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Abstract

We study the problem of secure information flow for Boxed Ambients in terms of non-
interference. We develop a sound type system that provides static guarantees of absence
of unwanted flow of information for well typed processes. Non-interference is stated, and
proved, in terms of a typed notion of contextual equivalencefor Boxed Ambients akin to
the corresponding equivalence defined for Mobile Ambients.

1 Introduction

The calculus of Boxed Ambients [4] is a novel process calculus derived from Mo-
bile Ambients [8] to provide finer grained abstractions for resource protection and
access control in systems of distributed and mobile agents.

In Mobile Ambients, abbreviated MA, agents are processes ofthe formn[P ℄,
representing the ambient, namedn, executing the processP . Processes can be
composed in parallel, as inP j Q, exercise acapability, as inM:P , declare local
names as in(�n)P , or simply do nothing as in0. Ambients may be nested to form
a tree structure that can be dynamically reconfigured by exercising the capabilitiesin; out andopen. As an example, the systemk [in n:P1 j m[out n:P2℄℄ j n[open k:Q℄
contains two ambients,k andn, running in parallel. The system may evolve as
follows. First, ambientk may migrate ton by exercising the capability “in n”:1 Email: fsilvia,micheleg@dsi.unive.it2 Email: Giuseppe.Castagna@ens.fr
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Crafa, Bugliesi and Castagnan[open k:Q j k [P1 jm[out n:P2℄℄℄. Now n may “dissolve”k unleashing its con-
tents:n[Q j P1 j m[out n:P2℄℄. Finally,m may exitn: n[Q j P1℄ j m[P2℄. In addi-
tion, ambients and processes may communicate. In MA, communication is anony-
mous, and happens inside ambients. The system(x)P j hMi represents the parallel
composition of two processes, the output processhMi “dropping” the messageM ,
and the input process(x)P reading the messageM and continuing asPfx := Mg.

The calculus of Boxed Ambients, henceforth BA, is a variant of MA from which
it inherits the primitivesin andout (but notopen) for mobility with exactly the
same semantics. As for communication, besides local exchanges, BA relies on an
additional set of primitives that provide for the exchange of values across ambient
boundaries, between parent and child. Syntactically, thisis achieved by means of
tags that specify thelocation with which the exchange should take place: as an
example,(x)nP indicates an input from a child ambient namen, while hMi" is an
output to the parent ambient (in the latter case we speak of anupwardexchange).
The semantics of parent-child exchanges is defined by the following reductions3 :(x)nP j n[hMi"Q℄ ➞ Pfx := Mg j n[Q℄hMinP j n[(x)"Q℄ ➞ P j n[Qfx := Mg℄
This semantics of communication yields, as a byproduct, a direct interpretation of
the local and upward anonymous channels of an ambient as thatambient’s “re-
source space”: the local channel is private to the ambient, whereas the upward
channel is available for access by clients. By relying on this interpretation, one can
formalize a precise notion of resource access, namely:(x)nP is a read access ton,
whereashMinP is a write access.

In [5] we showed that BA provides an effective framework for resource access
security: specifically, we used a typed version of BA to modelmultilevel Manda-
tory Access Control (MAC) policies, including both military (no read-up, no write-
down) and commercial (no read-up, no write-up) security4 .

Boxed Ambients and Information Flow Security
The type system we defined in [5] was targeted at resource access control, and
specifically designed to protect resources, viz. channels,from undesired uses by
unauthorized clients. Here, we change perspective, and focus on a different analysis
that targets information flow. To motivate the change in perspective, consider the
following example, wherè is a “low-level” ambient andh a “high-level” one:`[(x)hP j h[hMi"Q j R℄℄ (1)3 These arenot the reductions we introduced in [5,4]. The choice of the present new semantics is
motivated in Section 2.4 Although the resource access control policies we study in [5] are based on a different reduction
semantics, those techniques adapt smoothly to the new semantics (cf. Section 2 for a discussion).
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In the system of [5] the attempt by the process enclosed in thelow-level ambient` to read fromh is classified as aread-up, and therefore rejected as “insecure” by
both military and commercial security, regardless of the information content ofM .
On the other hand, if the expressionM is public, i.e., low-level, there is no reason
for disallowing the read access: a piece of data is flowing from high to low, but the
flow is “secure” as the piece of data carries a “low” information content.

The goal of the present paper is to provide static safeguardsagainst “unsafe”
flow of information. A first, rather intuitive, notion of information flow may di-
rectly be related to the flow of data: a system is “secure” if nohigh-level data flows
from high-level to low-level principals. This form of secure information flow is
easily accounted for, and enforced, by a static control overthe transport layer used
for data communication, viz channels. If we classify data and channels according
to their security levels, absence of this form of “explicit”flow of information can
be guaranteed by requiring that:

(?) High-level data be only communicated along high-level channels, and high-
level channels be only located within high-level subjects.

A subtler, and more interesting, notion of information flow security is related to
the presence of implicit flow of information, resulting fromindirect ways of trans-
mitting information (namely, covert channels) via system-wide side effects. To
illustrate, consider the following specialization of the system (1) above, whereP is
“low level”: `[(x)hhNi" j h[hMi"℄℄ j (x)`P (2)

Assuming thatM andN are low-level values, there is no direct flow in this system.
However, a covert channel is established betweenP and the ambienth, asP is
unleashed by an exchange that depends on the presence of the high ambienth, and
the very presence (or absence) of a high-level ambient can beassimilated to a bit
of high-level information that, in the system in question, flows downwards.

Information Flow Security and Non-interference
Defining what is exactly meant by (implicit) information flowcan be hard (perhaps
impossible), and various authors have instead relied onnon-interference, a concept
of easier formalization which implies absence of flow.

The notion of non-interference was first proposed by Goguen and Meseguer
[14] for deterministic state machines. The idea is to determine whether in a given
system the “inputs” of high level subjects (or “users”) may influence, i.e. interfere
with, the “outputs” of low level subjects. If the latter are invariant on the former,
then the system is decreed interference free.

Non-interference was later [13] reformulated in a CCS-likeprocess calculus
as the so-calledNon Deducibility on Composition(NDC) property, which implies
that low-level observers are insensitive to the presence ofhigh-level components
(sources) in the system. Here we take the same approach, and rephrase the NDC
property to capture ambient-based specific aspects of computation, namely, locality
and mobility.
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Overview
Our technique for providing guarantees of non-interference in BA is based on static
typing. We rely on types both to formalize the notions of highand low data and pro-
cesses, and to define the relation of process equivalence underlying the definition
of non-interference.

The type system is based on ambient and capability types akinto those em-
ployed in companion type systems for MA. In addition, the types of our type system
carry security annotations that define the security clearance of values and processes.
Processes have the clearance of their enclosing ambient, while values (i.e. capabil-
ities and names) are assigned security levels as follows: names have the security
level associated to their type, while capabilities are decreed “low-level” data, based
on the observation that capabilities do not disclose their target ambient names, and
hence provide rather limited control over such names.

Having partitioned data and processes into “high” and “low”, we then single
out the setH of high level sourcesas the set of all processes that can only produce
high-level “inputs”, where an “input” corresponds to the presence, at top level,
either of a communication, or an ambient, or a mobility action. Again, this notion
is formalized with the help of the type system (see Section 3).

As the next step of our formalization, we introduce a relation of behavioral
equivalence to compare processes. This relation is a typed version of the equiva-
lence relation introduced in [9] for MA: acontextual equivalencethat equates two
processes if and only if they admit the same elementary observations whenever
they are inserted inside any arbitrary, but well-typed, enclosing context. Ourob-
servability predicateis akin to the one studied in [9], but refined to capture the
core form of interaction between Boxed Ambients, namely, the ability for an am-
bient to exchange values along its upward channel. We thus say that a processP
exhibits a namen if P (reduces, in any number of steps, to a process that) con-
tains an ambientn that may accept interactions with the external environment,
that is if P (or any of the processes it reduces to) is structurally equivalent to(�m1) : : : (�mk)(n[hMi"P 0 j Q0℄ j Q00) wheren =2 fm1; : : : ; mkg. Even though
this notion of observation is specifically focused on communication, ambient mo-
bility is still observed, indirectly, via its consequenceson upward communications,
as the following example illustrates (the presence of a highlevel ambienth triggers
the upward communication of the low-level ambient`):(x)`P j `[in h:out h:hMi"℄ j h[ ℄
Finally, we introduce the notion of contextual equivalenceinduced by alow level
observation: two (well-typed) processesP andQ are equivalent,P �=L Q, if when-
ever they are inserted inside an arbitrary (well-typed) context, they exhibit the same
low levelnames. Based on that, we can phrase the NDC property of [13] for BA as:

(??) A processP is interference freeif and only if 8H 2 H P jH �=L P .

As in [13] non interference ofP is checked only against high-level sources that
appear in parallel withP . This is rather natural in that context, since the topology
of CCS processes is completely flat. On the contrary, in BA ambients may be nested
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arbitrarily and, consequently, a high-level process interacting withP may also (i)
encloseP or (ii) be enclosed withinP . It would then appear that our definition of
non-interference should be generalized to capture these additional cases. Indeed,
however, the definition, as given, does address these cases as ambients running in
parallel may nest arbitrarily as a result of mobility.

Main results and paper plan
The main contributions of the paper are(i) the definition of a sound type system for
the new version of BA and, more importantly,(ii) a proof that well-typed processes
are indeed interference free, in the sense we just outlined.The non-interference
proof builds on the technical tools developed in [9] by Cardelli and Gordon for MA,
adapting them to BA, and relies critically on the choice of contextual equivalence as
the underlying equivalence relation. In fact, as we discussin Section 6, our present
results do not extend to finer equivalence relationships, such as barbed congruence
[19].

The paper continues as follows. In Section 2 we present a new version of
Boxed AmbientsCalculus, that differs from [4] in the semantics of its communica-
tion model. The resulting calculus has a simpler presentation and its finer-grained
control over ambient interactions more naturally enables the development of an al-
gebraic theory and a security assessment. In Section 3 we describe a sound type
system for BA, whose well typed processes are proved in Section 4 to be interfer-
ence free. Sections 5 and 6 are dedicated to related work and conclusions.

2 Boxed Ambients

In this section we review the syntax of Boxed Ambients from [4], and we present a
new reduction semantics, borrowed from [11] (where it was first introduced for the
Seal Calculus), and defined in terms of new rules for communication across am-
bient boundaries. The new calculus still adheres the principle of resource locality
distinctive of the original calculus, while at the same timeproviding ambients with
full control of exchanges they may have with their children.

2.1 Syntax

The syntax of the typed calculus is defined by the following productions:

ExpressionsM ::= m� q names

 x� z variables

 inM enterM
 outM exitM
 M:M path

Locations� ::= M names, variables

 " parent ambient

 ? local
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ProcessesP ::= 0 stop

 M:P action

 (�n:W )P restriction

 P j P composition

 M [P ℄ ambient

 !P replication

 (x1:W1; ::; xk:Wk)�P input

 hM1; : : : ;Mki�P output

Expression TypesW ::= amb[E℄ ambient

 
ap capability

Process TypesT ::= [E; F ℄ composite exchange

ExchangesE; F ::= shh no exchange

 W1 � � � � �Wn exchange

As in MA, processes can be named, as inn[P ℄, be composed in parallel and repli-
cated, exercise a capabilityin or out, declare local names, do nothing or exchange
values. Input processes may read a value locally, as in(x:W )?P , from a subambient
namedn, as in(x:W )nP , or from the enclosing context:(x:W )"P . Correspond-
ing primitives are provided for output. As usual, the syntaxallows the formation
of meaningless process forms such asin (out m) or (out n)[P ℄: these terms may
arise as a result of reduction, but only for ill-typed terms.We use a number of
notation conventions. We usem;n; : : : q to range overnames, x; y; z over vari-
ables, anda; b; 
 over both. We write(~x: ~W )P for (x1:W1; : : : ; xk:Wk)P , h ~Mi forhM1; : : : ;Mki, and(� ~p)P for (�p1) : : : (�pk)P . As usual we omit trailing dead
processes, writingM for M:0, h ~Mi for h ~Mi0, anda[ ℄ for a[0℄. We also omit type
annotations in restrictions and input prefixes when they arenot important. Finally,
the superscript? denoting local communication, is omitted.

2.2 Dynamic Semantics

The definition of the sets of free namesfn(P ) and free variablesfv(P ) of a processP is straightforward, once we know that the former are bound byrestrictions and
the latter by input prefixes. We identify processes up to�-renaming of bound
names and variables. Furthermore, assuming that~x and ~M stand forx1; : : : ; xk andM1; : : : ;Mk, we writePf~x := ~Mg to indicate the capture-avoiding, simultaneous,
substitution ofMi for xi within P .
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Structural congruence is defined as the least congruence relation that is a com-

mutative monoid for0 and j and closed under the following rules

(Res Dead) (�m)0 � 0
(Path Assoc)(M:M 0):P �M:(M 0:P )
(Repl) !P �!P j P
(Res Res) (�m)(�n)P � (�n)(�m)P n 6= m
(Res Par) (�m)(P j Q) � P j (�m)Q m 62 fn(P )
(Res Amb) (�m)a[P ℄ � a[(�m)P ℄ m 6= a

Structural congruence is functional to the definition of thereduction relation of
Figure 1.

Evaluation Contexts E ::= �  (�n:W )E  P j E  E j P  n[E℄(ENTER) a[in b:P j Q℄ j b[R℄ ➞ b[a[P j Q℄ j R℄(EXIT) a[b[out a:P j Q℄ j R℄ ➞ b[P j Q℄ j a[R℄(LOCAL) (~x)P j h ~M iQ ➞ Pf~x := ~Mg j Q(INPUT a) (~x)aP j a[h ~M i"Q j R℄ ➞ Pf~x := ~Mg j a[Q j R℄(OUTPUTa) h ~MiaP j a[(~x)"Q j R℄ ➞ P j a[Qf~x := ~Mg j R℄(STRUCT) P � P 0 P 0 ➞ Q0 Q0 � QP ➞ Q (CONTEXT) P ➞ QEfPg ➞ EfQg
Fig. 1. Reduction:P ➞ Q

Ambient mobility is governed by the rules (Enter) and (Exit) of the Mobile Am-
bients. Communication can be local, as in Mobile Ambients, or across ambient
boundaries, between parent and child. The rules for communication are different
from those of [4]. The original formulation of the reductionsemantics used dif-
ferent interaction patterns, as parent-child synchronization always involved a local
prefix, as illustrated by the following example:n[(x)pP j p[hMiP j (x)Q j q[hNi"℄℄℄ (3)

the ambientn makes a downward request to readp’s local valueM , while the
ambientq makes an upward write request to communicate its valueN to its par-
ent. With the original semantics, the input prefix of(x)Q can non-deterministically
synchronize with either outputs. With the new semantics, instead, the only enabled
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exchange in the system (3) above is the local exchange between P andQ, as syn-
chronization requires downward and upward exchange requests to “match”.

The new reductions still fit the design principles of BA, thatis resource locality.
An ambient can be viewed as possessing two channels: a private channel which
is only available for local exchanges, and an “upward channel” which the ambient
offers to its enclosing context for read and write access. There are at least two
reasons in favor of the new semantics. First, it enhances thealgebraic theory of
the calculus, by reducing the intrinsic non-determinism ofthe original semantics
of communication. Secondly, it enhances the typing of mobility, as mobility can
be typed independently of communication (see next session). Of course, there also
are tradeoffs. In fact, the new reductions require an ambient to know the names of
its children in order to communicate with them. This makes itdifficult to encode
certain protocols, such as broadcasting a message to all thechildren, that were
instead easily expressed with the original semantics. We leave a discussion on the
relative expressive power between the two versions for future work, and focus on
information flow security instead.

2.3 Static semantics

The structure of types for BA is similar to that of companion type systems for the
MA [10,6].

Ambient Types.Like Mobile Ambients, Boxed Ambients are “places of conver-
sation”. However, Boxed Ambients allow more than just one “topic” of conversa-
tion: in particular, the type of an ambient shows the topic ofits upward conversa-
tions, but the values it exchanges locally and with its children may have different
types. More precisely,amb[E℄ is the type of all ambients whose channel for exter-
nal communication carries values of typeE.

Process Types.The types of processes are defined as two-place constructors[E; F ℄ that trace the types of the local (E) and upward(F ) exchanges that processes
with this type may have.

Capability Types.All capabilities are assigned a type constant, noted
ap. This
is possible, and sound, because the new semantics of communication disentangles
the local exchanges of an ambient from the upward accesses attempted by any
nested sub-ambients. As a consequence, ambient mobility inthe new calculus is not
constrained by the type of values exchanged within ambients, and is thus orthogonal
to communication. Thus, themoded typeswe studied in [4] are not needed here, as
ambient mobility has no constraint. To exemplify, considerthe following process:n[ (x:W )R j hMi j (x:W1)pP j (y:W2)qQ j p[hN1i"℄ j q[hN2i"℄ ℄
The process above can be safely typed with any process type, provided that (i)M;N1; N2 have types, respectively,W;W1;W2, (ii) p and q have typeamb[W1℄
andamb[W2℄, (iii) P;Q andR have type[W;E℄ whereE is an exchange type such
thatn:amb[E℄. In particular, in the process above there is no risk of type confusion
between the three exchanged valuesM;N1; N2 since read requests from children
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are distinct, and they do not interfere with local communication.

The typing rules are summarized in Figure 2. The system satisfies the following
fundamental property:

Proposition 2.1 (Subject Reduction)If � ` P : T andP ➞ Q then� ` Q : T .

Proof. Follows as a corollary of Proposition 3.2. 2
3 A Type System for Secure Information Flow

In this section we enrich the type system of BA so as to providestatic safeguards
against insecure flow of information in the evolution of well-types processes.

We presuppose a complete lattice of security levels(�;�), and let�; �; Æ range
over security levels. We then partition the elements of thislattice into two classes,
“high” and “low”, as formalized in the following definition.

Definition 3.1 [Low and High levels] Let(�;�) be a complete lattice of security
levels. Asecurity classificationis a partition of� into two non-empty setsL andH,
with L downward closed. Based on this classification, we then definethe following
order:� � � , (� 2 L _ � 2 H)
3.1 Types and Judgments

The typesE of exchanges, and the types of processes are defined as in Section 2.
The types of expressions are redefined as follows:Expression Types W ::= amb[�; E℄ ambient

 u
ap[�℄ unsafe capability

 s
ap[�℄ safe capability

Each ambient type is annotated with a security level that defines the clearance of
the ambient names with that type. Capability types also havean associated security
level, and are partitioned into safe and unsafe. In particular, u
ap is the type of
dangerous capabilities, those that are potential sources of flow of information: the
typing rules will ensure that such capabilities may only be exercised within high-
level ambients. Capability types are also annotated with a security level: while
the annotation of ambient types is used toassigna security level to an ambient,
the annotations of capability types are used torecord the security of the actions
performed by a process. The intuition is that in
ap[�℄ (with 
ap 2 fu
ap; s
apg),� is the greatest lower bound of (the security levels of) the capabilities on a path.
This is formalized by the following “cap-type” composition:. s
ap[�℄ � s
ap[Æ℄ = s
ap[� u Æ℄. u
ap[�℄ � u
ap[Æ℄ = s
ap[�℄ � u
ap[Æ℄ = u
ap[Æ℄ � s
ap[�℄ = u
ap[� u Æ℄
whereu is relative to the order� introduced in Definition 3.1.
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(ENV EMPTY)? ` � (ENV NAME )� ` � a =2 Dom(�)�; a : W ` � (PROJECTION)�; a : W;�0 ` ��; a : W;�0 ` a : W

(SUB PROC)E 2 fshh; E0g; F 2 fshh; F 0g[E;F ℄ 6 [E0; F 0℄ (SUBSUMPTION)� ` P : T T 6 T 0� ` P : T 0 (IN)� `M : amb[E℄� ` inM : 
ap
(OUT)� `M : amb[E℄� ` outM : 
ap (PATH)� `M1 : 
ap � `M2 : 
ap� `M1:M2 : 
ap
(PREFIX)� `M : 
ap � ` P : [E;F ℄� `M:P : [E;F ℄ (PAR)� ` P : [E;F ℄ � ` Q : [E;F ℄� ` P j Q : [E;F ℄
(NEW)�; n : amb[G℄ ` P : [E;F ℄� ` (�n :amb[G℄)P : [E;F ℄ (AMB)� `M : amb[E℄ � ` P : [F;E℄� ` M [P ℄ : [shh; shh℄
(DEAD)� ` �� ` 0 : [shh; shh℄ (REPL)� ` P : [E;F ℄� ` !P : [E;F ℄

(INPUT)�; ~x : ~W ` P : [ ~W;E℄� ` (~x : ~W )P : [ ~W;E℄ (OUTPUT)� ` ~M : ~W � ` P : [ ~W;E℄� ` h ~M iP : [ ~W;E℄
(INPUT ")�; ~x : ~W ` P : [E; ~W ℄� ` (~x : ~W )"P : [E; ~W ℄ (OUTPUT ")� ` ~M : ~W � ` P : [E; ~W ℄� ` h ~Mi"P : [E; ~W ℄

(INPUT M )� `M : amb[ ~W ℄ �; ~x : ~W ` P : [G;H℄� ` (~x : ~W )MP : [G;H℄
(OUTPUT N )� ` N : amb[ ~W ℄ � ` ~M : ~W � ` P : [G;H℄� ` h ~M iNP : [G;H℄

Fig. 2. Type system

The next step is to determine the security clearance of the values that are ex-
changed in a process communication. This is formalized by the following level
function� : Exchange Types! Security Levels, where
ap 2 fu
ap; s
apg, and?
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is the bottom element in the lattice of security levels.�(amb[�; E℄) = ��(W1 � � � � �Wn)=tf�(W1); : : : ; �(Wn)g�(shh)=�(
ap[�℄) = ?
As we anticipated in the Introduction, we are thus stipulating that capabilities
should always be considered “low-level” values, as passinga capability does not
disclose the name occurring in the capability. Notice, furthermore, that the type of
a capability does trace the level of the target ambient: thisinformation is needed to
detect flows of information resulting from exercising (as opposed to exchanging)
the capability in question.

The type system is defined in terms of the following classes ofjudgments.� ` � Well-formed Type Environment� ` E Well-formed Exchange Type� `� [E; F ℄ Well-formed Process Type at level�� `M : W Well-typed Expression� `(�;�) P : [E; F ℄ Well-typed Process

The judgments for well-formed (exchange and process) typesare functional to en-
force a safe flow of data along the (anonymous) communicationchannels inside
and across ambient boundaries. In the judgment for well-typed processes, we use
two annotations on the turnstile, with the following intended meaning:� is the
clearance of the ambient enclosingP (if any), while � is the lower-bound on the
clearance of the actions encountered so far, and it helps define the clearance at
whichP should type-check. To understand the rationale of the typing rules, con-
sider the following examples (as usual,` denotes a low-level, whileh andk are
high-level).. the process̀[(x)hhMi"℄ is not safe, because the observable upward exchange ofM is enabled as a result of` exchanging a value with the high-level subambienth. Observing an upward communication on` may thus reveal the presence of

the high level ambienth within `. The very same reasoning shows that, instead,l [(x)h0 j hMi"℄ is a secure process.

Flows of information may arise from subtler combinations ofhigh-level and low-
level actions. In particular, such actions need not occur sequentially as suggested
by the example above. An implicit flow of information, may also arise as a result
of running two parallel threads:. the process̀ [(x)hhNiP j (y)hMi"℄ is not secure because the local exchange

“links” the two threads, thus determining a causal dependency, and hence an
implicit flow of information.
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Both the previous examples, show that “secure” processes should satisfy a very
basic invariant, namely that “actions” following a high-level synchronization (like(x)h) must not be available for further low-level-context interactions. This explains
the role of� in the typing judgement of processes. When prefixing a process P
with an “action” (where action means capability, communication, and top level
presence of an ambient), that action should have clearance not lower than�. In other
words,� should be non-decreasing as a well-typed process progresses. However,
this condition is not sufficient by itself.. consider the processP = h[`[(x)kout h:0℄℄, where a low-level ambient̀ first

reads from a high-level ambientk, and then exits from the high-level locationh. In this case, the very presence, at top level, of the ambient` represents a
public (low-level) information that depends in a private (high-level) one. This
is a problem, as the ability to test the presence of` at top level may, implicitly,
reveal the presence ofh to any low-level observer. To see the problem, and
phrase it in terms of non-interference, we may encode the observer as the context:C() = `1 [in `:out `:hNi"℄ j (). Now, takingH = k [in h:in `:hMi"0℄, a routine
check verifies that the context distinguishesP from P j H.

This last example shows that low-level ambients exiting high-level locations may
potentially disclose secret information about that high-level location. This suggests(i) that theout capability should be deemed unsafe when the target ambient is
high-level, and(ii) that only high-level ambients should be allowed to exercise
such capability.

3.2 Typing Rules

Environment and Type Formation
As we anticipated, the rules for well-formed types provide safeguards against ex-
plicit flows, in that they guarantee that�-level values only circulate over channels
(or ambients) with higher clearance. This is obtained by requiring that the clear-
ance� of an ambienta be an upper bound on the clearance of its upward exchanges
(ruleType Amb) and on the exchanges performed by the processes it contains(ruleType Pro
).

(ENV EMPTY)? ` � (ENV NAME )� ` T a =2 Dom(�)�; a : W ` � (TYPE SHH)� ` �� ` shh
(TYPE CAP)� ` �� ` 
ap[�℄ (TYPE AMB)� ` E �(E) � �� ` amb[�;E℄ (TYPE PROC)� ` Ei �(Ei) � � i = 1; 2� `� [E1; E2℄

Subtyping and Subsumption
The relation of subtyping coincides with the one defined for the system of Section
2. The rule of subsumption requires the target type to be well-formed to enable
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type promotion.

(SUB PROC)E 2 fshh; E0g; F 2 fshh; F 0g[E;F ℄ 6 [E0; F 0℄
(SUBSUMPTION)� `(�;�) P : [E;F ℄ [E;F ℄ 6 [E0; F 0℄ � `� [E0; F 0℄� `(�;�) P : [E0; F 0℄

Expressions
As suggested by the last example ofx 3.1, a capabilityout n should be considered
unsafe ifn is high-level. On the other hand, anin capability may safely be exercised
by any ambient (a low-level ambient` entering a high-level ambienth may create
a flow of information, but only if̀ were allowed to eventually exith).

(PROJECTION)�; a : W;�0 ` ��; a : W;�0 ` a : W (PATH)� `M1 : 
ap[�1℄ � `M2 : 
ap[�2℄ (
ap 2 fs
ap; u
apg)� `M1:M2 : 
ap[�1℄ � 
ap[�2℄
(IN)� `M : amb[�;E℄� ` inM : s
ap[�℄ (SAFE-OUT)� `M : amb[�;E℄ � 62 H� ` outM : s
ap[�℄ (UNSAFE-OUT)� `M : amb[�;E℄ � 2 H� ` outM : u
ap[�℄

Processes
For the rules that follow, we defineSafe(�; �; Æ) , (� 2 H)_ (� � Æ): intuitively,
a processP is safe either (i) if it is contained within an high level ambient, or (ii)
if the clearances of the ‘actions’ performed byP do not decrease asP progresses.

(SAFE-PREFIX)� `M : s
ap[Æ℄ � `(�;�) P : [E;F ℄ Safe(�; �; Æ)� `(�;�) M:P : [E;F ℄
(UNSAFE-PREFIX)� `M : u
ap[Æ℄ � `(�;�) P : [E;F ℄ (� 2 H)� `(�;�) M:P : [E;F ℄

Safe prefixes are lower-bounded by�, following the previous intuition. As an ex-
ample, the process(x)hout ` is well-typed only at level� 2 H, as it represents a
low-level action that depends from (as it follows) a high level one. Instead, unsafe
prefixes may only be exercised within high-level ambients: this prevents low-level

13
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ambients from escaping from high-level contexts. Notice that mobility does not
affect the lower bound�: this is safe and leaves a certain freedom to move (e.g. the
pathin h:in l can be executed also at level� 2 L).

The following four rules are standard, and should be self-explanatory.

(PAR)� `(�;�) P : [E;F ℄ � `(�;�) Q : [E;F ℄� `(�;�) P j Q : [E;F ℄ (DEAD)� `� [E;F ℄� `(�;�) 0 : [E;F ℄
(NEW)�; n : amb[�;G℄ `(�;�) P : [E;F ℄� `(�;�) (�n : amb[�;G℄)P : [E;F ℄ (REPL)� `(�;�) P : [E;F ℄� `(�;�) !P : [E;F ℄

The(Amb) rule implements the idea that an ambient is viewed as an “action”. That
is why the rule needs the hypothesisSafe(�; �; Æ) as in rule(safe-prefix). Further-
more, the process enclosed inM is typed at levelÆ (the clearance ofM ) and with� initially set to the bottom security level.

(AMB)� `M : amb[Æ; E℄ � `(Æ;?) P : [F;E℄ � `� [G;H℄ Safe(�; �; Æ)� `(�;�) M [P ℄ : [G;H℄
We finally come to the rules for communication, which test thepredicateSafe in
ways similar to the rules for prefixes. In addition, exchanging a value affects the
lower bound� in the typing of the continuation processP . Thus, when typed at
level � 2 L, a process may safely communicate with a high level subambient,
provided that all the subsequent actions are high-level. Thus, for instance, the
processes̀[(x)hhxih1℄ andl [h`1ihMih℄ are well typed, whilè [hMihh`1i℄ is not.

(INPUT)�; ~x: ~W `(�;�( ~W )) P : [ ~W;E℄ Safe(�; �; �(Wi))� `(�;�) (~x: ~W )P : [ ~W;E℄
(OUTPUT)� ` ~M : ~W � `(�;�( ~W )) P : [ ~W;E℄ Safe(�; �; �(Wi))� `(�;�) h ~MiP : [ ~W;E℄

(INPUT M )� `M : amb[Æ; ~W ℄ �; ~x: ~W `(�;Æ) P : [E;F ℄ Safe(�; �; Æ)� `(�;�) (~x: ~W )MP : [E;F ℄
14
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(OUTPUT N )� ` N : amb[Æ; ~W ℄ � ` ~M : ~W � `(�;Æ) P : [E;F ℄ Safe(�; �; Æ)� `(�;�) h ~MiNP : [E;F ℄

(INPUT ")�; ~x: ~W `(�;�( ~W )) P : [E; ~W ℄ Safe(�; �; �(Wi))� `(�;�) (~x: ~W )"P : [E; ~W ℄
(OUTPUT ")� ` ~M : ~W � `(�;�( ~W )) P : [E; ~W ℄ Safe(�; �; �(Wi))� `(�;�) h ~Mi"P : [E; ~W ℄

As usual, the correctness of the type system is guaranteed bythe subject reduction
property.

Proposition 3.2 (Subject Reduction)
If � `(�;�) P : [E; F ℄ andP ➞ Q then� `(�;�) Q : [E; F ℄.
It is rather straightforward to show that the type system detects, and prevents, all
unsafe forms of explicit flow, in the sense of property (?) in the Introduction (cf.
page 3). More interestingly, we can show that unsafe implicit flows are also de-
tected: this is the topic of the next section.

4 Non-interference

We start introducing the notion of ‘high-level sources’, interms of which we then
state our NDC-based definition of non-interference.

Definition 4.1 [High-level Sources] A processP is ahigh-level sourceif and only
if (i) � `(�;�) P : T , for all security levels� and� with � 2 H, and(ii) if P is of
the formM:P 0 then� `M : 
ap[Æ℄ with Æ 2 H.

Accordingly, high-level sources are well-typed processesthat may only engage
‘high’ top-level interactions with any context in which they are inserted. This is
true of processes in prefixed form by virtue of condition(ii). In addition, an inspec-
tion of the typing rules verifies the following properties ofany high level sourceP .
First, all the top-level value exchanges withP must be high-level, and so must be
all the top-level ambient occurrences inP . Secondly, the well-typedness condition
ensures that no low-level ambient may escape its enclosing high-level contexts.

Notation: We henceforth write� 
 P : T to indicate thatP is a high-level source
in �. Also, we write� ` P : [E; F ℄ and� ` P : ok when�; � and/or[E; F ℄ are
not relevant.
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4.1 Typed Equivalence

Next, we introduce atypednotion of process equivalence. The equivalence is typed
as we compare only processes with the same types, and inserted in contexts that
respect their typing. We formalize these notions below following [22].

A contextC() is a process term with just one hole(). We denote withC(P )
the process resulting from replacing the hole withP in C(). Note that variables
and names that are free inP may become bound inC(P ). Thus we do not identify
contexts up to renaming of bound variables and names.

Definition 4.2 [�=� Context] Let� and� be type environments andT a process
type.C() is a(�=�; T )-context if� `(�;�) C() : ok with � 2 L is derivable in the
type system of Section 3 enriched with the a rule that derives� ` () : T for all �
extending�.

Intuitively, a (�=�; T )-context is a context whose hole, of typeT , is in the scope
of the binders recorded in�, and whose free names and variables are contained in�. Furthermore, the contextC() must be typed at low level, that is the clearance of
external observers.

Definition 4.3 [Barbs] DefineP #n , P � (�m)(n[hMi"P 0 j Q0℄ j Q00) n =2fmg. A processP exhibits the namen, writtenP +n iff there existsQ such thatP =) Q andQ#n, where=) is the reflexive and transitive closure of➞ .

Now we can define our notion of ‘low’ typed equivalence, relative to an underlying
security classification into ‘low’ and ’high’ levels. Basedon that we then have our
definition of the non-interference.

Definition 4.4 [Typed observational equivalence and Non-interference] Assume� ` P : T and� ` Q : T . The two processes are equivalent in�, written� . P �=L Q if and only if for all (�=�; T )-contextC() with C(P ) andC(Q)
closed, for alln with �(�(n)) 2 L, C(P ) +n , C(Q) +n
Definition 4.5 [Non-interference] Let� be a security lattice andP a process.
Given a security classification of� such that� ` P : T , P is securefor that
classification iff� .P �=L P jH for all H such that� 
 H : T . P is interference-
free if it secure for all security classifications of�.

We conclude with the main result, a theorem that states that the type system guar-
antees non-interference for well-typed processes.

Theorem 4.6 (Non-interference)
Given any security classification, if� ` P : T and� 
 H : T , then� . P �=LP jH.

Notice that the theorem is stated, and proved, only in reference to well-typed con-
texts. Accordingly, the non-interference analysis it addresses corresponds to ver-
ifying the ‘internal’ security of a system rather than its security with respect to
external attackers.
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The non-interference proof draws on the technical tools developed by Cardelli

and Gordon for Mobile Ambients [9], adapting them to our Boxed Ambients. The
non-interference result derives from a lemma that shows that high-level sources are
low-level equivalent to the inactive process. More precisely, we show that for every
contextC() and high-level sourceH if C(H) is well-typed then it is indistinguish-
able at low level fromC(0). Proving this result requires a characterization of all
the possible interactions between a process and the surrounding context.

4.2 Discussion

The type system we have defined to derive the non-interference proof is admittedly
somewhat restrictive. While this is unfortunate, the discipline we impose on inter-
actions between high and low-level processes has effects comparable to those found
in existing type systems for secure information-flow in simpler process calculi [16],
and multi-threaded languages [26,24,1] (cf. Section 5 for adetailed comparison).

Also, even though well-typed processes are constrained in the actions they may
perform, the type system still allows non-trivial forms of interaction between high
and low levels, both in terms of mobility, and of value exchanges. Figure 3 shows
the legal flow of information for a well-typed composition ofthe two processesP
andH, whenH is a high-level source.

High

Low

P H

h

l

l

h

Fig. 3. Flows of information ofP j H
In particular, the flows enabled by the type system are (i) those fromH to the high
sub-processes ofP (and vice versa), and (ii) those from the high-level components
of P to those low components ofP that are not observable since they are shielded
by high-level ambients. A low-level observer may thus observe only flows of in-
formation between low-level components ofP and low level components of the
surrounding context.

Also note that high-level information can be freely exchanged between the high
and low level processes ofP , as long as the latter are nested within high-level
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ambients. This is because the type system ensures that theselow sub-processes are
confined within high-level ambients.

In the calculus of Mobile Ambients, a similar property wouldbe harder to en-
force. This is because theopen capability represents anobjectiveaction that the
context may impose on a process. To see the consequences of that, note that to
prove our non-interference theorem in MA, a processP should be checked against
all high level processes that appear in parallel withP , in particular against the
high-level processesopen h:0, for all high-level namesh. This implies that pro-
cesses of the formh[P ℄, with P low-level, should be rejected by the type system as
not secure. To motivate, consider the processP = h[`[P 0℄℄, for anyP 0, and withh and` high and low-level names, respectively. This process is notinterference-
free, as the contextC() = `1 [in `:out `:hMi"℄ j () may distinguish betweenP
andP j open h:0. A similar reasoning applies to the processesh[in `:P j Q℄ andh[out l:P j Q℄, and in general to any processh[P 0℄ whereP 0 is a low-level process.
All such processes are instead well-typed, and interference-free in our calculus, un-
der the additional assumption that the low-level components ofP 0 do not attempt
to escape outsideh.

As a further remark, we note that the proof of non-interference would not
go through in the presence of finer equivalence relations such as barbed congru-
ence, bisimulation or must testing. To see the problem with barbed congruence,
consider defining�L as the barbed congruence relation induced by our observ-
ability predicateP #n. Then, take the processesP = `[hMi" j in h:0℄ and the
high-level processH = h[ ℄. Now take the contextC() = (), and observe
that C(P jH) ➞ R = h[`[hMi"℄℄, while there exists no processR0 such thatC(P ) ➞ R0 andR �L R0.
5 Related Work

Volpano and Smith [26,24,25], and recently Boudol and Castellani [1] study type-
based techniques to enforce non-interference in multi-threaded imperative languages.
In their approach explicit flow is prevented by imposing constraints on variable as-
signments, while additional restrictions on conditional commands and while-loops
rule out implicit flow. In [1] the authors point out that introducing parallelism may
cause new problems, since information flow may be “disguisedas control flow”,
and a program may observe (and be influenced by) the behavior of other concur-
rent components in the course of their execution. The problem is solved in [25,1]
by relying on a form of asynchrony, whereby consulting the value of a high-level
variable must not be followed by an assignment to a low variable. In BA we have
a similar problem even though in a different setting, and oursolution follows the
same rationale, by imposing a non-decreasing clearance on the sequence of ‘ac-
tions’ performed by a process.

More directly related to ours are the type systems for�-calculus by Honda et
al [17] and for thesecurity� calculusby Hennessy and Riely [16]. In [17], the
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authors propose to use the informal principle of causal dependency to understand
safety of information flow in various programming language,and develop a type
system based on a behavioral notion of types to capture causality of actions. Our
approach is similar, as it also draws on the principle of causal dependency, but our
framework appears to be more complex, as in BA processes may interact both via
communications and mobility.

In [16], security levels are attached to processes and to capabilities for read-
ing/writing to channels, and a ’no read-up/no write-down’ security policy is en-
forced by typing. To prove non-interference, further restrictions must be imposed,
namely high-level processes must not evolve in low-level ones and the calculus
must be asynchronous. Under these hypotheses, the authors show that well-typed
asynchronous processes are interference free, where non-interference is defined in
a way similar to ours, based onmay testequivalence. Our type system enforces
similar restrictions on the value exchanges between high and low processes, and
corresponding restrictions on mobility. Unlike [16], our result holds true for the
synchronous case as well. In [15], Hennessy has developed anenhanced type sys-
tem for teh security� calculus for which non-interference can be proved also with
respect tomusttest equivalence.

In [23] Sewell and Vitek introducebox-�, a process calculus that provides
mechanisms for composing (partially trusted) software components and for en-
forcing information flow security policies. Their approachis based on a colored
semantics, which annotates output processes with the sets of principals that have
affected them (the processes) in the past; then the securityproperties are stated in
terms of a colored lts. Finally, they introduce a type systemthat statically captures
causal flows. As such, the characterization of information flow security is based
on a causal model, rather then on non-interference as in our approach. Further
important differences are the asynchronous semantics of box-� (as opposed to the
synchronous semantics of BA) and our treatment of mobility and nested topology.
A more in-depth comparison between the two approaches deserves to be made.

No type-based study of non-interference appears to have been conducted on
ambient-based calculi. A number of papers have instead dealt with other aspects
of security. Cardelli et al. present a type system for MobileAmbients [7] based on
the notion of group names, that statically prevents unwanted propagation of names.
The typing system by Levi and Sangiorgi [18] for Safe Ambients provides finer
control over ambient interactions and prevents ‘grave interferences’. Dezani and
Salvo, in [12], develop a type system for Mobile Ambients in which ambient types
are associated with security levels in ways similar to ours,and security checks are
over opening and moves.

Other approaches based on type systems [3] and control-flow analyses have also
been applied [21,20] to analyze different security properties of (various dialects
of) mobile ambients. In particular Braghin et al. [2] study ’explicit’ information
flow security in the scenario of pure Mobile Ambients by defining a control-flow
analysis to detect security breaches arising as confidential data moving outside any
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voundary protection.

6 Conclusions

We have studied information flow security in the calculus of Boxed Ambients. We
have developed a notion of non-interference based on a typedequivalence induced
by “low level observations”, and presented a sound type system whose well-typed
processes are guaranteed to be interference-free. To our knowledge, no such study
has been conducted in the existing literature.

Plans of future work include the development of refined type systems capable of
capturing stronger non interference properties based on stricter equivalences, and of
type and effect systems allowing more flexibility in the typing of value exchanges
and mobility. Also, it would be desirable to extend the non-interference proof to
the case of partially-typed systems.
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