
Dependent types with subtyping
and late-bound overloading

Information and Computation168(1):1-67, (2001)

Giuseppe Castagna� and Gang Chen?�C.N.R.S.,liens, École Normale Supérieure, 45 rue d’Ulm, 75005 Paris, France?School of Computer & Information Sci., University of South Australia,The Levels, Australia

E-mail: Giuseppe.Castagna@ens.fr; cisgc@cs.unisa.edu.au

Received June 23, 1998

We present a calculus with dependent types, subtyping and late-bound overload-

ing. Besides its theoretical interest this work is motivated by several practical needs

that range from the definition of logic encodings, to proof specialization and reuse,

and to object-oriented extension of the SML module system.

The theoretical study of this calculus is not straightforward. While confluence

is relatively easy to prove, subject reduction is much harder. We were not able

to add overloading to any existing system with dependent types and subtyping,

and prove subject reduction. This is why we also define here asby-product a

new subtyping system for dependent types that improves previous systems and

enjoys several properties (notably the transitivity elimination property). The calculus

with overloading is then obtained as a conservative extension of this new system.

Another difficult point is strong normalization, which is a necessary condition to

the decidability of subtyping and typing relations. The calculus with overloading

is not strongly normalizing. However, we show that a reasonably useful fragment

of the calculus enjoys this property, and that its strong normalization implies the

decidability of its subtyping and typing relations.

The article is divided into two parts: the first three sections provide a general

overview of the systems and its motivations, and can be read separately; the remaining

sections develop the formal study.

1. INTRODUCTION

In this article we show how to integrate in a unique logical system three different features:
(first order) dependent types, subtyping, and late-bound overloading.We first describe each
of these features and in the next section we illustrate the motivationsof our work.

Dependent types.
Dependent types are types depending on terms. A classical example is given by arrays.
Consider for example the arrays of characters. In programming languages there is not
a type “array of chars” but rather a family of typeschar[1], char[2],. . . , wherechar[n] denotes the type of the character arrays of lengthn. Consider then the function

1



2 G. CASTAGNA, G. CHENstring to array that maps a strings into the array of its characters. Its domain type isstring but its codomain typedependson the length of the string the function is applied to.
More precisely,string to array is a function that maps a strings into an array of typechar[length(s)]. By dependent types it is possible to express the type of this function as
follows: string_to_array : �s: string:char[length(s)]
In words, the typing judgment above expresses thatstring_to_array is a function that,
when applied to a strings, returns a result of typechar[length(s)] (� is a binder for the
term variables).

So dependent types allow to express a relationship between the input of a function and
the typeof its output. Dependent types are at the basis of many computer applications,
notably automatic proof-checking —e.g., [HHP93, CAB+86]— (since they offer the
power of first order-logic), or rich module systems —e.g., [MQ85, Ler94]— (a module can
export functions whose type is defined in the module itself, so thetype of the result of a
transformation of modules may depend on the module —on its type declaration part— the
transformation is applied to).

Subtyping.
Subtyping is a binary relation over types. The introduction of a subtyping relation in a
language greatly enhances its flexibility. Intuitively, a typeS is a subtype of a typeT (notedS � T ) if all expressions of typeS can be used in every context where an expression of typeT is expected (for example, integer can be considered a subtype of real and char a subtype
of string). The advantage of such a relation is that the code originallywritten for a given
type can be reused for its subtypes (e.g. the functionstring to array can be applied to
characters as well). This is obtained by adding to the typing rules thesubsumptionrule
of [Car88]:

Subsumption
� `M : S S � T� `M : T

that states that an expression that has typeS is typed by every super-type ofS, as well.

Late-bound overloading.
An overloaded function is a function that executes different code according to the type of
its arguments. A typical example is the function+ that, in several programming languages,
performs arithmetic sum if applied to two numbers and concatenation if applied to two
strings. Thus+ can be thought of as the union of two different functions, arithmetic sum
and string concatenation. More generally, every overloaded function consists of a set of
functions, one for each possible combination of the types of its arguments. At type level this
can be expressed by typing overloaded functions by sets of arrows. Thus for our example
we have: + : fint� int! int ; string� string! stringg
In most programming languages selection of the code for an overloaded function call is
performed at compile time: a pre-processor replaces every call of an overloaded function
by the code that fits the type of the arguments. This discipline of selection is calledearly
binding. In presence of subtyping the type of the arguments of a function may change
(notably decrease) during computation. Therefore delaying the code selection to run-time
may affect the semantics of programs. In particular we are interested in alate binding
discipline that delays the selection as much as possible so that the selection is based on
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the best information about the type of the arguments. The interest ofsuch a discipline is
that, as shown in Section 2.2, it supports code reuse and incremental programming. This
last point is also witnessed by object-oriented programming where (some special cases of)
late-bound overloaded functions are better known asmulti-methodsor generic functions
(see for example the languages Cecil [Cha92] and CLOS [DG87]).

In this article we show how to make these three features coexist in a unique formalism
called��&. This formalism can be considered as the natural extension with late-bound
overloaded functions of�P� [AC96b] (a calculus with dependent types and subtyping)
or, equivalently, as the generalization to dependent types of�& [CGL95] (a calculus with
late-bound overloaded functions and subtyping). From a strictly technical point of view
the main contribution of this work is the definition of a type discipline for late bound
overloaded functions in the presence of dependent types. A subordinate contribution is the
definition of a set of subtyping rules that defines the same typing relation as�P� but enjoys
much better properties which, among other things, make it prone to extensions.

Our work is not just an “exercice de style” where we try to put together some disparate
functionalities for the sake of attempt. The logical difficulties and computational expres-
siveness of��& should be clear: computation depends on types, and possibly ondynamic
types (because of late binding). Section 2 shows that, besides these logical aspects,��& an-
swers also some practical needs. In Section 3 we give an overview of the whole system, by
describing how we arrived at its definition. To that end we first introduce dependent types,
we then add subtyping, and finally extend the result by late-bound overloaded functions.
In Sections 4 and 5 we give the formal definition of the system and studyits meta-theoretic
properties: confluence, soundness, and strong normalization. In Section 6we study some
properties that are particular to our subtyping deduction system for dependent types, and
in Section 7 we study the decidability of��&. A conclusion ends our presentation.

In the section of overview we distinguish some text as “excursus”. These excursi discuss
some precise technical or practical points and can be skipped during the firstreading.

2. MOTIVATIONS

There are three main motivations to our work. First and foremost, theneed of both
subtyping and overloading is quite felt in theorem proving, and theirabsence makes logic
encodings much more difficult. Second, the use of late-bound overloading allows greater
code reuse, introducing in some sense an object-oriented style in automatic proving. Last,
dependent types constitute a theoretical basis of the SML module system;therefore our
work may be useful to give a theoretical basis to object-oriented extensions of the SML
module systems. Let us examine each motivation in more detail.

2.1. Logic encodings
The first order dependent type theory�� [HHP93] (see Section 3.2 for a short for-

mal presentation) has been taken as a Logical Framework for the specification of logical
systems. For such a purpose, terms in this system are used to encode formulae in logic.
Pfenning [Pfe93] demonstrates that in the absence of subtyping the representation of subsets
of logical formulae is very cumbersome. This can be illustrated by the following example,
which is adapted from the one in [Pfe93]. Consider the set of well-formedformulae of the
propositional calculus characterized by the following abstract syntax:



4 G. CASTAGNA, G. CHENF ::= A j :F j F ^ F j F _ F j F ) F
HereA ranges over atomic formulae. This definition can be represented by the following

set of typing declarations: F : ?: : F ! F^ : F ! F ! F_ : F ! F ! F) : F ! F ! F
Intuitively, ? is the set of all types. Thus,F : ? can be read as “F is a type”. An example
of formal encoding is �; a : F; b : F `) (^ab)a : F
where� is a context containing the set of declarations defined above, anda; b are atomic
formulae.

Now consider the subset ofF defined as:F1 ::= A j :F1 j F1 _ F1
There are several ways to representF1. One way is to introduce a predicate onF , sayB : F ! ?, such thatB(t) is true if and only ift is a formula ofF1.1 Another way is to

introduce a new typeF1 : ?. Both ways are awkward and lead to inefficient implementation
of proof search (see [Pfe93]). To overcome the problem, Pfenning proposesto extend��
with intersection types (see [BCDC83, CD80]) andsubsorting. The latter, denoted by<:,
can be viewed as a restricted form of subtyping. Then, it is possible tohave a much better
representation:A <: F1 A is a subsort ofF1F1 <: F F1 is a subsort ofF: : (F ! F ) \ (F1 ! F1)_ : (F ! F ! F ) \ (F1 ! F1 ! F1)
Instead of using subsorting and intersection types, in this article, wepropose to extend��
with subtyping (denoted by�) and overloaded types (denoted by curly brackets). In the
resulting system, that we dub��&, the example above becomes:A � F1 A is a subtype ofF1F1 � F F1 is a subtype ofF: : fF ! F; F1 ! F1g_ : fF � F ! F; F1 � F1 ! F1g
Subtyping and overloading are respectively richer than subsorting and intersections.

The difference between intersection and overloaded types is that a term belongsto the
intersectionA\B if and only if it belongs both toA andB. While a term in the overloaded1The complete representation forB includes the following declarations:A : F ! ? A1 : Ax! Bx:1 : Bx! B(:x) _1 : Bx! By ! B(_xy)
whereA(t) is true if and only ift is an atomic formula.
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type fA;Bg is the union of two distinct subterms, one belonging toA, the other toB.
Note however thatfA;Bg is defined only when bothA andB are arrow types. In this
case the overloading approach is somewhat more expressive since ultimately a term of an
intersection type (of arrow types) can be considered as a special case of an overloaded term
formed by a union of equal subterms.

Furthermore in Pfenning’s system, decidability is obtained by definingsubsorting over
“sorts”, which are refinements of types. Sorts cannot appear in labels of�-abstractions
so, as Pfenning points out, it is impossible to write functions with domains limited via
subsorting. To overcome this weakness, Aspinall and Compagnoni havestudied�P�
([AC96b], see also Section 3.3.2), an extension of�� with subtyping, which does not have
such a drawback. However�P� cannot express Pfenning’s examples as it contains neither
intersection types nor overloaded types. Here we define��&. Since it has subtyping
(but defined differently from [AC96b]) it does not have the weaknesses of the subsorting
approach and thanks to overloading it can express Pfenning’s examples.

Pfenning’s study is developed within the proof environment Elf, an implementation of
Edinburgh LF. Other groups studying dependent type theory based proof systems found the
need of using subtyping, as well. All the motivating examples are similar to the Pfenning’s
one. An early work can be found in [Coq92] in the ALT group. LEGO, Coq, and Nuprl
groups are studying implementations of abstract algebra, and all of them have proposed
extensions of type theory by some sort of subtyping: ZhaoHui Luo[Luo96] has studied a
“coercive subtyping” extension for LEGO; in the Nuprl group Jason Hickey [Hic95] has
combined object-calculus and dependent types and proposed a form of subtyping based on
the inheritance mechanism of objects; Courant in the Coq group is working on an extension
of the Calculus of Construction by subtyping:CC� [Cou97]. More references to recent
work are discussed in Section 6.3.

The interest in this area is mainly due to the scale. As said by ZhaoHui Luo[Luo96]: “the
lack of useful subtyping mechanisms in dependent type theories [...] with inductive types
and the associated proof development systems is one of the obstacles in their applications
to large-scale formal development”.

What we propose is to add not only subtyping but also late-bound overloading. In fact
the association of these two features allows incremental and modular programming whose
utility to large-scale problems has been widely demonstrated by object-oriented languages.

2.2. Program (proof) specialization
Consider again the typesF andF1 defined in the previous section. SinceF1 � F , thenF ! Bool� F1 ! Bool. 2 Hence, a decision functionp for propositional logic, which is

of typeF ! Bool, is also a decision function forF1 formulae (i.e., it is of typeF1 ! Bool).
So subtyping is a first ingredient for code reusing since it allows tousep on arguments of

typeF1 even ifp has been written for arguments of typeF . However, subtyping provides
a limited form of reusing: it just makes some code more polymorphic.A breakthrough
for code reusing (brought forward by object-oriented languages) is codespecialization.
Consider again the decision functionp. It is well known that such a functionp is NP-hard.
However, by the specific structure ofF1, it is possible to construct a polynomial decision
function p1 for F1. A clever way to define a general decision functiondec is then use2The subtyping rule forarrow types [Car88] states that ifA2 � A1 andB1 � B2 thenA1 ! B1 � A2 ! B2
(see [Cas95] for a detailed discussion).



6 G. CASTAGNA, G. CHENp1 for F1 formulae andp otherwise. A natural way to obtain it is to define our decision
function as an overloaded function formed by the two termsp andp1. In the notation we
use in this work an overloaded function composed by the termsp andp1 is written asp&p1.
Sodec� p&p1. The type ofdec is the union of the types of the composing terms, that
is fF ! Bool; F1 ! Boolg. The (overloaded) functionp&p1 automatically chooses the
appropriate sub-term to execute (i.e., eitherp or p1) according to the type of its argument
(that is, according to the form of the formula to decide) . The use of late binding ensures
that the most efficient function will be always selected even in the case that the most specific
form of the formula is not, or cannot be, statically determined. The useris released from
writing branch selection code. What he has to do is just to declare the subtyping structure.Practical excursus. Note that this could be done in an incremental way. We could
have first defined justF with the decision functiondec := p and decided only later to
consider theF1-formulae.

By declaringF1 � F we can use forF1-formulae all code written forF -formulae. By
specializingdec := dec&p1, every code that usesdec is specialized as well. Thus all
code forF is automatically specialized (and, thus, reused) forF1. However, this situation is
more complex than the one we present in this article, since it requiresdec to bedynamically
extensible(whence the use of “:=”). This is discussed in Section 2.1 of [CGL93]. In this
article we focus on the logical aspects of the system and we do not deal with this issue that
looks more related to implementation.2

2.3. Extension of the SML module system
In the SML module system [MTH90] a module may export both some types and the

operations defined for these types. Thus thetypeof the operation components of a module—
and, thus, the type of the module itself—may depend on thevalueof the type components
of the module. Since we are in presence of types that depend on values, then a clas-
sical approach to characterize the SML module system is to use first order dependent
types [MQ86, MH88, Ler94, HL94].

Modules are handled byfunctors. Functors are functions that transform modules into
other modules and that are subtype polymorphic (intuitively, a functor defined for modules
that export some given components works also on modules that export more components).
Functors can be considered as modules parametrized by some other modules. Oneof the
criticisms to the SML module system is that although it has subtyping, it is not possible
to perform code reuse and specialization as done in “object-oriented programming”. In
order to make it possible, Aponte and Castagna defined in [AC96a] an extension of the
SML module system with late-bound overloaded functors. The startingsystem is the one
of Leroy [Ler94], and the addition of late-bound overloaded functors allows to choose the
most specific transformation of a module according to its type. The result is a module
programming language whose style is very similar to the one of CLOSwhere the “generic
functions” (“generic functors” in this case) operate on modules rather thanon objects, and
their behavior can be incrementally specialized as long as new modules types (signatures,
in the SML terminology) are defined. The idea can be illustrated by the following example.

Consider a dictionary modulemkDict parameterized by a tree modulet of typeTree:functor mkDict(t:Tree):Dict = struct ::: end
The type of such a functor is a first order dependent type:
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the dependency is necessary since the type of the result depends on (the type of the
elements of) the argumentt of the functor (we stress this dependency by writing Dict(t)). If
a signatureOrdTree for ordered trees is available, andOrdTree�Tree then, by subtyping,
it is possible to feedmkDict by ordered trees to make new dictionaries. It is also possible
to define a new functormkOrdDict: �t: OrdTree.Dict(t), that provides an optimal search
operation by keeping the ordered tree balanced. However all the code that still usesmkDict
will continue to produce inefficient code for ordered trees.

The solution is to overload the functormkDict by the more efficient code for or-
dered trees (in [AC96a] this is performed by the commandextend functor MkDictby MkOrdDict), so that the functor will execute two different pieces of code according
to whether the argument module implements aTree or anOrdTree. In other words, themkDict will be an overloaded functor of typef�t:Tree.Dict(t) , �t:OrdTree.Dict(t) g An
outline of the code of this example can be found in Appendix A.2. Formore details the
reader can refer to [AC96a].

One of the problems with this system is to prove its type soundness. The standard
technique for type soundness is to prove the subject reduction property (reductions preserve
types). Unfortunately the subject reduction property does not hold for Leroy’s system and,
therefore, it does not hold for the [AC96a] system either. While Leroywas able to prove
the soundness of his system by semantic tools (he uses a translation into a system with
dependent types, second-order existential types, and�-types [Ler94]), his proof does not
extend to overloaded functors whose theoretical bases are not established.��& is a first
step towards establishing these bases and proving soundness of the work in [AC96a].

3. INFORMAL DESCRIPTION

In this section we give an intuitive description of our system��&. At the risk of some
redundancy, we prefer to defer the formal definition of��& to Section 4 and show here,
step by step, the path that leads to the definition of the whole system. So we start by
defining dependent types, that is the system�� (x 3.2). Then, we introduce subtyping
for dependent types, that is the system���. Even if��� owes a lot to the Aspinall and
Compagnoni system�P�, we show that�P� does not fit our purposes since, because of its
formalization, it is not prone to extension and��� is needed (x 3.3). Finally, we introduce
overloading for the previous system, yielding the system��& (x 3.4). We conclude this
section by several examples, and by summarizing all the technical results thatwill be shown
in the rest of the paper.

3.1. A brief introduction to dependent type theory
Types are used to classify terms, but with dependent types we have seen that types and

terms are not completely distinct. For example in Section 1 we described the functionstring to array where the type of the result depended on the input of the function. This
was expressed by a type of the form�s: string:A(s). We have also seentype families,
such as the family of arrays of charactersfchar[1], char[2]; : : :g. Type families can
be considered as mappings from terms to types; for example the above family of arrays of
characters corresponds to the mapn 7! char[n]. Since we use? to classify types then
this mapping can be “typed” by the “kind”�n: nat:?.
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Type families can be expressed by�-notation. So for example�n: nat:char[n] : �n: nat:?
denotes the type family described right above. By�-reduction then(�n: nat:char[n])(3)
is the type of the arrays of characters of size 3, that ischar[3].

More generally, we are considering a dependent type system where terms are classified
by types and types (or, more generally, type families) are classified by kinds. Types are
either atomic types (e.g.,int), applications of type families (if they have the kind?), or�-types of form�x:A:B (that are used to type�-abstractions). In particular,�-types are
the generalization of arrow types of simply-typed�-calculus:A ! B is the special case
of �x:A:B wherex does not appear free inB.

From the point of view of the formula-as-type analogy, the introduction of dependent
types brings significant progress with respect to simply typed lambda calculus. In the
latter case, only propositional formulae can be represented by types, whiledependent types
make first order quantification representable as well. As a result, many logical systems can
be encoded in systems based on dependent types, as done in LF, the Edinburgh Logical
Framework [HHP93].

3.2. Dependent types: the system��
The system�� [HHP93] is the pure first order dependent type system (a different version

of the system is called�P [Bar92]) . It is the core of Edinburgh Logical Framework. Our
presentation of�� is mainly based on [HHP93]. There are four syntactic categories:

Terms M ::= x j �x:A:M jMM
Types A ::= � j �x:A:A j �x:A:A j AM
Kinds K ::= ? j �x:A:K
Contexts � ::= <> j �; x : A j �; � : K

1. A term (denoted byM;N; : : : ) is either a term variable (denoted byx; y; z; :::), an
abstraction or an application.

2. A type (denoted byA;B;C; : : : ) is either an atomic type (denoted by�), a�-type of
the form�x:A:B or a type applicationAM or a type family�x:A:M .

3. A kind is either the constant? representing the collection of all types, or�x:A:K
which classifies type families (of the form�x:A:B where B lives in the kindK). Thus,the
general form of a kind is�x1:A1::xn:An:? with n � 0.

4. A context is an ordered list of typing assignments of the formx:A, and of kinding
assignments of the form�:K. If x:A appears in� then we say thatx 2 Dom(�) and we
use�(x) to denoteA. If �:K appears in� then we say that� 2 Dom(�) and we use
Kind�(�) to denoteK.

The atomic types� play the role of (dependent) type constants3; typical examples of type
constants areint,nat,bool (all declared of kind?), andchar[ ] (of kind�n: nat:?). We
useM [x := N ] (resp.,B[x := N ]) to denote the substitution ofN for every free occurrence
of x in termM (resp., in typeB). �-reduction, denoted by!� , is thecompatible closure3In [Bar92] and [AC96b] the�’s are called typevariables. This may be misleading since although�’s are
declared in contexts, they cannot be abstracted.
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Context Formation

F-EMPTY <> ` ?
F-TERM

� ` A : ? x 62 Dom(�)�; x : A ` ?
F-TYPE

� ` K � 62 Dom(�)�; � : K ` ?
F-� �; x : A ` K� ` �x:A:K

Typing

T-VAR
� ` ? x 2 Dom(�)� ` x : �(x)

T-� �; x : A `M : B� ` �x:A:M : �x:A:B
T-APP

� `M : �x:A:B � ` N : A� `MN : B[x := N ]
T-CONV

� `M : A � ` A =� B� `M : B
Kinding

K-VAR
� ` ? � 2 Dom(�)� ` � : Kind�(�)

K-� �; x : A ` B : ?� ` �x:A:B : ?
K-� �; x : A ` B : K� ` �x:A:B : �x:A:K

K-APP
� ` A : �x:B:K � `M : B� ` AM : K[x :=M ]

K-CONV
� ` A : K � ` K 0 K =� K 0� ` A : K 0

FIG. 1. The�� type system

(see [Bar84]) of the union of the following two notions of reduction:(�x:A:M)N !�1 M [x := N ](�x:A:B)N !�2 B[x := N ]�-conversion, denoted by=� is the equivalence relation generated from�-reduction, that
is, the reflexive, symmetric, and transitive closure of!� .4

The abstract syntax above defines pre-terms, pre-types, pre-kinds, and pre-contexts,
namely possibly not well-formed terms, types, kinds, and contexts. Well-formed terms,
types, kinds, and contexts are determined by the following four judgments:4Since�-reduction and�-conversion arecompatiblerelations, then they are defined on terms, types,andkinds
(since in the last one both types and terms may occur).



10 G. CASTAGNA, G. CHEN� ` ? � is a well-formed context� ` K K is a kind in context�� ` A : K typeA has kindK in context�� `M : A termM has typeA in context�
We write� ` J for an arbitrary judgment of the form� ` K;� ` A : K or � ` M : A.
The rules for deriving the judgments in�� are in Figure 1.

3.3. Adding subtyping to��: the system���
The addition of subtyping to an existing type system is usually performed in a standard

two-step process. First, a subtyping relation� is defined on the (well-formed) types of the
system. Then the subsumption rule is added to the typing rules (and when the conversion
rule is present it replaces it). We already said that the subsumption rulestates that if a term
is typed by some typeA, then it is also typed by every super-type ofA. Usually this rule
has the form we saw in the Introduction:

Subsumption
� `M : A � ` A � B� `M : B

Note that, as the subtyping relation is defined on (well-formed) types,then no kinding
judgment is required in this rule: ifA andB are in subtyping relation, then they are
well-formed.

In this work, for reasons that we explain at length in the Section 3.3.2, we need to define
subtyping in a different manner.

More precisely, we do not define the subtyping relation on the��’s types and do not
substitute the subsumption rule above for the T-CONV rule of the previous section. Instead,
we define the subtyping relation on the��’s pre-types(that may be not well-formed) and
replace T-CONV by the following subsumption rule

T-SUB
� `M : A � ` A � B � ` A;B : ?� `M : B

where� ` A;B:K is a shorthand for “� ` A:K and� ` B:K”. This rule states exactly
the same property as the generic subsumption rule above. However, it has two extra kinding
premises that are made necessary by the fact that, here,� is defined on all pre-types.

3.3.1. The subtyping relation
The subtyping relation on the pre-types arises from a subtyping relation on atomic types.

This relation for atomic types is declared in a context� and lifted up to all types by the
rules of Figure 2. More precisely, subtyping declarations occur in a context� under the
form of bounded kind assignment� � A : K. In that case we say that� 2 Dom(�) and
that� is boundedin �; we also use�(�) to denoteA, and still useKind�(�) to denoteK.

In summary, the system��� is defined by the rules in Figure 2 plus all the rules for��
defined in the previous section, but where� may contain bounded kind assignments and
T-SUB is substituted for T-CONV.5

Since the rules in Figure 2 do not contain any kinding judgment, then the induced
subtyping relation is defined on all pre-types. The restriction of thisrelation to types (that
is, to well-kinded pre-types) has the usual general meaning: a term of a given type can be5We must also add an obvious formation rule for type contexts containing subtyping constraints (see Ap-
pendix A.1).
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S-ApT
� ` �(�)M1::Mn � A� ` �M1::Mn � A

S-ApR
M1 =� M 01 � � � Mn =� M 0n� ` �M1::Mn � �M 01::M 0n

S-� � ` A0 � A �; x : A0 ` B � B0� ` �x:A:B � �x:A0:B0
S-� A0 =� A �; x : A0 ` B � B0� ` �x:A:B � �x:A0:B0
S-ApSL

� ` B[x :=M1]M2::Mn � C� ` (�x:A:B)M1::Mn � C
S-ApSR

� ` C � B[x :=M1]M2::Mn� ` C � (�x:A:B)M1::Mn
FIG. 2. ��� subtyping rules

safely used wherever a term of a super-type is expected. Let us comment each rulestarting
from the simplest ones:

- The S-� rule is the generalization of subtyping rule for arrow types. It is contravariant
on the domains and covariant on codomains. However, since the bound variablex can
appear free in the codomains, then the codomains are compared under the assumption thatx belongs to the domain common to both types, that is, the smaller one.

- The S-� rule “subtypes” type families. Recall that type families are functions from
terms to types. This rule states that two such functions are compared pointwise. (As
a matter of fact this rule is useless in��� and should be omitted: see the Excursus in
Section 4.4).

- The S-ApSL and S-ApSR rules state that subtyping is invariant by�2 head reductions:
to deduce that a�2 head redex is in a subtyping relation we must deduce it for its reductum.

- The S-ApR states that� is reflexive on atomic types. The reflexivity is extended
pointwise to all possible applications of the atomic type.

- The S-ApT (combined with reflexivity) performs the transitive closure of the subtyping
declarations. Intuitively in order to prove that� ` � � �(�(�(�))) three S-ApT rules
topped by a S-ApR rule must be used. As for S-ApR the relation is extended pointwise to
possible applications.

Note that not all the assignments in a context� equally contribute to the definition of
subtyping. Only bounded kind assignments� � A:K really matter, since they are used
by the rule S-ApT. Kinding assignments�:K are handled by the rules S-� and S-� only
to ensure that for every subtyping rule the well-kindedness of the types appearing in the
conclusion under a given context implies the well-kindedness of the types appearing in the
premises under the corresponding contexts.



12 G. CASTAGNA, G. CHEN

SAC-var
� ` ? � bounded in �� `AC � � �(�)

SAC-� � ` �x:A:B; �x:A0:B0 : ?� `AC A0 � A; �; x : A0 `AC B � B0� `AC �x:A:B � �x:A0:B0
SAC-� � `AC �x:A:B;�x:A0:B0 : KA0 =� A �; x : A0 `AC B � B0� `AC �x:A:B � �x:A0:B0
SAC-app

� `AC A � B � ` AM;BM : K� `AC AM � BM
SAC-conv

� ` A;B : K A =� B� `AC A � B
SAC-trans

� ` A;B;C : K� `AC A � B � `AC B � C� `AC A � C
FIG. 3. �P� subtyping rules

3.3.2. A different presentation of subtyping (comparison with [AC96b])

Apart from S-� and S-�, the remaining rules of��� are quite technical and do not let the
reader to grasp the intuition of the subtyping relation. So we decided to add this section in
order to provide some intuition. However, this section is not necessary to the development
of this work: it is not used for defining��& and can be skipped at first reading (as signaled
by the detour panel).

In order to provide the reader with the intuition underlying subtyping, we describe a
set of subtyping rules different from the ones of���. These rules define a subtyping
relation “equivalent” (in the sense we precise later on) to the one of���. The rules are
shown in Figure 3. Apart from some minor differences6, these rules are those used by
David Aspinall and Adriana Compagnoni [AC96b] to define the system�P�, that is one
of the best subtyping system for�� available in the literature. In order to differentiate
this second system from all the systems that are the contribution of this article, we use
lowercase italicized names for rules and putAC scripts all over. We also use a different
symbol,�, to denote the new relation. Let us comment the�P� subtyping rules:

- TheSAC-var rule deduces the subtyping declarations contained in�.
- TheSAC-� andSAC-� have the same meaning as the corresponding rules in���.
- The ruleSAC-app is a direct consequence of the interpretation ofSAC��: if two

functions are pointwise related then the images of a same point are related aswell.6There are some extra kinding judgments and the S-� rule here is more general than the one in [AC96b]. See
Footnote 10 for an example.



INFORMATION AND COMPUTATION168(1):1-67, (2001) 13

- Finally the rulesSAC-convandSAC-transstate that� is a pre-order, that is a reflexive
and transitive relation.

The two sets of rules in Figures 2 and 3 define the same subtyping relation. This is stated
by the following property proven in Section 6.3:Property 3.1. For everyA;B such that� ` A;B : K we have� `AC A � B , � ` A � B
(where by� ` J we mean that the judgment is provable)

It is very important to notice that the property above says that the twosets of rules define
the same relation on��’s types (� is not defined on pretypes), but it doesnot say that the
two sets of rules are completely equivalent, namely that it is possible to use either of them
without any difference. In particular, while the rules of��� constitute the core rules of
this article, those of�P� are inadequate to the purposes of this work. Indeed, the rules in
Figure 2 satisfy two crucial properties that those in Figure 3 do not:

1. They do not use kinding judgments. This makes them prone to extension. Indeed,
recall that we want to extend this system with overloaded types. As we shallsee later, the
kinding of overloaded types depends on the subtyping relation. So it is important to have
the definition of subtyping separated from the one of kinding since, otherwise, we would
have a circularity that is very difficult to handle.

2. They do not use the transitivity rule (which is anadmissiblerule, i.e., it is a conse-
quence of the other rules7). This, intuitively, implies that the addition of new types and new
rules to this type system is likely to yield aconservative extension8 (the explicit use of the
transitivity rule may cause a problem with conservativity since this rule does not satisfy the
subformula property). So we have extensions that do not interferewith the original theory,
independently from its definition.

For these reasons, the definitions of this article never use the rules in Figure 3 and they can
(actually, must) be ignored. However, the reader can use them as a cue to understand the
subtyping relation and draw intuition about it. But he must also beaware that in case of
extension the equivalence of two set of rules may be lost.Technical excursus. The reader may be puzzled by the fact that of two sets of rules
defining the same relation, one set is completely inadequate to certainpurposes that the
other fits. Apart from the fact that��� and�P� do not define the same subtyping relation
(� is not defined for pretypes), this “anomaly” mainly concerns the possible extensions of
the rules. The fact that two sets of rules define the same relation doesnot imply that this
holds for every possible extension of these sets. As a trivial exampleconsider the system
formed just by the symmetry rule (that states that if(a; b) belongs to the relation then(b; a)
belongs to it, too) and the system with no rules at all. The two deduction systems define
the same relation (the empty relation), but it is clear that every non-symmetric extension of
these sets of rules will not define the same relation.7Given a setS of deduction rules a (new) rule isadmissibleif for every instance of the rule it is possible
to prove by the rules ofS that its premises imply its consequence. Furthermore, the rule is derivable—or
derived—if the rule can be obtained by composing some rules ofS .8Given a languageL and a notion of derivabilitỳ onL , a theoryT is a collection of sentences inL with
the property that ifT ` ' then' 2 T . A theoryT 0 is anextensionof a theoryT if T � T 0. T 0 is a
conservative extensionof T if T 0 \L = T .
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If we do not consider extensions and we stick to the actual language, then the relation
between��� and �P� is quite typical. ��� is the algorithmic version of�P� and
Property 3.1 is the classic formulation of the soundness and completeness of the algorithmic
subtyping9. Note that because of Property 3.1,��� constitutes an important improvement
over the subtyping algorithm of [AC96b] for which this property does not hold. In fact, for
the algorithm defined in [AC96b] only the following implications hold� `AC A � B ) � `ACA (A)�2 � (B)�2� `ACA (A)�2 � (B)�2 ) � `AC (A)�2 � (B)�2
(where`ACA denotes deduction in the Aspinall-Compagnoni’s algorithm and(A)�2 denotes
the�2-normal-form ofA) which are weaker than Property 3.1.10

However, the interest of��� is not confined to this aspect. While Property 3.1 is an
interesting property in the context of�P�, it becomes crucial in the context of this article,
since it frees the system from the transitivity rule without affecting its expressiveness. And
while we know how to add late-bound overloaded functions to���, the corresponding
extension of�P� is still an open problem.2Methodological excursus. Our first attempt for this work was to add rules
for overloaded types to the Aspinall-Compagnoni system. Thus we obtained a circularity
among the definitions of context formation, kinding, typing and subtyping. This complicated
the proofs. For example the proof of the “classical” substitution lemma for subject-
reduction is done in [AC96b] by simultaneous induction over the four forms of judgment.
This same technique did not work in our case because the induction hypothesis does not
suffice to prove that the conditions for well-kinding of overloaded types (see Section 3.4.4)
are preserved by substitution.

In �&, this proof does not have that problem since the subtyping system doesnot depend
on the kinding system. The subtyping relation is defined over pre-types, that is, expressions
that may not be well-kinded. Thus our second try was to erase the kinding premises from the
Aspinall-Compagnonisubtyping system. This did not work either because of the transitivity
rule that became: � ` A � B � ` B � C� ` A � C
but in presence of such a rule it is not possible to deduce the well-kinding ofB from the
well-kinding ofA andC (and so we cannot ensure that the derivations of judgements
with well-kinded types contain only well-kinded types). In�& the transitivity rule can be
eliminated since the structural subtyping rules extend the transitivity of subtyping on atomic
types to higher types. But if we remove the transitivity rule from the Aspinall-Compagnoni
system we do not obtain an equivalent system. And we cannot use the algorithmic system of9As customary, we define the subtyping algorithm by a set of subtyping rules that satisfy the subformula
property. When the set of rules is “syntax directed” (i.e., there is a one-to-one correspondence between provable
judgments and proof trees), then the algorithm is deterministic (e.g. seex1.3 of [Cas97] for details). The set of
subtyping rules of��� can be straightforwardly turned into a deterministic algorithm by adding to the [S-ApSR]
rule the conditionC 6� (�x:A0:B0)M 01::M 0m ^ C 6� �M 01 : : :M 0m and to the rule [S-ApT] the conditionA 6� �M 01 : : :M 0n (note the indexes). The system with these conditions is equivalent to the one without the
conditions as proved in Section 6.4.10 For example ifAi !�i Bi (i = 1; 2), then� `AC A2 � B2 (and thus� ` A2 � B2) but� 6`ACA A2 �B2. Furthermore, in the original definition of subtyping in [AC96b] one also has� `ACA �x:A1:C � �x:B1:C
(and� ` �x:A1:C � �x:B1:C) but� 6`AC �x:A1:C � �x:B1:C.



INFORMATION AND COMPUTATION168(1):1-67, (2001) 15

Aspinall and Compagnoni since it is defined on�2 normalized types, not on types (whence
the failure of Property 3.1 for this system).

Thus we decided to define a new transitivity free set of rules that did not use kinding
judgments and that defined on (well-kinded) types the same system as Aspinall-Compagnoni
one. The result of this attempt is the definition of���. 2

3.4. Adding overloading to���: the system��&
In this section we give the description of the complete system,called��&, which includes

dependent types, subtyping, and late-bound overloaded functions.��& is obtained by
adding late-bound overloaded functions to���. Equivalently, it can be also considered as
the generalization to dependent types of the�&-calculus of overloaded functions described
in this same journal [CGL95], and revised in [Cas97].

3.4.1. Overloaded functions
An overloaded function is a function that executes a different code accordingto the type

of its argument. Thus an overloaded function is formed by a set of ordinary functions (i.e.�-abstractions), each one defining a different code (we call itbranch) of the function. We
follow the ideas of the�&-calculus and glue these functions together into an overloaded
one by the symbol & (whence the name of the calculus). Thus, we add to the���’s terms
the term (M&N)
which intuitively denotes an overloaded function with two branches,M andN , one of
which will be selected according to the type of the argument. We must distinguish ordinary
function application from the application of an overloaded function sincethey constitute
different mechanisms11. Thus we use “�” to denote “overloaded application” and “�” or
simple juxtaposition for the usual application.

We build overloaded functions as lists, starting with anemptyoverloaded function,
denoted by", and concatenating new branches by means of &. Thus, an overloaded
function is a list of ordinary functions and, in the term above,M is an overloaded function
whileN is an ordinary function, (a branch of the resulting overloaded function). Therefore,
an overloaded function withn branchesM1;M2; : : :Mn can be written as((: : : (("&M1)&M2) : : : )&Mn):
The type of an overloaded function is the set of the types of its branches.Thus, ifMi : �x:Ai:Bi then the overloaded function above has typef�x:A1:B1 ; �x:A2:B2; : : : ; �x:An:Bng
and if we apply this function to an argumentN of typeAj , then the selected branch isMj .
That is ("&M1& : : :&Mn)�N � Mj �N (1)

where�means “reduces in zero or more steps” (the introduction of subtyping will require
some restrictions to this reduction).11The former is implemented by substitution, while the latteris implemented by selection.
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3.4.2. Subtyping
If we were extending�� by overloaded functions we could (nearly) stop here. But we

are extending���, so we have subtyping as well. Thus, we have to define the subtyping
relation for the new overloaded types. The definition follows from the observation that
an overloaded function can be used in place of an overloaded function of different type
when, for each branch that can be selected in the latter, there is at least one branch inthe
former that can replace it. Thus, an overloaded typeS, i.e., a set of�-types, is smaller than
another overloaded typeT if and only if for every type inT there is at least one type inS
smaller than it. Formally, we add to the rules of��� (without the S-� rule) the following
subtyping rule:

S-OVER
8j 2 J 9i 2 I � ` �x:Ai:Bi � �y:Cj :Dj� ` f�x:Ai:Bigi2I � f�y:Cj :Djgj2J

Equivalently, in order to prove thatf�x:Ai:Bigi2I is a subtype off�y:Cj :Djgj2J one has
to show that there exists a total map� from J to I such that for everyj 2 J it is provable
that�x:A�(j):B�(j) � �y:Cj :Dj .

Another consequence of using subtyping is that in a reduction like (1), the type ofN may
match none of theAi , but rather be a subtype of some of them. In this case, we choose the
branch whoseAi “best approximates” the type, sayA, ofN . That is, we select the branchj such thatAj = mini=1::nfAi j A � Aig. A restriction on the formation of overloaded
types and the type system will ensure the existence of this minimum (Section 3.4.4).

It is well-known that in presence of subtyping a computation may change—precisely,
may decrease—the type of a term.12 If the term at issue is the argument of an overloaded
function, then different degrees of computation may lead to different branchselections.
Thus we have to determine when the selection for an overloaded application must be
performed. We follow alate selection(or late binding) discipline since it allows a high level
of code reuse and an incremental style of programming (seex2.1 of [Cas97]). Therefore
we impose that a reduction such as (1) can be performed if and only ifN is closed (i.e.,
without free term variables) and in normal form (i.e., it cannot be reduced any more).

3.4.3. Annotations
Determining a selection discipline is not enough to make the extensiona coherent

calculus. We also have tofreezethe type of overloaded functions. Consider the following
example: letM be a term of type�x:C:B, a subtype of�x:A:B. Then the body of the
following function (we omit the leading")�y: (�x:A:B):(y&M)
has typef�x:A:B; �x:C:Bg. If we apply this function toM itself, this application
reduces toM&M of typef�x:C:B; �x:C:Bg, which is nonsensical, since both branches
are defined for arguments of the same type (so there no longer is a “best approximating”
branch). Therefore, in order to record that the first branch was intended for arguments of
typeA and the second one for arguments of typeC, we annotate the & by the (intended)
type of the term: �y: (�x:A:B):(y &f�x:A:B;�x:C:BgM):12For example, ifA < B andM :A, then the redex(�x:B:x)M has typeB but its reductum,M , has typeA
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All the overloaded functions will have their (static) type annotated onthe &.Practical excursus. The use of annotations is needed only in the theoretic
approach. They are needed because in an overloaded term("&M1&M2& : : :&Mn) the
various subtermsMi may be different from�-abstractions. In practice (that is, with multi-
methods, generic functions, or the overloaded functors in Section 2.3 and Appendix A.2) this
never happens. In all practical implementations of overloading, the composing functions
are in �-abstracted form. We think that��& won’t make an exception. Thus, in a
possible implementation inspired by this work, overloaded functions would be of the form(�x:A1:M1&�x:A2:M2& : : :&�x:An:Mn), which provides all it is needed in practice:
each branch specifies the domain it was defined for, and its codomain isnot strictly
necessary to execution13. Thus, for overloaded functions of this form type annotations are
unecessary.2
3.4.4. Kinding

The deep interaction between overloading, subtyping, and late binding makes the lan-
guage very powerful and expressive, but it complicates the kinding of overloaded types.
In order to satisfy the subject reduction property not every set of�-types can be allowed
in the language. Given an environment�, a well-kinded overloaded typef�x:Ai:Bigi2I ,
besides being formed by well-kinded�-types, must satisfy three conditions:

(Normal types)For everyi 2 I the type�x:Ai:Bi is closed (it does not contain free
termvariables) and in normal form.

(Covariant types)For all i; j 2 I if � ` Ai � Aj then�; x:Ai ` Bi � Bj
(Unique selection)For every typeAwhose free variables are inDom(�) the setfAi j � `A � Ai; i 2 Ig either is empty or has a unique least element.

Note that all these conditions, which define the kinding relation, are defined in terms of the
subtyping relation. This is the reason why it is so important to have a subtyping relation
whose definition does not directly depend on the kinding one (see Footnote 17).

Let us examine each condition in detail� Suppose that the condition [normal types] was not fulfilled and open overloaded types
were allowed in the calculus. Then we could write a term such asM1&f�x:Ay:B;�x:AN:BgM2
whereA is a type family of the kind�x:A0:? andN a term of the typeA0.
Suppose thaty 62 Fv(M1) [ Fv(M2) [ Fv(N) and insert this term in a wider context(�y:S:(M1&f�x:Ay:B;�x:AN:BgM2))N
Then after�-reduction we would obtain the termM1[y := N ]&f�x:Ay:B;�x:AN:Bg[y:=N ]M2[y := N ]13The absence of codomains could cause the subject-reductionproperty not to hold, but this would not affect
the type-safety of the system.
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that is M1&f�x:AN:B;�x:AN:BgM2
which clearly is not well-formed (more precisely, it is untypable) since branch selection is
ambiguous.

A similar problem appears when the types are not in normal form14.� Condition [covariant types] ensures that during computation the typeof a term may
only decrease. More specifically, if we have a two-branched overloaded functionM of typef�x:A1:B1; �x:A2:B2g with A2 < A1 and we apply it to a termN that at compile-time
has typeA1, then the compile-time type ofM�N isB1 (more precisely,B1[x := N ]). But
if the normal form ofN has typeA2 (which is possible, sinceA2 < A1) then the run-time
type ofM�N will be B2 (more precisely,B2[x := N ]) and thereforeB2 � B1 must hold
(more precisely, it must hold under the hypothesis thatx : A2).� Condition [unique selection] concerns the selection of the correct branch.Recall that
if we apply an overloaded function of typef�x:Ai:Bigi2I to a term of typeA, then the
selected branch has type�x:Aj :Bj such thatAj = mini2IfAijA � Aig. This condition
is necessary and sufficient to ensure the existence and uniqueness of this branch.15

The last two conditions are already present in the�&-calculus where they have similar
justifications.

The first condition instead is new and it resembles the meet-closure propertyofF&� [Cas96,
Cas97]. Note however that this restriction is less constraining than meet-closure since it
allows dependency on types of any form. Indeed, while this condition requires that inf�x:Ai:Bigi2I the various�x:Ai:Bi must be closed, no restriction is imposed on the
form of Ai andBi which, therefore, may also be dependent or overloaded types (meet-
closure requires theAi’s to be atomic). Thus there is a real, though limited, interaction
between overloaded and dependent types.Practical excursus. The condition[normal form]is quite severe. From a practical
point of view the requirement that types are in normal form is rather harmless. Instead,
the condition that types are closed is very penalizing. The experience with object-oriented
programming shows that overloaded functions are defined only at toplevel (that is, not
in subterms, so that closure is trivially satisfied) and that in lower levels (in subterms)
overloaded functions are used (applied) rather than defined (abstracted). We think that
in many cases this should hold also for languages with dependent types(even though we
have no evidence to support this claim). However, as a referee pointed us,this restriction
rules out some interesting terms. For example, overloaded functions that return arrays
parametrized by their length are not allowed, since their type would have open codomains
(codomains with free variables different from the�-abstracted one):�n: nat:f�x:A:char[n] ; �x:B:int[n]g14Since�-reduction is acompatiblereduction (see Footnote 4), then it can take place in every occurrence of a
term and thus, in particular, in type annotations of overloaded terms. It is clear that normal forms would not be
necessary if we did not reduce annotations.15The restriction in [unique selection] that the free variables ofA are inDom(�), although natural, is quite
technical and deep. It is crucial for proving that the satisfaction of [unique selection] is invariant under substitution.
See the proof of Lemma 4.9 and note that it would not have worked if we had for example required the stronger
condition� ` A : ?.
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If n is not free inA andB, then such a situation can be dodged by swapping the arguments:f�x:A:�n: nat:char[n] ; �x:B:�n: nat:int[n]g
In any case we believe that in practice closure requirement for codomains could be relaxed.
We would lose subject reduction but this should not affect type soundness (similarly to what
happens for the system of [Ler94] we cited in the motivation section).

The closure of domains, instead is much more severe a restriction. For example, it does
not allow one to write an overloaded function defined on arrays of different types since it
would have a type with open domains, like this one�n: nat:f�x: char[n]:A ; �x: int[n]:Bg (2)

In this case there is no simple expedient to satisfy closure. Nor we can easily relax the
closure condition since while the type in (2) causes no harm to type soundness, a type such
as �n: nat:f�x: char[n]:A ; �x: char[3]:Bg (3)

must be forbidden since forn = 3 the two domains would be equated. The problem is how
to weaken the closure requirement of[normal form]so that the type in (2) is accepted and
the one in (3) is rejected. This issue does not seem of immediate solution since one has to
ensure some property for all possible term substitutions in domains. However, the point is
well worth of studying and we look to do it in future work.2
3.4.5. Typing

The typing system is obtained by adding the following three rules tothe��� typing rules:

T-" � ` ?� ` " : fg
T-&

� `M : f�x:Ai:Bigi�n � ` N : �x:An+1:Bn+1 � ` f�x:Ai:Bigi�n+1 : ?� `M&f�x:Ai:Bigi�n+1N : f�x:Ai:Bigi�n+1
T-OAPP

� `M : f�x:Ai:Bigi�n � ` N : Aj� `M �N : Bj [x := N ]
These typing rules deserve few comments. The first rule states that the empty overloaded
function has an empty overloaded type. The second rule states that the type of an overloaded
function is obtained by the union of the types of its branches, provided that the type resulting
from this union is well-formed. The last rule states that if the argument of an overloaded
function has typeAj then thej-th branch of the functionmaybe selected.16

Note that in (T-&) the well-kindness of the resulting overloaded type (in particular the
three conditions we just saw) must be checked.

3.4.6. Reduction16Note that the branch effectively selected at run time may be different from thej-th branch either becauseAj does not correspond to the “best approximating” branch, or becauseN is not a closed normal form (see next
section).
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The reduction for overloaded function applications in a context� is defined as follows:

If 1. N is closed and in normal form,
2. there existsi 2 [1::n] s.t.� ` N :Ai and8j 2 [1::n] � ` N :Aj ) � ` Ai � Aj

then (M1&f�x:Ah:Bhgh=1::nM2) �N !�& � M1 �N for i < nM2 �N for i = n
The �&-reduction is simpler than what the definition above let suppose. The rewrit-
ing rule states that if we pass an argumentN of type Ai to the overloaded function(M1&f�x:Ah:Bhgh=1::nM2) then we select the branch defined forAi (more precisely we
select the branchM2 if it is defined forAi, otherwise the branch is searched inM1). But
in order to perform the reduction two preconditions must be fulfilled. The first condition
requires thatN is a closed normal form because, as explained in Section 3.4.2, we want
to implement late-bound overloading. The second condition ensures that the most specific
branch compatible with the type of the argument is selected. Indeed, imagine that an
overloaded function with two branches, one for integers and the other for reals is applied
to an argument of type integer. If integer is a subtype of real then by subsumption the
argument has also type real. Thus either branch could be executed if the second condition
would not ensure that the most specific one, namely the one for integers, is selected.17

Finally note that when the reduction is performed, all expressions thatparticipate in the
selection are closed. Thus, the definition of�& does not depend on the typing assignments
in � but just only on its subtyping declarations.18Technical excursus. The requirement thatN is a closed normal form is very
strong. As explained for�& in Section 7.2 of [Cas97] this condition may be weakened.
For example, one can always safely perform the reduction when the involved overloaded
function has only one branch, or when the type of the argument is a leaf of the type hierarchy.
An interesting choice (but others are possible) is to weaken the�& rule as follows:

For Ai such that� ` N : Ai and8j 2 [1::n] � ` N : Aj ) � ` Ai � Aj ,
If N is closed and in normal formor fAj j 1 � j � n;� ` Aj � Aig = fAig, then(M1&f�x:Ah:Bhgh=1::nM2) �N !�& � M1 �N for i < nM2 �N for i = n

In words, when selecting a branch we check whether there are other branches with smaller
domain. If not, we know that the selection cannot further change andtherefore we perform
the reduction even ifN is not closed.17The�&-reduction depends on typing, which in turn depends on kinding. The subtyping relation depends
on �-conversion (rule S-ApR), therefore, strictly speaking, the subtyping relation is not independent from the
typing and kinding relations. So it seems that by defining the�& reduction we reintroduced the circularity we
so hardly struggled against in Section 3.3.2. However, thisdependence is far milder than the one of�P� and it
does not cause any problem in the meta-theoretic study. For example, in the proof for substitution of subtyping
(Lemma 4.6, Case S-ApR), the induction concerns only the subtyping derivation, but not the typing or kinding
judgments.18This greatly simplifies the treatment of reduction. The definition of reduction can be given for a generic
context� but it has not to deal with it. So all the proofs of this articlethat deal with�& are given for a generic�.
It would be quite different if the reduction depended on the type assignments in�. In that case we would have to
define rules that handle contexts, such as:�; (x:A) `M1 !� M2� ` �x:A:M1 !� �x:A:M2
and deal with them explicitly in the proofs.
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This rule is interesting because, for example, it allows to deduce under the contextn: int that:19 ((�x: int:x+ x)&(�x: string:x@x)) � n � n+ n
However, such a rule would complicate the calculus (for example, this same example
shows that in this case reductions depend on the type assignments of the context�, with
the problems described in Footnote 18). Furthermore, this modification would not be
straightforward (for example, it is not clear how to prove that some properties are preserved
under substitution, such as the property of minimality in a set of open types). Therefore,
we prefer to proceed in this work as for�& and consider just the simpler formulation.2
3.4.7. Examples

As a first example of use of overloaded dependent types we can think of generalizing the
functionstring to array defined in the Introduction so that it can be applied to natural
numbers as well. Since a natural numbern needsdlog10 ne digits to be represented, then
such a function will have the following type:f �x: nat.char[dlog10 xe] ; �x: string.char[length(x)] g
To give a more detailed example we show two distinct encodings of the cartesian product.
The first one requires indexed types, is more complicated, but also moreefficient. The
second one is simpler, works for all types, but since it uses late binding, it requires run-time
type inference.

Let � be an atomic type with two constants20 1: � and2: �, andA a type indexed over�.
This can be expressed by the following context�0 � �: ? ; 1: � ; 2: � ; A : �x: �:?. Add
a further constant? : �x: �:A1 ! A2 ! Ax (note thatA1, A2, Ax, x1, etc. stand for the
applicationsA(1), A(2), A(x) andx(1)) with the following semantics:?xa1a2 = � a1 for x = 1a2 otherwise
(the last example of this section shows how to encode?). Then, we can use dependent
types to define the cartesian products ofA1 andA2:A1�A2 = �x: �:Ax( ; ) = �a1:A1:�a2:A2:�x: �:?xa1a2

fst = �x:A1�A2:x1
snd = �x:A1�A2:x2

A simpler encoding can be obtained by using overloaded types together with two atomic
types�1 and�2 and two constantsp1:�1 andp2:�2 (in this and in the following example
we omit type annotations and"’s):A1
A2 = f�x:�1:A1 ; �x:�2:A2g( ; ) = �a1:A1:�a2:A2:(�x:�1:a1&�x:�2:a2)

fst = �x:A1
A2:x � p1
snd = �x:A1
A2:x � p219We use the operator @ to denote string concatenation. This example was suggested by one of the referees.20We did not explicitly consider constants in the formal syntax of ��&. Rather, we take the attitude of [Bar92]

and call constants all variables that we “engage” not to abstract.



22 G. CASTAGNA, G. CHEN

Then it is possible to define genericfirstandsecondoperators that work with both encodings.
For examplefirst can be defined as(�x: (A1�A2):x1 & �x: (A1
A2):x � p1)
whose type is f�x: (�y: �:Ay):A1 ; �x: f�y:�1:A1 ; �y:�2:A2g:A1g
Note that all these definitions can be applied to pairs of terms whose typesare subtypes ofA1 andA2.

As a last example, imagine that we want to use dependent types to encode triples. We
want to define the encoding so that we can use triples where pairs are expected (as if they
were record types with labels1, 2, and3). This can be obtained by concatenating the two
following contexts:�0 � �123: ? ; �3 � �123: ? ; �12 � �123: ? ; �2 � �12: ? ; �1 � �12: ? ; 1: �1 ; 2: �2 ; 3: �3�1 � A: �x: �123:? ; ?:�x: �123:Ax
Context�0 declares three singleton types�1, �2, �3 respectively containing constants1, 2,
and3. It also declares two unions of these singletons,�12 (that contains both�1 and�2)
and�123 (that contains all the other types).21 Context�1 declares the typeA indexed over�123, together with a constant? such that?i : Ai for i = 1; 2; 3. Finally we encode? as
follows:? = �x: �123:�a1:A1:�a2:A2:�a3:A3:(�y: �1:a1&�y: �2:a2&�y: �3:a3&�y: �123:?y) �x
whose type22 is �x: �123:A1! A2! A3! Ax and whose semantics clearly is?xa1a2a3 = 8<: a1 for x = 1a2 for x = 2a3 for x = 3
With these declarations the dependent-types-based encoding for pairs is as before. Just the
pairing operator has to be modified to take into account the fourth argument of ?:A1�A2 = �x: �12:Ax( ; ) = �a1:A1:�a2:A2:�x: �12:?xa1a2(?3)

fst = �x:A1�A2:x1
snd = �x:A1�A2:x2

Triples are similarA1�A2�A3 = �x: �123:Ax( ; ; ) = �a1:A1:�a2:A2:�a3:A3:�x: �123:?xa1a2a321Instead of2: �2; 3: �3 we could equivalently have declareds: f�1 ! �2 ; �2 ! �3g, so to have2 � s � 1
and3 � s � (s � 1)22Note that, strictly speaking, the type of the inner overloaded function is not well-kinded: since�i � �123,
then the [covariant types] condition requiresy: �i ` Ai � Ay. This semantically holds:�i is a singleton
containingi, thusy: �i implies y = i. But this equality can be proved only by extending the systemwith the
distinguished singleton types introduced by David Aspinall in [Asp95]. This would lead us too far.
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Note that by the rule S-� A1�A2�A3 � A1�A2. Thus, thanks to subtyping, we need
not to define first and second projections for triples since the functions fst and snd defined
for pairs work also for triples (in object-oriented terminology we would say that triples
“inherit” first and second projections from pairs). Instead, we have to define the third
projection. A term may be statically typed as a pair and dynamically become a triple.
Thus, it is interesting to define the third projection also for pairs.If the pair dynamically
becomes a triple then this projection function returns the third component of the triple,
otherwise it returns?3. This is obtained by the following overloaded function:

trd = (�y:A1�A2:?3) & (�y:A1�A2�A3:y3)
whose type isf�y:(�x: i12:Ax):A3 ; �y:(�x: i123:Ax):A3g.
3.4.8. Properties

The hardest and most technical part of this work is to prove that��& enjoys good
theoretical properties. This is what the rest of this article is devoted to. More precisely,
after having formally presented��& (Section 4.1) we proceed as follows.

First, we prove the confluence of the calculus. Namely, let� = �1 [ �2 [ �&; ifM �� M1 andM �� M2 then there existsN such thatM1 �� N andM2 �� N
(Section 4.2).

Second, since we started from a set of rules, those of���, that do not include (general)
transitivity and reflexivity rules we have to prove that the subtyping relation on types is a
preorder, that is, that the two rules are admissible (Sections 4.3 and 4.4).

Third, we prove that our type system is sound since well-typed termsrewrite only into
well-typed terms. That is, if� `M : A andM � N then� ` N : A (Section 4.5).

Thanks to the absence of transitivity from the subtyping rules, it is then not very difficult
to prove that��& is a conservative extension of both��� and�& (Section 4.6).

A delicate point is that, since��& extends�&, it inherits from the latter non termination:
in �& it is possible to encode a fix-point combinator of type(A! A)! A for every typeA (seex6.2 of [Cas97]), and this same technique applies to��& as well. However in�& it
is possible to single out an interesting class of sub-calculi that are strongly normalizing. We
show that this result extends to��& (Section 5). The interest in normalization properties
in ��& stems from the fact that subtyping relies on�-conversion. Terms may appear
in types and�-conversion of terms is used to define subtyping. Strong normalization of
terms implies decidability of�-equality, which implies decidability of subtyping. Indeed,
in presence of the decidability of�-conversion it is easy to lift the proof of the decidability
of the subtyping (and thus of typing) relation of��� (this proof is given in Section 6.4) to
the strongly normalizing subsystems of��&. Thus, in these subsystems of��& we have
decidability for both subtyping and typing relations (which is the main result of Section 7,
and does not hold for the whole��&).

In Section 6 we prove some properties that are specific to���, namely that the subtyping
rules of��� describe an algorithm, that��� is equivalent to�P�, and the already cited
proof of decidability of the subtyping relation of��� that is then used in the last section
for studying decidability in��& (Section 7).
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4. FORMAL PRESENTATION OF ��&
In this section we give the formal definition of��& and we prove that it enjoys several

fundamental properties.

4.1. The system��&
The system��& is an extension of�& with first order types. There are four syntactic

categories: contexts, denoted by�, kinds, denoted byK, types, denoted byA, B, C, D,
and terms, denoted byM , N , P andQ. We useU to range over the last three syntactic
categories (all these meta-variable may appear indexed). Sometimes we will denote an
overloaded type as a set of�-types indexed over a set of indexes (typically, they will be
initial segments of natural numbers); we useI andJ to range over set of indexes andh; i; j; k to range over indexes. There are four judgment forms on these expressions:� ` K K is a kind in context�� ` A : K typeA has kindK in context�� `M : A termM has typeA in context�� ` A � B A is a subtype ofB in context�
These judgments are same as those in���.

Pre-terms, pre-types, pre-kinds, and pre-contexts (i.e., possibly not well-formed terms,
types, kinds, and contexts) are those in��� extended by an empty overloaded function,",
non empty overloaded functionsM&AM , applications of overloaded functionsM �M , and
overloaded pre-types,f�x:Ai:Bigi2I ,. The structure of kinds and contexts is unchanged.M ::= x j �x:A:M jMM j " j M&AM jM �MA ::= � j �x:A:A j �x:A:A j AM j f�x:A:A; :::; �x:A:AgK ::= ? j �x:A:K� ::= <> j �; x : A j �; � : K j �; � � A : K
4.1.1. Rules

The set of rules defining��& is obtained by adding to the rules of��� the kinding
and subtyping rules for overloaded types and the typing rules for the three new terms for
overloading. The complete set of rules is given in Appendix A.1.

The subtyping rule for overloaded types is

S-OVER
8j 2 J 9i 2 I � ` �x:Ai:Bi � �y:Cj :Dj� ` f�x:Ai:Bigi2I � f�y:Cj :Djgj2J

while the kinding rule is:

K-OVER

� ` ? 8i 2 I : � ` �x:Ai:Bi : ?8i 2 I : �x:Ai:Bi is closed and in normal form8i; j 2 I : � ` Ai � Aj ) �; x : Ai ` Bi � Bj8A:Fv(A) � Dom(� )) ((8i 2 I: � 6` A � Ai)_(9!i 2 I: � ` A � Ai ^ 8j 2 I � ` A � Aj ) � ` Ai � Aj))� ` f�x:Ai:Bigi2I : ?
This huge rule simply formalizes the conditions that we stated in Section 3.4.4. Namely, the
first line in the premises states that a well-kinded overloaded type is formed by well-kinded
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to the second line, are closed and in normal form. The third line requirescovariance while
the last two lines formalize the condition of unique selection.

Finally we add to the typing rules of��� the following rules:

T-" � ` ?� ` " : fg
T-&

� `M : f�x:Ai:Bigi�n � ` N : �x:An+1:Bn+1 � ` f�x:Ai:Bigi�n+1 : ?� `M&f�x:Ai:Bigi�n+1N : f�x:Ai:Bigi�n+1
T-OAPP

� `M : f�x:Ai:Bigi�n � ` N : Aj� `M �N : Bj [x := N ]
4.1.2. Notions of reduction

The�-reduction is defined as thecompatible closureof the union of threenotions of
reduction(for definitions seex3.1 of [Bar84]),�1; �2, and�& defined in Sections 3.2
and 3.4.6.

In the following we use R to denote the symmetric relation of!R, and use�R
(respectively=R) to denote reflexive, transitive closure of the reduction!R (respectively
of!R [  R). We useUR to denote theR-normal-form ofU and� to denote syntactic
identity of expressions.

We write� ` J to denote an arbitrary judgment and with an abuse of notation we will
write J !� J 0 to denote thatJ 0 is obtained by replacing a�-redex inJ by its reductum.

4.2. Confluence

The first property that we prove for��& is confluence (expressionsU in this section are
not assumed to be well-typed. We just require that all the type annotations of overloaded
terms occurring in them are closed, so that substitutions do not affect them). The proof is
a simple application of the Hindley-Rosen Lemma [Hin64, Ros73].Lemma 4.1 (Hindley-Rosen Lemma). Let R1; R2 be two notions of reduction. IfR1; R2 are confluent and�R1 commutes with�R2 thenR1 [R2 is confluent.

Set nowR1 = �1 [ �2 andR2 = �&. If we prove that these notions of reduction satisfy
the hypothesis of the lemma above, we obtain confluence of our system. The confluence
of �1 [ �2 is easy to prove since it essentially reduces to the confluence of��. For�&
it is easy to verify that it satisfies the diamond property: for example consider the two�&-reductions,M2N  �& (M1&AM2) �N !�& (M1&AM 02) �N
whereM2 !�& M 02. A has not been changed in the second reduction, and the branch
selection in(M1&AM 02) �N is determined byA and the typing ofN , so this expression�&-reduces toM 02N . On the other hand,M2N !�& M 02N .

Thus it remains to prove that the two notions of reduction commute. Tothat end we can
use the Lemma 3.3.6 of [Bar84], which is restated here. For any reduction notionR, let=!R denote the reflexive closure ofR.
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Now consider Lemma 4.2. The next proposition shows that forR1 = �&; R2 = �1 [�2
the hypothesis of the lemma are satisfied. Therefore we can conclude that!!�& commutes
with!!�1[�2 .Proposition 4.3 (Weak commutativity). If N1  �1[�2 U !�& N2, then9N3 s:t: N1��&N3 = �1[�2 N2

Confluence of�-reduction follows from the Hindley-Rosen Lemma:Corollary 4.4 (Confluence). SupposeU;U 0; U 00 are pre-expressions. IfU �� U 0
andU �� U 00, then there exists a pre-expressionV such thatU 0 �� V andU 00 �� V .

4.3. Structural Properties and�2-reduction

In this section we prove some structural properties of the��& typing and subtyping
systems, as well as some properties of the�2-reduction. All these properties are rather
technical and not very interesting by their own sake. But they are necessary to the proofs of
Section 4.4. Thus we strongly suggest to the reader to skip this section in the first reading
and to pass directly to Section 4.4.

In all this Section 4.3 long,J denotes either a typing (M :A), or a kinding (A:K), or a
context formation (K) judgment (i.e., subtyping judgments are not included).

4.3.1. Substitution
Since subtyping system is independent from typing and kinding and overloaded types

are formed only by closed types, then it is not very difficult to prove substitution property
for subtyping, that is if� ` B � C is derivable, then for any termM , the judgment�[x :=M ] ` B[x :=M ] � C[x :=M ] is derivable as well.

But first let us precisely define substitution for a context.Definition 4.5 (Substitution of context). The substitution�[x :=M ] of a variablex by a termM in the context� is defined as follows:<> [x :=M ] =def <>(�1; y : A)[x :=M ] =def �1[x :=M ]; y : A[x :=M ](�1; x : A)[x :=M ] =def �1[x :=M ]
Note that, if� is a well-formed context (i.e.,� ` ?) and� = �1; x : C;�2, then�[x :=M ] = �1;�2[x :=M ] sincex 62 �1.Lemma 4.6 (Substitution for subtyping). If � ` B � C, then�[x :=M ] ` B[x :=M ] � C[x :=M ]. Furthermore the depth of the derivation of�[x :=M ] ` B[x :=M ] �C[x :=M ] is not greater than the depth of the derivation of� ` B � C
Proof. By induction on the depth of the derivation of� ` B � C and performing a case

analysis on the last rule of the derivation.2
Note that in the lemma above there is no requirement onM (e.g. it may be non-typable).

If the substitution variable does not appear in the subtyping judgment, then the converse
of the above result holds:
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Proof. Straightforward induction on the depth of the derivation of� ` A � B. 2
Next we study the preservation under substitution of the conditions of well-formation of

overloaded types. First,we consider the covariance condition:Lemma 4.8 (Preservation of covariance by substitution).If x 62 Fv(A)[Fv(A0)[Fv(B) [ Fv(B0) and� ` A � A0 ) � ` B � B0, then �[x := M ] ` A � A0 )�[x :=M ] ` B � B0
Proof.�[x :=M ] ` A � A0 ) � ` A � A0 Lemma 4.7) � ` B � B0 By assumption) �[x :=M ] ` B � B0 Lemma 4.62

Then we consider the uniqueness of selection (see also Footnote 15):Lemma 4.9 (Preservation of uniqueness by substitution).
LetfAi j i 2 Ig be a set of closed types. Then8A s:t: Fv(A) � Dom(�);((8i 2 I: � 6` A � Ai) _(9!i 2 I: � ` A � Ai ^ 8j 2 I � ` A � Aj ) � ` Ai � Aj)) (4)

implies8A s:t: Fv(A) � Dom(�[x :=M ])((8i 2 I: �[x :=M ] 6` A � Ai) _(9!i 2 I: �[x :=M ] ` A � Ai ^8j 2 I �[x :=M ] ` A � Aj ) �[x :=M ] ` Ai � Aj))
Proof. Fix an A such thatFv(A) � Dom(�[x := M ]). Note thatFv(A) �Dom(�[x := M ]) � Dom(�). Therefore the equation (4) holds for this particularA.
If the first clause of (4) holds, that is(8i 2 I: � 6` A � Ai), then(8i 2 I: �[x :=M ] 6`A � Ai) holds. Indeed, imagine that there existsh 2 I such that�[x := M ] ` A � Ah.

SinceFv(A) � Dom(�[x :=M ]) thenx 62 Fv(A). Therefore we can apply Lemma 4.7
and obtain� ` A � Ah. Contradiction.

If the second clause of (4) holds, then leth be the unique index inI such that� ` A � Ah ^ 8j 2 I � ` A � Aj ) � ` Ah � Aj (5)

We first prove the existence part by showing that�[x :=M ] ` A � Ah ^ 8j 2 I �[x :=M ] ` A � Aj ) �[x :=M ] ` Ah � Aj (6)

Observe that� ` A � Ah Formula (4)) �[x :=M ] ` A[x :=M ] � Ah[x :=M ] Lemma 4.6) �[x :=M ] ` A � Ah x 62 Fv(A) andAh is closed
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and that�[x :=M ] ` A � Aj) � ` A � Aj Lemma 4.7) � ` Ah � Aj Implication (5)) �[x :=M ] ` Ah[x :=M ] � Aj [x :=M ] Lemma 4.6) �[x :=M ] ` Ah � Aj Ah; Aj are closed

These two last observations imply (6).
In order to prove the uniqueness ofh for (6), assume that there existsk 2 I that satisfies

(6). This implies that� ` A � Ak (Lemma 4.7) and that for allj 2 I� ` A � Aj) �[x :=M ] ` A � Aj Lemma 4.6) �[x :=M ] ` Ak � Aj Assumption for (6)) � ` Ak � Aj Lemma 4.7) h = k By the uniqueness ofh for (5)2 Proposition 4.10 (Context properties).
1. If � ` J is provable, then for every prefix�0 of �, �0 ` ? is provable by a derivation of
strictly lesser depth.

2. �1; x : A;�2 ` J ) �1 ` A : ?, where�1 ` A : ? has a smaller proof than�1; x : A;�2 ` J .

3. If �;�0 ` J is provable and�; x : A;�0 ` ? then also�; x : A;�0 ` J is provable
(weakening).

Proof. The first and third points can be easily proved by induction on the depthof the
derivation of the judgment� ` J . The second point is a straightforward consequence of
the first one.2Proposition 4.11 (Substitution). Let� � �1; x:C;�2. If � ` J and�1 ` M :C
are derivable, then also�[x :=M ] ` J [x :=M ] is derivable. More precisely:

1.� ` K ) �[x :=M ] ` K[x :=M ]
2.� ` A:K ) �[x :=M ] ` A[x :=M ] : K[x :=M ]
3.� ` N :A ) �[x :=M ] ` N [x :=M ] : A[x :=M ]
(Substitution for subtyping has already been proved in Lemma 4.6)

Proof. By induction on the depth of the the derivation of� ` J , by a case analysis on
the last applied rule. The proof is quite straightforward. We just hint the following points.
Proposition 4.10 must be used for the case F-TERM when the variable introduced by the
rule isx. The case for T-VAR is the only case which uses the hypothesis� `M : C. The
case T-SUB is proved by applying Lemma 4.6. The case K-CONV uses the property thatK =� K 0 impliesK[x := M ] =� K 0[x := M ]. The cases for the elimination rules (i.e.,
K-APP, T-APP, T-OAPP) hold because of the propertyU [x := M ][y := N [x := M ]] =U [y := N ][x :=M ]. The case K-OVER uses Lemmas 4.8 and 4.9.2
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4.3.2. Kinding PropertiesLemma 4.12. If � ` ? andx 2 Dom(�) then� ` �(x) : ?
Proof. A simple induction on the length of�. 2

A simple but important consequence of the previous result isProposition 4.13. If � `M : A then� ` A : ?.
Proof. By induction on the depth of the derivation of� `M : A and performing a case

analysis on the last applied rule. Use Lemma 4.12 in the case T-VAR and thesecond point
of Proposition 4.11 for the cases T-APP and T-OAPP.2
4.3.3. Generation Principle

The generation for kinding tells us what information we can infer from akinding judgment
about a kind.Proposition 4.14 (Generation for kinding).� ` � : K ) K =� Kind�(�)� ` �x:A:B : K ) K � ? ^ �; x : A ` B : ?� ` �x:A:B : K ) 9K 0 s:t: K =� �x:A:K 0 ^ �; x : A ` B : K 0� ` AM : K ) 9B;K 0 s:t: � ` A : �x:B:K 0 ^ � `M : B ^ K 0[x :=M ] =� K� ` f�x:Ai:Bigi2I : K ) K � ? ^ 8i 2 I; �; x : Ai ` Bi : ?

Proof. By inspection of the kinding rules.2Proposition 4.15 (Uniqueness of kinds). If � ` A : K and � ` A : K 0, thenK =� K 0
Proof. Uniqueness of kinding can be obtained by observing the fact that all kindsare

of the form�x1:A1 :: �xn:An:? and�x1:A1 :: �xn:An:? =� �x1:A01 :: �xm:A0m:? iffn = m;Ai =� A0i; i = 1::n. 2
4.3.4. Context change

The properties in this subsection concern the preservation of judgment derivability with
respect to change of context.Proposition 4.16 (Bound change for subtyping). If �1; x : A;�2 ` B � C, then�1; x : A0;�2 ` B � C

Proof. By induction on the derivation of�1; x : A;�2 ` B � C. 2
This property shows that subtyping does not depend on the types of the context term
variables. The only declarations in� that concerns subtyping are bounded kind assignments
such as� � A : K. 23

Now, we study the preservation of the conditions in the overloaded type formation under
type changes of term variables in the context. First, we show the preservation of covariance
condition under term bound change.23Of course this holds in our system only because the definitionof � does not depend on kinding judgments.
If instead of the subtyping relation we had used a kinding relation this would not hold (e.g. see Proposition 4.19).



30 G. CASTAGNA, G. CHENLemma 4.17 (Preservation of covariance by term bound change).If �1; x : C;�2 `A � A0 implies �1; x : C;�2 ` B � B0, then �1; x : C 0;�2 ` A � A0 implies�1; x : C 0;�2 ` B � B0.
Proof. A trivial application of Proposition 4.162
Next lemma shows the preservation under bound change of the “unicity ofbranch”

property of overloaded types.Lemma 4.18 (Preservation of branch unicity by term bound change).
Let� � �1; x:C;�2 and�0 � �1; x:C 0;�2. For every setfAi j i 2 Ig of closed types,8A s:t: Fv(A) � Dom(�):( (8i 2 I: � 6` A � Ai)_(9!i 2 I: � ` A � Ai ^ 8j 2 I � ` A � Aj ) � ` Ai � Aj))
implies8A s:t: Fv(A) � Dom(�0):( (8i 2 I: �0 6` A � Ai)_(9!i 2 I: �0 ` A � Ai ^ 8j 2 I �0 ` A � Aj ) �0 ` Ai � Aj))

Proof. Use the same technique as Lemma 4.9 and use Proposition 4.16 instead of
Lemmas 4.7 and 4.62Proposition 4.19 (Bound narrowing). Let�1 ` A0 � A and�1 ` A;A0 : ?. Then�1; x : A;�2 ` J implies �1; x : A0;�2 ` J .

Proof. By induction on the derivation of the judgment. For the case T-VAR perform
an application of of T-SUB. For the case T-Sub use bound change for subtyping (Proposi-
tion 4.16). For the case K-OVER use Lemma 4.17, and 4.18.

The remaining cases are easy.2Proposition 4.20 (Kinding for subtyping). If � ` A;B : K;� ` A � B, then for
every subtyping judgment�0 ` C � D in the derivation of� ` A � B, there exists a kindK 0 such that�0 ` C;D : K 0.

Proof. First of all note that without loss of generality we can consider only derivations in
which there never are two consecutive applications of K-CONV. Then proceed by induction
on the depth of the derivation of� ` A � B by performing a case analysis on the last
applied rule. The cases for S-ApR, S-OVER, and S-ApT are straightforward. The cases
S-ApSR and S-ApSL are direct consequence of Lemma 4.11. A more difficult case is the
one for S-� (and S-� which is similar): considerA � �x:C1:D1 andB � �x:C2:D2.
From Proposition 4.14 we obtain that�; x:Ci ` Di : ? (i=1,2). From Lemma 4.10, we
deduce that� ` Ci : ?. Therefore it remains to prove that�; x : C2 ` D1 : ?. This can be
obtained by using Proposition 4.19. The result follows by induction hypothesis.2
4.3.5. �2� strong normalization

In this subsection, we will introduce the�2�-reduction and prove that it is strongly
normalizing. This fact implies that the maximal number of�2�-reduction steps from a
typeA is always finite. We will use this number in the induction measure for the proofs of
several important results, including the proof of transitivity elimination.

We begin by showing the�2 subject reduction, which is also a property needed in the
proofs of transitivity elimination and decidability of subtyping.



INFORMATION AND COMPUTATION168(1):1-67, (2001) 31Proposition 4.21 (�2 subject reduction). If � ` J; J ��2 J 0, then � ` J 0.
Proof. This is the classical proof of subject reduction for simply typed�-calculus

performed by induction on the derivation of� ` J . It relies on the generation for kinding
(Proposition 4.14).2

Let� be a context, the one step�-reduction, denoted by,!�, is defined as the compatible
closure of the following reduction: � !� �(�)
For the proof of�2� strong normalization we proceed in two steps. First, we prove the�2 strong normalization, then we use it to prove the�2� strong normalization. Intuitively,
the first assertion holds because�2-reduction does not introduce new redexes (existing
redex may be duplicated or modified). The second result is obtained by associating every
a �2�-reduction sequence to a�2-reduction sequence that binds it, a technique similar to
the one introduced in [Che96].

In more detail,�2 strong normalization is straightforward since it suffices to observe that�2 reduction concerns only redexes of the form(�x:A:B)M whereM is a term. Reduction
of such redexes may duplicate redexes inM , but it will not introduce new redexes.Proposition 4.22 (�2 strong normalization). Let K;A;M respectively denote a
pre-kind, a pre-type, and a pre-term. ThenK;A;M are�2 strongly normalizing.

Proof. ConsiderM . Define a functionS from pre-terms to a multiset of natural numbers.S(M) = fn j n is the size of a�2 redex inMg
where “the size of a�2 redex” is the total number of symbols in the redex. IfM !�2 N ,
then a redexR in M will be erased and some subredexesr 2 R will be duplicated.
Therefore,S(N) is obtained fromS(M) by replacing one big number by a finite sequence
of strictly smaller numbers. By the well-known multiset order, the reduction will terminate.
This holds also if we considerA orK instead ofM . 2

The�-reduction is obviously strongly normalizing for well-formed� (circularities are
not allowed). The�2�-reduction is the combination of�2 and�-reduction. Note that the
combination of two normalizing reductions may be not normalizing (e.g.consider the union
of these two rewriting rules:a ! b andb ! a). In our specific case, the�2-reduction
may increase the number of�-redexes, and on the other hand, a�-reduction may increase
the number of�2-redex. We prove the�2� strong normalization by transforming a�2�-
reduction into a�2-reduction by the functionFE which takes an expression and returns its�-reduction normal form:FE �(U) def= the�-normal form ofU
Notice thatFE � is well-defined on well-formed terms, types and kinds. We will omit the
subscript� and simply writeFE when it is clear from the context.Proposition 4.23 (�2� strong normalization). For �2�-reduction, we have the fol-
lowing results:

1.If � ` K, then K is�2� strongly normalizing;
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2.If � ` A : K, then A is�2� strongly normalizing;
3.If � `M : A, then M is�2� strongly normalizing.

Proof. First of all note that�2 and� reductions commute in a very precise way, namely.
If M !� M1 andM !�2 M2 then there existsN such thatM1 !�2 N andM2 �� N .M � > M1�2_ _�2M2 � >>N
Indeed a�-reduction does not affect an existing�2-redex while a�2-reduction may dupli-
cate an existing�-redex or delete it.

Let U;U1; U2; ::: be a�2�-reduction sequence starting fromU and consider a genericUi !R Ui+1. If R is � thenFE (Ui) = FE (Ui+1).
If R is �2 then by observing that the�2-reductum of a�-normal-form is a�-normal-

form and by composing the commutativity property above we obtain thatFE (Ui) !�2FE (Ui+1): Ui � > : � > : : : : : : : : � > FE (Ui)�2_ _�2 _�2 : : : _�2 _�2Ui+1 � >>: � >>: : : : : : : : � >>FE (Ui+1)
So for everyi eitherFE (Ui) !�2 FE (Ui+1) or FE (Ui) !0 FE (Ui+1) (a zero step

reduction) holds.
Since� is strongly normalizing we cannot have an infinite sequence of zero-stepreduction

(otherwise these would correspond to an infinite sequence of�-reductions on theUi’s).
Thus,FE (U);FE (U1); FE (U2); ::: is a �2-reduction sequence starting fromFE (U)

whereFE (Ui) = FE (Ui+1) for somei. Since�2-reduction is strongly normalizing and
the zero-step reductions are finite, then there exists a numbern such thatFE (Un) =FE (Un+1) = FE (Un+2); :::. This implies that the reduction sequenceUn; Un+1; ::: is a�-reduction. But�-reduction is normalizing, so the sequenceU;U1; U2; :::must terminate.2

4.4. Admissible Rules

In this section, we prove that the subtyping relation defined for��& is a preorder on
well-kinded types. More precisely we prove that the rules (S-CONV) and(S-TRANS)
(cf. Section 3.3) areadmissible(see Footnote 7 for definitions) in our system. Both prop-
erties are proved by joint induction on the concerned expressions and on the number of�2�-reduction steps (that are finite, since�2�-reduction is strongly normalizing: Proposi-
tion 4.23).
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type of a term. Observe that, given� ` A;B : ?, the derivation of� ` A � B does
not contain any instance of the rule S-�. Since the typing system uses subtyping only
on types (and not on type families, rule T-SUB), then the rule S-� can be harmlessly
eliminated from the system (actually, we did not include it in Appendix A.1: the rules in the
appendix really define a subtyping relation). In other words, while in�P� the rule S-� is
necessary to deduce subtyping on types (when the types are applications oftype families),
in ��& (and���) this rule is only used in the deductions of sub-family judgments such
as� ` �x1:A1:�x2:A2 : : :�xn:An:B � �x1:A01:�x2:A02 : : :�xn:A0n:B0.

We decided to keep it in our system only because�P� has it. With this rule we can show
the equivalence of Property 3.1 and state it for allA;B such that� ` A;B : K (instead
just for allA;B such that� ` A;B : ?).

We ignore this rule in future. Although it is present in several type systems, the rule S-�
is somewhat anomalous, since it defines true sub-family relations (in which expressions
could possibly be kinded by�x1:A1:::�xn:An:? with n � 1). In this sense (and under
the assumption that typing matters more than subtyping), the rules S-ApR, S-ApSL, and
S-ApSR are much more reasonable and intuitive since they confine subtyping to pre-types,
even in presence of type families.

This feature, the non-utility of the S-�, also simplifies the meta-theoretic study. One of its
consequences is that we neednotto prove that the general subtyping family application rule
SAC-app is admissible in��&. In the rest of this article we will heavily use reflexivity and
transitivity of subtyping (that we prove in this section), but we will not need the subtyping
family application property. The only case in which the admissibility of this rule is needed
is to prove Property 3.1. That is the reason why we prove the admissibility of this rule for��� (Proposition 6.2) but not for��&.2
Let� be a context andU an expression. We denote byMaxRed�(U) the maximal length of
a�2�-reduction starting fromU , and bySize(U) the number of distinct symbols appearing
in U (so for exampleSize(�x : �:x) = 5 since we have�, :, .,x, and�.)

4.4.1. Admissibility of ReflexivityProposition 4.24 (Admissibility of Reflexivity). If A =� B ^ � ` A;B : ?,
then � ` A � B.

Proof. SinceA;B are well kinded types, they can only have one the following forms�M1::Mn n � 0�x:C:D(�x:C:D)M1::Mn n � 1f�x:Ai:Bigi2I
Let� be a context andA;B two types such that� ` A;B : ?. Define the induction measure
Weight�(A;B) as the pair:

Weight�(A;B) =def < MaxRed�(A) + MaxRed�(B);Size(A) + Size(B) >
and use the lexicographical order for pairs (most significative component on the left).

By induction onWeight�(A;B) and examination of all possible cases.2



34 G. CASTAGNA, G. CHEN

With reflexivity, the bound� equivalence property becomes a special case of bound
narrowing.Proposition 4.25 (Bound�-equivalence). Let A =� A0 and �1 ` A;A0 : K.
Then: �1; x : A;�2 ` J ) �1; x : A0;�2 ` J�1; � � A : K;�2 ` J ) �1; � � A0 : K;�2 ` J

Proof. By induction on the derivation of the judgment.2
4.4.2. Admissibility of Transitivity

In order to prove that the rule� ` A;B;C : ? � ` A � C � ` C � B� ` A � B trans

is admissible in��& we consider the subtyping system extended with the above transitivity
rule (we denote it by��&t and judgments provable in the extended system by`t) and we
perform a transitivity-elimination process. Namely, we prove that for every derivation in��&t there exists a derivation in��& for the same judgment. The method is essentially
a process of transforming transitivity applications into derivations in which transitivity
occurs only in a smaller degree, as it is usual in cut elimination processes. Therefore, it is
necessary to define a well-founded measure over transitivity applications,and show that in
each step of transformation, this measure will reduce.

We associate to every application of the transitivity rule� ` A;B;C : ? � ` A � B � ` B � C� ` A � C
the lexicographically ordered measureWeight�(A;B;C) defined as< MaxRed�(A) + MaxRed�(B) + MaxRed�(C);Size(A) + Size(B) + Size(C) >Proposition 4.26 (Transitivity elimination in��&t ). If � `t A � B, then � `A � B.

Proof. The proof is done by induction on the number of applications of transitivity
appearing in a derivation.

The inductive case is straightforward: if in a given derivation there are n > 1 appli-
cations of transitivity then consider any subderivation containing exactly one transitivity
application. By induction we can transform it into a transitivity freederivation. Thus the
global derivation has nown� 1 transitivity applications. The result follows by using the
induction hypothesis once more.

So let us consider the case in which there exactly is one application of the transitivity
rule. Consider the subderivation ending by the transitivity.� ` A0; B0; C 0 : ? � ` A0 � B0 � ` B0 � C 0� ` A0 � C 0 trans
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The derivations of� ` A0 � B0 and� ` B0 � C 0 are transitivity-free, i.e. they are
derivations in��&, whereas� `t A0 � C 0 is a��&t judgment.

We show by induction onWeightthat this derivation can be transformed into a transitivity
free derivation.

We proceed by case analysis of the last pair of rules used to derive the premises of the
transitivity rule.Case (S-�, S-�). The derivation must end byJK � ` A2 � A1 �; x : A2 ` B1 � B2� ` �x:A1:B1 � �x:A2:B2 S-� � ` A3 � A2 �; x : A3 ` B2 � B3� ` �x:A2:B2 � �x:A3:B3 S-�� `t �x:A1:B1 � �x:A3:B3 trans

whereJK is the kinding judgment� ` �x:A1:B1; �x:A2:B2; �x:A3:B3 : ?.
This derivation can be transformed intoJK1 � ` A3 � A2 � ` A2 � A1� `t A3 � A1 JK2 �; x:A3 ` B1 � B2 �; x:A3 ` B2 � B3�; x:A3 `t B1 � B3� `t �x:A1:B1 � �x:A3:B3

whereJK1 � � ` A1; A2; A3 : ? andJK2 � �; x : A3 ` B1; B2; B3 : ?.
The derivability of the judgmentsJK1; JK2 and�; x : A3 ` B1 � B2 can be obtained

as follows.� ` �x:A1:B1; �x:A2:B2; �x:A3:B3 : ?) �; x : A1 ` B1 : ? ^ �; x : A2 ` B2 : ? ^ �; x : A3 ` B3 : ? Prop. 4.14) � ` A1; A2; A3 : ? Prop. 4.10� ` A3; A2 : ? ^ � ` A3 � A2 ^ �; x : A2 ` B1 � B2) �; x : A3 ` B1 � B2 Prop. 4.16� ` A3; A2 : ? ^ � ` A3 � A2 ^ �; x : A2 ` B2 : ?) �; x : A3 ` B2 : ? Prop. 4.19� ` A3; A2 : ? ^ � ` A3 � A1 ^ �; x : A1 ` B1 : ?) �; x : A3 ` B1 : ? Prop. 4.19

In the last implication� ` A3 � A1 follows by induction hypothesis from� ` A1; A2; A3 :?, � ` A3 � A2, and� ` A2 � A1.
In conclusion,� ` A1; A2; A3 : ?;�; x : A3 ` B1; B2; B3 : ? and�; x : A3 ` B1 � B2

are all derivable without transitivity. Furthermore, we have two new subderivations in
which the transitivity appears only once at the end, the sizes of whose types are strictly
smaller than those of the original transitivity application and where maximal�2�-reduction
steps do not increase (note indeed thatMaxRed�;x:F (E) = MaxRed�(E) for every�, F ,
andE) . So Weight�(A1; A2; A3) and Weight�;x3:A(B1; B2; B3) are strictly less than
Weight�(�x:A1:B1; �x:A2:B2; �x:A3:B3). Finally, by induction hypothesis the transitiv-
ity application in the new derivations can be eliminated.Case (S-ApR, S-ApR). By transitivity of�-conversion.Case (S-ApSL, ) The derivation must end byJK � ` (B[x :=M1])M2::Mn � C� ` (�x:A:B)M1::Mn � C S-ApSL � ` C � D� `t (�x:A:B)M1::Mn � D trans
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whereJK � � ` (�x:A:B)M1::Mn; C;D : ?. By �2 subject-reduction (Lemma 4.21),(B[x := M1])M2::Mn is well-kinded in the context�. So the above derivation can be
transformed intoJK 0 � ` (B[x :=M1])M2::Mn � C � ` C � D� `t (B[x :=M1])M2::Mn � D trans� `t (�x:A:B)M1::Mn � D S-ApSL

whereJK 0 � � ` (B[x :=M1])M2::Mn; D;C : ?. The sizes of the types in the transitiv-
ity application may increase, but the maximal number of steps of�2�-reduction decreases
since(�x:A:B)M1::Mn !�2 (B[x := M1])M2::Mn. So the derivation measureWeight
decreases for the new transitivity application. The result follows by induction hypothesis.Case ( , S-ApSR). Similar.Case (S-ApT, ). Similar. Just note thatWeightdecreases because there is a�-reduction:�M1::Mn !� �(�)M1::MnCase (S-ApR, S-ApT). The derivation must end byJK M1 =� M 01 � � � Mn =� M 0n� ` �M1::Mn � �M 01::M 0n S-ApR

� ` �(�)M 01::M 0n � C� ` �M 01::M 0n � C S-ApT� `t �M1::Mn � C trans

whereJK � � ` �M1::Mn; �M 01::M 0n; C : ?. From the kinding assumptionJK and
from the observation that� and�(�) have the same kind it follows that� ` �(�)M1::Mn;�(�)M 01::M 0n; C : ?
By the reflexivity of subtyping (Proposition 4.24), the judgment � ` �(�)M1::Mn ��(�)M 01::M 0n is derivable. Therefore, we have a derivation ending byJK 0 � ` �(�)M1::Mn � �(�)M 01::M 0n � ` �(�)M 01::M 0n � C� `t �(�)M1::Mn � C trans� `t �M1::Mn � C S-ApT

whereJK 0 � � ` �(�)M1::Mn;�(�)M 01::M 0n; C : ?. Again theWeightmeasure de-
creases because of the�-reduction.Case (S-ApSR, S-ApSL). The derivation must end byJK � ` C � B[x :=M1]M2::Mn� ` C � (�x:A:B)M1::Mn S-ApSR

� ` B[x :=M1]M2::Mn � C 0� ` (�x:A:B)M1::Mn � C 0 S-ApSL� `t C � C 0 trans

whereJK � � ` C; (�x:A:B)M1::Mn; B[x :=M1]M2::Mn : ?. The derivation can be
transformed intoJK 0 � ` C � B[x :=M1]M2::Mn � ` B[x :=M1]M2::Mn � C 0� `t C � C 0 trans
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whereJK 0 � � ` C;B[x := M1]M2::Mn; C 0 : ?. TheWeightdecreases because of the�2-reduction.Case (S-OVER,S-OVER). Suppose that the last step of the derivation isJK � ` f�x:Ai:Bigi2I � f�x:Eh:Fhgh2H � ` f�x:Eh:Fhgh2H � f�x:Cj :Djgj2J� `t f�x:Ai:Bigi2I � f�x:Cj :Djgj2J trans

whereJK � � ` f�x:Ai:Bigi2I ; f�x:Eh:Fhgh2H ; f�x:Cj :Djgj2J : ?.
Since this is the only application of the transitivity rule, the twoassumptions can only

be derived by the S-OVER rule. That is,8j 2 J � ` �x:E�(j):F�(j) � �x:Cj :Dj� ` f�x:Eh:Fhgh2H � f�x:Cj :Djgj2J S-OVER

and 8h 2 H � ` �x:A (h):B (h) � �x:Eh:Fh� ` f�x:Ai:Bigi2I � f�x:Eh:Fhgh2H S-OVER

with both� : J ! H and : H ! I total.
For everyj 2 J ,� ` �x:A (�(j)):B (�(j)) � �x:E�(j):F�(j) ^ � ` �x:E�(j):F�(j) � �x:Cj :Dj

SinceWeighthas decreased we can apply the induction hypothesis obtaining that for everyj 2 J � ` �x:A (�(j)):B (�(j)) � �x:Cj :Dj
which means that 8j 2 J 9i 2 I � ` �x:Ai:Bi � �x:Cj :Dj
The result follows by S-OVER.2Corollary 4.27 (Admissibility of transitivity). If � ` A;B;C : ? , � ` A � B ,
and � ` B � C, then � ` A � C.

4.5. Subject Reduction
In this section, we show the generation for typing and prove subject reduction.
This result relies on the admissibility of transitivity stated in the previous section. Indeed,

the first step in proving subject reduction consists in proving that every typing derivation
can be transformed into a derivation where there are no consecutive applications of the
subsumption rule. This follows straightforwardly from the transitivity of subtyping since
whenever there are two consecutive applications of subsumption such as� `M : A � ` A � B � ` A;B : ?� `M : B T-SUB � ` B � C � ` B;C : ?� `M : C T-SUB
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then it is possible to deduce from the transitivity of subtyping that � ` A � C and,
therefore, replace them by� `M : A � ` A � C � ` A;C : ?� `M : C T-SUB

Generation for typing describes the information we can infer about a typefrom a provable
typing judgment.Proposition 4.28 (Generation for typing).� ` x : C ) � ` �(x) � C� ` �x:A:M : C ) 9B s:t: �; x : A `M : B ^ � ` �x:A:B � C� `MN : C ) 9A;B s:t: � `M : �x:A:B ^ � ` N : A ^ � ` B[x := N ] � C� `M �N : C ) � `M : f�x:Ai:Bigi�n ^ (9i � n: � ` N : Ai ^ � ` Bi[x := N ] � C)� `M1&AM2 : C ) � `M1 : f�x:Ai:Big1=1::n�1 ^ � `M2 : �x:An:Bn ^ � ` A � C

whereA = f�x:Ai:Bigi=1::n
Subject reduction is one of the main concerns in the study of dependent types with

subtyping. Since subtyping is separated from other judgments the proof is quite simple.Proposition 4.29 (Subject reduction). If � ` J and J �� J 0, then � ` J 0.
Proof. It is enough to prove the one step case, since the result follows by induction

on the number of the steps. We prove the one step case by induction on the derivation
of the judgment� ` J and performing a case analysis on the reduction. Without loss of
generality, we assume that there are not two consecutive applications of subsumption.

We show the most significative cases. The others are either similar or straightforward.Case J � � ` (�x:A:M)N : B ^ (�x:A:M)N !�1 M [x := N ].
By Proposition 4.28 there existC andD such that� ` �x:A:M : �x:C:D;� ` N : C,
and � ` D[x := N ] � B (7)

We apply once more Proposition 4.28 and we obtain that there existsF such that�; x:A `M : F and� ` �x:A:F � �x:C:D. From this last judgment we deduce that� ` C � A
and that�; x : C ` F � D. By Lemma 4.16 we obtain�; x : A ` F � D (8)

From�; x:A `M : F we deduce�; x:A ` ? (Proposition 4.10) and thus� ` A : ? (rule
F-TERM). Since� ` N : C then� ` C : ? (Proposition 4.13). We can apply T-SUB to
obtain� ` N : A and by a weakening (third point of Proposition 4.10).�; x:A ` N : A (9)

By using Proposition 4.13 and generation for kinding (Proposition4.14) we obtain that�; x:A ` F;D : ?. We can then apply T-SUB to (8) and�; x:A `M : F and deduce�; x:A `M : D (10)
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Finally by (9), (10), and�; x:A ` x : A we can apply the Substitution Lemma 4.11 and
obtain (�; x:A)[x := N ] `M [x := N ] : D[x := N ]
But �; x:A ` ? therefore by Definition 4.5(�; x:A)[x := N ] = �. By Proposition 4.13� ` D[x := N ] : ?. Therefore by (7) we can apply T-SUB and deduce� `M [x := N ] : B,
that is the result.Case � ` �x:A:K andA!� A0.
In this case, we have a derivation ending by�; x : A ` K� ` �x:A:K F-�
It follows from the context property (Proposition 4.10) that� ` A : ? is derivable by a
proof less deep than the derivation for�; x : A ` K. Therefore, we can apply the induction
hypothesis and get� ` A0 : ?. By bound�-equivalence (Proposition 4.25) and the fact
that�; x : A ` K andA =� A0 , we get�; x : A0 ` K, the result� ` �x:A0:K follows.Case � ` (M1&f�x:Ai:Bigi=1::nM2) � N : C and (M1&f�x:Ai:Bigi=1::nM2) � N !�&M1 �N .
Let A � f�x:Ai:Bigi=1::n. From� ` (M1&AM2) � N : C we can deduce that� `(M1&AM2) : A, � `M1 : f�x:Ai:Bigi=1::n�1, and� ` A : ? (11)

Acting as in the first case of this proof we can apply Proposition 4.28 twice and couple it
with the subsumption rule to deduce that there existsh 2 [1::n] such that� ` N : Ah and� ` Bh[x := N ] � C.

From (11) we deduce that �; x:Ah ` Bh : ? (12)

Therefore we have that�; x:Ah ` ? (Proposition 4.10) and thusx 62 Dom(�) (rule
F-TERM).

Since� ` N : Ah and�; x:Ah ` ? then by a weakening (third point of Proposition 4.10)
we deduce�; x:Ah ` N : Ah. We can thus apply the Substitution Lemma 4.11 to (12)
and obtain � ` Bh[x := N ] : ? (13)

By definition of�& reduction we have that there existsj 2 [1::n�1] such that� ` N : Aj
and 8Ai � ` N : Ai ) Aj � Ai (14)

Therefore� ` N : Ah ) � ` Aj � Ah By (14)) �; x : Aj ` Bj � Bh By covariance to deduce (11)) �[x := N ] ` Bj [x := N ] � Bh[x := N ] Lemma 4.6) � ` Bj [x := N ] � Bh[x := N ] Sincex 62 Dom(�)
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Finally we haveM1 : f�x:Ai:Bigi=1::n�1 ^ � ` N : Aj ))M1 �N : Bj [x := N ] T-OAPP)M1 �N : Bh[x := N ] By (13) and T-SUB)M1 �N : C By T-SUB and Proposition 4.132
4.6. Conservativity

In this section, we show that��& is a conservative extension both of��� and of�&.
In other words, let� ` J be a judgment derivable in��&: if expressions inJ are free of
overloaded types and terms, then� ` J is derivable in���; if expressions inJ are free of
dependent types and terms, then� ` J is derivable in�&.

This is not a straightforward property since for example a derivation ending with a
judgment free of overloading terms and types may contain overloaded terms ortypes in
some judgments in the middle of the derivation. So a judgment not provable in��� might
be provable in��& even if the judgment is free of overloading. For example we might
have two overloading free typesA andB, and a typeC containing overloaded types such
thatA � C � B is provable in��& butA � B is not provable in��� (this happens for
example whenF� is extended by recursive types: see [Ghe93]).

4.6.1. Conservativity with respect to���Definition 4.30 (Free of overloading). We say a pre-expressionU is free of over-
loading if it does not contain overloaded terms (overloaded function and application) or
types.

We use=S� to denote�-conversion in the systemS, and`S to denote judgments provable
in systemS.Lemma 4.31 (Conservativity of conversion). Given the pre-expressionsU; V , if U; V
are free of overloading, then1: U !� U 0 ) U 0 is free of overloading2: U =��&� V ) U =���� VProposition 4.32 (Conservativity of judgment). Suppose that� is a context in
which all expressions are free of overloading,J is either a typing , or kinding, or context
formation, or subtyping judgment. Then,� `��& J ) � `��� J

Proof. The proof is very easy. This is due to the fact that the rules that define our system
satisfy the subformula property. This is important in particular for the subtyping rules,
which are transitivity free.

Therefore we can first prove the assertion on the subtyping system by induction on
the depth of the derivation. The interesting cases are S-ApR and S-� where there are�
conversions and that are straightforwardly proved by using Lemma 4.31(2).

And finally the result is proved by a simultaneous induction on the depth of the derivations
of context formation, typing and kinding judgments.2
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4.6.2. Conservativity with respect to�&
In this subsection we prove that��& is a conservative extension of�&-calculus, whose

pre-expressions are defined as followsM ::= x j �x:A:M jMM j " j M&AM jM �MA ::= � j A! A j fA! A; :::; A! AgK ::= ?� ::= <> j �; x : A j �; � � A : K
In the rest of this section,A! B denotes the type�x:A:B wherex is not free inB.Definition 4.1. Let � be a��& context, we useSD(�) andTD(�) to denote
respectively the set of all subtyping declarations, and the set of all typing declarations in�.
More precisely we have:SD(�) = 8<: <> for � �<>SD(�0); � � A: ? for � � �0; � � A : ?SD(�0) for � � �0; J andJ 6� � � A : ?TD(�) =8<: <> for � �<>TD(�0); x:A for � � �0; x:ATD(�0) for � � �0; J andJ 6� x:A

In order to compare�& with ��& we give a definition of�&, which results in a system
that is slightly different from the one of [CGL95]. There are two differences between
“standard”�& and��& and they both concern the subtyping of atomic types. The first is
that, in�&, it is possible to have in a context two subtyping declarations forthe same lower
bound (such as� � A;� � B) while this is not allowed in��&. The second difference
is that, in�&, the upper bound, sayA, occurring in a subtyping declaration� � A, must
be an atomic type, while in��&,A can be any type.24 The variant of�& presented below
takes the��& approach and allows at most one subtyping declaration� � A for each
atomic type� but allowsA to be any type. Finally, since�& does not have dependent
types, then no type contains terms. Therefore, contexts in subtyping judgment do not need
to contain typing declarations. Thus, letS be a generic context of subtyping declarations
of the form� � A: ? (whereA is a �& pre-type). The subtyping relation induced for�&-calculus byS is defined as follows:
Subtyping

S�&-REFL S `�& � � � S�&-! S `�& A0 � A S `�& B � B0S `�& A! B � A0 ! B0
S�&-TRANS

S `�& �(�) � AS `�& � � A S�&-OVER
8j 2 J 9i 2 I S `�& Ai ! Bi � A0j ! B0jS `�& fAi ! Bigi2I � fA0j ! B0jgj2J

The remaining rules of�&-calculus are given below. Note that the T-SUB rule is only
connection between subtyping and the rest of the system. Note also that as contexts do not24These two differences are closely related. They both serve to avoid to relate types with different structures
(e.g. an overloaded type and a�-type). In this work we followed the theoretically orientedapproach of [AC96b]
in which there is at most one subtyping declaration for each atomic type. In [CGL95] instead atomic types may
form a lattice, since it is a more practically-oriented solution (it allows the so-called “multiple-inheritance”). We
believe that an implementation of��& should rather use this second solution.
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contain kinding declarations, all the atomic types are considered well-formed25

Context formation

F�&-EMPTY <>`�& ? F�&-TERM
� `�& A : ? x 62 Dom(�)�; x : A `�& ?

F�&-SUBTYPE
� `�& A : ? � 62 Dom(�)�; � � A: ? `�& ?

Kinding

K�&-VAR
� ` ?� `�& � : ? K�&-! � `�& A : ? � `�& B : ?� `�& A! B : ?

K�&-OVER

� ` ?8i 2 I: � `�& Ai ! Bi : ?8i; j 2 I: � `�& Ai � Aj ) � `�& Bi � Bj8A: (8i 2 I: � `�& A 6� Ai) __ (9!i 2 I: � `�& A � Ai ^ 8j 2 I: � `�& A � Aj ) � `�& Aj � Ai)� `�& fAi ! Bigi2I : ?
Typing

T�&-VAR
� ` ? x 2 Dom(�)� `�& x : �(x) T�&-" � ` ?� ` " : fg

T�&-� �; x : A `�& M : B� `�& �x:A:M : A! B T�&-&

� `�& fAi ! Bigi�n+1 : ?� `�& M : fAi ! Bigi�n� `�& N : An+1 ! Bn+1� `�& M&fAi!Bigi�n+1N : fAi ! Bigi�n+1
T�&-APP

� `�& M : A! B � `�& N : A� `�& MN : B
T�&-OAPP

� `�& M : fAi ! Bigi�n � `�& N : Ai� `�& M �N : Bi
T�&-SUB

� `�& M : A SD(�) `�& A � B � `�& A;B : ?� `�& M : B
The notions of reduction are�& and�1 as defined for��&. It is easy to verify by using
Theorems 4.2.2 and 4.2.4 of [Cas97] that the above definition is equivalent to the one
in [CGL95] (modulo the differences on the subtyping of atomic types).Definition 4.33 (Free of dependent types).We say that a��& judgment� ` J is
free of dependent typesif lenght(�) = length(SD(�)) + length(TD(�)) (that is,� does
not contain kinding declarations of the form�:K or � � A : �x:A0:K) and25We preferred to maintain the notation "� � A: ?" for subtyping declarations, even though the ": ?" could be
clearly omitted.
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1.if J � A � B, thenA;B are�& pre-types;
2.if J � A : ?, thenA is a�& pre-type;
3.if J �M : A, thenM is a�& pre-term andA a �& pre-type;
4.for all � 2 Dom(�), �(�) is a�& pre-type.Proposition 4.34 (Conservativity of subtyping w.r.t.�&). If � ` A � B is free of

dependent types, then� `��& A � B implies SD(�) `�& A � B.

Proof. By induction on the derivation of� `��& A � B, and performing a case analysis
on the last rule of the derivation.2

Similarly, we haveProposition 4.35 (Conservativity w.r.t.�&). If � ` J is free of dependent types,
then� `��& J implies � `�& J .

Proof. Straightforward induction on the derivation of� ` J . The case of subsumption
requires the use of Proposition 4.34. For the case K-�, note that�; x : A `��& B : ?
implies that� `��& B : ?. Indeed, it is easy to see that well-formation under a context�
depends only on the subtyping declarations of�, that is, that for every judgmentJ of the
form ? orA: ?, we have that� `�& J impliesSD(�) `�& J . This last observation is used
also for the case K-OVER.2

5. STRONG NORMALIZATION

System��& is not strong normalizing since it is a conservative extension of�&-calculus
that is not strongly normalizing [CGL95]. But, as for�&, strong normalization holds for a
subsystem of��&, that we call���&. The study of strong normalization is not undertaken
for its own sake, but because in this framework strong normalization implies decidability
of subtyping, which in its turn implies the decidability of the type system. Thus thanks
to the strong normalization result of this section and the result of Section 7 we are able
to show that���& is a (type) decidable subsystem of��& (whose type system is not
decidable). In this section we adapt to���& the technique developed in [CGL95] to prove
strong normalization for�&� a subsystem of�&.

In order to prove strong normalization in the subsystem�&� of �&-calculus, [CGL95]
introduces a variant of the Tait proof technique [Tai67] (improved by Girard in [Gir87]).
Recall that the Tait method consists of the following steps:

1. define a set of terms called reducible setR,
2. show thatM 2 R ) M 2 SN , whereSN is the set of strongly normalizing terms,
3. show thatM : A ) M 2 R, that is, well-typed terms belong to the reducible set.

The reducible set is a union of sets indexed over types:R = [A2TypesRA. For example
for the simply typed�-calculusRA is defined inductively as1: M 2 RA , M 2 SN A is an atomic type2: M 2 RA!B , 8N 2 RA: MN 2 RB
A naive (and wrong) generalization of the above definition to�&-calculus might be,1: M 2 RA , M 2 SN A is an atomic type2: M 2 RA!B , 8A0 � A:8N 2 RA0 : MN 2 RB3: M 2 RfAi!Bigi2I , 8A0 2 [Ai]i2I :8N 2 RA0 : M �N 2 RBi
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where[Ai]i2I denotes the set of types that are less than or equal to at least one of theAi.
However, this definition is not well-founded. The definition of thesetRA!B (andRfAi!Bigi2I ) is given in terms of a setRA0 that might not be “structurally smaller than”RA!B (andRfAi!Bigi2I ). Consider the typesA � fg andB � fA ! Ag. ThenB � A, butB is intuitively “bigger” thanA, sinceA occurs in it. This partly explains why

the�&-calculus is not strongly normalizing26. On the other hand, this observation helps
finding a normalizing subsystem. A possible solution to this problem is to define a measure
function rank from types to naturals and require that each subtyping rule for a judgmentB � A has an additional condition thatrank(B) � rank(A). The rank function should
have the property that ifB is a proper subexpression ofA, thenrank(B) < rank(A).

To adapt the above technique to��&, we define therank function aspSizewhich is a
partial approximation of the size of a type, where the information relevant to type family is
ignored. More precisely, the measurepSizeis defined as follows:

pSize(�) = 0
pSize(AM) = pSize(A)
pSize(�x:A:B) = pSize(A) + pSize(B) + 1
pSize(�x:A:B) = pSize(B)
pSize(f�x:Ai:Bigi2I) = maxi2IfpSize(�x:Ai:Bi)g+ 1

Obviously, ifB is a proper subexpression of a typeA, thenpSize(B) < pSize(A). Further-
more, for any termN , pSize(A[x := N ]) = pSize(A).Definition 5.1 (���& system). The���& system is the subsystem of��& where
each subtyping rule for a judgment� ` B � A has the additional condition pSize(B) �
pSize(A).

The main result of this section is that terms in���& are strongly normalizing.

Example Consider again the typesA � fg andB � fA! Ag. Note thatB � A holds
in ��& but it does not hold in���& since pSize(A) = pSize(fg) = 1 < 4 = pSize(f fg !fg g) = pSize(B).
Intuitively, it is clear that in a normalizing calculusB � A must not hold. Otherwise�x:B:x�x would be well-typed (with typeB ! A) and from such a term it would not be
too difficult to derive a non-normalizing term.2

5.1. Typed inductive property
In the Tait method, we need to prove that every well-typed term belongs tothe reducible

set. Such a proof is difficult at the presence of overloaded types. To make things simpler,
in [CGL95], an intermediate notion of set of terms being “typed inductive” is introduced.

The main steps in the proof strong normalization of�&�-calculus (and of���&) are:

1. Define when a setS is typed inductive,
2. DefineS ? theapplication closureof the typed inductive set,26For example, note that the typeB � f fg ! fg g is trivially well-formed. SinceB � fg, then the

application of a term of typeB to itself is well-typed. Once we are able to type auto-application it is then very
easy to define non-normalizing terms or fix-point combinators (see [CGL95] for details).
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3. Show thatM 2 S ,M 2 S ? ,M is well-typed,
4. Show that the set of (well-typed) strongly normalizing terms is typed inductive.

In order to ensure that the typed-inductive property and its application closure are well-
defined, we need an inductive measure that satisfies the following properties:

Weight�(AM1::Mn) < Weight�(�M1::Mn) if � � A 2 �
Weight�(B[x :=M1]M2::Mn) < Weight�((�x:A:B)M1::Mn)

The Weight� should be based on both�2-reduction and�-reduction. This suggests to
include the maximal number of steps of�2� reduction in the induction measure. Observe
that we need only to consider the reductions such that the redex is at the headof a term. So
we define thehead�-reduction, denoted by!h�, and thehead�2-reduction, denoted by!h�2 , as follows: �M1::Mn !h� �(�)M1::Mn(�x:A:B)M1::Mn !h�2 B[x :=M1]M2::Mn
The head�2�-reduction, denoted by!h�2�, is defined as the reflexive and transitive
closure of!h� [ !h�2 . Since�2�-reduction is normalizing, so does the head�2�-
reduction. Given a pre-typeA and a context�, we define the measureMaxRed�(A) as the
maximal length of head�2�-reduction fromA. Note that a head�2�-redex forA, if it
exists, is alwaysA itself, especially there are neitherh�2�-reduction in a type label, such
asB in �x:B:C, nor in a term. Hence,MaxRed� is invariant under substitutions on term
variables:MaxRed�(A[x := N ]) = MaxRed�(A).

Furthermore, the measurepSizeshould be taken into account. So we defineWeight� as
the lexicographical order ofMaxRed, defined in Section 4.4, andpSize:

Weight�(A) = < MaxRed�(A); pSize(A) >
Observe thatMaxRed�(A), and soWeight�(A), depends only on the subtyping declarations
of �. Therefore, we have, for example,Weight�;x:B(A) = Weight�(A).

The following lemma shows thatWeight� can be used as an induction measure in the
definitions and proofs concerning type structure.Lemma 5.2 (Properties ofWeight�). Suppose that all types in the following state-
ments are well-formed under the context�.

1.Weight�(A[x := N ]) = Weight�(A)
2.� � A 2 � ) Weight�(AM1::Mn) < Weight�(�M1::Mn) for any setM1; ::;Mn.
3.Weight�(B[x :=M1]M2::Mn) < Weight�((�x:A:B)M1::Mn)
4.Weight�(A);Weight�(B) < Weight�(�x:A:B)
5.Weight�(B[x := N ]) < Weight�(�x:A:B)
Proof. 1) By the definition ofWeight�(A) and the properties thatMaxRed�(A[x :=N ]) = MaxRed�(A) and pSize(A[x := N ]) = pSize(A); 2) By �-reduction; 3) By�2-reduction; 4) BypSize. Note thatWeight�(B) = Weight�;x:A(B); 5) By 1) and 4).2Notation 5.3 (M �N ). We useM �N to denote eitherM �N orM �N (according

to the type ofM ). N � ~M denotesN �M1 � ::: �Mn for n � 0.
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One of the differences between��& and�& is the explicit use of the context� in
the typing rules. Hence, a typed inductive set must be indexed on both type and context:S<�;A>. The following definition of a basic set characterizes context related properties
that a typed inductive set must satisfy. The definition for typed inductive set is based on
the notion of basic set.Definition 5.4 (Basic set). A familyS of sets of termsfS<�;A>g, indexed over
well-formed context� and typeA, is abasic setif

1.M 2 S<�;A> ) � `M : A,
2.� ` A : ?,
3.�0 ` ? ^ � � �0 ^ � ` A : ? ) S<�;A> � S<�0;A>,
4.� ` A;A0 : ? ^ � ` A � A0 ) S<�;A> � S<�;A0>.

where� � �0 means that�0 is an extension of�0, that is,�0 = �;�00 for some�00.
An example of a basic setS<�;A> is the set of normalized terms of typeA under the

context�.
We write M 2 S if there exists�; A such thatM 2 S<�;A> and ~M 2 S ifM1 2 S ; :::;Mn 2 S . When� is clear from the context, we may omit the label� inS<�;A>, and just writeSA.
A special case of the fourth condition of basic set is whenA =� A0, we haveFact 5.5. � ` A;A0 : ? ^ A =� A0 ) S<�;A> = S<�;A0>,

Proof. By the admissibility of reflexivity.2
Now, we need to adapt the notation2if SA from [CGL95]. Here we need to add the

context to the subscript. Intuitively,M 2if S<�;A> means that “ifM has typeA, thenM
belongs toS<�;A>”.Notation 5.6 (2if S<�;A>).M 2if S<�;A> , (� `M : A ) M 2 S<�;A>)

The next definition introduces the notionM�;A � ~N 2if S . Intuitively, it means that
forM with typeA under the environment�, if M � ~N is well-typed, then it belongs toS .M may have some other types, sayB, but the condition here does not require thatM � ~N
is well-typed whenM is considered as a term in typeB. More precisely, we haveDefinition 5.7 (M�;A � ~N 2if S ). Suppose thatS is a basic set,~N 2 S and
that� `M : A. The relationM�;A � ~N 2if S is defined as follows,

1.M�;A 2if S , M 2if S<�;A>;
2.M�;�M1::Mn �N � ~N 0 2if S , M�;AM1::Mn �N � ~N 0 2if S for � � A : K 2 �;
3.M�;(�x:A:B)M1::Mn �N � ~N 0 2if S , M�;B[x:=M1]M2::Mn �N � ~N 0 2if S ;
4.M�;�x:A:B �N � ~N 0 2if S ,(N 2 S<�;A> ^ MN 2if S<�;B[x:=N ]> ^ (MN)�;B[x:=N ] � ~N 0 2if S );
5.M�;f�x:Ai:Bigi2I �N � ~N 0 2if S , (9i 2 I:N 2 S<�;Ai> ^ M �N 2if S<�;Bi[x:=N ]> ^ (M �N)�;Bi[x:=N ] � ~N 0 2if S );

By Weight�(A), the relationM�;A � ~N 2if S is well-defined.
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Note that the caseM�;�M1::Mn � ~N 2if S where� : K 2 � is covered in the first case.
For suchM ,MN1::Nn with n � 1 will never be well typed.

For convenience, the above notion is extended to the general notionM 2if S .Definition 5.8 (M 2if S ). The relationM 2if S is defined over the structure
of termM ,

1.x 2if S , (9�; A: x 2if S<�;A>)
2.� 2if S , True
3.�x : C:N 2if S , (9�; A:� ` �x:C:N : �x:C:A ) �x:C:N 2if S<�;�x:C:A>)
4.M1&WM2 2if S , 9� M1&WM2 2if S<�;W>
5.M �N � ~N 0 2if S , 9�; A: M�;A �N � ~N 0 2if S .

With these preparations, we can now introduce the notions of typed inductive set and its
application closure.Definition 5.9 (Typed Inductive Set). LetS = fS<�;A>g be a basic set of���&
terms and ~N a sequence of well-typed terms.S is typed-inductiveif it satisfies the
following conditions :(") " 2 S<�;fg>(x) 8x 2 S<�;A>; ~N 2 S : x�;A � ~N 2if S(&1) 8M1 2 S<�;W>;M2 2 S<�;�x:A:B>; ~N 2 S :(M�;W1 � ~N 2if S ^M�;�x:A:B2 � ~N 2ifS ) (M1&W[f�x:A:BgM2) � ~N 2ifS )(�1) 8M 2 S<�;A>; ~N 2 S : M [x := N ]�;A � ~N 2if S) (�x:B:M)�;�x:B:A �N � ~N 2if S(&2) 8M1 2 S<�;W>;M2 2 S<�;�x:A:B>: M1&W[f�x:A:BgM2 2if S(�2) 8M 2 S<(�;x:A);B>: �x:A:M 2if S<�;�x:A:B>Definition 5.10 (Application Closure ofS ). LetfS<�;A>g be a typed-inductive
set. Itsapplication closure in���&, denoted byfS ?<�;A>g, is inductively defined on the
structure ofA as follows:Case �M1::Mn There are two subcases: (1) if� : K 2 �, thenM 2 S ?<�;�M1::Mn> ,M 2 S<�;�M1::Mn>. (2) if � � A : K 2 �, thenM 2 S ?<�;�M1::Mn> , M 2S<�;�M1::Mn> ^ M 2 S ?<�;AM1::Mn>.Case (�x:A:B)M1::Mn : M 2 S ?<�;(�x:A:B)M1::Mn> ,M 2 S<�;(�x:A:B)M1::Mn>^M 2 S ?<�;B[x:=M1]M2::Mn>.Case �x:A:B : M 2 S ?<�;�x:A:B> , M 2 S<�;�x:A:B> ^ (8�0; N: �0 ` ? ^ � ��0 ^ N 2 S ?<�0;A> ) MN 2 S ?<�0;B[x:=N ]>).Case f�x:Ai:Bigi2I : M 2 S ?<�;f�x:Ai:Bigi2I> , M 2 S<�;f�x:Ai:Bigi2I> ^(8i2I:8�0; N: �0 ` ? ^ � � �0 ^ N 2 S ?<�0;Ai> ) M �N 2 S ?<�0;Bi[x:=N ]>).

This definition is well-formed.Lemma 5.11 (Well-definedness ofS ?<�;A>). The setS ?<�;A> is well-defined on
each well-formed typeA.
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Proof. Induction onWeight�(A). 2
The notion of application closure has a simpler presentation:Lemma 5.12 (Equivalent presentation of application closure).M 2 S ?<�;A> if and

only ifM 2 S<�;A> ^ (8�0; N: �0 ` ? ^ � � �0 ^ N 2 S ?<�0;B> ) M�;A �N 2ifS ?)
Proof. Induction onWeight�(A). 2

5.2. The application closure
A typed inductive setS is a basic set, soS has all four properties of Definition 5.4.

The application closureS ? is a “subset" ofS in the sense thatS ?<�;A> � S<�;A> for
each context� and typeA. Evidently, not all “subsets" ofS enjoy the nice properties of
basic sets. But we can show thatS ? is still a basic set. Actually we need only to verify
that the last two conditions of basic set hold forS ?.

First we show thatS ?<�;A> enjoys the third property of basic sets.Lemma 5.13 (Invariance ofS ? under context extension).�0 ` ? ^ � � �0 ^ � ` A : ? ) S ?<�;A> � S ?<�0;A>
Proof. By the definition ofS ?,S is typed inductive, thus a basic set. Therefore,�0 ` ? ^ � � �0 ^ � ` A : ? ) S<�;A> � S<�0;A>
The proof proceeds by induction onWeight�(A). 2
Given a termM 2 S ?<�;�x:A:B>, we want to show that, for any termN 2 S ?<�;A>, we

haveMN 2 S ?<�;B[x:=N ]>. Due to subtyping, it may happen thatM will be applied to
an argumentN 2 S ?<�;A0> whereA0 � A. Hence, we want to show that� ` A0 � A ) S ?<�;A0> � S ?<�;A>

A special case of this property is whenA0 andA are�-convertible:A =� A0 ) S ?<�;A> = S ?<�;A0>
To prove this property, we first study a special case where the� conversion is restricted

to head�2 reduction, which has been defined as (see Section 5.1)(�x:A:B)M1:::Mn !h�2 B[x :=M1]M2::MnS ? is invariant under head�2 reduction.Lemma 5.14 (S ? and head�2-reduction).� ` A : ? ^ A!h�2 A0 ) S ?<�;A> = S ?<�;A0>
LetAh�2 denote the head normal form ofh�2 reduction.
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Now we show thatS ? is invariant under� conversion.Lemma 5.16 (S ? type conversion).� ` A;A0 : ? ^ A =� A0 ) S ?<�;A> = S ?<�;A0>
Proof. First note that� ` A;A0 : ? ^ A =� A0 ) S<�;A> = S<�;A0> The proof

proceeds by induction onWeight�(A). 2
Now we can show the main result of this section:S ?<�;A> is monotonic with respect to

subtyping.Lemma 5.17 (Subtyping implies application closure containment).� ` A � B ^ � ` A;B : ?) S ?<�;A> � S ?<�;B>
Proof. Since typed inductive set is basic set, we have� ` A � B ) S<�;A> � S<�;B>

GivenA;B satisfying the condition of the lemma andM 2 S ?<�;A>, we need to show thatM 2 S ?<�;B>. Note that, we haveM 2 S<�;B>.
The proof proceeds by induction on the derivation depth ofWeight�(A) + Weight�(B).

Note that for any�0 such that�0 ` ? ^ � � �0,
Weight�0(A) + Weight�0(B) = Weight�(A) + Weight�(B)

We proceed according to the last rule used to derive� ` A � B.Case (S-�). Assume that the last step of the derivation for� ` A � B is� ` C � E �; x : C ` F � D� ` �x:E:F � �x:C:D S-�
whereA � �x:E:F;B � �x:C:D. LetM 2 S ?<�;�x:E:F>; we need to show that8�0; N: �0 ` ? ^ � � �0 ^ N 2 S ?<�0;C> ) MN 2 S ?<�0;D[x:=N ]>
Let�0 be such that�0 ` ? ^ � � �0 . The proof proceeds as follows,N 2 S ?<�0;C> ) N 2 S<�0;C>) �0 ` N : C�0 ` C � E ) S ?<�0;C> � S ?<�0;E> induction hypothesis(IH)�0; x : C ` F � D ) �0 ` F [x := N ] � D[x := N ]^ pSize(F [x := N ]) = pSize(F ) < pSize(�x:E:F )^ pSize(D[x := N ]) = pSize(D) < pSize(�x:C:D)) S ?<�0;F [x:=N ]> � S ?<�0;D[x:=N ]> IHS ?<�0;C> � S ?<�0;E> ) N 2 S ?<�0;E>M 2 S ?<�;�x:E:F> ) M 2 S ?<�0;�x:E:F>) MN 2 S ?<�0;F [x:=N ]>) MN 2 S ?<�0;D[x:=N ]>) S ?<�0;�x:E:F> � S ?<�0;�x:C:D>
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The result follows from the Lemma 5.16.Case (S-ApT). Suppose the last step of the derivation for� ` A � B is� ` �(�)M1::Mn � B� ` �M1::Mn � B S-ApT

Then S ?<�;�M1::Mn> = S ?<�;�(�)M1::Mn> definition ofS ?� S ?<�;B> IHCases (S-ApSL) and (S-ApSR). Similar.Case (S-OVER). Suppose that the last step of the derivation of� ` A � B is8j 2 J9i 2 I � ` �x:Ai:Bi � �x:Cj :Dj� ` f�x:Ai:Bigi2I � f�x:Cj :Djgj2J S-OVER

whereA � f�x:Ai:Bigi2I ; B � f�x:Cj :Djgj2J .
Assume thatM 2 S ?<�;f�x:Ai:Bigi2I> andN 2 S ?<�;Cj>. Let �0 be such that�0 ` ? ^ � � �0, we need to prove thatM � N 2 S ?<�0;Dj [x:=N ]>. We proceed as

follows:�0 ` f�x:Ai:Bigi2I � f�x:Cj :Djgj2J) 9h 2 I �0 ` �x:Ah:Bh � �x:Cj :Dj by definition^ pSize(�x:Ah:Bh) < pSize(A) ^ pSize(�x:Cj :Dj) < pSize(B)) �0 ` Cj � Ah ^ �0; x : Cj ` Bh � Dj S-�^ pSize(Cj) < pSize(�x:Cj :Dj) ^ pSize(Ah) < pSize(�x:Ah:Bh)) S ?<�0;Cj> � S ?<�0;Ah> IH) N 2 S ?<�0;Ah>) M �N 2 S ?<�0;Bh[x:=N ]> by def. ofS ?
On the other hand,�0; x : Cj ` Bh � Dj) �0 ` Bh[x := N ] � Dj [x := N ] ^

pSize(Bh[x := N ]) = pSize(Bh) < pSize(�x:Ah:Bh) < pSize(A) ^
pSize(Dj [x := N ]) = pSize(Dj) < pSize(�x:Cj :Dj) < pSize(B)) S ?<�0;Bh[x:=N ]> � S ?<�0;Dj [x:=N ]> IH) M �N 2 S ?<�0;Dj [x:=N ]>) M 2 S ?<�0;f�x:Cj :Djgj2J> by def. ofS ?) S ?<�0;f�x:Ai:Bigi2I> � S ?<�0;f�x:Cj:Djgj2J>2 Corollary 5.18.� ` A � B ^ � ` B � A ^ � ` A;B : ? ) S ?<�;A> = S ?<�;B>
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5.3. Relation betweenS andS ?
In this section we study the relationship between typed-inductive setS and its application

closureS ?. The main result is Corollary 5.22, that states that every typed inductive set
contains all the well typed terms. Its proof relies on the following lemma. In the following,N 2 S ? will mean thatN 2 S ?<�;A> for some typeA and environment�.Lemma 5.19 (Sif impliesS ?).M 2 S ?<�;A> , � `M : A ^ 8 ~N 2 S ?:M�;A � ~N 2if S

Proof.

()) We prove the stronger propertyM 2 S ?<�;A> ) 8 ~N 2 S ?: M�;A � ~N 2if S ?
by induction on the length of~N .

(() When ~N is empty, by definition, we have� `M : A ^ M�;A 2if S ) M 2 S ?<�;A>
The proof proceeds by induction onWeight�(A).2
The following lemma shows that ifx : A 2 � , thenA is a minimal type27 for the term
variablex.Lemma 5.20 (Minimal type for variable).�1; x : A;�2 ` x : B ) �1; x : A;�2 ` A � B

Proof. By observation of the typing rules2
Now we prove the main result of this subsection.Proposition 5.21. For every typed-inductive setS� `M : A : ? ) M 2 S ?<�;A>
Proof. We prove the following stronger property, given a context�, termsP1; ::; Pn;M

and typesC1; ::; Cn; B (with n � 0):8� � [x1 := P1; :::; xn := Pn].(8i 2 [1::n]:�; x1 : C1; :::; xi�1 : Ci�1 ` Pi : Ci^Pi 2 S ?<�;Ci[x1:=P1;:::;xi�1:=Pi�1]>)^ �; x1 : C1; :::; xn : Cn `M : B : ?)M� 2 S ?<�;B�>
Let � be the substitution satisfying the condition of the above property, Dom(�) =fx1; :::; xng, �0 = �; x1 : C1; :::; xn : Cn. Note that27We speak of “a minimal type” rather than “the least type” since by subsumption every typeB such that� ` B � A � B is a minimal types ofx, too.



52 G. CASTAGNA, G. CHEN1: �0� = (�; x1 : C1; :::; xn : Cn)� = � Definition 4.52: j > i � 1 ) xj 62 Fv(Ci)3: Ci[x1 := P1; :::; xi�1 := Pi�1] = Ci�4: �0 ` A � B ) � ` A� � B� Lemma4:65: � ` A� � B� : s) S ?<�;A�> � S ?<�;B�> Lemma5:176: �; x1 : C1; :::; xi�1 : Ci�1 ` Ci : ? ^ � ` Ci� : ? Proposition4:117: � ` B� : ? Proposition4:11
Induction on the size ofM . We analyse the different cases forM .CaseM � x. Then,�0 ` x : B ) � ` x� : B� ) � ` B� : ?.

1) x 62 Dom(�). Then,x� = x. Let ~N 2 S ?.~N 2 S ? ) ~N 2 S Definition5:10�0 ` x : B ) � ` x : B� substitution~N 2 S ^ � ` x : B� ) x�;B� � ~N 2if S Definition5:9� ` x : B� ^ x�;B� � ~N 2if S ) x 2 S ?<�;B�> Lemma5:19x� = x ) x� 2 S ?<�;B�>
2) x � xi 2 Dom(�). Then,x� = xi� = Pi 2 S ?<�;Ci[x1:=P1;:::;xi�1:=Pi�1]> = S ?<�;Ci�>xi : Ci 2 �0 ^ � ` xi : B) �0 ` Ci � B Lemma5:20) � ` Ci� � B� substitution for subtyping� ` Ci� � B� ^ � ` Ci�;B� : ?) S ?<�;Ci�> � S ?<�;B�> Proposition5:17) x� 2 S ?<�;B�>Case M � (M1&W[f�x:C:DgM2). It follows from generation for typing, substitution

property and the closeness of overloaded type that�0 `M1&W[f�x:C:DgM2 : B ) �0 `M1 :W ^ �0 `M2 : �x:C:D^ �0 `W [ f�x:C:Dg � B^ �0 `W [ f�x:C:Dg : ?) � ` (W [ f�x:C:Dg)� : ? Prop. 4:11�0 `W [ f�x:C:Dg � B ) � ` (W [ f�x:C:Dg)� � B�� ` (W [ f�x:C:Dg)� � B� : ? ) S ?<�;(W[f�x:C:Dg)�> � S ?<�;B�> Lemma5:17�0 `W [ f�x:C:Dg : ? ) (W [ f�x:C:Dg)� =W [ f�x:C:Dg) (M1&W[f�x:C:DgM2)� = (M1�)&W[f�x:C:Dg(M2�)
Let ~N 2 S ?,



INFORMATION AND COMPUTATION168(1):1-67, (2001) 53�0 `M1 :W ^ �0 `M2 : �x:C:D) M1� 2 S ?<�;W�> ^ M2� 2 S ?<�;f�x:C:Dg�> IH) M1� 2 S ?<�;W> ^ M2� 2 S ?<�;f�x:C:Dg> W [ f�x:C:Dg closed) (M1�)�;W � ~N 2if S ^ (M2�)�;�x:C:D � ~N 2if S Lemma5:19) ((M1&W[f�x:C:DgM2)�)�;(W[f�x:C:Dg)� � ~N 2if S Definition5:9) (M1&W[f�x:C:DgM2)� 2 S ?<�;(W[f�x:C:Dg)�> Lemma5:19) (M1&W[f�x:C:DgM2)� 2 S ?<�;B�>CaseM � (�x:C:M 0). Let ~N 2 S ?, first prove that((�x:C:M 0)�)�;(�x:C:D)� � ~N 2ifS for someD. Note that�0 ` �x:C:M 0 : B ) 9D: �0; x : C `M 0 : D ^ �0 ` �x:C:D � B^ �0 ` �x:C:D : ?) � ` (�x:C:D)� : ?�0 ` �x:C:D � B ) � ` (�x:C:D)� � B�� ` (�x:C:D)� � B� : ? ) S ?<�;(�x:C:D)�> � S ?<�;B�>
There are two subcases:

1) ~N � N [ ~N 0:�0; x : C `M 0 : D ) (M 0�[x := N ]) 2 S ?<�;D�[x:=N ]> IH) (M 0�[x := N ])�;D�[x:=N ] � ~N 0 2if S Lemma5:19) (�x:C�:M 0�)�;�x:C�:D�N � ~N 0 2if S Definition5:9 (�1)
2) ~N � ;:�0; x : C `M 0 : D ) M 0� 2 S ?<(�;x:C�);D�> IH) M 0� 2if S<(�;x:C�);D�>) �x:C�:M 0� 2if S<�;�x:C�:D�> Definition5:9) ((�x:C:M 0)�)�;�x:C�:D� 2if S

We conclude that8 ~N: ((�x:C:M 0)�)�;(�x:C:D)� ~N 2if S . Furthermore,� ` (�x:C:M 0)� : (�x:C:D)� ^ ((�x:C:M 0)�)�;(�x:C:D)� ~N 2if S) (�x:C:M 0)� 2 S ?<�;(�x:C:D)�> Lemma5:19) (�x:C:M 0)� 2 S ?<�;B�>CaseM � (M 0 �N). Then,�0 `M 0 �N : B) �0 `M 0 : f�yi:Ai:Bigi2I ^ �0 ` N : Ai ^ �0 ` Bi[yi := N ] � B^ � ` (Bi[yi := N ])� : ?) M 0� 2 S ?<�;(f�yi:Ai:Bigi2I )�> ^N� 2 S ?<�;Ai�> ^ � ` (Bi[yi := N ])� � B� IH) M 0� 2 S ?<�;f�yi:Ai:Bigi2I> ^N� 2 S ?<�;Ai�> ^ � ` Bi[yi := N�] � B�) (M 0�)�;f�yi:Ai:Bigi2I � (N�) 2 S ?<�;Bi[yi:=N�]> � S ?<�;B�> Definition5:10� (M 0 �N)� 2 S ?<�;B�>CaseM � (M 0N). Similar.2Corollary 5.22. If S is a typed inductive set, thenM 2 S �<�;A> ,M 2 S<�;A>, � `M : A
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Proof. M 2 S �<�;A> ) M 2 S<�;A> by definition ofS �M 2 S<�;A> ) � `M : A by definition ofS� `M : A ) M 2 S �<�;A> By Proposition5:212
5.4. Strong normalization is typed-inductive

Now we can prove that in���& strong normalization is a typed-inductive property, and
therefore well-typed terms in���& are strongly normalizing.

DefineSN <�;A> = fM j � ` M : A ^ M 2 ���& ^ M is strongly normalizingg
andSN = fSN <�;A>g.Proposition 5.23 (SN is typed-inductive). SN is typed-inductive.

Proof. First we have to verify thatSN is a basic set. The first three conditions of the
definition of a basic set (Definition 5.4) are straightforward. For the fourth condition just
note that by the subsumption rule if� `M : A and� ` A � A0, then� `M : A0.

Then we need to show thatSN satisfies the conditions("), (x), (&1), (�1), (&2) and (�2)
of the definition of typed-inductiveset. We analyse the case (&1); others are straightforward
or similar.

AssumeM1 2 SN W ;M2 2 S<�;�x:A:B>; ~N 2 SN ; M�;W1 � ~N 2if SN ^M�;�x:A:B2 � ~N 2if SN . Then one step reductions from(M1&W[f�x:A:BgM2) � ~N will
have only three possibilities:M�;W1 � ~N; M�;�x:A:B2 � ~N or (M 01&W[f�x:A:BgM 02) � ~N 0,
where in the last case just one of the primed terms is a one-step reduct of the corresponding
non-primed one. The first two terms are possible only if they are welltyped (subject-
reduction) but in that case by assumption they are strongly normalizing. By induction on
the maximal length of reduction of the tuple< M1;M2; ~N >, we can prove that the last
term is strongly normalizing. Therefore, we have(M1&W[f�x:A:BgM2) � ~N 2if SN . 2
The�&1 strong normalization follows.Theorem 5.24 (�&1 Strong normalization). In ���&, if � ` N : A, thenN is �&1
strongly normalizing.

Proof. From The previous proposition and Corollary 5.222
6. PECULIAR PROPERTIES OF �����& is a conservative extension of��� (see Section 4.6.1). Therefore, several properties

we proved in the previous sections for��& hold for ��� as well. In particular���
satisfies confluence,�2�-strong normalization, admissibility of reflexivity and transitivity,
and subject reduction.

However, some properties of��� that are specific to it, and do not generalize to��&.
In this section, after having recalled the definition of���, we study three of them:

1. We prove that the rule for subtyping family applications (ruleSAC-app in Section 3.3.2)
is admissible in���. We already explained in the excursion at the beginning of Section 4.4
why this proof is interesting for��� but not for��&. We think it is important to show
this property here since it justifies the presence of the ruleS-� in ���. [Section 6.2]
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2. We show the equivalence between��� and�P� (see Section 3.3.2). This result
is somewhat outside the main stream of this article. However, it is interesting to have
it here since it shows the “roots” of��& and, more than the previous point, it justifies
the definition of some rules of��& that have their form only to have this equivalence to
hold. We simply outline the proof of equivalence; the full proof isavailable on the Web.
[Section 6.3]

3. We prove the decidability of��� and define a sound and complete algorithmic set
of rules. This result is important since it forms the core of the study of decidability of��& of Section 7. Of course we could have studied decidability directly for��& without
dealing with���. We preferred to start by��� for two reasons. First, it is interesting to
show how the��� algorithm modularly extends to��&. Second, while decidability holds
for ���, it does not hold for full��& but just for the normalizing subsystem studied in
Section 5; so we preferred to show it also for a less powerful but full system such as���,
rather than just for a particular subsystem of��&. [Section 6.4]

6.1. Definition of������ has the same four syntactic categories as��&, as well as the four judgment forms.
The syntax of pre-terms, pre-types, pre-kinds and pre-contexts are as those of��& without
overloaded types and terms.M ::= x j �x:A:M jMMA ::= � j �x:A:A j �x:A:A j AMK ::= ? j �x:A:K� ::= <> j �; x : A j �; � : K j �; � � A : K
There are only two notions of reduction, namely,!�1 and!�2 . So, here,!��!�1[�2 .
The formation, kinding, and typing rules for��� are those of��& (Appendix A.1) from
which we erase K-OVER T-�, T-&, and T-OAPP. The subtyping rules are given in Figure 3.
Note that, although S-ApR has the same form as in��&, the� conversion occurring in
there is only a combination of�1 and�2 (�& is not involved).

6.2. Subtyping family application
The theorem of admissibility of the subtyping family application rule� ` AM;BM : K � ` A � B� ` AM � BM

just requires a simple lemma:Lemma 6.1. � ` �M1::Mn : K ^ � bound in � ) � ` �(�)M1::Mn : K
Proof. By the observation that there existA1; ::; An andK 0 such that� � �(�) :�x1:A1::�xn:An:K 0 2 � whereK 0[x :=M ] = K. 2Theorem 6.1 (Subtyping family application).� ` AM;BM : K ^ � ` A � B ) � ` AM � BM
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Proof. By induction on the depth of derivation of� ` A � B. Cases (S-�) and (S-ApR)
are immediate. For case (S-�) use Proposition 4.6 while for (S-ApT) use Lemma 6.1. In
the case (S-ApSL) we have that the derivation ends by� ` A00[x :=M1]M2::Mn � B� ` (�x:A0:A00)M1::Mn � B S-ApSL

From the assumption, we have:� ` ((�x:A0:A00)M1::Mn)M : K) 9D;K 0 s:t: � ` (�x:A0:A00)M1::Mn : �y:D:K 0 Prop. 4.14^K = K 0[x :=M ] ^ � `M : D) � ` A00[x :=M1]M2::Mn : �y:D:K 0 subject reduction) � ` A00[x :=M1]M2::MnM : K 0[y :=M ] K-APP

By the�2 subject reduction (Lemma 4.21),(A00[x := M1])M2::MnM is well-kinded in
the context�. Therefore,� ` A00[x :=M1]M2::MnM;BM : K ^ � ` A00[x :=M1]M2::Mn � B) � ` A00[x :=M1]M2::MnM � BM IH) � ` (�x:A0:A00)M1::MnM � BM S-ApSL

Case (S-ApSR) is similar to the last case.2
6.3. Equivalence between��� and�P�

In this section we outline the proof of the equivalence between��� and�P�. It can be
skipped at first reading and requires the contents of Section 3.3.2.

Since the key difference between the two systems is in the definition of the subtyping
relation, we concentrate our efforts on this relation. We expect the equivalence to state that
whenA andB have the same kindK, then� ` A � B holds in our system if and only if� `AC A � B holds in�P�. But shouldA;B be kinded in�P� or in ���? If the latter
choice is taken, then the difficulty is to show that every subtyping rule in��� is admissible
in �P� (since kindings may be different). If kindings are assumed in�P�, then the subject
reduction in��� does not apply and we do not know whether kinding is preserved (which
is critical when�-reductions are involved in the proof).

So we take a different approach and prove equivalence by using a intermediatecalculus�P f� that is defined by the same rules as�P�, except that the subtyping rules and the
subsumption rule contain kinding judgments for all formulae occurring in them. We show
that this system is equivalent both to��� and�P�. We use these two equivalence results
to prove the equivalence between��� and�P� and in particular to give an answer to the
question of the previous paragraph, showing that the equivalence of the subtyping relations
must be stated by using��� kinding.

Once more in order to avoid confusion we use a different relation symbol 4 to denote�P f� subtyping, usef scripts for�P f� rules and judgments, and use lowercase italicized
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names for rules. The subtyping rules of�P f� are:Sf -var
� bounded in�� `f � 4 �(�)Sf -� � `f �x:A:B; �x:A0:B0 : ? � `f A0 4 A; �; x : A0 `f B 4 B0� `f �x:A:B 4 �x:A0:B0Sf -� � `f �x:A:B;�x:A0:B0 : K A0 =� A �; x : A ` B 4 B0� `f �x:A:B 4 �x:A:B0Sf -app

� `f AM;BM : K � `f A 4 B� `f AM 4 BMSf -conv
� `f A;B : K A =� B� `f A 4 BSf -trans

� `f A;B;C : K � `f A 4 B � `f B 4 C� `f A 4 C�P f� differs from�P� also in the subsumption rule which contains kinding judgments for
the types at issue (as in��&):T f -sub

� `f M : A � `f A 4 B � `f A;B : ?� `f M : B
As announced we do not give a detailed proof of equivalence, but we rather outline it. The
interested reader will find full proofs in [Che96, Che98] available on the Web.

First, it is easy to verify that some structural properties proved in Section 4.3 for��&
hold for �P f�, as well: generation for kinding, context properties, uniqueness of kinds,
bound�-equivalence, and agreement of judgments. However, the proofs differ fromthose
of ��& in that�P f� requires simultaneous induction on formation, kinding, typing, and
subtyping, while in��& (or ���) two separated inductions can be used, one for the first
three judgments, another for subtyping.

The circularity between kinding, typing, and subtyping in�P f� is also the central dif-
ficulty in proving its equivalence with���. We handle it by proving the results in the
following order (whereJ denotes either a kindK, or a kindingA:K, or a typingM :A,
but not a subtyping relation):

1. � `f A;B : K ^ A =� B ) � ` A � B
2. � `f AM;BM : K ^ � ` A � B ) � ` AM � BM
3. � `f A 4 B ) � ` A � B
4. � ` A � B ^ � ` A;B : K ) � `f A 4 B
5. � ` J ) � `f J
6. � `f J ) � ` J
7. (� `f A 4 B ) � `f A;B : K) ^ (� `f A;B : K ) � ` A;B : K)
8. � `f A 4 B , � ` A � B ^ � ` A;B : K

We can now precisely state the equivalence between�P f� and���.



58 G. CASTAGNA, G. CHENTheorem 6.2 (Equivalence between�P f� and���).� `f K , � ` K� `f A : K , � ` A : K� `f M : A , � `M : A� `f A 4 B , � ` A � B ^ � ` A : K ^ � ` B : K
It still remains to prove the equivalence between�P f� and�P�. The proof is quite

straightforward. (Recall that� and`AC respectively denote the subtyping relation and
judgments (derivable) in Aspinall and Compagnoni’s system�P�).Theorem 6.2 (Equivalence between�P f� and�P�).� `f K , � `AC K� `f A : K , � `AC A : K� `f M : A , � `AC M : A� `f A 4 B , � `AC A � B

Proof. By simultaneous induction, by using the agreement of judgments for�P f�. 2
The equivalence between��� and�P� then follows:Corollary 6.1 (Equivalence between�P� and���).� `AC K , � ` K� `AC A : K , � ` A : K� `AC M : A , � `M : A� `AC A � B , � ` A � B ^ � ` A : K ^ � ` B : KExcursus on recent work We already explained that��� is a byproduct of��&
since it was defined in preparation to this work. However,��� is not deprived of interest on
its own. Although we just proved that��� is equivalent to�P�, in Section 3.3.2 we argued
that ��� improves�P� in that it allows type level transitivity elimination in subtyping.
This is obtained thanks to the rules S-ApSR and S-ApSL that embed�2-head-reduction in
the subtyping rules. These rules have been generalized in [Che97] (a study on the extension
of the Calculus of Constructions by subtyping), to S-�:A =� C � ` C � D D =� B � ` A;B;C;D : s� ` A � B
where� ` A;B;C;D : s denotes thatA;B;C;D are well-formed, and to S-�0 (for the
algorithmic subtyping system)28 :A!� C � ` C � D B !� D� ` A � B
Several authors have used similar techniques. In their work on typed operational semantics
for (a variant of)F!� , Compagnoni and Goguen [CG97] use the subtyping ruleA!w C � ` C � D B !w D� ` A � B28A detailed analysis on this technique of achieving transitivity elimination can be found in [Che98].
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where!w denotes weak-head reduction.
In his study on coercive subtyping for UTT (a system more expressive thanthe Calculus

of Constructions) Luo [Luo97] deals with type conversion by the following rule:A = C � ` C �c0 D D = B � ` A;B;C;D : ? c = c0� ` A �c B
where c; c0 are coercions,= is the type conversion defined in his system and� `A;B;C;D : ? states thatA;B;C;D are well-formed.

A significant achievement in this direction is the work of Zwanenburg[Zwa99], where
transitivity elimination for general PTS systems is obtained by theruleA!� C � ` C � D B !� D� ` A � B
Although a very similar to the S-�0 rule in [Che97], Zwanenburg is the first who provides
a direct proof of transitivity elimination with this rule. This progress allows him to con-
struct and study the subtyping extension to general PTS systems, which includes the one
of [Che97].

The common feature of all these approaches is that the resulting subtyping systems enjoy
the transitivity elimination property. As in this work, the solution of this problem is the key
step in their studies of meta theoretic properties.

Compared to these recent and more general approaches the pair of rules S-ApSL and S-
ApSR is still interesting: it is simple (as part of a subtyping system) and efficient (as part
of a subtype checking algorithm).2

6.4. Decidability and Minimal Typing
We already hinted that the set of subtyping rules for��� can be straightforwardly

turned into a deterministic algorithm by adding to the [S-ApSR] rule the conditionC 6�(�x:A0:B0)M 01::M 0m ^ C 6� �M 01 : : :M 0m and to the rule [S-ApT] the conditionA 6��M 01 : : :M 0n (Footnote 9 in Section 3.3.2).
Of course, it is necessary to prove that every judgment provable by the unrestricted

rules can also be proved just by using the rules with the extra conditions (the converse is
straightforward), that is, we have to show that the conditions are neutral with respect to the
definition of the subtyping relation.

Let us briefly hint to how this equivalence can be proved:

Proof. To show that the condition on the rule [S-ApT] is neutral it suffices to see that
whenever� ` �M1 : : :Mn � �N1 : : : Nn thenMi =� Ni (observe the rules and note that
the only way to decompose a variable on the right-hand side is to use the rule [S-ApR]).
Therefore if we have a proof of� ` �M1 : : :Mn � �N1 : : :Nn ending by [S-ApT] then
we can prove the same judgment just by using [S-ApR].

The proof that the conditions on [S-ApSR] are neutrals is instead obtained by induction
on the depth of the derivations (with the extra result that the derivation that satisfies the
condition does not have greater depth). For example consider the case in which a derivation
of � ` (�y:C:D)M1 : : :Mm � (�x:A:B)N1 : : :Nn ends by the rule [S-ApSR]; then by
induction hypothesis there exists a derivation for� ` (�y:C:D)M1 : : :Mm � B[x :=
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be [S-ApSL], whence� ` D[y :=M1]M2 : : :Mm � B[x := N1]N2 : : : Nn. By applying
[S-ApSR] we deduce� ` D[y := M1]M2 : : :Mm � (�x:A:B)N1 : : : Nn. This last rule
either satisfies the conditions or it does not. In the first case we already have a whole
derivation that satisfies the conditions; in the latter case we can apply oncemore the
induction hypothesis and obtain such a derivation. In both cases a further application of
[S-ApSL] rule yields a derivation of the initial judgment that satisfies the conditions.2
The decidability of subtyping follows from the equivalence between��� and�P� and
the decidability of the latter, but it can also be easily obtained directly from the subtyping
rules of���.Theorem 6.3 (Decidability of subtyping). If � ` A:K1;� ` B:K2, then the sub-
typing judgment� ` A � B is decidable.

Proof. Associate to each subtyping judgment� ` A � B the measureWeight�(A;B)
of Section 4.4.1 and note that each subtyping rule decreases this measure.2
The next step towards proving decidability is to design algorithmicversions of the remaining
judgments (typing, kinding, and context formation). Here we describe only the most
significative algorithmic rules: all the algorithmic rules can be found in Appendix A.1.3
(just remove the rules specific to��&, that is, AS-OVER, Lub-OVER, AK-OVER, AT-",
AT-&, and AT-OAPP).

Judgments in algorithmic rules are denoted by� `A J . In particular, we write� `AA � B to denote judgments deduced by using the rules with the extra conditions at the very
beginning of this section (even though in what follows we tend to omit theA script for
subtyping since they virtually denote the same system). With the convention that premises
are evaluated in order, the rules form an algorithm.

The main step to an algorithmic set of rules is as customary: we remove thesubsumption
rule (which is not syntax-directed) and embed the subtyping relation inthe elimination
rules (those for applications, namely K-APP and T-APP). As usual, the presence of type
variables causes the further problem that the type to eliminate in a elimination rule may
not be in “canonical” form. For example, consider the application of two termsMN under
a context�. We first try to type each term� ` M :A and� ` N :B, and then to infer
from that a typeC such that� ` MN : C. When the typeA of M is equivalent to a
type of the form�x:D:E, then it suffices to check that� ` B � D and to infer thatC
is E[x := N ]. But because of type variables the actual form ofA may be�M1::Mn or(�y:A1:A2)M1::Mn. Therefore, we need to infer from these types a type of the form�x:D:E (let us call it a�-type). In�P�, this is achieved by using a function FLUB�(A)
that returns the least�-type super-type ofA (strictly speaking, it returnsa minimal�-type
super-type ofA). Here we essentially take the same approach with the only difference that
the least�-type is inferred rather than calculated. So we introduce a new relation� `A A ��lub B
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to express the fact thatB is the least�-type super-type ofA under the context�. The rules
to derive this relation are:

Lub-REFL � `A �x:A:B ��lub �x:A:B
Lub-ApT

� `A �(�)M1::Mn ��lub A� `A �M1::Mn ��lub A
Lub-ApSL

� `A B[x :=M1]M2::Mn ��lub C� `A (�x:A:B)M1::Mn ��lub C
The properties of this relation are stated by the following proposition.Proposition 6.3 (Properties of�lub judgments).

1.� `A A ��lub B ) � ` A � B
2.� ` A � �x:B:C ) 9B0; C 0 s:t: � `A A ��lub �x:B0:C 0 ^ � ` �x:B0:C 0 ��x:B:C
3.Given a typeA, it is decidable if there exists�x:B:C such that� `A A ��lub �x:B:C

is derivable.
4.� `A A ��lub B ^ � ` A : K ) � ` B : K
5.� `A A ��lub �x:B:C ^ � `A A ��lub �x:B0:C 0 ) B � B0 ^ C � C 0
Proof. The fourth claim is proved by induction on the depth of the derivationof� `A A ��lub B using subject reduction. The others are straightforward.2

While the use of a FLUB function or of the�lub judgment is a matter of style, the key
difference between our approach and�P� is in the typing and kinding application rules.
We define subtyping directly on types without�2 normalizing them:

AK-APP
� `A A : �x:B:K � `A M : B0 � `A B0 � B� `A AM : K[x :=M ]

AT-APP
� `A M : A � `A A ��lub �x : B:C � `A N : B0 � `A B0 � B� `A MN : C[x := N ]

In the same way as we removed the subsumption rule by embedding subtyping in the
applications rules, we eliminate the conversion rule K-CONV by embedding conversions
in the context-formation rule F-SUBTYPE.

To obtain an algorithmic system we also remove from T-VAR and K-VAR the context-
formationpremises (yielding AT-VAR and AK-VAR of Appendix A.1.3). In this way typing
and kinding become independent from context formation. Therefore,� `A J no longer
implies� ` ?. So additional kinding checks� `A A : ?must be added to the introduction
rules (rules AK-�, AK-�, and AT-�) and an additional kinding check� `A K must be
added to context formation rule F-SUBTYPE. This suffices to infer the well-kindedness of
contexts in the remaining rules.
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Proofs of soundness and completeness of the algorithmic system are a little longer than
those in�P�, but do not require any specific technique or insight.

For the proof of soundness of the algorithmic rules, we need to ensure that well-
kindedness of types in the premises of subsumption is satisfied. Thisis achieved by
using the properties of�lub judgments and generation for kinding.Theorem 6.4 (Soundness of algorithmic system).For all �; A;K;M ,1: � `A K ) � ` K2: � ` ? ^ � `A A : K ) � ` A : K3: � ` ? ^ � `A M : A ) � `M : A

Proof. Simultaneously by induction on the depth of the derivation in the algorithmic
system.Case (AT-APP). Suppose we have a derivation ended by an application of the rule AT-APP� `A M : A � `A A ��lub �x : B:C � `A N : B0 � `A B0 � B� `A MN : C[x := N ] AT-APP

We have:� ` ? ^ � `A M : A ) � `M : A IH) � ` A : ? Proposition 4.13� `A A ��lub �x:B:C ) � ` A � �x:B:C Proposition 6.3(1)� ` ? ^ � `A N : B0 ) � ` N : B0 IH) � ` B0 : ? Proposition 4.13� `A A ��lub �x:B:C ^ � ` A : ? ) � ` �x:B:C : ? Proposition 6.3(4)) � ` B : ? Propositions 4.14, 4.10

So we have the following derivation ending by an instance of the ruleT-APP, and whose
premises are derived by two instances of the rule T-SUB:� `M :A � ` A��x:B:C � ` A;�x:B:C : ?� `M : �x:B:C � ` N :B0 � ` B0�B � ` B0; B : ?� ` N : B� `MN : C[x := N ]
The case for AK-APP is similar. Others are easy.2Corollary 6.4. � `A ? ^ � `A A : K ) � ` A : K� `A ? ^ � `A M : A ) � `M : A
As usual in the presence of subtyping and/or typing conversion the algorithmic system does
not prove all the judgments of the original system. Nevertheless it is complete in the sense
that every context, type, or term that is well-kinded/typed in the original system is so in the
algorithmic one:Theorem 6.5 (Completeness of algorithmic system).1: � ` K ) � `A K2: � ` A : K ) 9Ka s:t: � `A A : Ka ^ Ka =� K ^ � ` Ka3: � `M : A ) 9Aa s:t: � `A M : Aa ^ � ` Aa � A
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Proof. Simultaneously by induction on derivations in the original system.Case (K-APP). Suppose the last step of derivation is� ` A : �x:B:K � `M : B� ` AM : K[x :=M ] K-APP

We have� ` A : �x:B:K ) 9Ka s:t: � `A A : Ka ^ Ka =� �x:B:K IH) 9B0;K 0 s:t: Ka � �x:B0:K 0 ^B0 =� B ^ K 0 =� K confluence� `M : B ) � `A M : B00 ^ � ` B00 � B IH� `M : B ) � ` ? ^ � ` B : ? Prop. 4.10, 4.13� ` ? ^ � `A A : Ka ) � ` A : Ka Theor. 6.4) � ` Ka Prop. 4.13) � ` B0 : ? F-�, Prop. 4.13� ` B;B0 : ? ^ B0 =� B ) � ` B � B0 Prop. 4.24) � ` B00 � B0 Prop. 4.27) � `A B00 � B0
So we have a derivation ending by� `A A : �x:B0:K 0 � `A M : B00 � `A B00 � B0� `A AM : K 0[x :=M ] AK-APP

andK 0[x :=M ] =� K[x :=M ].Case (T-APP). Suppose the derivation ends by� `M : �x:A:B � ` N : A� `MN : B[x := N ] T-APP

Then there existC;A0; B0; A00 such that� `M : �x:A:B ) � `A M : C ^ � ` C � �x:A:B IH� ` C��x:A:B ) � `A C��lub�x:A0:B0 ^ � ` �x:A0:B0��x:A:B Prop. 6.3) � ` A � A0 Prop. 4.14� ` N : A ) � `A N : A00 ^ � ` A00 � A IH) � ` A00 � A0 Prop. 4.27) � `A A00 � A0
Therefore, we have a derivation ending by� `A M : C � `A C ��lub �x:A0:B0 � `A N : A00 � `A A00 � A0� `A MN : B0[x := N ] AT-APP

and� ` B0[x := N ] � B[x := N ] follows from Proposition 4.11.

Other cases are easy.2
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In the proof of completeness, we have used reflexivity and transitivity of subtyping. To
apply reflexivity, we need kinding condition, which is proved by context properties, agree-
ment of judgments, and soundness of the algorithmic rules. Generationfor kinding has
been used to decompose subtyping between�-types so that transitivity can apply.

A minimal typeof a termM under a context� is a typeA such that� `M : A and for any
other typeB if � ` M : B, then� ` A � B. Note that, by this definition, the minimal
type of a termM may not be unique: ifB is a minimal type ofM , then every well-formed
type �-equivalent toB is also a minimal type ofM . But our algorithmic system will
always return the same minimal type. This type may not be in normal form. For example,
if x : A 2 �, then the algorithm returnsA for x, even ifA is not in normal form. To obtain
the minimal normalized type of a term, one can simply normalize the typereturned by the
algorithm.

In order to show the minimal typing property, it remains to show thattheAa in the
proposition of completeness is unique.Proposition 6.5 (Uniqueness and minimality of algorithmic typing).� `A M : A ^ � `A M : B ) A � B� `A M : A ^ � `M : B ) � ` A � B

Proof. The first implication is proved by induction on the size ofM , using uniqueness
of �lub (Proposition 6.3). The second implication follows from Theorem6.5 .2
The minimal typing property follows.Corollary 6.6 (Minimal typing property for���).� `M : A ) (9B s:t: � `M : B ^ 8C � `M : C ) � ` B � C)

Decidability results can be straightforwardly proved by showing that the algorithms
always terminate. They are summarized in the following proposition.Proposition 6.7 (Decidability of algorithmic���). For all �;K;M;A and B,
the following problems are decidable29 :

1.� ` A : K ^ � ` B : K 0 ) � `A A � B ?
2.� ` ? ) 9K s:t: � `A A : K ?
3.� ` ? ) 9A s:t: � `A M : A ?
4.� `A K ?

Proof. The assertions must be proved in the order shown. The first implication was
proved in Theorem 6.3. The second and third implications are proved simultaneously
by settingWeight(� `A U :V ) = Size(U) and showing that each algorithmic typing
and kinding rule strictly decreasesWeight. For the last implication setSize(<>) = 1,
Size(�; �:K) = Size(�; � � A:K) = Size(�) + Size(K), andSize(�; x:A) = Size(�);
then note that all the algorithmic formation rules strictly decreaseWeight(� `A K) defined
as the lexicographical order of the following pair:(Size(�) + Size(K); length(�)). 229We say that the problem� )  ? is decidable if under the hypothesis�, the formula is decidable. As
usual� ` J stands for “� ` J is derivable”.
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By the equivalence between algorithmic rules and the original ones, we obtain the decid-
ability of judgments in���.Corollary 6.8 (Decidability of���). The following problems are decidable: for
all �;K;M;A andB,

1.� ` A : K ^ � ` B : K 0 ) � ` A � B ?
2.� ` ? ) 9K s:t: � ` A : K ?
3.� ` ? ) 9A s:t: � `M : A ?
4.� ` K ?

7. DECIDABILITY AND ALGORITHMIC SYSTEM FOR ��&
In this section we show how the proofs of Section 6.4 for��� can be lifted to��&. In

particular we examine the algorithmic type system for��&, its soundness, its completeness,
and we discuss the minimal type property and decidability results.

The algorithmic subtyping system for��& is obtained by adding the subtyping rule
for overloaded types S-OVER to the algorithmic subtyping system of��� (that is, by
adding suitable conditions to the subtyping rules of��& as explained at the beginning of
Section 6.4) . The algorithmic subtyping system is equivalent to theoriginal one:� ` S � T , � `A S � T
where`A denotes judgments of the algorithmic system. The proof of this equivalence is
strictly the same as the one outlined in the previous section for���.

For any subsystem of��& in which the corresponding�-equivalence is decidable, the
termination of the algorithm can be proved in a similar way as���, that is by using the
measureWeight. In other words, the subtyping is decidable in every subsystem of��&
with decidable�-equivalence. An example of such a subsystem is the system���& we
introduced in Section 5.

The whole algorithmic system is obtained by a few modifications to the algorithmic
system of��� and it is summarized in Appendix A.1.3. First, the set of�lub rules is
extended by a new rule

Lub-OVER � `A f�x:Ai:Bigi�n ��lub f�x:Ai:Bigi�n
Recall that, in���, the judgment� `A A ��lub B is used to infer the least�-type super-
type ofA. With the new rule, it will infer either the least�-type or the least overloaded-type
super-type ofA.

It is easy to verify that all properties for the relation� `A A ��lub B (Proposition 6.3)
still hold. In addition, we have a new property:� ` C � f�x:Ai:Bigi�n) � `A C ��lub f�x:A0j :B0jgj�m ^ � ` f�x:A0j :B0jgj�m � f�x:Ai:Bigi�n
The algorithmic context rules are the same as those for���. We add K-OVER to algorith-
mic kinding rules of���, while the following rules are added to the algorithmic typing
rules of���:
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AT-" � `A ?� `A " : fg
AT-&

� `A M :W1 � f�x:Ai:Bigi�n � `A f�x:Ai:Bigi�n : ?� `A N : W2 � �x:An+1:Bn+1 � `A f�x:Ai:Bigi�n+1 : ?� `A M&f�x:Ai:Bigi�n+1N : f�x:Ai:Bigi�n+1
AT-OAPP

� `A M :W ��lub f�x:Ai:Bigi�n+1 � `A f�x:Ai:Bigi�n+1 : ?� `A N : A Aj = mini�n+1fAi j � ` A � Aig� `A M �N : Bj [x := N ]
Note that in the rule AT-& the hypothesis� `A f�x:Ai:Bigi�n+1 : ? does not imply� `A f�x:Ai:Bigi�n : ?, so both kinding hypothesis are needed.

As in the case of���, using induction and the subsumption rule, it is easy to prove the
soundness of the algorithmic system.Notation 7.1. We use� ` M : A � B : K to denote� ` M : A ^ � ` A �B ^ � ` A;B : KTheorem 7.1 (Soundness of algorithmic system of��&). For all �; A;K;M ,1: � `A K ) � ` K2: � ` ? ^ � `A A : K ) � ` A : K3: � ` ? ^ � `A M : A ) � `M : A

Proof. Simultaneously by induction on the depth of the derivation in the algorithmic
system.Case (AT-&). Suppose that� ` ? and that the derivation ends by an application of the
rule AT-&. We have:� `A f�x:Ai:Bigi�n+1 : ? ) � ` f�x:Ai:Bigi�n+1 : ?) � ` �x:An+1:Bn+1 : ?� `A f�x:Ai:Bigi�n : ? ) � ` f�x:Ai:Bigi�n : ?� `A M : W1 ) � `M :W1) � `W1 : ?� `M : W1 � f�x:Ai:Bigi�n : ? ) � `M : f�x:Ai:Bigi�n� `A N :W2 ) � ` N :W2) � `W2 : ?� ` N :W2 � �x:An+1:Bn+1 : ? ) � ` N : �x:An+1:Bn+1

So we have a derivation ending by� `M : f�x:Ai:Bigi�n � ` N : �x:An+1:Bn+1 � ` f�x:Ai:Bigi�n+1 : ?� `M&f�x:Ai:Bigi�n+1N : f�x:Ai:Bigi�n+1 T-&
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the rule AT-OAPP. We have:� `A M :W ��lub f�x:Ai:Bigi�n+1 ) � `M :W ^ � `W � f�x:Ai:Bigi�n+1) � `W : ? ^ 8i � n+ 1: � ` Ai : ?� `A f�x:Ai:Bigi�n+1 : ? ) � ` f�x:Ai:Bigi�n+1 : ?� `M :W � f�x:Ai:Bigi�n+1 : ? ) � `M : f�x:Ai:Bigi�n+1� `A N : A ) � ` N : A) � ` A : ?Aj = mini�n+1fAi j � ` A � Aig ) � ` A � Aj� ` N : A � Aj : ? ) � ` N : Aj
So we have a derivation ending by� `M : f�x:Ai:Bigi�n+1 � ` N : Aj� `M �N : Bj [x := N ] T-OVER

Other cases are similar to those for���. 2
Again we have the completeness of the algorithmic system:Theorem 7.2 (Completeness of algorithmic system of��&).1: � ` K ) � `A K2: � ` A : K ) 9Ka s:t: � `A A : Ka ^ Ka =� K ^ � ` Ka3: � `M : A ) 9Aa s:t: � `A M : Aa ^ � ` Aa � A
Proof. Simultaneously by induction on the depth of the derivation in the original system.Case (T-&). Suppose that the derivation ended by an application of the rule T-&:

T-&
� `M : f�x:Ai:Bigi�n � ` N : �x:An+1:Bn+1 � ` f�x:Ai:Bigi�n+1 : ?� `M&f�x:Ai:Bigi�n+1N : f�x:Ai:Bigi�n+1

Then� `M : f�x:Ai:Bigi�n ) 9W1: � `A M : W1 � f�x:Ai:Bigi�n IH� ` N : �x:An+1:Bn+1 ) 9W2: � `A N :W2 � �x:An+1:Bn+1 IH� `M : f�x:Ai:Bigi�n ) � ` f�x:Ai:Bigi�n : ?) � `A f�x:Ai:Bigi�n : ?� ` f�x:Ai:Bigi�n+1 : ? ) � `A f�x:Ai:Bigi�n+1 : ?
So we have a derivation ending by

AT-&

� `A M :W1 � f�x:Ai:Bigi�n � `A f�x:Ai:Bigi�n : ?� `A N : W2 � �x:An+1:Bn+1 � `A f�x:Ai:Bigi�n+1 : ?� `A M&f�x:Ai:Bigi�n+1N : f�x:Ai:Bigi�n+1
LetAa = f�x:Ai:Bigi�n+1, the result follows from the reflexivity of subtyping.Case (T-OAPP). Suppose that the derivation ended by an application of the ruleT-OAPP:
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T-OAPP
� `M : f�x:Ai:Bigi�n � ` N : Ai� `M �N : Bi[x := N ]� `M : f�x:Ai:Bigi�n ) � `A M :W � f�x:Ai:Bigi�n) � `W ��lub f�x:A0i:B0igi�m^ � ` f�x:A0i:B0igi�m � f�x:Ai:Bigi�n� `A M :W ) � `M :W) � `W : ?) � ` f�x:A0i:B0igi�m : ?� ` N : Ai ) � `A N : A � Ai

So we have a derivation ending by

AT-OAPP

� `A M :W ��lub f�x:A0i:B0igi�m � `A f�x:A0i:B0igi�m : ?� `A N : A A0j = mini�mfA0i j � ` A � A0ig� `A M �N : B0j [x := N ]
We continue as follows:� ` f�x:A0i:B0igi�m � f�x:Ai:Bigi�n) 9h: � ` �x:A0h:B0h � �x:Ai:Bi S-OVER) � ` Ai � A0h ^ �; x : Ai ` B0h � Bi generation of typing) � ` A � A0h ^ �; x : A ` B0h � Bi � ` A � Ai) � ` A0j � A0h A0j = mini�mfA0i j � ` A � A0ig) �; x : A0j ` B0j � B0h covariance) �; x : A ` B0j � B0h � ` A � A0j) �; x : A ` B0j � Bi transitivity� `A N : A) � ` N : A� ` N : A ^ �; x : A ` B0j � Bi ) � ` B0j [x := N ] � Bi[x := N ]
Therefore,� `A M �N : B0j [x := N ] � Bi[x := N ], that is the result.

Other cases are similar to those in���. 2
By an argument similar to the one for���, we can prove the minimal typing property

for ��&, that is that whenever� `A M : A, thenA is a minimal type of the termM .
Finally, note that the rules we added to the algorithmic system of��� do not affect the

termination of the algorithm, provided that the corresponding� conversion is decidable.
Therefore from the above results we can also conclude that any subsystem of��& in which�-conversion is decidable, context formation, kinding, typing, and subtyping are decidable
too.

8. CONCLUSION

In this work we have presented how to merge into a unique formalism dependent types,
subtyping, and late bound overloading. The logical system we obtainedis inevitably rather
complex, but also very expressive.

The combination of subtyping with first order types does not need to befurther justified
since its need is acknowledged by several articles in the literature whose references are
given in Section 2.1. The same papers show that some amount of overloading is necessary,
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as well. Up to now, this need was partially satisfied by the use of intersection types, which
implement a very limited form of overloading.

The lack of elegant theories and, more generally, of studies of overloadingmay explain,
if not justify, the use of intersection types as an ersatz of overloading. However, it is not
very difficult to add overloaded functions to first order types, once we dispose of a complete
theory of overloading. As a matter of fact, the relative complexity of��& does not come
from the use of overloading but from the use of late binding. It islate binding that requires
uneasy conditions on the kinding of types, conditions that enforce the circularity among
kinding, typing and subtyping. Therefore, it is because of late binding that we could not
start from existing systems of dependent types and subtyping, but wehad to develop a brand
new formalization,���, which because of its broken circularity is prone to extensions.
More recent works of other authors seem to confirm that the techniques we first introduced
in ��� are the good ones, as we explained in the excursus ending Section 6.3.

The reward of these efforts is a very powerful system that, thanks precisely to late
binding, allows the same kind of modular and incremental programming that has been
made popular by object-oriented languages.

In this article we developed the theoretical part of the system and studied a large amount of
theoretical properties ranging from confluence to subject reduction, from conservativity to
transitivity elimination, from normalization properties to decidability. It is now necessary
to explore the practical applications of this system, by defining appropriate decidable
subsystems and by embedding them in programming languages and the technology of
theorem provers. In that perspective it will be necessary to explore derived systems in
which the formation and rewriting rules of the overloaded types can be weakened.
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APPENDIX

A.1. ��& SYSTEM

A.1.1. Typing and subtyping rules

A.1.1.1. Formation for Kind and Context

F-EMPTY <> ` ?
F-TERM

� ` A : ? x 62 Dom(�)�; x : A ` ?
F-TYPE

� ` K � 62 Dom(�)�; � : K ` ?
F-SUBTYPE

� ` A : K � 62 Dom(�)�; � � A : K ` ?
F-� �; x : A ` K� ` �x:A:K
A.1.1.2. Kinding rules

K-VAR
� ` ? � 2 Dom(�)� ` � : Kind�(�)

K-� �; x : A ` B : ?� ` �x:A:B : ?
K-� �; x : A ` B : K� ` �x:A:B : �x:A:K
K-APP

� ` A : �x:B:K � `M : B� ` AM : K[x :=M ]
K-CONV

� ` A : K � ` K 0 K =� K 0� ` A : K 0
K-OVER

� ` ? 8i 2 I : � ` �x:Ai:Bi : ?8i 2 I : �x:Ai:Bi is closed and in normal form8i; j 2 I : � ` Ai � Aj ) �; x : Ai ` Bi � Bj8A:Fv(A) � Dom(� ) ) ((8i 2 I: � 6` A � Ai)_(9!i 2 I: � ` A � Ai ^ 8j 2 I � ` A � Aj ) � ` Ai � Aj))� ` f�x:Ai:Bigi2I : ?
A.1.1.3. Typing rules

T-VAR
� ` ? x 2 Dom(�)� ` x : �(x)
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T-� �; x : A `M : B� ` �x:A:M : �x:A:B
T-APP

� `M : �x:A:B � ` N : A� `MN : B[x := N ]
T-" � ` ?� ` " : fg
T-&

� `M : f�x:Ai:Bigi�n � ` N : �x:An+1:Bn+1 � ` f�x:Ai:Bigi�n+1 : ?� `M&f�x:Ai:Bigi�n+1N : f�x:Ai:Bigi�n+1
T-OAPP

� `M : f�x:Ai:Bigi�n � ` N : Ai� `M �N : Bi[x := N ]
T-SUB

� `M : A � ` A � B � ` A;B : ?� `M : B
A.1.1.4. Subtyping rules

S-� � ` A0 � A �; x : A0 ` B � B0� ` �x:A:B � �x:A0:B0
S-ApR

M1 =� M 01 � � � Mn =� M 0n� ` �M1 � � �Mn � �M 01 � � �M 0n
S-ApT

� ` �(�)M1::Mn � A� ` �M1::Mn � A
S-ApSL

� ` B[x :=M1]M2::Mn � C� ` (�x:A:B)M1::Mn � C
S-ApSR

� ` C � B[x :=M1]M2::Mn� ` C � (�x:A:B)M1::Mn
S-OVER

8j 2 J 9i 2 I � ` �x:Ai:Bi � �y:Cj :Dj� ` f�x:Ai:Bigi2I � f�y:Cj :Djgj2J
A.1.2. Reduction

The�-conversion is given by context closure of the union of the following three notions
of reduction: (�x:A:M)N !�1 M [x := N ](�x:A:B)N !�2 B[x := N ]
The�&-reduction in a context� is defined as follows:

If 1. N is closed and in normal form,
2. there existsi 2 [1::n] s.t.� ` N :Ai and8j 2 [1::n] � ` N :Aj ) � ` Ai � Aj

then (M1&f�x:Ah:Bhgh=1::nM2) �N !�& � M1 �N for i < nM2 �N for i = n
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A.1.3. Algorithmic Rules for ��&
A.1.3.1. Algorithmic Subtyping Rules

AS-� � `A A0 � A �; x : A0 `A B � B0� `A �x:A:B � �x:A0:B0
AS-ApR

M1 =� M 01 � � � Mn =� M 0n� `A �M1 � � �Mn � �M 01 � � �M 0n
AS-ApT

� `A �(�)M1::Mn � A� `A �M1::Mn � A A 6� �M 01 : : :M 0n
AS-ApSL

� `A B[x :=M1]M2::Mn � C� `A (�x:A:B)M1::Mn � C
AS-ApSR

� `A C � B[x :=M1]M2::Mn� `A C � (�x:A:B)M1::Mn C 6� (�x:A0:B0)M 01::M 0mC 6� �M 01 : : :M 0m
AS-OVER

8j 2 J 9i 2 I � `A �x:Ai:Bi � �y:Cj :Dj� `A f�x:Ai:Bigi2I � f�y:Cj :Djgj2J
A.1.3.2. �lub Rules:

Lub-REFL � `A �x:A:B ��lub �x:A:B
Lub-ApT

� `A �(�)M1::Mn ��lub A� `A �M1::Mn ��lub A
Lub-ApSL

� `A B[x :=M1]M2::Mn ��lub C� `A (�x:A:B)M1::Mn ��lub C
Lub-OVER � `A f�x:Ai:Bigi�n ��lub f�x:Ai:Bigi�n
A.1.3.3. Algorithmic Context Formation Rules:

AF-EMPTY <> `A ?
AF-TERM

� `A ? � `A A : ? x 62 Dom(�)�; x : A `A ?
AF-TYPE

� `A K � 62 Dom(�)�; � : K `A ?
AF-SUBTYPE

� `A K � `A A : K 0 K =� K 0 � 62 Dom(�)�; � � A : K `A ?
AF-� �; x : A `A K� `A �x:A:K
A.1.3.4. Algorithmic Kinding Rules:
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AK-VAR
� 2 Dom(�)� `A � : Kind�(�)

AK-� � `A A : ? �; x : A `A B : ?� `A �x:A:B : ?
AK-� � `A A : ? �; x : A `A B : K� `A �x:A:B : �x:A:K
AK-APP

� `A A : �x:B:K � `A M : B0 � `A B0 � B� `A AM : K[x :=M ]
AK-OVER

� `A ? 8i 2 I : � `A �x:Ai:Bi : ?8i 2 I : �x:Ai:Bi is closed and in normal form8i; j 2 I : � `A Ai � Aj ) �; x : Ai `A Bi � Bj8A:Fv(A) � Dom(� )) ((8i 2 I: � 6`A A � Ai)_(9!i 2 I: � `A A � Ai ^ 8j 2 I � `A A � Aj ) � `A Ai � Aj))� `A f�x:Ai:Bigi2I : ?
A.1.3.5. Algorithmic Typing Rules:

AT-VAR
x 2 Dom(�)� `A x : �(x)

AT-� � `A A : ? �; x : A `A M : B� `A �x:A:M : �x:A:B
AT-APP

� `A M : A � `A A ��lub �x : B:C � `A N : B0 � `A B0 � B� `A MN : C[x := N ]
AT-" � `A ?� `A " : fg
AT-&

� `A M :W1 � f�x:Ai:Bigi�n � `A f�x:Ai:Bigi�n : ?� `A N : W2 � �x:An+1:Bn+1 � `A f�x:Ai:Bigi�n+1 : ?� `A M&f�x:Ai:Bigi�n+1N : f�x:Ai:Bigi�n+1
AT-OAPP

� `A M :W ��lub f�x:Ai:Bigi�n+1 � `A f�x:Ai:Bigi�n+1 : ?� `A N : A Aj = mini�n+1fAi j � ` A � Aig� `A M �N : Bj [x := N ]
A.2. OVERLOADED FUNCTORSsignature Item = sig type item;val isequal: item * item -> boolend



76 G. CASTAGNA, G. CHENsignature Tree = sig structure i: Item;type 'a tree;val empty: 'a tree;val cons: 'a * 'a tree * 'a tree -> 'a tree;...endsignature OrdItem = sig type item;val isequal: item * item -> bool;val isless: item * item -> boolendsignature OrdTree = sig structure i: OrdItem;type 'a tree;...endsignature Dict =sigtype keytype 'a dictval empty : 'a dictval isnull: 'a dict -> boolval find: key * 'a dict -> 'aval insert : key * 'a * 'a dict -> 'a dictendmkDict =functor(t:Tree): Dict =structtype key = t.i.item;type 'a dict = (key * 'a) t.treeval empty = t.empty;val isnull = t.isnullfun find (k,d) = if isnull(d) then raise Notfoundelse let (k',a) = t.root(d) in if t.i.isequal(k,k') then a ...fun insert (k,a,d) = ...endand (*>>> overloading: "and" stands for "&" <<<*)functor(t:OrdTree): Dict =structtype key = t.i.itemtype 'a dict = (key * 'a) t.tree...fun find (k,d) = if isnull(d) then raise Notfoundelse let (k',a) = t.root(d) inif t.i.isless(k,k') then find (k,left(d)) else ...fun insert (k,a,d) = if isnull(d) then t.cons((k,a),empty,empty)else (* Ordered search of a free position *)end


