
Semantic subtyping:
challenges, perspectives, and open problems

Giuseppe Castagna

CNRS, École Normale Supérieure de Paris, France
Based on joint work with: Véronique Benzaken, Rocco De Nicola,
Mariangiola Dezani, Alain Frisch, Haruo Hosoya, Daniele Varacca

Abstract. Semantic subtyping is a relatively new approach to define subtyping
relations where types are interpreted as sets and union, intersection and negation
types have the corresponding set-theoretic interpretation. In this lecture we out-
line the approach, give an aperçu of its expressiveness and generality by applying
it to the λ-calculus with recursive and product types and to the π-calculus. We
then discuss in detail the new challenges and research perspectives that the ap-
proach brings forth.

In ICTCS ’05, Lecture Notes in Computer Science, ????:??-??, c© Springer, 2005.

1 Introduction to the semantic subtyping

Many recent type systems rely on a subtyping relation. Its definition generally
depends on the type algebra, and on its intended use. We can distinguish two
main approaches for defining subtyping: the syntactic approach and the seman-
tic one. The syntactic approach—by far the more used—consists in defining the
subtyping relation by axiomatising it in a formal system (a set of inductive or
coinductive rules); in the semantic approach (for instance, [AW93,Dam94]), in-
stead, one starts with a model of the language and an interpretation of types
as subsets of the model, then defines the subtyping relation as the inclusion of
denoted sets, and, finally, when the relation is decidable, derives a subtyping
algorithm from the semantic definition.

The semantic approach has several advantages (see [CF05] for an overview)
but it is also more constraining. Finding an interpretation in which types can be
interpreted as subsets of a model may be a hard task. A solution to this problem
was given by Haruo Hosoya and Benjamin Pierce [HP01,Hos01,HP03], who
noticed that in order to define subtyping all is needed is a set theoretic interpre-
tation of types, not a model of the terms. In particular, they propose to interpret
a type as the set of all values that have that type. So if we use V to denote the
set of all values, then we can define the following set-theoretic interpretation for
types JtK

V
= {v ∈ V | ` v : t} which induces the following subtyping relation:

s ≤V t def
⇐⇒ JsK

V
⊆ JtK

V
(1)

This works for Hosoya and Pierce because the set of values they consider can
be defined independently from the typing relation.1 But in general in order to
state when a value has a given type (the “` v : t” in the previous definition) one
needs the subtyping relation. This yields a circularity: we are building a model
to define the subtyping relation, and the definition of this model needs the sub-
typing relation. This circularity is patent in both the examples we discuss below:
in λ-calculus (Section 2) values are λ-abstractions and to type them (in partic-
ular, to type applications that may occur in their body) subtyping is needed; in
π-calculus (Section 3) the covariance and contravariance of read-only and write-
only channel types make the subtyping relation necessary to type channels.

In order to avoid this circularity and still interpret types as set of values,
we resort to a bootstrapping technique. The general ideas of this technique are
informally exposed in [CF05], while the technical development can be found
in [FCB02,Fri04]. For the aims of this article, the process of defining semantic
subtyping can be roughly summarised in the following steps:
1. Take a bunch of type constructors (e.g., →, ×, ch(), . . .) and extend the

type algebra with the following boolean combinators: union ∨∨∨, intersection
∧∧∧, and negation ¬¬¬.

2. Give a set-theoretic model of the type algebra, namely define a function
JK

D
: Types →P(D), for some domain D (where P(D) denotes the pow-

erset of D). In such a model, the combinators must be interpreted in a set-
theoretic way (that is, Js∧∧∧ tK

D
= JsK

D
∩ JtK

D
, Js∨∨∨ tK

D
= JsK

D
∪ JtK

D
, and

J¬¬¬tK
D

= D \JtK
D

), and the definition of the model must capture the essence
of the type constructors.
There might be several models, and each of them induces a specific sub-
typing relation on the type algebra. We only need to prove that there exists
at least one model and then pick one that we call the bootstrap model. If
its associated interpretation function is JK

B
, then it induces the following

subtyping relation:
s ≤B t def

⇐⇒ JsK
B
⊆ JtK

B
(2)

3. Now that we defined a subtyping relation for our types, find a subtyping al-
gorithm that decides (or semi-decides) the relation. This step is not manda-
tory but highly advisable if we want to use our types in practise.

4. Now that we have a (hopefully) suitable subtyping relation available, we can
focus on the language itself, consider its typing rules, use the new subtyping
relation to type the terms of the language, and deduce Γ`B e : t. In particular
this means to use in the subsumption rule the bootstrap subtyping relation
≤B we defined in step 2.

1 Their values are XML documents, and they can be defined as regular trees. The typing relation,
then, becomes recognition of a regular tree language.

2

5. The typing judgement for the language now allows us to define a new natu-
ral set-theoretic interpretation of types, the one based on values JtK

V
= {v ∈

V | `B v : t}, and then define a “new” subtyping relation as in equation (1).
This relation might be different from ≤B we started from. However, if the
definitions of the model, of the language, and of the typing rules have been
carefully chosen, then the two subtyping relations coincide

s ≤B t ⇐⇒ s ≤V t
and this closes the circularity. Then, the rest of the story is standard (reduc-
tion relation, subject reduction, type-checking algorithm, etc . . .).

The accomplishment of this is process is far from being straightforward. In point
2 it may be quite difficult to capture the semantics of the type constructors (e.g.,
it is quite hard to define a set-theoretic semantics for arrow types); in point 3
defining a model may go from tricky to impossible (e.g., because of bizarre
interactions with recursive types); point 4 may fail for the inability of devising
a subtyping algorithm (cf. the subtyping algorithm for

�
π in [CNV05]); finally

the last step is the most critical one since it may require a consistent rewriting
of the language and/or of the typing rules to “close the circle” . . . if possible at
all. We will give examples of all these problems in the rest of this document.

In the next two sections we are going to show how to apply this process to λ-
like and π-like calculi. The presentation will be sketchy and presuppose from
the reader some knowledge of the λ-calculus, of the π-calculus, and of their
type systems. Also, the calculi we are going to present are very simplified ver-
sions of the actual ones whose detailed descriptions can be found in [FCB02]
and [CNV05], respectively.

2 Semantic λ-calculus: � Duce

As a first example of application of the semantic subtyping 5-steps technique,
let us take the λ-calculus with products.

Step 1. The first step consists in taking some type constructors, in this case
products and arrows, and adding boolean combinators to them:

t ::= � | � | t →→→ t | t××× t | ¬¬¬t | t∨∨∨ t | t∧∧∧ t
where � and � correspond, respectively, to the empty and the universal types. For
more generality we consider also recursive types. Thus, our types are the regular
trees generated by the grammar above and satisfying the standard contractivity
condition that every infinite branch has infinitely many occurrences of the ××× or
of the →→→ constructors (this rules out meaningless expressions such as t ∧∧∧ (t∧∧∧
(t∧∧∧ (. . .)))).

3

Step 2. The second step is, in this case, the hard one as it requires to define a
set-theoretic interpretation JK

D
: Types → P(D). But, how can we give a set

theoretic interpretation to the arrow type? The set theoretic intuition we have of
t →→→ s is that it is the set of all functions (of our language) that when applied to a
value of type t either diverge or return a result of type s. If we interpret functions
as binary relations on D , then Jt →→→ sK is the set of binary relations in which if
the first projection is in (the interpretation of) t then the second projection is
in (the interpretation of) s, namely P(JtK× JsK), where the overline denotes
set complement.2 However, setting Jt →→→ sK = P(JtK× JsK) is impossible since,
for cardinality reasons, we cannot have P(D 2) ⊆ D . Note though, that we do
not define the interpretation JK in order to formally state what the syntactic
types mean but, more simply, we define it in order to state how they are related.
Therefore, even if the interpretation does not capture the intended semantics
of types, all we need is that it captures the containment relation induced by this
semantics. That is, roughly, it suffices to our aims that the interpretation function
satisfies

Jt1 →→→ s1K ⊆ Jt2 →→→ s2K ⇐⇒ P(Jt1K× Js1K) ⊆ P(Jt2K× Js2K) (3)

Note that Pf (X)⊆Pf (Y) if and only if P(X)⊆P(Y) (where Pf denotes the
finite powerset). Therefore, if we set Jt →→→ sK = Pf (JtK× JsK), this interpretation
satisfies (3). In other words, we can use as bootstrap model B the least solution
of the equation X = X 2 + Pf (X2) and the following interpretation function3

J K
B

: Types → P(B):

J � K
B

=∅ J � K
B

= B Js∨∨∨ tK
B

= JsK
B
∪ JtK

B
Js∧∧∧ tK

B
= JsK

B
∩ JtK

B

J¬¬¬tK
B

= B\JtK
B

Js××× tK
B

= JsK× JtK Jt →→→ sK
B

= Pf (JtKB
× JsK

B
)

The model we have chosen can represent only finite graph functions, therefore
it is not rich enough to give semantics to a λ-calculus (even the simply typed
one). However since this model satisfies equation (3), it is able to express the
containment relation induced by the semantic intuition we have of the type t → s
(namely that it represents P(JtK× JsK), which is all we need.

Step 3. We can use the definition of subtyping as given by equation (2) to de-
duce some interesting relations: for instance, according to (2) the type (t1 →

2 This is just one of the possible interpretations. See [CF05] for a discussion about the implica-
tions of such a choice and [Fri04] for examples of different interpretations.

3 For the details of the definition of the interpretation in the presence of recursive types, the
reader is invited to consult [Fri04] and [FCB02]. The construction is also outlined in [CF05].

4

s1)∧∧∧ (t2 → s2) is a subtype of (t1 ∧∧∧ t2) → (s1 ∧∧∧ s2), of (t1 ∨∨∨ t2) → (s1 ∨∨∨ s2), of
their intersection and, in general, all these inclusions are strict.

Apart from these examples, the point of course is to devise an algorithm
to decide inclusion between any pair of types. Deciding subtyping for arbitrary
types is equivalent to decide whether a type is equivalent to (that is, it has the
same interpretation as) � :

s ≤B t ⇔ JsK
B
⊆ JtK

B
⇔ JsK

B
∩ JtK

B
=∅⇔ Js∧∧∧¬¬¬tK

B
=∅⇔ s∧∧∧¬¬¬t = � .

By using the definition of BJK, we can show that every type is equivalent to a
finite union where each summand is either of the form:

(
^

^

^

s×××t∈P
s××× t)∧∧∧ (

^

^

^

s×××t∈N
¬¬¬(s××× t)) (4)

or of the form
(

^

^

^

s→→→t∈P
s→→→ t)∧∧∧ (

^

^

^

s→→→t∈N
¬¬¬(s→→→ t)) (5)

Put s∧∧∧¬¬¬t in this form. Since it is a finite union, then it is equivalent to � if
and only if each summand is so. So the decision of s ≤B t is reduced to the
problem of deciding whether the types in (4) and (5) are empty. The subtyping
algorithm, then, has to work coinductively, decomposing these problems into
simpler subproblems where the topmost type constructors have disappeared. In
particular, in [Fri04] it is proved that the type in (4) is equivalent to � if and only
if for every N ′ ⊆ N:

^

^

^

(t×××s)∈P
t ∧∧∧

^

^

^

(t ′×××s′)∈N′

¬¬¬t ′

 ' � or

^

^

^

(t×××s)∈P
s ∧∧∧

^

^

^

(t ′×××s′)∈N\N′

¬¬¬s′

 ' � ; (6)

while the type in (5) is equal to zero if and only if there exists some (t ′→→→ s′)∈N
such that for every P′ ⊆ P:

t ′∧∧∧
^

^

^

(t→→→s)∈P′

¬¬¬t

 ' � or

^

^

^

(t→→→s)∈P\P′

s∧∧∧¬¬¬s′

 ' � . (7)

By applying these decompositions the algorithm can decide the subtyping rela-
tion. Its termination is ensured by the regularity and contractivity of the types.

Step 4 We have just defined a decidable subtyping relation for our types. We
now want to apply it to type the terms of a language. We do not present here
a complete language: the reader can find plenty of details in [CF05,FCB02].
Instead, we concentrate on the definition and the typing of the terms that are
the most interesting for the development of this article, namely λ-abstractions.
These in the rest of this paper will have the form λ∧∧∧i∈Isi→→→tix.e, that is we index
them by an intersection type. This index instructs the type checker to verify

5

that the abstraction is in the given intersection, namely, that it has all the types
composing it, as implemented by the following rule:

t≡(
V

V

V

i=1..n si→→→ti)∧∧∧(
V

V

V

j=1..m¬¬¬(s′j→→→t ′j))6= �
(∀i) Γ,x : si `B e : ti

Γ `B λ∧∧∧i∈Isi→→→tix.e : t
(abstr)

To understand this rule consider, as a first approximation, the case for m = 0,
that is, when the type t assigned to the function is exactly the index. The rule
verifies that the function has indeed all the si → ti types: for every type si →→→ ti of
the intersection it checks that the body e has type ti under the assumption that the
parameter x has type si. The rule actually is (and must be) more general since it
allows the type checker to infer for the function a type t strictly smaller than the
one at the index, since the rule states that it is possible to subtract from the index
any finite number of arrow types, provided that t remains non-empty.4 This is
necessary to step 5 of our process. But before moving to the next step, note that
the intersection of arrows can be used to type overloaded functions. Indeed, our
framework is compatible with overloading, since the following containment

J(t1∨∨∨ t2)→→→ (s1∧∧∧ s2)K J(t1 →→→ s1)∧∧∧ (t2 →→→ s2)K (8)
is strict. So the semantic model authorises the language to define functions that
return different results (e.g. one in s1 � s2 and the other in s2 � s1) according to
whether their argument is of type t1 or t2. If the model had instead induced an
equality between the two types above then the function could not have different
behaviours for different types but should uniformly behave on them.5

Step 5. The last step consists in verifying whether the model of values induces
that same subtyping relation as the bootstrap one. This holds only if

`B v : t ⇐⇒ 6`B v :¬¬¬t (9)
which holds true (and, together with the fact that no value has the empty type,
makes the two subtyping relations coincide) thanks to the fact that the (abstr)
rule deduces negated arrow types for lambda abstractions. Without it the differ-
ence of two arrow types (which in general is non-empty) might be not inhabited
by a value, since the only way to deduce for an abstraction a negated arrow
would be the subsumption rule. To put it otherwise, without the negated arrows
in (abstr) property (9) would fail since, for instance, both 6` λInt→Intx.(x + 3) :
¬¬¬(Bool → Bool), and 6` λInt→Int x.(x+3) : Bool → Bool would hold.
4 Equivalently, it states that we can deduce for a λ-abstraction every non-empty type t obtained

by intersecting the type indexing the abstraction with a finite number of negated arrow types
that do not already contain the index.

5 Overloading requires the addition of a type-case in the language. Without it intersection of
arrows can just be used to give more specific behaviour, as for λOdd→Odd∧∧∧Even→Evenx.x which
is more precise than λInt→Intx.x.

6

3 Semantic π-calculus: � π

In this section we repeat the 5 steps process for the π-calculus.

Step 1. The types we are going to consider are the following ones
t ::= � | � | ch+(t) | ch−(t) | ch(t) | ¬¬¬t | t∨∨∨ t | t∧∧∧ t

without any recursion. As customary ch+(t) is the type of channels on which one
can expect to receive values of type t, ch−(t) is the type of channels on which
one is allowed to send values of type t, while ch(t) is the type of channels on
which one can send and expect to receive values of type t.

Step 2. The set-theoretic intuition of the above types is that they denote sets of
channels. In turn a channel can be seen as a box that is tightly associated to the
type of the objects it can transport. So ch(t) will be the set of all boxes for objects
of type t, ch−(t) the set of all boxes in which one can put something of type t
while ch+(t) will be the set of boxes in which one expects to find something of
type t. This yields the following interpretation

Jch(t)K = {c | c is a box for objects in JtK}
Jch+(t)K = {c | c is a box for objects in JsK with s ≤ t}
Jch−(t)K = {c | c is a box for objects in JtK with s ≥ t}.

Given the above semantic interpretation, from the viewpoint of types all the
boxes of one given type t are indistinguishable, because either they all belong to
the interpretation of one type or they all do not. This implies that the subtyping
relation is insensitive to the actual number of boxes of a given type. We can
therefore assume that for every equivalence class of types, there is only one such
box, which may as well be identified with JtK, so that the intended semantics of
channel types will be

Jch+(t)K =
{

JsK | s ≤ t
}

Jch−(t)K =
{

JsK | s ≥ t
}

(10)

while the invariant channel type ch(t) will be interpreted as the singleton {JtK}.
Of course, there is a circularity in the definitions in (10), since the subtyp-
ing relation is not defined, yet. So we rather use the following interpretations
Jch+(t)K = {JsK | JsK ⊆ JtK}, Jch−(t)K = {JsK | JsK ⊇ JtK}, which require to have
a domain that satisfies {JtK | t ∈ Types} ⊆ D . This is not straightforward but
doable, as shown in [CNV05].

Step 3. As for the λ-calculus we can use the definition of the model given
by (10) to deduce some interesting relations. First of all, the reader may have
already noticed that

ch(t) = ch+(t)∧∧∧ ch−(t)

7

C

������

BBBB

A

	

s

t

Fig. 1. Deciding atomicity

C

A

DB

s∧∧∧ t

t

s∨∨∨ t

s

Fig. 2. Some equations

thus, strictly speaking, the ch constructor is nothing but syntactic sugar for the
intersection above (henceforth, we will no longer consider this constructor and
concentrate on the covariant and contravariant channel type constructors). Be-
sides this relation, far more interesting relations can be deduced and, quite re-
markably, in many case this can be done graphically. Consider the definitions
in (10): they tell us that the interpretation of ch+(t) is the set of the interpretations
of all the types smaller than or equal to t. As such, it can be represented by the
downward cone starting from t. Similarly, the upward cone starting from t rep-
resents ch−(t). This illustrated in Figure 1 where the upward cone B represents
ch−(s) and the downward cone C represents ch+(t). If we now pass on Figure 2
we see that ch−(s) is the upward cone B+C and ch−(t) is the upward cone C+D.
Their intersection is the cone C, that is the upward cone starting from the least
upper bound of s and t which yields the following equation

ch−(s)∧∧∧ ch−(t) = ch−(s∨∨∨ t) . (11)

Similarly, note that the union of ch−(s) and ch−(t) is given by B+C+D and that
this is strictly contained in the upward cone starting from s∧∧∧ t, since the latter
also contains the region A, whence the strictness of the following containment:

ch−(s)∨∨∨ ch−(t)� ch−(s∧∧∧ t) . (12)

Actually, the difference of the two types in the above inequality is the region A
which represents ch+(s∨∨∨ t)∧∧∧ ch−(s∧∧∧ t), from which we deduce

ch−(s∧∧∧ t) = ch−(s)∨∨∨ ch−(t)∨∨∨ (ch+(s∨∨∨ t)∧∧∧ ch−(s∧∧∧ t)) .
We could continue to devise such equations, but the real challenge is to decide
whether two generic types are one subtype of the other. As in the case for λ-
calculus we can reduce the problem of subtyping two types to the decision of

8

the emptiness of a type (the difference of the two types). If we put this type in
disjunctive normal form, then it comes to decide whether

V

V

V

i∈P ti∧∧∧
V

V

V

j∈N¬¬¬t ′j =
� , that is whether

V

V

V

i∈P ti ≤
W

W

W

j∈N t ′j . With the type constructors specific to
�

π
this expands to

V

V

V

i∈I ch+(t i
1)∧∧∧

V

V

V

j∈J ch−(t j
2)≤

W

W

W

h∈H ch+(th
3)∨∨∨

W

W

W

k∈K ch−(tk
4). Since

intersections can always be pushed inside type constructors (we saw it in (11) for
ch− types, the reader can easily check it for ch+), then we end up with checking
the following inequality:

ch+(t1)∧∧∧ ch−(t2) ≤
_

_

_

h∈H
ch+(th

3)∨∨∨
_

_

_

k∈K
ch−(tk

4) . (13)

This is indeed the most difficult part of the job, since while in some cases it
is easy to decide the inclusion above (for instance, when t2 6≤ t1 since then the
right-hand side is empty), in general, this requires checking whether a type is
atomic, that is whether its only proper subtype is the empty type (for sake of
simplicity the reader can think of the atomic types as the singletons of the type
system6). The general case is treated in [CNV05], but to give an idea of the
problem consider the equation above with only two types s and t with t � s, and
let us try to check if:

ch+(s)∧∧∧ ch−(t) ≤ ch−(s)∨∨∨ ch+(t) .
Once more, a graphic representation is quite useful. The situation is represented
in Figure 1 where the region A represents the left-hand side of the inequality,
while the region B+C is the right hand side. So to check the subtyping above
we have to check whether A is contained in B+C. At first sight these two re-
gions looks completely disjoint, but observe that they have at least two points
in common, marked in bold in the figure (they are respectively the types ch(s)
and ch(t)). Now, the containment holds if the region A does not contain any
other type besides these two. This holds true if and only if there is no other type
between s and t, that is if and only if s � t (i.e. s∧∧∧¬¬¬t) is an atomic type.

Step 4. The next step is to devise a π-calculus that fits the type system we have
just defined. Consider the dual of equation (12):7

ch+(s)∨∨∨ ch+(t)� ch+(s∨∨∨ t) (14)

and in particular the fact that the inclusion is strict. A suitable calculus must
distinguish the two types above. The type on the left contains either channels on
which we will always read s-objects or always read t-objects, while the type on
6 Nevertheless, notice that according to their definition, atomic types may be neither singletons

nor finite. For instance ch(�) is atomic, but in the model of values it is the set of all the syn-
chronisation channels; these are just token identifiers on a denumerable alphabet, thus the type
is denumerable as well.

7 To check this inequality turn Figure 2 upside down.

9

the right contains channels on which objects of type s or of type t may arrive
interleaved. If we use a channel with the left type and we can test the type of the
first message we receive on it, then we can safely assume that all the following
messages will have the same type. Clearly using in such a context a channel
with the type on the right would yield a run-time type error, so the two types are
observationally different. This seems to suggest that a suitable calculus should
be able to test the types of the messages received on a channel, which yields to
the following definition of the calculus:

Channels α ::= x | ct

Processes P ::= α(α) | ∑i∈I α(x : ti)Pi | P1‖P2 | (νct)P | !P
The main difference with respect to the standard π-calculus is that we have
introduced channel values, since a type-case must not be done on open terms.
Thus, ct is a physical box that can transport objects of type t: channels are tightly
connected to the type of the objects they transport. Of course, restrictions are de-
fined on channels, rather than channel variables (since the latter could be never
substituted). The type-case is then performed by the following reduction rule

cs
1(ct

2) ‖ ∑i∈I cs
1(x : ti)Pi → Pj[ct

2/x] if ch(t) ≤ t j

This is the usual π-calculus reduction with three further constraints: (i) synchro-
nisation takes place on channels (rather than on channel variables),(ii) it takes
place only if the message is a channel value (rather than a variable), and (iii)
only if the type of the message (which is ch(t)) matches the type t j of the formal
parameter of the selected branch of the summation. The last point is the one that
implements the type-case. It is quite easy to use intersection and negation types
to force the various branches of the summation to be mutually exclusive or to
obey to a first match policy. We leave it as an exercise to the reader.

As usual, the type system assigns a type to messages (i.e. channels) and
checks well-typing of processes. It is very compact and we report it below

Γ ` ct : ch(t)
(chan)

Γ ` x : Γ(x)
(var) Γ ` α : s ≤B t

Γ ` α : t (subsum)

Γ ` P
Γ ` (νct)P

(new) Γ ` P
Γ `!P (repl)

Γ ` P1 Γ ` P2
Γ ` P1‖P2

(para)

t ≤
W

W

W

i∈Iti
ti∧ t 6= �

Γ ` α : ch+(t) Γ,x : ti ` Pi
Γ ` ∑i∈I α(x : ti).Pi

(input)
Γ ` β : t Γ ` α : ch−(t)

Γ ` α(β)
(output)

The rules are mostly self explaining. The only one that deserves some comments
is (input), which checks that the channel α can be used to read, and that each

10

branch is well-typed. Note the two side conditions of the rule: they respectively
require that for every t message arriving on α there must be at least one branch
able to handle it (thus t ≤

W

W

W

i∈Iti forces summands to implement exhaustive type-
cases), and that for every branch there must be some message that may select it
(thus the ti∧ t 6= � conditions ensure the absence of dead branches). Also note
that in the subsumption rule we have used the subtyping relation induced by the
bootstrap model (the one we outlined in the previous step) and that in rule (new)
the environment is the same in the premise and the conclusion since we restrict
channels and not variables.

Step 5. The last step consists in verifying whether the set of values induces the
same subtyping relation as the bootstrap model, which is indeed the case. Note
that here the only values are the channel constants and that they are typed just
by two rules, (chan) and (subsum). Note also that, contrary to the λ-calculus,
we do not need to explicit consider in the typing rule intersections with negated
types. This point will be discussed in Section 4.6.

4 Challenges, perspectives, and open problems

In the previous sections we gave a brief overview of the semantic subtyping
approach and a couple of instances of its application. Even though we have
done drastic simplifications to the calculi we have considered, this should have
given a rough idea of the basic mechanisms and constitute a sufficient support
to understand the challenges, perspectives, and open problems we discuss next.

4.1 Atomic types

We have shown that in order to decide the subtyping relation in
�

π one must
be able to decide the atomicy of the types (more precisely, one must be able
to decide whether a type contains a finite number of atomic types and, if this
is the case, to enumerate them). Quite surprisingly the same problem appears
in λ-calculus (actually, in any semantic subtyping based system) as soon as we
try to extend it with polymorphic types. Imagine that we embed our types with
type variables X ,Y, Then the “natural” (semantic) extension of the subtyp-
ing relation is to quantify the interpretations over all substitutions for the type
variables:

t1 ≤ t2
def
⇐⇒ ∀s.Jt1[s/X]K ⊆ Jt2[s/X]K . (15)

Consider now the following inequality (taken from [HFC05]) where t is a closed
type

(t,X) ≤ (t,¬¬¬t)∨∨∨ (X , t). (16)

11

We may need to check such an inequality when type-checking the body of a
function polymorphic in X where we apply a function whose domain is the type
on the right to an argument of the type on the left.

It is easy to see that this inequality holds if and only if t is atomic. If t is
not atomic, then it has at least one non-empty proper subtype, and (15) does not
hold when we substitute this subtype for X . If instead t is atomic, then for all X
either t ≤ X or t ≤¬¬¬X : if the second case holds then X is contained in ¬¬¬t, thus
the left hand type of the inequality is included in the first clause on the right
hand type. If X does contain t, then all the elements on the left except those in
(t, t) are included by the first clause on the right, and the elements in (t, t) are
included by the second clause.

Note that the example above does not use any fancy or powerful type con-
structor, such arrows or channels: it only uses products and type variables. So
the problem we exposed is not a singularity but applies to all polymorphic ex-
tensions of semantic subtyping where, once more, deciding subtyping reduces
to deciding whether some type is atomic or not.

Since these atomic types pop out so frequently a first challenge is under-
standing why this happens and therefore how much the semantic subtyping
technique is tightened to the decidability of atomicity. In particular, we may
wonder whether it is reasonable and possible to study systems in which atomic
types are not denotable so that the set of subtypes of a type is dense.

4.2 Polymorphic types
The previous section shows that the atomic types problem appears both in

�
π

and in the study of polymorphism for
�

Duce. From a theoretical viewpoint this
is not a real problem: in the former case Castagna et al. [CNV05] show atom-
icity to be decidable, which implies the decidability of the subtyping relation;
in the functional case Hosoya et al. [HFC05] argue that the subtyping relation
based on the substitution interpretation can be reduced to the satisfiability of
a constraint system with negative constraints. However, from a practical point
of view the situation is way more problematic, probably not in the case of

�
π,

since it is not intended for practical immediate applications, but surely is in the
case targeted by Hosoya et al. since the study performed there is intended to
be applied to programming languages, and no practical algorithm to solve this
case is known. For this reason in [HFC05] a different interpretation of poly-
morphic types is given. Instead of interpreting type variables as “place holders”
where to perform substitutions, as stated by equation (15), they are considered
as “marks” that indicate the parametrised subparts of the values. The types are
then interpreted as sets of marked values (that is, usual values that are marked
by type variables in the correspondence of where these variables occur in the

12

type), and are closed by mark erasure. Once more, subtyping is then set con-
tainment (of mark-erasure closed sets of marked values) which implies that the
subtyping relation must either preserve the parametrisation (i.e. the marks), or
eliminate part of it in the supertype. More specifically, this requires that the type
variables in the supertype are present in the same position in the subtype. This
rules out critical cases such as the one of equation (16) which does not hold
since no occurrence of X in the type on the left of the equation corresponds to
the X occurring in the type on the right.

Now, the marking approach works because the only type constructor used
in [HFC05] is the product type, which is covariant. This is enough to model
XML types, and the polymorphism one obtains can be (and actually is) applied
to the XDuce language. However, it is still matter of research how to implement
the marking approach in the presence of contravariant type constructors: first
and foremost in the presence of arrow types, as this would yield the definition
of a polymorphic version of

�
Duce; but also, it would be interesting to study the

marking approach in the presence of the contravariant ch− type constructor, to
check how it combines with the checks of atomicity required by the mix with the
ch+ constructor, and see whether markings could suggests a solution to avoid
this check of atomicity.

On a different vein it would be interesting to investigate the relation be-
tween parametricity (as intended in [Rey83,ACC93,LMS93]) and the marking
approach to polymorphism. According to parametricity, a function polymorphic
(parametric) in a type variable X cannot look at the elements of the argument
which have type X , but must return them unmodified. Thus with respect to those
elements, the function is just a rearranging function and it behaves uniformly on
them whatever the actual type of these elements is. Marks have more or less
the same usage and pinpoint those parts of the argument that must be used
unchanged to build the result (considering the substitution based definition of
the subtyping relation would correspond to explore the semantic properties of
the type parameters, as the example of equation (16) clearly shows). However,
by the presence of “ad hoc” polymorphism (namely, the type-case construction
evocated in Footnote 5 and discussed in Section 4.5) the polymorphic functions
in [HFC05] can look at the type of the parametric (i.e. marked) parts of the argu-
ment, decompose it, and thus behave differently according to the actual type of
the argument. Therefore, while the marking approach and parametric polymor-
phism share the fact that values of a variable type are never constructed, they
differ in presenting a uniform behaviour whatever the type instantiating a type
variable is.

Another direction that seems worth pursuing is to see if it is possible to
recover part of the substitution based polymorphic subtyping as stated by equa-

13

tion (15), especially in
�

π where the test of atomicity is already necessary be-
cause of the presence of the covariant and contravariant cones.

Finally, one can explore a more programming language oriented approach
and check whether it is possible to define reasonable restrictions on the defini-
tion of polymorphic functions (for instance by allowing polymorphism to ap-
pear only in top-level functions, by forbidding a type variable to occur both in
covariant and in contravariant position, by constraining the use of type variables
occurring in the result type of polymorphic functions, etc.) so that the resulting
language provides the programmer with sufficient polymorphism for practical
usage, while keeping it simple and manageable.

4.3 The nature of semantic subtyping

The importance of atomic types also raises the question about the real nature
of the semantic subtyping, namely, is semantic subtyping just a different way
to axiomatise a subtyping relation that could be equivalently axiomatised by
classic syntactic techniques, or is it something different? If we just look at the�

Duce case, then the right answer seems to be the first one. As a matter of facts,
we could have probably arrived to define the same system without resorting
to the bootstrapping technique and the semantic interpretation, but just finding
somehow the formulae (6) and (7) and distributing them at the premises of some
inference rules in which the types (4) and (5) are equated to � . Or alternatively
we could have arrived to this system by looking at the axiomatisation for the
positive fragment of the

�
Duce type system given in [DCFGM02], and trying

to extend it to negation types.
But if we consider

�
π, then we are no longer sure about the right answer. In

Section 3 we just hinted at the fact that checking subtyping involves checking
whether some types are atomic, but we did not give further details. The com-
plete specification can be found in Theorem 2.6 of [CNV05], and involves the
enumeration of all the atomic types of a finite set. Looking at that definition, it is
unclear whether it can be syntactically axiomatised, or defined with a classical
deduction system. Since the relation is proved to be decidable, then probably
the answer is yes. But it is clear that finding such a solution without resorting
to semantic techniques would have been very hard, if not impossible. And in
any case one wonders whether in case of a non decidable relation this would be
possible at all.

As a matter of facts, we do not know whether the semantic subtyping ap-
proach is an innovative approach that yields to the definition of brand new type
systems or it is just a new way to define old systems (or rather, systems that
could be also defined in the good old syntactic way). Whichever the answer

14

is, it seems interesting trying to determine the limits of the semantic subtyp-
ing approach, that is, its degree of freedom. More precisely, the technique to
“close the circle” introduced in [FCB02] and detailed in [CF05] is more general
than the one presented here in the introduction. Instead of defining a particular
model it is possible to characterise a class of models which are those that induce
the same containment relation as the intended semantics (that is, that satisfy an
equation such as (10) but customised for the type constructors at issue). This
relies on the definition of an auxiliary function—called the extensional interpre-
tation [FCB02]—which fixes the intended semantics for the type constructors.
So a more technical point is to investigate whether and to which extent it is pos-
sible to systematise the definition of the extensional interpretation. Should one
start with a given model of values and refine it, or rather try to find a model and
then generalise it? And what are the limits of such a definition? For instance, is
it possible to define an extensional interpretation which induces a containment
where the inequality (14) is an equality? And more generally is it possible to
characterise, even roughly, the semantic properties that could be captured by a
model? Because, as we show in the next section, there are simple extensions of
the type systems we met so far for which a model does not exist.

4.4 Recursive types and models

As we said at the end of the introduction, to complete the 5 steps of the semantic
subtyping approach is far from being trivial. One of the main obstacles, if not the
main one, may reside in the definition of a model. Not only that the model may
be hard to find, but also that sometimes it does not exist. A simple illustration of
this can be given in

�
π. In the first step of the definition of

�
π in Section 3 we

carefully specified that the types were not recursive: as pointed out in [CNV05],
if we allow recursion inside channel types, then there does not exist any model.
To see why, consider the following recursive type:

t = int∨∨∨ (ch(t)∧∧∧ ch(int)) .

If we had a model, then either t = int or t 6= int hold. Does t = int? Suppose
it does, then ch(t)∧∧∧ ch(int) = ch(int) and int = t = int∨∨∨ ch(int), which
is not true since ch(int) is not contained in int. Therefore it must be t 6= int.
According to our semantics this implies ch(t)∧∧∧ ch(int) = � , because they are
interpreted as two distinct singletons (whence the invariance of ch types). Thus
t = int∨∨∨ � = int, contradiction. The solution is to avoid recursion inside chan-
nel types, for instance by requiring that on every infinite branch of a regular
type there are only finitely many occurrences of the channel type constructors.
Nevertheless, this is puzzling since the natural extension with recursion is in-
consistent.

15

It is important to notice that this problem is not a singularity of
�

π: it also
appears in

�
Duce as soon as we extend its type system by reference types, as ex-

plained in [CF05]. This raises the problem to understand what the non-existence
of a model means. Does it correspond to a limit of the semantic subtyping
approach, a limit that some different approach could overcome, or does it in-
stead characterise some mathematical properties of the semantics of the types,
by reaching the limits that every semantic interpretation of these types cannot
overcome?

Quite remarkably the restriction on recursive types in
�

π can be removed,
by moving to a local version of the calculus [Mer00], where only the output
capability of a channel can be communicated. This can be straightforwardly ob-
tained by restricting the syntax of input processes so that they only use channel
constants (that is, ∑i∈I ct(x : ti)Pi instead of ∑i∈I α(x : ti)Pi), which makes the
type ch+(t) useless. Without this type, the example at the beginning of this sec-
tion cannot be constructed (by removing ch+(t) we also remove ch(t) which is
just syntactic sugar) and indeed it is possible build a model of the types with full
recursion. The absence of input channel types makes also the decision algorithm
considerably simpler since equation (13) becomes:

ch−(s) ≤
_

_

_

k∈K
ch−(tk) (17)

and it is quite easy to check (e.g. graphically) that (17) holds if and only if
there exists k ∈ K such that tk ≤ s. Last but not least, the types of the local
version of of

�
π are enough to encode the type system of

�
Duce (this is shown

in Section 4.7). However, as we discuss in Section 4.6, new problems appear
(rather, old problems reappear). So the approach looks like too a short blanket,
that if you pull it on one side uncovers other parts and seems to reach the limits
of the type system.

4.5 Type-case and type annotations

Both
�

Duce and
�

π make use of type-case constructions. In both cases the
presence of a type-case does not look strictly necessary to the development,
but it is strongly supported, if not induced, by some semantic properties of the
models. We already discussed these points while presenting the two calculi.

For
�

Duce we argued that equation (8) and in particular the fact that the
subtyping inequality it induces

(t1∨∨∨ t2)→→→ (s1∧∧∧ s2)� (t1 →→→ s1)∧∧∧ (t2 →→→ s2) (18)

is in general strict, suggests the inclusion of overloaded function in the language
to distinguish the two types: an overloaded function can have different behaviour

16

for t1 and t2, so it can belong to the right hand side, and not to the left hand side
where all the functions uniformly return results in the intersection of s1 and s2.
Of course, from a strict mathematical point of view it is not necessary for a func-
tion to be able to distinguish on the type of their argument in order to be in the
right hand side but not in the left one: it suffices that it takes, say, a single point
of t1 into s1/s2 to be in the difference of the two types. If from a mathematical
viewpoint this is the simplest solution from a programming language point of
view, this is not the easy way. Indeed we want to be able to program this function
(as long as we want that the model based on values induces the same subtyping
relation as the bootstrap model). Now imagine that t1 and t2 are function types.
Then a function which would have a different behaviour on just one point could
not be programmed by a simple equality check on the input (such as “if the in-
put is the point at issue then return a point in s1/s2 otherwise return something
in s2”) as we cannot check equality on functions: the only thing that we can
do is to apply them. This would imply a non trivial construction of classes of
functions which have a distinguished behaviour on some specific points. It may
be the case that such construction does not result technically very difficult (even
if the presence of recursive types suggests the contrary). However constructing
it would not be enough since we should also type-check it and, in particular,
to prove that the function is typed by the difference of the two types in (18):
this looks as an harder task. From a programming language perspective the easy
mathematical solution is the difficult one, while the easy solution, that is the
introduction of type-cases and of overloaded functions, has a hard mathematical
sense (actually some researchers consider it as a mathematical non-sense).

For
�

π we raised a similar argument about the strictness of
ch+(s)∨∨∨ ch+(t)� ch+(s∨∨∨ t)

The presence of a type-case in the processes is not strictly necessary to the
existence of the model (values do not involve processes but just messages) but
it makes the two types observationally distinguishable. One could exclude the
type-case from the language, but then we would have a too restrictive subtyping
relation because it would not let values in the right type to be used where values
of the left type are expected, even if the two types would not be operationally
distinguishable: it would be better in that case to have the equality hold (as in
the system defined by Hennessy and Riely [HR02] where no type-case primitive
is present).

These observations make us wonder how much the semantic subtyping ap-
proach is bound to the presence of a type-case. We also see that if for instance in�

Duce we try to provide a language without overloading, the formal treatment
becomes far more difficult (see Section 5.6 of [Fri04]). Therefore one may also

17

wonder whether the semantic subtyping approach is unfit to deal with languages
that do not include a type case. Also, since we have a type-case, then we anno-
tated explicitly by their type some values: λ-abstractions in

�
Duce and channel

constants in
�

π. One may wonder if any form of partial type reconstruction is
possible8 , and reformulate the previous question as whether the semantic sub-
typing approach is compatible with any form of type reconstruction.

The annotations on the λ-abstractions raise even deeper questions. Indeed
all the machinery on λ-calculus works because we added these explicit annota-
tions. The point is that annotations and abstractions constitute an indissociable
whole, since in the presence of a type-case the annotations observably change
the semantics of the abstractions: using two different annotations on the same λ-
abstraction yields two different behaviours of the program they are used in. For
instance λOdd→Odd∧∧∧Even→Evenx.x will match a type-case on Odd → Odd while
λInt→Int x.x will not. We are thus deeply changing the semantics of the elements
of a function space, or at least of the λ-terms as usually intended. This raises
a question which is tighten to—but much deeper than—the one raised by Sec-
tion 4.3, namely which is the mathematical or logical meaning of the system
of
�

Duce, and actually, is there any? A first partial answer to this question has
been answered by Dezani et al. [DCFGM02] who showed that the subtyping
relation induced by the model of Section 2 restricted to its positive part (that is
arrows, unions, intersections but no negations) coincides with the relevant en-
tailment of the B+ logic (defined 30 years before). However, whether analogous
characterisations of the system with negation exist is still an open question. This
seems a much more difficult task since the presence of negation requires deep
modifications in the semantics of functions and in their typing. Thus, it still
seems unclear whether the semantic subtyping technique for λ-calculus is just a
syntactic hack that makes all the machinery work, or it hides some underlying
mathematical feature we still do not understand.

4.6 Language with enough points and deduction of negations

We have seen in step 4 of Section 2, that lambda abstractions are typed in an
unorthodox way, since the rule (abstr) can subtract any finite number of arrow
types as long as the type is non-empty. In step 5 of the same section we justified
this rule by the fact that we wanted a language that provided enough values to
inhabit all the non-empty types. This property is important for two reasons: (i) if
the bootstrap model and the model of values induce the same subtyping relation,
then it is possible to consider types as set of values, which is an easier concept
8 Full type reconstruction for � Duce is undecidable, since it already is undecidable for the λ-

calculus with intersection types where typability is equivalent to strong normalizability.

18

to reason on (at least for a programmer) than the bootstrap model, and (ii) if
two different types cannot be distinguished by a value than we would have too a
constraining type system, since it would forbid to interchange the values of the
two types even though the types are operationally indistinguishable.

The reader may have noticed that we do not have this problem in
�

π. Indeed
given a value, that is a channel ct , it is possible to type it with the negation of all
channel types that cannot be deduced for it. In particular we can deduce for ct the
types ¬¬¬ch+(s1) and¬¬¬ch−(s2) for all s1 6≥ t and s2 6≤ t, and this is simply obtained
by subsumption, since it is easy to verify that all these types are supertypes of
the minimum type deduced for ct that is ch+(t)∧∧∧ ch−(t). For instance if s1 6≥ t
then ch−(t) ≤¬¬¬ch+(s1) and so is the intersection.

But subsumption does not work in the case of
�

Duce: to deduce by sub-
sumption that λInt→Intx.(x + 3) : ¬¬¬(Bool → Bool) one should have Int → Int ≤
¬¬¬(Bool → Bool), which holds if and only if Int → Int∧∧∧Bool → Bool is empty,
which is not since it contains the overloaded functions of the corresponding
type.

Interestingly, the same problem pops up again if we consider the local ver-
sion of

�
π. In the absence of covariant channels it is no longer possible to use

the same rules to deduce that ct has type ¬¬¬ch−(s) for s 6≤ t. Indeed we can only
deduce that ct : ch−(t) and this is not a subtype of ¬¬¬ch−(s) (since ch−(t)∧∧∧ ch−(s)
is non-empty: it contains cs∨∨∨t), thus subsumption does not apply and we have to
modify the rule for channels, so that is uses the same techniques as (abstr):

ti 6≤ t
Γ ` ct : ch−(t)∧∧∧¬¬¬ch−(t1)∧∧∧ . . . ∧∧∧¬¬¬ch−(tn)

(chan)

Having rules of this form is quite problematic. First because one loses the sim-
plicity and intuitiveness of the approach, but more importantly because the sys-
tem no longer satisfies the minimum typing property, which is crucial for the
existence of a typing algorithm. The point is that the minimum “type” of an
abstraction is the intersection of the type at its index with all the negated ar-
row types that can be deduced for it. But this is not a type since it is an infinite
intersection, while in our type system only finite intersections are admitted.9 In
order to recover the minimum typing property and define a type algorithm, Alain
Frisch [Fri04] introduces some syntactic objects, called schemas, that represent

9 Of course the problem could be solved by annotating values (channels or λ-abstractions) also
with negated types and considering it as the minimum type of the value. But it seems to us an
aberration to precisely state all the types a term does not have, especially from a programming
point of view, since it would require the programmer to forecast all the possible usages in
which a function must not have some type. In any case in the perspective of type reconstruction
evocated in the previous section this is a problem that must be tackled.

19

in a finite way the infinite intersection above, but this does not allow the system
to recover simplicity and makes it lose its set-theoretic interpretation.

Here it is, thus, yet another problematic behaviour shared between
�

Duce
and
�

π. So once more the question is whether this problem is a limitation of
semantic subtyping or it is implicit in the usage of negation types. And as it
can be “solved” in the case case of

�
π by considering the full system instead of

just the local version, is it possible to find similar (and meaningful) solutions in
other cases (notably for

�
Duce)?

Finally, it would be interesting to check whether the semantic subtyping
type system could be used to define a denotational semantics of the language
by relating the semantic of an expression with the set of its types and (since
our type system is closed by finite intersections and subsumption) build a filter
model [BCD83].

4.7 The relation between � π and � Duce

There exist several encodings of the λ-calculus into the π-calculus (see part VI
of [SW02] for several examples), so it seems interesting to study whether the
encoding of

�
Duce into

�
π is also possible. In particular we would like to use a

continuation passing style encoding as proposed in Milner’s seminal work [Mil92]
according to which a λ-abstraction is encoded as a (process with a free) channel
that expects two messages, the argument to which the function must be applied
and a channel on which to return the result of the application. Of course, in the�

Duce/
�

π case a translation would be interesting only if it preserved the prop-
erties of the type system, in particular the subtyping relation. In other terms, we
want that our translation {{}} : Types duce →Types π satisfies the property t = �
if and only if {{t}} = � (or equivalently s ≤ t iff {{s}} ≤ {{t}}).

Such an encoding can be found in a working draft we have been writing
with Mariangiola Dezani and Daniele Varacca [CDV05]. The work presented
there starts from the observation that the natural candidate for such an encoding,
namely the typed translation used in [SW02] for λV → (the simply-typed call-by-
value λ-calculus) and defined as {{s→ t}}= ch−({{s}}×ch−({{t}})) does not work
for
�

Duce/
�

π (from now on we will omit the inner mapping parentheses and
write ch−(s×ch−(t)) instead). This can be seen by considering that the following
equality holds in

�
Duce

s → (t∧∧∧u) = (s → t)∧∧∧ (s → u) (19)

while if we apply the encoding above, the translation of the left hand side
is a subtype of the translation of the right hand side but not viceversa. Once
more, this is due to the strictness of some inequality, since the translation of
the codomain of the left hand side ch−(t ∧∧∧ u), contains the translation of the

20

codomains of the right hand side ch−(t)∨∨∨ ch−(u) (use equation (11) and dis-
tribute union over product) but not viceversa.

So the idea of [CDV05] is to translate s → t as ch−(s× chλ(t)) where chλ(t)
is a type that is (i) contravariant (since it must preserve the covariance of arrow
codomains), (ii) satisfies chλ(t∧∧∧u) = chλ(t)∨∨∨ chλ(u) (so that it preserves equa-
tion (19)) and (iii) is a supertype of ch−(t) (since we must be able to pass on it
the channel on which the result of the function is to be returned).

Properties (i) and (ii) can be satisfied by adding a double negation as for
¬¬¬ch−(¬¬¬t): the double negation preserves the contravariance of ch− while the
inner negation by De Morgan’s laws yields the distributivity of the union. For
(iii) notice that¬¬¬ch−(¬¬¬t)\ch−(t) = ch(�), so it suffices to add the missing point
by defining chλ(t) = ¬¬¬ch−(¬¬¬t)∨∨∨ ch(�). With such a definition the translation
ch−(s × chλ(t)) has the wanted properties. Actually, in [CDV05] it is proved
that the three conditions above are necessary and sufficient to make the trans-
lation work, which induces a class of possible translations parametric in the
definition of chλ (see [CDV05] for a characterisation of the choices for chλ).
chλ(t) is a supertype of ch−(t) but the latter is also the greatest channel type
contained in chλ(t). So there is gap between chλ(t) and ch−(t) which consti-
tutes the definition space of chλ(t). What is the meaning of this gap, that is
of chλ(t) \ ch−(t)? We do not know, but it is surely worth of studying, since it
has important consequences also in the interpretation of terms. The translation
of terms is still work in progress, but we want here hint at our working hy-
potheses since they outline the importance of chλ(t)\ ch−(t). We want to give a
typed translation of terms, where the translation of a term e of type t is a pro-
cess with only one unrestricted channel α of type ch−({{t}}) (intuitively, this is
the channel on which the process writes the result of e). We note this transla-
tion as {{e}}α. Consider the rule (abstr) for functions and note that the body of
an abstraction is typed several times under several assumptions. If we want to
be able to prove that the translation preserves typing, then the translation must
mimic this multiple typing. This can be done in

�
π by using a summation, and

thus by translating λ∧∧∧i∈Isi→ti x.e into a process that uses the unrestricted channel
α : ch−({{∧∧∧i∈Isi → ti}}) = ch−(ch−(∨∨∨i∈I(si × chλ(ti)))) as follows:
{{λ∧∧∧i∈Isi→ti x.e}}α = (ν f∨∨∨i∈I(si×chλ(ti)))(α(f) ‖ !∑i∈I f (x : si,r : ch−(ti)){{e}}r)

Unfortunately, the translation above is not correct since it is not exhaustive.
More precisely, it does not cover the cases in which the second argument is in
chλ(ti) \ ch−(ti): to type {{e}}r the result channel r must have type ch−(ti) (since
the only types the

�
Duce type system deduces for e are the ti’s), but the en-

coding of arrow types uses chλ(ti) in second position. Thus, it seems important
to understand what the difference above means. Is it related to the negation of

21

arrow types in the (abstr) rule? Note that in this section we worked on the lo-
cal version of

�
π, so we have recursive types (Section 4.4) but also negated

channels in the (chan) typing rule (Section 4.6). If for local
�

π we use the rule
without negations then chλ(t)\ch−(t) =∅, so the encoding above works but we
no longer have a consistent type system. We find again that our blanket is too
short to cover all the cases. Is this yet another characterisation of some limits
of the approach? Does it just mean that Milner’s translation is unfit to model
overloading? Or does it instead suggest that the encoding of

�
Duce into

�
π has

not a lot of sense and that we had better study how to integrate
�

Duce and
�

π
in order to define a concurrent version of

�
Duce?

4.8 Dependent types

As a final research direction for the semantic subtyping we want to hint at the
research on dependent types. Dependent types raise quite naturally in type sys-
tems for the π-calculus (e.g. [YH00,Yos04]), so it seems a natural evolution
of the study of

�
π. Also, dependent types in the π-calculus are used to check

the correctness of cryptographic protocols (see the research started by Gordon
and Jeffrey [GJ01]) and unions, intersections, and negations of types look very
promising to express properties of programs. Thus, it may be worth of study the
definition of an extension of Gordon an Jeffrey systems with semantic subtyp-
ing, especially in the light of the connection of the latter with XML and the use
of this in protocols for webservices.

Also quite interesting would be to study the extension of first order depen-
dent type theory λΠ [HHP93]. As far as we know, all the approaches to add
subtyping to λΠ are quite syntactic, since the subtyping relation is defined on
β2 normal forms (see for instance [AC96] or, for an earlier proposal, [Pfe93]).
Even more advanced subtype systems, such as [CC01,Che99], still relay on syn-
tactic properties such as the strong normalisation of the β2-reduction, since the
subtyping rules essentially mimic the β2-reduction procedure. It would then be
interesting to check whether the semantic subtyping approach yields a more
semantic characterisation of the subtyping relation for dependent types.

5 Conclusion

The goal of this article was twofold: (i) to give an overview of the semantic sub-
typing approach and an aperçu of its generality by applying it both to sequential
and concurrent systems and (ii) to show the new questions it raises. Indeed we
were much more interested in asking questions than giving answers, and it is
in this perspective that this paper was written. Some of the questions we raised

22

are surely trivial or nonsensical, some others will probably soon result as such,
but we do hope that at least one among them will have touched some interesting
mathematical problem being worth of pursuing. In any case we hope to have
interested the reader in this approach.

Acknowledgements. Most of this work was prepared while visiting Microsoft
Research in Cambridge and it greatly benefited of the stimulating and friendly
environment that I enjoyed during my stay, a clear break with respect to my
current situation. In particular, I want to warmly thank Nick Benton (Section 4.5
results from a long discussion I had with him), Gavin Bierman, Luca Cardelli,
and Andy Gordon. I want also to thank Mario Coppo, Mariangiola Dezani, and
Daniele Varacca for their suggestions on various versions of this work. All my
gratitude to Microsoft Research and all its personnel for their warm hospitality.

References

[AC96] D. Aspinall and A. Compagnoni. Subtyping dependent types. In 11th Ann. Symp.
on Logic in Computer Science, pages 86–97, 1996.

[ACC93] M. Abadi, L. Cardelli, and P.-L. Curien. Formal parametric polymorphism. The-
oretical Computer Science, 21:9–58, 1993. Special issue in honour of Corrado
Böhm.

[APP91] Martín Abadi, Benjamin Pierce, and Gordon Plotkin. Faithful ideal models for
recursive polymorphic types. International Journal of Foundations of Computer
Science, 2(1):1–21, March 1991. Summary in Fourth Annual Symposium on Logic
in Computer Science, June, 1989.

[AW93] Alexander Aiken and Edward L. Wimmers. Type inclusion constraints and type
inference. In Proceedings of the Seventh ACM Conference on Functional Program-
ming and Computer Architecture, pages 31–41, Copenhagen, Denmark, June 93.

[BCD83] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and
the completeness of type assignment. Journal of Symbolic Logic, 48(4):931–940,
1983.

[CC01] G. Castagna and G. Chen. Dependent types with subtyping and late-bound over-
loading. Information and Computation, 168(1):1–67, 2001.

[CDV05] G. Castagna, M. Dezani, and D. Varacca. Encoding � Duce into � π. Working draft,
February 2005.

[CF05] G. Castagna and A. Frisch. A gentle introduction to semantic subtyping. In Proceed-
ings of PPDP ’05, the 7th ACM SIGPLAN International Symposium on Principles
and Practice of Declarative Programming, Lisboa, Portugal, 2005. ACM Press.
Joint ICALP-PPDP keynote talk.

[Che99] G. Chen. Dependent type system with subtyping. Journal of Computer Science and
Technology, 14(1), 1999.

[CNV05] G. Castagna, R. De Nicola, and D. Varacca. Semantic subtyping for the π-calculus.
In LICS ’05, 20th Annual IEEE Symposium on Logic in Computer Science. IEEE
Computer Society Press, 2005.

[Dam94] F. Damm. Subtyping with union types, intersection types and recursive types II.
Research Report 816, IRISA, 1994.

23

[DCFGM02] M. Dezani-Ciancaglini, A. Frisch, E. Giovannetti, and Y. Motohama. The rele-
vance of semantic subtyping. In Intersection Types and Related Systems. Electronic
Notes in Theoretical Computer Science 70(1), 2002.

[FCB02] Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. Semantic Subtyping.
In Proceedings, Seventeenth Annual IEEE Symposium on Logic in Computer Sci-
ence, pages 137–146. IEEE Computer Society Press, 2002.

[Fri04] Alain Frisch. Théorie, conception et réalisation d’un langage de programmation
fonctionnel adapté à XML. PhD thesis, Université Paris 7, December 2004.

[GJ01] A. Gordon and A. Jeffrey. Authenticity by typing for security protocols. In CSFW
2001: 14th IEEE Computer Security Foundations Workshop, pages 145–159, 2001.

[HFC05] H. Hosoya, A. Frisch, and G. Castagna. Parametric polymorphism for XML. In
POPL ’05, 32nd ACM Symposium on Principles of Programming Languages. ACM
Press, 2005.

[HHP93] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of
the ACM, 40(1):143–184, January 1993.

[Hos01] Haruo Hosoya. Regular Expression Types for XML. PhD thesis, The University of
Tokyo, 2001.

[HP01] Haruo Hosoya and Benjamin C. Pierce. Regular expression pattern matching for
XML. In The 25th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 2001.

[HP03] H. Hosoya and B. Pierce. XDuce: A typed XML processing language. ACM Trans-
actions on Internet Technology, 3(2):117–148, 2003.

[HR02] M. Hennessy and J. Riely. Resource access control in systems of mobile agents.
Information and Computation, 173:82–120, 2002.

[LMS93] Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev. The genericity theo-
rem and parametricity in the polymorphic λ-calculus. Theor. Comput. Sci., 121(1-
2):323–349, 1993.

[Mer00] Massimo Merro. Locality in the pi-calculus and applications to distributed objects.
PhD thesis, Ecole des Mines de Paris, Nice, France, 2000.

[Mil92] R. Milner. Functions as processes. Mathematical Structures in Computer Science,
2(2):119–141, 1992.

[Pfe93] F. Pfenning. Refinement types for logical frameworks. In Informal Proceedings of
the 1993 Workshop on Types for Proofs and Programs, May 1993.

[Rey83] J.C. Reynolds. Types, abstractions and parametric polymorphism. In R.E.A. Mason,
editor, Information Processing ’83, pages 513–523. North-Holland, 1983.

[SW02] D. Sangiorgi and D. Walker. The π-calculus. Cambridge University Press, 2002.
[YH00] N. Yoshida and M. Hennessy. Assigning types to processes. In Proc. of the 15th

IEEE Symposium on Logic in Computer Science, pages 334–348, 2000.
[Yos04] Nobuko Yoshida. Channel dependent types for higher-order mobile processes. In

POPL ’04: Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages, pages 147–160. ACM Press, 2004.

24

