
CDuce: An XML-Centric General-Purpose Language

Véronique Benzaken
LRI, (CNRS)

Université Paris-Sud
91405 Orsay, France

Veronique.Benzaken@lri.fr

Giuseppe Castagna
CNRS, Département d’Informatique

École Normale Supérieure
45 rue d’Ulm, Paris, France

Giuseppe.Castagna@ens.fr

Alain Frisch
Département d’Informatique
École Normale Supérieure
45 rue d’Ulm, Paris, France

Alain.Frisch@ens.fr

Abstract. We present the functional language CDuce, discuss some
design issues, and show its adequacy for working with XML docu-
ments. Distinctive features of CDuce are a powerful pattern match-
ing, first class functions, overloaded functions, a very rich type sys-
tem (arrows, sequences, pairs, records, intersections, unions, dif-
ferences), precise type inference for patterns and error localization,
and a natural interpretation of types as sets of values. We also out-
line some important implementation issues; in particular, a dispatch
algorithm that demonstrates how static type information can be used
to obtain very efficient compilation schemas.

Categories and Subject Descriptors: D.3.0 [Programming Lan-
guages]: General; D.3.2 [Programming Languages]: Language
Classifications—Applicative (functional) languages

General Terms: Languages

Keywords: XML, XML-processing, type systems, CDuce

1. Introduction
CDuce is a general purpose typed functional programming lan-

guage, whose design is targeted to XML applications. The work
on CDuce started two years ago from an attempt to overtake some
limitations of XDuce [11] following three directions:
• Type system. XDuce demonstrates the adequacy of some spe-

cific features (regular expression types and type-based patterns)
to XML applications, but we believe that these features could be
integrated in a less specific language. Indeed, as the interface be-
tween a XDuce-like language and a mainstream language neces-
sarily looses most of the type information, we aim at minimizing
the interactions between CDuce and external languages by allow-
ing to define complex applications directly in CDuce.

To this end, we extended XDuce type system by introducing
less XML specific type constructions: products, records, general
Boolean connectives (union, intersection, difference), and arrow
types (first-class functions), continuing and prolongating the se-
mantic approach to define subtyping that was initiated by XDuce.
On a practical side, we implemented a type-checker that gives
precise localization of error messages and exhibits “samples” to
demonstrate type checking failure.

• Language design. We added language constructions that we be-
lieve to be useful for XML or general purpose processing such as
overloaded functions (to allow code sharing and code reuse), iter-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICFP’03, August 25–29, 2003, Uppsala, Sweden.
Copyright 2003 ACM 1-58113-756-7/03/0008 ...$5.00.

ators on sequences and trees and several extensions of the pattern
algebra (in particular to allow extraction of non-consecutive sub-
sequences). We studied precise typing for these constructions.

We also made several small design decisions that turn out to be
very practical. For instance, XML tags are CDuce first-class ex-
pressions (which allows computing on tags), and strings are noth-
ing but sequences of characters (this allows the use of regular ex-
pression types and patterns on strings; also, when concatenating
two sequences containing characters and XML elements, the two
strings at the “boundary” are automatically concatenated).
• Run-time system. We tackled the problem of executing CDuce

programs efficiently. The key issue is the implementation of pat-
tern matching. To this end, we use a new kind of deterministic
tree automata which is a combination of top-down and bottom-up
automata, and we developed a compilation schema (from patterns
to automata) that uses static type information to avoid unneces-
sary computation at runtime. This allows the programmer to use
a much more declarative style in patterns without degrading per-
formances.

This article focuses on language design, shows its adequacy to write
applications that handle, transform, and query XML documents, and
sketches solutions to implementation issues. To keep the presen-
tation short, we just present some highlights of the language. The
homepage for CDuce, http://www.cduce.org/, includes other
references, an online interactive prototype (where the reader can test
CDuce and check all the examples presented here), a user’s manual,
many CDuce programs (larger and more compelling than the ones
presented here), and the CDuce distribution (the whole site is gener-
ated by a 330-loc CDuce program that transforms the XML content
description into XHTML: the complete source code is included in
the CDuce distribution). Theoretical foundations of the CDuce’s
type system can be found in [8].

Related Work
The closest work to ours is, of course, XDuce from which CDuce
borrows many key features, such as, among others, regular expres-
sion types, type-based pattern matching, the semantic inclusion of
XML types, the type inference for patterns, the use of recursive pat-
terns. The previous section mentions in which directions the work
on CDuce extends XDuce.

Since the core definition of CDuce was published in [8] both
languages evolved in parallel. Independently from us, Haruo Ho-
soya implemented in XDuce the support for exact typing of non-
tail variables, by using a different approach based on automata [10].
Together with Makoto Murata [13] he also defined and extended
XDuce types to handle XML attributes in a quite different way from
the one we defined for CDuce (i.e., extensible records). We believe
that the expressive power of the two solutions is comparable, but
Hosoya and Murata’s solution is able to express compactly depen-
dencies between attributes and elements (while we have to expand
those dependencies using union types), and they addressed algorith-

mic issues to avoid exponential explosion. However, their algorithm
for evaluating a pattern on a sequence uses a first rewriting pass on
the automaton, which requires fully materializing this automaton and
does not seem compatible with our current efficient compilation al-
gorithm (likewise, Hosoya had to remove pattern optimization from
XDuce to incorporate the new attribute support). The ongoing work
on XDuce has a constant influence on ours and some of our future
plans include adapting to CDuce some of Hosoya’s insightful ideas
on sequence transformations.

CDuce is not the only project that started from or was deeply in-
fluenced by XDuce. Among the projects inspired by XDuce those
closest to CDuce are Xtatic [9] and XQuery [3, 7].

The goals for Xtatic and CDuce are similar in that they both try
to integrate XDuce features in a larger design and less XML-specific
language. CDuce builds on the functional flavour of XDuce and
extends it to a full-fledged functional language, whereas Xtatic goes
toward OO principles and combines XDuce types with the class hier-
archy of a host language, namely C#. The integration of XDuce and
C# in Xtatic is smooth and elegant both on the language side (thanks
to the introduction of a special Seq class, and a clever treatment of
the concatenation) and on the implementation side (by resorting to
an encoding technique reminiscent of Pizza’s homogeneous transla-
tion [16]). Xtatic and CDuce both have to face the problem of com-
bining XDuce’s semantic definition of subtyping with a richer type
algebra. Xtatic’s solution is simpler as it relies on named typing for
C# classes, where CDuce has to tackle classical issues when dealing
with set-theoretic interpretation of arrow types. On a less theoreti-
cal side, CDuce and Xtatic share many design decisions, including
syntactic choices and small decisions mentioned in the Introduction
such as first-class XML tags and strings as sequences of characters.
CDuce and Xtatic designs also have noticeable differences; among
them is that in CDuce we avoid the stratification of the type algebra
between XML types and non-XML types and this permits the use
of pattern matching also for non-XML data structures (such as pairs
or records). For what concerns implementation issues Levin studied
efficient pattern matching implementation for Xtatic [15]. He con-
centrates on the definition of a generic kind of matching automata
and target language suitable as back-ends for pattern matching. Our
work is quite orthogonal, as we focus on optimization made possi-
ble by static type information. It should be possible to express our
compilation algorithm in term of their matching automata. As for
expressivity, our algorithm supports in addition ambiguous patterns
(disambiguated with first match policy), non-linear capture variables
(even when under repetition operators), and XML attributes (imple-
mented as records in CDuce).

XQuery is mainly aimed at performing queries on XML docu-
ments. Since the XQuery type system took its inspiration from XDu-
ce’s one, it is not surprising to find a lot of similarities with CDuce.
To perform queries XQuery adds to XDuce a for loop (which can
be simulated by CDuce’s transform iteration on sequences) as well
as support for XPath, while it removes complex pattern matching
with regular expression patterns and, recently, structural typing (re-
placed by named typing as in XML Schema [17], so as to avoid
tree automata to check subtyping or validate documents). Support-
ing XPath’s upward axis yields a copy semantics which is unusual
in functional languages: when an element is created in XQuery, its
content has to be copied, while in CDuce, an XML subtree can be
shared by different documents.

The rapidly growing importance of XML has given rise to many
other works related to XML processing. Due to lack of space, we
decided to focus only on the projects closest to CDuce. For an
overview of other works and a thorough comparison of these with
the XDuce/CDuce approach we refer the reader to [11].

2. A sample session
Let us write and comment on a sample CDuce program. First, we

declare some types1:

type ParentBook = <parentbook>[Person*]
type Person = FPerson | MPerson
type FPerson = <person gender="F">[Name Children (Tel | Email)*]
type MPerson = <person gender="M">[Name Children (Tel | Email)*]
type Name = <name>[PCDATA]
type Children = <children>[Person*]
type Tel = <tel kind=?"home"|"work">[’0’--’9’+ ’-’? ’0’--’9’+]
type Echar = ’a’--’z’ | ’A’--’Z’ | ’_’ | ’0’--’9’
type Email= <email>[Echar+ (’.’ Echar+)* ’@’ Echar+ (’.’ Echar+)+]

The type ParentBook describes XML documents that store informa-
tion of persons. A tag <tag attr1=. . . ; attr2=. . . ; . . . > followed by
a sequence type denotes an XML document type. Sequence types
classify ordered lists of heterogeneous elements and they are denoted
by square brackets [. . .] that enclose regular expressions over types
(note that a regular expression over types is not a type, it just de-
scribes the content of a sequence type, therefore if it is not enclosed
in square brackets it is meaningless). The definitions above state
that a ParentBook element is formed by a possibly empty sequence
of persons. A person is either of type FPerson or MPerson accord-
ing to the value of the gender attribute. An equivalent definition for
Person would thus be:

<person gender="F"|"M">[Name Children (Tel | Email)*].
A person element is composed of a sequence formed by a name

element, a children element, and zero or more telephone and e-mail
elements, in this order. Name elements contain strings. These are
encoded as sequences of characters. The PCDATA keyword is equiv-
alent to the regexp Char*, then String, [Char*], [PCDATA], [PCDATA*
PCDATA], . . . , are all equivalent notations. Children are composed of
zero or more Person elements. Telephone elements have an optional
(as indicated by =?) string attribute whose value is either “home”
or “work” and they are formed by a single string of two non-empty
sequences of numeric characters separated by an optional dash char-
acter. Had we wanted to state that a phone number is an integer
with at least 5 digits (of course this is meaningful only if no phone
number starts with 0) we would have used an interval type as in <tel
kind=?"home"|"work">[10000- -*], where * here denotes +∞. Echar
is the type of characters in e-mail addresses. It is used in the regular
expression defining Email to precisely constrain the form of the ad-
dresses. An XML document satisfying these constraints is shown in
the left column of Figure 1.

If the document is stored in the file parents.xml, it can be loaded
with the built-in operator load__xml, assigned to a local variable par-
ents, and immediately checked to be of the ParentBook type:
let parents = match (load_xml "parents.xml") with

| (x & ParentBook) -> x
| _ -> raise "Wrong type!"

When this declaration is entered interactively the system answers:
|- parents : ParentBook

which indicates that the type checker remembers that parents is of
type ParentBook. To obtain it, the value resulting from the load op-
eration is matched against the pattern x & ParentBook. The &-pattern
denotes the simultaneous application of two sub-patterns and it suc-
ceeds if both sub-patterns do. In our example the value is matched
against the variable x—which always succeeds and binds the value
to x—and against the type ParentBook—which succeeds only if the
value has the given type. If the &-pattern fails (i.e., if the result of the
load is not of type ParentBook), then the value is matched against the
pattern __ which always succeeds (__ denotes the type of all values,
1CDuce distribution includes dtd2cduce, a program that can be used to trans-
late DTDs into CDuce’s types. Support for XML Schema validation has been
recently implemented and is in alpha testing (see § 6).

<?xml version="1.0"?>
<parentbook>

<person gender="F">
<name>Clara</name>
<children>
<person gender="M">
<name>Pål André</name>
<children/>

</person>
</children>
<email>clara@lri.fr</email>
<tel>314-1592654</tel>

</person>
<person gender="M">
<name> Bob </name>
<children>
<person gender="F">
<name>Alice</name>
<children/>

</person>
<person gender="M">
<name>Anne</name>
<children>

<person gender="M">
<name>Charlie</name>
<children/>

</person>
</children>

</person>
</children>
<tel kind="work">271828</tel>
<tel kind="home">66260</tel>

</person>
</parentbook>

let parents : ParentBook =
<parentbook>[
<person gender="F">[

<name>"Clara"
<children>[
<person gender="M">[
<name>[’Pål ’ ’André’]
<children>[]

]
]
<email>[’clara@lri.fr’]
<tel>"314-1592654"

]
<person gender="M">[

<name>"Bob"
<children>[
<person gender="F">[
<name>"Alice"
<children>[]

]
<person gender="M">[
<name>"Anne"
<children>[
<person gender="M">[

<name>"Charlie"
<children>[]

]
]

]
]
<tel kind="work">"271828"
<tel kind="home">"66260"

]
]

Figure 1: XML and CDuce
so every value matched against it succeeds) and raises an exception
(this could be caught by a try...with... construction).

The right column in the figure above represents the binding of the
variable parents to the same document written directly as a CDuce
value. The type annotation (... : ParentBook) is optional, but, in
general, it allows an earlier detection of type errors. Sequence values
are denoted by the list of elements enclosed in square brackets and
separated by blank spaces. For the purpose of the example we used
different notations to denote strings since in CDuce "xyz", [’xyz’],
[’x’ ’y’ ’z’], [’xy’ ’z’], and [’x’ ’yz’] define the same string literal (see
§3.2). Note also that the "Pål André" string is accepted since CDuce
supports Unicode characters.

A first example of transformation is names, which extracts the
sequences of all names of parents in a ParentBook element:
let names (ParentBook -> [Name*])

<parentbook>x -> (map x with <person>[n _*] -> n)
The name of the transformation is followed by an interface that
states that names is a function from ParentBook elements to (possi-
bly empty) sequences of Name elements. This is obtained by match-
ing the argument of the function against the pattern <parentbook> x
which binds x to the sequence of person elements forming the par-
entbook. The operator map applies the transformation defined by the
subsequent pattern matching to each element of a sequence (in this
case x). Here map returns the sequence obtained by replacing each
person in x by its Name element. Note that we use the pattern <per-
son>[n __*] to match the person elements: n matches (and captures)
the Name element—that is, the first element of the sequence—, __*
matches (and discards) the sequence of elements that follow, and
<person> matches the tag of the person (although the latter contains
an attribute). The interface and the type definitions ensure that the
tags will be the expected ones, so we could optimize the code by
defining a body that skips the check of the tags:
<__> x -> (map x with <__>[n __*] -> n).

However this optimization would be useless since it is already done

by the implementation (see § 5) and, of course, it would make the
code less readable. If instead of extracting the list of all parents we
wanted to extract the sublist containing only parents with exactly two
children, then we had to replace transform for map:

let names2 (ParentBook -> [Name*])
<parentbook> x ->

transform x with <person>[n <children>[Person Person] _*] -> [n]

While map must be applicable to all the elements of a sequence,
transform filters only those that make its pattern succeed. The right-
hand sides return sequences which are concatenated in the final re-
sult. In this case transform returns the names only of those persons
that match the pattern <person>[n <children>[Person Person] __*].
Here again, the implementation compiles this pattern exactly as <__>[
n <__>[__ __] __*], and in particular avoids checking that sub-elements
of <children> are of type Person when static-typing enforces this
property.

These first examples already show the essence of CDuce’s pat-
terns: all a pattern can do is to decompose values into subcompo-
nents that are either captured by a variable or checked against a type.

The previous functions return only the names of the outer persons
of a ParentBook element. If we want to capture all the name elements
in it we have to recursively apply names to the sequence of children:

let names (ParentBook -> [Name*])
<parentbook> x -> transform x with

<person> [n <children>c _*] -> [n]@(names <parentbook>c)

where @ denotes the concatenation of sequences. Note that in order
to recursively call the function on the sequence of children we have
to include it in a ParentBook element. A more elegant way to obtain
the same behavior is to specify that names can be applied both to
ParentBook elements and to Children elements, that is, to the union
of the two types denoted by (ParentBook|Children):

let names (ParentBook|Children -> [Name*])
<_>x -> transform x with <person>[n c _*] -> [n]@(names c)

Note here the use of the pattern <__> at the beginning of the body
which makes it possible for the function to work both on ParentBook
and on Children elements.

In all these functions we have used the pattern __* to match, and
thus discard, the rest of a sequence. This is nothing but a particular
regular expression over types. Type regexps can be used in patterns
to match subsequences of a value. For instance the pattern <per-
son>[__ __ Tel+] matches all person elements that specify no Email
element and at least one Tel element. It may be useful to bind the se-
quence captured by a (pattern) regular expression to a variable. But
since a regexp is not a type, we cannot write, say, x&Tel+. So we
introduce a special notation x::R to bind x to the sequence matched
by the type regular expression R. For instance:

let domain (Email->String) <_>[_*? d::(Echar+ ’.’ Echar+)] -> d

returns the last two parts of the domain of an e-mail (the *? is an
ungreedy version of *, see §3.6). If these ::-captures are used inside
the scope of the regular expression operators * or +, or if the same
variable appears several times in a regular expression, then the vari-
able is bound to the concatenation of all the corresponding matches.
This is one of the distinctive and powerful characteristics of CDuce,
since it allows to define patterns that in a single match capture sub-
sequences of non-consecutive elements. For instance:

type PhoneItem = {name = String; phones = [String*]}

let agendaitem (Person -> PhoneItem)
<person>[<name>n _ (t::Tel | _)*] ->

{ name = n ; phones = map t with <tel> s ->s }

transforms a person element into a record value with two fields con-
taining the element’s name and the list of all the phone numbers.

This is obtained thanks to the pattern (t::Tel | __)* that binds to t the
sequence of all Tel elements appearing in the person. By the same
rationale the pattern

(w::<tel kind="work">__ | t::<tel kind=?"home">__ | e::<email>__)*
partitions the (Tel | Email)* sequence into three subsequences, bind-
ing the list of work phone numbers to w, the list of other numbers
to t, and the list of e-mails to e. Alternative patterns | follow a first
match policy (the second pattern is matched only if the first fails).
Thus we can write a shorter pattern that (applied to (Tel | Email)* se-
quences) is equivalent: (w::<tel kind="work">__ | t::Tel | e::__)*. Both
patterns are compiled into (w::<tel kind="work">__ | t::<tel>__ | e::__)*,
since checking the tag suffices to determine if the element is of type
Tel.

Storing phone numbers in integers rather than in strings requires
minimal modifications. It suffices to use a pattern regular expression
to strip off the possible occurrence of a dash:
let agendaitem2 (Person -> {name=String; phones=[Int*]})
<person>[<name>n _ (t::Tel|_)*] ->

{ name = n; phones = map t with <tel>[(s::’0’--’9’|_)*] -> int_of s }

In this case s extracts the subsequence formed only by numerical
characters, therefore int__of s cannot fail because s has type [’0’- -’9’+]
(otherwise, the system would have issued a warning)2.

Consider the type PhoneBook = <phonebook>[PhoneItem*]. If we
add a new pattern matching branch in the definition of the function
names, we make it work both with ParentBook and PhoneBook ele-
ments. This yields the following overloaded function:
let names3 (ParentBook -> [Name*] ; PhoneBook->[String*])

| <parentbook> x -> map x with <person>[n _*] -> n
| <phonebook> x -> map x with { name=n } -> n

The overloaded nature of names3 is expressed by its interface, which
states that when the function is applied to a ParentBook element it
returns a list of names, while if applied to a PhoneBook element it
returns a list of strings. We can factorize the two branches in a unique
alternative pattern:
let names4 (ParentBook -> [Name*] ; PhoneBook->[String*])

<_> x -> map x with (<person>[n _*] | { name=n }) -> n

The interface ensures that the two representations will never mix.

3. Presentation of the CDuce language

3.1 The type algebra
CDuce type algebra has no specific constructor for sequences and

regular expression types. The constructions we used in the previ-
ous section are encoded, as shown in §3.2, in the core type algebra
formed by the following types:
• three native scalar types, Int, Char, and Atom (atoms are symbolic

constants of the form ‘id where id is an arbitrary identifier) and
two type constants Empty and Any (the latter is also written __,
especially in patterns) that denote respectively the empty (i.e., the
smallest) and the universal (i.e., the largest) type;

• types constructors: record types { a1 = t1;. . . ;an = tn }, prod-
uct types (t1,t2), functional types (t1 �> t2), and XML types
< t1 t2 > t3 (where t1,t2,t3 specify respectively the possible tags,
attribute sets, and element contents);

• Boolean connectives: intersection t1& t2, union t1 | t2 and differ-
ence t1 \ t2;

• singleton types: for any scalar or constructed (non-functional)
value v, v is itself a type (for instance, ‘nil denotes the type of
empty sequences, while 18 is the type of the integer 18);

2Actually the type system deduces for s the following type [’0’- -’9’+ ’0’- -’9’+]
(subtype of the former) since there always are at least two digits.

• recursive types: they are defined by recursive toplevel declara-
tions or by the syntax T where T1 = t1 and ... and Tn = tn, where
T and Ti’s are type identifiers (that is, identifiers starting by a
capital letter).

In CDuce, types have a set-theoretic interpretation: a type is the set
of all values (i.e. closed irreducible expressions: roughly, expres-
sions that are neither applications, nor field selections, nor matching
expressions; sometimes we use the word “result” instead of “value”)
that have that type. For example, the type (t1,t2) is the set of all
expressions (v1,v2) where vi is a value of type ti; similarly t1–>t2
is the set of all closed functional expressions fun f (s1;. . . ;sn)e that
have type t1–>t2.

This interpretation of types is the basis of CDuce type system: the
programmer must rely on it to understand all the type constructions
and type equivalences of the system. For example, the difference
of two types contains all the values that are contained in the first
type but not in the second, the union of two types is formed by all
the values of each type, and the intersection of, say, an arrow and a
record is equivalent to (in the sense that it has the same interpretation
as) the empty type.

In particular, subtyping is just set inclusion: a type is a subtype of
another if the latter contains all the values that are in the former (for
more details see [8]).

Records.
There are two different kinds of record types: the open record

type, denoted by { a1 = t1 ;. . . ; an = tn }, that classifies records
in which the fields labeled ai are present with the prescribed type, but
other fields may also appear, and the closed record type, denoted by
{| a1 = t1; . . . ; an = tn |}, which forbids any label other than
the ai’s 3. It is also possible (both for open and for closed record
types) to specify optional fields: the syntax ai =? ti states that the
ai field may be absent, but when it is present, it must have type
ti. There is a lot of natural subtyping and equivalence relations
that hold for record types, like for instance {|a = t|}≤{ a = t }, or
{ a1= t1;a2 = t2 }' { a1= t1 }&{ a2 = t2 }, or {|a1=t1;a2=?t2|} '
{|a1=t1|} | {|a1=t1; a2=t2|}, where ' = ≤ ∩ ≥; once more,
they all can be deduced from the set theoretic interpretation of record
types as sets of record values.

Scalars.
We took special care of the definition and implementation of scalar

types: integers have arbitrary precision (we believe that in XML ap-
plications, it is more important to have exact results than to optimize
intensive numerical computations), and Char represents the whole
Unicode character set. Moreover, we have subtypes of Int and Char,
namely intervals of the form i- -j where i,j are two integer literals or
two character literals, accordingly. We can specify for instance that
the month attribute of some XML element is an integer between 1
and 12.

3.2 Encoded types

Sequences.
As in Lisp, sequences are encoded by pairs and an atom ‘nil repre-

senting the empty sequence: a sequence of values v1, v2, . . . , vn is
written in CDuce as [v1 v2 ... vn], but actually this is syn-
tactic sugar for (v1,(v2(. . .,(vn,‘nil). . .))).

3There is a subtlety about singleton record types. For instance, the type { x =
3 }, being open, contains all the records that have field x = 3 and maybe other
fields too. The singleton type corresponding to the value { x = 3 } must be
written {| x = 3 |}. We have chosen the same notation for record values and
open record types because we believe that open record types are much more
useful in programming than closed ones.

In the sample section we saw that regular expressions on types
can be used to define new sequence types. Once more, this is just
syntactic sugar since the sequence types are, in reality, defined by
combining Boolean type connectives and recursive types. For in-
stance, the [Int*] type used in the function agendaitem2 is defined as
T where T = (Int,T) | ’nil.

Strings.
Although strings are nothing but a special case of sequences, the

intensive use of this datatype in XML documents makes them worth
special care. The main design choice we made for strings is to not
have String as a native basic type; it is encoded as [Char*]. This
seemed to us necessary for dealing with real world XML documents
where strings often alternate with XML (e.g. XHTML) elements
(simply consider <i> this </i> example). Having String as a basic type
would be problematic, because no automatic concatenation would be
performed.4 Instead, by considering strings as sequences of charac-
ters, [’simply ’ ’consider’ <i>[’ this ’] ’example’] is equivalent to [’simply
consider’ <i>[’ this ’] ’example’] (both equivalent to the sequence with
all characters separated). Of course, for sequences formed only by
character literals, we allow the more classical double quote notation
(values of XML attributes often fall into this case). We paid special
attention to the implementation of strings for which we use a com-
pact representation as long as possible and convert it to a sequence
of characters only when necessary, and always transparently to the
user (see §5).

3.3 XML elements
Although in CDuce the type <t1 t2> t3 is primitive and the ti’s

can range over all types, in practice, when working with XML doc-
uments, t1 is usually an atom, t2 a record type, and t3 a sequence
type. Thus XML types are conceptually encoded in terms of atoms,
records and pairs and their introduction as a new type constructor is
only justified by the need to avoid possible interferences.

That said, it is still important to notice that the type system does
not restrict the possible values in tag position to being atoms. For in-
stance, it is possible to use pairs to simulate namespaces; the names-
pace could be denoted by another atom (namespace normalization),
or by a string (namespace URI): <(‘xhtml,‘li)>[] or <("http://...",‘li)>[],
and although the introduction of some syntax specific to namespaces
is surely needed5, in its current definition CDuce can already handle
XML namespaces.

An XML element, < tag a1= v1 . . . an= vn> elem-seq </tag>, is
written in CDuce as < tag {a1 = v1;. . .;an = vn}>[elem-seq]. When
appearing in tags, the back-quote of atoms and the curly brackets of
records may be omitted:
[’Click here’]
We applied this convention to all the examples of the sample session
(the same notations apply to types as shown by the same examples).
An XML element construction has three "holes": the tag, the at-
tribute record, and the content although they can actually be filled
with any arbitrary expression, as in:

let tag = ‘a in let link = { href = "..." } in let c = "Click" in <(tag) (link)>c

or as in the two following functions

let del_target (Link -> Link) <t (r)>x -> <t (r\\\target)>x
let add_target (Link -> Link) <t (r)>x -> <t (r+{target= "__top"})>x

4This is a classical problem: XML parsers do not usually guarantee that text
nodes represent maximal textual portions of the documents; they are free to
split adjacent characters into several text nodes
5In the next version of CDuce we plan to introduce a specific notation such
as <xhtml:li>[], and adapt XML primitives (load__xml,. . .) to be namespace-
compliant.

that respectively remove and add some “target” attribute to an HTML
element (r \\\ ` removes the ` field from r, if any, while r+r′ denotes
the destructive addition of the fields of r′ to those of r).

It is possible to restrict the authorized attribute names by using a
closed record type instead of the default open type; for instance, an
element of type
type Tel2 = <tel {| kind=?"home"|"work" |}>[’0’--’9’+ ’-’? ’0’--’9’+]

may only have a kind attribute and no other. Similarly we can also
specify that a specific attribute must be absent:
type TelNokind = <tel kind=?Empty>[’0’--’9’+ ’-’? ’0’--’9’+]

which can be read: “whenever the attribute kind is present, its value
must be of type Empty”; as there is no such value, this means that
the attribute kind cannot be present.

3.4 Overloaded functions
The simplest form for a toplevel function declaration is

let f (t�>s) x �> e

in which the body of a function is formed by a single branch x->e
of pattern matching. As we have seen in the previous sections, the
body of a function may be formed by several branches with complex
patterns. The interface (t->s) specifies a constraint on the behavior
of the function to be checked by the type system: when applied to an
argument of type t, the function returns a result of type s. In general
the interface of a function may specify several such constraints, as
the names3 example (§2). The general form of a toplevel function
declaration is indeed:

let fun f(t1->s1;. . .;tn->sn) | p1->e1 | . . . | pm->em

(the first vertical bar and the fun keyword are optional). Such a
function accepts arguments of type (t1|. . .|tn); it has all the types
ti->si, and, thus, it also has their intersection (t1->s1&. . . &tn->sn).

The use of several arrow types in an interface serves to give the
function a more precise type. We can roughly distinguish two differ-
ent uses of multiple arrow types in an interface:
1. when each arrow type specifies the behavior of a different piece

of code forming the body of the function, the compound interface
serves to specify the overloaded behavior of the function. This is
the case for the function below
let add ((Int,Int)->Int ; (String,String)->String)

| (x & Int, y & Int) -> x+y
| (x & String, y & String) -> x@y

where each arrow type in the interface refers to a different branch
of the body.

2. when the arrow types specify different behavior for the same code,
then the compound interface serves to give a more precise descrip-
tion of the behavior of the function. An example is the function
names4 from §2.

There is no clear separation between these two situations since, in
general, an overloaded function has body branches that specify be-
haviors of different arrow types of the interface but share some com-
mon portions of the code.

Let us examine a more complex example. We want to transform
the representation of persons introduced in §2, using different tags
<man> and <woman> instead of the gender attribute and, conversely,
using an attribute instead of an element for the name. We also want
to distinguish the children of a person into two different sequences,
one of sons, composed of men (i.e. elements tagged by <man>), and
the other of daughters, composed of women. Of course we also want
to apply this transformation recursively to the children of a person.
In practice, we want to define a function split of type Person –>(Man
| Woman) where Man and Woman are the types:

type Man = <man name=String>[Sons Daughters]
type Woman = <woman name=String>[Sons Daughters]
type Sons = <sons>[Man*]
type Daughters = <daughters>[Woman*]

Here is a possible way to implement such a transformation:

let split (MPerson -> Man ; FPerson -> Woman)
<_ gender=g>[<_>n <children>[(mc::MPerson | fc::FPerson)*] _*] ->

let tag = match g with "F" -> ‘woman | "M" -> ‘man in
let s = map mc with x -> split x in
let d = map fc with x -> split x in
<(tag) name=n>[<sons>s <daughters>d]

The function split is declared to be an overloaded function that, when
applied to a MPerson, returns an element of type Man and that, when
applied to a FPerson, returns an element of type Woman. The body
is composed of a single pattern matching whose pattern binds four
variables: g is bound to the gender of the argument of the function,
n is bound to its name, mc is bound to the sequence of all children
that are of type MPerson, and fc is bound to the sequence of all chil-
dren that are of type FPerson. On the next line we define tag to be
‘man or ‘woman according to the value of g. Then we apply split
recursively to the elements of mc and fc. Here is the use of overload-
ing: since mc is of type [MPerson*], then by the overloaded type of
split we can deduce that s is of type [Man*]; similarly we deduce for
d the type [Woman*]. From this the type checker deduces that the
expressions <sons>s and <daughters>d are of type Sons and Daugh-
ters, and therefore it returns for the split function the type (MPerson
-> Man) & (FPerson -> Woman). Note that the use of overloading
here is critical: although split also has type Person ->(Man | Woman)
(since split is of type MPerson->Man & FPerson->Woman, which is a
subtype), had we declared split of that type, the function would not
have type-checked: in the recursive calls we would have been able
to deduce for s and for d the type [(Man | Woman)*], which is not
enough to type-check the result. If, for example, we wanted to define
the same transformation in XDuce we would need first to apply a fil-
ter (that is our transform) to the children so as to separate male from
females (while in CDuce we obtain it simply by a pattern) and then
resort to two auxiliary functions that have nearly the same definition
and differ only on their type, one being of type MPerson –> Man, the
other of type FPerson –> Woman. The same transformation can be
elegantly defined in XSLT with a moderate nloc increase, but only at
the expense of loosing static type safety and type based optimization:
see Section 5 for preliminary benchmarks.

3.5 Higher-order functions
In CDuce all functions, including the overloaded ones, are first

class expressions. This means that a function can be fed to or re-
turned by a so-called higher-order function. The syntax for a lo-
cal function is the same as a toplevel function declaration, that is
fun f(t1->s1;. . .;tn->sn). . ., the only difference being that f can
be omitted if the function is not recursive. Note that, using subtyp-
ing, such a function can be used wherever a function of type, say
t1 -> s1 or t1&tn -> s1&sn, is expected.

Higher-order functions improve code reusability by sharing com-
mon code and providing specialized parts as functional arguments.
In the setting of XML applications, a typical use would be to param-
eterize a generic printing function (that displays documents of some
DTD to XHTML) by providing specialized functions to print various
subparts of the documents (for instance, one of these functions could
be in charge of displaying dates in a format chosen by the user).

Another use of first-class functions we have in mind (and we are
going to implement) is a web application server that runs CDuce
scripts. Instead of producing XHTML pages, the scripts would gen-
erate a variant of XHTML with CDuce code replacing <input> ele-
ments. For instance, instead of <input type=submit ...>, the scripts

would directly generate a function (seen as a first class value) that
has to be triggered when the user clicks on the button; this function
can use identifiers bound to form-fields as normal CDuce variables.
The web application server would transform this pseudo-XML doc-
ument with embedded CDuce functions to a real XML document
before sending it to the client, and storing in its internal tables the
CDuce functions to be called. At the next HTTP request, it would
call the function corresponding to the button the user pressed. The
advantage of such an approach is twofold: thanks to static typing we
know that the value handled by the transformation has the correct
type and, more importantly, the web administrator no longer has to
maintain CGI programs consistent with the HTML pages since this
is already done by the server. This example demonstrates the use of
first-class functions embedded in XML documents, in particular it
addresses the same problems as (and for some aspects it extends)
the JWIG approach [5]. The latter uses XML templates, that is,
valid documents embedded with “gaps” that are to be filled by other
templates (whereas we propose to embed higher order function—or
any other CDuce expression), and relies on global data flow analy-
sis to statically enforce both the validity of the generated XHTML
and the correspondence between generated forms and received fields
(whereas we plan to use the current CDuce’s type system to check
it).

Since the advantages of higher-order programming are well-known
to the functional programming language community (and space is
limited) we will not elaborate further. The lack of first-class func-
tions in XML languages has been identified in several papers [12, 7]
and our semantic approach to subtyping [8] has succeeded in mixing
classical arrow types and XML types.

3.6 Pattern matching
Pattern matching is one of CDuce’s key features. Although it re-

sembles ML’s, it is much more powerful, as it allows one to express
in a single pattern a complex processing that can dynamically check
both the structure and the type of the matched values.

We already saw examples of pattern matching forming the body
of a function declaration. As in ML, in CDuce there is a standalone
pattern-matching expression match e with p1->e1 | ... | pn->en. Lo-
cal binding let p = e1 in e2 is just syntactic sugar for match e1 with
p -> e2

A pattern either matches or rejects a value; when it matches, it
binds its capture variables to the corresponding parts of the value
and the computation continues with the body of the branch. Other-
wise, control is passed to the next branch. This is a simple descrip-
tion of the behavior of pattern matching, but the actual implementa-
tion uses less naive and more efficient algorithms to simulate it. For
instance, we designed an algorithm that uses a single (partial) traver-
sal on the value to dispatch on the correct branch, and benefits from
static typing information to avoid redundant checks (see §5).

Capture variables and deconstructors.
As in ML, a variable, say x, is a pattern that accepts and binds

every value to x. A pair pattern (p1,p2) accepts every value of the
form (v1,v2) where vi matches pi. If a variable x appears both in
p1 and in p2, then each pattern pi binds x to some value v′i; the se-
mantics is here to bind the pair (v′1,v′2) to x for the whole pattern.
For instance, a pattern matching branch (x,(y,x)) -> (x,y) is equivalent
to (x1,(y,x2)) -> ((x1,x2),y). Similarly (x,(x,(y,x))) -> (x,y) is equiva-
lent to (x1,(x2,(y,x3))) -> ((x1,(x2,x3)),y). More interesting examples
showing the expressiveness of this construction in the presence of
recursive patterns will be presented later in this paper.

Record patterns are of the form { a1=p1;...;an=pn } and
{|a1=p1;...;an=pn|}: the former matches every record with at
least the fields ai whose content matches pi while the latter matches

records formed exactly by the ai fields and whose content matches
pi. We use the same convention that we used for types and allow
omitting curly brackets for open records occurring in tags. However,
contrary to pair patterns, we do not allow multiple occurrences of a
variable in a record pattern.

Type constraint and conjunction.
Every type can be used as a pattern. The semantics of such a

pattern is to accept only values of that type and creates no bind-
ing.6 This is particularly useful because in CDuce a type may reflect
precise constraints on the values (structure and content). Note that
scalar constants can also be used as patterns, as they are a special
case of type constraints with singleton type. The wild-card type “__ ”
is simply an alternative notation for the type constant Any and as
such it matches every value.

To combine a type constraint and a capture variable, one can use
the conjunction operator & for patterns, as in (x & Int). The seman-
tics of the conjunction in a pattern is to check both sub-patterns and
merge their respective sets of bindings. Since the two patterns of a
conjunction must have disjoint sets of capture variables, no conflict
can arise during the merging.

Alternative and default value.
There is also an alternative (disjunction) operator p | q with first

match policy: it first tries to match the pattern p, and if it fails, it tries
with q; the two patterns must have the same set of capture variables.
Alternative patterns are often used in conjunction with the pattern
(x := c), where c is an arbitrary scalar or constructed constant, which
provides a default value for a capture variable.

Recursive patterns.
Recursive patterns use the same syntax as recursive types: P where

P1 = p1 and ... and Pn = pn with P, P1, . . . , Pn being variables rang-
ing over pattern identifiers (i.e. identifiers starting by a capital letter).
Recursive patterns allow one to express complex extraction of infor-
mation from the matched value. For instance, consider the pattern P
where P = (x & Int, __) | (__, P); it extracts from a sequence the first
element of type Int (recall that sequences are encoded with pairs).
The order is important, because the pattern P where P = (__, P) | (x &
Int, __) extracts the last element of type Int.

A pattern may also extract and reconstruct a subsequence, using
the convention described before that when a capture variable appears
on both sides of a pair pattern, the two values bound to this variable
are paired together. For instance, P where P = (x & Int, P) | (__, P) |
(x := ‘nil) extracts all the elements of type Int from a sequence (x is
bound to the sequence containing them) and the pattern P where P
= (x & Int, (x & Int, __)) | (__, P) extracts the first pair of consecutive
integers.

Regular expression patterns.
CDuce provides syntactic sugar for defining patterns working on

sequences with regular expressions built from patterns, usual regular
expression operators, and sequence capture variables of the form
x::R (where R is a pattern regular expression).

6Conversely, every pattern without capture variables is a type, which moti-
vated our choice to use the same notation for constructors common to types
and patterns. For instance, the term (1,2) in a pattern position can be inter-
preted (i) as a type constraint where the type is the constructed constant (1,2),
(ii) as a type constraint where the type is the product type of the two scalar
constants 1 and 2, or (iii) as a pair pattern formed by two type constraints,
1 and 2. All these interpretations yield the same semantics. Therefore, the
use of the same constructors for types and patterns reduces the number of
possible denotations for the same (from a semantic viewpoint) pattern: had
we used a different syntax for product types, say, t1x t2, then we would have
had two denotations, i.e. (1,2) and 1x2, for the same pattern. The same reason
motivates our choice of denoting record types by { a1=t1;...;an=tn }
rather than by the more common { a1:t1;...;an:tn }.

Regular expression operators *, +, ? are greedy in the sense that
they try to match as many times as possible. Ungreedy versions
*?, +? and ?? are also provided; the difference in the compilation
scheme is just a matter of order in alternative patterns. For instance,
[__* (x & Int) __*] is compiled to P where P = (__,P) | (x & Int, __) while
[__*? (x & Int) __*] is compiled to P where P = (x & Int, __) | (__,P).

Let us detail the compilation of an example with a sequence cap-
ture variable: [__*? d::(Echar+ ’.’ Echar+)]. The first step is to
propagate the variable down to simple patterns: [__*? (d::Echar)+
(d::’.’) (d::Echar)+], which is then compiled to the recursive pattern:
P where P = (d & Echar, Q) | (_,P)

and Q = (d & Echar, Q) | (d & ’.’, (d & Echar, R))
and R = (d & Echar, R) | (d & ‘nil)

The (d & ‘nil) pattern above has a double purpose: it checks that the
end of the matched sequence has been reached, and it binds d to ‘nil,
to create the end of the new sequence.

Note the difference between [x & Int] and [x :: Int]. Both patterns
accept sequences formed of a single integer i, but the first one binds
i to x, whereas the second one binds to x the sequence [i].

A mix of greedy and ungreedy operators with the first match pol-
icy of alternate patterns allows the definition of powerful extractions.
For instance, one can define a function that for a given person returns
the first work phone number if any, otherwise the last e-mail, if any,
otherwise any telephone number, or the string "no contact":
let preferred_contact(Person->String)

<_>[_ _ (_*? <tel kind="work">x) | (_* <email>x) | <tel>x] -> x
| _ -> "no contact"

(note that <tel>x does not need to be preceded by any wildcard pat-
tern as it is the only possible remaining case).

3.7 Extra support for sequences and queries
Although there is no special support for sequences in the core type

and pattern algebras (regular expression types and patterns are just
syntactic sugar), CDuce provides some language constructions to
support them.

Map, transform, and xtransform.
CDuce features a construction map e with p1->e1 | ... | pn->en.

The expression e must evaluate to a sequence, and each of its ele-
ments will go through the pattern matching and get transformed by
the first matching branch. Static typing ensures the existence of such
a branch. The typing of map is very precise, even when working
with heterogeneous sequences, since it keeps track of the order of
the elements in the input sequence, as shown by this example that
uses the function split defined in Section 3.4
let f ([MPerson* FPerson*] -> [Man* Woman*])

s -> map s with x -> split x
The type system is able to infer that the result of the map has type
[Man* Woman*]. If the argument had type [MPerson? FPerson+],
the type inferred for the result would be [Man? Woman+]. This
precision in typing is out of reach of the user-definable polymorphic
map function in ML; even with parametric polymorphism incorpo-
rated to CDuce (we have already started studying it), this built-in
map would probably not be user-definable (because its very precise
typing closely characterizes its complex behavior).

The map construction does not affect the length of the sequence,
since each element is mapped to a single element. It is often useful
not only to map the elements of a sequence but also to filter them,
for which CDuce provides a variant of map, written transform, where
each branch of the pattern returns a (possibly empty) sequence, and
all the returned sequences, for each element in the source sequence,
are concatenated together. There is an implicit default branch __ -> []
added on at the end so that unmatched elements are discarded. Our
transform is very similar to the for of [7]: their generic loop for x in
e1 return e2 can be simply translated to transform e1 with x->e2.

The last special sequence operator is xtransform, which works on
(sequences of) XML trees. It matches the patterns against the root
element of each XML tree and, if it fails, it recursively applies itself
to the sequence of sons of the root. Thanks to xtransform a function
that puts in boldface all the links of an XHTML document can be
simply defined as:
let bold(x:[Xhtml]):[Xhtml]=xtransform x with <a (y)>t -> [<a (y)>[t]]
(note the use of the variable y to preserve the attributes, e.g. href, rel,
target,. . . , of the link). Note that without xtransform we would be
obliged to iterate on the whole DTD of XHTML. In short, xtransform
combines the flexibility of XSLT template programming with the
precise static typing and efficient compilation of CDuce’s transform.

Queries.
CDuce was designed by recasting some XML specific features

from XDuce in a more general setting of higher-order and over-
loaded functional languages. But it turns out that a small set of ex-
tra constructions can also endow it with query-like facilities that are
standard in the database world: projection, selection, and join.7

As we mentioned above, our transform generalizes the for iteration
from [7]. As in [7], the projection operator—denoted by / —can be
defined from this construction: if e is a CDuce sequence expression
and t is a type, then e/t is syntactic sugar for:8

transform e with <__>c -> transform c with (x & t) -> [x]

This new syntax can be used to obtain a notation close to XPath [6]:
[parents]/<parentbook>__/

<person>__/<children>__/<person>__/<tel kind="home">__

returns the sequence of all “home” phone numbers of children in
our parents base (thanks to static typing we could have used __/__
in the path instead of <parentbook>__/<person>__ as no ambiguity is
possible).

The function names2 in §2 implements exactly the same query.
But while the use of transform somewhat freezes the implementation,
the more declarative nature of path expressions spots out the places
in the code where query optimization (using for instance equiva-
lences similar to those mentioned in [7]) should be applied.

More generally, we are currently adding to the “algorithmic” con-
structions of CDuce a set of more “declarative” query-like construc-
tions amenable to optimization techniques. In particular, we are cur-
rently adding classical select-from-where expressions but where the
from clause can take advantage of the powerful CDuce’s pattern alge-
bra. Since order in from clauses is left unspecified, the system will be
free to apply algebraic and/or cost-model based optimizations and/or
use available indexes to implement joins efficiently.

4. Types
The type system is at the core of CDuce. The whole language was

conceived and designed around it. From a practical point of view,
the most interesting and useful characteristic of the type system is
the semantic interpretation we described before, in which a type is
nothing but a set of values denoted by some syntactic expression9.

7The fact that CDuce can implement such constructions is not surprising: any
Turing-complete language can do it. The point is that, instead of defining a
fixed implementation of these constructions, one can use the semantic foun-
dations of CDuce to obtain different implementations and natural (insofar as
semantic) transformations that pave the way to query optimization.
8We can take advantage of the fact that in CDuce a single pattern can ex-
tract all the elements of a given type, to define the following more compact
encoding: transform e with <__>[(x::t | __)*] -> x
9Of course, every type system induces a set-theoretic interpretation of types
as sets of values. The point is that CDuce’s type system is built on such an
interpretation. As a result, the subtyping relation of CDuce is both sound and
complete w.r.t. set-inclusion, whereas in other type systems only soundness
holds (that is, if a type t is a subtype of s then all the values in t are also in s,

This simple intuition is all is needed to grasp the semantics of the
CDuce’s type system and, in particular, of:
• Subtyping: subtyping is defined as the inclusion of sets of values:

a type t is a subtype of s if and only if every value which has type
t has also type s; when this does not hold, the type system can
always exhibit a sample of type t but not of type s.

• Boolean connectives: Boolean connectives in the type algebra are
interpreted simply as their set-theoretic counterpart on sets of val-
ues: intersection &, union |, and difference \ are the usual set the-
oretic operations.

• Type equivalences: two types are equivalent if and only if all the
values in the former are values in the latter and vice-versa. For
example: [Int (String Int)*] ' [(Int String)* Int].

It is important to understand types since they are pervasive in CDuce.
In particular, pattern matching can be basically seen as dynamic dis-
patch on types, combined with information extraction, which gives
CDuce a type-driven semantics reminiscent of object-oriented lan-
guages, since overloaded functions can mimic dynamic dispatch on
method invocations. Note however that a class based approach (map-
ping each XML element type to a class) would be infeasible since the
standard dispatch mechanism in OO-languages is much less power-
ful than pattern matching (which can look for and extract informa-
tion deep inside the value). By keeping the “methods” separate from
the objects, we also get the equivalent of multi-methods (dispatch on
the type of all the arguments, not just on the type of a distinguished
“self”).

Besides this dynamic function, types play also a major role in the
static counterpart of the language. Type correctness of all CDuce
transformations can be statically ensured. This is an important point:
although many type systems have been proposed for XML docu-
ments (DTD, XML-Schema, RELAX NG, . . .), most XML applica-
tions are still written in languages (e.g. XSLT) that, unlike XDuce or
CDuce, cannot ensure that a program will only produce XML docu-
ments of the expected type. Furthermore, in XDuce/CDuce, pattern
matching has exact type inference, in the sense that the typing al-
gorithm assigns to each capture variable exactly the set of all values
it may capture. This yields a very precise static type system that
provides a better description of the dynamic behavior of programs.

Finally, types play an important role in the compiler back-end.
The type-driven computation raises interesting issues about the exe-
cution model of CDuce and opens the door to type-aware compila-
tion schemas and type-driven optimizations that we hint at in §5.

4.1 Highlights of the type system
Since CDuce type system relies on interpreting types as sets of

values, it is important to explain how values are typed. Apart from
function values, this is straightforward, so we will focus on the typ-
ing rule for functions. In order to simplify the presentation, we split
it into two rules, a subrule for typing function bodies (these are lists
of pattern matching branches) whose derivation is then used in the
typing rule for functions.

Pattern matching (function bodies).
LetB denote the sequence of branches p1->e1 | . . . | pn->en. The

rule below derives the typing judgment Γ ` t/B ⇒ s, meaning
“matching a value of type t against the sequence of branches B al-
ways succeeds and every possible result is of type s”.

(ti = t\ *** p1 +++ \ . . . \ *** pi−1 +++ & *** pi+++)

t ≤ ***p1 +++ | · · · | *** pn +++ Γ, (ti/pi) ` ei : si

Γ ` t/B ⇒
S

{i | ti 6'Empty} si

but the converse does not hold).

Let us look at this rule in detail. The matched value is of type t.
The left premise checks that the pattern matching is exhaustive; for
each pattern pi, ***pi+++ is a type that represents exactly all the values
that are matched by pi. The exhaustivity condition states that every
value that belongs to t must be accepted by some pattern.

Now we have to type-check each branch. At runtime, when the
branch pi->ei is considered, one already knows that the value has
been rejected by all the previous patterns p1, . . . , pi−1; if the branch
succeeds, one also knows that the value is of type ***pi+++. So, when
type-checking the expression of the i-th branch, one knows that the
value is of type ti, that is to say, of type t and of type ***pi+++ but not
of any of the types ***p1+++, . . . ,***pi−1+++. Now we type-check the body
ei of the branch; to do so, one must collect some type information
about the variables bound by pi. This is the purpose of (ti/pi): it is
a typing environment that associates to each variable x in pi a type
that collects all the values that can be bound to x by matching some
value of type ti against pi.

It is evident that all the “magic” of type inference resides in the
operators ***p+++ and (t/p). These operators were introduced in [8].
Their definition reflects their intuitive semantics and is also used to
derive the algorithms that compute them. In the next section exam-
ples are given to illustrate some complex computations performed
by these algorithms.

The result of the pattern matching will be the result of one of the
branches that can potentially be used. This is expressed by taking the
union of the result type of each branch i such that ti is not empty (the
notation

S
i=1..n si stands for s1| . . . |sn); indeed, if ti is empty, the

branch cannot be selected, and the corresponding si is not included
in the union.

Functions.
How useful are unused branches (i.e., those with ti ' Empty) in a

pattern matching ? The answer is in the typing rule for functions:
(t = t1->s1& . . . &tn->sn)

Γ, f :t ` ti/B ⇒ ui ≤ si

Γ ` fun f (t1->s1;. . .;tn->sn)B : t
The type system simply checks all the constraints given in the in-
terface (because the function can call itself recursively, when typing
the body we record in the type environment that f is a function of
the type given by the interface). So the body is type-checked several
times and for some type ti it may be the case that some branch in B
is not used. Let us illustrate this with a simple example:

fun (Int -> Int; String -> String)
| Int -> 42
| (x & String) -> x

When type-checking the body for the constraint String -> String, the
first branch is not used, and even though its return type is not empty
(it is 42, which is the type assigned to the constant 42), it must not
be taken into account to check the constraint.

This is not a minor point: not considering the return type of un-
used branches is the main difference between dynamic overloading
and type-case (or equivalently the dynamic types of [1]). The latter
always returns the union of the result types of all the branches and,
as such, it is not able to discriminate different input types.

From the point of view of the programmer, it is quite easy to de-
termine the type of a function value: it is simply the intersection of
all the types specified in its interface.

4.2 Pattern type inference: examples
We saw that ***p+++ and (t/p) are at the core of the type system.

They are defined as the smallest solution of some set of equations
(there may be several solutions when considering recursive patterns).
These definitions are quite straightforward, reflecting the intuitive

semantics of the operators. For example, ***p+++ is defined by the fol-
lowing set of equations

***x+++ = Any ***p1|p2+++ = ***p1+++ | *** p2+++
***t+++ = t ***p1&p2+++ = ***p1+++ & *** p2+++
(x:=c)+++ = Any ***(p1,p2)+++ = (p1+++,***p2+++)

which simply states that a pattern formed by a variable matches (the
type formed by) all values, that a pattern type matches all the values
it contains, that an alternative pattern matches the union of the types
matched by each pattern, and so on. Recursive patterns are handled
by considering their infinite unfolding which, thanks to regularity,
generate by the equations only finite systems. Other data construc-
tors (records, XML elements) are treated like pairs. The same intu-
ition guides the definition of (t/p). For example:

(t/x)(x) = t
(t/(p1|p2))(x) = ((t& ***p1+++)/p1)(x)|((t\ ***p1+++)/p2)(x)

...
states that when we match the pattern x against values ranging over
the type t, the values captured by x will be exactly those in t. Sim-
ilarly when we match values ranging over t against an alternative
pattern, the values captured by a variable x will be those captured by
x when the first pattern is matched against those values of t that are
accepted by p1, and those captured by x when the second pattern is
matched against the values in t that are accepted by p2 but not by p1

(see the appendix of [8] for the rest of the definitions).
The most important result for these definitions is that the equations

above can be used to define two algorithms that compute ***p+++ and
(t/p). Rather than going into the details of the algorithms, we prefer
to give some examples that show the subtlety of the computation
they are required to perform.

Consider again the pattern P where P = ((x & Int) , P) | (__ , P) |
(x:=‘nil) that extracts all the integers occurring in a sequence10. In the
table below we show the types of all values that are captured by the
variable x of the pattern P when this latter is matched against (values
ranging over) different types.

t (t/P)(x)
[Int String Int] [Int Int]
[Int | String] [Int?]
[Int* String Int] [Int+]
[Int+ String Int] [Int+ Int]
[(0..10)+ String] [(0..10)+]
[(Int String)+] [Int+]

The typing of patterns, pat-
tern matching, and functions is
essentially all is needed to un-
derstand how the type algorithm
works, as the remaining rules are
straightforward. The only ex-
ception to that are the typing of
the constructions map, transform,
and xtransform which need to

compute the transformations of regular expressions (over types) and
for which the same techniques as those of [7] are used.

5. Implementation
In this section we briefly highlight some important implementa-

tion issues and solutions specific to our approach. We have devel-
oped a prototype in Objective Caml; it compiles when needed pat-
tern matchings to an internal automaton-like representation (“just-
in-time”). Despite the interpretative overhead, it exhibits satisfactory
performances. Typing CDuce programs is theoretically complex (the
subtyping relation itself is already exponential in the size of involved
types), and it is indeed possible to find short programs that kill the
type-checker (as it is the case for ML, for instance). In designing
CDuce we put the emphasis on the expressiveness of the language
and the efficiency of the produced code, accepting the theoretical
complexity of type-checking. XDuce has proved that type systems

10More precisely, if P is matched against a sequence L, then x is bound to the
subsequence of L containing all the integers in L in the order in which they
appear.

for XML programs with regular expression types are workable, and
our prototype gives us confidence that CDuce’s new features will be
too. In the future, we plan to develop a compiler for CDuce, and
perform serious benchmarking and performance tests. Preliminary
benchmarks on our prototype (see below) are encouraging.

Localization of error messages.
We formalized the static type checking of CDuce programs in [8],

using the classical presentation of a type system with bottom-up
inference rules. It is well-known that for a type-checking failure,
direct implementation of such rules cannot provide well-localized
error messages. For instance, consider fun f (t->s) p1->e1 | p2->e2,
where e1 turns out not to be of type s. The typing rule that triggers
the error is the one for abstractions. Since it sees the body branches
as black-boxes, it cannot localize the error on e1 but only on the
whole function expression. A different example is given by the ap-
plication of a function of type, say, Xhtml -> Xhtml to the document
<html>[<head>[] <bdy>[]]. The typo in the last tag makes the typ-
ing of the application fail, and a bottom-up algorithm is not precise
enough to track the misspelled <bdy>.

The solution is to type-check programs with a mixed top-down
and bottom-up algorithm. In particular, we have adopted a tech-
nique that types expressions by propagating a constraint through the
abstract syntax tree, from the root to the leaves. This constraint gives
an upper-bound on the resulting type for the sub-expressions which
catches errors earlier and localizes them precisely. This solution is
highly effective when coupled with the CDuce typing as the latter
is very precise and, quite interestingly (although not unexpectedly),
typing precision induces a similar precision in error localization. In
the first example, our prototype localizes an error somewhere in e1
(depending on where the error is), and in the second it localizes it in
the tag <bdy> (highlighted in red on the screen) and emits an error
message stating that it should be <body>. This precision of error lo-
calization combined with the CDuce capacity to exhibit a value of
the expected type not matching the definition produces very infor-
mative error messages. We invite the reader to test this issue on the
online prototype or on the CDuce distribution.

Formally, the type system with propagation of constraint is de-
fined by a typing relation Γ ` e|t : s, where Γ is the typing envi-
ronment, e the expression to type-check, t the constraint and s the
resulting type, which must be a subtype of t. For instance, the typing
rule for pairs is:

Γ ` e1|π1(t) : t1 Γ ` e2|πt1
2 (t) : t2

Γ ` (e1, e2)|t : (t1, t2)
where π1 represents the set-theoretic first projection (π1(t) is the
smallest solution τ to t ≤ (τ,Any)) and πt1

2 (t) represents the best
refinement of the constraint knowing a more precise type for e1 (it is
defined as the largest solution τ to (t1, τ) ≤ t). For instance, if t =
(<a>__,<a>__) | (__,__), and e = (<a>[],[]), the error will be
localized on [] which is type-checked with the constraint <a>__.

Implementation of typing algorithms.
In [8], we defined a high-level specification of a subtyping algo-

rithm by a notion of coinductive simulation that characterizes empty
types (t is a subtype of s if the difference type t \ s is empty). Many
optimizations and subtle implementation techniques can be applied
in order to move from this specification to a practical algorithm, in-
cluding those mentioned in [14] (for the informed reader, note that
their algorithm can be easily improved by caching negative results in
a destructive structure, since they cannot be invalidated even under
different assumptions). The algorithm in [14] uses a top-down ap-
proach to avoid exponential explosion (due to the presence of union
types); however, it requires backtracking and is thus suboptimal with
respect to its theoretical complexity (and backtracking prevents the

use a persistent data structure). Our implementation uses instead an
efficient local solver for monotonic Boolean constraints that we de-
veloped for the occasion. It is always as efficient as the backtracking
top-down approach, both theoretically and in practice (we imple-
mented both). We conjecture that it guarantees optimal theoretical
complexity as well.

The set-theoretic denotational foundation of CDuce is a primary
source for studying implementation issues since quite often simple
set-theoretic observations allow important optimizations. For in-
stance, the type (t,s)\(t1,s1)\ ...\(tn,sn) often appears in the
execution of the typing algorithm. A naive development, consist-
ing of the repeated use of the rule (t,s)\(t′,s′) = (t \ t′,s) |
(t,s \ s′) would systematically yield 2n terms. To avoid this ex-
ponential explosion, we noticed that the result can be written as
(t \ t1 \ ...\ tn , s) | (t & t1 , s \ s1) | ... | (t & tn , s \ sn)
provided that the ti’s are pairwise non-intersecting (the formula can
be further simplified by erasing empty terms). It is always possible
to enforce the condition by “splitting” some of the ti types. For the
general case, we fall back to 2n, but in practice we are closer to the
linear case. Checking or enforcing the condition requires many ap-
plications of the subtyping algorithm, but our results have shown that
is it worthwhile. This kind of “split and distribute” technique can be
found in several places of our implementation and is reminiscent of
analogous techniques mentioned in [13] for Boolean algorithms.

Pattern-matching compilation, type-driven optimizations.
CDuce type checking is not just a preliminary verification. We

believe that static typing is key for designing an efficient execution
model for CDuce (and XML languages in general). To grasp the
idea, consider two types A and B and the function:
fun (<a>[A+|B+] -> Int)

| <a>[A+] -> 0
| <a>[B+] -> 1

A naive compilation schema would yield the following behavior. It
will first check whether the first pattern matches the argument. To
do this, it will: (i) check that it is an XML element of the form <a>c
and (ii) run through c to verify that it is a non-empty sequence of
elements of type A (checking that an element is of type A may be
very expensive if A represents for instance a complex DTD). If this
fails, it will try the second branch and do all these tests again with B.
The argument may be run through completely several times.

There are many useless tests; first, it is known statically that the
argument is necessarily an XML element with tag ‘a, so there is no
need to check this. Also, the content c must be a non-empty sequence
whose elements are either all of type A or all of type B. To determine
the situation, simply look at the first element and perform some tests
to discriminate between A and B (for instance, if A = <x>[...] and B
= <y>[...], looking at the head tag is sufficient, so the match could be
compiled as <__>[<x>__ __*] -> 0 | __ -> 1). Using these optimizations,
only a small part of the argument is looked at (and just once).

In general, a naive approach to compiling pattern matching may
yield multiple runs and backtracking through the matched value.
Forgetting for a moment functions and records, values can be seen
as binary trees, and types simply represent regular tree languages.
It is a well-known fact that such tree languages can be recognized
by deterministic bottom-up tree automata; this indicates that back-
tracking can be eliminated. It is possible to adapt the theory of tree
automata to handle the full range of CDuce patterns (with capture
variables) and values. However, determinization may create huge
and intractable automata (number of states and transition function);
this is due to the fact that such automata perform a uniform compu-
tation, disregarding the current position in the tree. When matching
a pair (v1, v2), different computations can be performed on v1 and
v2 (each with a smaller automaton), but classical bottom-up tree au-

tomata do not have this flexibility. Also, to help pattern matching,
we want to take static type information about the matched value into
account. This can be combined with the previous remark: when
matching (v1, v2), one can start, for example, with v1; according to
the result of this computation, we get more information about the
(dynamic) type of the matched value, which can simplify the work
on v2: for instance, if we statically know that (v1, v2) has type (t1,t2)
| (s1,s2) with non-intersecting types t1 and s1, and if the computation
on v1 tells us that v1 has type t1, then we know that v2 has neces-
sarily the type t2, and no further check is required. By using static
type information, it is thus possible not only to avoid backtracking,
but also to avoid checking whole parts of the matched value. This is
particularly useful when working with tag-coupled document types
(as DTD types) where the tag of an XML element already provides
a lot of information about its content.

We have designed and implemented an efficient compilation sche-
ma that incorporates all these optimizations. Lack of space and com-
plexity of the algorithms keep us from describing them here, and they
will be presented in a future publication (but see the online extended
version of this paper for an outline). Let us just state one interesting
property: the compilation schema is semantic with respect to types,
in the sense that the produced code does not depend on the syntax
of the types that appear in patterns, but only on their interpretation.
Therefore, there is no need to simplify types—for instance by ap-
plying any of the many type equivalences—before producing code,
since such simplifications are all “internalized” in the compilation
schema itself.

Representation of run-time values.
In CDuce, patterns check at runtime whether a value has a specific

type. Hence one must be able to distinguish efficiently the represen-
tation of say, a pair value, an integer value, and a record value. In
our prototype values are implemented by an OCaml sum type:
type value = Pair of value*value | Char of int | Integer of ... |
This gives us the possibility to introduce derived forms of runtime
values in order to optimize specific cases that cannot be easily de-
tected at compile-time. When a derived form is inspected, it can be
dynamically coerced to its canonical representation. For instance,
in CDuce, character strings are conceptually sequences of Unicode
characters: the value [’AB’ <x>[]] is represented as Pair(Char 65,
Pair(Char 66, Xml(...))). In order to avoid the allocation of many se-
quence cells (pairs) for long strings, we have added to the sum type
for values a special form for strings (actually, we have several forms
corresponding to different internal encodings), namely,

type value = ... | String of int * string * value
where the integer points to the beginning of the string in the buffer
of characters at the second argument, and the third argument corre-
sponds to the rest of the sequence (the ‘nil atom in case of a sequence
with only characters). The value above can thus be represented more
compactly as String(0,"AB", Xml(...)) ; when this value is inspected
by a pattern, it is seen as Pair(Char 65, String(1,"AB", Xml(...))) (the
OCaml string buffer "AB" is not copied). The idea is to work with
the compact representation as long as the string is not inspected.

Another example of special form is a lazy version of the concate-
nation operator @ for sequences; indeed, it is not unusual to build
a long sequence by extending it repeatedly to the right. The canon-
ical representation of sequences requires copying the first argument
of @, and this may yield a quadratic behavior where a linear one is
expected. The solution is to delay the computation of @ until the
result is actually inspected; the binary tree with @ nodes can then be
efficiently linearized. Of course, these derived forms are completely
transparent to the programmer, and they do not affect the semantics
of the language.

Benchmarks.
We performed preliminary benchmarks to evaluate CDuce’s per-

formance and validate our type-driven approach for compiling pat-
tern matching.11 In this section, we present a comparison between
CDuce and an XSLT processor (the xsltproc program from Gnome
libxslt library). The tables below display execution time in seconds
(user time as reported by the Unix time command) for several sizes
of input XML documents and several implementations of the same
transformation. The execution times we give for CDuce programs
include the times of XML parsing, type-checking, and validation of
the input documents, while the times for XSLT programs include
only XML parsing time (since XSLT is untyped).

The transformation addrbook is a simple filtering of flat XML
documents. In order to test the effectiveness of CDuce type-driven
optimization we performed some auto-benchmarking by testing dif-
ferent CDuce programs implementing the same transformation. In
particular we considered two different versions of the transformation
addrbook, one that uses explicit recursion to implement the traver-
sal of the document and a second that uses instead the transform con-
struction; furthermore for each version we considered a variant (de-
noted by “opt”) which was optimized by hand by replacing dynamic
type checking by minimal tests on tags.
addrbook 0.1 Mb 0.5 Mb 1.2 Mb 6 Mb 12 Mb
CDuce1 0.11 0.33 0.65 3.36 7.15
CDuce1 opt 0.11 0.33 0.64 3.39 7.14
CDuce2 0.11 0.32 0.61 2.95 5.85
CDuce2 opt 0.11 0.32 0.61 2.96 5.83
XSLT 0.08 0.38 0.76 3.74 7.38

The second transformation we considered is a simplified version of
the split function in §3.4. The first CDuce version uses the “stan-
dard” pattern <person gender=g>[<name>n <children>[(mc::MPerson
| fc::FPerson)*]]. The second one uses the hand-optimized pattern
<__ gender=g>[<__>n <__>[(mc::<__ gender="M">__ | fc::__)*]]. The
third CDuce version duplicates the main function to avoid overload-
ing and useless computations on tags. The two XSLT versions use
slightly different styles (two templates, or a single template with
computations on the tag).
split 60Kb 0.3 Mb 0.6 Mb 2.5 Mb 5.2 Mb
CDuce 1 0.10 0.30 0.52 1.92 3.95
CDuce 2 0.11 0.30 0.50 1.92 3.92
CDuce 3 0.10 0.29 0.49 1.85 3.81
XSLT 1 0.15 0.79 1.42 5.95 12.85
XSLT 2 0.18 0.93 1.68 6.90 14.33

Although preliminary, these benchmarks already allow us to draw
some conclusions. First of all, CDuce exhibits good performances:
CDuce programs are usually faster than equivalent XSLT transfor-
mations (using a quite efficient XSLT processor written in C) and on
the files of the tests they show execution times which are linear in the
size of data. Compiling CDuce programs will remove interpretative
overhead and type-checking from runtime, and so we expect some
further improvements. Also, in a real usage scenario, several trans-
formations will be composed in a single CDuce program to avoid
parsing/validating/printing of intermediate XML documents.

Secondly, the negligible difference of execution times between
normal and hand-optimized versions of CDuce programs demon-
strates the effectiveness of the type-driven compilation approach and
the uselessness of hand-coded optimization. This means that CDuce’s
runtime avoids the burden of coding optimizing patterns, and allows
the programmer to use a more declarative and robust style of pro-

11The test machine was an Athlon 750 with 128 Mbytes of RAM. The code
of all benchmarks is available at http://www.cduce.org/bench.html.

gramming.
Finally, we want to stress that none of the examples we used in the

benchmarks above exploits the full power of CDuce’s type-based
optimization: in all these examples the only possible gain brought
by CDuce’s optimization came from avoiding useless tests of tag
names; however the examples are so compact that CDuce’s opti-
mization could not be used to ignore whole subtrees of the input
documents. Since the latter is the case in which CDuce runtime sys-
tem is expected to succeed best, we expect that in real-case use the
advantage of using CDuce will be even more evident also in terms
of pure performance.

We do not include in this benchmark section a comparison with
XDuce because XDuce has not been optimized for runtime. As for
type-checking—an aspect we cannot compare with XSLT—complex
transformations seem to be type-checked significantly faster in CDuce
than in XDuce (for instance, a simplified version of html2latex
from the XDuce distribution takes 0.44s for CDuce, versus 9.40s for
XDuce 0.4.0, 1.33s for XDuce 0.2.4, and 18.30s for XDuce 0.2.4
with pattern optimization turned on).

We are currently performing more extensive benchmarking and
comparing performances with respect to XSLT and XQuery. We
plan to report complete results on CDuce site’s benchmark pages.

6. Conclusions and ongoing work
CDuce is an extension of XDuce with a richer set of basic types
(Char, String, Int, intervals) and of constructed types (open and closed
records, intersections, differences, singletons), while adding to the
language overloaded and higher order functions, powerful sequence
extracting patterns, records, and tags as first-class expressions. It is
important to notice that this is obtained smoothly by using a very
small core of semantically defined key features [8] . CDuce also re-
lies on a theoretic construction quite different from that of XDuce
and this construction had a deep impact on the implementation of
the language itself and on the typing and subtyping algorithms. A
separate article to present them is in preparation.

We have also begun formally studying security issues of CDuce
with preliminary results available on the CDuce web site.

As for language, we have just finished implementing and we are
presently testing XML Schema integration and validation. This is
obtained by importing schemas into CDuce types and by validating
CDuce expressions against them. This greatly simplifies the typed
import of XML documents which can then be treated by using the
CDuce data model (in XQuery the choice was made to work directly
on XML Schema data model).

We are also implementing the query language we hinted at in Sec-
tion 3.7, developing simple logical optimizations and benchmark-
ing it against the Bell-labs’ XQuery implementation [2] using the
XQuery Use Cases (http://www.w3.org/TR/xmlquery-use-cases/) as
testbed. We expect to present results and merge the CVS branch into
the main CDuce branch before the end of the year.

We are also currently studying a module system that supports in-
cremental programming via cross-module specialization. The basic
idea can be understood by considering the toplevel definition of the
function add given in Section 3.4. A new let fun declaration for add
would hide the older one. We are experimenting with a specializing
declaration
let method add ((Char,String)->String) (x,y) ->[x] @ y
where the new definition specializes the definition of add in the sense
that it is as if we had defined from the beginning add as follows

let fun add ((Char,String)->String; (Int,Int)->Int; (String,String)->String)
| (x & Char, y & String) -> [x !y]
| (x & Int, y & Int) -> x+y
| (x & String, y & String) -> x@y

Such definitions can be smoothly encoded in the core of CDuce by a
combination of dynamic scoping and a technique similar to the one
used for Java’s parasitic methods [4]; an incremental programming
style can then be obtained by allowing cross module specialization
of the form let method SomeModule.add

Besides studying the module system and query language exten-
sions we have hinted at in this paper, future plans include the study
of polymorphic, lazy, and reference types, the exploration of inter-
actions with other languages and type systems (typically for using
existing libraries) and the development of tools for better interfacing
CDuce with XML tools and standards.

Acknowledgments. We want to warmly thank Dario Colazzo, Haruo
Hosoya, Stijn Vansummeren, Jérôme Vouillon, and Philip Wadler for
the useful and constant feedback on this work, Pietro Di Lena for his
help with XSLT, Stefano Zacchiroli for his work on XML Schema,
Abigail Pope for proof-reading this paper, and the ICFP referees
whose remarks greatly contributed to improve the presentation of
this article. Very special thanks go to Benli Pierce for “sheparding”
this work and for the many useful suggestions, discussions, inputs
on this and other topics.

References
[1] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in a

statically typed language. ACM TOPLAS, 13(2):237–268, April 1991.
[2] Bell-labs. Galax. http://db.bell-labs.com/galax/.
[3] S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J. Robie,

J. Siméon, and M. Stefanescu. XQuery 1.0: An XML Query Language.
W3C Working Draft, http://www.w3.org/TR/xquery/, 2003.

[4] J. Boyland and G. Castagna. Parasitic methods: Implementation of
multi-methods for Java. In OOPSLA ’97, 32(10), pages 66–76, 1997.

[5] A. Christensen, A. Møller, and M. Schwartzbach. Extending Java for
high-level web service construction. ACM TOPLAS, 2003. To appear.

[6] J. Clark and S. DeRose. XML Path Language (XPath). W3C
Recommendation, http://www.w3.org/TR/xpath/, 1999.

[7] Mary Fernández, Jérôme Siméon, and Philip Wadler. An algebra for
XML query. In FST&TCS, LNCS n. 1974, pages 11–45, 2000.

[8] A. Frisch, G. Castagna, and V. Benzaken. Semantic Subtyping. In 17th
IEEE Symp. on Logic in Computer Science, pages 137–146, 2002.

[9] V. Gapayev and B.C. Pierce. Regular object types. In Proceedings of
the 10th workshop FOOL, 2003.

[10] H. Hosoya. Regular expressions pattern matching: a simpler design.
Unpublished manuscript, February 2003.

[11] H. Hosoya and B. Pierce. XDuce: A typed XML processing language.
ACM TOIT, 2003. To appear. http://xduce.sourceforge.net/.

[12] Haruo Hosoya. Regular Expression Types for XML. PhD thesis, The
University of Tokyo, 2001.

[13] Haruo Hosoya and Makoto Murata. Validation and boolean operations
for attribute-element constraints. In PLAN-X, 2002.

[14] H. Hosoya, J. Vouillon, and B. Pierce. Regular expression types for
XML. In Proc. of ICFP ’00, SIGPLAN Notices 35(9), 2000.

[15] Michael Y. Levin. Matching automata for regular patterns. Tech. rep.,
2003. http://www.cis.upenn.edu/~bcpierce/xtatic/.

[16] M. Odersky and P. Wadler. Pizza into Java: Translating theory into
practice. In Proc. of 24th ACM POPL, 1997.

[17] J. Siméon and P. Wadler. The essence of XML. In Proc. of 30th ACM
POPL, 2003.

A.1 Syntax of CDuce
Names
X Names complying with the XML recommendation(∗) but

starting by an upper case literal

Variables
x Names complying with the XML recommendation(∗) but

starting by a colon, an underscore, or a lower case literal

Constants
c ::= n n a signed integer
| ′′′a ′′′ a a unicode literal

Atoms
a ::= ‘‘‘X | ‘‘‘x

Base types
B ::= String | Int | Char | Bool

Singleton types
S ::= a | c

Types
T ::= B base types
| S singleton
| T ||| T union
| T&&&T intersection
| T \\\ T difference
| T→→→ T functions
| 〈〈〈T T 〉〉〉 T XML tree
| 〈〈〈T `(T) 〉〉〉 T XML friendly
| X type variable
| T where X===T and . . . and X===T recursion
| {{{ `(T) }}} open record
| {|{|{| `(T) |}|}|} closed record
| [[[R]]] sequences
| l- -l interval
| Empty empty type
| Any all values
| __ all values

Attribute list
`(α) ::= ε empty attribute list

| x === α mandatory attribute
| x =?=?=? α optional attribute
| ` ; ` list of α attributes

Interval limit
l ::= c | ∗∗∗

Type regular expressions
R ::= T | R |||R | R R | R po

Pattern regular expressions
r ::= p | (x :::::: r) | r ||| r | r r | r po

Sequence content
s ::= ε | e | !e | s s

(∗)http://www.w3.org/TR/REC-xml#NT-Name
Conventions: we write [PCDATA] for [Char*], write [’xy’ ’z’] or [’x’ ’yz’] or [’xyz’] or "xyz" for [’x’ ’y’ ’z’], and write <<< x >>> and <<< X >>> for < ‘< ‘< ‘x >>> and
< ‘< ‘< ‘X >>>. Also, let f (. . .). . . and let fun f (. . .). . . are both allowed instead of let f = fun f (. . .). . . . The types String and Bool are defined as [Char*] and
‘true | ‘false, respectively.

Patterns
p ::= x capture
| T type constraint
| X pattern variable
| p&&&p conjunction
| p ||| p alternative
| (p,p) pair
| 〈〈〈 p p 〉〉〉 p XML pattern
| 〈〈〈 p `(p) 〉〉〉 p XML friendly
| {{{ `(p) }}} open record
| {|{|{| `(p) |}|}|} closed record
| [[[r]]] sequences
| (x:=c) default
| p where X === p and . . . and X === p recursion

Functions
f ::= fun x(p ::: T, . . . , p ::: T):T === e

| fun x(T→→→ T; . . . ; T→→→ T) p→→→ e ||| . . . ||| p→→→ e

Expressions
e ::= c constant
| a atom
| x variable
| f function
| e1e2 application
| (e1,e2) pair
| 〈〈〈 e e 〉〉〉 e XML element
| 〈〈〈 e `(e) 〉〉〉 e XML friendly
| o e prefix operator
| e op e infix operator
| {{{ `(e) }}} record
| e...x field select
| e \\\ x field remove
| [[[s]]] sequences
| e///T projection
| (e ::: T) coercion
| let p === e in e let
| let p ::: T === e in e coerced let
| if e then e else e if__then__else
| raise e raise exception
| try e with p→→→ e ||| . . . ||| p→→→ e trap exception
| match e with p→→→ e ||| . . . ||| p→→→ e match
| map e with p→→→ e ||| . . . ||| p→→→ e map
| transform e with p→→→ e ||| . . . ||| p→→→ e filter
| xtransform e with p→→→ e ||| . . . ||| p→→→ e XML-tree transf

Prefix operators
o ::= load__xml | load__html | load__file | load__file__utf8
| print | print__xml | print__xml__utf8
| dump__to__file | dump__to__file__utf8
| int__of | string__of | atom__of | flatten

Infix operators
op ::= @@@ | +++ | ∗∗∗ | −−− | div | mod
| === | <=<=<= | <<<<<< | >>>>>> | >=>=>=

Postfix operators
po ::= ??? | +++ | ∗∗∗ | ?????? | +?+?+? | ∗?∗?∗?

