition 3 of Definition 2.1 recursion cannot
enter descriptor prefixes (the condition that α.η is not a subtree of
α). Therefore it is relatively easy to stratify the previous definitions.
In particular let us define a weight as follows: a type has weight 0
if it does not contain session types; a descriptor has weight 0 if it
contains just possibly empty sums of end; a type has weight i + 1
if the session types occurring in it are on descriptors of weight at
most i; a descriptor is of weight i+ 1 if the prefixes occurring in it
are of weight at most i (here is where the condition 3 ensures that
this definition is well founded for all session types). Next we define
a weight for each relation we introduced so far: each η

µ−→ η′

and η −→ η′ has weight 0 if it uses only axioms (i.e., (TR1) and
(TR2)) and has weight i + 1 if it is proved by using relations of
weight at most i; η〈µ〉 has weight i if it is defined by reductions of
weight at most i (we consider the successor as a binary relation);
may/must actions/convergences relations and the duality relation
all have weight i if they are proved by using relations of weight at
most i. Finally, let us first define v ∈ t to be of weight 0 if t is of
weight 0; then notice that both η ∈ χ and v ∈ t for t of weight
at least 1 (cf. equation (7)) are defined in terms of duality: we then
assign to each of them the greatest weight of the duality relations
used in their definition.

Using this weight it is easy to check that the definitions in this
section are well founded. �
A corollary of this theorem is that the definitions of subsessioning
η ≤ η′ and subsieving χ ≤ χ′ (the former being a special case
of the latter) given by the equation (6) in Section 2.2.1 are well
founded as well.

The notion of duality is also a useful tool for better understand-
ing the semantics of session descriptors. Let us revisit part of the
LTS in the light of duality:

Output of values. Rules (TR7-TR8) in Section 2.2 state that a
descriptor is ready to respectively input and output some value of
type t. The use of single values in labels may appear at first look
surprising, as one would expect to see labels pretty similar to the
fired actions. If we stated, say, that ?t.η emits ?t and !t.η emits !t
(or, to be more liberal, ?t′ and !t′ with t′ <: t), then we would
obtain quite a different semantics. In particular, it would no longer
be possible to prove the following equations (where “=” denotes
the equality induced by the relation ≤):

?(t1 ∨ t2).η = ?t1.η + ?t2.η (9)
!(t1 ∨ t2).η = !t1.η + !t2.η (10)
!(t1 ∨ t2).η = !t1.η ⊕ !t2.η (11)

In particular, the right hand-sided descriptors would no longer be
smaller than the left hand-sided ones. Consider for example an
instance of (10) where we take t1 ≡ Int and t2 ≡ Bool (here and
henceforward we use “≡” to denote syntactic equality). It is clear
that the two descriptors in the equation share the same set of duals
(that is, they have the same semantics): the duals of both descriptors
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are descriptors that accept both an integer and a Boolean and then
are dual of η. With the current definition of the LTS this holds true:
whatever signal the left hand descriptor emits will be matched by
every dual of the right hand since, in both cases, these signals will
be on values of type Int∨Bool. Here is where the strong disjunction
property on union types (5) is used: the left hand descriptor cannot
emit a value that is neither an Int nor Bool. If the transition system
had emitted types rather than values, then the duals of the right hand
descriptor would not be able to match the signal !(Int∨Bool) since
each summand of the right hand descriptor could at most emit Int
or Bool. We could have introduced some extra definition of sets of
emitted signals and saturated these sets with unions for internal and
external sums, but the current solution avoids all this clutter.

A similar reasoning holds for rules (TR9-TR10) because of the
disjunction property we are going to prove next.

Internal choices, intersections, and disjoint unions. Using the
definition of duality it is easy to see that Jη ⊕ η′K = Jη ∧ η′K since
the duals of an internal choice must comply with both possible
choices and thus be duals of both of them. Using this property it is
easy to prove that sieves satisfy a disjunction property even stronger
than the one for types, as the disjunction holds not only for single
elements but for all the subsets of a union:

PROPOSITION 2.7. θ ≤ χ1 ∨ χ2 ⇐⇒ θ ≤ χ1 or θ ≤ χ2.

PROOF. Suppose that (⇒) does not hold (the converse is trivial).
Then there exists a descriptor η1 dual of θ, such that η1 ∈ χ1 and
η1 6∈ χ2, and a descriptor η2 dual of θ, such that η2 6∈ χ1 and
η2 ∈ χ2. Now consider η1 ⊕ η2: since the semantics of an internal
choice is the intersection of the duals of the choices, and θ is dual
of both η1 and η2, then θ is dual of η1 ⊕ η2. But for the same
reason we deduce that η1 ⊕ η2 6∈ χ1 and η1 ⊕ η2 6∈ χ2, and thus
η1 ⊕ η2 6∈ χ1 ∨ χ2 by definition, yielding a contradiction. �

This property is essential to prove decidability of ≤.
A similar property holds for types of the form begin.η:

PROPOSITION 2.8. begin.η <: begin.η1 ∨ begin.η2 ⇐⇒
begin.η <: begin.η1 or begin.η <: begin.η2

PROOF. Recall that Jbegin.ηK = {cbegin.η′
| η′ ≤ η}. Take any

channel of the form cbegin.η . By the strong disjunction property
(equation (5)) cbegin.η ∈ begin.ηi for some i in [1, 2]. By applying
the definition of the semantics of session types to begin.ηi, this
implies that for that i, η ≤ ηi. From this it is easy to deduce that
every channel that is in Jbegin.ηK is also in Jbegin.ηiK, which by
definition of subtyping implies begin.η <: begin.ηi. �

Irrevocable outputs. By making external choices on output ac-
tions behave as internal ones, rules (TR5-TR6) state that outputs
are irrevocable. This design choice was already explained in Sec-
tion 2.2. In terms of duality, this choice corresponds to decid-
ing whether, say, the external choices !Int.end+?Bool.end and
?Int.end+!Bool.end are to be considered as dual. In our setting
the answer is negative as we consider that outputs may be asyn-
chronously emitted even for external choices, therefore the two
partners can get stuck if both decide to emit their outputs. This be-
havior is a direct consequence of rules (TR5-TR6). As we discuss in
the conclusion of this presentation, this is not the only reasonable
answer. For instance, we could suppose that in a case such as the
above one, the two partners perform some form of handshake to
decide which one will perform the output; in that case rules (TR5-
TR6) should be removed. We chose not to do so since the “irrevo-
cable inputs” solution seems better fit a wide area network usage
scenario.

2.3 Subtyping
Now that we have defined the duality relation, and therefore sub-
sessioning, we can also formally define the subtyping relation.
The types defined in Section 2.1 include three type combinators
(union, intersection, and negation), one type constructor begin.η,
plus other basic types and type constructors (inherited from the
host language) that we left unspecified (typically, Real, Bool, ×,
. . . ). We define the subtyping relation semantically using the tech-
nique defined in [17] and outlined in Section 2.2.1, according to
which types are interpreted as the set of their values, type combi-
nators are interpreted as the corresponding set-theoretic operations,
and subtyping is interpreted as set containment. As a consequence,
testing a subtyping relation is equivalent to testing whether a type is
empty, since by simple set-theoretic transformations we have that
t1 <: t2 if and only if t1 ∧¬t2 <: ∅ (where we use ∅ to denote the
empty type, that is the type that has no value). Again by simple set-
theoretic manipulations, every type can be rewritten in disjunctive
normal form, that is a union of intersections of types. Furthermore,
since type constructors are pairwise disjoint (there is no value that
has both a session type and, say, a product type—or whatever type
constructor is inherited from the host language), then these inter-
sections are uniform since they intersect either a given type con-
structor, or its negation (see [7, 17] for details). In conclusion, in
order to define our subtyping relation all we need is to decide whenW
k∈K(

V
i∈Ik

begin.ηi ∧
V
j∈Jk

¬begin.ηj) <: ∅. Since a union
of sets is empty if and only if every set in the union is empty, by
applying the usual De Morgan laws we can reduce this problem to
deciding the inclusion

V
i∈I begin.ηi <:

W
j∈J begin.ηj .

As regards session channels, we notice that a value has type
(begin.η)∧(begin.η′) if and only if it has type begin.(η⊕η′). Also
note that begin.η <: begin.η1∨begin.η2 if and only if begin.η <:
begin.η1 or begin.η <: begin.η2 (Proposition 2.8). Therefore
the semantic subtyping relation for the types of Section 2.1 is
completely defined by (the semantic subtyping framework of [17]
and) the following equation^

i∈I

begin.ηi <:
_
j∈J

begin.ηj ⇐⇒ ∃j∈J :
M
i∈I

ηi ≤ ηj (12)

Note that when in the equation above I and J are singletons it
reduces to

begin.η1 <: begin.η2 ⇐⇒ η1 ≤ η2

that is the form discussed at the end of Section 2.2.1. A conse-
quence of this last observation is that Jbegin.ηK = {cbegin.η′

| η′ ≤
η} = {cbegin.η′

| begin.η′ <: begin.η} = {v | v ∈ begin.η}.
Thus our initial interpretation of session types coincides with the
interpretation of types as sets of their values: we have “closed the
circle” in the sense of [17].

2.4 Coinductive characterizations
The subsessioning relation defined in terms of duality embeds the
notion of safe substitutability because of its very definition, but
it gives little insight on the properties enjoyed by ≤. This is a
common problem of every semantically defined preorder relation
based on tests, such as the well-known testing preorders [11] (the
set of duals of a descriptor can be assimilated to the set of its
successful tests). In order to gain some intuition over ≤ and to
obtain a useful tool that will help us studying its properties we will
now provide an alternative coinductive characterization. Before
doing so, we need to characterize the class of descriptors that admit
at least one dual. Recall that η is viable if there exists η′ such that
η on η′. Any non-viable descriptor is the least element of ≤, which
henceforward will be denoted by ⊥.
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DEFINITION 2.9 (Coinductive Viability). ηon is the largest predi-
cate over descriptors such that either

1. η ↓ and η ↓ µ implies η〈µ〉on for every µ, or
2. there exists µ such that η ⇓ µ and η〈µ〉on.

The definition provides us with a correct and complete characteri-
zation of viable descriptors, as stated in the next proposition, which
is proved in Appendix A.2.

PROPOSITION 2.10. ηon if and only if η is viable.

We can now read the statement of Definition 2.9 in the light of
the result of the above proposition: Definition 2.9 explains that a
descriptor is viable if either (1) it emits an output action regardless
of its internal state and every successor after every possible output
action is viable too or (2) it guarantees at least one input action such
that the corresponding successor is viable too.

DEFINITION 2.11 (Coinductive Subsession). η 5 η′ is the largest
relation between session descriptors such that ηon implies η′on and

1. η′ 6⇓ and η′ ↓ µ imply η ↓ µ with η〈µ〉 5 η′〈µ〉, and
2. η ⇓ µ and η〈µ〉on imply η′ ⇓ µ with η〈µ〉 5 η′〈µ〉, and
3. η ↓ and η′ ⇓ imply η ↓ X and η′ ⇓ X.

The definition states that any viable descriptor η may be a sub-
session of η′ only if η′ is also viable. This is obvious since we want
the duals of η to be duals of η′ as well. Furthermore, condition (1)
requires that any output action emitted by the larger descriptor must
also be emitted by the smaller descriptor, and the respective contin-
uations must be similarly related. This can be explained by noticing
that a descriptor dual of η in principle will be able to properly han-
dle only the outputs emitted by η; thus in order to be also dual of η′

it must also cope with η′ outputs, which must thus be included in
those of η, hence the condition. The requirement η′ 6⇓ makes sure
that η′ really emits some output actions. Without this condition we
would have ?Int.end 65 ?Int.end + end as the descriptor on the
r.h.s. emitsXwhich is not emitted by the l.h.s. However, it is trivial
to see that ?Int.end 5 ?Int.end + end. Condition (2) requires that
any input action guaranteed by the smaller descriptor must also be
guaranteed by the larger descriptor. Again this can be explained by
noticing that a descriptor dual of ηmay rely on the capability of η of
receiving a particular value/descriptor in order to continue the inter-
action without error. Hence, any guarantee provided by the smaller
descriptor η must be present in the larger descriptor η′ as well. The
additional condition η〈µ〉on considers only guaranteed input actions
that have a viable dual, for a guaranteed input action with a non-
viable dual is practically useless. Without such condition we would
have, for instance, that ?Int.!∅.end + ?Bool.end 65 ?Bool.end, be-
cause the descriptor on the l.h.s. guarantees the action ?3 which is
not guaranteed by the descriptor of the r.h.s. of 65. It is clear how-
ever that in this case the subsessioning relation must hold since the
l.h.s. and r.h.s. have the same set of duals. Finally, condition (3)
captures the special case in which a descriptor emitting output ac-
tions (η ↓) is smaller than a descriptor guaranteeing input actions
(η′ ⇓). This occurs only when η may internally decide to terminate
(η ↓ X) and η′ guarantees termination (η′ ⇓ X). In this case, every
dual of η must be ready to terminate and to receive any output ac-
tion emitted by η, hence it will also be dual of η′ which guarantees
termination but does not emit any output action.

We end this subsection by stating that the coinductive and the
semantic definitions of subsessioning coincide, so from now on we
will use ≤ to denote both. The proof of this theorem is the content
of A.3.

THEOREM 2.12. η1 5 η2 ⇐⇒ η1 ≤ η2.

2.5 Properties of the subsession relation
Table 1 shows some relevant rules regarding ≤ Aside from provid-
ing further insight on the properties of ≤, these rules are also used
in the following for proving the existence of the normal forms for
session descriptors and the correctness of the algorithms. In the ta-
ble we write ∅ to denote either ∅ (the empty type) or ⊥ (the least
sieve) according to the context.

(E1) η + η = η
(E2) η + η′ = η′ + η
(E3) η + (η′ + η′′) = (η + η′) + η′′

(E4) η + (η′ ⊕ η′′) = (η + η′)⊕ (η + η′′)
(E5) α.η + α.η′ = α.(η ⊕ η′)
(E6) ?t.η + ?s.η = ?(t ∨ s).η
(E7) ?χ.η + ?χ′.η = ?(χ ∨ χ′).η
(E8) η +⊥ = η

(I1) η ⊕ η = η
(I2) η ⊕ η′ = η′ ⊕ η
(I3) η ⊕ (η′ ⊕ η′′) = (η ⊕ η′)⊕ η′′
(I4) η ⊕ (η′ + η′′) = (η ⊕ η′) + (η ⊕ η′′)
(I5) α.η ⊕ α.η′ = α.(η ⊕ η′)
(I6) ?t.η ⊕ ?s.η′ = ?(t ∧ s).(η ⊕ η′)
(I7) ?χ.η ⊕ ?χ′.η′ = ?(χ ∧ χ′).(η ⊕ η′)
(I8) η ⊕⊥ = ⊥

(B1) ?ψ.η = ⊥ (ψ = ∅)
(B2) !ψ.η = ⊥ (ψ = ∅)
(B3) ?t.η ⊕ ?χ.η′ = ⊥
(B4) ?ψ.η ⊕ !ψ′.η′ = ⊥
(B5) ?ψ.η ⊕ end = ⊥

(O1) !ψ.η + end = !ψ.η (ψ 6= ∅)
(O2) !ψ.η + ?ψ′.η′ = !ψ.η (ψ 6= ∅)
(O3) !ψ.η + !ψ′.η′ = !ψ.η ⊕ !ψ′.η′ (ψ,ψ′ 6= ∅)
(O4) !t.η ⊕ !s.η = !(t ∨ s).η (t, s 6= ∅)
(O5) !χ.η ⊕ !χ′.η = !(χ ∨ χ′).η (χ, χ′ 6= ⊥)

(S1) ?t.η ≤ ?(t ∨ s).η
(S2) ?χ.η ≤ ?(χ ∨ χ′).η
(S3) !(t ∨ s).η ≤ !t.η (t 6= ∅)
(S4) !(χ ∨ χ′).η ≤ !χ.η (χ 6= ⊥)
(S5) η ⊕ η′ ≤ η

Table 1. Selected equalities and inequalities.

Rules (E1–E8) state the fundamental properties of the external
choice operator. Rules (E1–E4) are trivial being the usual idempo-
tency, commutativity, associativity and distributivity laws of exter-
nal choices. Rule (E5) shows that an external choice may actually
hide an internal choice if it combines descriptors having a common
prefix. This is a well-known axiom in the testing theories [11] and
it also shows that the external choice does not coincide with the
set-theoretic union operator (the internal choice, on the other hand,
does coincides with the set-theoretic intersection). Rule (E6) shows
the interaction between input actions (over types) and the external
choice operator: the value received from the channel is chosen ex-
ternally, it cannot be negotiated by the receiver. Rule (E7) is similar
to rule (E6), except that it deals with sieves. Rule (E8) states that
⊥ is the neutral element of the external choice.

Rules (I1–I9) state the fundamental properties of the inter-
nal choice operator. Rules (I1–I4) are similar to rules (E1–E4).
Rule (I5) is the distributivity law of the prefix operator over the
internal choice (the same law does not hold for the external choice
operator). Rule (I6) shows the interaction between input actions

7 2009/2/3



over types and the internal choice operator. A dual of the descriptor
on the l.h.s. of = does not know whether the descriptor is ready to
receive a value of type t or of type s. Thus, the only possibility is
to send a value that has both types. As a consequence, if t and s
are disjoint types, namely if t ∧ s = ∅, then both descriptors are ⊥
(see rule (B1) below). Rule (I7) is similar to rule (I6), except that it
deals with sieves. A dual of the descriptor on the l.h.s. of = does not
know whether the descriptor is ready to receive a descriptor θ such
that θ is dual of χ or such that θ is dual of χ′. Thus, the only possi-
bility is to send a descriptor that is dual of both θ and θ′. Rule (I8)
states that ⊥ is the absorbing element of the internal choice.

Rules (B1–B5) characterize non-viable descriptors, namely
those descriptors that have no dual. Rules (B1–B2) deal with com-
munications of values from empty types and delegations of sessions
with non-viable descriptors. Since these descriptors are completely
inert (they do not emit any visible action), they are comparable to
the canonical non-viable descriptor ⊥. Rule (B3) states the dis-
junction between values and descriptors: no value is a descriptor,
and no descriptor is a value. Rule (B4) states the directionality of
our communication model. In order to be viable, a descriptor can-
not simultaneously allow both input and output actions. The only
exception to this rule is when the output actions are offered in an
external choice, see rules (O1–O3) below. Rule (B5) is similar to
rule (B4), except that it deals with end and input actions.

Rules (O1–O5) characterize the peculiar properties of output
actions. In every rule the side condition ensures that the output ac-
tion is not inert (see rule (B2) above). Rules (O1–O2) state that
an output action composed in external choice with a end or an in-
put action preempts the alternative action. Rule (O3) states that ex-
ternal and internal choices of output actions are indistinguishable,
since these actions are irrevocable. Rule (O4) shows the interaction
between output actions over types and the internal choice operator:
the value sent over the channel is decided internally by the sender,
it will not be negotiated with the receiver. Rule (O5) is similar to
rule (O4), except that it deals with sieves.

Rules (S1–S2) show the standard covariant property of inputs:
the duals of a session that is capable of receiving values of type
t will also be duals of a session that is capable of receiving more
values. Rule (S2) is similar to rule (S1) except that it deals with
input of descriptors and it can be explained in the same way using
the intuition that sieves stand for the set of their duals. Rules (S3–
S4) complement rules (S1–S2) with dual properties for output
actions, where we have contravariance. Note that in both cases
we need one extra hypothesis, namely that t 6= ∅ and χ 6= ⊥.
This guarantees that the larger descriptor will actually output some
value/descriptor whenever the smaller one does so.

Finally, rule (S5) states that the duals of some session are
also duals of a more deterministic session. In the testing theories
for processes this law characterizes the deadlock sensitive must
preorder.

We conclude this section with two remarks. First of all, the rules
of Table 1 allow us to derive the following decomposition laws:

?t.η + ?s.η′ = ?(t \ s).η + ?(s \ t).η′ + ?(t ∧ s).(η ⊕ η′)
!t.η ⊕ !s.η′ = !(t \ s).η ⊕ !(s \ t).η′ ⊕ !(t ∧ s).(η ⊕ η′)

the latter rule holding when none of the sets t \ s, s \ t, and t ∧ s is
empty. Similar rules can be derived for inputs and outputs of sieves,
as opposed to types. These rules play a fundamental role in all the
algorithms that will follow because they allow us to rewrite external
and internal sums so that every summand of the sum begins with a
prefix that is disjoint from (emits labels that are not emitted by) the
prefix of any other summand.

The second remark concerns the interaction of ≤ with the op-
erators of session descriptors. It is easy to see that ≤ is preserved
by the prefix and the internal choice operators. In the latter case,

this follows from the fact that ⊕ coincides with the intersection
operator in the set-theoretic interpretation of session descriptors.
However, as we have already seen while discussing rule (E5), +
does not correspond to a Boolean operation and this ultimately
makes + quite subtle, as ≤ is not respected by + in general. For
example, by rule (S1) we have ?Int.end ≤ ?Real.end however
?Int.end + ?

√
2.!3.end 6≤ ?Real.end + ?

√
2.!3.end. The reason

is that in widening ?Int.end to ?Real.end we create an interfer-
ence with the term ?

√
2.!3.end because of the guaranteed action

?
√

2. Such interferences are not avoided even when we operate
with = (as opposed to ≤). For instance, according to rule (I6) we
have ?(Int ∨

√
2).end ⊕ ?Int.!3.end = ?Int.(end ⊕ !3.end), but

(?(Int ∨
√

2).end ⊕ ?Int.!3.end) + ?
√

2.!4.end 6= ?Int.(end ⊕
!3.end) + ?

√
2.!4.end. Here the action ?

√
2 is not guaranteed by

?(Int ∨
√

2).end⊕?Int.!3.end and (I6) tells us whose consequence
is that in practice the capability of ?(Int ∨

√
2).end of receiving√

2 is useless. However, removing this capability may also remove
interferences in the context of an external choice, making (I6) un-
safe in general.

Finally, rule (B4) must be used with care within an exter-
nal choice because its output capability makes the descriptor
on the l.h.s. of = to be observable (it may autonomously emit
an action), whereas ⊥ is totally inert. For instance we have
?Int.end⊕!Int.!∅.end = ⊥ and⊥+?Bool.!3.end = ?Bool.!3.end,
but (?Int.end ⊕ !Int.!∅.end) + ?Bool.!3.end = (?Int.end +
?Bool.!3.end) ⊕ (!Int.!∅.end + ?Bool.!3.end) = ⊥. Rule (B5)
suffers from a similar problem, which is slightly less severe be-
cause end denotes a terminated descriptor.

2.6 Algorithms
In order to use our type system we must be able to decide the
relations we introduced in the previous sections, namely subsieving
(and subsessioning), subtyping, and duality.

Subsieving. Let us start to show how to decide that a sieve
is smaller than another. Since Boolean combinators have a set-
theoretic interpretation we can apply exactly the same reasoning
we did for types in Section 2.3. Namely, deciding χ ≤ χ′ is equiv-
alent to deciding χ ∧ ¬χ′ ≤ ⊥. The l.h.s. can be rewritten in
disjunctive normal form whose definition for sieves is (we convene
that

W
i∈∅ χi =

P
i∈∅ ηi = ⊥):

DEFINITION 2.13 (Disjunctive normal form). A sieve is in dis-
junctive normal form if it is of the form

W
i∈I

V
j∈J λij , where λij

denote descriptor literals, that is either η or ¬η.

Next, we can check emptiness of each element of the union sep-
arately, reducing the problem to checking the following relation:V
i∈I ηi ≤

W
j∈J ηj . Since this is equivalent to

L
i∈I ηi ≤W

j∈J ηj , we can apply the strong disjunction property (Propo-
sition 2.7) we stated for descriptors and obtain^

i∈I

ηi ≤
_
j∈J

ηj ⇐⇒ ∃j∈J :
M
i∈I

ηi ≤ ηj

which is precisely the same problem that has to be solved in order to
decide the subtyping relation (cf. equation (12)). In conclusion, in
order to decide both subsieving and subtyping it suffices to decide
subsessioning.

Subsessioning. To decide whether two descriptors are in subses-
sioning relation we define a normal form for descriptors and, more
generally, sieves (the latter occurring in the prefixes of the former).

DEFINITION 2.14 (Strong normal form). A sieve χ in disjunctive
normal form is in strong normal form if

8 2009/2/3



1. if χ ≡
W
i∈I

V
j∈J λij , then for i ∈ I, j ∈ J , λij is in strong

normal form and
V
j∈J λij 6= ⊥ for all i ∈ I;

2. if χ ≡ ¬η, then η is in strong normal form;
3. otherwise χ is either of the form

L
i∈I !ψi.ηi{ ⊕ end} orP

i∈I ?ψi.ηi{+ end}, where for all i ∈ I , ψi 6= ∅, ψi and ηi
are in strong normal form and for all i, j ∈ I , i 6= j implies
ψi ∧ ψj = ∅, and end is possibly missing.

The following theorem proves that every sieve can be effectively
transformed in strong normal form. Its proof, which is done by
simultaneous induction with that of Theorem 2.18 later on, is the
content of Appendix A.1.

THEOREM 2.15 (Normalization). For every sieve χ it is possible
to effectively construct χ′ in strong normal form such that χ = χ′.

Finally, to check that two descriptors are in relation we rewrite both
of them in strong normal form, check that neither is ⊥, and then
apply the algorithm whose core rules are given in Table 2.

Table 2.

(END)

end ≤ end

(PREFIX)
η ≤ η′

α.η ≤ α.η′

(MIX-CHOICES)M
i∈I

ηi ⊕ end ≤
X
j∈J

η′j + end

(EXT-CHOICES)
I ⊆ J ηi ≤ η′i (∀i∈I)X

i∈I

ηi ≤
X
j∈J

η′j

(INT-CHOICES)
J ⊆ I ηj ≤ η′j (∀j∈J)M

i∈I

ηi ≤
M
j∈J

η′j

Table 2. Algorithmic subsessioning structural rules.

Rule (MIX-CHOICES) states that an internal choice is smaller
than an external one if and only if they both have an end summand.
Rule (EXT-CHOICES) states that it is safe to widen external choices
whereas rule (INT-CHOICES) states that it is safe to narrow internal
ones. Both rules are used in conjunction with (PREFIX), which states
covariance over descriptor continuations. Note that rule (PREFIX)
relates two descriptors only if they have the same prefix. There-
fore before applying (EXT-CHOICES) and (INT-CHOICES) we have to
transform the descriptors so that prefixes on the two sides that have
a non-empty intersection are rewritten in several summands so as
to find the same prefix on both sides: this is done by the rules in Ta-
ble 14 in Appendix A.1. These rules perform repeated applications
of the decomposition laws described in Section 2.5.

The soundness and completeness of the algorithm need two pre-
liminary results. The first one states that no finite union of session
descriptors covers the whole S . Namely, it is always possible to
find another η having at least one dual descriptor that is not dual of
any of the descriptors in the finite union.

LEMMA 2.16. For every viable sieve of the form
W
i∈I ηi, there

exists a descriptor η such that
W
i∈I ηi ∨ η 6≤

W
i∈I ηi.

PROOF. By induction on the cardinality of I . We just consider
the case for |I| = 1, that is

W
i∈I ηi ≡ η′, the result follows by

straightforward induction. Consider the set {θ | η′ =⇒ θ X−→}.
Now choose any value v such that for all θ in this set θ !v−→
implies that there exists v′ 6= v such that θ !v′−→. Note that such
a v always exists because no descriptor can emit infinitely many
singleton types (indeed if from a stable form a session type can
emit just one output value, then this means that the output is on the
singleton containing that value). Then setting η ≡ !v.end proves
the result. �

The second auxiliary result simply states the correctness of rule
(PREFIX) generalized to a finite number of prefixes.

LEMMA 2.17. For allα1, . . . , αn, η, η
′, if η ≤ η′, thenα1. · · ·αn.η ≤

α1. · · ·αn.η′.

PROOF. By examination of the coinductive characterization of ≤
(Definition 2.11) it is easy to check that the result holds for n = 1.
The whole result follows from a straightforward induction on n. �

THEOREM 2.18 (Soundness and Completeness). The algorithm is
sound and complete with respect to ≤ and it terminates.

Duality. Duality can be reduced to subsessioning since η on η′

if and only if η ≤ η′, where we write η for the canonical dual
of η, namely the least descriptor in the set-theoretic interpretation
of η. Computing η is trivial once η is in strong normal form (see
Theorem 2.15): it suffices to change every ? into !, every + into
⊕ and viceversa, and to coinductively apply the transformation to
the continuations leaving end descriptors unchanged. Regularity
ensures that the transformation terminates (by using memoization
techniques) and showing that the obtained session descriptor is the
canonical dual of η is a trivial exercise.

3. Typing
In the following section we first show how the session type theories
discussed in various papers fit in our framework, and then we type
a π-calculus and an object-oriented calculus in order to show the
flexibility and espressivity of our approach.

3.1 Expressing existing session type theories
All monomorphic dyadic session type theories proposed in the
literature are particular cases of the session descriptors discussed
here.

The first version of session descriptors can be traced back to the
seminal work of Honda, Vasconcelos, and Kubo [22] in the context
of process algebras. In the same context [3] enhances sessions
with correspondence assertions. Later on Vasconcelos, Gay, and
Ravara have extended the approach to multithreaded functional
languages [29]. In all these works session descriptors embed two
n-ary operators for internal and external choice, which are strictly
coupled with the communication of labels that indicate the selected
branch in a choice. The session descriptors of [22, 3, 29] can be
written in our model as follows:

η ::= end | α.η |
L

i∈I !`i.ηi | Σi∈I?`i.ηi
α ::= !t | ?t | !η | ?η

where we consider labels as singleton types. The same syntax
can be used to describe the session descriptors developed for
CORBA [28], Boxed Ambients [18], and the ones used to type
the Conversation Calculus [5]. To draw a parallel with sequential
languages, to pass from the systems above to our framework is like
passing from a language with labels and records, in which the se-
lection of the code to be executed is driven by the label received,
to a language with dynamically resolved overloaded functions in
which the code is selected according to the type of the received
value.

In the context of object-oriented languages, session type theo-
ries assuring type safety and progress were investigated in MOOSE
[14], AMOOSE [10], and MOOSE<: [13]. The syntax of all ses-
sion descriptors discussed in the above papers, but for [13] where
bounded polymorphism is considered, are special cases of our
model, after identifying recursive types with their infinite unfold-
ing. More specifically, the syntax of the session descriptors in [14]
and [10] can be reduced to:
η ::= end | α.η | !true.η ⊕ !false.η | ?true.η + ?false.η
α ::= !t | ?t | !η | ?η
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since these works deal with sessions where branching is controlled
by means of boolean conditions.

A calculus that amalgamates the notion of session-based com-
munication with the one of object-oriented programming is pre-
sented in [6, 2]. In these works sessions and methods are unified,
channels are implicit, and delegation is realized by means of ses-
sion calls. Branching is determined by the runtime type of the ob-
ject being communicated. Session descriptors with this form of de-
pendencies can be written very naturally in our model as:

η ::= end |
L

i∈I !Ci.ηi | Σi∈I?Ci.ηi

where Ci are class names in [2] and generic class names in [6]. The
cited works hardcode different selection policies for branching. We
can easily reproduce them all by using Boolean combinators on
classes.

3.2 π-calculus
The most interesting observation on process typing is that with our
framework sessions can be typed in the standard π-calculus with
internal/external choices and bound/free outputs (with the single
modification on the type-based selection of external choices we de-
scribed in the introduction), without primitive operators tailored to
session-based communications (in the spirit of Kobayashi’s [26]).
The intuition is that bound outputs, written c!(x : η), are session
initiations where c is the public channel of the session and x the
session private channel of descriptor η; free outputs are reserved
for session communications/delegations, and inputs are either ses-
sion communications or session connections according to whether
they are meant to synchronize with free or bound outputs, respec-
tively. For example, the following process models a node that han-
dles communications described by a protocol η and delegates com-
munications described by unknown protocols to a sibling node, in
a token-ring fashion:

NODE(mypublicname, nextpublicname, η, P ) =
mypublicname?(x : ?>.end). /* accept */

x?(y : η).P /* catch&handle */
+x?(y : ¬η). /* catch&delegate */

nextpublicname!(z : !>.end). /* request */
z!y /* throw */

The node waits for a connection on its public channel mypublicname
and, once the connection is made, catches on the established ses-
sion channel x a delegated session y of an arbitrary descriptor (>
is the top sieve). If the delegated session is of protocol η (this is
checked by using an external choice), then the node handles the
delegated session in the process P , otherwise it connects to a sib-
ling node nextpublicname (via a bound output) and delegates y
to it (via a free output). Both mypublicname and nextpublicname
are public channels of type begin.!>.end. Under these hypotheses
and provided that y is used in P according to η, the process above
results typeable by the type system given right after the formal def-
inition of the syntax and semantics of our π-calculus for session
types ( PiST) we present next.

3.2.1 Syntax and semantics of PiST

The main design criterion for our process calculus PiST is mini-
mality and similarity to π-calculus: we define the smallest calculus
that allows us to use all the characteristics of our session types. The
syntax is given in Table 3. It is a π-calculus with internal and ex-
ternal choices, free outputs on bound channels and bound outputs
on free channels respectively denoted by h!e and a!(x : η). Pro-
cesses are the possibly infinite regular trees that are generated by
the productions in Table 3 and that satisfy the contractivity con-
dition requiring that on every infinite branch there are infinitely
many applications of the prefixed process. Contractivity rules out

processes of the form, for instance, P = P⊕P and—as for types—
it provides an induction principle based on the Noetherian relation
P1 + P2 . Pi and P1 ⊕ P2 . Pi .

(prefixes) π ::= u?(x : ψ) | h!e | a!(x : η)
(processes) P,Q ::= 0 | π.P | P ⊕ P | P + P
(public channels) a ::= x | cbegin.η

(private channels) h ::= x | k
(channels) u ::= a | h
(expressions) e ::= u | · · ·
(systems) S,T ::= P | S‖S

Table 3. Syntax of PiST processes and systems.

The calculus does not include restrictions or parallel compo-
sition. Parallel composition is present only at the upper level of
systems where session conversations take place. We do not need
explicit restriction, those implicitly defined in bound outputs are
enough3 and are implemented by resorting to internal channels,
denoted by k. These appear greyed in the productions to stress that
such channels occur only at runtime (they cannot be written by the
programmer but they are generated at session connection). We as-
sume that “˜” is a bijective mapping from internal channels to in-
ternal channels with k 6= k̃ and that is an involution (i.e., ˜̃k = k, a
technique quite common in calculi for sessions). We say that k and
k̃ are dual. Dual channels represent the two end-points of a ses-
sion. Besides internal channels, expressions include channel vari-
ables (ranged over by x), channel values (i.e., session public names,
ranged over by c and tagged by their smallest type, which is of the
form begin.η to enforce the strong disjunction property (5)), and
the expressions of the host language (represented in the produc-
tions by dots). We use v to range over both channel values and host
language values and suppose given the relation v ∈ t that associates
each host language value with its types and each channel value with
the types larger than or equal to its tag.

The set of labels ` is defined by

` ::= τ | n?(x : ψ) | k!m | ct!(x : η)

where m ::= v | k and n ::= ct | k .
As customary, τ denotes internal silent moves, while the other

labels are synchronization signals whose form is already quite
informative. They tell us that synchronization can happen only on
closed channels (ranged over by n: this excludes channel variables),
that is, private channels for communication and public channels
for session connection. Also bound outputs can send only closed
expressions (ranged over by m, that is values and private channels:
the latter are not values though they operationally behave like them,
since they are not associated to a type). Public channels appear
tagged also in labels: though this tagging is not used it allows us
to have more compact rules.

The labelled transition rules for processes are straightforward
and they can be found in Table 4. They handle the irrevocability
of outputs and compute expressions before synchronization. The
semantics of systems is the standard π-calculus semantics apart the
two points we evoked before, namely that outputs are irrevocable
and that selection for external choices is based on the type of
the arguments. This last point is showed by the synchronization
rules for systems, presented in Table 5. Since the descriptors of
internal channels evolves as long as the protocol advances, the

3 We could have introduced at system level restrictions of the form (νc :
begin.η) so as to declare public session channels, limit their scope, and
avoid explicit public channel tagging. We preferred to focus on a slightly
simpler calculus.
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R-SEND
e ↓ m

k!e.P
k!m−→ P

R-RECEIVE

n?(x : ψ).P
n?(x:ψ)−→ P

R-CONNECT

ct!(x : η).P
ct!(x:η)−→ P

R-INTCH

P ⊕ Q
τ−→ P

R-EXTINT

P
τ−→ P′

P + Q
τ−→ P′ + Q

R-EXTSEND

P
k!m−→ P′

P + Q
τ−→ P

R-EXTCH

P
`−→ P′ ` 6= τ

P + Q
`−→ P′

Table 4. PiST process reduction rules.

LIFT

P
`−→ P′

Σ ` P
`−→ Σ ` P′

PAR

Σ ` S `−→ Σ′ ` S′

Σ ` S‖T `−→ Σ′ ` S′ ‖T

CONNECTION

Σ ` S ct!(x:η)−→ Σ ` S′ Σ ` T ct?(x:η′)−→ Σ ` T′ k 6∈ dom(Σ)

Σ ` S‖T τ−→ Σ, k : η, k̃ : η′ ` S′[k/x]‖T′[k̃/x]

COMMUNICATION

Σ ` S k!v−→ Σ ` S′ Σ ` T k̃?(x:t)−→ Σ ` T′ v ∈ t

Σ, k : η, k̃ : η′ ` S‖T τ−→ Σ, k : η〈!v〉, k̃ : η′〈?v〉 ` S′ ‖T′[v/x]

DELEGATION

Σ ` S k!k′−→ Σ ` S′ Σ ` T k̃?(x:χ)−→ Σ ` T′ Σ(k′) ≤ χ
Σ, k:η, k̃:η′ ` S‖T τ−→ Σ, k:η〈!Σ(k̃′)〉, k̃:η′〈?Σ(k̃′)〉 ` S′ ‖T′[k′/x]

Table 5. PiST system reduction rules.

label transition system uses session environments—i.e., maps from
internal channels to session descriptors, ranged over by Σ—to
keep track of this evolution. The type-based dynamic branching
is then implemented by the last two rules, according to which
synchronization takes place only if the objects of the outputs match
the type (v ∈ t) or the sieve (Σ(k′) ≤ χ) of the input. These two
rules also record in the session environment that a synchronization
step has been consumend and thus update the descriptors of the
current session with the corresponding sucessor. Note also that
a new session is started (rule CONNECTION) only when a bound
output is performed on a channel value, in that case a new pair k, k̃
of internal channels is spawned, and their descriptors are recorded
in the session environment. Finally note that the dynamic checks
in the last two rules are needed and used to drive the computation,
since external choices are dynamically selected by using the type of
the communicated value, or the descriptor of the delegated session.

We adopt the standard conventions of using τ
=⇒ to denote τ−→

∗

(i.e., the reflexive and transitive closure of −→) and `
=⇒ to denote

τ
=⇒ `−→ τ

=⇒.

3.2.2 Typing of PiST

The original motivation for introducing session types [21, 22] was
to ensure that values sent and received in communication protocols
were of appropriate types and that the two partners always agreed
on how to continue the conversation. A type system ensuring also

the progress property, i.e., that a started session cannot get stuck if
the required connections are available, was first proposed in [15].

In the present calculus, as in [13], the operational semantics it-
self ensures that there cannot be a type mismatch in communica-
tions, since all checks are performed at the moment of the synchro-
nisation. So, for example, while the system k!3 ‖ k̃?(x : Bool)
would be stuck, it cannot be generated by our processes since a
CONNECTION rule can be executed only when the two session de-
scriptors of the private channels are dual. In this section we present
a type system which prevents also any deadlock due to the inter-
leaving of two or more sessions.

More precisely we want to ensure that whenever a well-typed
system is stuck (i.e., it cannot perform any internal reduction) it is
because either all its processes have successfully terminated or at
least one of them is on hold on a connection request. This means
that whenever a session is started, if it does not perform any further
connection, then either it eventually successfully terminates, or it
continues to interact (recall that both process and session descrip-
tors may be recursive). More formally:

DEFINITION 3.1 (Progress Property). A system S satisfies the pro-
gress property if ` S τ

=⇒ Σ ` S′ τX−→ implies that either S′ does

not contain internal channels or S′ ct(z:η)−→ .

Our process calculus is so close to the syntax of the session de-
scriptors that it is not difficult to imagine how to map a given chan-
nel to its session type. For instance, consider the process ct!(z :
η).z!(3).z?(x : Real).(z!(x)⊕ z!(true)) which opens a connection
on c in which it writes an integer, reads a real, and then decides
whether to send back the received real or a Boolean value. It is clear
that such a process is well typed when η =!Int.?Real.(!Real.end⊕
!Bool.end) and t is (a subtype of) begin.η. However, in order to
ensure the progress property, the way in which a process uses dif-
ferent sessions must be quite limited. Once a connection is estab-
lished, and a private channel, which we call the current session, is
spawned, then the process can act according to (combinations of)
the following options:

1. establish a new connection;

2. perform a communication (possibly paired with a branching) on
the current session;

3. end the current session by stopping using the corresponding
channel (there is no explicit end in processes, so the end of a
session is reached when its channel is no longer used, for every
possible continuation);

4. delegate on the current session the innermost, not ended, en-
closing session;4 the process stops using the delegated session;

5. receive a delegated session and using it in the continuation as
the current session.

Such restrictive behaviour corresponds to using sessions as crit-
ical regions that forbid deadlocks on circular waits. Each critical
region is associated with a particular internal channel: it is entered
whenever this channel is received by delegation or started by a con-
nect, it is closed when the channel is delegated or no longer used.
Once a process has entered a critical region all it can do is to com-
municate on the channel associated with the region or to enter a
new critical region. To see why these restrictions are necessary let
us comment few examples of deadlock.

4 A special case is when the filter is precisely end: in that case the process
can delegate any non active channel.
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T-AX

Γ , x : t ` x : t

T-VAL
v ∈ t

Γ ` v : t

T-SUB
Γ ` e : t′ t′ <: t

Γ ` e : t

T-SYS
Γ ` P : ∆

Γ  P : set(∆)

T-PAR
Γ  S : Λ1 Γ  T : Λ2

Γ  S‖T : Λ1 ∪Λ2

T-ZERO

Γ ` 0 : −

T-WEAK
Γ ` P : ∆ h 6∈ dom(∆ ∪ Γ)

Γ ` P : (h : end · ∆)

T-INT
Γ ` P : ∆ Γ ` Q : ∆

Γ ` P ⊕ Q : ∆

T-CONNECT-REQUEST

Γ ` P : (x : η · ∆) Γ ` a : begin.η

Γ ` a!(x : η).P : ∆

T-CONNECT-ACCEPT
Γ ` P : (x : η · ∆) η on η′

Γ ` cbegin.η′
?(x : η).P : ∆

T-COMM
Γ `∗ P : ∆

Γ ` P : ∆

T-RECEIVE
Γ , x : t ` P : (h : η · ∆)

Γ `∗ h?(x : t).P : (h : ?t.η · ∆)

T-SEND
Γ ` e : t Γ ` P : (h : η · ∆)

Γ `∗ h!e.P : (h : !t.η · ∆)

T-RECEIVES
Γ ` P : (h : η · x : η′) χ ≤ η′

Γ `∗ h?(x : χ).P : (h : ?χ.η)

T-SENDS
Γ ` P : (h : η · ∆) η′ ≤ χ

Γ `∗ h!h′.P : (h : !χ.η · (h′ : η′ · ∆))

T-INTCH
Γ `∗ P : (h : η1 · ∆) Γ `∗ Q : (h : η2 · ∆)

Γ `∗ P ⊕ Q : (h : η1 ⊕ η2 · ∆)

T-EXTCH
Γ `∗ P : (h : η1 · ∆) Γ `∗ Q : (h : η2 · ∆)

Γ `∗ P + Q : (h : η1 + η2 · ∆)

Table 6. Type system for PiST.

Let t1 = begin.!Int.end, η1 =!Int.end and η2 =?Int.end. A
first simple example of deadlock is given by

ct1 !(z1 : η1).bt1?(z2 : η2).z2?(x : Int).z1!6
‖ct1?(z3 : η2).bt1 !(z4 : η1).z3?(x : Int).z4!5

(13)

After two executions of the CONNECTION rule, both processes
starve waiting for values that are never sent. Note that the problem
here is generated by the process that provides the service c (i.e.,
the second one) since it makes a communication on (the private
channel of) c before having ended the session it requested on b.

Internal and external sums can produce deadlocks since they can
make choices unavailable as in

ct1?(z1 : η2).bt1?(z2 : η2).z1?(x : Int) + z2?(x : Int)
‖ct1 !(z3 : η1).z3!6‖bt1 !(z4 : η1).z4!5

(14)

and in the similar system obtained by replacing ⊕ to + . The
problem here is that the choice it is performed on different (open)
session: it should be either both on z2 (we use the inner session)
or both on z1 (we closed the inner session and passed on the outer
one). Another example is

ct1?(z1 : η3).z1?(x : Int) + bt1?(z2 : η2).z2?(x : Int).z1?(x : Bool)
‖ct1 !(z3 : η1).z3!6‖bt1 !(z4 : η1).z4!5

where η3 = (?Int + ?Bool).end: note that the connection on b
forbids the communication on the private channel created by the
connection on c.

Subtler examples of deadlock spring from session delegation,
whereby a (sequential) process can receive the dual of a channel it
already owns, making synchronization impossible. Consider

ct1?(z1 : η2).bt2 !(z2 : η4).z2!z1 ‖ct1 !(z3 : η1).
bt2?(z4 : η5).z4?(x : η2).x?(y : Int).z3!6

(15)

where t2 = begin.!(?Int.end).end, η4 =!(?Int.end).end, η5 =
?(?Int.end).end. This phenomenon may also jeopardise subject
reduction, as discussed in [30].

Such problems can be avoided by resorting to the strict usage
discipline we described earlier which is enforced by the typing
discipline defined in Table 6. The judgements for processes have
two possible forms

Γ ` P : ∆ and Γ `∗ P : ∆

where Γ is a type environment (a mapping from variables to types)
and ∆ is a session stack. The latter is a mapping from private chan-
nels to session descriptors to which identifiers of ended sessions
can be freely added (rule T-WEAK) and is used to record the ses-
sion descriptors of the channels used in P. It is organised as a stack
(the leftmost element being the top) to keep track of the current ses-
sion, that is the most recently created one (i.e., in our analogy, the
one associated with the current critical region). The stack allows us
to avoid the first example (13) of deadlock, by organising sessions
as nested critical regions in which a channel cannot be used unless
all nested sessions have been consumed (either because they ended
or because they were delegated to some other process). Actions are
allowed only if their subject is the current session channel, the one
on the top of the stack (rules T-CONNECT-REQUEST, T-CONNECT-
ACCEPT, T-SEND, T-RECEIVE, T-SENDS, and T-RECEIVES) and
they are recorded in the conclusion. In addition, the rules for com-
munication check that type constraints are satisfied while sieve con-
straints are checked by the delegation rules.

The rule T-CONNECT-ACCEPT hides several subtleties. If a pro-
cess contains the action cbegin.η′

?(x : η).P it means that it provides
the service c and it implements it by the process P. Note that in P
the corresponding private channel implements a behaviour dual of
the one that tags c. Therefore the tag of a public channel declares
the behaviour that all clients of the service must follow. In other
terms it describes the most demanding client this service is ready to
serve. Also note that the typing rule imposes that the acceptance of
a connect can only be written for an actual public channel and not
for a variable of the corresponding type. This corresponds to the
everyday practice that a service is associated to a particular URL
instead of being dynamically bound to it (which does not prevent
several processes to implement the same service) and enforces the
assumption—we did in Section 2.2.1—that the only way to use a
public service name is to call it. In other words, while the public
names of services are first class and, as such, they can be passed
around in communications, the only way to use them is to request a
connection on them. Technically, this restriction allows us to avoid
the use of polarities to type communications: because of the use of
duality in the T-CONNECT-ACCEPT one should require contravari-
ance for channels used for session acceptance, covariance for those
used for session request and invariance for channels used in both
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cases. The solution we chose, besides being natural, corresponds to
enforcing invariance when accepting connections.

To deal with the deadlocks induced by sums, illustrated by ex-
ample (14), we use the `∗ judgements which ensure that the pro-
cesses in the conclusion offer communications just on the channel
that is on the top of the stack. Two processes can be composed by
means of an internal choice only if either they are typed by exactly
the same stack (rule T-INT) or if they differ for the typing of only
one channel on which a communication is immediately available
(rule T-INTCH). They can be composed by an external choice only
in the latter case, that is, if they differ for the typing of only one
channel on which a communication is immediately available (rule
T-EXTCH).

The example of deadlock due to delegation, illustrated by exam-
ple (15), is avoided by requiring that the only other internal channel
that can occur in a process accepting a delegation is the channel on
which the delegation took place (rule T-RECEIVE).

The typing discipline is lifted to systems by simply merging all
channel assumptions, disregarding the order in which they appear
(by means of the operator set), and obtaining in this way session
environments, ranged over by Λ (these are the same as those in the
dynamic semantics, but we preferred to use a different metavariable
to avoid confusion).

Since evaluation consumes session descriptors and adds fresh
initial channels with their descriptors, we need to introduce a partial
order 2 on session stacks and session environments so that subject
reduction can be formulated as follows.

THEOREM 3.2 (Subject Reduction for Processes). If Γ ` P : ∆

and P
`−→ P′, then Γ ′ ` P′ : ∆′, where ∆ 2 ∆′.

THEOREM 3.3 (Subject Reduction for Systems). If Γ  S : Λ

and Σ ` S `−→ Σ′ ` S′, then Γ  S′ : Λ′, where Λ 2 Λ′.

The definition of 2 together with the proofs of the above theorems
are given in Appendix B.1.

Progress clearly fails for systems that contain free variables
or internal channels that are not properly paired. For this reason
our typing can only ensure progress for initial systems defined as
follows:

DEFINITION 3.4 (Initial system). A well-typed system is initial if
it is the parallel composition of closed processes in which no
internal channel occurs.

The proof of progress depends on the remark that the session
environments in the operational semantics and in the typing of
systems respectively give the objective and subjective views of the
internal channel behaviours. For example consider the system

S = k!3.k?(x : 2 ∨ 4)‖ k̃?(y : 3).k̃!2 + k̃?(y′ : 3).k̃!4.

which is formed by two processes that are carrying on a session
over the internal channels k and k̃. We get

{k : !3.?(2 ∨ 4).end, k̃ : ?3.!2.end + ?3.!4.end} ` S τ−→ Σ′ ` S′

where Σ′ = {k : ?(2 ∨ 4).end, k̃ : !2.end ⊕ !4.end} and S′ =
k?(x : 2 ∨ 4) ‖ k̃!2, while  S′ : {k : ?(2 ∨ 4).end, k̃ : !2.end}.
The descriptor of k̃ in Σ′ is the internal choice between !2.end and
!4.end, since an observer does not know if the value 3 was received
by the process k̃?(y : 3).k̃!2 or by the process k̃?(y′ : 3).k̃!4.
Instead the descriptor of k̃ in the typing of S′ is !2.end, since the
value 3 was received by the process k̃?(y : 3).k̃!2.

More precisely the session environments created in the opera-
tional semantics starting from an initial system assigns to internal
channels equal or smaller descriptors than the session environments

used in typing. This is the content of the following lemma which is
the cornerstone of the proof of progress.

LEMMA 3.5. If S is initial and ` S τ
=⇒ Σ ` S′, and  S′ : Λ,

then Σ(k) ≤ Λ(k) for all k which occur in S′.

An interesting consequence of the lemma above is that our
system satisfies the fidelity of communications, that is to say, that
once a session is started communications happen in the expected
order and they exchange data of the expected types.

We now state the progress theorem whose proof is the content
of Appendix B.2.

THEOREM 3.6 (Progress). Every initial system satisfies the progress
property.

It is interesting to note that if we disregard the order in the session
stack (i.e., we use session environments in all the rules) and we
allow an arbitrary session stack in the premise of rule T-RECEIVE,
then we get a type system which still enjoys subject reduction but
no longer guarantees progress.

3.3 An OO calculus
We already hinted in Section 3.1 that Bettini et al. [2] propose to
embed sessions object-oriented languages by unifying methods and
sessions. In this section we show how to enhance their type system
by using the general session descriptors: in particular we enable
session overloading, that is, we allow the same session name to be
declared with different session descriptors in a class hierarchy. At
run time an appropriate session body will be chosen based on the
duality and subsieving relations. As in [2] we disregard from the
formal treatement type cast and method/field overriding (since they
are features orthogonal to sessions), as well as while commands
(for the sake of simplicity).

3.3.1 Syntax of the OO calculus

The calculus of [2] is based on Featherweight Java [24] (abbrevi-
ated with FJ).

The syntax of the OO calculus is given in Table 7. Programs are
defined from a collection of classes whose names are ranged over
by, possibly subscripted, metavariables C and D. Each class has a
name, a list of fields (we use the standard convention of denoting
with ξ a sequence of elements ξ1, ..., ξn) of the form t f, where
f represents the field name and t its type, and a list of sessions
of the form t η s { e }, where t is the return type, η the session
descriptor, s the session name, and e the session body. For the sake
of conciseness the symbol C represents class extension, as in [24].
All classes are defined as extensions of the topmost class Object.

Expressions include variables. These are either standard term
variables, ranged over by x, or the special variable this. The vari-
able this is considered implicitly bound in every session declara-
tion.

In a session request e.s {e′ : η} we call the expression e′ the
cobody of the request (since it will be evaluated concurrently with
the body of requested session). The session descriptor η describes
the communications offered by the expression e′.

In the session delegation expression, e • s {k : χ}, the sieve
χ represents the communication requirements in the choice of
the session body and the channel k is added by the operational
semantics in order to keep track of the channel to pass to the
delegated session.

Channels are implicit in the source language syntax. At run-
time, a pair of dual communication channels are introduced at each
new session request and used for all communications of the ses-
sion. Communications take place by synchronizing output actions
send with input actions receive. These occur in communication

13 2009/2/3



(class) L ::= class C C C { t f; S }
(session) S ::= t η s { e }
(expression) e ::= x | this | o | e; e | e.f:= e | e.f | new C(e)

| e.s {e : η} | e • s { k : χ}
| k. send(e){t⇒ e 8 t⇒ e}
| k. recv(x){t⇒ e 8 t⇒ e}

(threads) P ::= e | P || P

Table 7. OO: Syntax (syntax occurring only at runtime is
shaded ).

expression and are associated to a body that specifies a pair of al-
ternatives {t1 ⇒ e1 8t2 ⇒ e2}, whose choice depends on the class
of the object that is sent or received. These choices correspond to
the internal (for send) and external (for recv) choices we used in
our system.

A runtime expression is either a user expression (i.e. an expres-
sion in Table 7 without shaded syntax) or an expression containing
channels and/or object indentifiers. We call source language the
language formed by all user expressions. Furthermore, threads of
runtime expressions can occur at runtime (see the operational se-
mantics). Parallel threads are ranged over by P . Fully evaluated
objects will be represented by object identifiers denoted by o.

3.3.2 Auxiliary Functions

As in FJ, a class table CT is a mapping from class names to
class declarations. Its domain, denoted by D(CT), is the set of all
defined class names. Then a program is a pair (CT, e) of a class
table (containing all the class definitions of the program) and an
expression e (a user expression belonging to the source language
representing the program’s main entry point). The class Object
has no fields (in FJ the empty sequence is denoted by •) and its
declaration does not appear in CT. As in FJ, from any CT we
can read off the subtype relation between classes, as the transitive
closure of C clauses.

We assume a fixed CT . Thus, in the following, instead of writing
CT(C) = class . . . we will simply write class C . . .. The
class table CT satisfies some usual sanity conditions as in FJ [24]
but, contrary to [2], we allow the same session name to be declared
with different session descriptors in a class hierarchy, thus enabling
session overloading.

The definitions of static and dynimic semantics rely on some
auxiliary functions. The lookup function fields, which returns the
sequence of fields of a class, is defined as in FJ. As for field type
lookup we distinguish between the contexts where the field is used
for reading (ftyper) from those where it is used for writing (ftypew).

In [2] every session name in a class is associated with a unique
session descriptor. Since we enable session overloading, in our case
every session name in a class is associated to a set of session
descriptors. This set is looked up by the fuction stype, whose
parameters are a type and a session name. Since this fuction can
be applied not only to classes but to any other type, thenthe stype
lookup function returns a set of sets of session descriptors: in case
it is invoked with a class name as argument, it returns a singleton
containing a set of session descriptors. In this way we take into
account the overloading and the fact that, in general, the type of the
receiver is a boolean combination of classes.

The stype function is refined by the rtype and the sbody lookup
functions, which take as a further arguments a session descriptor:
they return the return type of a session and the body of a session,
respectively.

All these functions are defined in Table 8, where we define

m(f, a, t1, t2) =

8><>:
f(a, t1) if t1 ≤ t2,

f(a, t2) if t2 ≤ t1,

⊥ otherwise.
.

3.3.3 Operational Semantics

Session invocation involves the creation of concurrent and commu-
nicating threads. These threads communicate by means of a pair of
dual communication channels.

Objects passed in asynchronous communications are stored in
a heap. A heap h is a finite mapping with domain consisting of
objects and channel names. Its syntax is given by:

h ::= [ ] | o 7→ (C, f : o) | k 7→ o | h ::h

where::denotes heap concatenation.
The operational semantics associates to k and k̃ two different

queues of messages in the heap; when a thread that uses the channel
k wants to receive a message it inspects the queue associated to k,
while, when it sends a message it adds it to the queue associated to
k̃.

During evaluation, every expression new C(o) is replaced by a
new object identifier o. The heap then maps the object identifier
o to the pair (C, f : o) of its class name C and the list of its
fields f with corresponding objects o; this mapping is denoted by
o 7→ (C, f : o).

The form h[o 7→ h(o)[f 7→ o′]] denotes the update of the field
f of the object o with the object o′.

Channel names are mapped to queues of objects: k 7→ o. The
heap produced by h[k 7→ o] maps the channel k to the queue o.
With an abuse of notation we write o :: o and o :: o to denote the
queue whose first and, respectively, last element is o.

Heap membership for object identifiers and channels is checked
using standard set notation, by identifying h with its domain, we
can also write o ∈ h, and k ∈ h.

The values that can result from normal termination are parallel
threads of fully evaluated objects.

In the reduction rules we make use of the special channel ad-
dition operation *...+ defined in Table 9. We denote by e * k+ the
user expression e in which all occurrences of receive, send, and del-
egation expressions which are not within the cobody of a session
request are extended, so that they explicitly mention the channel k
they will use (remember that channel names are not written by the
programmer).

The reduction is a relation between pairs of threads and heaps:

P, h −→ P ′, h′

Reduction rules use evaluation contexts (based on runtime syntax)
that capture the notion of the “next subexpression to be reduced”:

E ::= [−] | E ; e | E .f | E .f := e | o.f := E | E .s {e : η} |
E • s {k : χ} | k.sendC(E ){t1 ⇒ e1 8 t2 ⇒ e2}

The explicit mention of the evaluation context is needed in rule
SESSREQ-R (Table 10), in which a new thread is generated in
parallel with the evaluation context.

Reduction rules are in Table 10. Rule PAR-R models the execu-
tion of parallel threads. In this rule parallel composition is consid-
ered modulo structural equivalence. As usual, we define structural
equivalence rules asserting that parallel composition is associative
and commutative:

P || P1 ≡ P1 || P P || (P1 || P2) ≡ (P || P1) || P2

P ≡ P ′ ⇒ P || P1 ≡ P ′ || P1

The successive four rules define the execution of standard object-
oriented constructions.
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fields(Object) = •
fields(D) = t′ f′ class C C D { t f; S }

fields(C) = t f, t′ f′

fields(C) = t f

ftypew(fi, C) = ftyper(fi, C) = ti

ftypew(f, t1 ∧ t2) = m(ftypew, f, t1, t2) ftyper(f, t1 ∧ t2) = m(ftyper, f, t1, t2)

ftypew(f, t1 ∨ t2) =

8><>:
ftypew(f, t1) if ftypew(f, t1) ≤ ftypew(f, t2),

ftypew(f, t2) if ftypew(f, t2) ≤ ftypew(f, t1),

⊥ otherwise.

ftyper(f, t1 ∨ t2) = ftyper(f, t1) ∨ ftyper(f, t2) ftypew(f,¬t) = ftyper(f,¬t) = ⊥

class C C D { t f; S } t η s { e } ∈ S stype(s, D) = {{η′}}
stype(s, C) = {{η, η′}}

class C C D { t f; S } s 6∈ S

stype(s, C) = stype(s, D)

stype(s, t1 ∧ t2) = m(stype, s, t1, t2) stype(s, t1 ∨ t2) = stype(s, t1) ∪ stype(s, t2) stype(s,¬t) = ⊥

class C C D { t f; S } t η s { e } ∈ S

rtype(s, η, C) = t

class C C D { t f; S } t η s { e } 6∈ S

rtype(s, η, C) = rtype(s, η, D)

rtype(s, η, t1 ∧ t2) = m(rtype, s, η, t1, t2) rtype(s, η, t1 ∨ t2) = rtype(s, η, t1) ∨ rtype(s, η, t2) rtype(s, η,¬t) = ⊥

class C C D { t f; S } t η s { e } ∈ S

sbody(s, η, C) = e

class C C D { t f; S } s 6∈ S

sbody(s, η, C) = sbody(s, η, D)

Table 8. OO: Lookup Functions.

e*k+ =

8>>>>>>>>>>><>>>>>>>>>>>:

e1 * k + ;e2 * k+ if e = e1;e2,

e1 * k + .f if e = e1.f,

e1 * k + .f:=e2 * k+ if e = e1.f:=e2,

e1 * k + .s {e2 : η} if e = e1.s {e2 : η},
e1 * k + •s {k : χ} if e = e1•s {χ},
k.sendC(e0 * k+){C⇒ e * k+} if e = sendC(e0){C⇒ e},
k.recC(x){C⇒ e * k+} if e = recC(x){C⇒ e},
e otherwise.

Table 9. OO: Channel Addition

Rule SESSREQ-R models the connection between the cobody e
of a session request o.s {e : η} and the body e′ of the session s, in
the class of the object o, under the condition that e and e′ have dual
session descriptors. This connection is established through a pair
of fresh channels k, k̃. For this purpose the expression o.s {e : η}
reduces, in the same context, to its own cobody e*k+ and in parallel,
outside the context, it spawns the body [o/this]e′* on k+ of the
called session. The explicit substitution of k in e and of k̃ in e′

ensures that the communication is on the fresh dual channels k and
k̃. Thus, an object can serve any number of session requests.

Rule SESSDEL-R replaces the session delegation o • s {k : χ}
by [o/this]e * k+, where e is a body of the session s, in the class
of the object o, such that the session descriptor of e is bigger or
equal to the sieve required by the delegation constructor. A part of
the communication is delegated via the channel k to the object o:
this delegation is transparent for the thread using the dual channel
k̃. When the delegated job is over, the original thread can resume
the communication via the channel k.

The communication rule for sendC, SENDCASE-R, puts the
object o, i.e. the result of evaluating the expression e, in the queue
associated to the dual channel k̃ of the communication channel k.

SESS-WF
{this : C} ` e : t # η

t η s { e } ok in C

CLASS-WF
D ok S ok in C

class C C D { t f; S } ok

Table 12. OO: Well-formed Class Tables.

The computation then proceeds with the expression ei, if h(o) =
(C, ) and C ≤ ti. Clearly if C ≤ t1 and C ≤ t2, the choice
between e1 and e2 is non-deterministic, but we could choose some
policy in order to have a deterministic choice, as done in [6], [2].
Dually the receive communication rule takes an object o from the
queue associated to channel k and returns the expression [o/x]ei, if
h(o) = (C, ) and C ≤ ti.

3.3.4 Typing

The presence in our calculus of the sequencing operator and of
other operators which implicitly put in sequence the evaluation of
expressions makes useful the definition of a concatenation operator
( ◦ ) between session descriptors and the addition of the neutral
element with respect to concatenation (ε). Instead we do not need
the explicit session terminator end, so to sum up we have the
following syntax for session descriptors:

η ::= ε | !t.η ⊕ !t.η | ?t.η + ?t.η

and we define:

η ◦ η′ =

(
η′ if η = ε,

α.(η′′ ◦ η′) if η = α.η′′

where α ∈ {!t, ?t}. The descriptor ε is dual of itself.
We first define typing for user expressions, in which commu-

nication channels are implicit. For technical reasons it is useful
to consider also expressions with occurrences of object identifiers,
which are not directly expressible in user syntax. We call these ex-
pressions channel free expressions. The term environments there-
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PAR-R
e, h −→ P, h′

e || P1, h −→ P || P1, h
′

SEQ-R
E [o; e], h −→ E [e], h

FLD-R
h(o) = (C, f : o)

E [o.fi], h −→ E [oi], h
NEWC-R

fields(C) = t f o 6∈ h
E [new C(o)], h −→ E [o], h :: [o 7→ (C, f : o)]

FLDASS-R
E [o.f := o

′], h −→ E [o′], h[o 7→ h(o)[f 7→ o
′]]

SESSREQ-R
h(o) = (C, ) η on η′ sbody(s, η′, C) = e′ k, k̃ 6∈ h
E [o.s {e : η}], h −→ E [e * k+] || [o/this]e′ * k̃+, h[k, k̃ 7→ ()]

SESSDEL-R
h(o) = (C, ) χ ≤ η sbody(s, η, C) = e

E [o • s {k : χ}], h −→ E [[o/this]e * k+], h

SENDCASE-R
h(k̃) = o h(o) = (C, ) C ≤ ti

E [k.sendC(o){t1 ⇒ e1 8 t2 ⇒ e2}], h −→ E [ei], h[k̃ 7→ o :: o]

RECEIVECASE-R
h(k) = o :: o h(o) = (C, ) C ≤ ti

E [k.recC(x){t1 ⇒ e1 8 t2 ⇒ e2}], h −→ E [[o/x]ei], h[k 7→ o]

Table 10. OO: Reduction Rules.

AXIOM-T
Γ ` z : Γ(z) # ε

SUB-T
Γ ` e : t # η t ≤ t′

Γ ` e : t′ # η

NEWC-T
fields(C) = t f Γ ` ei : ti # ε

Γ ` new C(e) : C # ε
FLD-T

Γ ` e : t # η
Γ ` e.f : ftyper(f, t) # η

SEQ-T
Γ ` e : t # η Γ ` e

′ : t′ # η′

Γ ` e;e
′ : t′ # η ◦ η′

FLDASS-T
Γ ` e : t # η Γ ` e

′ : ftypew(f, t) # η′

Γ ` e.f := e
′ : ftypew(f, t) # η ◦ η′

SESSREQ-T
Γ ` e : t # η Γ ` e′ : t′ # η′ ∀{η} ∈ stype(s, t)∃η′′ ∈ η.η′ on η′′

Γ ` e.s {e′ : η′} : t′ # η
SESSDEL-T
Γ ` e : t # η η′ ≤ χ ∀{η} ∈ stype(s, t)∃η′′ ∈ η.χ ≤ η′′ {η} ∈ stype(s, t) & η′′ ∈ η & χ ≤ η′′ =⇒ rtype(s, η′′, t) = t′

Γ ` e • s {χ} : t′ # η ◦ η′

SENDC-T
Γ ` e : t1 ∨ t2 # η Γ ` ei : t # ηi

Γ ` send(e){t1 ⇒ e1 8 t2 ⇒ e2} : t # η ◦ (!t1.η1 ⊕ !t2.η2)

RECEIVEC-T
Γ , x : ti ` ei : t # ηi

Γ ` recv(x){t1 ⇒ e1 8 t2 ⇒ e2} : t # ?t1.η1 + ?t2.η2

Table 11. OO: Typing Rules for Channel Free Expressions.

fore will contain also type assignments to object identifiers. This
permits a simpler formulation of the runtime typing rules.

The typing judgement has the shape

Γ ` e : t # η

where Γ is a term environment, which maps this, variables and
objects to types, and η represents the session descriptor of the
(implicit) active channel.

Typing rules for channel free expressions are in Table 11. For
the sake of simplicity in rule NEWC-T we require that the initial-
isation of an object does not involve communications. Notice that
in rule SEQ-T we use concatenation to represent that first the com-
munications in e1 and then those in e2 are performed.

The rule for session request SESSREQ-T prescribes that in all
sets of session descriptors which build stype(s, t) there is a session
descriptor which is dual of the session descriptor of the the cobody
e′. This assures that there is always a possible choice for the body of
the session s which will communicate properly with the cobody. In

typing session delegation (rule SESSDEL-T) we take into account
that the whole expression will be replaced by one of the session
bodies defined in the class of the expression to which the session
is delegated (cf. the reduction rule SESSDEL-R, Table 10). The
condition

χ ≤ η′ implies rtype(s, η′, t) = t′

assures that all bodies of s which can be chosen have the same
return type.

Table 12 defines well-formed class tables. Rule SESS-WF type
checks the session bodies with respect to the current class C taking
as term environment the association between this and C.

During evaluation of well-typed programs, channel names are
made explicit in send and receive expressions, as well as in session
delegation. Thus, in order to show how well-typedness is preserved
under evaluation, we need to define new typing rules for runtime
expressions. Furthermore, in typing runtime expressions, we must
take into account the session types of more than one channel: run-
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AXIOM-RT
Γ r̀ z : Γ(z) # ∅

SUB-RT
Γ r̀ e : t # Θ t ≤ t′

Γ r̀ e : t′ # Θ

NEWC-RT
fields(C) = t f Γ r̀ ei : ti # ∅

Γ r̀ new C(e) : C # ∅
FLD-RT

Γ r̀ e : t # Θ

Γ r̀ e.f : ftyper(f, t) # Θ

SEQ-RT
Γ r̀ e : t # Θ Γ r̀ e

′ : t′ # Θ′

Γ r̀ e;e
′ : t′ # Θ ◦Θ′

FLDASS-RT
Γ r̀ e : t # Θ Γ r̀ e

′ : ftypew(f, t) # Θ′

Γ r̀ e.f := e
′ : ftypew(f, t) # Θ ◦Θ′

SESSREQ-RT
Γ r̀ e : t # Θ Γ ` e′ : t′ # η ∀{η} ∈ stype(s, t)∃η′ ∈ η.η on η′

Γ r̀ e.s {e′ : η} : t′ # Θ
SESSDEL-RT
Γ r̀ e : t # Θ η ≤ χ ∀{η} ∈ stype(s, t)∃η′ ∈ η.χ ≤ η′ {η} ∈ stype(s, t) & η′ ∈ η & χ ≤ η′ =⇒ rtype(s, η′, t) = t′

Γ r̀ e • s {k : χ} : t′ # Θ ◦ {k : η}
SENDC-RT

Γ r̀ e : t1 ∨ t2 # Θ Γ r̀ ei : t # {k : ηi}
Γ r̀ k.sendC(e){t1 ⇒ e1 8 t2 ⇒ e2} : t # Θ ◦ {k : !t1.η1 ⊕ !t2.η2}

RECEIVEC-RT
Γ , x : ti r̀ ei : t # {k : ηi}

Γ r̀ k.recC(x){t1 ⇒ e1 8 t2 ⇒ e2} : t # {k : ?t1.η1 + ?t2.η2}

Table 13. OO: Typing Rules for Runtime Expressions.

time expressions contain explicit channel names (used for commu-
nication) thus session types must be associated with channel names
in an appropriate way. Then judgements have the form

Γ r̀ e : t # Θ

where Θ denotes a session environment which maps channels to
session descriptors.

A session environment maps only a finite set of channels to ses-
sion descriptors different from ε, and all the remaining to ε. We can
then represent one session environment with an infinite number of
finite sets which give all the meaningful associations and some of
the others. For example {k : η} and {k : η, k′ : ε} represent the
same environment. This choice avoids an explicit weakening rule
for session environments. Table 13 gives the typing rules for run-
time expressions, which differ from those for channel free expres-
sions for having session environments instead of a unique session
descriptor. For this reason we extend the concatenation of session
descriptors to session environments as follows:

Θ ◦Θ′(k) = Θ(k) ◦Θ′(k).

Notice that in rule SESSREQ-RT we are making use of the judge-
ment Γ ` e′ : t# η′, where the expression e′ does not contain chan-
nels, but it can contain object identifiers. This justifies our choice of
considering channel free expressions instead of user expressions in
the typing rules of previous subsection. Notice also that the session
environments of the branches in the communication expressions
only contain the current channel as subject, since these expressions
will never be reduced before the selection has been done.

Our type system enjoys subject reduction and assures progress
(−→∗ is the reflexive and transitive closure or −→):

THEOREM 3.7 (Subject Reduction and Progress). If ∅ ` e0 : t0 #
ε and e0, [ ] −→∗ P, h, where P ≡ e1 || . . . || en, then:

1. for each ei we get Γ r̀ ei : ti # Θi for some Γ , ti,Θi (1 ≤ i ≤
n), and there is j (1 ≤ j ≤ n) such that tj = t0, and;

2. either P, h −→ P ′, h′ for some P ′, h′, or for all i (1 ≤ i ≤ n)
ei is an object identifier.

The proof of this theorem is the content of Appendix C.
Notice that evaluation of closed expressions stops returning a

parallel of object identifiers and that an object identifier can be

typed, using the type system for channel free expressions, from the
context Γ which defines the type assumption for that identifier.

The runtime errors which our type system prevents are:

1. the selection of a field and the request of a session which do not
belong to the class of the current object;

2. the creation of a pair of dual channels whose communication
sequences do not perfectly match.

4. Conclusions and related work
We have defined a semantic theory of session types by subverting
the usual session type presentations, where the subtyping (and
subsession) relations are introduced first, and then shown to be
sound. Here we have focused on duality as the main characterizing
feature, and defined subtyping and subsessioning in terms of it.

We claim that our theory of session types is minimal—insofar
as the addition of any further constructor such as parallel compo-
sition or labeled synchronization would restrict the programming
language to which the framework could be applied—and yet com-
plete. The key ingredients of our theory are communication prim-
itives, behavioral composition operators for describing branching
points, and boolean composition operators for types and sieves. All
the existing proposal of session types of comparable expressiveness
can be obtained by using suitable combinations of these ingredients
and our session types can be used for typing generic π-calculus pro-
cesses without any dedicated primitive for session management.

The relation of our work with some others defining theories of
session types is already explored in Section 3. Subtyping relations
for session types are studied in [20, 19]. In these works the def-
inition of the subtyping relation is driven by the observation that
one can safely replace a session by another that externally offers
more choices and internally can make less choices. Since in the
cited works choices are guarded by labels, it turns out that exter-
nal and internal choices have the same subtyping relation as record
and variant types respectively. Here we work with external choices
that are driven by the messages being exchanged rather than by
labels: when a session offers an output it will be able to synchro-
nize only with the branches of a choice that accept that output. This
policy was first considered in [13] for an object-oriented calculus.
The resulting subtyping relation generalizes the safe substitutabil-
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ity principle of the existing settings by permitting (a combination
of) branches of a choice to subsume another set of branches. Fur-
thermore, while in the cited works the subtyping relation is defined
coinductively and axiomatically, we characterize the relation se-
mantically, and this captures directly the desired safety property.

Our approach to session type semantics is akin to the testing
approach to process semantics [11]: the notion of “passing a test”
is embodied in our notion of duality, and subsessioning is the
preorder induced by comparing the duals of two session types. In
particular, two session types are equivalent if they have the same set
of duals. Unlike the standard testing theories, our notion of duality
is symmetric (in the spirit of the session types literature).

Moving from label-driven to type-driven branch selection may
seem a regression, insofar as it demands run-time type checking.
This is not so in practice. First, when sessions are used as in any of
the existing session types proposals, branching can be easily opti-
mized by reducing run-time type checking to label/class matching.
Second, general value-based dispatching can be implemented very
efficiently anyway [16], with the exception of session type values
which may require to check subsessioning. In any case, it is rea-
sonable to assume that the matching overhead is negligible with re-
spect to latency time of communications typical of service-oriented
computing.

With respect to concurrency theory we introduce an original
treatment of output signals, by implementing a form of partial
asynchrony. This treatment is similar to the one proposed by Castel-
lani and Hennessy [9] for asynchronous CCS, where outputs cannot
be blocked even if they guard external choices (we called this prop-
erty “output irrevocability”). However, in our setting output signals
are allowed to have a continuation. Thus the order of actions spec-
ified by a session type must be strictly followed (equivalence of
session types modulo permutation of consecutive outputs is left for
future work). Technically, this corresponds to observing inputs even
in the presence of (partial) asynchrony.

From a technical viewpoint in this work we introduce several
novelties. We devise a new labeled transition system for session
descriptors in which actions represent values rather than types, we
give a semantic characterization of the subsessioning relation in
terms of a set-theoretic interpretation of session descriptors. The
same interpretation is used to give semantics to a complete set
of Boolean operators for session descriptors. A labeled transition
system for session types is also proposed in [1], where a type
system ensuring progress for the CaSPiS calculus [4] is designed.
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A. Proofs of Section 2
We will first prove Theorems 2.15 and 2.18 by simultaneous induc-
tion and then Proposition 2.10 and Theorem 2.12 since the latest
two proofs use the strong normal forms of sieves. Notice that this
does not introduce circularity since the first proof is independent
from Proposition 2.10 and Theorem 2.12.

A.1 Proof of Theorems 2.15 and 2.18
We prove Theorems 2.15 and 2.18 by simultaneous induction.
More precisely we consider the weight defined in the proof of
Theorem 2.6. Then we prove:

1. Each sieve χ can be effectively transformed into an equivalent
strong normal form whose weight is smaller than or equal to the
weight of χ.

2. χ 6≤ χ′ is decidable.

First of all notice that by classical set theoretic transformations
it is possible to put every sieve in disjunctive normal form. This can
be effectively done by the regularity of the trees. So let us assume
that all the sieves we use in this proof are in disjunctive normal
form.

Base case. The base case for weight 0 is when both χ and χ′ are
possibly empty sums of end’s. The normal form of all such sieves
is end (which can be obtained by rules (E1) and (I1) of Table 1)
and χ 6≤ χ′ is easily decidable.

Inductive case. Let us now study the inductive case, and there-
fore suppose the two properties hold for sieves of strictly smaller
weight. For the sake of the presentation we prove the two points
one after the other, although we should do the proof of the two
properties—in this order—for each case.

Thus let us start proving the point 1 by performing a case
analysis on the form of χ.

If χ ≡
W
i∈I

V
j∈J λij where |I| > 1, then we have to dis-

card all the intersections that are bottom, that is all
V
j∈J λij = ⊥.

Whether each of these intersections is equivalent to bottom can be
effectively decided by induction hypothesis thanks to the point 2
of the theorem. The normal form is then obtained by coinductively
applying the transformation on all remaining literals, which is pos-
sible thanks to the induction hypothesis.

If χ ≡
V
j∈J λj where at least one literal is not negated.

The normal form is either ⊥, or it is obtained by a coinductive
application of the transformation. The latter is always possible
thanks to the induction hypothesis. Thus all it remains to prove is
that we can decide whether χ is ⊥. Since we cannot directly use
the induction hypothesis (as we should apply it to the whole sieve),
let us separate negated literals from positive ones. That is, define
J = P ∪N , such that χ ≡

V
p∈P ηp ∧

V
n∈N ¬ηn. Then χ 6≤ ⊥

if and only if
L

p∈P ηp 6≤
W
n∈N ηn, if and only if—by the strong

disjunction property for descriptors—
L

p∈P ηp 6≤ ηn holds for all
n ∈ N . This can be decided by induction hypothesis using the
point 2 of the theorem.

If χ ≡
V
j∈J ¬ηj . As above, let us first show that it is possible

to decide that χ 6≤ ⊥, that is whether ¬
W
j∈J ηj 6≤ ⊥. This is

always true for Lemma 2.16, therefore we can coinductively apply
the transformation by induction hypothesis.

All the coinductive transformations above terminate by the reg-
ularity of our sieves. Furthermore it is easy to see that they do not
increase the weight of the sieves.

If χ ≡ η, and the descriptor is prefixed then we check that its
prefix is not ∅ (which can be done by induction hypothesis) and
possibly coinductively apply the transformation on its continuation.

Otherwise we will do the following transformations:

1. get rid of every subterm of the form ?ψ.η and !ψ.η such that
ψ = ∅ by means of rules (B1), (B2), (E8), and (I8);

2. get internal choices of external choices of prefixed descriptors
and end using (E4);

3. get internal choices of:
• external choices of input descriptors and possibly of end

• output descriptors
• possibly end

by applying the rules (O1), (O2), and (O3) inside the external
choices. I.e. we obtain a descriptor of the shape:M

J∈K

(
X
j∈J

?ψj .ηj{+ end})⊕
M
h∈H

!ψh.ηh{ ⊕ end} (16)

4. we have the following cases:

(a) K = ∅.
(b) H = ∅. Then (16) is equivalent to:X

j1∈J1

· · ·
X
jk∈Jk

?(ψj1 ∧ · · · ∧ ψjk ).(ηj1⊕· · ·⊕ηjk ){+end}

(17)
where K = {J1, . . . , Jk} and ψj1 ∧ · · · ∧ ψjk 6= ∅ and
end is present only if it occurs in all the external choices of
(16).

(c) K,H 6= ∅ and end is present in all external choices. Then
(16) is equivalent to

η =
M
h∈H

!ψh.ηh ⊕ end (18)

(d) K,H 6= ∅, at least one external choice has no end subterm.
Then (16) is equivalent to ⊥.

5. in cases (4a) and (4c) we can obtain an internal choice of
outputs and possibly end such that if !ψ and !ψ′ are two top
level prefixes we have ψ ∧ ψ′ = ∅ by applying rules (O4),
(O5), and (I5).

6. in case (4b) we obtain an external choice of inputs and possibly
end such that if ?ψ and ?ψ′ are two top level prefixes we have
ψ ∧ ψ′ = ∅ by applying rules (E5), (E6), and (E7).

7. we convert any χ occurring in a top level prefix in strong normal
form (this can be effectively done by the induction hypothesis).

8. we coinductively apply the algorithm to every continuation of
every top level guarded descriptor of the (internal or external)
choice.

Note that the coinductive application of the algorithm terminates
by the regularity of our descriptors. All it remains to prove is that
the passage from step (3.) to step (4.) is is sound, that is it yields an
equivalent descriptor.

For case (4a) this is trivial.
For case (4b) we have that equation (16) becomes an internal

choice of external choices of inputs. Let us examine the set of duals
of (16). Since we only have inputs then we have to check which
inputs are guaranteed. These are exactly all the inputs that are
guaranteed by all the summands of the internal choice, that is those
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[R-EX-SPLIT]X
i∈I

?ψi.ηi{+ end} ≤
X

j∈J\{k}

?ψ′j .η
′
j + ?(ψ′k \ ψh).η′k + ?ψh.η

′
k{+ end}

X
i∈I

?ψi.ηi{+ end} ≤
X
j∈J

?ψ′j .η
′
j{+ end}

„
ψh v ψ′k
ψh 6= ψ′k

«

[L-EX-SPLIT]X
i∈I\{h}

?ψi.ηi + ?(ψh \ ψ′k).ηh + ?ψ′k.ηh{+ end} ≤
X
j∈J

?ψ′j .η
′
j{+ end}

X
i∈I

?ψi.ηi{+ end} ≤
X
j∈J

?ψ′j .η
′
j{+ end}

„
ψ′k v ψh
ψh 6= ψ′k

«

[LR-EX-SPLIT]X
i∈I\{h}

?ψi.ηi + ?(ψh \ ψ′k).ηh + ?ψ′k.ηh{+ end} ≤
X

j∈J\{k}

?ψ′j .η
′
j + ?(ψ′k \ ψh).η′k + ?ψh.η

′
k{+ end}

X
i∈I

?ψi.ηi{+ end} ≤
X
j∈J

?ψ′j .η
′
j{+ end}

0@ ψ′k∧ψh 6= ∅
ψ′k∧ψh 6= ψ′k
ψ′k∧ψh 6= ψh

1A

[R-IN-SPLIT]M
i∈I

!ψi.ηi{ ⊕ end} ≤
M

j∈J\{k}

!ψ′j .η
′
j ⊕ !(ψ′k \ ψh).η′k ⊕ !ψh.η

′
k{ ⊕ end}

M
i∈I

!ψi.ηi{ ⊕ end} ≤
M
j∈J

!ψ′j .η
′
j{ ⊕ end}

„
ψh v ψ′k
ψh 6= ψ′k

«

[L-IN-SPLIT]M
i∈I\{h}

!ψi.ηi ⊕ !(ψh \ ψ′k).ηh ⊕ !ψ′k.ηh{ ⊕ end} ≤
M
j∈J

!ψ′j .η
′
j{ ⊕ end}

M
i∈I

!ψi.ηi{ ⊕ end} ≤
M
j∈J

!ψ′j .η
′
j{ ⊕ end}

„
ψ′k v ψh
ψh 6= ψ′k

«

[LR-IN-SPLIT]M
i∈I\{h}

!ψi.ηi ⊕ !(ψh \ ψ′k).ηh ⊕ !ψ′k.ηh{ ⊕ end} ≤
M

j∈J\{k}

!ψ′j .η
′
j ⊕ !(ψ′k \ ψh).η′k ⊕ !ψh.η

′
k{ ⊕ end}

M
i∈I

!ψi.ηi{ ⊕ end} ≤
M
j∈J

!ψ′j .η
′
j{ ⊕ end}

0@ ψ′k∧ψh 6= ∅
ψ′k∧ψh 6= ψ′k
ψ′k∧ψh 6= ψh

1A

Table 14. Algorithmic subsessioning simplification rules. In these rules we use v to denote either ≤ or <:, curly braces to denote optional
end summands, and suppose that all operators are uniformly applied either on types or on sieves.

that are emitted by all prefixes, and thus by their intersection. The
continuation of this intersection is then obtained by the definition
of successor yielding the descriptor (17).

In case (4c) by the irrevocability of outputs we have to check
which outputs are offered in order to characterise the set of duals of
(16). It is easy to see that (16) and (18) offer the same outputs and
they both offer end.

In case (4d) (16) is not viable since it does not converge and
therefore it is equivalent to ⊥.

Let us pass to the proof of point 2, that is show that it is possible
to decide whether χ 6≤ χ′ holds. Thanks to point 1 we can suppose
that both χ and χ′ are in strong normal form.

We proceed by case analysis on the form of χ and χ′ by starting
with the simplest cases first.

Case
W
i∈I

V
j∈J λij 6≤

W
h∈H

V
k∈K λ

′
hk such that |I| > 1.

We can split the union on the left, and reduce this problem
to check whether there exists i ∈ I such that

V
j∈J λij 6≤W

h∈H
V
k∈K λ

′
hk, which can be checked by induction hypothe-

sis.

Case
V
j∈J λj 6≤

W
h∈H

V
k∈K λ

′
hk such that |H| > 1. By

applying classical set-theoretic distribution laws, this problem can
be reduced to

V
j∈J λj 6≤

V
h∈H

W
k∈K λ

′
hk. We can now split the

intersection on the right and reduce it to check whether there exists
h ∈ H such that

V
j∈J λj 6≤

W
k∈K λ

′
hk. The result follows by

induction hypothesis.
Case

V
j∈J λj 6≤

W
k∈K λ

′
k. Let us highlight negative and

positive literals:V
p∈PJ

θp ∧
V
n∈NJ

¬ηn 6≤
V
p∈PK

θp ∧
V
n∈NK

¬ηn.
By simple set-theoretic manipulations this is equivalent to check
whether

V
p∈PJ∪PK

θp 6≤
W
n∈NJ∪NK

ηn. Since intersection is
equivalent to internal choice this is reduced to checking whetherL

p∈PJ∪PK
θp 6≤

W
n∈NJ∪NK

ηn which by strong disjunction
is equivalent to prove that

L
p∈PJ∪PK

θp 6≤ ηn holds for all
n ∈ NJ ∪NK . The result follows by induction hypothesis.

Case η 6≤ η′. This is the last remaining case and also the most
difficult one. We can feed η and η′ to the algorithmic rules of
Table 2. So to prove this case we have to prove that these rules
are sound and complete with respect to the semantic definition of
subtyping.
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Soundness. For soundness, let us prove the point by induction
on the Noetherian measure defined in Section 2.1. More precisely
for each rule of Tables 2 and 14 we must prove that the set of duals
of the lhs of its conclusion is included in the set of duals of the
rhs. Let us proceed by a case analysis on the last rule applied in the
deduction of η ≤ η′.

Case [END] and [MIX-CHOICES]. The result follows by a direct
application of the definition of duality.

Case [EXT-CHOICES]. By induction hypothesis for all i ∈ I
the set of duals of ηi is contained in the set of duals of η′i. We
have two subcases. (i) Case |I| > 1: since both descriptors are
in strong normal form, then they can only emit input signals or a
tick; thus for these choices we can apply only the rules TR3 and
TR4; this implies that the signals emitted by each descriptor in the
conclusion are exactly the same as those of their subcomponents.
The result follows by the definition of duality. (ii) Case |I| = 1:
then there are three subcases. Either the lhs of the conclusion emits
an input, and then we proceed as in the case before; or it is an end,
but then one of the summands of the rhs is also end, and the result
follows from the definition of duality as both must ensure X; or it
is of the form !ψ.η′′, but then also |J | = 1 and therefore this rule
does not apply ([PREFIX] should be used instead).

Case [INT-CHOICES]. Similar to the previous case.
Case [*-SPLIT] Notice that by rules I5-I7 and E5-E7 the corre-

sponding session descriptors at the premise and at the conclusion
of each rule have exactly the same set of duals, whence the result.

Case [PREFIX]. This is the hard case since we cannot use the
induction hypothesis as the Noetherian measure may increase. We
are in the case where we have deduced α.θ ≤ α.θ′ from θ ≤ θ′.
So let us consider the deduction for θ ≤ θ′ and explore it upwards
from the root. By the regularity of our descriptors we have just two
possible cases: either we traverse a finite (and possibly null) number
of applications of the PREFIX rule and arrive to the application
of a different rule, or we traverse an again finite (and possibly
null) number of applications of the PREFIX rule and arrive to the
judgment θ ≤ θ′. The latter case is straightforward because it
means that θ ≡ θ′, therefore the result holds for reflexivity. In the
former case instead we perform a case analysis on the rule we have
reached, apply the same reasoning as above for the corresponding
case and deduce the result by Lemma 2.17.

Completeness. For completeness let us prove this point by in-
duction on the Noetherian measure defined in Section 2.1. Suppose
that the result holds for descriptors of smaller measure and let us
prove for the general case. Imagine by contradiction that the result
does not hold for the general case. Then there exist η and η′ such
that all the duals of η are also duals of η′ but for which the algo-
rithm answers no. Therefore there exists at least one rule that fails.
Since we did not put any constraint on η and η′, then we can con-
sider without loss of generality that it is the last one and that all the
preceding applications of the rules hold. Let us then perform a case
analysis on this rule:

Case [END]. This is the base case and vacuously holds since it
cannot fail.

Case [PREFIX]. This is another base case and vacuously holds
since it cannot fail (if it fails it is because the premise failed, but
this contradicts the fact that the PREFIX rule is the last one to have
failed).

Case [MIX-CHOICES]. The last base case. It may have failed
because one (or both) of the two end’s is absent, but this contradicts
our hypothesis: if it is the rhs end that is missing then end is a dual
of the first but not of the second; if it is the lhs end that is missing
then I is not empty (otherwise the rule would not fail), but then
since the types are in strong normal form a dual of ηi cannot be
dual of the lhs, since both of them ensure an input. It may have also
failed because the internal choice is on the right and the external

one is on the left (strictly speaking this is not a failure of this rule
but it is the only case in which no rule applies), but then it is easy
to build a dual for the lhs which is not dual for the rhs.

Case [EXT-CHOICES]. If this failed it is because there exists
i ∈ I such that for all j ∈ J , ηi 6≤ ηj . By induction hypothesis
since the algorithm is complete, then there exists θ that is dual of
ηi but it is not dual of any ηj . By definition θ is dual of

P
i∈I ηi

but not of
P
j∈J ηj , contradiction.

Case [INT-CHOICE]. Similar to the previous case.
Case [*-SPLIT]. These rules never fail since they can always be

applied.

A.2 Proof of Proposition 2.10
(⇒) By Theorem 2.15 we may assume that η is in strong normal
form. We define a function · such that η on η. Regularity of η is a
direct consequence of the regularity of η.

Assume η ≡
P
i∈I ?ψi.ηi{ + end}, where the end subterm

may be missing. Then ηon must be justified by condition (1) of
Definition 2.9, namely there exists µ such that η ⇓ µ and η〈µ〉on.
If µ = X, then we conclude immediately by taking η = end. If
µ 6= X, then there exists k ∈ I such that ?ψk.ηk ⇓ µ and η〈µ〉on.
Because η is in disjoint normal form we have ?ψi.ηi ⇓ µ′ implies
η〈µ′〉 = ηi for every µ′. Hence we conclude by taking η = !ψk.ηk.

Assume η ≡
L

i∈I !ψi.ηi{ ⊕ end}, where the end subterm
may be missing. Then ηon must be justified by condition (2) of
Definition 2.9, namely for every i ∈ I we have !ψi.ηi ↓ µ
for some µ and ηon

i since η〈µ〉 = ηi. We conclude by taking
η =

P
i∈I ?ψi.ηi + end.

The proof that η on η is trivial.
(⇐) It is sufficient to show that the relation

R = {η | ∃η′ : η on η′}
is a coinductive viability. Let η ∈ R. Then there exists η′ such that
η on η′. We reason by cases on the justification of η on η′ according
to Definition 2.5.

Assume η on η′ is justified by condition (1) of Definition 2.5.
Then η ⇓ X and η′ ⇓ X. Hence condition (2) of Definition 2.9 is
satisfied (note that end ∈ R by definition of R).

Assume η on η′ is justified by condition (2) of Definition 2.5.
Then η ↓ and η ↓ µ implies η′ ⇓ µ and η〈µ〉 on η′〈µ〉. By defini-
tion of R we have η〈µ〉 ∈ R, hence condition (1) of Definition 2.9
is satisfied.

A.3 Proof of Theorem 2.12
(⇒) Assume η1 5 η2 and ηon

1 . By Proposition 2.10 we have that η1

is viable. Let η on η1. It is sufficient to show that

C = {(η′, η′2) | ∃η′1 : η′ on η′1 ∧ η′1 5 η′2}
is a duality relation, since (η, η2) ∈ C by definition of C . Let
(η′, η′2) ∈ C . Then there exists η′1 such that η′ on η′1 and η′1 5 η′2.
We reason by cases on the justification of η′ on η′1 for showing that
η′ and η′2 satisfy at least one of the conditions of Definition 2.5.
Assume that η′ on η′1 is justified by condition (1) of Definition 2.5.
Then η′ ⇓ X and η′1 ⇓ X. From η′1 5 η′2 we derive η′2 ⇓ X
hence we conclude by condition (1) of Definition 2.5. Assume that
η′ on η′1 is justified by condition (2) of Definition 2.5. Then η′ ↓
and η′ ↓ µ implies η′1 ⇓ µ and η′〈µ〉 on η′1〈µ〉. From η′1 5 η′2 we
derive η′2 ⇓ µ and η′1〈µ〉 5 η′2〈µ〉 hence (η′〈µ〉, η′2〈µ〉) ∈ C by
definition of C and we conclude by condition (2) of Definition 2.5.

(⇐) It is sufficient to show that the relation

R = {(η, η′) | ∀θ : θ on η ⇒ θ on η′}
is a coinductive subsession. Let (η, η′) ∈ R and assume ηon for
otherwise there is nothing to prove. By Theorem 2.15 we may as-
sume that both η and η′ are in strong normal form. By Proposi-
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tion 2.10 there exists θ such that θ on η. By definition of R we
deduce that θ on η′, hence η′on again by Proposition 2.10. We rea-
son by cases on the structure of η and η′.

Assume η ≡
P
i∈I ?ψi.ηi{+end} and η′ ≡

P
j∈J ?ψj .ηj{+

end}. Condition (1) of Definition 2.11 is trivially satisfied since
η′ ⇓. As regards condition (2) of Definition 2.11, assume η ⇓ µ
and η〈µ〉on. If µ = X, then η′ ⇓ X for otherwise end on η and
end 6on η′ which is absurd by definition of R. If µ 6= X, then there
exists i ∈ I such that ?ψi.ηi ⇓ µ and ηon

i . Suppose by contradiction
that η′ 6⇓ µ and consider θ ≡ !ψi.θi where θi is an arbitrary dual
of ηi (it exists from the hypothesis ηon

i and by Proposition 2.10).
Then θ on η but θ 6on η′ which is absurd. Hence there exists j ∈ J
such that ?ψj .ηj ⇓ µ. By definition of duality we deduce θi on ηi
and θi on ηj , hence (ηi, ηj) ∈ R since θi is arbitrary. We conclude
by observing that η〈µ〉 = ηi and η′〈µ〉 = ηj . Condition (3) of
Definition 2.11 is trivially satisfied since η ⇓.

Assume η ≡
L

i∈I !ψi.ηi{ ⊕ end} and η′ ≡
L

j∈J !ψj .ηj{ ⊕
end} and η′ 6⇓. As regards condition (1) of Definition 2.11, for
every i ∈ I let θi be an arbitrary session descriptor such that θi on
ηi (these descriptors exist because ηon). Let θ ≡

P
i∈I ?ψi.θi{ +

end} where the end subterm is present only if it is present also in
η. Assume η′ ↓ µ. Then there exists j ∈ J such that !ψj .ηj ↓ µ.
Suppose contradiction that η 6↓ µ. Then θ on η but θ 6on η′, which
is absurd. Hence there exists i ∈ I such that !ψi.ηi ↓ µ. We derive
(ηi, ηj) ∈ R since θi is arbitrary. We conclude by observing that
η〈µ〉 = ηi and η′〈µ〉 = ηj . Condition (3) of Definition 2.11 is
trivially satisfied since η′ 6⇓.

Assume η ≡
L

i∈I !ψi.ηi{⊕ end} and η′ ≡
P
j∈J ?ψj .ηj{+

end} and η 6⇓. Condition (1) and (2) of Definition 2.11 are trivially
satisfied since η 6⇓ and η′ ⇓. As regards condition (3) of Defini-
tion 2.11, for every i ∈ I let θi be an arbitrary session descrip-
tor such that θi on ηi (these descriptors exist because ηon). Let
θ ≡

P
i∈I ?ψi.θi{ + end} where the end subterm is present only

if it is present also in η. Assume by contradiction η 6↓ X or η′ 6⇓ X.
Then θ on η but θ 6on η′, which is absurd. We conclude η ↓ X and
η′ ⇓ X.

B. Proofs of Section 3.2
B.1 Proof of Subject Reduction
LEMMA B.1 (Strengthening). If Γ ` P : (h : end · ∆), then
Γ ` P : ∆.

The core of a session stack (core(∆)) is the stack obtained by
removing all ended channels. This is sound by Lemma B.1. The
core of a session environment is defined similarly.

DEFINITION B.2 (Core).

core(∆) =

(
(h : η · core(∆′)) if ∆ = (h : η · ∆′) and η 6= end

core(∆′) if ∆ = (h : end · ∆′)

core(Λ) = {h : η | h : η ∈ Λ and η 6= end}

The partial order relation 2 between session stacks and session
environments takes into account their evolution due to process and
system reductions.

DEFINITION B.3. ∆ 2 ∆′ is the smallest partial order relation
such that:

1. core(∆′) = (h : η · ∆′′), and core(∆) = ∆′′ or
2. core(∆′) = (h : η′ · ∆′′), core(∆) = (h : η · ∆′′), and either
η

µ−→ η′ or η −→ η′, or
3. core(∆′) = (h : η · ∆′′), core(∆) = (h : !χ.η · (h′ : η′ · ∆′′))

and η′ ≤ χ, or

4. core(∆′) = (h : η · x : η′), core(∆) = (h : ?χ.η) and χ ≤ η′.
5. core(∆′) = (h : η1 · ∆′′) and core(∆) = (h : η1 + η2 · ∆′′).

DEFINITION B.4. Λ 2 Λ′ is the smallest partial order relation
such that:

1. core(Λ′) = core(Λ) ∪ {h : η}, or
2. core(Λ′) = Λ′′∪{h : η′}, core(Λ) = Λ′′∪{h : η}, and either
η

µ−→ η′ or η −→ η′, or
3. core(Λ′) = Λ′′ ∪ {h : η}, core(Λ) = Λ′′ ∪ {h′ : η′, h : !χ.η}

and η′ ≤ χ, or
4. core(Λ′) = x : η′ ∪ {h : η}, core(Λ) = {h : ?χ.η} and
χ ≤ η′.

It is easy to verify that 2 agrees with the mapping set and with
union of session environments.

PROPOSITION B.5. 1. If ∆ 2 ∆′, then set(∆) 2 set(∆′).
2. If Λ1 2 Λ′1 and Λ2 2 Λ′2, then Λ1 ∪Λ2 2 Λ′1 ∪Λ′2.

As usual generation and substitution lemmas are the key of our
subject reduction proof.

LEMMA B.6 (Generation Lemma for Processes). 1. If Γ ` 0 :
∆, then core(∆) = −.

2. If Γ ` a!(x : η).P : ∆, then Γ ` P : (x : η · ∆) and
Γ ` a : begin.η.

3. If Γ ` cbegin.η′
?(x : η).P : ∆, then Γ ` P : (x : η · ∆) and

η on η′.
4. If Γ ` h?(x : t)P : ∆, then core(∆) = (h : ?t.η · ∆′) and

Γ , x : t ` P : (h : η · ∆′).
5. If Γ ` h!e.P : ∆, then core(∆) = (h : !t.η · ∆′) and Γ ` e : t

and Γ ` P : (h : η · ∆′).
6. If Γ ` h?(x : χ).P : ∆, then core(∆) = (h : ?χ.η) and

Γ ` P : (h : η · x : η′) and χ ≤ η′.
7. If Γ ` h!h′P : ∆, then core(∆) = (h : !χ.η · (h′ : η′ · ∆′)) and

Γ ` P : (h : η · ∆′) and η′ ≤ χ.
8. If Γ ` P + Q : ∆, then core(∆) = (h : η1 + η2 · ∆′) and

Γ ` P : (h : η1 · ∆′) and Γ ` Q : (h : η2 · ∆′).
9. If Γ ` P ⊕ Q : ∆, then either core(∆) = (h : η1 ⊕ η2 · ∆′)

and Γ ` P : (h : η1 · ∆′) and Γ ` Q : ∆′, h : η2 or Γ ` P : ∆,
and Γ ` Q : ∆.

LEMMA B.7 (Generation Lemma for Systems). 1. If Γ  P : Λ,
then there exists ∆ such that Λ = set(∆) and Γ ` P : ∆.

2. If Γ  S ‖ T : Λ, then there exist Λ1 and Λ2 such that
Λ = Λ1 ∪Λ2 and Γ  S : Λ1 and Γ  T : Λ2.

LEMMA B.8 (Substitution). 1. If Γ , x : t  S : Λ and ` v : t,
then Γ  S[v/x] : Λ.

2. If Γ  S : Λ, x : η, then Γ  S[k/x] : Λ, k : η.

The following lemma relates the one step reductions of pro-
cesses with labels different from τ with the changes of the session
stacks.

LEMMA B.9. Let Γ ` P : ∆, then

1. If P
ct!(x:η)−→ P′, then Γ ` P′ : (x : η · ∆).

2. If P
ct?(x:η)−→ P′, then Γ ` P′ : (x : η · ∆) and t = begin.η′ and

η on η′.

3. If P
k!v−→ P′, then Γ ` P′ : (k : η · ∆′) and core(∆) = (k :

!t.η {+ θ} · ∆′).

4. If P
k?(x:t)−→ P′, then Γ , x : t ` P′ : (k : η · ∆′) and

core(∆) = ((k :?t.η {+ θ}) · ∆′).
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5. If P
k!k′−→ P′, then Γ ` P′ : (k : η · ∆′) and core(∆) = (k :

!χ.η {+ θ} · (k′ : η′ · ∆′)) and η′ ≤ χ.

6. If P
k?(x:χ)−→ P′, then Γ ` P′ : (k : η · x : η′) and

core(∆) = (k :?χ.η {+ θ}) and χ ≤ η′.

PROOF. By cases on `−→ using Lemma B.6. �

THEOREM 3.2 (Subject Reduction for Processes) If Γ ` P : ∆

and P
`−→ P′, then Γ ′ ` P′ : ∆′, where ∆ 2 ∆′.

PROOF. The proof is by induction and by cases on `−→. For
external and internal choices we only consider the first cases of
Lemma B.6(8) and (9), since for the second cases the proof is
similar and simpler.

Case R-CONNECT. Easy from Lemma B.9(case 1) and Defini-
tion B.3(case 1).

Case R-SEND. Easy from Lemma B.9(cases 3 and 5), and Defini-
tion B.3(cases 1 and 2).

Case R-RECEIVE. Easy from Lemma B.9(cases 2, 4 and 6) and
Definition B.3(cases 1 and 2).

Case R-EXTCH. We have that

P
`−→ P′ ` 6= τ

P + Q
`−→ P′

and Γ ` P + Q : ∆.

From Lemma B.6(8), we have that core(∆) = (k : η1 + η2 ·∆′)
and Γ ` P : (k : η1 · ∆′), and Γ ` Q : (k : η2 · ∆′).
By induction hypothesis on P

`−→ P′ we get Γ ′ ` P′ : ∆′′,
where (k : η1 · ∆′) 2 ∆′′. By Definition B.3(5), we have that
(k : η1 + η2 · ∆′) 2 (k : η1 · ∆′) and by transitivity ∆ 2 ∆′′.

Case R-EXTINT. We have that

P
τ−→ P′

P + Q
τ−→ P′ + Q

and Γ ` P + Q : ∆.

From Lemma B.6(8), we have that core(∆) = (k : η1 + η2 ·∆′)
and Γ ` P : (k : η1 · ∆′), and Γ ` Q : (k : η2 · ∆′).
By induction hypothesis on P

τ−→ P′ we get Γ ` P′ : ∆′′

where (k : η1 · ∆′) 2 ∆′′. But since P becomes P′ by a τ
action, then we know by rules R-EXTINT, R-EXTSEND and R-
INTCH that P is either an internal or an external choice, then
by Lemmas B.6(9) and B.6(8) we get ∆′′ = (k : η′1 · ∆′), for
some η′1 such that η1 −→ η′1. By typing rule T-EXTCH we get
Γ ` P′ + Q : (k : η′1 + η2 ·∆′) and by the descriptor transition
rule (TR3) we get η1 + η2 −→ η′1 + η2. We conclude since
∆ 2 (k : η′1 + η2 · ∆′) by Definition B.3(2).

Case R-EXTSEND. We have that

P
k!v−→

P + Q
τ−→ P

and Γ ` P + Q : ∆.

From Lemma B.6(8), we have that core(∆) = (k : η1 + η2 ·∆′)
and Γ ` P : (k : η1 · ∆′), and Γ ` Q : (k : η2 · ∆′). By
Definition B.3(2), we have that ∆ 2 (k : η1 · ∆′).
We have that

P
k!k1−→

P + Q
τ−→ P

and Γ ` P + Q : ∆.

From Lemma B.6(8), we have that core(∆) = (k : η1 + η2 ·∆′)
and Γ ` P : (k : η1 · ∆′), and Γ ` Q : (k : η2 · ∆′). By
Definition B.3(2), we have that ∆ 2 (k : η1 · ∆′).

Case R-INTCH. We have that

P ⊕ Q
τ−→ P and Γ ` P ⊕ Q : ∆.

From Lemma B.6(9), we have that
• either core(∆) = (k : η1 ⊕ η2 ·∆′) and Γ ` P : (k : η1 ·∆′),

and Γ ` Q : (k : η2 · ∆′). By Definition B.3(2), we have
that ∆ 2 (k : η1 · ∆′).
• or Γ ` P : ∆ and Γ ` Q : ∆ and the result follows

immediately by riflexivity of 2.

�
We can lift the relations between reductions of processes and

changes of session stacks shown in Lemma B.9 to relations be-
tween reductions of systems and changes of session environments.
More precisely we can easily prove the following lemma:

LEMMA B.10. Let ` 6= τ .

1. If Σ ` S `−→ Σ′ ` S′, then there are T, T′ and P such that
S = T ‖P ‖T′ and S′ = T ‖P′ ‖T′ and P

`−→ P′, where one
or both T, T′ can be missing.

2. If Σ ` S ‖P ‖T `−→ Σ′ ` S ‖P′ ‖T and Γ  S ‖P ‖T : Λ,
then there are Λ′, ∆ and ∆′ such that Λ = Λ′ ∪ set(∆),
Γ  S ‖ P ‖ T : Λ′ ∪ set(∆′), and ∆′ depends on ∆ and `
as in Lemma B.9.

THEOREM 3.3 (Subject Reduction for Systems) If Γ  S : Λ and
Σ ` S `−→ Σ′ ` S′, then Γ  S′ : Λ′, where Λ 2 Λ′.

PROOF. The proof is by induction and by cases on `−→.

Case LIFT. The result follows from Theorem 3.2, Lemma B.7(1)
and Proposition B.5(1).

Case CONNECTION. We have that Γ  S‖T : Λ and

Σ ` S ct!(x:η)−→ Σ ` S′

Σ ` T ct?(x:η′)−→ Σ ` T′ k 6∈ dom(Σ)

Σ ` S‖T τ−→ Σ, k : η, k̃ : η′ ` S′[k/x]‖T′[k̃/x]

From Lemma B.7(2), we get that there exist Λ1 and Λ2 such
that Λ = Λ1 ∪ Λ2 and Γ  S : Λ1 and Γ  T : Λ2. By
Lemmas B.10 and B.9(cases 1 and 2) we have that Γ  S′ :
Λ1, x : η, and Γ  T′ : Λ2, x : η′. From Lemma B.8(2), we
have that Γ  S′[k/x] : Λ1, k : η and Γ  T′[k̃/x] : Λ2, k̃ : η′.
Applying typing rule T-PAR we get Γ  S′[k/x] ‖T′[k̃/x] : Λ′,
where Λ′ = Λ1 ∪ Λ2 ∪ {k : η, k̃ : η′}. We conclude since
Λ 2 Λ′ by Definition B.4(1).

Case COMMUNICATION. We have that Γ  S‖T : Λ and

Σ ` S k!v−→ Σ ` S′ Σ ` T k̃?(x:t)−→ Σ ` T′ v ∈ t

Σ, k : η, k̃ : η′ ` S‖T τ−→ Σ, k : η〈!v〉, k̃ : η′〈?v〉 ` S′ ‖T′[v/x]

From Lemma B.7(2), we get that there exist Λ1 and Λ2 such
that Λ = Λ1 ∪ Λ2 and Γ  S : Λ1 and Γ  T : Λ2. By
induction hypothesis on S and T and Lemmas B.10 and B.9(3)
and (4) we have that Γ  S′ : Λ′1, and Γ , x : t  T′ : Λ′2,
where Λ1 2 Λ′1 and Λ2 2 Λ′2. From Lemma B.8(1), we have
that Γ  T′[v/x] : Λ′2. Applying typing rule T-PAR we get
Γ  S′ ‖T′[v/x] : Λ′1 ∪ Λ′2. We conclude since Λ 2 Λ′1 ∪ Λ′2
by Proposition B.5(2).
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Case DELEGATION. We have that Γ  S‖T : Λ and

Σ ` S k!k1−→ Σ ` S′

Σ ` T k̃?(x:χ)−→ Σ ` T′ Σ(k1) ≤ χ
Σ, k : η, k̃ : η′ ` S‖T τ−→ Σ′ ` S′ ‖T′[k1/x]

where Σ′ = Σ, k : η〈!Σ(k̃1)〉, k̃ : η′〈?Σ(k̃1)〉.
From Lemma B.7(2), we get that there exist Λ1 and Λ2 such
that Λ = Λ1 ∪ Λ2 and Γ  S : Λ1 and Γ  T : Λ2.
By induction hypothesis on S and T and from Lemmas B.10
and B.9(cases 6) and (5) we have that Γ  S′ : Λ′1, and Γ 
T′ : Λ′2, x : η0, where Λ1 2 Λ′1 and Λ2 2 Λ′2 and χ ≤ η0.
From Lemma B.8(2), we have that Γ  T′[k1/x] : Λ′2, k1 : η0.
Applying typing rule T-PAR we get Γ  S′ ‖ T′[k1/x] : Λ′,
where Λ′ = Λ′1 ∪ Λ′2 ∪ {k1 : η0}. We conclude since Λ 2 Λ′

by Definition B.4(1) and Proposition B.5(2).

Case PAR. By straightforward induction.

�

B.2 Proof of Progress
The key of our progress proof is the natural correspondence be-
tween labels of the LTS for processes and typing assumptions on
internal channels in a fixed session environment.

DEFINITION B.11 (Agreement). The agreement between the la-
bel ` and the assumption k : η via the session environment Σ (no-
tation ` nΣ k : η) is the smallest relation such that Σ(k) ≤ η
and:

v ∈ t implies k!v nΣ k : !t.η k?(x : ψ) nΣ k : ?ψ.η

Σ(k′) ≤ χ implies k!k′ nΣ k : !χ.η′

`nΣ k : η implies `nΣ k : η ⊕ η′

`nΣ k : η implies `nΣ k : η + η′.

We use γ to range over finite sequences of labels of the shape
ct?(x : η) and ct!(x : η).

LEMMA B.12. 1. If Γ `∗ P : ∆ and core(∆) = (k : η · ∆),
then P

`
=⇒ and ` nΣ k : η for all Σ such that Σ(k) ≤ η and

` = k!Lk′M implies Σ(k′) ≤ ∆(k′).
2. If Γ ` P : ∆ and core(∆) = (k : η · ∆), then either P

γ
=⇒ for

some γ or P
`

=⇒ and `nΣ k : η for all Σ such that Σ(k) ≤ η
and ` = k!Lk′M implies Σ(k′) ≤ ∆(k′).

PROOF. (1) The last applied rule in a derivation for P can only
be one of the rules T-SEND, T-RECEIVE, T-SENDS, T-RECEIVES,
T-EXTCH, T-INTCH. In the first four cases P must be a communi-
cation process on channel k. In the last two cases the result follows
by induction.

(2) From (1), taking into account that the last applied rule can
also be T-CONNECT-REQUEST, T-CONNECT-ACCEPT, T-EXT, T-
INT. T-CONNECT, �

The agreement between labels and typing assumptions is ex-
ploited in the following lemma: it assure that the parallel of pro-
cesses offering labels which agree with dual assumptions always
reduce in the current session environment.

LEMMA B.13. Let P and Q be such that P
`

=⇒ and ` nΣ k : η,

Q
`′

=⇒ and `′ nΣ k̃ : θ, and η on θ. Then Σ ` P‖Q τ−→.

PROOF. Because of Definition B.11 and the duality between η and
θ we have only to consider the following cases:

1. P
k!v

=⇒ and Q
k̃?(x:t)
=⇒ and v ∈ t.

In this case P
τ

=⇒ k!(e).P′, and Q
τ

=⇒ k̃?(x : η).Q′ {+ Q′′}

and we conclude by the reduction rules LIFT and COMMUNI-
CATION.

2. P
k!Lk1M
=⇒ and Q

k̃?Lz:χM
=⇒ and Σ(k1) ≤ χ.

In this case P
τ

=⇒ k!Lk1M.P′, and Q
τ

=⇒ k̃?Lz : χM.Q′ {+ Q′′}
and we conclude by the reduction rules LIFT and DELEGATION.

�

We can show that starting from an initial system we only get
coherent session environments, i.e., session environments in which
dual internal channel are mapped to dual session descriptors.

DEFINITION B.14 (Coherent session environment). A session en-
vironment is coherent if whenever it contains k : η it contains also
k̃ : η′ ∈ Λ with η on η′.

LEMMA B.15. If S is initial and ` S τ
=⇒ Σ ` P1 ‖ . . .‖Pn, then

` Pi : ∆i for 1 ≤ i ≤ n imply:

1. dom(core(∆i)) only contain internal channels;
2. no dom(core(∆i)) contains an internal channel and its dual;
3.

S
1≤i≤n set(core(∆i)) and Σ are coherent.

PROOF. By induction on τ
=⇒ using Lemmas B.9 and B.10.

If S is an initial system, then it is a parallel composition of sums
of ![z]. Then S satisfies banally the three conditions above.

Let S′ be the system obtained from S after a finite sequence of
reductions, in which the three conditions above hold, and S′ can
still perform a τ action. If we can apply rule CONNECTION we
get a system which still satisfies the conditions because this rules
pushes in both session environments the assumptions k : η and
k̃ : η′, for some fresh k and with η on η′. If we can apply rules
COMMUNICATION or DELEGATION we get a system which still
satisfies the conditions because the successors of dual sessions are
still dual sessions by definition of duality. �

We restate here Lemma 3.5 by taking advantage of the definition
of core. Indeed  S : Λ with S closed implies that the set of
internal channels which occur in S is the domain of core(Λ).

LEMMA 3.5 If S is initial and ` S τ
=⇒ Σ ` S′, and  S′ : Λ,

then Σ(k) ≤ Λ(k) for all k ∈ dom(core(Λ)).

PROOF. By induction and by cases on τ
=⇒. The more interesting

case is that of rule DELEGATION with  S‖T : Λ and:

Σ ` S k!Lk1M−→ Σ ` S′ Σ ` T k̃?Lz:χM−→ Σ ` T′ Σ(k1) ≤ χ
Σ, k : η, k̃ : η′ ` S‖T τ−→ Σ′ ` S′ ‖T′[k1/z]

where Σ′ = Σ, k : η〈!Σ(k̃1)〉, k̃ : η′〈?Σ(k̃1)〉. Note that Σ′(k) =
Σ(k)〈!Σ(k̃1)〉, Σ′(k̃) = Σ(k̃)〈?Σ(k̃1)〉 and Σ′(k1) = Σ(k1).
Let  S′ ‖ T′[k1/z] : Λ′. By Lemmas B.10 and B.9(5) and
(6) we get Λ(k) = !χ′.Λ′(k) {+θ′}, Λ(k̃) = ?χ.Λ′(k̃) {+θ},
χ ≤ Λ′(k1) and Λ(k1) ≤ χ′. By induction Σ(k) ≤ Λ(k),
Σ(k̃) ≤ Λ(k̃), and Σ(k1) ≤ Λ(k1). We get Σ′(k1) ≤ Λ′(k1)
from Σ′(k1) = Σ(k1) ≤ χ ≤ Λ′(k1). From Σ(k1) ≤ Λ(k1) and
Λ(k1) ≤ χ′ and the coherence of Σ we derive that Σ(k̃1) is dual of
χ′ and therefore Λ(k)〈!Σ(k̃1)〉 ≤ Λ′(k). From Σ(k) ≤ Λ(k) we
have Σ(k)〈!Σ(k̃1)〉 ≤ Λ(k)〈!Σ(k̃1)〉 and so we conclude Σ′(k) ≤
Λ′(k). Similarly from Σ(k1) ≤ χ we derive that Σ(k̃1) is dual
of χ and therefore Λ(k̃)〈?Σ(k̃1)〉 ≤ Λ′(k̃). From Σ(k̃) ≤ Λ(k̃)
we have Σ(k̃)〈?Σ(k̃1)〉 ≤ Λ(k̃)〈?Σ(k̃1)〉 and so we conclude
Σ′(k̃) ≤ Λ′(k̃). �

The last technical tool we use is to index the internal channels
with increasing indexes according to their order of creation.
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LEMMA B.16. If S is initial and ` S τ
=⇒ Σ ` P1 ‖ . . . ‖ Pn,

and the fresh internal channels take successive numbers according
to the order of creation, then Γi ` Pi : ∆i implies that the indexes
of internal channels in ∆i are decreasing for 1 ≤ i ≤ n.

PROOF. By induction on τ
=⇒ using Lemma B.9 and B.10. Notice

that the only rule which adds channels to a possibly non empty
stack is CONNECTION and this rule adds the internal channels with
the maximum index. �

THEOREM 3.6 (Progress) Every initial system satisfies the progress
property.

PROOF. Let S be initial and ` S τ
=⇒ Σ ` P1 ‖ . . . ‖Pn, where

` Pi : ∆i. It is easy to verify that  P1 ‖ . . . ‖ Pn : Λ, where
Λ =

S
1≤i≤n set(core(∆i)). Assume the fresh internal channels

take successive numbers according to the order of creation and j
be the maximal index of the internal channel which occur in Λ. By
Lemma B.15(2) there are l, l′ such that kj ∈ dom(core(∆l)) and
k̃j ∈ dom(core(∆l′)). By Lemma B.16, kj and k̃j must be the top
of ∆l and ∆l′ , respectively. Note that by Lemma 3.5 Σ satisfies the
conditions of Lemma B.12 for ∆l and ∆l′ . Therefore at least one of
the following alternatives holds:

1. Pl
γ

=⇒ and ` Pl′
γ′

=⇒;

2. Pl
γ

=⇒ and Pl′
`

=⇒ and `nΣ k̃j : ∆l′(k̃j);

3. Pl
`

=⇒ and `nΣ kj : ∆l(kj) and Pl′
γ

=⇒;

4. Pl
`

=⇒ and ` nΣ kj : ∆l(kj) and Pl′
`′

=⇒ and `′ nΣ k̃j :
∆l′(k̃j).

In the last case the coherence of Λ (assured by Lemma B.15(3))
implies the duality between ∆l(kj) and ∆l′(k̃j). Therefore Σ `
Pl ‖Pl′

τ−→ by Lemma B.13. �

C. Proofs of Section 3.3
C.1 Proof of Subject Reduction
In order to state and prove the Subject Reduction Theorem we have
first to introduce some definitions and propositions.

The first definition formalises the evolution of session types and
session environments.

DEFINITION C.1. 1. A session type η′ is at a later stage than
another session type η, η v η′, if that is deducible from the
following rules.

LATER-0

η v ε

LATER-1

η v η

LATER-2
η v η′′ η′′ v η′

η v η′

LATER-3
η v η′

η.η′′ v η′.η′′

LATER-4

!t.η ⊕ !t.η v ηi

LATER-5

?t.η + ?t.η v ηi
2. A session environment Θ′ is at a later stage than another session

environment Θ, Θ v Θ′, if
(a) dom(Θ) ⊆ dom(Θ′), and
(b) ∀k ∈ dom(Θ) : Θ(k) v Θ′(k).

The second definition gives standard conditions on well-formation
of heaps and agreement between heaps and term environments.

DEFINITION C.2 (Well-Formed Heap and Agreement). A term en-
vironment Γ and a heap h agree, written wf(Γ ;h), if h is well-
formed and the classes of objects in h are the classes associated to
them by Γ . Thus wf(Γ ;h) if

1. h(o) = (C, f : o), ftyper(C, fi) = t ⇒ h(o)(fi) =
(C′, ), C′ <: t,

2. ∀o ∈ dom(Γ), h(o) = (Γ(o),−).

In point 1 of the above definition, recall that ftyper(C, fi)=ftypew(C, fi)
being C a class.

We type only single expressions, but they can result in parallel
threads. Since we do not have a typing for parallel threads we re-
quire each single expression to be well-typed. Moreover we want to
get our property in the most general form, allowing the property to
hold for all well-typed expressions, which sometimes can be gener-
ated by initial expressions only in parallel with other expressions.
For example, no initial expression can reduce to the expression

e = o.η {sendC(5){e1}}; k.sendC(3){e2 * k+},
but

e0 = o′.η′ {o.η {sendC(5){e1}}; sendC(3){e2}}

reduces to e || k̃.recC(x){[o/this]e′ * k̃+} if recC(x){e′} is the
body of session η in the class of the object o.

Notice also that receive expressions can never get objects of
wrong types. For example the execution of k.recC(x){Bool ⇒
¬x} if h(k) = 3 is simply stopped, i.e. it does not produce a
runtime error. For this reason, in contrast to the calculus of [10],
we do not need to require agreement between the objects in the
queues associated to channels by the heap and the session types of
the same channels in the session environment. The example above
also suggests that this agreement will be a key ingredient of the
progress proof.

The typing rules for runtime expressions differ from the ones
for user expressions only in assigning the session type to explicit
channels, not in the union type. The relations between the two
systems are clarified by the following proposition that will be
essential in considering the progress property.

PROPOSITION C.3. Γ ` e : t # η implies Γ r̀ e * k+ : t # {k : η}.
Let us notice that Γ r̀ e : t # ∅ is equivalent to Γ r̀ e : t # {k : ε}
by our convention on session environments.

We now introduce some lemmas used in the proof of the Theo-
rem C.1; their proofs are trivial and then are omitted.

Lemma C.4 states that every expression, different from an ob-
ject, can be written as a composition of an evaluation context and a
redex, where the set of redexes is defined by:

new C(o) | o.f | o.f := o | o.s {e : η} | o • s {k : χ}
k.sendC(o){C⇒ e 8 C⇒ e} | k.recC(x){C⇒ e 8 C⇒ e}
The fact that the evaluation context is unique expresses the

determinism of the evaluation strategy.

LEMMA C.4. Let e be a runtime expression such that:

1. e is not an object,
2. Γ r̀ e : t # Θ for some Γ , Θ and t,

then there exists a unique evaluation context E such that e = E [r]
for some redex r.

The following lemma states the obvious property that, in any
type derivation ending by rule SUB-RT, there is a subderivation
giving a subtype to the same expression such that its final rule is
different from SUB-RT.

LEMMA C.5. In any derivation of Γ `r e : t # Θ there is a
subderivation of Γ r̀ e : t′ # Θ, with t <: t′, where the last applied
rule is different from SUB-RT.

Lemma C.6 states that the typing of E [e] can be broken down
into the typing of e, and the typing of E [x]. Accordingly the envi-
ronment Θ , that is used to type E [e] , can be broken down into two
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environments, Θ = Θ1 ◦ Θ2, where Θ1 is used to type e, and Θ2

is used to type E [x].

LEMMA C.6 (Subderivations). If Γ r̀ E [e] : t # Θ, then there exist
Θ1, Θ2, t′, such that for all x fresh in E , Γ , we get Θ = Θ1 ◦ Θ2,
and Γ r̀ e : t′ # Θ1, and Γ(x : t′) r̀ E [x] : t # Θ2.

Lemma C.7 allows the combination of the typing of E [x] and
the typing of e, provided that the type of e is the same as that of x
in the first typing.

LEMMA C.7 (Context Substitution). If Γ r̀ e : t # Θ1, and Γ(x :
t) r̀ E [x] : t′ # Θ2, then Γ r̀ E [e] : t′ # Θ1 ◦Θ2.

The following lemma expresses the weakening property for
term environments.

LEMMA C.8 (Weakening). Let Γ r̀ e : t # Θ.

1. If x 6∈ dom(Γ) then Γ(x : t′) r̀ e : t # Θ.
2. If o 6∈ dom(Γ) then Γ(o : C) r̀ e : t # Θ.

As usual, for proving Subject Reduction, it is handy to show
preservation of typing under term substitution.

LEMMA C.9 (Term Substitution). If Γ(z : C) r̀ e : t # Θ and
Γ r̀ o : C # ∅, then Γ r̀ [o/z]e : t # Θ.

The last lemma expresses a standard property about the typing
of session bodies.

LEMMA C.10 (Typing of Session Bodies). If stype(s, C) = η,
and rtype(s, η, C) = t and sbody(s, η, C) = e, then {this :
C} ` e : t # η.

THEOREM (Subject Reduction). If wf(Γ ;h) and Γ r̀ e : t# Θ then

1. e, h −→ e′, h′ implies that there exist Θ′, Γ ′ such that Γ ⊆ Γ ′

and Θ v Θ′, and wf(Γ ′;h′), and Γ ′ r̀ e′ : t # Θ′.
2. e, h −→ e1 || e2, h

′ implies that h′ = h[k, k̃ 7→ ( )] for some
fresh k, and wf(Γ ;h′), and that there exist t′, η, η′ such that
Γ r̀ e1 : t # Θ, {k : η}, and Γ r̀ e2 : t′ # {k̃ : η′}, and η on η′.

By induction on the definition of −→. We proceed by case
analysis.

By Lemma C.5 we consider typing derivations of Γ r̀ e : t # Θ
where the last applied rule is different from the rule SUBRT.

Let the last applied rule be SESSREQ-R:

h(o) = (C, ) sbody(s, η′, C) = e′ k, k̃ 6∈ h η on η′

E [o.s {e : η}], h −→ E [e * k+] || [o/this]e′ * k̃+, h[k, k̃ 7→ ()]

By AXIOM-RT, and by wf(Γ ;h) and h(o) = (C, ), we get that
∅ r̀ o : C # ∅.

Since, by hypothesis Γ r̀ E [o.s {e : η}] : t # Θ, by Lemma C.6,
we have that Γ r̀ o.s {e : η} : t′ # Θ1 and Θ = Θ1 ◦ Θ2. From
rule SESSREQ-RT we have that Θ1 = ∅, Θ2 = Θ, Γ ` e : t′ # η′.

By Proposition C.3, Γ r̀ e * k+ : t′ # {k : η′}.
By Lemma C.7, we have that Γ r̀ E [e * k+] : t # {k : η′} ◦Θ.
Let rtype(s, η′, C) = t0, then this : C ` e′ : t0 # η by

Lemma C.10, and this : C `r e′ * k̃+ : t0 # {k̃ : η}, by
Proposition C.3.

Therefore, by Lemmas C.8 and C.9, we have that Γ r̀ [o/this]e′*
k̃+ : t0 # {k̃ : η}.

Notice that the new heap h[k, k̃ 7→ ()] still agrees with Γ since
the only changes are about channels.

Let the last applied rule be SESSDEL-R:

h(o) = (C, ) sbody(s, η, C) = e χ ≤ η
E [o • s {k : χ}], h −→ E [[o/this]e * k+], h

By AXIOM-RT, and by wf(Γ ;h) and h(o) = (C, ), we get that
∅ r̀ o : C # ∅.

Since, by hypothesis Γ r̀ E [o•s {k : χ}] : t# Θ, by Lemma C.6,
we have that Γ r̀ o • s {k : χ} : t′ # Θ1 and Θ = Θ1 ◦ Θ2. From
rule SESSDEL-RT we have that Θ1 = {k : η}, stype(s, C) = η
and rtype(s, η, C) = t′.

By Lemma C.10, this : C ` e : t′ # η, and this : C r̀ e * k+ :
t′# {k : η}, by Proposition C.3. Therefore, by Lemmas C.8 and C.9,
we have that Γ r̀ [o/this]e * k+ : t′ # {k : η}. By Lemma C.7, we
have that Γ r̀ E [[o/this]e * k+] : t # Θ.

Let the last applied rule be SENDCASE-R:

h(k̃) = o h(o) = (C, ) C ≤ ti

E [k.sendC(o){t1 ⇒ e1 8 t2 ⇒ e2}], h −→ E [ei], h[k̃ 7→ o :: o]

By AXIOM-RT, and by wf(Γ ;h) and h(o) = (C, ), we get that
∅ r̀ o : C # ∅.

Since, by hypothesis Γ r̀ E [k.sendC(o){t1 ⇒ e1 8 t2 ⇒ e2}] :
t# Θ, by Lemma C.6, we have that Γ r̀ k.sendC(o){t1 ⇒ e18t2 ⇒
e2} : t′ # Θ1 and Θ = Θ1 ◦ Θ2. From rule SENDC-RT we have
that Θ1 = {k : !t1.η1 ⊕ !t2.η2}, Γ r̀ ei : t′ # {k : ηi}.

By Lemma C.7, we have that Γ `r E [ei] : t # Θ′, where
Θ′ = {k : ηi} ◦Θ2.

From Definition C.1, LATER-3 and LATER-4, we have that
Θ v Θ′.

Notice that the new heap h[k̃ 7→ o :: o] still agrees with Γ since
the only changes are about channels.

Let the last applied rule be RECEIVECASE-R:

h(k) = o :: o h(o) = (C, ) C ≤ ti

E [k.recC(x){t1 ⇒ e1 8 t2 ⇒ e2}], h −→ E [[o/x]ei], h[k 7→ o]

By AXIOM-RT, and by wf(Γ ;h) and h(o) = (C, ), we get that
∅ r̀ o : C # ∅. Applying rule SUB-RT, we get ∅ r̀ o : Ci # ∅.

Since, by hypothesis Γ r̀ E [k.recC(x){t1 ⇒ e1 8 t2 ⇒ e2}] :
t # Θ, by Lemma C.6, we have that Γ r̀ k.recC(x){t1 ⇒ e1 8 t2 ⇒
e2} : t′ # Θ1 and Θ = Θ1 ◦Θ2. From rule RECEIVEC-RT we have
that Θ1 = {k : ?t1.η1 + ?t2.η2}, Γ , x : ti r̀ ei : t′ # {k : ηi}.

By Lemma C.9, we have that Γ r̀ [o/x]ei : t′ # {k : ηi}.
By Lemma C.7, we have that Γ r̀ E [[o/x]ei] : t # Θ′, where

Θ′ = {k : ηi} ◦Θ2.
From Definition C.1, LATER-3 and LATER-4, we have that

Θ v Θ′.
Notice that the new heap h[k 7→ o] still agrees with Γ since the

only changes are about channels.
The remaining cases easily follow from the induction hypothe-

sis.

C.2 Proof of Progress
The proof of progress requires to study global properties of type
preservation during the reduction of parallel threads. Namely we
need to take into account the objects in the queues associated to
channels and their relations with the session types of the channels
themselves. In the following definition we extend the notion of
duality between session types taking into account also the objects
already sent by a thread, and waiting to be read by the thread which
has the dual channel.

DEFINITION C.11. Let h be a heap, o be a queue of objects in h
and η, η′ two session types. The relation η no

h η
′ is defined by:

1. η n( )
h η′ if η on η′,

2. ηi◦η′no::oi
h η′′ if (!t1.η1 ⊕ !t2.η2)◦η′no

hη
′′ and h(oi) =

(C, ) and C ≤ ti.

Intuitively, the definition above describes an agreement between
the (session) type η of a channel k and the type η′ of k̃ after the
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objects o have been memorized in the queue associated with k̃ in
h (recall that communication is asynchronous and that only one
between the queues h(k) and h(k̃) can be nonempty). Thus, when
the queue is empty (case (1) of the definition), η′ and η agree if
they are dual. When the queue is o :: oi (case (2)), if the type η′′

agrees with (!t1.η1 ⊕ !t2.η2)◦η′ after the objects o have been put
in the queue, then it also agrees with the type ηi ◦ η′, where ηi is
the session type of the branch obtained after putting in the queue
the object oi. For instance, η′′ agrees with η1 ◦ η′ via the queue
"a"::true::3 (notation η1 ◦ η′ n"a"::true::3

h η′′) if it agrees with
(!Int.η1 ⊕ !Object.η2) ◦ η′ via the queue "a"::true: indeed
after branch selection (the sent value 3 is an Int) the continuation
of (!Int.η1 ⊕ !Object.η2) ◦ η′ is η1 ◦ η′.

The main lemma concerning the above relation says that if the
type η of a channel k agrees with the type (?t1.η1 + ?t2.η2) ◦ η′
of k̃ when h maps k̃ to the queue oi :: o, and C ≤ ti, where C is the
class of oi in h, then η agrees with ηi ◦ η′ when h maps k̃ to the
queue o.

LEMMA C.12. Let η noi::o
h (?t1.η1 + ?t2.η2) ◦ η′, and h(oi) =

(C, ), and C ≤ ti, then η no
h ηi ◦ η′.

PROOF. By induction on the length of o. The base case o = ( ) is
straightforward from Definition C.11.
For the induction case assume o = o′ :: o+: thus the hypothesis
becomes η noi::o′::o+

h (?t1.η1 + ?t2.η2) ◦ η′. This relation can
only have been obtained by case (2) of Definition C.11. So we
have η = η+

j ◦ η
∗ for some η+

j (1 ≤ j ≤ n) and η∗ and
h(o+) = (C+, ) and C+ ≤ t+j and (!t+1.η

+
1 ⊕ !t+2.η

+
2) ◦

η∗noi::o′

h (?t1.η1 + ?t2.η2)◦η′. By induction hypothesis we have
C ≤ ti and (!t+1.η

+
1 ⊕ !t+2.η

+
2)◦η∗no′

h ηi◦η′. Applying again
Definition C.11(2) we get the result. � �

A session environment and a heap are well-formed if:

• the same set of channels occurs in the session environment and
in the heap,
• at least one between the queue of a channel and the one of its

dual is empty,

• when the queue of a channel k is empty, then the queue of k̃
relates the session type of k with the session type of k̃.

A standard environment, a session environment and a heap are
well-formed if both the heap with the standard environment and
the heap with the session environment are well-formed.

DEFINITION C.13. 1. The predicate wf(Θ;h) is defined by:

wf(Θ;h) if

8<:
k∈dom(Θ) ⇔ k∈dom(h),

∀k∈dom(Θ) : h(k) 6= ( ) ⇒ h(k̃) = ( ),

∀k∈dom(Θ) : h(k) = ( ) ⇒ Θ(k) nh(k̃)
h Θ(k̃).

2. wf(Γ ; Θ;h) if wf(Γ ;h) and wf(Θ;h).

It is easy to verify that wf(Θ;h) and k ∈ dom(h) imply k̃ ∈
dom(h).

The following key lemma states that, by reducing parallel
threads in a heap which is well-formed with respect to the en-
vironments used to type the threads, we get parallel threads and
heaps with the same well-formedness property.

LEMMA C.14. Let Γ r̀ Θi : ei # Ci, (1 ≤ i ≤ n), and assume
wf(Γ ; Θ;h) where Θ =

S
1≤i≤n Θi. Then if

e1 || . . . || en, h −→ e′1 || . . . || e′n′ , h

there are Γ′ and Θ′i such that Γ ′ r̀ Θ′i : e′i # Ci (1 ≤ i ≤ n′), and
Γ ⊆ Γ ′, Θ v Θ′ and wf(Γ ′; Θ′;h′), where Θ′ =

S
1≤i≤n′ Θ′i.

PROOF. We have that, for some i (1 ≤ i ≤ n), either ei, h −→
e′i || e′′i , h′ by an application of rule SESSREQ-R or ei, h −→ e′i, h

′

by the application of any one of the other reduction rules. In the
former case the proof follows immediately by Theorem C.1(2) and
Definition C.13.
So let ei, h −→ e′i, h

′. If this reduction has not been obtained by
a communication rule the proof is trivial by Theorem C.1(1). The
interesting cases are when the reduction ei, h −→ e′i, h

′ is obtained
by a communication rule.

RECEIVECASE-R. Assume ei = E [k.recC(x){t1 ⇒ e′′1 8 t2 ⇒
e′′2}]. We have that

E [k.recC(x){t1 ⇒ e′′1 8 t2 ⇒ e′′2}], h −→ E [[o/x]e
′′
j ], h′,

where h(k) = o :: o, and h(o) = (D, ), and h′ = h[k 7→ o]
and D ≤ tj .
Since Γ r̀ Θi : ei # t′i, by rule RECEIVEC-RT and Lemma C.6
we must have for some Θ′′i , η1, η2, η′, t0, and y fresh in E :
• Θi = Θ′′i , k : (?t1.η1 + ?t2.η2) ◦ η′,
• Γ r̀ t0 : k.recC(x){t1 ⇒ e′′1 8 t2 ⇒ e′′2} # {k : ?t1.η1 + ?t2.η2},
• Γ , y : t0 r̀ E [y] : ti # Θ′′i , k : η′.

By the assumptions and Definitions C.13 we get that Θ(k̃)no::o
h

(?t1.η1 + ?t2.η2) ◦ η′. Then by Lemma C.12 we have that
Θ(k̃) no

h ηj ◦ η′.
By rule RECEIVEC-TR we can derive Γ , x : tj r̀ e′′j : t0 # k : ηj .
From wf(Γ ;h) and h(o) = (D, ) and D ≤ tj we get Γ `
r o : tj # ∅ by applying AXIOM-RT and possibly SUB-RT.
Then from Lemma C.9 we have that Γ r̀ [o/x]e′′j : t0 # k : ηj ,
which implies Γ r̀ E [[o/x]e′′j ] : t′i # Θ′′i , k : ηj ◦ η′ by Lemma
C.7. Lastly we get Γ′ = Γ, and Θ′i = Θ′′i , k : ηj ◦ η′ and
h′(k) = o′, which assure Θ v Θ′ and wf(Γ′; Θ′;h′).

SENDCR. Assume ei = E [k.sendC(o){t1 ⇒ e′′1 8 t2 ⇒ e′′2}]. We
have that

E [k.sendC(o){t1 ⇒ e′′1 8 t2 ⇒ e′′2}], h −→ E [e′′j ], h′

where h(k̃) = o, and h(o) = (D, ), and h′ = h[k̃ 7→ o :: o],
and D ≤ tj .
Since Γ r̀ Θi : ei # t′i, by rule SENDC-RT (observing that
an object is typed with the empty session environment) and
Lemma C.6 we must have for some Θ′′i , η1, η2, η′, t0, and y
fresh in E :
• Θi = Θ′′i , k : (!t1.η1 ⊕ !t2.η2) ◦ η′,
• Γ r̀ k.sendC(o){t1 ⇒ e′′1 8 t2 ⇒ e′′2} : C0 # {k : !t1.η1 ⊕ !t2.η2},
• Γ , y :0 r̀ t′i : E [y] # Θ′′i , k : η′.

By the assumptions and Definition C.13 we have that (!t1.η1 ⊕ !t2.η2)◦
η′no

hΘ(k̃), which implies ηj ◦η′no::o
h Θ(k̃) by Definition C.11.

By rule SENDC-RT we can derive Γ r̀ e′′j : t0 # k : ηj , which
implies Γ r̀ E [e′′j ] : t′i # Θ′′i , k : ηj ◦ η′ by Lemma C.7. Lastly
we get Γ′ = Γ, and Θ′i = Θ′′i , k : ηj ◦ η′ and h′(k̃) = o :: o,
which assure Θ v Θ′ and wf(Γ′; Θ′;h′). �

�
It is handy to take into account the order on which subexpres-

sions of the same expression are reduced. To this aim we introduce
the “follows” relation between expressions. We denote by C an ar-
bitrary context, while E is an evaluation context.

DEFINITION C.15. Let e be an expression and e1, e2 be two
subexpressions of e. We say that e2 follows e1 in e if, for some
arbitrary context C and evaluation context E , we have that
E [e1] = C [e2] is a subexpression of e.
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It is easy to check that, if e1 and e2 are as in previous definition,
then e1 needs to be reduced before e2, since e1 occurs in the hole of
an evaluation context E , while e2 occurs in the hole of an arbitrary
context C , and E [e1], C [e2] are two different decompositions of
the same expression.

We convene that all fresh channels created reducing parallel
threads take successive indexes according to the order of creation,
i.e. they are named k0, k1, . . .. This means that if P, h −→∗
Q,h′ −→∗ R, h′′ and ki is a channel created in the reduction
P, h −→∗ Q,h′, and kj is a channel created in the reduction
Q,h′ −→∗ R, h′′, then i < j.

The subject of a communication expression is the channel spec-
ified in its syntax on which the communication takes place. The
index of a communication expression is the index of its subject.

The following crucial lemma states that a channel and its dual
cannot occur in the same thread. Moreover it states that the order
on communication expression indexes agrees with the “follows”
relation between expressions.

LEMMA C.16. Let ∅ ` e : t # ε and e, [ ] −→∗ e1 || . . . || en, h.
Then:

1. no expression ei can contain occurrences of both k and k̃ for
some channel k,

2. if e′, e′′ are communication subexpressions of ei and e′′ follows
e′, then the index of e′ is greater than or equal to the index of
e′′.

PROOF.

1. Straightforward, noting that the channels k and k̃ are introduced
by the rule SESSREQ-R in two different parallel threads.

2. ∅ ` e : t# ε implies that no channel occurs in e and so the prop-
erty trivially holds. We now prove that the reduction preserves
the property, namely if all the channels in the subexpressions
of an expression are indexed in a not increasing order, starting
from the redex to all the following expressions, in the sense of
Definition C.15, then after one step of reduction we get expres-
sions that have the same property. The proof is by case analysis
on the definition of −→.

Case SESSREQ-R. We have that

h(o) = (C, )

sbody(s, η′, C) = e′ k, k̃ 6∈ h η on η′

E [o.s {e : η}], h −→ E [e * k+] || [o/this]e′ * k̃+, h[k, k̃ 7→ ()]

Let E [o.s {e : η}] be an expression in which the desired
property holds. After one step of reduction, in the expres-
sion e * k+ the new channel k is the one with the highest
index and no other channel occurs in it. Moreover all com-
munication expressions occurring in e * k+ precede all com-
munication expressions in E . Lastly note that by induction
hypothesis the desired property holds for all communication
subexpressions occurring in E .

In parallel we have the expression [o/this]e′ * k̃+, where e′

is a session body, so the only channel in this expression is
k̃. Then this reduction rule preserves the property.

Case SESSDEL-R. We have that

h(o) = (C, ) sbody(s, η, C) = e χ ≤ η
E [o • s {k : χ}], h −→ E [[o/this]e * k+], h

Let E [o • s {k : χ}] be an expression in which the desired
property holds. Since o•s {k : χ} is the redex, then k is the
channel with the highest index. After one step of reduction,
[o/this]e * k+ is the first expression to be reduced next, and
k is still the only channel which occurs in it.

Case SENDCASE-R. We have that

h(k̃) = o h(o) = (C, ) C ≤ ti

E [k.sendC(o){t1 ⇒ e1 8 t2 ⇒ e2}], h −→ E [ei], h[k̃ 7→ o :: o]

If the expression E [k.sendC(o){t1 ⇒ e1 8 t2 ⇒ e2}] is an
expression in which the desired property holds, then k is the
channel with the highest index. The channel k is the only
channel which occurs in the expressions e1, e2. Then, after
one step of reduction the expression ei can contain only the
channel k, that is the one with the highest index, or it can
contain no channel, but the context is unchanged, then the
property still holds.

Case RECEIVECASE-R. The proof is similar to the previous
one.

In all the remaining case no channel is introduced or modified,
then the property is trivially preserved. �

�

THEOREM (Progress). If ∅ ` e0 : t0 # ε and e0, [ ] −→∗
e1 || . . . || en, h, then for each ei (1 ≤ i ≤ n) one of the following
conditions holds:

• ei, h −→ P, h′ for some P, h′,
• ei = o for some o.

PROOF. Toward a contradiction we assume that e −→∗ e1 |...| en, h
which is irreducible and is not a parallel composition of objects.
By Lemma C.14 we have that there are Γ , Θ1, ...,Θn and t1, ..., tn
such that wf(Γ; Θ;h), where Θ =

S
1≤i≤n Θi and Γ r̀ Θi : ei # ti

for all 1 ≤ i ≤ n. We can assume without loss of generality
that, for 1 ≤ m ≤ n, the expressions e1, ..., em are not objects.
By Lemma C.14 we get wf(Θ;h). Then the evaluation of the ex-
pressions e1, ..., em can only be stopped by a receiving expression
waiting for data in the associated channel. So for all 1 ≤ l ≤ m we
must have el = E[e′l ], where e′l is a case receiving communication
expression.
Let j be the highest among the indexes of the channels occur-
ring in e1 |...| en. If both kj and k̃j occur in e1 |...| en, then by
Lemma C.16(1) they occur in two different expressions, let them
be ep and eq with 1 ≤ p 6= q ≤ m. By Lemma C.16(2) the
subjects of the two expressions e′p and e′q are the channels kj and
k̃j . Moreover we must have that Θp(kj ), Θq(k̃j ) are of the forms
(?t′1.η1 + ?t′2.η2) ◦ η, (?t′′1.η

′
1 + ?t′′2.η

′
2) ◦ η′, since e′p and

e′q are case receiving expressions.
If h(kj ) is not empty, then let h(kj ) = o :: o′, and by Lemma
C.12 h(o) = (C,−) and C ≤ t′i is defined, so e′p can perform a
RECEIVECASE-R step against the hypothesis. Similarly if h(k̃j ) is
not empty.
Otherwise, if both h(kj ) and h(k̃j ) are empty, then by Lemma
C.14 we get wf(Θ;h), which implies Θq(k̃j ) on Θp(kj ). But
this is impossible since Θp(kj ) and Θq(k̃j ) are of the forms
(?t′1.η1 + ?t′2.η2) ◦ η, (?t′′1.η

′
1 + ?t′′2.η

′
2) ◦ η′.

If only kj occurs in e1 |...| en, then we must have Θ(k̃j ) = ε and
from wf(Θ;h) get that h(kj ) is not empty, and so we can argue as
before. � �
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