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Abstract. We present a new version of the Seal Calculus, a calculus of
mobile computation. We study observational congruence and bisimula-
tion theory, and show how they are related.

1 Introduction

The Seal Calculus is a calculus of mobile computations conceived to model secure
programming of large scale distributed systems over open networks. It can be
roughly described as the m-calculus [9] with hierarchical location mobility and
remote accesses to resources. The original presentation [14] was tailored with
an implementation in mind, and offered features that were important from the
practical view point (e.g. portals), but unessential for its theoretical study.

In this paper we present a “revised” version of the Seal Calculus that shares
with the original version part of its syntax and all the design guiding principles,
while gets rid of the redundant aspects. In particular, portals do not belong to
the calculus anymore, the reduction semantics no longer resorts to an auxiliary
relation, new security oriented rules handle the extrusion of private names, and
the definition of the calculus is parametric on the semantics of remote interaction,
thus allowing an easier exploration of the design space.

We concentrate on behavioural equivalences to establish more than a founda-
tion to it, by proving that a bisimulation-based equivalence is sound with respect
to weak barbed congruence. Even if the technique used is standard, this work is
important because it is the first one that keeps into account agent duplication:'
avoiding agent duplication hugely simplifies the study of the calculus, but wipes
out many properties that characterise real systems.

2 Syntax and Semantics of Seal

The syntax of Seal is reported in Figure 2, where letters u, v, z,y, z range over
variables, P, @, R, S range over processes, and n > 0. The syntax of processes is
the same of Ambient Calculus [2]: the only remark is that replication is guarded.
On the other hand, contrary to what happens in Ambients, all interactions take
place on named localised channels. In this work we present two different dialects
of Seal.

! Sangiorgi’s research on equivalences for higher order m-calculus [10,11] allows the
duplication of processes, but does not account either for agents or for mobility.



Processes Actions Locations

P :=0 inactivity a == T"(y1, - ,yn) output 17 == x  local
O P|P composition O z"(y1,+ ,yn) input o 1 up
O !'4.P replication O z"yd send O z down
O (v x) P restriction O z"0y1,--- ,ynUreceive Guards
0 a.P action v o= T()
O z[P] seal O z*()

Fig. 1. Syntax of the Seal Calculus

In the first one, called Located Seal, channels are located inside seals. Channel
denotations specify in which seal a channel is located: a channel named z is
denoted by =", where 7 is * when the channel is local, is T when the channel is
in the parent, and is n when the channel is in a child seal n.

The figure on the right represents a located channels (o ]
situation with two channels z and y, the former located P
in a and the latter in b. A synchronisation between P Tl
and () can happen on any of these channels. In order to Q@
synchronise on x, process P will use z* as for P channel
z is local, while @ will use 2T as it is a channel located
in the parent. Similarly, to synchronise on y, P will use y* and Q will use y*.

In the second dialect, called Shared Seal, channels are shared between the
two communicating agents in parent-child relation, so that the 7 represents the
partner the channel is shared with. Thus, 2" denotes the channel z shared with
the parent seal, ™ the denotes the channel x shared with the child n, while x*
still denotes a local channel. The figure on the left represents a shared channel

Located channels

T‘ case. In order to synchronise, P and () must use a channel
P m shared between a and b, such as z. For such a synchroni-
sation, P will use =" as it is a channel shared with b, and

Q @ will use 2T as it is a channel shared with the parent.

In order to give reduction rules that are parametric
on the interaction pattern being used, we introduce two
predicates synchs,synch[‘ : Var x Loc x Loc — Bool, ranged over by synch.
Intuitively, synch, (11, 72) holds if and only if for any channel z an action on 2™
performed in some parent seal may synchronise with a coaction on x"? performed
in a child seal y.

Shared channels

Definition 1. Let 71,12 be locations and y a variable (a seal name). We define:
1. synchf(m,ng) 2 (m=yAng =1 [Shared Seal]

2. synchg(m ) 2 =yAn =%V (=% An =1) [Located Seal]

Channel synchronisation is used for the two possible forms of interaction:

Communication: T"(i).P denotes a process waiting to output ¢ on channel z”"
and then behave like P; 2" (7). P denotes a process waiting to read on channel
2" some input, say Z, and then behave like P{g/g}, that is P in which z; is
substituted for every free occurrence of y;;



Mobility: TP denotes a process waiting to serialise a child seal named vy,
send it along channel " and then behave like P; 27[FT0P denotes a process
waiting to receive one seal body along channel z”, to reactivate n identical
copies of it under the names z1, ..., 2, and then behave like P.

The semantics of the Seal Calculus is given in terms of a structural congruence
relation and a set of reduction rules. We write #,, or just Z to denote the tuple
X1, ,Tn, (VWE,), or just (v F), as an abbreviation for (v ;) ... (v z,), and
omit trailing 0 processes. We work modulo a-conversion, and require the y; to be
pairwise distinct in the input action. The definition of the set of free variables of
a process is standard, except for the receive action that is not a binding operation
(f(z"yOP) = fu(P) Uy U {z} U fu(n)), and coincides with the one in [14].

Definition 2 (Structural Congruence). The structural congruence relation
= is the smallest congruence over processes that makes (P =, | ,0) a commuta-
tive monoid and satisfies the following axioms: (1) (vz)0=0; (2) (vx) (vy) P =
'(Vy) (VT?)'P forx # y; (3) (va)(P | Q) = P | (ve)Q for z & fo(P); (4)
IP=P|!P.

In the process (v #) P, we can suppose z1,...,Z, to be pairwise distinct, and
freely permute them (axiom 2 of Definition 2). This implies that the vector ¥
behaves as a set, thus justifying notations such as (v £Ng) P or (v Z\§) P (where
N and \ denote set-theoretic intersection and difference, with the convention that
(vo)P =P).

Definition 2 is the standard m-calculus structural congruence definition. It
should be remarked that the Ambient’s axiom:

(wz)y[P]l=yl(va)P]  forz#y (%)
is not (and must not be) used in Seal. This is due to the presence, in Seal, of
duplication: it would be semantically unsound to define the processes (v ) y[ P]
and y[ (v z) P] as equivalent in the presence of duplication, since if we compose
both terms with the copier process ) = copy y as z (whose definition can be
found in the next page) we obtain: y[ (wz)P] | Q O y[(vz)P] | z[ (v z)P] and
(vz)y[P] | Q@ O (vz)(y[P] | 2[P]) The first process yields a configuration
where seals y and z have each a private channel x, while the second process
produces a configuration where y and z share a common channel z.

This observation holds true independently from the Seal framework: the ex-
trusion rule (%) is authorised in Ambient only because its definition does not
allow ambients duplication. Among its consequences, it is worth stressing that
the extrusion of locally restricted names, when allowed, must be handled ex-
plicitly by the reduction rules. The approach we choose is to extrude all locally
restricted variables that are communicated to the parent, and no other. This is
obtained by the reduction rules shown in Figure 2 to which the usual rules for
context and congruence reduction must also be added.

The non-local rules are parametric in synch: different remote interaction pat-
terns are obtained according whether synch is replaced by synch® (shared chan-
nels), or synch” (located channels).



2*(@).P |7 (9).Q 0 P{"} | Q
Z"(9).P | yl(w2) (2™(@).Q1 | Q)]0 P|y[(w2) (Qi{":} | Q)] ifin7=o
g™ (@). P | y[(v2) (@>(9).Q1 | Q2)]1 0 (wdn2) (P{"a} | y[(w 2\ 9) (Q1 | Q2)])

T HOP | ZT7OP: | v[Q]0 P | u[Q]] -+ | un[Q] | P2
TP [o[R] | y[(v 2) (2" [0Q: [Q2)] O P | y[(v 2) (Q1 | Q2 [ us[R] | -+ [ua[R])]
eGP | y[(v 2)(ZHQ [v[R] | Q2)] O P [ wi[R]| - [ua[R] | y[ (v 2) (Q1]Q2)]

where fu(R) N Z= @, x € 7, and synch, (n1,72) holds true.

Fig. 2. Reduction rules

The first rule describes local communication, which is exactly the same as in
the polyadic m-calculus. The second rule describes the communication of a tuple
¥ from a parent to its child y, which takes place provided that (i) m and 79
and y match a synchronisation pattern, (i¢) channel z is not locally restricted
(i.e., z ¢ Z), and (iii) no communicated variable is captured (i.e., 7N Z = @).
The third rule is where extrusion of local restrictions of communicated variables
takes place, as it corresponds to the case where a child y communicates to its
parent a vector ¥ of names. As for all remote synchronisations 7, and 7, and
y must allow synchronisation and z must not be locally restricted (i.e., z & 2).
Local (in y) restrictions of variables that are communicated to the parent (i.e.,
the variables in ¥ N 2) are extruded while the restrictions of the other variables
(i.e., the variables in 2'\ ) stay in y.

The fourth rule states that in local mobility the body of the seal speci-
fied by the send action is copied as many times as specified by the receive ac-
tion. This allows an easy implementation of operations like the copy of a seal
(copyzasz).P < (vy) (7" k0| y*Or, 20P) and its destruction (destroy z ).P =
(vy) (7*&0O | y*O0P). The fifth rule states that a seal can be moved inside a
child y provided that (i) 71 and 7y are y-corresponding locations, (i7) channel
x is not locally restricted (i.e., ¢ ¢ Z), and (ii7) no variable free in the moved
process is captured (i.e., fu(R) Nz = @).

The last rule breaks the analogy between communication and mobility rules,
and differs from semantics given in [14], as no extrusion is performed. In fact,
the last rule requires that the body of the moved seal does not contain free any
locally restricted variable (i.e., fu(R) N Z = &). This implies that all variables
free in an exiting seal must already be known by the parent, either because
they are non-local or because they were previously communicated to it. There
are two reasons for choosing this more restrictive solution. First, this approach
requires that private names are explicitly exported, giving the programmer a
tighter control on local resources. Second, in a perspective implementation locally
restricted channels would correspond to local variables. Thus in case of mobility
the free variables are handles that can be accessed only if some explicit reference



is passed along with them. What we require here to be explicit, would be in any
case implicit in the implementation.

3 Equivalences

In this section we study a semantic equivalence theory for the Seal Calculus.
The goal is to determine what an “adequate” semantic equivalence relation for
agents should be. For example in [2,3] Cardelli and Gordon introduce and study a
Morris-style contextual equivalence for Mobile Ambients according to which the
process (vn) n[ P] cannot be distinguished from the inactive process 0 when n
does not occur free in P. The intuition is that since the name n is unknown both
inside and outside the process, no other ambient can exert a capability on it.
Thus it is as if the ambient n did not exist. This is summarized by the so-called
perfect firewall equation which states that if n ¢ fu(P), then (v n) n[P] ~ 0. One
may wonder whether this firewall is so perfect. Indeed the equation above does
not ensure that n will not have any interaction with the surrounding context.
As a matter of fact, n can enter another ambient that runs in parallel or exit the
ambient it resides in. In other words n has total mobility freedom. More formally
this means that if for example we consider the commitment semantics defined
for Mobile Ambients in [4], then the process (v n) n[ P] may emit actions such
as inm and outm.? This means that no reasonable bisimilarity relation that
observes mobility capabilities will equate 0, that does not emit anything, with
(v n) n[ P]. It is thus legitimate to wonder about the adequacy of the observation
used to define ~.

A first answer to the question of what an appropriate notion of equivalence
should be has been recently proposed for Ambients by Merro and Hennessy in
a work [8] that strives towards our same goals and from which this section is
deeply inspired. Merro and Hennessy work starts from Sangiorgi’s observation
in [12] that the algebraic theory of Ambients is poor. The goal of [8] is thus to
modify Mobile Ambients so to endow them with an equational theory that is
(i) richer, (ii) reasonable, (iii) adequate, and (iv) practicable. What do these
four properties mean? Richer: that it proves equivalences more interesting than
the simple structural congruence relation; reasonable: that it is a contextual
equivalence that preserves reductions and some simple observational property;
adequate: that it is invariant to different choices of observations (technically,
of barbs); practicable: that it can be expressed in terms of bisimulation, whose
co-inductive nature ensures the existence of powerful proof techniques.

A first step in this direction was done by Levi and Sangiorgi [7] who extended
Ambients by coactions. A reduction takes place only if an action synchronizes
with a corresponding coaction, which yields to a more satisfactory equational
theory. Nevertheless we are once more in the presence of a contextual equivalence
which does not enjoy the last two properties. In [8] Merro and Hennessy extend

2 More precisely, according to the system in [4] a process of the form (v n)n[ P] may
emit enter m (and thus enter in a sibling ambient m) and ezit m (and thus exit from
a surrounding ambient m).



(and modify) the work of [7] by adding to Ambients, besides coactions, also some
passwords: an action and the corresponding coaction synchronize only if they
possess the same password. Then, Merro and Hennessy define a bisimulation-
based equivalence that is invariant for a large choice of observations. In other
terms, they show that their extension enjoys the four required properties.

It is quite interesting to notice that all these modifications, proposed in or-
der to endow Mobile Ambients with more sensible equational theories, make it
closer and closer to the Seal Calculus: [7] requires mobility to be the consequence
of a process synchronization; [8] simply requires that the mobility takes place
on channels (as Merro and Hennessy’s passwords can be easily assimilated to
channels)3. The very last step that distinguishes these Ambient variations from
Seal is that Seal uses objective mobility—the agent is sent by the surrounding
environment—while in Ambient-based calculi mobility is subjective—the agent
sends itself (as an aside, note that objective moves have also been added to Am-
bients by Cardelli, Ghelli and Gordon [1] in order to have more refined typings).
So it seems quite natural that results similar to those of Merro and Hennessy can
be stated for Seals without requiring any modification of its definition. This is
what we do in this section, which constitutes the technical core and the difficult
part of this work. Thus we start to define in Section 3.1 a labeled transition
system and prove its equivalence with the reduction semantics of the previous
section. Then in Section 3.2 we define a contextual equivalence (a barbed con-
gruence) and a bisimilarity relation based on the previous labeled transition
systems. We prove that the bisimilarity is a congruence and is sound with re-
spect to (i.e. contained in) the contextual equivalence. So we have a notion of
equivalence that nearly satisfies the four requirement we stated. To have the
same results as in [8] it remains to prove the completeness of the bisimilarity.
Unfortunately this seems to require non-trivial modifications as we explain at
the end of the presentation.

3.1 Labelled Transition System

If we compare the study of equivalences for the Seal Calculus with the one done
by Merro and Hennessy for the Ambient Calculus, then Seal presents two main
difficulties. First, and foremost, the use of objective, rather than subjective,
moves requires a three-party synchronisation (like in [6]) that introduces further
complexity as it requires some intermediate ad hoc transitions. Second, the pres-
ence of channelled synchronisations together with the stricter discipline of Seal
on private names make the handling of extrusion much more difficult.

For the rest of this section we focus on the shared version of Seal. In par-
ticular the 1ts and the Definition 6 is sensible only for shared channels as some
modifications are needed to account for the located variant* they cannot.

# Merro and Hennessy also modify Levi and Sangiorgi’s calculus so that the coaction
of an out must be placed exactly as a receive action in Seal.

* In Located Seal the two subprocesses in 2*(y) | (v a) a[Z'(2)] can synchronise caus-
ing the extrusion of (v a), while in Shared Seal.



In Figure 4 we report the labelled transition system (lts) for the Shared Seal.

Labels Activities Locations
¢ == 7 internal action a == z"(§) input + = * here
O P, seal freeze O z"(y) output O zinside z
0 P? seal chained 0 z"[{0O send
O ~[a] activity a at O z"0P0Ocapsule
O z"0OP0Oreceive
o x? lock

The free names of a label, fu(f), are defined according to the following rules:

fr)=@  fP.) = fo(P*) = {z}UP(P)  folrla]) = fo(7) U fula)
fola" () = @ () = {2, 7} Ufon) @ B0 = {z,y} U fo(n)
FETPD = fola"CPD) = {2} Ufo(n) Uf(P)  fola?) = {z, 2} U foln)

The label 7 is the standard silent label indicating internal synchronisation.
The label P, denotes a seal z running P that freezes itself, in order to be moved.
The label P* denotes a partial synchronisation: a process willing to move a seal
named z and a process willing to receive a seal with body P synchronised, and
are now looking for the frozen seal to be moved. An activity ~y[a] denotes the
offer of a visible interaction from a process located at .

More in detail, the 2" (y) label FREEZE .
denotes the offer of the input of \ B
the value y over channel z tagged SL \
by n, the T7(y) label denotes the ! E"DZD >
offer of the output of the value y CAP\éé’LE , d
over channel z tagged by 7, the g
Ty label denotes the offer of .
sending a seal named y over chan- * 59):{
nel x tagged by 7, and the x70PO SYI\?C
label denotes the offer of receiv-
ing the seal body P over channel Fig. 3. Synchronisation paths.

z tagged by n. The label Z70PO

represents the action of serialising a seal: its emission indicates that a process
willing to send a seal over a channel found it, serialised it, and is now waiting
for synchronising with a receiver process. The label 2", too, denotes a partial
synchronisation: a process willing to receive a seal at =" synchronised with the
corresponding frozen seal of name z, and is now looking for a sender. If 7 is x,
then the activity takes place at the current level, if + is a name z then the ac-
tivity takes place inside a seal named z. Not all activities are visible outside the
current seal, and none is visible outside the containing seal. A schema describing
the possible synchronisation paths for mobility is reported in Figure 3 (localities
and communications have been omitted for clarity). The Y relation describes
the couple of labels that match to generate a 7 transition.




Definition 3. Let Y be the smallest binary symmetric relation on labels con-
taining the following relation:

{ (" @] vle™@)) | Ay U { (nE"SO, »nl™050) | 4 }
U {(me?], wl=0) |24} v {(S.,5)}

where M = (1 =m =7 =m0 = *)V(n = x A synch (n1,m)) V (12 =
* A synch_ (m2,m))-

The labelled transition relation has the form A - P —— P’ where A is a finite
set of names and fu(P) C A; it has to be read as “in a state where names in A
may be known by process P and by its environment, the process P can perform
¢ and become P'”. This presentation, borrowed from [13], allows us to drop
many side conditions dealing with the extrusion of names. The lts is reported
in Figure 4. It defines an early semantics, as rules (IN) and (RCV) show. This
avoids explicitly dealing with process substitutions and is well suited to study
bisimulation. The conditions “y = x = 1 #1” on rule (OPEN CAPSULE) and
fu(S) C A on rule (SEAL LABEL) guarantee that moving a seal body outside the
current seal cannot extrude a local name.

The following theorem states the equivalence between the Its and the seman-
tics in chemical style.

Theorem 1. Let P be a process: (i) if fuP) C A and A F P = Q, then
PO Q, and (ii) if P O Q then there exists A D fu(P) such that A+ P —— @',
where Q' = Q.

3.2 Equivalence relations

We next define a contextual equivalence for Seal processes. This equivalence
is based on the observation of the presence at top level of a seal whose name
is unrestricted. Such an observation, due to Cardelli and Gordon [2,3], can be
interpreted as the ability of the top-level process to interact with that seal.

We write 0* and = for the reflexive and transitive closure of 0 and —,
respectively. We have the following definitions:

Definition 4 (Barbs). We write P | n if and only if there exist Q, R, ¥ such
that P= (v Z) (n[Q] | R) where n ¢ . We write P |} n if there exists P' such
that PO*P' and P' | n.

Definition 5 (Barbed Congruence). Barbed congruence = is the largest con-
gruence relation over processes that (i) is reduction closed, that is: if P = Q and
PO P!, then there exists Q' such that Q0 *Q' and P' = Q'; (i1) preserves barbs,
that is: P = @Q and P | n implies Q | n.

As a first application of these definitions we can show that P = (vz)n[R]
is not equivalent to @ = n[(rz)R], and prove in this way the unsoundness
of rule () given in Section 2. It just suffices to take R = 7'(x) | 27() and to



Congruence

(PAR) (RES) Vi, z; & fu(f) (BANG)

AP P AZrP-5p
AFPIQ-5P|Q AFw@d)P -5 wi) P AFly.P 5 P|!y.P
(OPEN COM) y,n,v ¢ @ (OPEN FREEZE) : ¢ i

Uys
A-grp 7O, p A-iFpP 2, p

AF ity P 22O a0\ 7) P AR (vi) P (vt fu(S)) P!
(SEAL TAU) (OPEN CAPSULE) wy, 1,7 & 4; if v = * then n #71

ArP Ty P A-grp 2T, p
Ak s[P] > o[ P'] Ak (wi) P 2w fu(S)) P

(SEAL LABEL) fu(S) C A,3n .synch,(n',n)

AFP L Poae {y'(2),5(9),y" RO S0

z[a]

At z[P] —=> z[P']

Communication
(OUT) (IN)
AFEn(g).PM)P AI—mW(ﬁ)_PM)P{ﬁ/,]}
Mobility
(SND) (RCV)
Arzop 200, p Ak ongap 20 Py [Q] | - | el Q]
(CAPSULE) (LOCK) v =n == or 3y synch_(y',n)
*[z" z T
Arp S p ArQ TEL AFP S P A L,
=z xd
ARPIQ 2L P AFPQ L wf()\ A) (P Q)
(FREEZE) (CHAIN) vy =m =n2 = % or synch_(n1,n2)
AP CEIO, b gy o 2EET
AFz[P] 250 AFP|Q 2P @
Synchronization

(SYNC) £ Y £
ArP-y P ARQ 2@
AFP|Q " (v (fo(tr) U fu(f2))\ A) (P | Q)

The symmetric rules for (PAR), (CAPSULE), (LOCK), and (CHAIN) are omitted.
Notation: A - i is defined as AU 4 if A and @ are disjoint, it is undefined otherwise.

Fig. 4. Labeled transition system for shared channels.



consider the context €[—] = copynasm.y™(u).uw™().b[ ] | [-], where b is fresh.
Then € [P]0*P" and P’ | b while there is no @' such that €[Q]0*Q’ and Q' |} b.

As the above example shows, contextual equivalence is useful to prove that
two processes are mot equivalent (it suffices to find a context that differentiate
them) but it is unfit to prove the equivalence of processes. To that end we seek
for a coinductive characterisation of the barbed congruence above.

First of all, remark that the exposure of a barb corresponds to the emission
of a (FREEZE) label in the lts:

Lemma 1. P n iff A- P O, pr for some P', Q, and A, with fu(P) C A.

The lemma above shows that the observation used in the contextual equivalence
is insensitive to the particular process ) occurring in the label of the labelled
transition. Thus we expect a coinductive characterisation of this equivalence not
to be strict in matching (higher-order) labels in which processes occur. As a mat-
ter of facts, when agents can be communicated, requiring processes appearing in
matching labels to be equal is overly restrictive (as, for instance, in our case z[ 0]
and z[y*()] would then not be equivalent). On the other hand requiring them
to be bisimilar is source of problems when agent mobility requires extrusions of
names.

To escape this impasse we resort to the intuition underlying the definition of
Sangiorgi’s delay bisimilarity for HO7 ([10], [11]), and require that the outcomes
of two bisimilar processes emitting higher order transitions are equivalent with
respect to every possible interaction with a context. To that end we introduce
the definition of receiving contexrts. These are processes parametric in two pro-
cesses X and Y, where Y may get replicated. Receiving contexts represents all
the possible outcomes that may result from the migration of a seal, where the
parameter processes X and Y stand, respectively, for the residuum of the process
that sent the seal and for the body of the moved seal.

Definition 6 (Receiving Context). Given two processes X and Y where
fu(X) C A, areceiving context _@f’n[X, Y] and its associated environment A@;ﬂl”[x’y]
are respectively a process and a context defined as: '

ifv,m=x*%,ory,n=2z1and fo(Y) C A, then for all Z such thatfv(%j‘m[X, Y] C
Auz
@AVINA) (X [z[Y]] - [a[Y])
and its associated environment A@:*[va] is AU Z;
if v,m = %, z, then for all U, Z, and U such that fo(Y)NT = @, andfv(_@,éz [X,Y]) C
AU (Z\ )
WAV)INA) (X [ 2[(wd)(z[Y]] - [a[Y]IU)])

and its associated environment Aga [x y) is AU (Z'\ V);
if v,m = =, 1, then for all 0,U, z, such that fo(Y)NT = &, fo(Y) C A, and
fu(@ﬁﬂX, Y])) C(A\¥)uzZ

o)X U] [ z[Y]] - [z]Y]



and its associated environment A@AT[X y] is (A\d)uz?
b e

We write 2*[X,Y] when we quantify over all v,n and abbreviate A@:;\n[xly] by
Ag when no ambiguity arises. ’

Receiving contexts are then used to compare higher-order labelled transitions:

Definition 7 (Hoe Bisimilarity).

Let hoe bisimilarity ~ be the largest family of symmetric relations indexed by
finite sets of names such that each ~ 4 is a binary relation over {P | fu(P) C A}
and for all P ~ 4 Q) the following conditions hold:

1. if AF P =5 P' then there exists a Q' such that AF Q = Q' and P' ~4 Q';
2. if AF P -5 P and € € { 42" (), 7[" (7)), 7' y0, 27050, 5%, 4[=7] },
then there exists a Q' such that A+ Q) LN Q" and P' ~ g 50 Q'

3. if AR P B o P then there exist Q'. S such that A&+ Q - 5, Q' and for
all admissible contexts 9[-, —] it holds D*[P',R] ~a, 24[Q',S];

4. ifAFP H=" R P' then there exist ', S such that A+ Q = G
. - A . A
Q" and for all admissible contexts 9, [—, ] it holds 2. [P',R] ~a,
23,1Q", S);
5. for all substitutions o, Po ~a, Qo;

where a context P [—, ] is admissible if both process substitutions P[P’ R]
and 24[Q', S] are well-formed (i.e. no name capture arises).

The first two cases of Definition 7 handle all low-order labels, as well as
labels originating from receive actions: these do not deserve a special treatment
because our early semantics implicitly tests all possible interactions. The cases
3. and 4. check mobility, by testing against all possible outcomes after a mobility
interaction with a context.

The most important result of this work is the soundness of bisimilarity:

Theorem 2 (Soundness). Hoe bisimilarity is sound with respect to barbed con-
gruence: if P ~4 @ for some A, then P = (.

The proof of this theorem is a consequence of the following lemma.
Lemma 2. Hoe bisimilarity is a congruence.

As an application of this theory let us go back to the perfect firewall equation
at the beginning of this section. It is quite easy to prove that (vz)z[P] ~ 0
as it suffices to exhibit the following bisimulation & = |J, B4, where B4 =
{(v)2[Q],0) | PO*QIU{(0, (va) x[Q]) | PO*Q}if fo(P) C A, and empty
otherwise. The use of hoe bisimilarity ensures us that this firewall is perfect, as it
cannot emit anything but the silent label. The soundness of bisimilarity implies
(vz)z[P] 0.

® Note that the associated environment is defined in term of the process rather than
of the context, as its definition depends on the possibly fresh variables Z.



Open issues. The definition of hoe bisimilarity for located channels does not
seem worth to be pursued. It is easy to see that with localised channels hoe
bisimilarity is not a congruence (the problem being the extrusion of seal names
corresponding to z[a] labels), and while it is not difficult to make the needed mod-
ifications, this does not seem interesting since the resulting equivalence would
be too strong (e.g., (v z) z[ P] # 0).

A more interesting problem is that Hoe bisimilarity is not complete with

respect to barbed congruence. The problem arises because weak transition LN
do not allow 7 moves a visible action. However the problem may be deeper
than that: first, since Seal Calculus is an extension of the m-calculus and in the
m-calculus the matching operator is necessary to completeness, then this same
operator may be required also in Seal; second, in the three party synchronisation
the intermediate actions are not observable, therefore it seems quite hard to find
a context to separate them. So completeness cannot be easily reached and needs
much more research effort.
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