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(see [CW85]). Parametric polymorphism allows one to write a function whose code canwork on di�erent types, while using \ad hoc" polymorphism it is possible to write afunction which executes di�erent code for each type. Both the Proof Theory and thesemantics of the �rst kind of polymorphism have been widely investigated by manyauthors (including two of the authors of the present paper), on the grounds of earlywork of Hindley, Girard, Milner and Reynolds, and developed into robust programmingpractice. The second kind, usually known as \overloading", has had little theoreticalattention, with the notable exception of [WB89], [MOM90] and [Rou90]; consequently,its wide use has been little a�ected by any inuence comparable to the one exerted byimplicit and explicit polymorphism in programming.This is due, probably, to the fact that the traditional languages o�er a very limitedform of overloading: in most of them only prede�ned functions (essentially arithmeticoperators de�ned on integers and reals and input/output operators) are overloaded,while in the relatively few languages where the programmer can de�ne overloadedfunctions their actual meaning is always decided at compile time. This form of over-loading can be easily understood as a form of syntactic abbreviation which does notsigni�cantly a�ect the underlying language.We believe though that the ability to de�ne new overloaded functions, when com-bined with subtyping and with late-binding (as de�ned below), allows a high level ofcode reusability, and is the main point which distinguishes object-oriented programmingfrom programming with abstract data types.In this paper we begin a theoretical analysis, and thus a \uniform and general"one, of this richer kind of overloading. It appears that the challenges it poses are nontrivial: indeed, this paper is just a preliminary step towards a theoretical universe stillto be discovered and which, we claim, may also a�ect language design.We design here a formalism where functions can be overloaded by adding a di�erent\piece of code". Thus the code of an overloaded function is formed by several branchesof code. The branch to execute is chosen when the function is applied, according toa particular selection rule, which depends on the type of the argument. A crucialfeature of the present approach is that the branch selection depends on the \run-timetype" of the argument, which may di�er from its compile-time type (late binding).Hence, branch selection cannot be performed at compile-time, as happens in imperativelanguages (early binding), but has to be performed during computation, each time theoverloaded application is evaluated.For example, suppose that Circle and Square are subtypes of Picture, and draw isan overloaded function de�ned on all of them; and suppose that x is a formal parameterof a function with type Picture. If the compile time type of the argument is used forbranch selection (early binding) an overloaded function application (here denoted �)like the following one �xPicture: : : : draw�x : : :is always executed using the draw code for pictures; with late binding, each time thewhole function is applied, the code for draw is chosen only when the x parameter hasbeen bound and evaluated. Thus the appropriate code for draw is used on the basis of
2



the run-time type of x and according to whether x is bound to a circle or to a square.We do not present a general treatment for overloaded functions, but we develop apurely functional approach focussed on the study of some features of object-orientedness,namely message-passing, inheritance and subtyping. Since the approach is entirelynovel we �rst felt the need, via this preliminary, proof-theoretic analysis, to developthe non trivial investigation of key functional properties, such as normalization, conu-ence and \subject-reduction" (i.e. termination and consistency and \how types evolveduring computation"), in the setting of a truly type dependent calculus.Indeed, \type dependency" (the fact that terms and values may depend on types)and the role played by the distinction between run-time and compile-time types arepeculiar properties of the calculus. The various (higher order) calculi, such as Girard'sSystem F and its extensions, allow abstraction w.r.t. type variables and the applicationof terms to types, but the \value" of this application does not truly depend on theargument type, and more generally the semantics of an expression does not depend onthe types which appear in it. Indeed, this \parametricity" or \type-erasure" propertyplays a crucial role in the basic proof-theoretic property of these calculi: the normal-ization (cut-elimination) theorem. In the semantic interpretations, this essential typeindependence of computations is understood by the fact that the meaning of polymor-phic functions is given by essentially constant functions (we will say more about this inthe last section of this paper). On the other hand, it is clear that overloaded functionsexpress computations which truly depend on types, as di�erent branches of code (i.e.possibly unrelated terms) may be applied on the basis of input types.Our motivation comes from considering overloading as a way to interpret message-passing in object-oriented programming, when methods are viewed as \global" func-tions. Let us be more speci�c. In object-oriented languages the computation evolves onobjects. Objects are programming items grouped in classes and possessing an internalstate that may be accessed and modi�ed by sending messages to the object. When anobject receives a message it invokes the method (i.e. the code) associated with thatmessage. The association between methods and messages is described by the class theobject belongs to.There are two possible ways to see message-passing: the �rst is to consider objectsas arrays that associate a method with each message. Therefore when a message m ispassed to an object obj then the method associated with m in the object obj is lookedfor. In this approach, an object has the form shown in Figure 1:objectinternal statemessage 1 method 1... ...message n method n message iclass name 1 method 1... ...class name n method nFigure 1. Figure 2.Objects as records. Messages as overloaded functions.
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This �rst point of view has been extensively studied and corresponds to the \objectsas records" analogy [Car88]. The second approach to message-passing, as shown inFigure 2, is to consider messages as names of overloaded functions: depending on theclass (or more generally, the type) of the object the message is passed to, a di�erentmethod is chosen (this is the approach of the CLOS language [DG87]; this approachwas introduced, in the context of typed languages, in [Ghe91b]). In this way, in a sense,we reverse the previous situation: instead of passing messages to objects we now passobjects to messages.This di�erent approach seems to have some advantages w.r.t. the \objects as records"paradigm, at least in a proof-theoretical study of the typed case.For example, in the record based approach an object of class A containing a methodbinary of type A�A! B is modeled as a record belonging to the following recursivetype �A:hh: : : binary:A! B : : :ii;since the �rst argument of the function is the record itself and, thus, it is an internalor hidden argument of the method, referred by the keyword self. In the same way arecursive type is needed to type an object of class A with a copy method of type A! A:�A:hh: : : copy:A : : :ii:In the model based on overloading there is no need to use recursion to de�ne thetype of the binary and copy methods, and this seems more reasonable, since, intuitively,binary or copying operations generally have nothing to do with �xpoints and do notneed the expressive power of recursion.A similar observation can be made for the �rst \hidden" parameter self of methods,referring to the object receiving the message. In the record model this parameter mustbe accessed by recursion, while in our model it is just a parameter with the additionalfeature that it is used for code selection. For other problems regarding inheritance inthe record based model see [CHC90, CM91, Mit90, Bru91, Ghe91a, Ghe91b].Of course other problems arise when overloaded functions are used to de�ne meth-ods, especially to model the dynamic de�nition of new classes. On the other hand,the full expressiveness of records is recovered, as record types and values are derivablenotions in our approach.In summary, this paper develops a simple extension of the typed �-calculus meantto formalize the behaviour of overloaded functions with late binding in a type disci-pline with subtyping. The basic idea is that an overloaded function consists of a �nitecollection of ordinary functions that are stuck together to form the di�erent branches.Its type will be the set of the types of its branches. Therefore we add, to ordinary �-terms, new terms such as (M1&M2& : : :&Mn), that represent the overloaded functionconsisting of the n branches Mi.1 Likewise, we add an operation of overloaded appli-cation M�N to the ordinary functional application M �N . The types of the overloadedfunctions are �nite lists of arrow types fV 01 ! V 001 ; : : : ; V 0n ! V 00n g (sometimes denoted1Hereafter we will call a term of the form (M&N) an \&-term".
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by fV 0i ! V 00i gi2I), where every arrow corresponds to the type of a branch. Overloadedtypes must satisfy relevant consistency conditions; among others things, they accountfor the longstanding debate concerning the use of covariance or contravariance of thearrow type in its left argument. More precisely, the general arrow types will be givenby contravariant \!" in the �rst argument: this is an essential feature of (typed) func-tional programs, where type assignment (type-checking) helps to avoid run-time errors.On the other hand, the types of overloaded functions are covariant families of arrowtypes, as explained in detail below.We stress that the subtyping relation introduced is an essential feature of the cal-culus: it allows multiple choices, as a type may be a subtype of several types andsubtyping is used to choose branches of overloaded terms. The blend of &-terms andsubtyping makes our calculus an expressive and original mathematical formalism whichshows that \ad hoc" polymorphism may have also theoretical relevance.In Section 2 we describe the combination of overloading and subtyping and theconsequences of their interaction. Section 3 presents the syntax of the system as wellas the reduction rules. In Section 4 we show how some other types can be encodedin the primitive system. The next Sections are devoted to the basic properties ofthe calculus: Section 5 to Subject-Reduction, Section 6 to conuence and Section 7to the normalization theorem. In Section 8 we give some more intuition on how ourcalculus �ts object-oriented programming, hinting how to implement subtyping andmessage-passing by the constructs of our calculus. A conclusion suggests further work,in particular the challenging extension to higher order systems.2 Overloading, Subtyping and \Run-Time Types"In the introduction we said that overloading is interesting because of its connection withobject-oriented languages. However, we think that overloading is worth studying alsofor its own sake, in spite of the lack of formal studies on this mechanism. This lack maydepend on the fact that overloading by itself (i.e. without subtyping), does not increasethe expressiveness of the language: an overloaded function can be substituted by theappropriate code, at compile-time; in this case, overloading seems more a notationaltrick than a programming construct. If combined, though, with subtyping and late-binding, it becomes a exible and powerful tool.The idea is that if we have an overloaded function whose n branches have respec-tively type Ui ! Vi (i = 1::n) and we pass it an argument of type U , the chosen branchj is the one that \best approximates" U , i.e. such that Uj = mini2IfUijU � Uig. How-ever, it is known that, when a subtyping relation is de�ned, the type of a term is nolonger the same during computation, but it may decrease (see [CG93]). This \shrink-ing of the run-time type" corresponds to the increase of information that characterizesthe evolving of computation2. The fact that during computation types may get more2We think that the increase in information is part of the essence of computation, and is due to theapproaching of the result, the normal form, which is the most informative form of the term (informativein the sense of understandability, not in the sense of the theory of information where the computation
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informative implies that, if one makes the choice of the branch at compile-time (earlybinding), this choice would be based on rather incomplete information about the \real"type of the argument (see the example with Picture in the previous section). Moreoverlate binding allows, in object-oriented languages, us to write a function whose behaviourmay be \extended" by adding new classes. Consider for example a compiler writtenin object-oriented style, with a class for every syntactic class in the language. Everyclass implements methods Parse, Type-Check, Pretty-Print, and Code-Generate. Newsyntactic classes may be dynamically added by creating the corresponding class, andevery general purpose function which sends, e.g., a Pretty-Print message to an objectwill be able to correctly operate on objects of these new classes too. For this reason,late binding plays an essential role in the high code reusability which can be attainedin object-oriented programming, making it possible to write \graphical editor shells"or \compiler shells" where the general purpose code is written before writing the actualde�nition of the classes which specify the speci�c behaviour of the application.The meaning of terms like \run-time type" and \compile-time type" is reasonablyclear in the context of a traditional, eagerly evaluated programming language: in thatcase, a single term, such as an occurrence of a formal parameter x of a function, is\evaluated" many times, once each time the function is called. Each time x is boundto a value, the run-time type of that value becomes the \run-time type" of x, while inthe source code that occurrence of x has a unique compile-time type, the one writtenby the programmer. However, the \compile-time type" of a term and the \run-timetypes" of its values are not unrelated: the property holds that all the run-time typesof the values will be subtypes of the unique compile-time type of the term.This distinction may not be intuitive in the context of a rewriting system, such as �-calculus, where a more formal de�nition is needed. To follow the di�erent \evaluations"of an occurrence of a term, we may use the notion of residual of an occurrence of a term(see [Bar84] where this de�nition is used only when the term is a redex). Intuitively,a residual is what the term has become after a reduction. As happens in traditionallanguages, in a rewriting system an occurrence of a term has many di�erent residualswith possibly many di�erent types, which are only guaranteed to be subtypes of theoriginal one.We will adopt the following de�nition: when a term is closed and normal, we thensay that it is \a value",3 and we mean by this that it cannot evolve anymore. Wesimilarly say that its type is \a run-time type", which means that no more informationcan be speci�ed about the type of that term. The type of a value which is the residualof a given term is a run-time type for that term.Thus the relation between a compile-time type and a run-time type is the same asthe relation between a term and a value: a value for a term is any closed normal formobtained by performing reductions and substitutions over that term; a run-time typecorresponds to a loss of information). At type level this corresponds to the decrease in the type: thesmaller the type, the more informative it is. For instance, think of the real and rational numbers(Q�R): if we know that a number is rational then we know that it possesses all the properties of realnumbers AND some more (for example, it can be represented as the quotient of two integers)3For example �x:�y:x and �x:�y:y are the only two values of type Bool��! �! �.
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for that term is the type of any of its values. Note that an open term is bound, duringa computation, to many di�erent values, and so it gets many di�erent run-time types.Note also that we did not formally de�ne the notion of \evolution of a term", thoughtit would be possible. We are now just trying to convey the intuition behind the idea ofrun-time types, while the formal de�nition of the reduction rules is given in the nextsection.Although the selection of the branches of overloaded functions is based on the run-time types, the static typing of a term is enough to assure that the computation willbe type-error free. This is a corollary of Theorem 5.2, which guarantees that types canonly decrease during computation (so that the run-time type of any residual of a termis always a subtype of its compile-time type) and thus that well-typed terms rewriteto well typed terms. To guarantee this property a \consistency" condition must beimposed on overloaded types. In short, an overloaded type fUi ! Vigi2I is well-formedif and only if for all i; j 2 I it satis�es the following conditions, where Ui + Uj meansthat Ui and Uj are downward compatible, i.e. they have a common lower bound:Ui � Uj ) Vi � Vj (1)Ui + Uj ) there exists a unique h 2 I such that Uh = inffUi; Ujg (2)Condition (1) is the consistency condition at issue, which assures that during compu-tation the type of a term may only decrease. Informally, in view of our analogy \type{amount of information", it says that, if the input information given to an overloadedfunction increases, so does the information in the output. More speci�cally, in our ap-proach, if we have a two-branched overloaded function M of type fU1 ! V1; U2 ! V2gwith U2 � U1 and we pass it a term N which has the compile-time type U1 then thecompile-time type ofM�N will be (smaller than or equal to) V1; but if the normal formof N has type U2 then the run-time type ofM�N will be V2 and therefore V2 � V1 musthold. The second condition concerns the selection of the correct branch: we said beforethat if we apply an overloaded function of type fUi ! Vigi2I to a term of type U thenthe selected branch has type Uj ! Vj such that Uj = mini2IfUijU � Uig; condition(2) assures the existence and uniqueness of this branch.At �rst sight these restrictions may seem excessively complicated, and may dis-courage the reader with no experience in object-oriented languages. However, theserestrictions are more obvious than they appear; especially with respect to the connec-tion with object-oriented programming where they have a very natural interpretation(see Section 8).3 The �&-calculusIn this section we de�ne the extension of the typed lambda calculus we study in therest of the paper. We use the following conventions: A;B denote Atomic Types,S; T; U; V;W : : : denote (Pre)Types, M;N;P;Q; denote Terms, H; I; J;K denote setsof indexes and h; i; j; k; n indexes. We �rst de�ne a set of Pretypes and then from themwe select those that satisfy the conditions above and that constitute the types.
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PreTypes V :: = A j V ! V j fV 01 ! V 001 ; : : : ; V 0n ! V 00n gFor technical reasons we consider overloaded types as lists, i.e. possessing an order;the list may also be empty: in this case the type is denoted by fg.3.1 Subtyping rules.We de�ne a subtyping relation on the set of Pretypes. This relation is used to de�nethe types. The idea is that one may start from a partial order which is prede�ned onatomic (pre)types and extend it to a preorder on all Pretypes: the relation is obtainedby adding the rules of transitive and reexive closure to the following ones:U2 � U1 V1 � V2U1 ! V1 � U2 ! V2for all i 2 I, there exists j 2 J such that U 00i � U 0j and V 0j � V 00ifU 0j ! V 0j gj2J � fU 00i ! V 00i gi2IIntuitively, if we consider two overloaded types U and V as sets of functional typesthen the last rule states that U � V if and only if for every type in V there is one in Usmaller than it. In contrast to the usual partial order on record types, the cardinalityof I and J are unrelated. Note that this is just a preorder, and not a partial order, asU � V and V � U do not imply U = V .3.2 TypesOur system is an extended strongly typed �-calculus. Arrow types and overloadedtypes are de�ned inductively from atomic types. As mentioned in the introduction, theoverloaded types have a well formation rule that allows a consistent application of thereduction rules.1. A 2 Types2. if V1; V2 2 Types then V1 ! V2 2 Types3. if for all i; j 2 I(a) (Ui; Vi 2 Types) and(b) (Ui � Uj ) Vi � Vj) and(c) (Ui+Uj ) there is a unique h 2 I such that Uh = inffUi; Ujg)4then fUi ! Vigi2I 2 Types4This notation is not very precise; since � is just a preorder, a set generally has many equivalentg.l.b.'s; we should then write Uh 2 inffUi; Ujg, or fUhg = inffUi; Ujg.
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In a system with subtyping, if f :U ! V , this means that when f is applied to a terma with a run-time type U 0 � U , the run-time type of the result will be a type V 0 � V .Intuitively, an overloaded type fUi ! Vigi2I is inhabited by functions, made out ofdi�erent pieces of code, such that when they are applied to a term whose run-time typeU 0 is the subtype of some Ui, the run-time type of the result will be a subtype V 0 ofthe corresponding Vi. This is assured by condition (b) above.To ensure the existence of an inf for any pair of downward compatible types, werequire that � yields a \partial lattice" on Atomic Types. In accordance with the rulesgiven in the previous section, the whole Types inherits this structure.5 In object-oriented languages this is not always the case. We can distinguish object-oriented lan-guages where Atomic Types have a tree structure (the so called \single inheritance")and object-oriented languages where Atomic Types have a free order relation and whereadditional structure is used to solve the problems caused by compatible types withoutan inf. The same kind of technique can be used to extend our approach to this sit-uation, since the partial lattice property is not essential, but is useful for getting asimple branch selection rule, as described in the section on reduction. Likewise, whilecondition (b) above is an essential feature of our approach, condition (c) is linked tothe branch selection rule, and could easily be modi�ed (see [Ghe91b]). Furthermore, wesuppose that the subtyping relation is decidable on atomic types, which implies that itis decidable on Types as well. Note that this poses no problem in the current (simple)approach, as we have �xed atomic types; more work would be needed in order to allowprogrammer's de�nable base types.Henceforth we only deal with Types and completely forget PreTypes; thus we willintend that all the pretypes which appear in the rest of the paper satisfy the conditionsabove.3.3 TermsRoughly speaking, terms correspond to terms of the classical lambda calculus plusoperations to build and apply overloaded functions. Overloaded functions are builtas customary with lists, by starting from an empty overloaded function and addingbranches with the & operator. We distinguish the usual application M �M of lambda-calculus from the application of an overloaded functionM�M since they constitute twocompletely di�erent mechanisms: indeed a notion of variable substitution is associatedwith the former, while in the latter there is the notion of selection of a branch. This isalso stressed by the proof-theoretical viewpoint where these constructors correspond totwo di�erent elimination rules. Finally, a further di�erence, speci�ed in the reductionrules, is that overloaded application is associated with call by value, which is not neededby the ordinary application. For the same reason we must distinguish between the typeU ! V and the overloaded function type with just one branch fU ! V g.However, in some cases it will be useful to have only one notation to deal with bothkinds of application; for this aim the simple juxtaposition will be used.5More precisely, since � is not an order, it is Types modulo � which inherits the partial latticestructure, where T � U when T � U and U � T .
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Variables are indexed by their type, to avoid the use of type environments in thetype-checking rules.Terms M :: = xV j c j �xV:M jM �M j " jM&VM jM�MThe type which indexes the & is a technical trick to allow the reduction insideoverloaded function, as explained later on. c represents generic constants while " is adistinct constant for the empty overloaded function.Hereafter, we may use the notation �x:V:M instead of �xV :M , and we may omitthe type indexing of &, when not needed. Also the " at the beginning of &-terms maybe omitted, in examples.3.4 Type checkingWe de�ne here the typing relation \:", a proper subset of Terms�Types. Therefore,as already pointed out, in the rules below we omit the condition V 2 Types. Thismeans that, all the PreTypes that appear in the following rules are to be considered aswell-formed types. Anyway we observe that an algorithm implementing the followingtype-checking rules should check that the types appearing in the conclusions of therules [Taut], [! Intro] and [fgIntro] are well formed.We use the notation `M :V � U as a shorthand for the conjunction \`M :V andV � U".[Taut] ` xV :V[! Intro] `M :V` �xU:M :U ! V[! Elim(�)] `M :U ! V ` N :W � U`M �N :V[Taut"] ` ": fg[fgIntro] `M :W1 � fUi ! Vigi�(n�1) ` N :W2 � Un ! Vn` (M&fUi!Vigi�nN): fUi ! Vigi�n[fgElim] `M : fUi ! Vigi2I ` N :U Uj = mini2IfUijU � Uig`M�N :VjIn the last rule the premise on Uj as well as the type constraints are indeed meta-premises, i.e. they are conditions to the application of the rules but they do not belongto the tree-structure of the deduction. The empty term " and the empty type fg are
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used to start the formation of overloaded terms and types. We read M&N&P as(M&N)&P .As the careful reader will have noted, we do not use the subsumption rule (seebelow) in type-checking. We utilized a slightly di�erent type discipline, where the useof subsumption is distributed where needed. The resulting system is equivalent, in thesense explained below, to the subsumption discipline, but every term possesses a uniquetype, which simpli�es the de�nition of the operational semantics and some proofs.Consider the functional core of our system, i.e. only the �rst three typing rulesat the beginning of this section and let denote this system by `�. The subsumptionsystem (denoted by `sub) is obtained from this one by replacing ` N :W � U with` N :U in [! Elim(�)] and by adding the subsumption rule:[!Elim] `sub M :U ! V `sub N :U`sub MN :V [Subsumption] `sub M :U U � V`sub M :VNow, we can prove the following theorem.Theorem 3.1 `� M :V i� V = minfU j `sub M :Ug (which implies that the setfU j `sub M :Ug is not empty).Proof. ()) By induction on the proof of `� M :V and by cases on the last appliedrule.(() By induction on the smallest proof that `sub M :V and by cases on the lastapplied rule. 2Corollary 3.2 Every well-typed �&-term possesses a unique typeIn conclusion, the theorem states that `� is equivalent to `sub in the sense thatit always returns the smallest (i.e. most precise) type returned by the subsumptionsystem. This theorem suggests that it is possible to de�ne a subsumption based version`sub for the full system too. We must add subsumption, substitute all judgements` N : T � U in the rules with ` N : U and �nally, in the [fgElim] rule, substitute` N : U with \U is the minimum type such that `sub N : U".We can then extend theorem 3.1 to our entire calculus.Theorem 3.3 (Subsumption Elimination) For the whole �&, ` M :V i� V =minfU j `sub M :UgSince we have chosen the subsumption-free presentation, every term possesses aunique type, because there is a unique derivation for the type of a term.In our presentation of the subtype rules we implicitly de�ned a transitivity rule.We can easily prove that this rule is not really needed.Theorem 3.4 (Transitivity Elimination) ` T � U i� -̀ T � U where -̀ is de�nedby the rules of ` minus transitivity.
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Proof. We �rst prove that -̀ T � U and -̀ U � V implies -̀ T � V . Observe thatif -̀ T � U then either T and U are both atomic types, or they are both arrow typesor they are both overloaded types. We prove that -̀ T � U and -̀ U � V implies-̀ T � V by induction on the size of T;U; V . If they are all atomic types the thesis isimmediate. If T = fT 0i ! T 00i gi2I , U = fU 0j ! U 00j gj2J and V = fV 0l ! V 00l gl2L, thenfor all l 2 L exists j 2 J such that -̀ U 0j ! U 00j � V 0l ! V 00l and for all j 2 J existsi 2 I such that -̀ T 0i ! T 00i � U 0j ! U 00j . By induction, for all l 2 L exists i 2 I suchthat -̀ T 0i ! T 00i � V 0l ! V 00l , hence -̀ fT 0i ! T 00i gi2I � fV 0l ! V 00l gl2L, q.e.d.. Thearrow case is similar and simpler. Now the theorem follows by induction on the proofof ` T � U and by cases on the last applied rule, where the only interesting case istransitivity. 2Note that the lack of type variables makes the proof of subsumption eliminationand transitivity elimination much easier for this calculus than for F� (see [CG92]).3.5 Reduction RulesIn order to simplify the de�nition of the system, we consider the types of overloadedfunctions as ordered sets, where the order corresponds, more or less, to the order inwhich branches are added when an overloaded function is built. However the readermay note that this order is completely irrelevant in subtyping and typing rules, withthe only exception of [fgIntro], where we want to be able to distinguish the onlyarrow type associated with the right hand side of the & from the set of the other ones.Exactly the same information is all that is needed by the reduction rules.As we mentioned before, the run-time types are used during computation to performbranch selection. Thus, we have to de�ne what the run-time type of a term is. Wepropose here a simple solution: the deduction system that infers the run-time type of aterm is the same as the one used for type-checking. What distinguishes run-time typesand compile-time types is thus the time when the deduction is made. In fact, duringthe computation the type of a term may change since reduction and substitution maydecrease the type of a term (as shown in Theorems 5.1 and 5.2).We say that the type of a term is its run-time type when that term is a\value", i.e. when it is normal and closed; a run-time type of a residualof a term is also a run-time type of the term. We allow a reduction of theapplication of an overloaded function only when the argument is a value,i.e. when it is typed by a run-time type.This is a crucial point. If we allowed selecting the branch of an overloaded function onthe basis of the type of an argument whose type could still be decreased (by reductionor by substitution) then the selection would give di�erent results depending on the timewhen it is applied, and the system would be no longer conuent.As a matter of fact, this call-by-value constraint is not a limitation if our aim is tomodel object-oriented languages. In these languages message passing evaluation always
12



requires that the receiving object has been fully evaluated.6We start by de�ning, in a standard way, substitutions on the terms of our system:De�nition 3.5 (Substitution) We de�ne the term M [xT :=N ] by induction on thestructure of M :1. xT [xT :=N ] � N2. yS[xT :=N ] � yS if yS 6� xT3. "[xT :=N ] � "4. (�yS :P )[xT :=N ] � (�yS :(P [xT :=N ])) where y is not free in N5. (P&VQ)[xT :=N ] � ((P [xT :=N ])&V(Q[xT :=N ]))6. (PQ)[xT :=N ] � (P [xT :=N ])(Q[xT :=N ])2 Of course, this de�nition only makes sense when the type of N is a subtype of T .Note that in 5, even if the types of the subterms change, the type of the whole termis always the same, since it is frozen in the index of the &; thus the selection of thebranch does not depend on the grade of reduction of the &-term. This is a decisivepoint in our approach, which makes the system type-safe though reductions within anoverloaded term are allowed.We de�ne the one-step reduction relation � which is a proper subset of Terms �Terms. We denote by �� its reexive and transitive closure, under the usual conditions(in �) to avoid free variables being captured:�) (�xS :M)N �M [xS :=N ]�&) If N :U is closed and in normal form and Uj = minfUijU � Uig then((M1&fUi!Vigi=1::nM2)�N)�( M1�N for j < nM2 �N for j = ncontext) If M1 �M2 then (M1N) � (M2N) (3)(NM1) � (NM2) (4)(�xU :M1) � (�xU :M2) (5)(M1&N) � (M2&N) (6)(N&M1) � (N&M2) (7)6This happens not only for the essential reason we pointed out (the run-time type is generally onlyknown for fully evaluated terms) but also since object oriented languages heavily rely on state andstate-updating operations, and programs using updates are much more readable if eagerly evaluated.
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The intuitive operational meaning of (�&) is easily understood when looking at thesimple case, i.e. when there are as many branches as arrows in the overloaded type. Inthis case, under the assumptions in the rule:("&M1& : : :&Mn)�N �� Mj �NHowever, in general, the number of branches of the overloaded function may be di�erentfrom the number of arrows in the overloaded types, both since an overloaded functioncould begin with an application or with a variable, accounting for an initial segment ofthe overloaded type (they are just required to possess an overloaded type), and becauseof the subtyping relation used in the rule of [fgIntro].If we allowed (�&) reductions with open or non normal arguments the system wouldnot be conuent, since the type of an open or non normal argument can be di�erent indi�erent phases of the computation. For example, consider a term(�xV :((P&fV!V;U!UgM)�xV ))�(NU )with U � V (we superscript terms with their types, like in NU , to increase readabilityof examples). If the inner �& reduction were performed with the x argument (whichis not closed), the �rst P branch would be chosen, while if the outer � reduction isperformed �rst then the term becomes:(P&fV!V;U!UgM)�NUand the second branchM is (correctly) chosen. In short, the argument of an overloadedapplication must be closed and normal to perform the evaluation, since this is the onlycase where its type cannot decrease anymore, and describes the value as accurately aspossible.Complementary to the idea of freezing the argument of an overloaded applicationto its normal form, is the use of the type which indexes the &s to freeze the type of &-terms. We outline two short examples to show the problems that arise with reductionand substitution inside &-terms without this index.We suppose that U 0 � U and V 0 � V ; consider the termF1 � ("&MU!V&((�xU 0!V 0:x)�NU!V 0))this can be intuitively typed as follows:F1: fU ! V;U 0 ! V 0gThough, if we reduce the right branch, without freezing the index, we are no longerable to recover a type for the contractum, namely for ("&MU!V&NU!V 0) since bothterms possess the same input type. Consider next the termF2 � �yU 0!V 0 :("&(�xU :MV )&(yU 0!V 0))again we can intuitively type it as follows.F2: (U 0 ! V 0)! fU ! V;U 0 ! V 0g
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but if we apply F2 to NU!V 0 and �-reduce, then we are in the same case as above.Note, �nally, that our calculus is truly type-dependent (that is, the type erasure ofa term is not enough to forecast its evolution or meaning, see the conclusion) for twodi�erent reasons:� �& reduction depends on the type of the argument� �& reduction depends on the index T of the & in the overloaded termMore speci�cally, if fUi ! Vigi=1::n is the index of &, �& reduction depends on the list[Ui]i=1::n of the input types of the overloaded function. For example, if U 0 � U , bothterms ("&MU!V&fU!V;U 0!V gM 0U!V )and ("&MU!V&fU 0!V;U!V gM 0U!V )are well typed, but they behave di�erently if applied to a normal closed term NU .Note that we are here in a di�erent and more exible situation than in object-oriented languages, since in those languages every branch of an overloaded function(every method) must be understood as a �-abstraction (when viewing methods asglobal, overloaded functions in our sense.) In this language, on the other hand, anyexpression with a functional type (in particular an application) can be concatenated byusing &. Thus, when following the object-oriented style, the left hand side U of the typeU ! V of an expression �xU :M does not change when reductions and substitutionsare performed inside �xU :M . In our approach, when reducing inside an &, one mayobtain a smaller type for the reductum, in particular a larger U in a type U ! V . Toallow this possibility of \inside" reductions and preserve determinism, we label the &'swith types .4 Deriving recordsIn various approaches to object-oriented programming records play an important rôle.In particular, current functional treatments of object-oriented features formalize objectsdirectly as records. Moreover, if records are not included in a calculus, the subtypingrelation may be quite trivial. In our system, records can be encoded in a straightforwardway.Let L1; L2; : : : be an in�nite list of atomic types. Assume that they are isolated(i.e., for any type V , if Li � V or V � Li, then Li = V ), and introduce for each Lia constant `i:Li. It is now possible to encode record types, record values and recordselection, respectively, as follows:hh`1:V1; : : : ; `n:Vnii � fL1 ! V1; : : : ; Ln ! Vngh`1 =M1; : : : ; `n =Mni � (" & �xL1 :M1 & : : :& �xLn :Mn) (xLi 62 FV (Mi))M:` � M�`
15



Since L1 : : : Ln are isolated, then the subtyping rule for records is a special case of therule for overloaded types:Subtyping-rule V1 � U1 : : : Vk � Ukhh`1:V1; : : : ; `k:Vk; : : : ; `k+j:Vk+jii � hh`1:U1; : : : ; `k:UkiiThe type-checking rules are similarly derivable:Type-checking[RECORD] `M1:V1 : : : `Mn:Vn` h`1 =M1; : : : ; `n =Mni: hh`1:V1; : : : ; `n:Vnii[DOT] `M : hh`1:V1; : : : ; `n:Vnii`M:`i:ViFinally, the rewriting rules (�) and (recd) below are just special cases of (�&) and(context) respectively.�) h`1 =M1; : : : ; `n =Mni:`i �Mi (0 � i � n)recd) M �M 0 )M:`�M 0:` and h: : : ` =M : : :i� h: : : ` =M 0 : : :i5 The Generalized Subject Reduction TheoremThe Subject Reduction Theorem in classical �-calculus proves that the type of a termdoes not change when the term is reduced. In this section, we generalize this theoremfor our calculus, since we prove that if a term is typable in our system, then it can onlybe reduced to typable terms and that these terms have a type smaller than or equal tothe type of the redex.In order to enhance readability, in this and in the following section, we will oftenomit the turn-style symbol.Lemma 5.1 (Substitution Lemma) Let x:T; M :U; N :T 0 and T 0 � T .Then M [x :=N ]:U 0, where U 0 � U .Proof. By induction on the structure of M .M�" straightforwardM�x straightforwardM�y 6� x straightforwardM��xV:M 0 straightforward
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M��yV:M 0 Then U = V !W and M 0:W .By induction hypothesis M 0[x :=N ]:W 0 � W , therefore M [x :=N ]��yV:M 0[x :=N ]:V !W 0 � V ! WM�(M1&TM2) Then M [x :=N ]�(M1[x :=N ]&TM2[x :=N ]); by induction hypothesisand the rule [fgIntro] M [x :=N ] is well typed and its type is the same of theone of M that is T .M�M1 �M2 where M1:V ! U and M2:W � V . By induction hypothesis:M1[x :=N ]:V 0 ! U 0 with V � V 0 and U 0 � UM2[x :=N ]:W 0 with W 0 �WSince W 0 � W � V � V 0 we can apply the rule [!Elim(�)] and thus M [x :=N ]�(M1[x :=N ])�(M2[x :=N ]):U 0 � UM�M1�M2 where M1: fVi !Wigi2I and M2:V .Let Vh = mini2IfVijV � Vig. Thus U =Wh.By induction hypothesis:M1[x :=N ]: fV 0j !W 0jgj2J with fV 0j ! W 0jgj2J � fVi !Wigi2IM2[x :=N ]:V 0 with V 0 � VLet V 0k = minj2JfV 0j jV 0 � V 0j g. Thus M [x :=N ]:W 0k. Therefore we have to provethat W 0k �WhAs fV 0j ! W 0jgj2J � fVi ! Wigi2I then for all i 2 I there exists j 2 J suchthat V 0j ! W 0j � Vi ! Wi. Given i = h we chose an ~h 2 J which satis�es thiscondition: that is, V 0~h !W 0~h � Vh ! Wh (8)We now have the following inequalities:V � Vh (9)by the de�nition of Vh, as Vh = mini2IfVijV � Vig;Vh � V 0~h (10)which follows from (8); V 0 � V 0~h (11)which follows from (9), (10) and V 0 � V ;W 0~h �Wh (12)which follows from (8). V 0k � V 0~h (13)
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which follows from (11), as V 0~h belongs to a set with V 0k as least element. Finally,W 0k �W 0~h (14)follows from (13) and from the covariance rule on fV 0j !W 0jgj2JThus, by (12) and (14), W 0k �Wh2Theorem 5.2 (Generalized Subject Reduction) LetM :U . IfM��N then N :U 0,where U 0 � U .Proof. It su�ces to prove the theorem for �; the thesis follows from a simpleinduction on the number of steps of the reduction. Thus, we proceed by induction onthe structure of M :M�x x is in normal form and the thesis is straightforwardly satis�ed.M�" as in the previous case.M��xV:P . The only case of reduction is that P � P 0 and N� �xV:P 0; but from theinduction hypothesis it follows that N is well-typed and the type of the codomainof N will be less than or equal to the one of M ; since the domains are the same,the thesis thus holds.M�(M1&TM2). Just note that whenever M is reduced it is still well-typed (apply theinduction hypothesis) and its type doesn't change.M�M1 �M2 where M1:V ! U and M2:W � V . We have three subcases:1. M1�M 01 , then by induction hypothesisM 01:V 0 ! U 0 with V � V 0 and U 0 �U . Since W � V � V 0, then by rule [!Elim(�)] we obtain M 01M2:U 0 � U .2. M2 � M 02 , then by induction hypothesis M 02:W 0 with W 0 � W . Again,W 0 �W � V and, thus, by [!Elim(�)] we obtain M1M 02:U .3. M1� �xV:M3 and M �M3[x :=M2] , with M3:U . Thus, by Lemma 5.1,M3[x :=M2]:U 0 with U 0 � U .M�M1�M2 where M1: fVi !Wigi2I and M2:V .Let Vh = mini2IfVijV � Vig. Thus U =Wh. Again we have three subcases:1. M1 � M 01 then by induction M 01: fV 0j ! W 0jgj2J with fV 0j ! W 0jgj2J �fVi ! Wigi2I . Let V 0k = minj2JfV 0j jV � V 0j g. Thus M 01�M2:W 0k. Thereforewe have to prove that W 0k �WhSince fV 0j ! W 0jgj2J � fVi ! Wigi2I , then for all i 2 I there exists j 2 Jsuch that V 0j ! W 0j � Vi ! Wi. For i = h we choose a certain ~h 2 J whichsatis�es this condition. That is:V 0~h !W 0~h � Vh ! Wh (15)
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We now have the following inequalities:V � Vh (16)by hypothesis, since Vh = mini2IfVijV � Vig;Vh � V 0~h (17)follows from (15); V � V 0~h (18)follows from (16) and (17); W 0~h �Wh (19)follows from (15); V 0k � V 0~h (20)by (18), since V 0~h belongs to a set with V 0k as least element;W 0k �W 0~h (21)follows from (20) and the covariance rule on fV 0j !W 0jgj2JFinally, by (19) and (21), one has that W 0k �Wh2. M2 � M 02 then by induction hypothesis M 02:V 0 with V 0 � V . Let Vk =mini2IfVijV 0 � Vig. Thus M1�M 02:Wk. Since V 0 � V � Vh then Vk � Vh;thus, by the covariance rule in fVi ! Wigi2I , we obtain Wk �Wh.3. M1� (N1&N2) and M2 is normal. Then we have two cases, that is M �(N1�M2) (case h < n) or M � (N2 �M2) (case h = n). In both cases, by[fgElim] or [!Elim(�)], according to the case, it is easy to show that theterms have type less than or equal to Wh.26 Church-RosserIn this section we prove that this system is Church-Rosser (CR). The proof is a simpleapplication of a lemma due to Hindley [Hin64] and Rosen [Ros73]:Lemma 6.1 (Hindley-Rosen) Let R1,R2 be two notions of reduction. If R1; R2 areCR and ��R1 commutes with ��R2 then R1 [R2 is CR.Set now R1 � �& and R2 � �; if we prove that these notions of reduction satisfy thehypotheses of the lemma above, we thus obtain CR for our system. It is easy to provethat � and �& are CR: indeed, the �rst one is a well known result while for the otherjust note that �& satis�es the diamond property.Thus it remains to prove that the two notions of reduction commute, for which weneed two technical lemmas.
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Lemma 6.2 If N ���& N 0 then M [x := N ]���& M [x := N 0]Proof. The proof is done by induction on the structure of M and consists in asimple diagram chaseM LHS RHS comment" " " OKx N N 0 OKy y y OKPQ P [ ]Q[ ] P [ 0]Q[ 0] use the induction hypothesis�y:P �y:P [ ] �y:P [ 0] use the induction hypothesis(P&Q) (P [ ]&Q[ ]) (P [ 0]&Q[ 0]) use the induction hypothesis2Lemma 6.3 If M ��& M 0 then M [x := N ]��& M 0[x := N ]Proof. We proceed by induction on the structure of M �M 0 (we omit the indexsince there is no ambiguity here); we have the following cases:Case 1 �y:P � �y:P 0 the thesis follows from the induction hypothesis on P � P 0.Case 2 PQ � P 0Q the thesis follows from the induction hypothesis on P � P 0. Thesame for QP �QP 0, P&Q� P 0&Q and Q&P �Q&P 0.Case 3 (P1&P2)Q� PiQ thenM [x := N ] � (P1[x := N ]&P2[x := N ])Q[x := N ]� (P1[x := N ]&P2[x := N ])Q since Q is closedSince substitutions do not change the type in (P1&P2) (just recall that the type is�xed on the & and does not change during computation) then the selected branchwill be the same for both (P1&P2)Q and (P1[x := N ]&P2[x := N ])Q, thus:� Pi[x := N ]Q� Pi[x := N ]Q[x := N ] since Q is closed� M 0[x := N ]2 The next lemma shows that reductions are not context-sensitive: given a contextC[ ], i.e. a lambda term with a hole, a reduction inside the hole is not a�ected bythe context. This lemma will allow us to reduce the number of the cases in the nexttheorem:Lemma 6.4 Let R denote either � or �&; then for all contexts C[ ] if M ��R N thenC[M ]��R C[N ]
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Proof. The proof is a simple induction on the context C[ ] 2Theorem 6.5 (Weak commutativity) If M �� N1 and M ��& N2 then there existsN3 such that N1 ���& N3 and N2 ��� N3Proof. We proceed by induction on the structure of M . Since M is not in normalform, then M 6� x and M 6� ". In every induction step we will omit the (sub)caseswhich are a straightforward consequence of lemma 6.4:1. M��x:P . This case follows from lemma 6.4 and induction.2. M�(M1&M2) then the only subcase which is not resolved by straightforward useof lemma 6.4 is N1� (M1&M 02) and N2� (M 01&M2) or symmetrically. But thenN3�(M 01&M 02).3. M�M1�M2Subcase 1: N1�M1�M 02 and N2�M 01�M2 or symmetrically. Thus N3�M 01�M 02The remaining cases are whenM1�(P&Q) andM2 is closed and in normal form.Then we can have:Subcase 2: N1�(P 0&Q)M2 and N2�PM2 but then N3�P 0M2Subcase 3: N1�(P&Q0)M2 and N2�QM2 but then N3�Q0M2Subcase 4: N1�(P&Q0)M2 and N2�PM2 but then N3�N2Subcase 5: N1�(P 0&Q)M2 and N2�QM2 but then N3�N2Note that in the last four cases we have used the property that the type of an&-term doesn't change when we reduce inside it and therefore the selected branchwill be the same for the same argument.4. M�M1 �M2 then as in the previous case we have:Subcase 1: N1�M1M 02 and N2�M 01M2 or symmetrically. Thus N3�M 01M 02The other cases are when M1 is of the form �x:P . Then we can have:Subcase 2: N1� P [x := M2] and N2� (�x:P )M 02 But N1 ���& P [x := M 02] (bylemma 6.2) and N2 �� P [x :=M 02]. Thus N3�P [x :=M 02].Subcase 3: N1� P [x := M2] and N2� (�x:P 0)M2 But N1 ���& P 0[x := M2] (bylemma 6.3) and N2 �� P 0[x :=M2]. Thus N3�P 0[x :=M2]2Corollary 6.6 ���& commutes with ���Proof. By lemma 3.3.6 in [Bar84]. 2Finally, by applying the Hindley-Rosen lemma, we obtain that the calculus is CR.7 Strong Normalization7.1 The full calculus is not normalizingThe �& calculus is not normalizing. Consider the following term, where ; is usedinstead of fg to reduce the parenthesis nesting level, and where M stands for any term
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of type f; ! ;g, e.g. M = (" &f;!;g �x;:"):Double = (M &f;!;;f;!;g!;g (�xf;!;g:x�x)):DTypeDType = f; ! ;; f; ! ;g ! ;gDouble is a �& version of the untyped �-term �x:xx, coerced to a type DType suchthat it is possible to apply Double to itself. Double is well typed; in particular, x�x iswell typed and has type ; as proved below:[fgElim] ` x: f; ! ;g ` x: f; ! ;g ; = minU2f;gfU jf; ! ;g � Ug` x�x: ;It may seem that the possibility to perform self-application is due to the existenceof an empty overloaded type which is a maximum element in the set of all the over-loaded types. This is not the case; actually, in the following proof of well-typing ofDouble �Double, we may substitute ; with any other overloaded type.[fgElim] ` Double:DType ` Double:DTypef; ! ;g = minU2f;;f;!;ggfU jf; ! ;; f; ! ;g ! ;g � Ug` Double �Double: ;Now we can show that Double �Double has not a normal form as it reduces to itself:Double �Double ��& (�xf;!;g:x�x)�Double �� Double �DoubleSimply typed lambda calculus prevents looping, essentially, by imposing a strati�-cation between a function of type T ! U and its argument, whose type T is \simpler"than the whole type T ! U ; the same thing happens, in a subtler way, with system F.When we add subtyping, the type T 0 of the argument of a function with type T ! Uis just a subtype of T , and may be, syntactically, much bigger than the whole T ! U :consider the case when T 0 is a record type with more �elds that T . However, the rank ofT 0 is still strictly smaller than that of T ! U , where the rank of an arrow type is at leastthe rank of its domain part plus one (for a correct de�nition see below). This happens,in short, since in �� and in F� two types can be related by subtyping only when theyhave the same rank. Hence, �� and F� are still strongly normalizing [Ghe90].�& typing does not prevent looping, essentially, since it allows to compare types witha di�erent rank. In our example, we pass a parameter of type f; ! ;; f; ! ;g ! ;g(rank 2) to a function with domain type f; ! ;g (rank 1), and in the x�x case wepass a parameter of type f; ! ;g (rank 1) to a function with domain type fg (rank 0).Hence, �& typing does not prevent looping since it does not stratify functions w.r.t.their arguments.However, when �& is used to model object-oriented programming, it is alwaysused in a strati�ed way. It is then interesting to de�ne a strati�ed subsystem of �&which is both strongly normalizing and expressive enough to model object-orientedprogramming. To this aim, we will prove the following theorem.
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Theorem 7.1 Let �&- be any subsystem of �& closed by reduction and let rank beany function associating integers with �&- types. Assume also that, if T (syntactically)occurs in U , then rank(T ) � rank(U). If in �&-, for any well typed application MTNUone has rank(U) < rank(T ), then �&- is Strongly Normalizing.Example 7.2 We may obtain a subsystem of �& with the properties of �&- in 7.1either by restricting the set of types, or by imposing a stricter subtyping relation. Wepropose here two signi�cant examples based on these restrictions: (�&-T) and (�&-�),respectively. In either case, the rank function is de�ned as follows:rank (fg) = 0rank (A) = 0rank (T ! U) = maxfrank (T ) + 1; rank (U)grank (fTi ! Uigi2I) = maxi2Ifrank (Ti ! Ui)gThe idea is that, by restricting the set of types or the subtyping relation as describedbelow, the types of a function and of its arguments are \strati�ed", namely the rank ofthe functional type is strictly greater than the rank of the input type, as required bytheorem 7.1.� �&-� is de�ned by substituting � in all �& rules with a stricter subtyping relation�- de�ned by adding to any subtyping rule which proves T � U the further con-dition rank (T ) � rank(U). In any well typed �&-� application MfTi!Uigi2I �NT 0 ,the rank of T 0 is then smaller than the rank of some Ti, hence is strictly smallerthan the rank of fTi ! Uigi2I ; similarly for functional application. The subjectreduction proof for �& works for �&-� too, thanks to the transitivity of the �-relation.7� �&-T is de�ned by imposing, on overloaded types fTi ! Uigi2I , the restrictionthat the ranks of all the branch types Ti ! Ui are equal, and by stipulating that fgis not a supertype of any non-empty overloaded type (see the previous footnote).Then we can prove inductively that, whenever T � U , then rank(T ) = rank (U),and that �&-T is a subsystem of �&-�. To prove the closure under reduction (i.e.,that �&-T terms reduce to �&-T terms), observe �rst that a �& term is also a�&-T term i� all the overloaded types appearing in the indexes of variables and of&'s are �&-T overloaded types (this is easily shown by induction on typing rules).The closure by reduction follows immediately, since variables and &'s indexes arenever created by a reduction step.Note that �&-T is already expressive enough to model object-oriented programming,where all methods always have the same rank (rank 1), and that �&-� is even moreexpressive than �&-T. 27Note that, in this system, fg is not a supertype of any non-empty overloaded type; this is nota problem, since the empty overloaded type is only used to type ", which is only used only to startoverloaded function construction. However, we may alternatively de�ne a family of empty types fgi2!,each being the maximum overloaded type of the corresponding rank, and a correspondent family ofempty functions "i2!.
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Theorem 7.1 and the examples show that there exist subsystems of �& which arestrongly normalizing and expressive enough for our purposes8. However we preferred toadopt the whole �& as our target system, since it is easier to establish results such asSubject Reduction and Conuence on the wider system and apply them in subsystemsrather than trying to extend restricted versions to more general cases.In the following subsections we prove Theorem 7.1.7.2 Typed-inductive propertiesAs is well known, strong normalization cannot be proved by induction on terms, since� reduction potentially increases the size of the reduced term. For this reason weintroduce, along the lines of [Mit86], a di�erent notion of induction on typed terms,called typed induction, proving that every typed-inductive property is satis�ed by anytyped �&- term. This notion is shaped over reduction, so that some reduction relatedproperties, such as strong normalization or conuence, can be easily proved to be typed-inductive. Theorem 7.9, which proves that every typed-inductive property is satis�edby any typed �&- term, is the kernel of our proof and is related to the normalizationproofs due to Tait, Girard, Mitchell and others. We had to avoid, though, the notionsof saturated set and of logical relation, which do not seem to generalize easily to oursetting. In this section we de�ne a notion of \typed-inductive property" for �&- termsand show that every typed-inductive property is satis�ed by any (well-typed) �&- term.Although many of the results and de�nitions in this section hold or make sense for �&too, the reader should remember that all the terms, types and judgments in this sectionrefer to a �&- system satisfying the conditions of Theorem 7.1.Notation 7.3 M�N will denote M�N if M :T ! U and M�N if M : fMi ! Nigi=1:::n.Notation 7.4 ~M denotes a list [Mi]i=1;:::;n of terms, possibly empty, and N � ~M meansN �M1�: : :�Mn; the same for N� ~M ; if ~M is empty, N � ~M is just N .\ ~M is well typed" means \each Mi2 ~M is well typed"; similarly for other predicateson terms.De�nition 7.5 Let fSTgT be a family of sets of �&- terms, indexed over �&- types,such that: M2ST) `M :T:S is typed-inductive if it satis�es the following conditions9 (where M2S if means\M2S if M is well typed"):(x=c) 8x; ~N2S : x� ~N 2 S ifand similarly for constants and for ".8Strictly speaking these are not subsystems: we have excluded some types, thus two types thatpossessed a common lower bound in the full system may no longer possess it here. Therefore thecondition (c) may be more easily satis�ed and types that were not well formed may now satisfy all thecondition of good formation9We use S for fSTgT . Furthermore, since any term M has a unique type T , we will write withoutambiguity M2S to mean M2ST .
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(&1) 8M12S ;M22S ; N2S ; ~N2S :M1�N � ~N 2 S if ^ M2 �N � ~N 2 S if ) (M1&M2)�N � ~N 2 S if(�1) 8M2S ; N2S ; ~N2S : M [x :=N ]� ~N 2 S if ) (�x:T:M)�N � ~N 2 S if(&2) 8M12S ;M22S : M1&M2 2 S if(�2) 8M2S : �xT :M 2 S ifThe S if notation means that all the \2S" predicates in the above implications mustonly be satis�ed only by typed preterms. This is di�cult only in case &1: dependingon whether M1� : : : is well-typed, M2�: : : is well-typed or both are well-typed, the �rst,the second or both are required to be in S ; indeed we want to take into account all thebranches that could be selected not only the one that will be actually executed. Forthis reason we used in &1 a \^" rather than a \_".We aim to prove, by induction on terms, that every well-typed �&- term N belongsto S . The conditions on typed induction allow an inductive proof of this fact for termslike �xT :M and M&N , but we have no direct proof that (M2S ^N2S ))(M�N2S ).For this reason we derive from S a stronger predicate S� which allows term inductionthrough application. We will then prove that S� is not actually stronger than S , sincefor any typed-inductive property S :M2S�T,M2ST, `M :T:The de�nition of S� is the only part of the proof where we need the strati�cation bythe rank function.Notation 7.6 (d[Ti]i2I) For any list of types [Ti]i2I , T 02d[Ti]i2I , 9i2I:T 0�Ti. Notethat if `M : fTi ! Uigi2I and ` N :T 0 then M�N is well typed i� T 02d[Ti]i2I .De�nition 7.7 For any typed-inductive property fSTgT its application closure on �&-terms fS�TgT is de�ned, by lexicographic induction on the rank and then on the sizeof T, as follows:(atomic) M2S�A,M2SA(!) M2S�T!U , M2ST!U ^ 8T 0�T:8N2S�T 0 : M �N2S�U(fg) M2S�fTi!Uigi=1 :::n, M2SfTi!Uigi=1 :::n ^ 8T 02d[Ti]i=1:::n:8N2S�T 0 :9i2[1::n]:M�N2S�UiIn short: M2S�,M2S ^ 8N2S�:M �N2S�ifIn the de�nition of S�, we say that M belongs to S� by giving for granted thede�nition of S� over the types of the N 's such that M �N is well typed and over thetype of M �N itself. This is consistent with the inductive hypothesis since:
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1. The rank of the type of N is strictly smaller than the rank of the type of M inview of the conditions in Theorem 7.1.2. Since the type U of M �N strictly occurs in the type W of M , then the rank ofU is not greater than the rank of W (by the conditions in Theorem 7.1). Hencethe de�nition is well formed either by induction on the rank or, if the ranks of Uand W are equal, by secondary induction on the size.The next lemma shows, informally, that in the conditionM2S�,8N2S�:M�N2S�ifwe can trade an � for an ~, since 8N2S�:M �N2S�if,8 ~N2S�:M � ~N2S if .Lemma 7.8 M2S�,M is well typed ^ 8 ~N2S�:M � ~N2S ifProof.()) \M is well typed" is immediate since M2S�T ) M2ST ) `M :T .8 ~N2S�:M�~N2S if is proved by proving the stronger property 8 ~N2S�:M�~N2S�ifby induction on the length of ~N . If ~N is empty, the thesis is immediate. If~N = N1 [ ~N 0 then M �N12S�if by de�nition of S�, and (M �N1)� ~N 02S�if byinduction.(() By de�nition, M2S�,M2S ^ 8N2S�:M �N2S�if . 8 ~N2S�:M� ~N2S if impliesimmediately M2S : just take an empty ~N . M �N2S�if is proved by inductionon the type of M .(atomic) ` M :A: M �N is never well typed; M2SA is enough to concludeM2S�A.(fg) `M : fg: as above.(!) ` M :T ! U : we have to prove that 8N2S�T 0 ; T 0�T:M �N2S�U .By hypothesis: 8 ~N2S�:M �N � ~N2S ifapplying induction to M �N , whose type U is smaller than the oneof T ! U , we have that M �N2S�U .(fTi ! Uig) `M : fTi ! Uigi=1:::n+1: as in the previous case.2Theorem 7.9 If S is typed-inductive, then every term ` N :T is in S�T .Proof. We prove the following stronger property: if N is well-typed and �� [~x~T := ~N ]is a well-typed S�-substitution (i.e. for i2[1::n]. Ni2S�T 0i and T 0i � Ti), then N�2S�;~x~T is called the domain of �� [~x~T := ~N ], and is denoted as dom(�).It is proved by induction on the size of N . In any induction step, we prove8�:N�2S�, supposing that, for any N 0 smaller than N , 8�0:N 0�02S� (which impliesN 0�02S and N 02S ).
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(c) c� � c. We apply lemma 7.8, and prove that 8 ~N2S�:c � ~N2S if . Since~N2S�) ~N2S then c� ~N2S if follows immediately from property (c) of S .(x) If x2dom(�) then x�2S� since � is an S�-substitution. Otherwise, reasonas in case (c).(M1&M2) By applying lemma 7.8 we prove that 8�:8 ~N2S�:(M1&M2)�� ~N2S if .We have two cases. If ~N is not empty then ~N � N1 [ ~N 0. For any �,M1��N1� ~N 02S if andM2��N1� ~N 02S if by induction (M1 andM2 are smallerthan M1&M2). Then (M1&M2)��N1� ~N 02S if by property (&1) of S .If ~N is empty then (M1&M2)�2S follows, by property (&2) of S , from theinductive hypothesis M1�2S and M2�2S .(�xT :M) We will prove that 8�:8 ~N2S�: (�xT :M)�� ~N2S if , supposing, w.l.o.g., thatx is not in dom(�).We have two cases. If ~N is not empty and (�xT :M)� � ~N is well typedthen ~N � N1 [ ~N 0 and the type of N1 is a subtype of T . Then for anyS�-substitution �, �[xT :=N1] is a well-typed S�-substitution, since N12S�by hypothesis, and then M(�[x :=N1])� ~N 02S if by induction, which implies(M�)[x := N1]� ~N 02S if . Then (�xT :M�) �N1 � ~N 0� (�xT :M)�� ~N2S if byproperty (�1) of S .If ~N is empty, (�xT :M)�2S follows, by property (�2), from the inductivehypothesis M�2S .(M �N) By induction M�2S� and N�2S�; then (M �N)�2S� by de�nition of S�.This property implies the theorem since, as can be argued by case (x) of this proof, theidentity substitution is a well-typed S�-substitution. 2Corollary 7.10 If S is a typed-inductive property, every well-typed term satis�es Sand its application closure:M2S�T , M2ST , `M :TProof.M2S�T ) M2ST by de�nition of S�:M2ST ) `M :T by de�nition of typed induction:`M :T ) M2S�T by theorem 7.9:27.3 Strong Normalization is typed-inductiveIn this section we prove Strong Normalization of �&- by proving that Strong Normal-ization is a typed-inductive property of �&- terms.Consider the following term rewriting system unconditional-�[�&, which di�ers from�[�& since unconditional-�& reduction steps are allowed even if N is not normal or notclosed, and the selected branch can be any of those whose input types is compatiblewith the type of the argument:
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�) (�xS :M)N �M [xS :=N ]uncond.-�&) If N :U � Uj then((M1&fUi!Vigi=1::nM2)�N)�( M1�N for j < nM2 �N for j = nInstead of proving Strong Normalization for �&- reduction, we prove Strong Nor-malization for unconditional-�[�&. Since any �[�& reduction is also an unconditional-� [�& reduction, Strong Normalization of the unconditional system implies StrongNormalization for the original one. Note that the proof of subject reduction is validalso when using uncond-�& (the proof result even simpler) but that, even if the �& con-ditions are not necessary to obtain strong termination, they are still needed to obtainconuence.Notation 7.11 If M is strongly normalizing, �(M) is the length of the longest reduc-tion chain starting from M . �( ~M) is equal to �(M1) + : : :+ �(Mn).Theorem 7.12 SNT , the property of being strongly normalizing terms of type T (ac-cording to the unconditional relation) is typed-inductive.Proof.(x/c) 8 ~N2SN : xU � ~N2SN ifBy induction on �( ~N): if x� ~N �P then P = x�N 01�: : :�N 0n where just one of theprimed terms is a one-step reduct of the corresponding non-primed one, whilethe other ones are equal. So P2SN by induction on �( ~N).(&1) 8M12SN ;M22SN ; N2SN ; ~N2SN :M1�N � ~N 2 SN if ^ M2 �N � ~N 2 SN if ) (M1&M2)�N � ~N 2 SN ifBy induction on �(M1) + �(M2) + �(N) + �( ~N).If (M1&M2)�N � ~N � P then we have the following cases:(�&l) P =M1�N� ~N : since P is well-typed by subject-reduction, then P2SNby hypothesis.(�&r) P =M2 �N � ~N : as above.(congr.) P = (M 01&M 02)�N 0� ~N 0: P2SN by induction on �.So (M1&M2)�N � ~N2SN since it one-step reduces only to strongly normalizingterms.(�1) 8M2SN ; N2SN ; ~N2SN : M [x :=N ]� ~N 2 SN ) (�xT :M)�N � ~N 2 SN ifBy induction on �(M)+�(N)+�( ~N). If (�xT :M)�N�~N�P we have the followingcases:
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(�) P =M [x :=N ]� ~N : P2SN by hypothesis.(congr.) P = (�xT :M 0)�N 0� ~N 0 where just one of the primed terms is a one-stepreduct of the corresponding one, while the other ones are equal: P2SNby induction on �.(&2) 8M12SN ;M22SN : M1&M2 2 SN ifBy induction on �(M1) + �(M2). If M1&M2�P then P�M 01&M 02 where one ofthe primed terms is a one-step reduct of the corresponding one, while the otherone is equal; then P2SN by induction.(�2) 8M2SN : ` �xT :M :T ! U )�xT :M 2 SNIf �xT :M � �xT :M 0 then, since �(M 0) < �(M), �xT :M 02SN by induction on�(M). So �xT :M2SN .2 The last proof can be easily extended to show that the reduction system remainsstrongly normalizing if we add the following extensionality rules:(�) �xT :M �x�M if x is not free in M(�&) M&(�xT :M�x)�M if x is not free in MTheorem 7.1 is now a corollary of Theorem 7.12 and of Corollary 7.10.8 Overloading and Object-Oriented ProgrammingWe already explained in the introduction the relation between object-oriented languagesand our investigation of overloading. We discuss this relation here in more depth:by now, it should be clear that we represent class-names as types, and methods asoverloaded functions that, depending on the type (class-name) of their argument (theobject the message is sent to), execute a certain code.There are many techniques to represent the internal state of objects in this overloading-based approach to object-oriented programming. Since this is not the main concernof this research, we follow a rather primitive technique: we suppose that a program(�&-term) may be preceded by a declaration of class types: a class type is an atomictype, which is associated with a unique representation type, which is a record type.Two class types are in subtyping relation if this relation has been explicitly declaredand it is feasible, in the sense that the respective representation types are in subtypingrelation too. In other words class types play the role of the atomic types from which westart up, but in addition we can select �elds from a value in a class type as if it belongedto its representation record type, and we have an operation classType to transform arecord value r:R into a class type value rclassType of type classType, provided that therepresentation type of classType is R. Class types can be represented in our systemby generalizing the technique used to represent record types, but we will not show this
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fact in detail. We use italics to distinguish class types from the usual types, and := todeclare a class type and to give it a name; we will use � to associate a name with avalue (e.g. with a function). Thus for example we can declare the following class types:2DPoint := hhx : Int; y : Intii3DPoint := hhx : Int; y : Int; z : Intiiand impose that on the types 3DPoint and 2DPoint we have the following relation3DPoint � 2DPoint (which is feasible since it respects the ordering of the record typesthese class types are associated with). A simple example of a method for these classtypes is Norm. This will be implemented by the following overloaded function:Norm � ( �self 2DPoint:p self:x2 + self:y2& �self 3DPoint:pself:x2 + self:y2 + self:z2)whose type is f2DPoint! Real; 3DPoint! Realg.Indeed, this is how we implement methods, as branches of global overloaded func-tions. Let us now carry on with our example and add some more methods to have alook at what the restrictions in the formation of the types (see Section 2) become inthis context.The �rst condition, i.e. covariance inside overloaded types, expresses the fact that aversion of a method which receives a more informative input returns a more informativeoutput. Consider for example a method that updates the internal state of an object,such as the method Erase which sets the x component of a point to zero:Erase � ( �self 2DPoint:hx = 0; y = self:yi2DPoint& �self 3DPoint:hx = 0; y = self:y; z = self:zi3DPoint)whose type is f2DPoint ! 2DPoint ; 3DPoint ! 3DPointg. Here covariance arisesquite naturally.10 In object-oriented jargon, covariance says that an overriding methodmust return a type smaller than the one returned by the overriden one.As for the second restriction it simply says that in case of multiple inheritancethe methods which appear in di�erent ancestors not related by �, must be explicitlyrede�ned. For example suppose we also have these de�nitions:Color := hhc : Stringii2DColPoint := hhx : Int; y : Int; c : Stringii10In the example the notation we used is quite cumbersome since we did not use �eld update oper-ations on records like those of [CM91] or [Wan91]. Such operations may be derived in our system, byexploiting the & operator: see [Cas92].
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and that we extend the ordering on the newly de�ned atomic types in the following (fea-sible) way: 2DColPoint�Color and 2DColPoint�2DPoint. Then the following functionis not legal, as formation rule 3.c in Section 3.2 is violated:Erase � ( �self 2DPoint:hx = 0; y = self:yi2DPoint& �self 3DPoint:hx = 0; y = self:y; z = self:zi3DPoint& �self Color:hc = \white"iColor)In object-oriented terms, this happens since 2DColPoint, as a subtype of both 2DPointand Color, inherits the Erase method from both classes. Since there is no reason tochoose one of the two methods and no general way of de�ning a notion of \merging" forinherited methods, we ask that this multiply inherited method is explicitly rede�ned for2DColPoint. Note that some object-oriented languages do not force this rede�nition,but use some di�erent criterion to choose from inherited methods, usually related tothe order in which class de�nitions appear in the source code. As discussed in [Ghe91b],our rule 3.c in Section 3.2 can be easily substituted to model these di�erent approachesto the problem of choosing between inherited methods, allowing a formalization and acomparison of these approaches in a unique framework. The approach we have chosenin this foundational study is just the simplest one in a context where the set of atomictypes is �xed.In our approach, a correct rede�nition of the Erase method would be:Erase � ( �self 2DPoint:hx = 0; y = self:yi2DPoint& �self 3DPoint:hx = 0; y = self:y; z = self:zi3DPoint& �self Color:hc = \white"iColor& �self 2DColPoint:hx = 0; y = self:y; c = \white"i2DColPoint)which has type: f 2DPoint! 2DPoint;3DPoint! 3DPoint;Color ! Color;2DColPoint ! 2DColPoint gThe way we have written these methods may seem complicated with respect to thesimplicity and modularity of object-oriented languages. Indeed the terms above can beregarded as the result of a compilation (or translation) of a higher-level object-orientedprogram like:class 2DPointstate x:Int;y:Intmethods Norm = sqrt(self.x^2 + self.y^2);;
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Erase = x <- 0;;interface Norm: Real;Erase: Likeselfendclassclass 3DPoint is 2DPoint andstate z:Intmethods Norm = sqrt(self.x^2+self.y^2+self.z^2);;interface Norm: Realendclassclass Colorstate c:Stringmethods Erase = c <- "white";;interface Erase: Likeselfendclassclass 2DColPoint is Color, 2DPoint andmethods Erase = x <- 0; c <- "white";;endclass8.1 InheritanceInheritance is the ability to de�ne the state, interface and methods of a class \bydi�erence" with respect to another class; inheritance on methods is the most importantone. In the record based model, inheritance is realized using the record concatenationoperation to add to the record of the methods of a superclass the new methods de�nedin the subclass. However, the recursive nature of the hidden self parameter forcesone to distinguish between the \generator" associated with a class de�nition, which isessentially a version of the methods where self is a visible parameter, from the �nishedmethod set, obtained by a �x point operation which transforms self into a recursivepointer to the object which the methods belong to. This operation is called \generatorwrapping". Inheritance may be de�ned by record concatenation over generators.11To be able to reuse a generator, the type of self parameter must not be �xed: it mustbe a type variable that will assume as value the type for which the generator is reused.A �rst approach is to consider the type of self as a parameter itself; let us call it Likeself.In this case, if this \recursive type" appears in the result type of some method, then,when a generator is wrapped, the same operation must be performed on the type, tobind Likeself to the type of the class under de�nition, hence we need a �x point operator11To be fair, we must note that the generator based approach may account for the special identi�ersuper used in object-oriented languages to refer to a method as it is implemented in a superclass, whilewe do not have this possibility in our system.
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at the type level too. If, furthermore, there is some binary method, then Likeself mustbe linked to the type of the class under de�nition on the left hand side of arrowstoo. But, if a generator G has such a binary method, and a generator G0 is obtainedby extending G, then the type obtained by wrapping G0 is not a subtype of the oneobtained by wrapping G, as explained in more detail below. Hence, subtyping cannotbe used to write functions operating on objects corresponding to both G and G0, butF-bounded polymorphism must be introduced. F-bounded polymorphism is essentiallya way of quantifying over all types obtained by wrapping an extension of a generatorF . For an account of this approach see for example [CCH+89, CHC90, Mit90, Bru91].The feeling is that in the approach outlined above, recursion is too heavily used.An approach close to the previous one but that avoids the use of recursive types hasbeen recently proposed in [PT93]. The idea is to separate the state of an object fromits methods and then encapsulate the whole object by existentially quantifying over thetype of the state. The type of a method that works on the internal state does not needto refer to the type of the whole object (as in the previous approach) but only to its statepart; therefore recursive types are no longer needed. The type of the state is referred bya type variable since it is the abstract type of the existential quanti�cation. The wholeexistential type is passed to the generator as in the previous case but without any useof recursive types. Finally, the behavior of F-bounded polymorphism is obtained by aclever use of higher order quanti�cation.Our approach to method inheritance is even simpler since we also separate the statefrom the methods. In our system, every subtype of a type inherits all the methods ofits supertypes, since every overloaded function may be applied to every subtype of thetypes which the function has been explicitly written for. Moreover, the behavior of aninherited method M appearing as a branch of an overloaded function (i.e. a message)N can be overridden, i.e. de�ned in a way which is speci�c for a subtype T , by de�ninga branch for T inside the overloaded function N . Finally, new methods may be de�nedfor a subtype by de�ning new overloaded functions. By this, we may say that, in oursystem, inheritance is given by subtyping plus the branch selection rule. This can bebetter seen by an example: suppose to have a message for which a method has beende�ned in the classes U1 : : : Un; thus this message denotes an overloaded function oftype fUi ! Tigi=1::n for some Ti's. When this overloaded function is applied to anargument, the branch selected is the one de�ned for the class mini=1::nfUijU � Uig,where U is the class (type) of the argument. If this minimum is exactly U , this meansthat the receiver uses the method that has been de�ned in its class; otherwise, i.e. ifthis minimum is strictly greater, then the receiver uses the method that its class, U ,has inherited from this minimum (a superclass); in other terms, the code written forthe class which resulted to be the minimum, is reused by the objects of the class U .The reader should note that, although our system has a static nature (the set ofatomic types is �xed), it is possible to extend it to a dynamic one, along the lines drawnin [Ghe91b].
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8.2 Binary methods and multiple dispatchLet us now see the problem with binary methods in greater detail. Let us see whathappens in the \objects as records" analogy: if we add a method Equal to 2DPointand 3DPoint then, in the notation typical of formalisms built around this analogy, weobtain the following recursive record types (we forget the other methods):2DEPoint � hhx : Int; y : Int;Equal : 2DEPoint! Boolii3DEPoint � hhx : Int; y : Int; z : Int;Equal : 3DEPoint! Boolii.The two types are not comparable because of the contravariance of the arrow type inEqual : since one would expect 2DEPoint to be larger, as a record, than 3DEPoint, thetype at the left of the outer arrow in 2DEPoint should be larger, which is impossibleby contravariance.12 Note that this should not be considered a aw in the system but adesirable property, since a subtyping relation between the two types, in the record basedapproach, could cause a run-time type error (see [CL91] for an example). Hence, thereis an apparent incompatibility between the covariant nature of most binary operationsand the contravariant subtyping rule of arrow types.Our system is essentially more exible, in this case. Indeed if we set 3DPoint�2DPointthen an equality function, with type:Equal: f2DPoint ! (2DPoint! Bool); 3DPoint! (3DPoint! Bool)gwould not be well-typed in our system either, since 3DPoint � 2DPoint while 2DPoint! Bool � 3DPoint ! Bool. This expresses the fact that a comparison function cannotbe chosen only on the basis of the type of the �rst argument. In our system, on theother hand, we can write an equality function where the code is chosen on the basis ofboth argumentsEqual � ( �(p; q)2DPoint�2DPoint:(p:x = q:x) AND (p:y = q:y)& �(p; q)3DPoint�3DPoint:(p:x = q:x) AND (p:y = q:y) AND (p:z = q:z))the function above has type:f(2DPoint � 2DPoint)! Bool; ( 3DPoint� 3DPoint)! Boolgwhich is well formed13.In the presence of a subtyping relation, the covariance versus contravariance of thearrow type, w.r.t. the left argument (domain), is a delicate and classical debate. Seman-tically (categorically) oriented people have no doubt: the hom-functor is contravariantin the �rst argument. Moreover, this nicely �ts with typed models constructed overtype-free universes, where types are subsets or subrelations of the type-free structure,12Recursive types should be considered as denotations for their in�nite expansion, and an in�nitetype is a subtype of another one when all the �nite approximations of the �rst one are subtypes of thecorresponding �nite approximation of the second one; see [AC91].13This is not surprising as, even if the types of the two versions of equal are componentwise isomor-phic, in general isomorphisms of types do not preserve subtyping.
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and type-free terms model runtime computations. Also the common sense of the type-checking forces contravariance: if we consider one type a subtype of another if andonly if all expressions of the former type can be used in the place of expressions ofthe latter, then a function g : T ! U may be substituted by a function f only if thedomain of f is greater than T . However, practitioners often have a di�erent attitude.In OOP, in particular, the \overriding" of a method by one, say, with a smaller domain(input type) leads to a smaller codomain (output type), in the spirit of a \preservationof information". Indeed, in our approach, we show that both viewpoints are correct,when adopted in the \right" context.In fact, our general arrow types (the types of ordinary functions) are contravariantin the �rst argument, as required by common sense and mathematical meaning. How-ever, the families of arrow types which are glued together in overloaded types formcovariant collections, by our conditions on the formation of these types (see 3.2). Be-sides the justi�cation of this at the end of Section 2, consider the practice of overriding.The implementation of a method in a superclass is substituted by a more speci�c im-plementation in a subclass; or, more precisely, overriding methods must return smalleror equal types than the overridden one. For example, the \+" operation, on di�erenttypes, may be given by two di�erent implementations: one implementation of typeInt � Int ! Int , the other of type Real � Real ! Real. In our approach, we can gluethese implementations together into one global method, precisely because their typessatisfy the required covariance condition.We have already noted that part of the expressive power of our system derives fromthe ability to choose one implementation on the basis of the types of many arguments.This ability makes it even possible to decide explicitly how to implement \mixed binaryoperations". For example, besides implementing \pure" equality between 2DPointsand between 3DPoints, we can also decide how we should compare a 2DPoint and a3DPoint, as below:Equal � ( �(p; q)2DPoint�2DPoint: :::& �(p; q)3DPoint�3DPoint: :::& �(p; q)2DPoint�3DPoint:(p:x = q:x) AND (p:y = q:y)& �(p; q)3DPoint�2DPoint:(p:x = q:x) AND (p:y = q:y) AND (p:z = 0))The ability to choose a method on the basis of several object parameters is called, inobject-oriented jargon, multiple dispatch.9 Conclusion: intersections, products and their semanticsThis work is only the starting point of a new type discipline to be more extensivelyexplored. We believe that we have proposed here a sound solution to the use of con-travariant arrow types and of covariant ones in programming: the \purely functional"or external arrows are contravariant, in the �rst argument, while overloaded functions,as inspired by our understanding of message passing and methods in object-oriented
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programming, yield covariant families of arrow types. It should also be clear that ourlanguage essentially models message passing and inheritance, by the use of overloadedapplication and subtyping, as described in the previous sections, thus avoiding unnec-essary use of recursion.We have not dealt, though, with abstract data types nor with incremental classde�nitions: this may be a matter for future extensions. We have tried to present ourperspective and motivations in the introduction, by stressing the need to found theso called \ad hoc" polymorphism onto decent mathematical grounds, in particular inview of its role in the understanding of the object-oriented features mentioned above.Reference has been given to the work we are aware of in this subject, all of which has,in fact, a quite di�erent perspective.As for the Type Theory proposed, one has �rst to stress that that \terms depend-ing on types" is a concept entirely di�erent from \types depending on terms", (asdescribed in the |�rst order| types of Martin-L�of type theory or of the Calculus ofConstructions). One should also quote possible connections with other type disciplines,in particular, the intersection types, originated in [CDCV81]. Indeed, an overloadedtype, in our sense, is strictly related to an intersection of types: recent applications ofintersection types in [Pie90] and in the programming language Forsythe support thisanalogy [Rey88]. However, the two notions are slightly di�erent. An intersection typeT \ U is a type whose elements can play both the role of an element of type T andof an element of type U , and this is the case for our overloaded types too. In thecase of intersection, though, types, a coherence condition is imposed too, which means,essentially, that when a value can play di�erent roles, we are free to choose any ofthese roles, without a�ecting the result of the computation [Rey91]. In our context,this is not the case; a programmer may de�ne an overloaded function \foo" of typefInt � Int! Int ;Real�Real ! Realg which sums two integers but multiplies two realnumbers, while in a coherent intersection type discipline an overloaded function withthat type should behave in a consistent way on integers and reals.Consider now higher order systems and observe that in Girard's system F (Reynolds'second order �-calculus, [GLT89]), second order terms may be fed with input types.These terms then may seem to express an explicit type dependency as the one we triedto formalize in this paper. We fully understand now that it is not so. On the modeltheoretical side, this is made clear by the interpretation of second order product typesas intersections (in view of the semantic relation between intersection and dependentproducts given in [LM91], this is a delicate issue: see [Lon94] for a discussion). Fromthe point of view of proof theory, the low expressiveness of terms which may take typesas inputs is explained by early intuitions of Reynolds on parametricity and the work in[MR91], [ACC93] and [LMS93]. Intuitively, Reynolds Abstraction Theorem says thata term, taking as inputs two \related" types, gives \related" terms as outputs and theGenericity Theorem in [LMS93] shows that if two terms coincide on one input typethen they coincide on all input types. The moral is that in system F, as a properlysecond order logical system, one cannot have terms whose output values truly dependon input types.For all these reasons, we had to design a completely new language: no tools are
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available from (constructive) logic to express the simple fact of practice that the valueof a term may depend on a type as input. We decided, consistently with the practice ofobject-oriented programming, to allow only a \�nite dependency": overloaded terms are�nitely branching terms and the essential richness of the discipline is largely due to theuse of subtyping, which ful�lls a quanti�cation over an in�nity of types. However, theway is open to further strengthening, once we set the safe grounds of a few, but crucial,consistency properties (Church-Rosser, Strong Normalization, Subject Reduction).In particular, one may think to allow type variables and second order �-abstraction,also in overloaded types and terms (e.g. allow �X:(: : :&X : : :) ) and study how the co-variance constraints and the syntactic properties are transformed in this case. Explicitpolymorphism would then be entirely revised as type dependency would be as uniformand as e�ective as ever. The border line, though, between safe systems and inconsisten-cies would then become narrow: the technical di�culties of the normalization theorem,at our propositional level, may suggest the major obstacles one may encounter in de�n-ing \sound" higher order systems.We plan to explore this direction as well as three less ambitious projects. Firstthe semantics of �&, a non trivial matter even in the propositional case (a preliminaryproposal is in [CGL93]). Second, the application of the ideas of this calculus to theimplementation of a prototypical object-oriented language. Third, a more detailedinvestigation of \compile-time vs. run-time" types. In this paper we proposed a simpleview of this \dualism", which �ts our approach. More should be said, though, inparticular regarding subtyping, coercions, etc., i.e. the various ways of dealing with\types evolving during computations".As for the use of recursion, surely an essential tool for programming practice, webelieve that the theoretic investigation of complex issues, like this, should be made intotwo steps, if possible. First, analyze type disciplines where some \unshakable grounds"can be set: following the analogy \types as propositions" in �-calculus, this meansconsistency proofs, via normalization, say, and related facts. Then, if everything works�ne, add recursion when really needed for computations, both for types and terms. Thisis another \methodological" point which distinguishes our approach from the currenttheoretical treatments of object-oriented features.Acknowledgments. G. Castagna would like to thank Maribel Fern�andez for hercomments on an early draft and Roberto Di Cosmo for his help in the work and patiencein sharing an o�ce. Very special thanks to Franca and Nico, too.References[AC91] R. Amadio and L. Cardelli. Subtyping recursive types. In Proc. of 18thAnn. ACM Symp. on Principles of Programming Languages, 1991.[ACC93] M. Abadi, L. Cardelli, and P.-L. Curien. Formal parametric polymorphism.In Dezani, Ronchi, and Venturini, editors, B�ohm Festschrift. 1993.
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