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1 Introdu
tionThe Seal Cal
ulus is a 
al
ulus of mobile 
omputations 
on
eived to model se
ureprogramming of large s
ale distributed systems over open networks. It 
an beroughly des
ribed as the �-
al
ulus [9℄ with hierar
hi
al lo
ation mobility andremote a

esses to resour
es. The original presentation [14℄ was tailored withan implementation in mind, and o�ered features that were important from thepra
ti
al view point (e.g. portals), but unessential for its theoreti
al study.In this paper we present a \revised" version of the Seal Cal
ulus that shareswith the original version part of its syntax and all the design guiding prin
iples,while gets rid of the redundant aspe
ts. In parti
ular, portals do not belong tothe 
al
ulus anymore, the redu
tion semanti
s no longer resorts to an auxiliaryrelation, new se
urity oriented rules handle the extrusion of private names, andthe de�nition of the 
al
ulus is parametri
 on the semanti
s of remote intera
tion,thus allowing an easier exploration of the design spa
e.We 
on
entrate on behavioural equivalen
es to establish more than a founda-tion to it, by proving that a bisimulation-based equivalen
e is sound with respe
tto weak barbed 
ongruen
e. Even if the te
hnique used is standard, this work isimportant be
ause it is the �rst one that keeps into a

ount agent dupli
ation:1avoiding agent dupli
ation hugely simpli�es the study of the 
al
ulus, but wipesout many properties that 
hara
terise real systems.2 Syntax and Semanti
s of SealThe syntax of Seal is reported in Figure 2, where letters u; v; x; y; z range overvariables, P;Q;R; S range over pro
esses, and n � 0. The syntax of pro
esses isthe same of Ambient Cal
ulus [2℄: the only remark is that repli
ation is guarded.On the other hand, 
ontrary to what happens in Ambients, all intera
tions takepla
e on named lo
alised 
hannels. In this work we present two di�erent diale
tsof Seal.1 Sangiorgi's resear
h on equivalen
es for higher order �-
al
ulus [10,11℄ allows thedupli
ation of pro
esses, but does not a

ount either for agents or for mobility.



Pro
esses A
tions Lo
ationsP ::= 0 ina
tivity
 P j P 
omposition
 ! 
:P repli
ation
 (� x)P restri
tion
 �:P a
tion
 x [P ℄ seal

� ::= x�(y1; � � � ; yn) output
 x�(y1; � � � ; yn) input
 x�y send
 x�y1; � � � ; yn re
eive � ::= � lo
al

 " up
 z downGuards
 ::= x�()
 x�()Fig. 1. Syntax of the Seal Cal
ulusIn the �rst one, 
alled Lo
ated Seal, 
hannels are lo
ated inside seals. Channeldenotations spe
ify in whi
h seal a 
hannel is lo
ated: a 
hannel named x isdenoted by x� , where � is � when the 
hannel is lo
al, is " when the 
hannel isin the parent, and is n when the 
hannel is in a 
hild seal n.The �gure on the right represents a lo
ated 
hannels aP bx y QLo
ated 
hannelssituation with two 
hannels x and y, the former lo
atedin a and the latter in b. A syn
hronisation between Pand Q 
an happen on any of these 
hannels. In order tosyn
hronise on x, pro
ess P will use x� as for P 
hannelx is lo
al, while Q will use x" as it is a 
hannel lo
atedin the parent. Similarly, to syn
hronise on y, P will use yb and Q will use y�.In the se
ond diale
t, 
alled Shared Seal, 
hannels are shared between thetwo 
ommuni
ating agents in parent-
hild relation, so that the � represents thepartner the 
hannel is shared with. Thus, x" denotes the 
hannel x shared withthe parent seal, xn the denotes the 
hannel x shared with the 
hild n, while x�still denotes a lo
al 
hannel. The �gure on the left represents a shared 
hannel
ase. In order to syn
hronise, P and Q must use a 
hannelaP bx QShared 
hannels shared between a and b, su
h as x. For su
h a syn
hroni-sation, P will use xb as it is a 
hannel shared with b, andQ will use x" as it is a 
hannel shared with the parent.In order to give redu
tion rules that are parametri
on the intera
tion pattern being used, we introdu
e twopredi
ates syn
hS ; syn
hL : Var� Lo
� Lo
 ! Bool, ranged over by syn
h.Intuitively, syn
hy(�1; �2) holds if and only if for any 
hannel x an a
tion on x�1performed in some parent seal may syn
hronise with a 
oa
tion on x�2 performedin a 
hild seal y.De�nition 1. Let �1; �2 be lo
ations and y a variable (a seal name). We de�ne:1. syn
hSy (�1; �2) def= (�1 = y ^ �2 =") [Shared Seal℄2. syn
hLy (�1; �2) def= (�1 = y ^ �2 = �) _ (�1 = � ^ �2 =") [Lo
ated Seal℄Channel syn
hronisation is used for the two possible forms of intera
tion:Communi
ation: x�(~y):P denotes a pro
ess waiting to output ~y on 
hannel x�and then behave like P ; x�(~y):P denotes a pro
ess waiting to read on 
hannelx� some input, say ~z, and then behave like Pf~z=~yg, that is P in whi
h zi issubstituted for every free o

urren
e of yi;



Mobility: x�y:P denotes a pro
ess waiting to serialise a 
hild seal named y,send it along 
hannel x� and then behave like P ; x�~z:P denotes a pro
esswaiting to re
eive one seal body along 
hannel x� , to rea
tivate n identi
al
opies of it under the names z1; : : : ; zn and then behave like P .The semanti
s of the Seal Cal
ulus is given in terms of a stru
tural 
ongruen
erelation and a set of redu
tion rules. We write ~xn or just ~z to denote the tuplex1; � � � ; xn, (� ~xn) , or just (� ~x) , as an abbreviation for (� x1) : : : (� xn) , andomit trailing 0 pro
esses. We work modulo �-
onversion, and require the yi to bepairwise distin
t in the input a
tion. The de�nition of the set of free variables ofa pro
ess is standard, ex
ept for the re
eive a
tion that is not a binding operation(fv(x�~y:P ) = fv(P ) [ ~y [ fxg [ fv(�)), and 
oin
ides with the one in [14℄.De�nition 2 (Stru
tural Congruen
e). The stru
tural 
ongruen
e relation� is the smallest 
ongruen
e over pro
esses that makes (P= �; j ;0) a 
ommuta-tive monoid and satis�es the following axioms: (1) (� x)0 � 0; (2) (� x) (� y)P �(� y) (� x)P for x 6= y; (3) (� x) (P j Q) � P j (� x)Q for x 62 fv(P ); (4)!P � P j !P .In the pro
ess (� ~x)P , we 
an suppose x1; : : : ; xn to be pairwise distin
t, andfreely permute them (axiom 2 of De�nition 2). This implies that the ve
tor ~xbehaves as a set, thus justifying notations su
h as (� ~x\~y)P or (� ~xn~y)P (where\ and n denote set-theoreti
 interse
tion and di�eren
e, with the 
onvention that(� ?)P = P ).De�nition 2 is the standard �-
al
ulus stru
tural 
ongruen
e de�nition. Itshould be remarked that the Ambient's axiom:(� x) y[P ℄ � y[ (� x)P ℄ for x 6= y (�)is not (and must not be) used in Seal. This is due to the presen
e, in Seal, ofdupli
ation: it would be semanti
ally unsound to de�ne the pro
esses (� x) y[P ℄and y[ (� x)P ℄ as equivalent in the presen
e of dupli
ation, sin
e if we 
omposeboth terms with the 
opier pro
ess Q = 
opy y as z (whose de�nition 
an befound in the next page) we obtain: y[ (� x)P ℄ j Q ➞ y[ (� x)P ℄ j z [ (� x)P ℄ and(� x) y[P ℄ j Q ➞ (� x) (y[P ℄ j z [P ℄) The �rst pro
ess yields a 
on�gurationwhere seals y and z have ea
h a private 
hannel x, while the se
ond pro
essprodu
es a 
on�guration where y and z share a 
ommon 
hannel x.This observation holds true independently from the Seal framework: the ex-trusion rule (�) is authorised in Ambient only be
ause its de�nition does notallow ambients dupli
ation. Among its 
onsequen
es, it is worth stressing thatthe extrusion of lo
ally restri
ted names, when allowed, must be handled ex-pli
itly by the redu
tion rules. The approa
h we 
hoose is to extrude all lo
allyrestri
ted variables that are 
ommuni
ated to the parent, and no other. This isobtained by the redu
tion rules shown in Figure 2 to whi
h the usual rules for
ontext and 
ongruen
e redu
tion must also be added.The non-lo
al rules are parametri
 in syn
h: di�erent remote intera
tion pat-terns are obtained a

ording whether syn
h is repla
ed by syn
hS (shared 
han-nels), or syn
hL (lo
ated 
hannels).



x�(~u).P j x�(~v).Q ➞ Pf~v=~ug j Qx�1(~v).P j y[ (� ~z) (x�2(~u).Q1 j Q2) ℄ ➞ P j y[ (� ~z) (Q1f~v=~ug j Q2) ℄ if ~v\~z=?x�1(~u).P j y[ (� ~z) (x�2 (~v).Q1 j Q2) ℄ ➞ (� ~v \ ~z) (Pf~v=~ug j y[ (� ~z n ~v) (Q1 j Q2) ℄)x�~u.P1 j x�v.P2 j v [Q ℄ ➞ P1 j u1 [Q ℄ j � � � j un [Q ℄ j P2x�1v.P j v [R℄ j y[(� ~z)(x�2~u.Q1 jQ2) ℄ ➞ P j y[ (� ~z) (Q1 jQ2 j u1 [R℄ j � � � j un [R℄) ℄x�1~u.P j y[(� ~z)(x�2v.Q1 j v [R℄ jQ2)℄ ➞ P j u1 [R℄ j � � � j un [R℄ j y[ (� ~z) (Q1 jQ2) ℄where fv(R) \ ~z = ?, x 62 ~z, and syn
hy(�1; �2) holds true.Fig. 2. Redu
tion rulesThe �rst rule des
ribes lo
al 
ommuni
ation, whi
h is exa
tly the same as inthe polyadi
 �-
al
ulus. The se
ond rule des
ribes the 
ommuni
ation of a tuple~v from a parent to its 
hild y, whi
h takes pla
e provided that (i) �1 and �2and y mat
h a syn
hronisation pattern, (ii) 
hannel x is not lo
ally restri
ted(i.e., x 62 ~z), and (iii) no 
ommuni
ated variable is 
aptured (i.e., ~v \ ~z = ?).The third rule is where extrusion of lo
al restri
tions of 
ommuni
ated variablestakes pla
e, as it 
orresponds to the 
ase where a 
hild y 
ommuni
ates to itsparent a ve
tor ~v of names. As for all remote syn
hronisations �1 and �2 andy must allow syn
hronisation and x must not be lo
ally restri
ted (i.e., x 62 ~z).Lo
al (in y) restri
tions of variables that are 
ommuni
ated to the parent (i.e.,the variables in ~v \ ~z) are extruded while the restri
tions of the other variables(i.e., the variables in ~z n ~v) stay in y.The fourth rule states that in lo
al mobility the body of the seal spe
i-�ed by the send a
tion is 
opied as many times as spe
i�ed by the re
eive a
-tion. This allows an easy implementation of operations like the 
opy of a seal(
opy x as z):P def= (� y) ( y�x j y�x ; z:P ) and its destru
tion (destroy x ):P def=(� y) ( y�x j y� :P ). The �fth rule states that a seal 
an be moved inside a
hild y provided that (i) �1 and �2 are y-
orresponding lo
ations, (ii) 
hannelx is not lo
ally restri
ted (i.e., x 62 ~z), and (iii) no variable free in the movedpro
ess is 
aptured (i.e., fv(R) \ ~z = ?).The last rule breaks the analogy between 
ommuni
ation and mobility rules,and di�ers from semanti
s given in [14℄, as no extrusion is performed. In fa
t,the last rule requires that the body of the moved seal does not 
ontain free anylo
ally restri
ted variable (i.e., fv(R) \ ~z = ?). This implies that all variablesfree in an exiting seal must already be known by the parent, either be
ausethey are non-lo
al or be
ause they were previously 
ommuni
ated to it. Thereare two reasons for 
hoosing this more restri
tive solution. First, this approa
hrequires that private names are expli
itly exported, giving the programmer atighter 
ontrol on lo
al resour
es. Se
ond, in a perspe
tive implementation lo
allyrestri
ted 
hannels would 
orrespond to lo
al variables. Thus in 
ase of mobilitythe free variables are handles that 
an be a

essed only if some expli
it referen
e



is passed along with them. What we require here to be expli
it, would be in any
ase impli
it in the implementation.3 Equivalen
esIn this se
tion we study a semanti
 equivalen
e theory for the Seal Cal
ulus.The goal is to determine what an \adequate" semanti
 equivalen
e relation foragents should be. For example in [2,3℄ Cardelli and Gordon introdu
e and study aMorris-style 
ontextual equivalen
e for Mobile Ambients a

ording to whi
h thepro
ess (� n)n[P ℄ 
annot be distinguished from the ina
tive pro
ess 0 when ndoes not o

ur free in P . The intuition is that sin
e the name n is unknown bothinside and outside the pro
ess, no other ambient 
an exert a 
apability on it.Thus it is as if the ambient n did not exist. This is summarized by the so-
alledperfe
t �rewall equation whi
h states that if n 62 fv(P ), then (� n)n[P ℄ ' 0. Onemay wonder whether this �rewall is so perfe
t. Indeed the equation above doesnot ensure that n will not have any intera
tion with the surrounding 
ontext.As a matter of fa
t, n 
an enter another ambient that runs in parallel or exit theambient it resides in. In other words n has total mobility freedom. More formallythis means that if for example we 
onsider the 
ommitment semanti
s de�nedfor Mobile Ambients in [4℄, then the pro
ess (� n)n[P ℄ may emit a
tions su
has inm and outm.2 This means that no reasonable bisimilarity relation thatobserves mobility 
apabilities will equate 0, that does not emit anything, with(� n)n[P ℄. It is thus legitimate to wonder about the adequa
y of the observationused to de�ne '.A �rst answer to the question of what an appropriate notion of equivalen
eshould be has been re
ently proposed for Ambients by Merro and Hennessy ina work [8℄ that strives towards our same goals and from whi
h this se
tion isdeeply inspired. Merro and Hennessy work starts from Sangiorgi's observationin [12℄ that the algebrai
 theory of Ambients is poor. The goal of [8℄ is thus tomodify Mobile Ambients so to endow them with an equational theory that is(i) ri
her, (ii) reasonable, (iii) adequate, and (iv) pra
ti
able. What do thesefour properties mean? Ri
her: that it proves equivalen
es more interesting thanthe simple stru
tural 
ongruen
e relation; reasonable: that it is a 
ontextualequivalen
e that preserves redu
tions and some simple observational property;adequate: that it is invariant to di�erent 
hoi
es of observations (te
hni
ally,of barbs); pra
ti
able: that it 
an be expressed in terms of bisimulation, whose
o-indu
tive nature ensures the existen
e of powerful proof te
hniques.A �rst step in this dire
tion was done by Levi and Sangiorgi [7℄ who extendedAmbients by 
oa
tions. A redu
tion takes pla
e only if an a
tion syn
hronizeswith a 
orresponding 
oa
tion, whi
h yields to a more satisfa
tory equationaltheory. Nevertheless we are on
e more in the presen
e of a 
ontextual equivalen
ewhi
h does not enjoy the last two properties. In [8℄ Merro and Hennessy extend2 More pre
isely, a

ording to the system in [4℄ a pro
ess of the form (� n) n[P ℄ mayemit enter m (and thus enter in a sibling ambientm) and exit m (and thus exit froma surrounding ambient m).



(and modify) the work of [7℄ by adding to Ambients, besides 
oa
tions, also somepasswords : an a
tion and the 
orresponding 
oa
tion syn
hronize only if theypossess the same password. Then, Merro and Hennessy de�ne a bisimulation-based equivalen
e that is invariant for a large 
hoi
e of observations. In otherterms, they show that their extension enjoys the four required properties.It is quite interesting to noti
e that all these modi�
ations, proposed in or-der to endow Mobile Ambients with more sensible equational theories, make it
loser and 
loser to the Seal Cal
ulus: [7℄ requires mobility to be the 
onsequen
eof a pro
ess syn
hronization; [8℄ simply requires that the mobility takes pla
eon 
hannels (as Merro and Hennessy's passwords 
an be easily assimilated to
hannels)3. The very last step that distinguishes these Ambient variations fromSeal is that Seal uses obje
tive mobility|the agent is sent by the surroundingenvironment|while in Ambient-based 
al
uli mobility is subje
tive|the agentsends itself|(as an aside, note that obje
tive moves have also been added to Am-bients by Cardelli, Ghelli and Gordon [1℄ in order to have more re�ned typings).So it seems quite natural that results similar to those of Merro and Hennessy 
anbe stated for Seals without requiring any modi�
ation of its de�nition. This iswhat we do in this se
tion, whi
h 
onstitutes the te
hni
al 
ore and the diÆ
ultpart of this work. Thus we start to de�ne in Se
tion 3.1 a labeled transitionsystem and prove its equivalen
e with the redu
tion semanti
s of the previousse
tion. Then in Se
tion 3.2 we de�ne a 
ontextual equivalen
e (a barbed 
on-gruen
e) and a bisimilarity relation based on the previous labeled transitionsystems. We prove that the bisimilarity is a 
ongruen
e and is sound with re-spe
t to (i.e. 
ontained in) the 
ontextual equivalen
e. So we have a notion ofequivalen
e that nearly satis�es the four requirement we stated. To have thesame results as in [8℄ it remains to prove the 
ompleteness of the bisimilarity.Unfortunately this seems to require non-trivial modi�
ations as we explain atthe end of the presentation.3.1 Labelled Transition SystemIf we 
ompare the study of equivalen
es for the Seal Cal
ulus with the one doneby Merro and Hennessy for the Ambient Cal
ulus, then Seal presents two maindiÆ
ulties. First, and foremost, the use of obje
tive, rather than subje
tive,moves requires a three-party syn
hronisation (like in [6℄) that introdu
es further
omplexity as it requires some intermediate ad ho
 transitions. Se
ond, the pres-en
e of 
hannelled syn
hronisations together with the stri
ter dis
ipline of Sealon private names make the handling of extrusion mu
h more diÆ
ult.For the rest of this se
tion we fo
us on the shared version of Seal. In par-ti
ular the lts and the De�nition 6 is sensible only for shared 
hannels as somemodi�
ations are needed to a

ount for the lo
ated variant4 they 
annot.3 Merro and Hennessy also modify Levi and Sangiorgi's 
al
ulus so that the 
oa
tionof an out must be pla
ed exa
tly as a re
eive a
tion in Seal.4 In Lo
ated Seal the two subpro
esses in x�(y) j (� a) a[x"(z) ℄ 
an syn
hronise 
aus-ing the extrusion of (� a) , while in Shared Seal.



In Figure 4 we report the labelled transition system (lts) for the Shared Seal.Labels A
tivities Lo
ations` ::= � internal a
tion
 Pz seal freeze
 P z seal 
hained
 
[a℄ a
tivity a at 
 a ::= x�(~y) input

 x�(~y) output
 x�y send
 x�P 
apsule
 x�P re
eive
 x�z lo
k


 ::= � here
 z inside z

The free names of a label, fv(`), are de�ned a

ording to the following rules:fv(�) = ? fv(Pz) = fv(P z) = fzg [ fv(P ) fv(
[a℄) = fv(
) [ fv(a)fv(x�(~y)) = fv(x�(~y)) = fx; ~yg [ fv(�) fv(x�y) = fx; yg [ fv(�)fv(x�P) = fv(x�P) = fxg [ fv(�) [ fv(P ) fv(x�z) = fx; zg [ fv(�)The label � is the standard silent label indi
ating internal syn
hronisation.The label Pz denotes a seal z running P that freezes itself, in order to be moved.The label P z denotes a partial syn
hronisation: a pro
ess willing to move a sealnamed z and a pro
ess willing to re
eive a seal with body P syn
hronised, andare now looking for the frozen seal to be moved. An a
tivity 
[a℄ denotes theo�er of a visible intera
tion from a pro
ess lo
ated at 
.More in detail, the x�(y) label FREEZESz SzSz SNDx�z x�zx�z

RCV
x�S

x�Sx�SCAPSULEx�S

LOCKx�z CHAINSzSYNC SYNC SYNCFig. 3. Syn
hronisation paths.
denotes the o�er of the input ofthe value y over 
hannel x taggedby �, the x�(y) label denotes theo�er of the output of the value yover 
hannel x tagged by �, thex�y label denotes the o�er ofsending a seal named y over 
han-nel x tagged by �, and the x�Plabel denotes the o�er of re
eiv-ing the seal body P over 
hannelx tagged by �. The label x�Prepresents the a
tion of serialising a seal: its emission indi
ates that a pro
esswilling to send a seal over a 
hannel found it, serialised it, and is now waitingfor syn
hronising with a re
eiver pro
ess. The label x�z , too, denotes a partialsyn
hronisation: a pro
ess willing to re
eive a seal at x� syn
hronised with the
orresponding frozen seal of name z, and is now looking for a sender. If 
 is �,then the a
tivity takes pla
e at the 
urrent level, if 
 is a name z then the a
-tivity takes pla
e inside a seal named z. Not all a
tivities are visible outside the
urrent seal, and none is visible outside the 
ontaining seal. A s
hema des
ribingthe possible syn
hronisation paths for mobility is reported in Figure 3 (lo
alitiesand 
ommuni
ations have been omitted for 
larity). The g relation des
ribesthe 
ouple of labels that mat
h to generate a � transition.



De�nition 3. Let g be the smallest binary symmetri
 relation on labels 
on-taining the following relation:f ( 
1[x�1(~y)℄ ; 
2[x�2(~y)℄ ) j M g [ f ( 
1[x�1S℄ ; 
2[x�2S℄ ) j M g[ f ( 
1[x�1z ℄ ; 
2[x�2z℄ ) j M g [ f ( Sz ; Sz ) gwhere M def= (
1 = �1 = 
2 = �2 = �) _ (
1 = � ^ syn
h
2(�1; �2)) _ (
2 =� ^ syn
h
1(�2; �1)):The labelled transition relation has the form A ` P �̀�! P 0 where A is a �niteset of names and fv(P ) � A; it has to be read as \in a state where names in Amay be known by pro
ess P and by its environment, the pro
ess P 
an perform` and be
ome P 0". This presentation, borrowed from [13℄, allows us to dropmany side 
onditions dealing with the extrusion of names. The lts is reportedin Figure 4. It de�nes an early semanti
s, as rules (IN) and (RCV) show. Thisavoids expli
itly dealing with pro
ess substitutions and is well suited to studybisimulation. The 
onditions \
 = � ) � 6="" on rule (OPEN CAPSULE) andfv(S) � A on rule (SEAL LABEL) guarantee that moving a seal body outside the
urrent seal 
annot extrude a lo
al name.The following theorem states the equivalen
e between the lts and the seman-ti
s in 
hemi
al style.Theorem 1. Let P be a pro
ess: (i) if fv(P ) � A and A ` P ���! Q, thenP ➞ Q, and (ii) if P ➞ Q then there exists A � fv(P ) su
h that A ` P ���! Q0,where Q0 � Q.3.2 Equivalen
e relationsWe next de�ne a 
ontextual equivalen
e for Seal pro
esses. This equivalen
eis based on the observation of the presen
e at top level of a seal whose nameis unrestri
ted. Su
h an observation, due to Cardelli and Gordon [2,3℄, 
an beinterpreted as the ability of the top-level pro
ess to intera
t with that seal.We write ➞� and ) for the re
exive and transitive 
losure of ➞ and ���!,respe
tively. We have the following de�nitions:De�nition 4 (Barbs). We write P # n if and only if there exist Q, R, ~x su
hthat P � (� ~x) (n[Q ℄ j R) where n 62 ~x. We write P + n if there exists P 0 su
hthat P➞�P 0 and P 0 # n.De�nition 5 (Barbed Congruen
e). Barbed 
ongruen
e �= is the largest 
on-gruen
e relation over pro
esses that (i) is redu
tion 
losed, that is: if P �= Q andP➞P 0, then there exists Q0 su
h that Q➞�Q0 and P 0 �= Q0; (ii) preserves barbs,that is: P �= Q and P # n implies Q + n.As a �rst appli
ation of these de�nitions we 
an show that P = (� x)n[R ℄is not equivalent to Q = n[ (� x)R ℄, and prove in this way the unsoundnessof rule (�) given in Se
tion 2. It just suÆ
es to take R = y"(x) j x"() and to



Congruen
e(PAR)A ` P �̀�! P 0A ` P j Q �̀�! P 0 j Q (RES) 8i, xi 62 fv(`)A � ~x ` P �̀�! P 0A ` (� ~x)P �̀�! (� ~x)P 0 (BANG)A ` !
:P 
��! P j !
:P(OPEN COM) y; �; 
 62 ~uA � ~u ` P 
[y�(~x)℄������! P 0A ` (� ~u)P 
[y�(~x)℄������! (� ~u n ~x)P 0 (OPEN FREEZE) z 62 ~uA � ~u ` P Sz���! P 0A ` (� ~u)P Sz���! (� ~u n fv(S))P 0(SEAL TAU)A ` P ���! P 0A ` x [P ℄ ���! x [P 0 ℄ (OPEN CAPSULE) y; �; 
 62 ~u; if 
 = � then � 6="A � ~u ` P 
[y�S℄������! P 0A ` (� ~u)P 
[y�S℄������! (� ~u n fv(S))P 0(SEAL LABEL) fv(S) � A; 9�0:syn
hx(�0; �)A ` P �[a℄���! P 0 a 2 fy�(~z); y�(~z); y�Q; y�SgA ` x [P ℄ x[ a ℄����! x [P 0 ℄Communi
ation(OUT)A ` x�(~y):P �[x�(~y)℄������! P (IN)A ` x�(~y):P �[x�(~v)℄������! Pf~v=~ygMobility(SND)A ` x�y:P �[x�y℄������! P (RCV)A ` x�~y:P �[x�Q℄�������! P j y1 [Q ℄ j � � � j yn [Q ℄(CAPSULE)A ` P Sz���! P 0 A ` Q �[x�z℄������! Q0A ` P j Q �[x�S℄������! P 0 j Q0 (LOCK) 
 = � = � or 9�0:syn
h
(�0; �)A ` P Sz���! P 0 A ` Q 
[x�S℄������! Q0A ` P j Q 
[x�z ℄����! (� fv(S) n A) (P 0 j Q0)(FREEZE)A ` x [P ℄ Px���! 0 (CHAIN) 
 = �1 = �2 = � or syn
h
(�1; �2)A ` P �[x�1 y℄�������! P 0 A ` Q 
[x�2 S℄�������! Q0A ` P j Q Sy���! P 0 j Q0Syn
hronization(SYNC) `1 g `2A ` P `1��! P 0 A ` Q `2��! Q0A ` P j Q ���! (� (fv(`1) [ fv(`2)) nA) (P 0 j Q0)The symmetri
 rules for (PAR), (CAPSULE), (LOCK), and (CHAIN) are omitted.Notation: A � ~u is de�ned as A [ ~u if A and ~u are disjoint, it is unde�ned otherwise.Fig. 4. Labeled transition system for shared 
hannels.




onsider the 
ontext C [�℄ = 
opyn asm:yn(u):um():b[ ℄ j [�℄, where b is fresh.Then C [P ℄➞�P 0 and P 0 # b while there is no Q0 su
h that C [Q℄➞�Q0 and Q0 + b.As the above example shows, 
ontextual equivalen
e is useful to prove thattwo pro
esses are not equivalent (it suÆ
es to �nd a 
ontext that di�erentiatethem) but it is un�t to prove the equivalen
e of pro
esses. To that end we seekfor a 
oindu
tive 
hara
terisation of the barbed 
ongruen
e above.First of all, remark that the exposure of a barb 
orresponds to the emissionof a (FREEZE) label in the lts:Lemma 1. P # n i� A ` P Qn���! P 0 for some P 0, Q, and A, with fv(P ) � A.The lemma above shows that the observation used in the 
ontextual equivalen
eis insensitive to the parti
ular pro
ess Q o

urring in the label of the labelledtransition. Thus we expe
t a 
oindu
tive 
hara
terisation of this equivalen
e notto be stri
t in mat
hing (higher-order) labels in whi
h pro
esses o

ur. As a mat-ter of fa
ts, when agents 
an be 
ommuni
ated, requiring pro
esses appearing inmat
hing labels to be equal is overly restri
tive (as, for instan
e, in our 
ase x [ 0 ℄and x [ yz() ℄ would then not be equivalent). On the other hand requiring themto be bisimilar is sour
e of problems when agent mobility requires extrusions ofnames.To es
ape this impasse we resort to the intuition underlying the de�nition ofSangiorgi's delay bisimilarity for HO� ([10℄, [11℄), and require that the out
omesof two bisimilar pro
esses emitting higher order transitions are equivalent withrespe
t to every possible intera
tion with a 
ontext. To that end we introdu
ethe de�nition of re
eiving 
ontexts . These are pro
esses parametri
 in two pro-
esses X and Y , where Y may get repli
ated. Re
eiving 
ontexts represents allthe possible out
omes that may result from the migration of a seal, where theparameter pro
essesX and Y stand, respe
tively, for the residuum of the pro
essthat sent the seal and for the body of the moved seal.De�nition 6 (Re
eiving Context). Given two pro
esses X and Y wherefv(X) � A, a re
eiving 
ontext DA
;�[X;Y ℄ and its asso
iated environment ADA
;� [X;Y ℄are respe
tively a pro
ess and a 
ontext de�ned as:if 
; � = �; �, or 
; � = z; " and fv(Y ) � A, then for all ~z su
h that fv(DA
;�[X;Y ℄) �A [ ~z (� fv(Y ) nA) ( X j z1 [Y ℄ j � � � j zn [Y ℄ )and its asso
iated environment ADA�;�[X;Y ℄ is A [ ~z;if 
; � = �; z, then for all ~v; ~z, and U su
h that fv(Y )\~v = ?, and fv(DA�;z [X;Y ℄) �A [ (~z n ~v)(� fv(Y ) nA) ( X j z [ (� ~v) ( z1 [Y ℄ j � � � j zn [Y ℄ j U ) ℄ )and its asso
iated environment ADA�;z[X;Y ℄ is A [ (~z n ~v);if 
; � = �; ", then for all ~v; U; z, su
h that fv(Y ) \ ~v = ?, fv(Y ) � A, andfv(DA
;"[X;Y ℄) � (A n ~v) [ ~zz [ (� ~v) (X j U) ℄ j z1 [Y ℄ j � � � j zn [Y ℄



and its asso
iated environment ADA
;"[X;Y ℄ is (A n ~v) [ ~z.5We write DA[X;Y ℄ when we quantify over all 
; � and abbreviate ADA
;�[X;Y ℄ byAD when no ambiguity arises.Re
eiving 
ontexts are then used to 
ompare higher-order labelled transitions:De�nition 7 (Hoe Bisimilarity).Let hoe bisimilarity � be the largest family of symmetri
 relations indexed by�nite sets of names su
h that ea
h �A is a binary relation over fP j fv(P ) � Agand for all P �A Q the following 
onditions hold:1. if A ` P ���! P 0 then there exists a Q0 su
h that A ` Q) Q0 and P 0 �A Q0;2. if A ` P �̀�! P 0 and ` 2 f 
[x�(~y)℄; 
[x�(~y)℄; �[x�y℄; 
[x�S℄; Sz; 
[x�z ℄ g,then there exists a Q0 su
h that A ` Q)�̀�! Q0 and P 0 �A[fv(`) Q0;3. if A ` P Rz���! P 0 then there exist Q0; S su
h that A ` Q) Sz���! Q0 and forall admissible 
ontexts DA[�;�℄ it holds DA[P 0; R℄ �AD DA[Q0; S℄;4. if A ` P 
[x�R℄�������! P 0 then there exist Q0; S su
h that A ` Q ) 
[x�S℄�������!Q0 and for all admissible 
ontexts DA
;�[�;�℄ it holds DA
;�[P 0; R℄ �ADDA
;�[Q0; S℄;5. for all substitutions �, P� �A� Q�;where a 
ontext DA[�;�℄ is admissible if both pro
ess substitutions DA[P 0; R℄and DA[Q0; S℄ are well-formed (i.e. no name 
apture arises).The �rst two 
ases of De�nition 7 handle all low-order labels, as well aslabels originating from re
eive a
tions: these do not deserve a spe
ial treatmentbe
ause our early semanti
s impli
itly tests all possible intera
tions. The 
ases3: and 4: 
he
k mobility, by testing against all possible out
omes after a mobilityintera
tion with a 
ontext.The most important result of this work is the soundness of bisimilarity:Theorem 2 (Soundness). Hoe bisimilarity is sound with respe
t to barbed 
on-gruen
e: if P �A Q for some A, then P �= Q.The proof of this theorem is a 
onsequen
e of the following lemma.Lemma 2. Hoe bisimilarity is a 
ongruen
e.As an appli
ation of this theory let us go ba
k to the perfe
t �rewall equationat the beginning of this se
tion. It is quite easy to prove that (� x) x [P ℄ � 0as it suÆ
es to exhibit the following bisimulation B = SABA, where BA =f((� x) x [Q ℄;0) j P➞�Qg[f(0; (� x) x [Q ℄) j P➞�Qg if fv(P ) � A, and emptyotherwise. The use of hoe bisimilarity ensures us that this �rewall is perfe
t, as it
annot emit anything but the silent label. The soundness of bisimilarity implies(� x) x [P ℄ �= 0.5 Note that the asso
iated environment is de�ned in term of the pro
ess rather thanof the 
ontext, as its de�nition depends on the possibly fresh variables ~z.



Open issues. The de�nition of hoe bisimilarity for lo
ated 
hannels does notseem worth to be pursued. It is easy to see that with lo
alised 
hannels hoebisimilarity is not a 
ongruen
e (the problem being the extrusion of seal names
orresponding to x[a℄ labels), and while it is not diÆ
ult to make the needed mod-i�
ations, this does not seem interesting sin
e the resulting equivalen
e wouldbe too strong (e.g., (� x) x [P ℄ 6� 0).A more interesting problem is that Hoe bisimilarity is not 
omplete withrespe
t to barbed 
ongruen
e. The problem arises be
ause weak transition)�̀�!do not allow � moves a visible a
tion. However the problem may be deeperthan that: �rst, sin
e Seal Cal
ulus is an extension of the �-
al
ulus and in the�-
al
ulus the mat
hing operator is ne
essary to 
ompleteness, then this sameoperator may be required also in Seal; se
ond, in the three party syn
hronisationthe intermediate a
tions are not observable, therefore it seems quite hard to �nda 
ontext to separate them. So 
ompleteness 
annot be easily rea
hed and needsmu
h more resear
h e�ort.Referen
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