
Foundation of Session Types (extended abstract)

Giuseppe Castagna1 Mariangiola Dezani-Ciancaglini2 Elena Giachino1,2 Luca Padovani3

1PPS (CNRS) - Université Denis Diderot - Paris, France
2Dipartimento di Informatica - Università degli Studi di Torino - Torino, Italy

3Istituto di Scienze e Tecnologie dell’Informazione - Università degli Studi di Urbino - Urbino, Italy

Abstract. We present a streamlined theory of session
types based on a simple yet general and expressive for-
malism whose main features are semantically characterized
and where each design choice is semantically justified. We
formally define the semantics of session types and use it to
define the subsessioning relation. We give a coinductive
characterization of subsessioning and describe algorithms
to decide all the key relations defined in the article. We show
that all monomorphic dyadic session types proposed in the
literature are particular cases of our session types.

1 Introduction
Sessions are a common and widespread mechanism of

interaction in distributed architectures. Two processes will-
ing to interact establish a connection on a shared public
channel. In this connection they agree on some private
channel on which to have a conversation, dubbed session.
The conversation follows a given protocol which describes
the kind and order of the messages exchanged on the private
channel. In general, a protocol does not specify a unique
sequence of interactions. At any point of the interaction
the rest of the conversation for a process may depend upon
the kind of messages received by the process on the pri-
vate channel and/or the internal state of the process. When
the decision is exclusively based on the received messages
one speaks of an external choice. When the decision is
taken autonomously by the process one speaks of an in-
ternal choice. The messages exchanged during a session
may be synchronization signals, basic values (e.g., integers,
booleans, strings), names of public channels (those used to
start sessions), or even names of private channels of already
started sessions. In the last case one speaks of delegation
since by sending to some other process the private channel
of a session, the process delegates the receiver to continue
that session.

Static descriptions of the behavior of sessions (i.e., their
protocol) should permit the detection of communication
mismatches and session deadlocks, ensuring successful ter-
mination of every session. Types are a good candidate for
such a description, except that typical type systems for pro-
cess algebrae are unfit to type the private channels on which
sessions take place, since these channels can carry mes-
sages of different types. To obviate this limitation Honda
et al. introduced session types [19, 20] that describe the se-
quences of messages exchanged on a private session chan-
nel and their possible branching based on labels. To that

end they enrich the language of types and of processes with
specialized signals for connections, for delegation, and sig-
nals carrying labels that drive choices in combination with
label-based branching primitives. Since then, several vari-
ants of session types have been put forward (see Section 3).
They vary according to the programming language they tar-
get, the type containment relations and the specific features
they aim to capture. As Honda et al., they rely on label-
based primitives that tie them to the particular problem they
tackle and may hinder their adoption in general purpose lan-
guages.

In this work we present a basic and unified foundation
of session types that aims at being as much language in-
dependent as possible. To achieve language independence,
we design our types around the standard π-calculus: session
connections, interactions, and delegations will be imagined
as instances of π-calculus communications. We suppose
branching as being implemented by classic process algebra
internal and external choices [11], with just a single mod-
ification: we allow the branch of an external choice to be
selected according to the type of the message being com-
municated, as opposed to the channel on which communica-
tion occurs. This modification fits nicely the session-based
communication model, where messages are exchanged over
a unique, private channel.

Our approach has many positive upshots. First, all
monomorphic, dyadic session types proposed in the liter-
ature are particular instances of the session types discussed
here. Second, having dissociated control from a particu-
lar linguistic construct, that is label-driven branching, we
can more easily type the native branching constructs of a
language we want to endow with session types, thus avoid-
ing clumsy language extensions. As an aside, the language
independence is further increased by the fact that all our
definitions are semantic-based, rather than syntax-oriented.
Third, we enhance compositionality of branching constructs
because the result of the combination of different branches
is automatically computed at type level, without the need
of introducing new labels or of renaming existing ones to
avoid clashes on shared labels. Last but not least, replacing
labels with values and types increases expressiveness: val-
ues are first class (so they can result from computations and
communicated on channels) and types enable the definition
of finer grained disciplines for branch selection.

The rest of the paper is organized as follows. Section 2
defines syntax and set-theoretic semantics of our session

1

types. The subtyping and subsessioning relations that fol-
low arise as natural consequences of our semantic-based
framework. We provide a coinductive characterization of
subsessioning that sheds light on the properties of subses-
sioning and finally we describe algorithms to decide all key
relations defined in the article. Section 3 provides a more
technical discussion about how our approach subsumes and
improves existing session types proposals, and it shows an
example of session that can be defined by a generic π-
calculus process typable in our formalism. Section 4 sum-
marizes the contributions of our work, draws connections
with some of the most closely related papers, and sketches
future directions of research. Proofs, details, and further
technical content can be found in the full version available
on the net [5].

2 Session types
2.1 Type syntax
As said in the introduction we have two kinds of channels:
public ones that are used to connect and establish a pri-
vate channel for the conversation, and these private ones.
At type level this distinction corresponds to two different
syntactic categories. Public channels are associated with a
session type of the form begin.η. This type classifies chan-
nels ready to initiate a conversation on some private channel
that will follow the description η. Thus, private channels are
classified by session descriptors, ranged over by η. Session
descriptors and types are defined by the grammar:

(types) t ::= · · · | begin.η | ¬t | t ∧ t | t ∨ t | v
(descriptors) η ::= end | α.η | η ⊕ η | η + η

(actions) α ::= !t | ?t | !χ | ?χ
(sieves) χ ::= η | ¬χ | χ ∧ χ | χ ∨ χ

Participants of a session use their (private) session chan-
nel either to exchange values (of some type) or to delegate
other session channels (of some descriptor). In descriptors
we use ?t and !t to denote that (the process using) the chan-
nel will respectively wait for and send some value of type
t, and use ?η and !η (actually, ?χ and !χ, see later on) to
denote that (the process that uses) the channel will respec-
tively wait for (i.e., catch) and send (i.e., delegate) some
channel which already started a conversation and will con-
tinue it according to the behavior described by the session
descriptor η. In particular, a descriptor α.η states that (the
process using) the channel will perform one of the com-
munication actions α described above and then will behave
according to η; a descriptor end states that the session on
the channel has successfully ended; a descriptor η1 ⊕ η2
states that (the process that uses) the channel will internally
choose to behave according to either η1 or η2; a descrip-
tor η1 + η2 states that (the process that uses) the channel
gives the communicating partner the choice to behave ac-
cording to either η1 or η2. In what follows we adopt the

convention that the prefix operator has precedence over the
choice operators and we will use parentheses to enforce
precedence. For instance, (!t.η) + end and !t.η + end de-
note the same session descriptor, which is different from
!t.(η + end). Types t are inherited from the host language
(this is stressed in the grammar above by the ellipsis in the
production for types), to which we add (unless they are al-
ready provided by the host) singleton types (denoted by a
value v, the only one they contain), Boolean combinators
(i.e., ∨, ∧, and ¬), and session types of the form begin.η
which classify yet-to-be-used public channels whose con-
versation follows the descriptor η. The interest of session
types is that they can be used to type higher-order commu-
nications in which the names of public channels are com-
municated over other channels; session types will also ex-
tend the type system of the host language which can thus
use names of public channels as first class values.

The importance of Boolean combinators for types is
shown by the following example where we assume Int be
a subtype of Real:

?Real.!Int.end + ?Int.!Bool.end (1)

The session descriptor above declares that if a process (that
uses a channel with that behavior) receives a real number,
then it will answer by sending an integer, while if it re-
ceives an integer it will answer by sending a Boolean. A
partner process establishing a conversation on such a chan-
nel knows that if it sends a real that is not an integer, then
it should be ready to receive an integer while if it sends
an integer, then it must be ready to receive an integer or a
Boolean value (notice how the type of the message drives
the selection of the external choice). That is, its conversa-
tion will be represented by the following descriptor (t \ s
stands for t ∧ ¬s):

!(Real \ Int).?Int.end + !Int.?(Bool ∨ Int).end (2)

We see that Boolean combinators immediately arise when
describing the behavior of an interacting process. They are
also useful when considering equivalences. For instance,
(1) is intuitively equivalent to

?(Real \ Int).!Int.end + ?Int.!(Bool ∨ Int).end (3)

The crucial role of Boolean combinators can be further
shown by slightly modifying (1) so that it performs only
input actions:

?Real.?Int.end + ?Int.?Bool.end (4)

In this case the descriptor declares that after receiving an in-
teger it will either wait for another integer or for a Boolean
value. If an interacting process sends an integer, then in
order to be sure that the conversation will not be stuck
it must next send a value that is both an integer and a
Boolean. Since there is no such a value, the only way to

2

successfully interact with (4) is to make sure that inter-
acting processes will only send reals that are not integers:
!(Real \ Int).!Int.end. In conclusion, the only way to de-
scribe the sessions that can successfully interact with (4) is
to use negation (for the sake of completeness note that (4) is
equivalent to ?(Real\ Int).?Int.end+?Int.?(Bool∧ Int).end
which is equivalent to ?(Real \ Int).?Int.end since the right
summand of the previous choice can never successfully
complete a conversation). A similar discussion can be done
for delegation, that is, when actions are over session de-
scriptors, rather than types. This is why we added Boolean
combinations of session descriptors too (we dub them sie-
ves) and actions have the form ?χ and !χ rather than ?η and
!η.

We want both types and session descriptors to be recur-
sively definable. This is important for types since it allows
us to represent recursive data structures (e.g., DTDs) while
for session descriptors it allows us to represent services
that provide an unbounded number of interactions such as
(the service whose behavior is the solution of the equation)
η = end + ?Int.η which describes a session that accepts as
many integers as wished by the interacting process. In order
to support recursive terms, we resort to a technique already
used in [15, 7] where instead of introducing an explicit fi-
nite syntax for recursive terms, we directly work with possi-
bly infinite regular term trees that satisfy some contractivity
conditions; these conditions ensure that terms are semanti-
cally meaningful.

Definition 2.1 (Types) The types of our system are the pos-
sibly infinite regular trees coinductively generated by the
productions in the grammar at the beginning of this section
that satisfy the following conditions:

1. on every infinite branch of a type there are infinitely
many occurrences of “begin”;

2. on every infinite branch of a session descriptor there
are infinitely many occurrences of “.” (the prefix con-
structor);

3. for every subterm of the form α.η, the tree α.η is not a
subtree of α.

The first two conditions are contractivity restrictions that
rule out meaningless terms such as (the solutions of the
equations) t = t ∨ t or η = η ⊕ η; technically they pro-
vide a well-founded order we use in proofs. The third con-
dition states that recursion cannot escape prefixes and thus
it rules out terms such as η = ?η.end; this restriction gener-
alizes the typing technique used in all works on (recursive)
session types that forbids delegation of a channel over it-
self [20, 27] (strictly speaking we disallow types that in the
cited works are not inhabited by any program) while, tech-
nically, it allows us to stratify the definition of the subtyping
and subsessioning relations, stratification we use in proofs.

We do not specify any particular property for the types
of the host language. If the host language has some type
constructors (e.g., products, arrows, etc.) the first contrac-

tivity condition can be relaxed to requiring that on every
infinite branch there are infinitely many occurrences of type
constructors. The only condition that we impose on the
host language is on values which must satisfy the follow-
ing strong disjunction property for unions:

` v : t1 ∨ t2 ⇐⇒ ` v : t1 or ` v : t2 (5)

This condition may be restrictive only in the case that the
host language already provides a union type combinator
since, otherwise, it can be easily enforced by requiring that
every session channel is associated with exactly one (most
specific, because of subtyping) session type.

Henceforward, we will use t to range over types, θ and η
to range over session descriptors, χ to range over sieves, ψ
to range over all of them, and often omit the word “ses-
sion” when speaking of session descriptors. We reserve
v for values, whose definition and typing is left unspeci-
fied: we assume as understood that values for a session type
begin.η are channels explicitly associated with or tagged by
that type (or, because of subtyping, by a begin.η′ subtype of
begin.η: more about that later on).

We do not include in our session descriptors a construct
for parallel composition (as opposed to [21, 3], for exam-
ple). Since we assume an interleaving semantics of paral-
lel composition, having two different choices is enough for
faithfully describing possibly concurrent actions by means
of well-known expansion laws (see [11] for an example).

2.2 Semantics of types and descriptors
The semantics of both session descriptors and types—

and more generally most of the constructions of this work—
crucially relies on the notion of duality. In this section we
first informally define duality to outline a denotational se-
mantics for types and descriptors, then we give the formal
definition of duality in terms of a labeled transition system
for descriptors.

2.2.1 Set-theoretic interpretations

In the previous section we argued that a complete set of
Boolean combinators must be used if we want to describe
the set of partners that safely interact with a given descrip-
tor. Since we want the semantics of Boolean combinators
to be intuitive and easy to understand we base their def-
inition on a set-theoretic interpretation. In particular, we
interpret every type constructor as the set of its values and
the Boolean combinators as the corresponding set-theoretic
operations. In other terms, we seek for an interpretation
of types J.K such that JtK = {v | ` v : t} and that
Jt ∧ sK = JtK ∩ JsK, Jt ∨ sK = JtK ∪ JsK, and J¬tK = V \ JtK
(where V denotes the set of all values). The same inter-
pretation can then be used to define the subtyping relation
(denoted by “<:”) as follows:

t <: s
def⇐⇒ JtK ⊆ JsK

3

The technical machinery to define an interpretation with
such properties and solve the problems its definition raises
(e.g., the circularity between the subtyping relation and the
typing of values) already exists and can be found in the work
on Semantic Subtyping [15]: we take it for granted and no
longer bother about it if not for session types that are dealt
with in Section 2.3. This interpretation of types justifies the
use we do henceforward of the notation v ∈ t to denote that
v has type t.

The next problem is to give a set-theoretic interpretation
to session descriptors, as we have Boolean combinations
on them too. The semantics of a session descriptor can be
characterized by the set of partners with whom the interac-
tion will never get stuck (a sort of realizability semantics).
This is captured by the notion of duality: two session de-
scriptors η and θ are dual if any conversation between two
channels which follow respectively the prescriptions of η
and θ will never get stuck. So, for instance, the descrip-
tor (1) in the previous section is dual to the descriptor (2).
But !Int.?(Bool ∨ Int).end is dual to (1), too.

Note also that some session descriptors have no dual,
for example ?(Bool ∧ Int).end, since no process can send a
value that is both a Boolean and an integer: the intersection
is empty.1 Such descriptors constitute a pathological case,
since no conversation can take place on channels conform-
ing to them. Thus we will focus our attention on descriptors
for which at least one dual exists, and that we dub viable
descriptors. We write η on θ if η and θ are dual (duality is a
symmetric relation). Then, we can define the interpretation
of a descriptor as the set of its duals: JηK = {θ | η on θ};
extend it set-theoretically to sieves: Jχ ∧ χ′K = JχK ∩ Jχ′K,
Jχ∨χ′K = JχK∪ Jχ′K, J¬χK = S \ JχK (where S denotes
the set of all viable descriptors); and use it to semantically
define the subsieving (and subsessioning) relation (denoted
by “≤”):

χ ≤ χ′ def⇐⇒ JχK ⊆ Jχ′K (6)

Duality plays a central role also in defining the semantics
of types. We said that the semantics of a type constructor is
the set of its values. Hence we have to define the values of
the type constructor begin.η. As suggested in Section 2.1,
we can take as a value of a session type a public channel
tagged by that type or by a subtype. Therefore to define
values we need to determine when a session type is sub-
type of another, that is, when we can safely use a channel
of some session type where a channel of a different (larger)
type is expected. The key is to understand how a public ses-
sion channel is “used”. We make the assumption—matched
by everyday practice—that there is unique way to consume
a public channel c of type begin.η, by invoking the service
associated with c and starting a conversation that conforms
to the protocol described by η. Thus it is safe to replace c

1This shows that our duality is semantically defined: ?(Bool∧Int).end
is not dual of !(Bool ∧ Int).end as a syntactic approach would suggest;
both descriptors have no dual.

with a different channel d of a smaller type begin.η′ only if
the conversation, which follows the protocol described by η
and which was originally intended to occur with the service
associated with c, works seamlessly with the service associ-
ated with d. This happens if at each step of the conversation
the service associated with d is willing to receive at least all
the messages accepted by c and never sends any message
that c would not send. Roughly speaking, the service as-
sociated with d is “more tolerant” than the one associated
with c. Of course, there are fewer services that, as d, sup-
port a η′ conversation, since they must be able to satisfy
more demanding clients. Therefore, passing from begin.η
to begin.η′ corresponds to restricting the set of possible ser-
vices one can safely use, that is to say, reducing the sets of
possible duals. So the intuition—that we will formalize in
Section 2.3 by equation (8)—is that begin.η′ <: begin.η if
and only if η′ has fewer duals than η, that is by (6), η′ ≤ η.
For instance we have that ?Int.end ≤ ?Real.end since every
descriptor that is dual of ?Int.end is also dual of ?Real.end.
Similarly begin.?Int.end <: begin.?Real.end since if a pro-
cess that uses a channel of type begin.?Real.end is well
typed, then the process obtained by replacing this channel
for a different one of type begin.?Int.end is well typed as
well: it will receive an integer number in a place where it
expects a real number.

Since we want our types to satisfy the strong disjunc-
tion property (5), then a public channel c must be tagged by
types of the form begin.η (and not, say, begin.η∨begin.η′),
which yields the following interpretation for session types:
Jbegin.ηK = {cbegin.η′ | ∀θ, θ on η′ ⇒ θ on η}, that is

Jbegin.ηK = {cbegin.η′
| η′ ≤ η} (7)

The next step is to formally define the duality relation.

2.2.2 Semantics of session descriptors

The formal semantics of a descriptor can be given by re-
sorting to the labeled transition system (LTS) defined by the
rules

(TR1)

end
X−→ end

(TR2)

η ⊕ η′ −→ η

(TR3)
η −→ η′

η + η′′ −→ η′ + η′′

(TR4)

η
µ−→ η′

η + η′′
µ−→ η′

(TR5)

η
!v−→ η′′

η + η′ −→ η

(TR6)

η
!η′′

−→ η′′′

η + η′ −→ η

(TR7)
v ∈ t

?t.η ?v−→ η

(TR8)
v ∈ t

!t.η !v−→ η

(TR9)
η ∈ χ

?χ.η′
?η−→ η′

(TR10)
η ∈ χ

!χ.η′
!η−→ η′

plus the symmetric of rules (TR2-TR6). In the rules µ ranges
over actions of the form !v, or ?v, or !η, or ?η, or X.

4

Rules (TR1-TR4) are straightforward. Rules (TR7-TR8)
state that the synchronization is performed on single values
(strictly speaking, on singleton types) rather than on generic
types. This is closer to what happens in practice, since !t.η
indicates that the descriptor is ready to emit some value of
type t (TR8), while ?t.η indicates that the descriptor is ready
to accept any value of type t (TR7). While this approach
is reminiscent of the so-called early semantics in process
algebras [24] (but note that here it is applied at type level
rather than at process level), there is a technical reason to
use values rather than types, which we explain after defining
the subsessioning relation.

Rules (TR9-TR10) follow the same idea as (TR7-TR8),
and state that actions on descriptors emit a more precise
information than what they declare. To understand this
point we need to give some details. First note that a ses-
sion descriptor η, despite it is usually called “session type”
in the literature, is not a “real” type since it does not type
any value. Session descriptors do not classify values but,
rather, they keep track of the residual conversation that is
allowed on a given session channel (whose “real” type is of
the form begin.η). Therefore we cannot directly apply the
same technique as for rules (TR7-TR8) since there does not
exist any value for session descriptors. To mimic the behav-
ior of rules (TR7-TR8) we resort to the informal semantics
we described in Section 2.2.1 where a type is interpreted as
the set of its values and a descriptor—actually, a sieve—as
the set of its duals: therefore, as an action on a type emits
the same action on its values, so an action on a sieve emits
the same action on its duals, where we use η ∈ χ to denote
that η ∈ JχK.

Rules (TR5-TR6) state that outputs are irrevocable. This
is a characteristic peculiar to our system and is reminiscent
of Castellani and Hennessy’s treatment of external choices
in the asynchronous CCS [8]. Roughly speaking, imagine a
process offering two different outputs in an external choice.
Then we can think of two possible implementations for such
a choice. In one case the choice is an abstraction for a sim-
ple handshaking protocol that the communicating processes
engage in order to decide which value is exchanged. This
implementation does not fit very well a distributed scenario
where processes are loosely coupled and communication la-
tency may be important. In the second—and in our opinion
closer to practice—case, the sender process autonomously
decides which value to send. Rules (TR5-TR6) state that the
decision is irrevocable in the sense that the sender cannot
revoke its output and try with the other one. This behavior
is obtained by rules (TR5-TR6) by assimilating an external
choice over output actions to an internal choice in which
the process silently decides to send some particular value.
In this respect the symmetry of input and output actions
in rules (TR7-TR8)—but the same holds for (TR9-TR10) as
well—may be misleading: we implicitly assumed that when
a process waits for a value of type t it is ready to accept any
value of type t (the choice of the particular value is left to

the sender) while when a process sends a value of type t, it
internally decides a particular value of that type. We will
break this symmetry in the formal notion of duality (Defini-
tion 2.5) to be defined next.

2.2.3 Duality

The discussion on the labeled transition system suggests
that two dual descriptors can either agree on termination (so
both emit X) or one of the two descriptors autonomously
chooses to send an output that the other descriptor must be
ready to receive. In order to formalize the notion of dual-
ity it is then handy to characterize outputs (when an output
action may happen) and inputs (when an input action must
happen). As usual we write =⇒ for the reflexive and tran-
sitive closure of −→; we write

µ
=⇒ for =⇒ µ−→=⇒; we

write η
µ−→ if there exists η′ such that η

µ−→ η′, and simi-
larly for

µ
=⇒; we write η X−→ if there exists no η′ such that

η −→ η′.

Definition 2.2 (May and Must Actions) We say that η
may output µ, written η ↓ µ, if there exists η′ such that
η =⇒ η′ X−→ and η′

µ−→ and µ is either !v, or !η, or X.
We say that η must input µ, written η ⇓ µ, if η =⇒

η′ X−→ implies η′
µ−→ and µ is either ?v, or ?η, or X.

As usual we write η 6↓ µ if not η ↓ µ and η 6⇓ µ if not
η ⇓ µ.

Intuitively η ↓ µ states that for a particular internal
choice η will offer an output µ as an option, while η ⇓
µ states that the input µ will be offered whatever inter-
nal choice η will do. For example !Int.end ⊕ end ↓ !3
and !Int.end ⊕ end ↓ X; on the other hand we have
!Int.end + end 6↓ X, since !Int.end + end X−→ end. Simi-
larly we have ?Int.end ⊕ ?Real.end ⇓ ?3 because the ac-
tion ?3 is always guaranteed independently of the inter-
nal choice, whereas ?Int.end ⊕ ?Real.end 6⇓ ?

√
2 because

?Int.end⊕ ?Real.end −→ ?Int.end and ?Int.end 6⇓ ?
√

2.
The previous definition induces two notions of conver-

gence. Clearly convergence is a necessary condition for a
session descriptor to have a dual.

Definition 2.3 (May and Must Converge) We say that η
may converge, written η ↓, if for all η′ such that η =⇒
η′ X−→ we have η′ ↓ µ for some µ. We say that η must
converge, written η ⇓, if η ⇓ µ for some µ. As usual, we use
η 6↓ and η 6⇓ to denote their respective negations.

Note that the two contractivity conditions of Definition 2.1
rule out behaviors involving infinite sequences of consec-
utive internal decisions. Therefore we will only consider
strongly convergent processes, namely processes for which
there does not exist an infinite sequence of −→ reductions.

The labeled transition system describes the subjective
evolution of a session descriptor from the point of view
of the process that uses a communication channel having
that (residual) type. The last notion we need allows us to

5

specify the evolution of a session descriptor from the dual
point of view of the process at the other end of the commu-
nication channel. For example, we have ?Real.!Int.end +
?Int.!Bool.end

?3−→ !Bool.end (the process receiving the
integer value 3 knows that it has taken the right branch and
now will send a Boolean value). However, the process send-
ing the integer value 3 on the other end of the communica-
tion channel does not know whether the receiver has taken
the left or the right branch, and both branches are actually
possible. From the point of view of the sender, it is as if
the receiver will behave according to the session descriptor
!Int.end ⊕ !Bool.end, which accounts for all of the possi-
ble states in which the receiver can be after the reception of
3. The objective evolution of a session descriptor after an
action µ is defined next.

Definition 2.4 (Successor) Let η
µ

=⇒. The successor of η
after µ, written η〈µ〉, is defined as: η〈µ〉 = ⊕{η′ | η µ

=⇒
η′}.

For example, (?Real.!Int.end + ?Int.!Bool.end)〈?3〉 =
!Int.end ⊕ !Bool.end but (?Real.!Int.end +
?Int.!Bool.end)〈?

√
2〉 = !Int.end. Note that η〈µ〉 is

well defined because there is always a finite number
of residuals η′ such that η

µ
=⇒ η′. This is a direct

consequence of the contractivity conditions on session
descriptors.

We now have all the ingredients for formally defining
duality.2

Definition 2.5 (Duality) Let the dual of a label µ, written
µ, be defined by: (i) X = X; (ii) †v = †v; (iii) †η = †η;
where ! = ? and ? = !. Then η1 on η2 is the largest symmet-
ric relation between session descriptors such that one of the
following condition holds:

1. η1 ⇓ X and η2 ⇓ X;
2. η1 ↓ and η1 ↓ µ implies η2 ⇓ µ and η1〈µ〉 on η2〈µ〉 for

every µ.

The intuition behind the above definition is that a dual
must accept every input that its partner may output, or they
must both agree on termination. For example, we have
?Real.!Int.end + ?Int.!Bool.end on !Int.?(Int ∨ Bool).end,
but ?Real.!Int.end + ?Int.!Bool.end 6on !Int.?Int.end be-
cause the descriptor on the right is not sure that its part-
ner will answer with an integer. However ?Real.!Int.end +
?Int.!Bool.end on !(Real \ Int).?Int.end. As another ex-
ample, we have ?Int.end ⊕ ?Real.end on !Int.end because
?Int.end ⊕ ?Real.end ⇓ ?v for every v ∈ Int, how-
ever ?Int.end ⊕ ?Real.end 6on !

√
2.end because ?Int.end ⊕

?Real.end 6⇓ ?
√

2.
Using the definition of duality it is easy to see that Jη ⊕

η′K = Jη ∧ η′K since the duals of an internal choice must

2Duality and LTS may give the impression of being circularly defined.
In the full version [5] we prove that this circularity is only apparent and the
definitions well-founded thanks to the stratification we hinted at in Sec-
tion 2.1.

comply with both possible choices and thus be duals of both
of them. Using this property it is easy to prove that sieves
satisfy a disjunction property even stronger than the one for
types, as the disjunction holds not only for single elements
but for all the subsets of a union:
Proposition 2.6 θ ≤ χ1 ∨ χ2 ⇐⇒ θ ≤ χ1 or θ ≤ χ2.
This property is essential to prove decidability of ≤.

2.3 Subtyping
Now that we have defined the duality relation, and there-

fore subsessioning, we can also formally define the subtyp-
ing relation. The types defined in Section 2.1 include three
type combinators (union, intersection, and negation), one
type constructor begin.η, plus other basic types and type
constructors (inherited from the host language) that we left
unspecified (typically, Real, Bool, ×, . . .). We define the
subtyping relation semantically using the technique defined
in [15] and outlined in Section 2.2.1, according to which
types are interpreted as the set of their values, type com-
binators are interpreted as the corresponding set-theoretic
operations, and subtyping is interpreted as set containment.
As a consequence, testing a subtyping relation is equiva-
lent to testing whether a type is empty, since by simple
set-theoretic transformations we have that t1 <: t2 if and
only if t1 ∧ ¬t2 <: ∅ (where we use ∅ to denote the empty
type, that is the type that has no value). Again by simple
set-theoretic manipulations, every type can be rewritten in
disjunctive normal form, that is a union of intersections of
types. Furthermore, since type constructors are pairwise
disjoint (there is no value that has both a session type and,
say, a product type—or whatever type constructor is inher-
ited from the host language), then these intersections are
uniform since they intersect either a given type constructor,
or its negation (see [6, 15] for details). In conclusion, in
order to define our subtyping relation all we need is to de-
cide when

∨
k∈K(

∧
i∈Ik

begin.ηi∧
∧
j∈Jk

¬begin.ηj) <: ∅.
Since a union of sets is empty if and only if every set
in the union is empty, by applying the usual De Morgan
laws we can reduce this problem to deciding the inclusion∧
i∈I begin.ηi <:

∨
j∈J begin.ηj .

As regards session channels, we notice that a value
has type (begin.η) ∧ (begin.η′) if and only if it has type
begin.(η ⊕ η′). Also note that begin.η <: begin.η1 ∨
begin.η2 if and only if begin.η <: begin.η1 or begin.η <:
begin.η2. Therefore the semantic subtyping relation for the
types of Section 2.1 is completely defined by (the semantic
subtyping framework of [15] and) the following equation∧
i∈I

begin.ηi <:
∨
j∈J

begin.ηj ⇐⇒ ∃j∈J :
⊕
i∈I

ηi ≤ ηj (8)

Note that when in the equation above I and J are singletons
it reduces to

begin.η1 <: begin.η2 ⇐⇒ η1 ≤ η2
that is the form discussed at the end of Section 2.2.1.

6

2.4 Coinductive characterizations
The subsessioning relation defined in terms of duality

embeds the notion of safe substitutability because of its very
definition, but it gives little insight on the properties enjoyed
by ≤. This is a common problem of every semantically
defined preorder relation based on tests, such as the well-
known testing preorders [10] (the set of duals of a descriptor
can be assimilated to the set of its successful tests). In order
to gain some intuition over≤ and to obtain a useful tool that
will help us studying its properties we will now provide an
alternative coinductive characterization. Before doing so,
we need to characterize the class of descriptors that admit
at least one dual. Recall that η is viable if there exists η′

such that η on η′. Any non-viable descriptor is the least
element of ≤, which henceforward will be denoted by ⊥.

Definition 2.7 (Coinductive Viability) ηon is the largest
predicate over descriptors such that either

1. η ↓ and η ↓ µ implies η〈µ〉on for every µ, or
2. there exists µ such that η ⇓ µ and η〈µ〉on.

The definition provides us with a correct and complete char-
acterization of viable descriptors:
Proposition 2.8 ηon if and only if η is viable.

We can now read the statement of Definition 2.7 in the
light of the result of the above proposition: Definition 2.7
explains that a descriptor is viable if either (1) it emits an
output action regardless of its internal state and every suc-
cessor after every possible output action is viable too or (2)
it guarantees at least one input action such that the corre-
sponding successor is viable too.

Definition 2.9 (Coinductive Subsession) η 5 η′ is the
largest relation between session descriptors such that ηon

implies η′on and
1. η′ 6⇓ and η′ ↓ µ imply η ↓ µ with η〈µ〉 5 η′〈µ〉, and
2. η ⇓ µ and η〈µ〉on imply η′ ⇓ µ with η〈µ〉 5 η′〈µ〉, and
3. η ↓ and η′ ⇓ imply η ↓ X and η′ ⇓ X.

The definition states that any viable descriptor η may
be a subsession of η′ only if η′ is also viable. This is ob-
vious since we want the duals of η to be duals of η′ as
well. Furthermore, condition (1) requires that any output
action emitted by the larger descriptor must also be emitted
by the smaller descriptor, and the respective continuations
must be similarly related. This can be explained by notic-
ing that a descriptor dual of η in principle will be able to
properly handle only the outputs emitted by η; thus in or-
der to be also dual of η′ it must also cope with η′ outputs,
which must thus be included in those of η, hence the condi-
tion. The requirement η′ 6⇓ makes sure that η′ really emits
some output actions. Without this condition we would have
?Int.end 65 ?Int.end + end as the descriptor on the r.h.s.
emits X which is not emitted by the l.h.s. However, it is
trivial to see that ?Int.end 5 ?Int.end + end. Condition (2)
requires that any input action guaranteed by the smaller de-
scriptor must also be guaranteed by the larger descriptor.

Again this can be explained by noticing that a descriptor
dual of η may rely on the capability of η of receiving a
particular value/descriptor in order to continue the interac-
tion without error. Hence, any guarantee provided by the
smaller descriptor η must be present in the larger descriptor
η′ as well. The additional condition η〈µ〉on considers only
guaranteed input actions that have a viable dual, for a guar-
anteed input action with a non-viable dual is practically use-
less. Without such condition we would have, for instance,
that ?Int.!∅.end + ?Bool.end 65 ?Bool.end, because the de-
scriptor on the l.h.s. guarantees the action ?3 which is not
guaranteed by the descriptor of the r.h.s. of 65. It is clear
however that in this case the subsessioning relation must
hold since the l.h.s. and r.h.s. have the same set of duals.
Finally, condition (3) captures the special case in which a
descriptor emitting output actions (η ↓) is smaller than a
descriptor guaranteeing input actions (η′ ⇓). This occurs
only when η may internally decide to terminate (η ↓ X) and
η′ guarantees termination (η′ ⇓ X). In this case, every dual
of η must be ready to terminate and to receive any output
action emitted by η, hence it will also be dual of η′ which
guarantees termination but does not emit any output action.

We end this subsection by stating that the coinductive
and the semantic definitions of subsessioning coincide, so
from now on we will use ≤ to denote both.

Theorem 2.10 η1 5 η2 ⇐⇒ η1 ≤ η2.

It is possible to derive several interesting algebraic laws
from the definition of≤. These are discussed in the full ver-
sion [5] of the article and used in the proofs of the existence
of normals forms and of correctness of the algorithms. Here
we just state the following derivable decomposition laws:

?t.η + ?s.η′ = ?(t \ s).η + ?(s \ t).η′ + ?(t ∧ s).(η ⊕ η′)
!t.η ⊕ !s.η′ = !(t \ s).η ⊕ !(s \ t).η′ ⊕ !(t ∧ s).(η ⊕ η′)

the latter rule holding when none of the sets t \ s, s \ t, and
t ∧ s is empty. Similar rules can be derived for inputs and
outputs of sieves, as opposed to types. These rules play a
fundamental role in all the algorithms that will follow be-
cause they allow us to rewrite external and internal sums so
that every summand of the sum begins with a prefix that is
disjoint from (emits labels that are not emitted by) the prefix
of any other summand.

2.5 Algorithms
Subsieving. Let us start to show how to decide that a sieve
is smaller than another. Since Boolean combinators have a
set-theoretic interpretation we can apply exactly the same
reasoning we did for types in Section 2.3. Namely, deciding
χ ≤ χ′ is equivalent to deciding χ∧¬χ′ ≤ ⊥. The l.h.s. can
be rewritten in disjunctive normal form whose definition for
sieves is (we convene that

∨
i∈∅ χi =

∑
i∈∅ ηi = ⊥):

Definition 2.11 (Disjunctive normal form) A sieve is in
disjunctive normal form if it is of the form

∨
i∈I

∧
j∈J λij ,

where λij denote descriptor literals, that is either η or ¬η.

7

Next, we can check emptiness of each element of the union
separately, reducing the problem to checking the following
relation:

∧
i∈I ηi ≤

∨
j∈J ηj . Since this is equivalent to⊕

i∈I ηi ≤
∨
j∈J ηj , we can apply the strong disjunction

property (Proposition 2.6) we stated for descriptors and ob-
tain ∧

i∈I
ηi ≤

∨
j∈J

ηj ⇐⇒ ∃j∈J :
⊕
i∈I

ηi ≤ ηj

which is precisely the same problem that has to be solved in
order to decide the subtyping relation (cf. equation (8)). In
conclusion, in order to decide both subsieving and subtyp-
ing it suffices to decide subsessioning.

Subsessioning. To decide whether two descriptors are in
subsessioning relation we define a normal form for descrip-
tors and, more generally, sieves (the latter occurring in the
prefixes of the former).
Definition 2.12 (Strong normal form) A sieve χ in dis-
junctive normal form is in strong normal form if

1. if χ ≡
∨
i∈I

∧
j∈J λij , then for i ∈ I, j ∈ J , λij is in

strong normal form and
∧
j∈J λij 6= ⊥ for all i ∈ I;

2. if χ ≡ ¬η, then η is in strong normal form;
3. otherwise χ is either of the form

⊕
i∈I !ψi.ηi{ ⊕ end}

or
∑
i∈I ?ψi.ηi{+ end}, where for all i ∈ I , ψi 6= ∅,

ψi and ηi are in strong normal form and for all i, j ∈
I , i 6= j implies ψi ∧ ψj = ∅, and end is possibly
missing.

Transformation in strong normal form is effective:
Theorem 2.13 (Normalization) For every sieve χ it is pos-
sible to effectively construct χ′ in strong normal form such
that χ = χ′.
Finally, to check that two descriptors are in relation we
rewrite both of them in strong normal form, check that nei-
ther is⊥, and then apply the algorithm whose core rules are
given below:

(END)

end ≤ end

(PREFIX)
η ≤ η′

α.η ≤ α.η′

(MIX-CHOICES)

⊕
i∈I

ηi ⊕ end ≤
∑
j∈J

η′j + end

(EXT-CHOICES)
I ⊆ J ηi ≤ η′i (∀i∈I)∑

i∈I
ηi ≤

∑
j∈J

η′j

(INT-CHOICES)
J ⊆ I ηj ≤ η′j (∀j∈J)⊕

i∈I
ηi ≤

⊕
j∈J

η′j

Rule (MIX-CHOICES) states that an internal choice is
smaller than an external one if and only if they both have
an end summand. Rule (EXT-CHOICES) states that it is safe
to widen external choices whereas rule (INT-CHOICES) states
that it is safe to narrow internal ones. Both rules are used in

conjunction with (PREFIX), which states covariance over de-
scriptor continuations. Note that rule (PREFIX) relates two
descriptors only if they have the same prefix. Therefore be-
fore applying (EXT-CHOICES) and (INT-CHOICES) we have
to transform the descriptors so that prefixes on the two sides
that have a non-empty intersection are rewritten in several
summands so as to find the same prefix on both sides: this
is done by repeated applications of the decomposition laws
stated at the end of Section 2.4. The corresponding algo-
rithmic rules can be found in the full version [5].

Theorem 2.14 (Soundness and Completeness) The algo-
rithm is sound and complete with respect to ≤ and it termi-
nates.

Duality. Duality can be reduced to subsessioning since
η on η′ if and only if η ≤ η′, where we write η for the
canonical dual of η, namely the least descriptor in the set-
theoretic interpretation of η. Computing η is trivial once η
is in strong normal form (see Theorem 2.13): it suffices to
change every ? into !, every + into ⊕ and viceversa, and to
coinductively apply the transformation to the continuations
leaving end descriptors unchanged. Regularity ensures that
the transformation terminates (by using memoization tech-
niques) and showing that the obtained session descriptor is
the canonical dual of η is a trivial exercise.

3 A flavor of typing
All monomorphic dyadic session type theories proposed

in the literature are particular cases of the session descrip-
tors discussed here. In this section we just hint at why this
holds true and outline the new usages that our discipline
makes possible. All details are given in the full version [5].

The first version of session descriptors can be traced
back to the seminal work of Honda, Vasconcelos, and
Kubo [20] in the context of process algebras. In the same
context [2] enhances sessions with correspondence asser-
tions. Later on Vasconcelos, Gay, and Ravara have extended
the approach to multithreaded functional languages [26]. In
all these works session descriptors embed two n-ary op-
erators for internal and external choice, which are strictly
coupled with the communication of labels that indicate
the selected branch in a choice. The session descriptors
of [20, 2, 26] can be written in our model as follows:

η ::= end | α.η |
⊕

i∈I !`i.ηi | Σi∈I?`i.ηi
α ::= !t | ?t | !η | ?η

where we consider labels as singleton types. The same syn-
tax can be used to describe the session descriptors devel-
oped for CORBA [25], Boxed Ambients [16], and the ones
used to type the Conversation Calculus [3].

In the context of object-oriented languages, session type
theories assuring type safety and progress were investigated
in MOOSE [13], AMOOSE [9], and MOOSE<: [12]. The

8

syntax of all session descriptors discussed in the above pa-
pers, but for [12] where bounded polymorphism is consid-
ered, are special cases of our model, after identifying recur-
sive types with their infinite unfolding. More specifically,
the syntax of the session descriptors in [13] and [9] can be
reduced to:
η ::= end | α.η | !true.η ⊕ !false.η | ?true.η + ?false.η
α ::= !t | ?t | !η | ?η

since these works deal with sessions where branching is
controlled by means of boolean conditions.

A calculus that amalgamates the notion of session-based
communication with the one of object-oriented program-
ming is presented in [4, 1]. In these works sessions and
methods are unified, channels are implicit, and delegation
is realized by means of session calls. Branching is deter-
mined by the runtime type of the object being communi-
cated. Session descriptors with this form of dependencies
can be written very naturally in our model as:

η ::= end |
⊕

i∈I !Ci.ηi | Σi∈I?Ci.ηi

where Ci are class names in [1] and generic class names
in [4]. 3 In the full version [5] we show how we can straight-
forwardly enhance the typing of [1] using our session de-
scriptors: in particular we enable session overloading, that
is, we allow the same session name to be declared with dif-
ferent session descriptors in the class hierarchy. At run time
an appropriate session body will be chosen using the duality
and subsieving relations.

The most interesting observation on process typing is
that with our framework sessions can be typed in the stan-
dard π-calculus with internal/external choices and bound-
/free outputs (with the single modification on the type-based
selection of external choices we described in the introduc-
tion), without primitive operators tailored to session-based
communications (in the spirit of Kobayashi’s [23]). The in-
tuition is that bound outputs, written c!(x : η), are session
initiations where c is the public channel of the session and
x the session private channel of descriptor η; free outputs
are reserved for session communications/delegations, and
inputs are either session communications or session con-
nections according to whether they are meant to synchro-
nize with free or bound outputs, respectively. For example,
the following process models a node that handles commu-
nications described by a protocol η and delegates commu-
nications described by unknown protocols to a sibling node,
in a token-ring fashion:
NODE(mypublicname, nextpublicname, η, P) =

mypublicname?(x : ?>.end). /* accept */
x?(y : η).P /* catch&handle */

+x?(y : ¬η). /* catch&delegate */
nextpublicname!(z : !>.end). /* request */
z!y /* throw */

3The cited works hardcode different selection policies for branching.
We can easily reproduce them all by using Boolean combinators on classes.

The node waits for a connection on its public channel
mypublicname and, once the connection is made, catches
on the established session channel x a delegated session y of
an arbitrary descriptor (> is the top sieve). If the delegated
session is of protocol η (this is checked by using an exter-
nal choice), then the node handles the session in the process
P , otherwise it connects to a sibling node nextpublicname
(via a bound output) and delegates y to it (via a free output).
Both mypublicname and nextpublicname are public chan-
nels of type begin.!>.end. All details on typing the generic
π-calculus outlined here are given in the full paper [5].4

4 Conclusions and related work
We have defined a semantic theory of session types by sub-
verting the usual session type presentations, where the sub-
typing (and subsession) relations are introduced first, and
then shown to be sound. Here we have focused on duality
as the main characterizing feature, and defined subtyping
and subsessioning in terms of it.

We claim that our theory of session types is minimal—
insofar as the addition of any further constructor such as
parallel composition or labeled synchronization would re-
strict the programming language to which the framework
could be applied—and yet complete. The key ingredi-
ents of our theory are communication primitives, behavioral
composition operators for describing branching points, and
boolean composition operators for types and sieves. All the
existing proposal of session types of comparable expres-
siveness can be obtained by using suitable combinations
of these ingredients and our session types can be used for
typing generic π-calculus processes without any dedicated
primitive for session management.

The relation of our work with some others defining the-
ories of session types is already explored in Section 3. Sub-
typing relations for session types are studied in [18, 17].
In these works the definition of the subtyping relation is
driven by the observation that one can safely replace a ses-
sion by another that externally offers more choices and in-
ternally can make less choices. Since in the cited works
choices are guarded by labels, it turns out that external and
internal choices have the same subtyping relation as record
and variant types respectively. Here we work with external
choices that are driven by the messages being exchanged
rather than by labels: when a session offers an output it
will be able to synchronize only with the branches of a
choice that accept that output. The resulting subtyping re-
lation generalizes the safe substitutability principle of the
existing settings by permitting (a combination of) branches
of a choice to subsume another set of branches. Further-
more, while in the cited works the subtyping relation is de-
fined coinductively and axiomatically, we characterize the

4The type system in the full version ensures not only fidelity of com-
munications (i.e., once a session is started the communications are in the
expected order and exchange data of the expected types), but also progress
(i.e., a session can only be stuck at the initialization of a new session).

9

relation semantically, and this captures directly the desired
safety property.

Moving from label-driven to type-driven branch selec-
tion may seem a regression, insofar as it demands run-time
type checking. This is not so in practice. First, when ses-
sions are used as in any of the existing session types pro-
posals, branching can be easily optimized by reducing run-
time type checking to label/class matching. Second, gen-
eral value-based dispatching can be implemented very ef-
ficiently anyway [14], with the exception of session type
values which may require to check subsessioning. In any
case, it is reasonable to assume that the matching overhead
is negligible with respect to latency time of communications
typical of service-oriented computing.

With respect to concurrency theory we introduce an orig-
inal treatment of output signals, by implementing a form
of partial asynchrony. This treatment is similar to the one
proposed by Castellani and Hennessy [8] for asynchronous
CCS, where outputs cannot be blocked even if they guard
external choices (we called this property “output irrevoca-
bility”). However, in our setting output signals are allowed
to have a continuation. From a technical viewpoint in this
work we introduce several novelties. We devise a new la-
beled transition system for session descriptors in which ac-
tions represent values rather than types, we give a semantic
characterization of the subsessioning relation in terms of a
set-theoretic interpretation of session descriptors. The same
interpretation is used to give semantics to a complete set of
Boolean operators for session descriptors. As regards future
research, the natural continuation of this work is to extend
the semantic framework we propose to the features that we
cannot account for yet. Specifically, we aim at studying
polymorphism (to model session descriptors of [17]), ex-
ploring communication models other than output irrevoca-
bility, and extending our types to multi-party sessions.

References
[1] L. Bettini, S. Capecchi, M. Dezani-Ciancaglini, E. Giachino,

and B. Venneri. Session and union types for object-oriented
programming. In Concurrency, Graphs and Models, LNCS
5065. Springer, 2008.

[2] E. Bonelli, A. Compagnoni, and E. Gunter. Correspondence
Assertions for Process Synchronization in Concurrent Com-
munications. J. Funct. Progr., 15(2):219–248, 2005.

[3] L. Caires and H. T. Vieira. Conversation Types. In ESOP ’09,
LNCS 5502. Springer, 2009.

[4] S. Capecchi, M. Coppo, M. Dezani-Ciancaglini,
S. Drossopoulou, and E. Giachino. Amalgamating
Sessions and Methods in Object-Oriented Languages with
Generics. Theor. Comput. Sci., 410(2-3):142–167, 2008.

[5] G. Castagna, M. Dezani-Ciancaglini, E. Giachino, and
L. Padovani. Foundation of session types. Full version at
http://hal.archives-ouvertes.fr/hal-00334435.

[6] G. Castagna and A. Frisch. A gentle introduction to semantic
subtyping. In PPDP ’05 and ICALP ’05, 2005. Joint ICALP-
PPDP keynote talk.

[7] G. Castagna, N. Gesbert, and L. Padovani. A theory of con-
tracts for web services. Extended version of the article in
POPL ’08, submitted, available on authors’ web pages, 2008.

[8] I. Castellani and M. Hennessy. Testing theories for asyn-
chronous languages. In FST&TCS ’98, LNCS 1530.
Springer, 1998.

[9] M. Coppo, M. Dezani-Ciancaglini, and N. Yoshida. Asyn-
chronous session types and progress for object-oriented lan-
guages. In FMOODS’07, LNCS 4468, 2007.

[10] R. De Nicola and M. Hennessy. Testing equivalences for
processes. Theor. Comput. Sci, 34:83–133, 1984.

[11] R. De Nicola and M. Hennessy. CCS without τ ’s. In TAP-
SOFT/CAAP’87, LNCS 249. Springer, 1987.

[12] M. Dezani-Ciancaglini, S. Drossopoulou, E. Giachino, and
N. Yoshida. Bounded session types for object-oriented lan-
guages. In FMCO’06, LNCS 4709. Springer, 2007.

[13] M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and
S. Drossopoulou. Session types for object-oriented lan-
guages. In ECOOP’06, LNCS 4067. Springer, 2006.

[14] A. Frisch. Regular tree language recognition with static in-
formation. In IFIP TCS, pages 661–674. Kluwer, 2004.

[15] A. Frisch, G. Castagna, and V. Benzaken. Semantic subtyp-
ing: dealing set-theoretically with function, union, intersec-
tion, and negation types. J. ACM, 55(4):1–64, 2008.

[16] P. Garralda, A. Compagnoni, and M. Dezani-Ciancaglini.
BASS: Boxed Ambients with Safe Sessions. In PPDP’06,
pages 61–72. ACM Press, 2006.

[17] S. Gay. Bounded Polymorphism in Session Types. MSCS,
18(5):895–930, 2008.

[18] S. Gay and M. Hole. Subtyping for Session Types in the
Pi-Calculus. Acta Informatica, 42(2/3):191–225, 2005.

[19] K. Honda. Types for dyadic interaction. In CONCUR’93,
LNCS 715. Springer, 1993.

[20] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primi-
tives and type discipline for structured communication-based
programming. In ESOP’98, LNCS 1381. Springer, 1998.

[21] A. Igarashi and N. Kobayashi. A Generic Type System
for the Pi-Calculus. Theor. Comput. Sci, 311(1-3):121–163,
2004.

[22] N. Kobayashi. Type systems for concurrent programs. In
FMC’03, LNCS 2757. Springer, 2003.

[23] N. Kobayashi. Type systems for concurrent programs. Ex-
tended version of [22], Tohoku University, 2007.

[24] R. Milner, J. Parrow, and D. Walker. Modal Logics for Mo-
bile Processes. Theor. Comput. Sci., 114(1):149–171, 1993.

[25] A. Vallecillo, V. T. Vasconcelos, and A. Ravara. Typing the
Behavior of Objects and Components using Session Types.
Fund. Inf., 73(4):583–598, 2006.

[26] V. T. Vasconcelos, S. Gay, and A. Ravara. Typechecking
a Multithreaded Functional Language with Session Types.
Theor. Comput. Sci., 368(1-2):64–87, 2006.

[27] N. Yoshida and V. T. Vasconcelos. Language primitives and
type disciplines for structured communication-based pro-
gramming revisited. In SecRet’06, ENTCS 171, 2007.

10

