URL: http://www.elsevier.nl/loca{:e/entcs/volumeGG.htnil Mpages

Information Flow Security in Boxed Ambients

Silvia Crafd Michele Bugliest

Dipartimento di Informatica
Universita Ca’ Foscari
Venezia, Italy

Giuseppe Castagra

Département d’Informatique
Ecole Normale Sigrieure
Paris, France

Abstract

We study the problem of secure information flow for Boxed Aettts in terms of non-
interference. We develop a sound type system that providtis guarantees of absence
of unwanted flow of information for well typed processes. Noterference is stated, and
proved, in terms of a typed notion of contextual equivaleftteBoxed Ambients akin to
the corresponding equivalence defined for Mobile Ambients.

1 Introduction

The calculus of Boxed Ambientsi[4] is a novel process cakdierived from Mo-
bile Ambients [8] to provide finer grained abstractions fesaurce protection and
access control in systems of distributed and mobile agents.

In Mobile Ambients, abbreviated MA, agents are processebheformn|[P],
representing the ambient, named executing the procesB. Processes can be
composed in parallel, as iR | @, exercise aapability, as inM. P, declare local
names as iffivn) P, or simply do nothing as if. Ambients may be nested to form
a tree structure that can be dynamically reconfigured byogsiag the capabilities
in, out andopen. As an example, the system

k[in n.P; | m[out n.Py]] | n[open k.Q]

contains two ambientg; andn, running in parallel. The system may evolve as
follows. First, ambientt may migrate ton by exercising the capabilityirf n”:
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nlopen k.Q | k[P, | m[out n.P]]]. Now n may “dissolve”k unleashing its con-
tents:n[Q | P, | m[out n.P]]. Finally, m may exitn: n[Q | Pi] | m[P]. In addi-
tion, ambients and processes may communicate. In MA, conuation is anony-
mous, and happens inside ambients. The sysigi#i | (M) represents the parallel
composition of two processes, the output progéss “dropping” the messag#/,
and the input process) P reading the messagéd and continuing a®{x := M }.
The calculus of Boxed Ambients, henceforth BA, is a varidiié from which
it inherits the primitivesin and out (but notopen) for mobility with exactly the
same semantics. As for communication, besides local egasaBA relies on an
additional set of primitives that provide for the exchanfi@alues across ambient
boundaries, between parent and child. Syntactically,itheéchieved by means of
tags that specify théocation with which the exchange should take place: as an
example(z)" P indicates an input from a child ambient namewhile (M)" is an
output to the parent ambient (in the latter case we speak apamardexchange).
The semantics of parent-child exchanges is defined by thawfioig reductioré

(2)"P [ n[(M)'Q] O P{z:= M} |n[C]
(M)"P | n[(=)'Q] O P|n[Q{z:=M}]

This semantics of communication yields, as a byproductrectinterpretation of
the local and upward anonymous channels of an ambient aathiaient’s “re-
source space”: the local channel is private to the ambiehergas the upward
channel is available for access by clients. By relying os thierpretation, one can
formalize a precise notion of resource access, nantely:P is a read access tq
whereag M)" P is a write access.

In [5] we showed that BA provides an effective framework fesource access
security: specifically, we used a typed version of BA to madaltilevel Manda-
tory Access Control (MAC) policies, including both militagno read-up, no write-
down) and commercial (no read-up, no write-up) seclifity

Boxed Ambients and Information Flow Security

The type system we defined inl [5] was targeted at resourcesaammntrol, and

specifically designed to protect resources, viz. chanffieds) undesired uses by
unauthorized clients. Here, we change perspective, ang foc a different analysis
that targets information flow. To motivate the change in pecsive, consider the
following example, wheré is a “low-level” ambient and. a “high-level” one:

()" P | h[{(M)'Q | R]] 1)

3 These areotthe reductions we introduced inll[5,4]. The choice of the enémew semantics is
motivated in Sectiofl2.

4 Although the resource access control policies we studylimi® based on a different reduction
semantics, those techniques adapt smoothly to the new sem@f. SectiolR for a discussion).
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In the system ofi[5] the attempt by the process enclosed itothidevel ambient

¢ to read fromh is classified as eead-up and therefore rejected as “insecure” by
both military and commercial security, regardless of tiferimation content of\/.
On the other hand, if the expressidnis public, i.e., low-level, there is no reason
for disallowing the read access: a piece of data is flowingflagh to low, but the
flow is “secure” as the piece of data carries a “low” inforneatcontent.

The goal of the present paper is to provide static safegusgdsist “unsafe”
flow of information. A first, rather intuitive, notion of infeation flow may di-
rectly be related to the flow of data: a system is “secure” ihigh-level data flows
from high-level to low-level principals. This form of seeumformation flow is
easily accounted for, and enforced, by a static control twetransport layer used
for data communication, viz channels. If we classify datd elmannels according
to their security levels, absence of this form of “explidiidw of information can
be guaranteed by requiring that:

(x) High-level data be only communicated along high-level cied®y and high-
level channels be only located within high-level subjects.

A subtler, and more interesting, notion of information floecarity is related to
the presence of implicit flow of information, resulting frandirect ways of trans-
mitting information (namely, covert channels) via systesde side effects. To
illustrate, consider the following specialization of thestem [1) above, wherg is
“low level”:

(@) (N)T[R[(M)T] | (2) P (2)
Assuming that\/ and N are low-level values, there is no direct flow in this system.
However, a covert channel is established betwPeand the ambient, asP is
unleashed by an exchange that depends on the presence ahtabient:, and
the very presence (or absence) of a high-level ambient cas&eilated to a bit
of high-level information that, in the system in questioow downwards.

Information Flow Security and Non-interference

Defining what is exactly meant by (implicit) information flasan be hard (perhaps
impossible), and various authors have instead reliedaminterferencea concept
of easier formalization which implies absence of flow.

The notion of non-interference was first proposed by GoguehMeseguer
[14] for deterministic state machines. The idea is to deteervhether in a given
system the “inputs” of high level subjects (or “users”) maftuence, i.e. interfere
with, the “outputs” of low level subjects. If the latter amevariant on the former,
then the system is decreed interference free.

Non-interference was later [L3] reformulated in a CCS-likecess calculus
as the so-calletlon Deducibility on CompositiofNDC) property, which implies
that low-level observers are insensitive to the presendagif-level components
(sources) in the system. Here we take the same approachephihase the NDC
property to capture ambient-based specific aspects of ctatiguo, namely, locality
and mobility.
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Overview

Our technique for providing guarantees of non-interfeesindBA is based on static
typing. We rely on types both to formalize the notions of hagta low data and pro-
cesses, and to define the relation of process equivalenaglyimg the definition
of non-interference.

The type system is based on ambient and capability typestakimose em-
ployed in companion type systems for MA. In addition, thegtypf our type system
carry security annotations that define the security clegrafvalues and processes.
Processes have the clearance of their enclosing ambieite, valiues (i.e. capabil-
ities and names) are assigned security levels as followsieadnave the security
level associated to their type, while capabilities are eedr‘low-level” data, based
on the observation that capabilities do not disclose tlaeget ambient names, and
hence provide rather limited control over such names.

Having partitioned data and processes into “high” and “lowé then single
out the setH of high level sourcesas the set of all processes that can only produce
high-level “inputs”, where an “input” corresponds to theepence, at top level,
either of a communication, or an ambient, or a mobility attidgain, this notion
is formalized with the help of the type system (see Sedfion 3)

As the next step of our formalization, we introduce a relatad behavioral
equivalence to compare processes. This relation is a typesion of the equiva-
lence relation introduced inl[9] for MA: aontextual equivalenabat equates two
processes if and only if they admit the same elementary vasens whenever
they are inserted inside any arbitrary, but well-typed,l@siag context. Oupob-
servability predicates akin to the one studied inl[9], but refined to capture the
core form of interaction between Boxed Ambients, namelg, dbility for an am-
bient to exchange values along its upward channel. We thuthsh a process®’
exhibits a name: if P (reduces, in any number of steps, to a process that) con-
tains an ambient, that may accept interactions with the external environment
that is if P (or any of the processes it reduces to) is structurally edeit to
(vmy) ... (vmg)(n[(M)TP"| Q"] | Q") wheren ¢ {m,...,m;}. Even though
this notion of observation is specifically focused on comioation, ambient mo-
bility is still observed, indirectly, via its consequen@@supward communications,
as the following example illustrates (the presence of a legél ambient, triggers
the upward communication of the low-level ambiént

(2)*P | [in h.out h.(M)'] | h[]
Finally, we introduce the notion of contextual equivalenuduced by dow level
observationtwo (well-typed) processed and( are equivalent? =, @, if when-
ever they are inserted inside an arbitrary (well-typed)tert) they exhibit the same
low levelnames. Based on that, we can phrase the NDC propelitylof [ BE@s:

(xx) A processP isinterference freéf and only ifvH ¢ H P | H = P.

As in [13] non interference oP is checked only against high-level sources that
appear in parallel wittP. This is rather natural in that context, since the topology
of CCS processes is completely flat. On the contrary, in BAiantb may be nested

4



N~ ALVAAL L, VAU L ALY AL LAV

arbitrarily and, consequently, a high-level process eténg with P may also ()
encloseP or (ii) be enclosed withirP. It would then appear that our definition of
non-interference should be generalized to capture thedii@thl cases. Indeed,
however, the definition, as given, does address these casgslaents running in
parallel may nest arbitrarily as a result of mobility.

Main results and paper plan

The main contributions of the paper di¢ the definition of a sound type system for
the new version of BA and, more importantly;) a proof that well-typed processes
are indeed interference free, in the sense we just outlifdek non-interference
proof builds on the technical tools developed.in [9] by CHrdad Gordon for MA,
adapting them to BA, and relies critically on the choice aftextual equivalence as
the underlying equivalence relation. In fact, as we dis@uS&ectior6, our present
results do not extend to finer equivalence relationshipsh sis barbed congruence
[19].

The paper continues as follows. In Sectldn 2 we present a rexgion of
Boxed AmbientsCalculus, that differs from [4] in the seniegbf its communica-
tion model. The resulting calculus has a simpler preseantand its finer-grained
control over ambient interactions more naturally enalihesdevelopment of an al-
gebraic theory and a security assessment. In SeClion 3 vegiltes sound type
system for BA, whose well typed processes are proved in &détito be interfer-
ence free. Sectioi$ 5 ahf 6 are dedicated to related workamdusions.

2 Boxed Ambients

In this section we review the syntax of Boxed Ambients froil) §#hd we present a
new reduction semantics, borrowed frami[11] (where it west fitroduced for the
Seal Calculus), and defined in terms of new rules for comnaiinn across am-
bient boundaries. The new calculus still adheres the grie@f resource locality
distinctive of the original calculus, while at the same tipreviding ambients with
full control of exchanges they may have with their children.

2.1 Syntax

The syntax of the typed calculus is defined by the followingdorctions:

Expressions Locations

M = m—q names n =M names, variables

O x—2z2 variables a7t parent ambient
O in M enterM O x local
O out M exit M
0 MM path
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Processes

P =20 stop
u M.P action
O (vn:W)P restriction
O P|P composition
O M[P] ambient
ap replication
O (x0:Wh, ., Wi)"P input
O (My,..., Mg)"P output

Expression Types Exchanges

W ::= amb[E] ambient E,F := shh no exchange

O cap capability O Wy x---x W, exchange

Process Types

T = [E,F] composite exchange
As in MA, processes can be named, as|®], be composed in parallel and repli-
cated, exercise a capability or out, declare local names, do nothing or exchange
values. Input processes may read a value locally, @s IV )* P, from a subambient
namedn, as in(xz:1W )" P, or from the enclosing contextx:W)"P. Correspond-
ing primitives are provided for output. As usual, the synédbows the formation
of meaningless process forms suchra®ut m) or (out n)[P]: these terms may
arise as a result of reduction, but only for ill-typed term&/e use a number of
notation conventions. We use,n,...q to range ovenames r,y, z OVer vari-
ables, ands, b, c over both. We write(z:W )P for (x,:W1, ...,z W) P, (M) for
(M, ..., M), and(vp)P for (vpy)...(vpg)P. As usual we omit trailing dead
processes, writing/ for M.0, (M) for (M)0, anda[ ] for a[0]. We also omit type
annotations in restrictions and input prefixes when theynatemportant. Finally,
the superscript denoting local communication, is omitted.

2.2 Dynamic Semantics

The definition of the sets of free namfe$P) and free variablef/( P) of a process

P is straightforward, once we know that the former are bounddsyrictions and
the latter by input prefixes. We identify processes upytcenaming of bound
names and variables. Furthermore, assumingitlaaid M/ stand forz, ., . ..,z and
M, ..., M, we write P{# := M} to indicate the capture-avoiding, simultaneous,
substitution ofM; for z; within P.
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Structural congruence is defined as the least congrueratgorethat is a com-
mutative monoid fop and | and closed under the following rules

(Res Dead) (vm)0 =0

(Path Assoc M.M").P = M.(M'.P)

(Repl) IP=IP|P

(ResRes) (vm)(vn)P = (vn)(vm)P n#m
(ResPar) (vm)(P|Q)=P[(¥m)Q m¢nP)
(Res Amb) (vm)a[P] = a[(vm)P] m# a

Structural congruence is functional to the definition of teduction relation of
Figurell.

Evaluation Contexts £ == — O (vn:W)E O P |E O FE|P O n[E]
(ENTER) a[inb.P | Q]| b[R] O b[a[P | Q]| R]

(EXIT) a[blouta.P | Q]| R] O b[P|Q]| a[R]

(LocAL) ()P | (M)Q O P{i:=M}|Q

(INPUT @) (#)"P | a[(M)'Q|R] O P{z:=M}|alQ|R]
(OUTPUT a) (MY*P | a[(2)TQ| R] O P|a[Q{%:= M}|R]

P=P POQ Q=0Q pPOQ

(STRUCT) P00 (CONTEXT) E{(PI 0 E{Q)

Fig. 1. ReductionP O @

Ambient mobility is governed by the ruleg{rrr) and Exit) of the Mobile Am-
bients. Communication can be local, as in Mobile Ambientsa@oss ambient
boundaries, between parent and child. The rules for comeation are different
from those of [[4]. The original formulation of the reductisemantics used dif-
ferent interaction patterns, as parent-child synchrdiomaalways involved a local
prefix, as illustrated by the following example:

n[(z)PP | p[(M)P | (2)Q | q[(N)]]] 3)
the ambientn makes a downward request to regd local value M, while the
ambientg makes an upward write request to communicate its valu® its par-
ent. With the original semantics, the input prefix@§() can non-deterministically
synchronize with either outputs. With the new semanticsgiad, the only enabled
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exchange in the syster (3) above is the local exchange betivead(, as syn-
chronization requires downward and upward exchange régjtesmatch”.

The new reductions still fit the design principles of BA, tigatesource locality.
An ambient can be viewed as possessing two channels: aguthannel which
is only available for local exchanges, and an “upward chBmwneich the ambient
offers to its enclosing context for read and write accesser@lare at least two
reasons in favor of the new semantics. First, it enhancesltfebraic theory of
the calculus, by reducing the intrinsic non-determinismbhaf original semantics
of communication. Secondly, it enhances the typing of niiybihs mobility can
be typed independently of communication (see next sessifrjourse, there also
are tradeoffs. In fact, the new reductions require an anttbeeknow the names of
its children in order to communicate with them. This makedifficult to encode
certain protocols, such as broadcasting a message to atlhitd¥en, that were
instead easily expressed with the original semantics. \ela discussion on the
relative expressive power between the two versions foréutuork, and focus on
information flow security instead.

2.3 Static semantics

The structure of types for BA is similar to that of companigpé systems for the
MA [LOg].

Ambient Typed.ike Mobile Ambients, Boxed Ambients are “places of conver-
sation”. However, Boxed Ambients allow more than just orapft” of conversa-
tion: in particular, the type of an ambient shows the topigd®fipward conversa-
tions, but the values it exchanges locally and with its akildmay have different
types. More preciselymb]|E] is the type of all ambients whose channel for exter-
nal communication carries values of type

Process TypesThe types of processes are defined as two-place constructors
[E, F] that trace the types of the locadl'} and upward F') exchanges that processes
with this type may have.

Capability TypesAll capabilities are assigned a type constant, natgd This
is possible, and sound, because the new semantics of corrationidisentangles
the local exchanges of an ambient from the upward accessaamed by any
nested sub-ambients. As a consequence, ambient mobilitg imew calculus is not
constrained by the type of values exchanged within amhiantsis thus orthogonal
to communication. Thus, theoded typewe studied inl[4] are not needed here, as
ambient mobility has no constraint. To exemplify, consither following process:

n[ (wW)R | (M) | (@:W1)"P | (y:2)'Q | p[(N)"] | a[{N2)']]

The process above can be safely typed with any process typeided that ()
M, Ny, Ny have types, respectivelyy, Wy, Ws, (ii) p and g have typeamb[I]
andamb[WV,], (i7i) P, @ andR have typeW, E| whereFE is an exchange type such
thatn:amb[E]. In particular, in the process above there is no risk of tymefasion
between the three exchanged valuésN;, N, since read requests from children

8
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are distinct, and they do not interfere with local commutiara
The typing rules are summarized in Figlile 2. The systemfiestihe following
fundamental property:

Proposition 2.1 (Subject Reduction)If ' P: T'andP O Qthenl'- @ : T.

Proof. Follows as a corollary of Proposition_8.2. O

3 A Type System for Secure Information Flow

In this section we enrich the type system of BA so as to prostdéc safeguards
against insecure flow of information in the evolution of wiglpes processes.

We presuppose a complete lattice of security leyEls<), and letp, o, § range
over security levels. We then partition the elements of ldiisce into two classes,
“high” and “low”, as formalized in the following definition.

Definition 3.1 [Low and High levels] Let>, <) be a complete lattice of security
levels. Asecurity classificatiors a partition of: into two non-empty setis andH,
with L downward closed. Based on this classification, we then défméllowing
order;p<o = (peLVoeH)

3.1 Types and Judgments

The typesFE of exchanges, and the types of processes are defined as iong&ct
The types of expressions are redefined as follows:

Ezpression Types W = amb[o, E] ambient
O ucap[o] unsafe capability
O scaplo] safe capability

Each ambient type is annotated with a security level thahdsfthe clearance of
the ambient names with that type. Capability types also hawessociated security
level, and are partitioned into safe and unsafe. In padicukap is the type of
dangerous capabilities, those that are potential sourfdé®aof information: the
typing rules will ensure that such capabilities may only kereised within high-
level ambients. Capability types are also annotated witbcurity level: while
the annotation of ambient types is usedagsigna security level to an ambient,
the annotations of capability types are usedeoord the security of the actions
performed by a process. The intuition is thatip|o| (with cap € {ucap, scap}),

o is the greatest lower bound of (the security levels of) theabidlities on a path.
This is formalized by the following “cap-type” composition

> scaplo] - scap[d] = scap|o 1 4]
> ucap[o] - ucap[d] = scap[o] - ucap[d] = ucapld] - scap[o] = ucap[o M J]

wherer is relative to the order introduced in Definitiof 3]1.
9
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(ENV EMPTY)

(ENV NAME)
o a¢ Dom(T)

(PROJECTION
Fa:WI'Fo

gko Fa:Wko Fa:WI'Fa: W
(SuB PrOC) (SUBSUMPTION) (IN)
E € {shh,E'}, F € {shh, F'} T-P:T TLT T'FM:amb[E]
[E, F] < [E', F'] rpP:T I'Fin M :cap
(OuT) (PATH)
I'F M :amb[E] I'-M;:cap T'F My :cap

'+ out M : cap

(PREFIX)

'M:cap '+ P:[E,F]
I'-M.P:[E F]

(NEW)

I''n:amb[G] + P : [E, F]

I' - (vn:amb[G])P : [E, F]
(DEAD)
I'kFo

T F 0 : [shh,shh]
(INPUT)
,2:WhkP:[W,E]

'+ Ml.M2 . cap

(PAR)

ITFP:[E,F] T+Q:I[E,F]
ITFP|Q:|E,F]

(AMB)

'k M:amb[E] Tk P:[FE]
' M[P] : [shh,shh]

(REPL)

L'k P:[EF]

TH!P:[E,F]

(OuTPUT)

TFM:W TrP:[W,E]

T+ (i:W)P:[W,E]
(INPUT 1)
0,z2:WkP:[E,W]

L'+ (M)P:[W,E]
(OuTPUT 1)
TFM:W TFP:[EW]

Ik (@W)'P:[E W]
(INPUT M)

r=(M'P:[E,W]

C'+M:amb[W] T,%z:WF P:[G,H]

T+ (&W)MP:[G, H

(OUTPUT N)

I'EN:amb[W] THM:W TFP:[G,H]

r=(MYNP:[G, H]

Fig. 2. Type system

The next step is to determine the security clearance of theesahat are ex-
changed in a process communication. This is formalized byféHowing level
functiona : Exchange Types> Security Levelswherecap € {ucap, scap}, and L

10
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is the bottom element in the lattice of security levels.

a(amblo, E]) =0
a(Wy x - x W) ={a(W,),...,a(W,)}
a(shh) = a(cap[o]) = L

As we anticipated in the Introduction, we are thus stipalgtithat capabilities
should always be considered “low-level” values, as pasaiegpability does not
disclose the name occurring in the capability. Notice,Harimore, that the type of
a capability does trace the level of the target ambient:itiicsmation is needed to
detect flows of information resulting from exercising (agpoped to exchanging)
the capability in question.

The type system is defined in terms of the following classgadgments.

ko Well-formed Type Environment
'+FE Well-formed Exchange Type

', [E,F| Well-formed Process Type at level
'MW Well-typed Expression

I P:[E,F] Well-typed Process

The judgments for well-formed (exchange and process) tgpefunctional to en-
force a safe flow of data along the (anonymous) communicati@mnels inside
and across ambient boundaries. In the judgment for wekdygprocesses, we use
two annotations on the turnstile, with the following intedmeaning:o is the
clearance of the ambient enclosiiy(if any), while p is the lower-bound on the
clearance of the actions encountered so far, and it helpeedd#ie clearance at
which P should type-check. To understand the rationale of the typirtes, con-
sider the following examples (as usuéldenotes a low-level, whilé and k. are
high-level).

> the procesg[(z)"(M)!] is not safe, because the observable upward exchange of
M is enabled as a result 6fexchanging a value with the high-level subambient
h. Observing an upward communication 6may thus reveal the presence of
the high level ambient within /. The very same reasoning shows that, instead,
I[(z)"0 | (M)'] is a secure process.

Flows of information may arise from subtler combinationshafh-level and low-
level actions. In particular, such actions need not occqusetially as suggested
by the example above. An implicit flow of information, may@ksrise as a result
of running two parallel threads:

> the proces¥[(z)"(N)P | (y){M)'] is not secure because the local exchange
“links” the two threads, thus determining a causal depeogleand hence an
implicit flow of information.

11
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Both the previous examples, show that “secure” processasléisatisfy a very
basic invariant, namely that “actions” following a high# synchronization (like
(z)™) must not be available for further low-level-context irgetions. This explains
the role ofp in the typing judgement of processes. When prefixing a psoées
with an “action” (where action means capability, commuti@a and top level
presence of an ambient), that action should have clearariéewer thary. In other

words, p should be non-decreasing as a well-typed process progteskmvever,

this condition is not sufficient by itself.

> consider the procesB = h[¢[(x)*out h.0]], where a low-level ambient first
reads from a high-level ambie#t and then exits from the high-level location
h. In this case, the very presence, at top level, of the amidieapresents a
public (low-level) information that depends in a privatégfinrlevel) one. This
is a problem, as the ability to test the presencé af top level may, implicitly,
reveal the presence d@f to any low-level observer. To see the problem, and
phrase itin terms of non-interference, we may encode thergbsas the context:
C() = ¢,[in L.out £.{N)'] | (). Now, takingH = k[in h.in £.(M)"0], a routine
check verifies that the context distinguislerom P | H.

This last example shows that low-level ambients exitindhHayel locations may
potentially disclose secret information about that highel location. This suggests
() that theout capability should be deemed unsafe when the target amtsent i
high-level, and(ii) that only high-level ambients should be allowed to exercise
such capability.

3.2 Typing Rules

Environment and Type Formation

As we anticipated, the rules for well-formed types providéeguards against ex-
plicit flows, in that they guarantee thatlevel values only circulate over channels
(or ambients) with higher clearance. This is obtained byirug that the clear-
anceo of an ambient: be an upper bound on the clearance of its upward exchanges
(rule Tyre Amg) and on the exchanges performed by the processes it cofitalies
TyrE PROC).

(ENV EMPTY) (ENV NAME) (TYPE SHH)
T a¢ Dom(T) o
gro Ta:Wko T+ shh
(TyPE CAP) (TyPE AMB) (TyPE PROC)
I'o '-FE «alFE)=<o0o 'cFE; oFE)<oc i=1,2
T+ caplo] I F amblo, £] Tk, (B, Bl

Subtyping and Subsumption
The relation of subtyping coincides with the one defined fiar system of Section
2. The rule of subsumption requires the target type to be-feethed to enable

12
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type promotion.

(SuB PrROC)
E € {shh,E'}, F € {shh,F'}

[E,F] < [E, F']

(SUBSUMPTION)
L' P [E,F] [E,F|<[E',F'] Tkr,[E F]

r l—(g,p) P [EI,F’}

Expressions

As suggested by the last examples@.1, a capabilityout n» should be considered
unsafe ifn is high-level. On the other hand, ancapability may safely be exercised
by any ambient (a low-level ambiefentering a high-level ambieitmay create
a flow of information, but only i were allowed to eventually exit).

(PROJECTION (PATH)
Ta:W,I'Fo 'k My :caploy] T'F My :cap[og] (cap € {scap,ucap})

Lya:W,I'Fa: W '+ M;.Mj, : caploy] - cap|os]

(IN) (SAFE-OUT) (UNSAFE-OUT)

'M:amblo,E] T'+M:amblo,E] o¢H T'FM:amblo,E] o€H

'k in M : scap[o] I I out M : scaplo] [+ out M : ucap[o]
Processes

A

For the rules that follow, we defirfeafe(o, p,0) = (o0 € H) VvV (p < §): intuitively,
a process” is safe eitheri if it is contained within an high level ambient, ak)
if the clearances of the ‘actions’ performed Bydo not decrease d3 progresses.

(SAFE-PREFIX)
['F M :scap[d] Tk, P:[E,F] Safe(o,p,d)

Tty M.P:[E,F)

(UNSAFE-PREFIX)
=M :ucap[d] 't P:[E,F] (0 €H)

r l—(g,p) M.P: [E,F]

Safe prefixes are lower-bounded pyfollowing the previous intuition. As an ex-
ample, the process ) out ¢ is well-typed only at leveb € H, as it represents a
low-level action that depends from (as it follows) a highdeone. Instead, unsafe
prefixes may only be exercised within high-level ambiertiss prevents low-level

13
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ambients from escaping from high-level contexts. Noticat tinobility does not
affect the lower boung: this is safe and leaves a certain freedom to move (e.g. the
pathin A.in [ can be executed also at levek L).

The following four rules are standard, and should be sefitaxatory.

(PAR) (DEAD)
r l—(g,p) P [E, F} r l—(g,p) Q : [E,F] r I—U [E,F]
F"(pr)P|QZ [E,F] F"(pr)OZ [E,F}
(NEW) (REPL)
T,n:amb[r,G] F, ) P: [E, F] T by P:[E,F]
Iy (vn:amb[r, G))P : [E, F| D! PilE,F]

The (Awmg) rule implements the idea that an ambient is viewed as angi#ttirhat
is why the rule needs the hypotheSige(o, p, ) as in rule(sare-rrerix). Further-
more, the process enclosedif is typed at leveb (the clearance of/) and with
p initially set to the bottom security level.

(AmB)
I'EM:amb[o,E] Ttk .y P:[F,E] Tk, [G, H] Safe(o,p,d)
F |—(pr) M[P] . [G, H}
We finally come to the rules for communication, which test pinedicateSafe in
ways similar to the rules for prefixes. In addition, exchagga value affects the
lower boundp in the typing of the continuation proce$s Thus, when typed at
level 0 € L, a process may safely communicate with a high level subargbie

provided that all the subsequent actions are high-levelusTlor instance, the
processes[(x)"(z)"] andi[((,)(M)"] are well typed, while/[(A1)"(¢,)] is not.

(INPUT)
U, W Foainy P [W,E] Safe(o, p,(W;))

T by (@W)P: [W, E]

(OuTPUT)
DEM:W Tk gy P W, E] Safe(o, p,a(W)))

' by (M)P: [W, E]

(INPUT M)
I'tM:amb[s,W] T,&:W k4 P:[E,F| Safe(o,p,0)

T by @W)Y P [E,F)
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(OUTPUT N)
I'EN:amb[6,W] THM:W T4 P:[E F| Safe(o,p,d)
T by (M)NP:[E, F)

(INPUT 1)
D, 8:W F iy P [B, W] Safe(o, p, a(W;))
T by (@3W)P:[E,W]
(OuTPUT 1)
ThM:W Tk 0y P:[B,W] Safe(o, p,a(W)))
Tt (M)TP:[E W]

As usual, the correctness of the type system is guarantettkelsubject reduction
property.

Proposition 3.2 (Subject Reduction)
f T+, P:[E,FlandP O Q thenT (., Q: [E, F].

It is rather straightforward to show that the type systenedst and prevents, all
unsafe forms of explicit flow, in the sense of property i the Introduction (cf.
pagelB). More interestingly, we can show that unsafe imgdiiows are also de-
tected: this is the topic of the next section.

4 Non-interference

We start introducing the notion of ‘high-level sources’ témms of which we then
state our NDC-based definition of non-interference.

Definition 4.1 [High-level Sources] A procesB is ahigh-level sourcéf and only
if (i)' k., P : T, forall security levelsr andp with p € H, and(ii) if P is of
the form M. P’ thenT' = M : cap[d] with § € H.

Accordingly, high-level sources are well-typed processes may only engage
‘high’ top-level interactions with any context in which thare inserted. This is
true of processes in prefixed form by virtue of condit{@f). In addition, an inspec-
tion of the typing rules verifies the following propertiesasfy high level source .
First, all the top-level value exchanges withmust be high-level, and so must be
all the top-level ambient occurrencesim Secondly, the well-typedness condition
ensures that no low-level ambient may escape its enclosgiglavel contexts.

Notation: We henceforth writd” I P : T to indicate thatP is a high-level source
inT". Also, we writel' = P : [E, F] andI' = P : ok wheno, p and/or[E, F| are
not relevant.
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4.1 Typed Equivalence

Next, we introduce &/pednotion of process equivalence. The equivalence is typed
as we compare only processes with the same types, and ohéertentexts that
respect their typing. We formalize these notions belowoieihg [22].

A contextC() is a process term with just one halg We denote withC(P)
the process resulting from replacing the hole within C(). Note that variables
and names that are free ihmay become bound i€ (P). Thus we do not identify
contexts up to renaming of bound variables and names.

Definition 4.2 [T'/A Context] Letl" and A be type environments arid a process
type.C() isa(I'/A, T)-contextifl" k. ,) C() : ok with o € L is derivable in the
type system of Sectidd 3 enriched with the a rule that de@eés() : T for all ©
extendingA.

Intuitively, a (T'/A, T')-context is a context whose hole, of typeis in the scope

of the binders recorded i, and whose free names and variables are contained in
I". Furthermore, the contexi() must be typed at low level, that is the clearance of
external observers.

Definition 4.3 [Barbs] DefineP |, = P = (vm)(n[(M)'P'| Q'] | Q") n ¢
{m}. A processP exhibits the name, written P |, iff there exists) such that
P = @ andQ@ |,, where— is the reflexive and transitive closure af .

Now we can define our notion of ‘low’ typed equivalence, nefato an underlying
security classification into ‘low’ and 'high’ levels. Based that we then have our
definition of the non-interference.

Definition 4.4 [Typed observational equivalence and Non-interferencg$uine
AF P :TandA - @ : T. The two processes are equivalentAn written
A P = Q ifand only if for all (T'/A, T')-contextC() with C(P) and C(Q)

closed, for alln with a(T'(n)) € L, C(P) |, & C(Q) {.

Definition 4.5 [Non-interference] Let: be a security lattice an@® a process.
Given a security classification of such thatA = P : T, P is securefor that
classification iffA> P =, P | H forall H such that\ I H : T'. P isinterference-
freeif it secure for all security classifications &f

We conclude with the main result, a theorem that states lieatlype system guar-
antees non-interference for well-typed processes.

Theorem 4.6 (Non-interference)
Given any security classification, £ - P : TandA I H : T, thenA> P =,
P|H.

Notice that the theorem is stated, and proved, only in refe¥¢o well-typed con-
texts. Accordingly, the non-interference analysis it @&$des corresponds to ver-
ifying the ‘internal’ security of a system rather than itscgaty with respect to
external attackers.
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The non-interference proof draws on the technical toolelbgped by Cardelli
and Gordon for Mobile Ambient$ ][9], adapting them to our Babxembients. The
non-interference result derives from a lemma that showtdtigh-level sources are
low-level equivalent to the inactive process. More prdgisge show that for every
contextC() and high-level sourcé if C(H) is well-typed then itis indistinguish-
able at low level fromC(0). Proving this result requires a characterization of all
the possible interactions between a process and the sdlirguoontext.

4.2 Discussion

The type system we have defined to derive the non-interferpranf is admittedly
somewhat restrictive. While this is unfortunate, the ggoe we impose on inter-
actions between high and low-level processes has effegtpa@ble to those found
in existing type systems for secure information-flow in siemprocess calculi[16],
and multi-threaded languagés [2€6(24,1] (cf. Sedfion 5 fdetailed comparison).

Also, even though well-typed processes are constraindteiadtions they may
perform, the type system still allows non-trivial forms ofeéraction between high
and low levels, both in terms of mobility, and of value exches. Figurél3 shows
the legal flow of information for a well-typed compositionthie two processeB
andH, whenH is a high-level source.

High - -

h

Fig. 3. Flows of information of” | H

In particular, the flows enabled by the type system gréhpse fromH to the high
sub-processes df (and vice versa), andi| those from the high-level components
of P to those low components @t that are not observable since they are shielded
by high-level ambients. A low-level observer may thus otsamnly flows of in-
formation between low-level components Bfand low level components of the
surrounding context.

Also note that high-level information can be freely excheshetween the high
and low level processes d?, as long as the latter are nested within high-level
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ambients. This is because the type system ensures thaioheseab-processes are
confined within high-level ambients.

In the calculus of Mobile Ambients, a similar property woldd harder to en-
force. This is because thepen capability represents ambjectiveaction that the
context may impose on a process. To see the consequencest,ofidke that to
prove our non-interference theorem in MA, a procésshould be checked against
all high level processes that appear in parallel within particular against the
high-level processespen h.0, for all high-level names.. This implies that pro-
cesses of the forrh[ P], with P low-level, should be rejected by the type system as
not secure. To motivate, consider the procBss: h[¢[P']], for any P’, and with
h and/ high and low-level names, respectively. This process igmtetference-
free, as the context() = ¢,[in L.out £.(M)'] | () may distinguish betwee#?
and P | open h.0. A similar reasoning applies to the process@s ¢.P | ] and
hlout [.P | @], and in general to any procesgP'] whereP' is a low-level process.
All such processes are instead well-typed, and interferdree in our calculus, un-
der the additional assumption that the low-level compament’’ do not attempt
to escape outside.

As a further remark, we note that the proof of non-interfeeenvould not
go through in the presence of finer equivalence relationk siscbarbed congru-
ence, bisimulation or must testing. To see the problem wéttbéd congruence,
consider defininge, as the barbed congruence relation induced by our observ-
ability predicateP |,. Then, take the processés = ([(M)" | in h.0] and the
high-level procesdi = h[]. Now take the contexC() = (), and observe
that C(P | H) O R = h[¢[(M)']], while there exists no proced? such that
C(P)O R'andR ~_ R'.

5 Related Work

Volpano and Smith[25,24,25], and recently Boudol and Glastie1] study type-
based techniques to enforce non-interference in muléatied imperative languages.
In their approach explicit flow is prevented by imposing dasists on variable as-
signments, while additional restrictions on conditionafrenands and while-loops
rule out implicit flow. In [1] the authors point out that inttacing parallelism may
cause new problems, since information flow may be “disguasdontrol flow”,
and a program may observe (and be influenced by) the behdvather concur-
rent components in the course of their execution. The prolesolved in[[25,1]
by relying on a form of asynchrony, whereby consulting thkigaf a high-level
variable must not be followed by an assignment to a low végialm BA we have
a similar problem even though in a different setting, and smlution follows the
same rationale, by imposing a non-decreasing clearancheosequence of ‘ac-
tions’ performed by a process.

More directly related to ours are the type systemssfaralculus by Honda et
al [17] and for thesecurityr calculusby Hennessy and Riely [16]. 1n_[L7], the
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authors propose to use the informal principle of causal dégecy to understand
safety of information flow in various programming languaged develop a type
system based on a behavioral notion of types to capture ldguslaactions. Our
approach is similar, as it also draws on the principle of ahdependency, but our
framework appears to be more complex, as in BA processes mergct both via
communications and mobility.

In [16], security levels are attached to processes and talitpes for read-
ing/writing to channels, and a 'no read-up/no write-dowatsrity policy is en-
forced by typing. To prove non-interference, further riesions must be imposed,
namely high-level processes must not evolve in low-levedsoand the calculus
must be asynchronous. Under these hypotheses, the autivevdisat well-typed
asynchronous processes are interference free, wherentenfierence is defined in
a way similar to ours, based anay testequivalence. Our type system enforces
similar restrictions on the value exchanges between highlan processes, and
corresponding restrictions on mobility. Unlike [16], owsult holds true for the
synchronous case as well. [n[15], Hennessy has developedhtamced type sys-
tem for teh securityr calculus for which non-interference can be proved also with
respect tanusttest equivalence.

In [23] Sewell and Vitek introducédoxn, a process calculus that provides
mechanisms for composing (partially trusted) software gonents and for en-
forcing information flow security policies. Their approashbased on a colored
semantics, which annotates output processes with the Sptsoipals that have
affected them (the processes) in the past; then the sequaperties are stated in
terms of a colored Its. Finally, they introduce a type systieat statically captures
causal flows. As such, the characterization of informatiow fsecurity is based
on a causal model, rather then on non-interference as in mumoach. Further
important differences are the asynchronous semantics»efrlf@s opposed to the
synchronous semantics of BA) and our treatment of mobiliy aested topology.
A more in-depth comparison between the two approaches\essty be made.

No type-based study of non-interference appears to have ¢@educted on
ambient-based calculi. A number of papers have instead déél other aspects
of security. Cardelli et al. present a type system for MoBitebients [7] based on
the notion of group names, that statically prevents unwhptepagation of names.
The typing system by Levi and Sangiorgi [18] for Safe Ambseptovides finer
control over ambient interactions and prevents ‘graverfatences’. Dezani and
Salvo, in [12], develop a type system for Mobile Ambients inigh ambient types
are associated with security levels in ways similar to oang] security checks are
over opening and moves.

Other approaches based on type systéins [3] and control-flalyses have also
been applied [21,20] to analyze different security prapsrof (various dialects
of) mobile ambients. In particular Braghin et al.l [2] studxplicit’ information
flow security in the scenario of pure Mobile Ambients by defgqa control-flow
analysis to detect security breaches arising as confidelatia moving outside any
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voundary protection.

6 Conclusions

We have studied information flow security in the calculus okBd Ambients. We

have developed a notion of non-interference based on a ggeislalence induced
by “low level observations”, and presented a sound typeesysthose well-typed

processes are guaranteed to be interference-free. To ouldédge, no such study
has been conducted in the existing literature.

Plans of future work include the development of refined tyystesns capable of
capturing stronger non interference properties basedimestequivalences, and of
type and effect systems allowing more flexibility in the typiof value exchanges
and mobility. Also, it would be desirable to extend the noteiference proof to
the case of partially-typed systems.
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