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We present a calculus with dependent types, subtyping aadtund overload-
ing. Besides its theoretical interest this work is motiddby several practical needs
that range from the definition of logic encodings, to procé@plization and reuse,
and to object-oriented extension of the SML module system.

The theoretical study of this calculus is not straightfamvaWhile confluence
is relatively easy to prove, subject reduction is much hard&e were not able
to add overloading to any existing system with dependenesygnd subtyping,
and prove subject reduction. This is why we also define herbyasroduct a
new subtyping system for dependent types that improvesiquewsystems and
enjoys several properties (notably the transitivity efiation property). The calculus
with overloading is then obtained as a conservative extensf this new system.
Another difficult point is strong normalization, which is @aessary condition to
the decidability of subtyping and typing relations. Thecadls with overloading
is not strongly normalizing. However, we show that a reabbnaseful fragment
of the calculus enjoys this property, and that its strongnadization implies the
decidability of its subtyping and typing relations.

The article is divided into two parts: the first three secsigmovide a general
overview of the systems and its motivations, and can be egaatately; the remaining
sections develop the formal study.

1. INTRODUCTION

Inthis article we show how to integrate in a unique logical systeegtiifferent features:
(first order) dependenttypes, subtyping, and late-bound overloadiadrst describe each
of these features and in the next section we illustrate the motivadfoms work.

Dependent types.

Dependent types are types depending on terms. A classical example is givaaysy ar

Consider for example the arrays of characters. In programming languagresishnot

a type ‘array of chars” but rather a family of typeshar[1], char[2],..., where

char [n] denotes the type of the character arrays of lemgtiConsider then the function
1
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string to_array that maps a string into the array of its characters. Its domain type is
string but its codomain typdepend®n the length of the string the function is applied to.
More preciselystring to_array is a function that maps a stringinto an array of type
char[length(s)]. By dependent types it is possible to express the type of this imas
follows:

string_to_array : 7s:string.char[length(s)]

In words, the typing judgment above expresses éhating_to_array is a function that,
when applied to a string, returns a result of typehar [length(s)] (« is a binder for the
term variables).

So dependent types allow to express a relationship between the inputinétéoh and
the typeof its output. Dependent types are at the basis of many computer appligation
notably automatic proof-checking —e.g., [HHP93, CAES]— (since they offer the
power of first order-logic), or rich module systems —e.g., [MQ8594é+ (a module can
export functions whose type is defined in the module itself, sdythe of the result of a
transformation of modules may depend on the module —on its type dectapart— the
transformation is applied to).

Subtyping.
Subtyping is a binary relation over types. The introduction of ayqihg relation in a
language greatly enhances its flexibility. Intuitively, a ty§is a subtype of a typ€ (noted
S < T)ifall expressions of typé& can be used in every context where an expression of type
T is expected (for example, integer can be considered a subtype of real and abarses
of string). The advantage of such a relation is that the code originaitien for a given
type can be reused for its subtypes (e.g. the funcitaning to_array can be applied to
characters as well). This is obtained by adding to the typing rulesubsumptionule
of [Car88]:
r-m:S S<T

'eM:T
that states that an expression that has tyjetyped by every super-type 6f, as well.

Subsumption

Late-bound overloading.

An overloaded function is a function that executes different code accordlitigettype of
its arguments. A typical example is the functiothat, in several programming languages,
performs arithmetic sum if applied to two numbers and concatenation ifeapfa two
strings. Thus+ can be thought of as the union of two different functions, arithmetio s
and string concatenation. More generally, every overloaded function t®$ia set of
functions, one for each possible combination of the types of its aegisn At type level this
can be expressed by typing overloaded functions by sets of arrows. dhagrfexample
we have:

+:{int X int — int, string X string — string}

In most programming languages selection of the code for an overloadedbfucell is
performed at compile time: a pre-processor replaces every call of an overloau#idiu
by the code that fits the type of the arguments. This discipline etteh is calledearly
binding In presence of subtyping the type of the arguments of a function maygeh
(notably decrease) during computation. Therefore delaying the code selertian-time
may affect the semantics of programs. In particular we are interestedaite dinding
discipline that delays the selection as much as possible so that the seledtiased on
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the best information about the type of the arguments. The interesstabf a discipline is
that, as shown in Section 2.2, it supports code reuse and incrementediprogg. This

last point is also witnessed by object-oriented programming whereg(spercial cases of)
late-bound overloaded functions are better knowmasti-methodsr generic functions
(see for example the languages Cecil [Cha92] and CLOS [DG87]).

In this article we show how to make these three features coexist in aifilgmalism
called ATT®. This formalism can be considered as the natural extension with latedboun
overloaded functions ok P< [AC96b] (a calculus with dependent types and subtyping)
or, equivalently, as the generalization to dependent typas:diCGL95] (a calculus with
late-bound overloaded functions and subtyping). From a strictly teahpoint of view
the main contribution of this work is the definition of a type diditie for late bound
overloaded functions in the presence of dependent types. A subordin&tbwuiion is the
definition of a set of subtyping rules that defines the same typingoala\ P< but enjoys
much better properties which, among other things, make it prone tosaten

Our work is not just an “exercice de style” where we try to put togetheresdisparate
functionalities for the sake of attempt. The logical difficulties and cotatonal expres-
siveness oAII¥ should be clear: computation depends on types, and possilolyramic
types (because of late binding). Section 2 shows that, besides these &mgiects\I1¢ an-
swers also some practical needs. In Section 3 we give an overview of the sysdém, by
describing how we arrived at its definition. To that end we first inteadependent types,
we then add subtyping, and finally extend the result by late-boundaadst] functions.
In Sections 4 and 5 we give the formal definition of the system and #tsidyeta-theoretic
properties: confluence, soundness, and strong normalization. In Sectierstdy some
properties that are particular to our subtyping deduction system faradkmt types, and
in Section 7 we study the decidability f1%. A conclusion ends our presentation.

In the section of overview we distinguish some text as “excursuséséexcursi discuss
some precise technical or practical points and can be skipped during thedidatg.

2. MOTIVATIONS

There are three main motivations to our work. First and foremostn#esl of both
subtyping and overloading is quite felt in theorem proving, and #esence makes logic
encodings much more difficult. Second, the use of late-bound overlpatlows greater
code reuse, introducing in some sense an object-oriented style in aigpnoaing. Last,
dependent types constitute a theoretical basis of the SML module sytsterafore our
work may be useful to give a theoretical basis to object-oriented extensiothe SML
module systems. Let us examine each motivation in more detail.

2.1. Logic encodings
The first order dependent type theoxyl [HHP93] (see Section 3.2 for a short for-

mal presentation) has been taken as a Logical Framework for the specificatmgiaaf |
systems. For such a purpose, terms in this system are used to encod&aémlogic.
Pfenning [Pfe93] demonstrates that in the absence of subtyping the repteseof subsets
of logical formulae is very cumbersome. This can be illustrated by theviolg example,
which is adapted from the one in [Pfe93]. Consider the set of well-forfimedulae of the
propositional calculus characterized by the following abstract syntax:
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F 2= A|-F|FAF|FVF|F=F
Here A ranges over atomic formulae. This definition can be represented by theifodjo
set of typing declarations:

F %

- . F>F

AN F—>F—>F
V : F>F—>F
> :F—>F—F

Intuitively, x is the set of all types. Thug, : x can be read asF' is a type”. An example
of formal encoding is

Iia:F,b: FF= (Aab)a: F

wherel is a context containing the set of declarations defined abovey @anaire atomic
formulae.

Now consider the subset éf defined as:

F1 n= A‘_'Fl |F1\/F1

There are several ways to represéit One way is to introduce a predicate éi) say
B : F — x, such thatB(t) is true if and only ift is a formula of /;.1 Another way is to
introduce a new typé : x. Both ways are awkward and lead to inefficient implementation
of proof search (see [Pfe93]). To overcome the problem, Pfenning profmegtend\Il
with intersection types (see [BCDC83, CD80]) asubsorting The latter, denoted by :,
can be viewed as a restricted form of subtyping. Then, it is possiltiaue a much better
representation:

A < F Ais a subsort of;
F < F F; is a subsort of'
- (F>F)n(F - FR)

V:(F->F->F)N(F - F - FR)

Instead of using subsorting and intersection types, in this articl@ragose to extendIll
with subtyping (denoted by) and overloaded types (denoted by curly brackets). In the
resulting system, that we duil®, the example above becomes:

A < Fy Ais a subtype of}
F, <F Fy is a subtype o
- {F—)F,Fl —)Fl}

V:{FxF—>FF xF —F}

Subtyping and overloading are respectively richer than subsorting serdéations.
The difference between intersection and overloaded types is that a term b&ldhgs
intersectiond N B if and only if it belongs both tel andB. While aterm in the overloaded

IThe complete representation fBrincludes the following declarations:

A  F—x A1 : Axr — Bz
-1 : Bz — B(-z) Vi : Bz — By — B(Vxy)

whereA(t) is true if and only ift is an atomic formula.
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type {A, B} is the union of two distinct subterms, one belonging4pthe other toB.
Note however thaf A, B} is defined only when bothl and B are arrow types. In this
case the overloading approach is somewhat more expressive since elifimédrm of an
intersection type (of arrow types) can be considered as a special case of aadediierm
formed by a union of equal subterms.

Furthermore in Pfenning’s system, decidability is obtained by defisuizsorting over
“sorts”, which are refinements of types. Sorts cannot appear in labelsabktractions
so, as Pfenning points out, it is impossible to write functionghwiomains limited via
subsorting. To overcome this weakness, Aspinall and Compagnonidtasied A P<
([AC96b], see also Section 3.3.2), an extensioAldfwith subtyping, which does not have
such a drawback. Howeva’< cannot express Pfenning’s examples as it contains neither
intersection types nor overloaded types. Here we defiii&. Since it has subtyping
(but defined differently from [AC96b]) it does not have the weaknesté&seosubsorting
approach and thanks to overloading it can express Pfenning’s examples.

Pfenning’s study is developed within the proof environment Elf,aplementation of
Edinburgh LF. Other groups studying dependent type theory baseflgystems found the
need of using subtyping, as well. All the motivating examples ardairnu the Pfenning’s
one. An early work can be found in [Coq92] in the ALT group. LEGO, Cagd Nuprl
groups are studying implementations of abstract algebra, and all of theenphaposed
extensions of type theory by some sort of subtyping: ZhaoHui[Luo96] has studied a
“coercive subtyping” extension for LEGO; in the Nuprl group Jasaokily [Hic95] has
combined object-calculus and dependent types and proposed a form of agliigped on
the inheritance mechanism of objects; Courantin the Coq group is mgpdki an extension
of the Calculus of Construction by subtyping‘C< [Cou97]. More references to recent
work are discussed in Section 6.3.

The interestin this area is mainly due to the scale. As said by ZhaoH{iLLa©6]: “the
lack of useful subtyping mechanisms in dependent type theories [.h]indtictive types
and the associated proof development systems is one of the obstacless apfflications
to large-scale formal development”.

What we propose is to add not only subtyping but also late-boundaading. In fact
the association of these two features allows incremental and modular progrgmwhose
utility to large-scale problems has been widely demonstrated by objexited languages.

2.2. Program (proof) specialization

Consider again the typds and F; defined in the previous section. Singg < F', then
F — Bool < F; — Bool. 2 Hence, a decision functignfor propositional logic, which is
oftypeF — Bool, is also a decision function fdr; formulae (i.e., itis of typé”; — Bool).

So subtyping is a first ingredient for code reusing since it allowsstp on arguments of
type F even ifp has been written for arguments of type However, subtyping provides
a limited form of reusing: it just makes some code more polymorpAicreakthrough
for code reusing (brought forward by object-oriented languages) is spdeialization.
Consider again the decision functipnlit is well known that such a functignis NP-hard.
However, by the specific structure 61, it is possible to construct a polynomial decision
functionp; for F;. A clever way to define a general decision functitsr is then use

2The subtyping rule for arrow types [Car88] states thatif < A; andB; < BathenA; — By < Ay — By
(see [Cas95] for a detailed discussion).



6 G. CASTAGNA, G. CHEN

p1 for F; formulae andp otherwise. A natural way to obtain it is to define our decision
function as an overloaded function formed by the two teprasidp;. In the notation we
use in this work an overloaded function composed by the teramglp; is written agp&ep; .
Sodec= p&p,. The type ofdec is the union of the types of the composing terms, that
is {F" — Bool, F; — Bool}. The (overloaded) functiop&p, automatically chooses the
appropriate sub-term to execute (i.e., either p,) according to the type of its argument
(that is, according to the form of the formula to decide) . The use efldatding ensures
that the most efficient function will be always selected even in the case #adbt specific
form of the formula is not, or cannot be, statically determined. The isseleased from
writing branch selection code. What he has to do is just to declare thepsadptstructure.

PrAcTICAL EXCURSUS. Note that this could be done in an incremental way. We could
have first defined just’ with the decision functiodec := p and decided only later to
consider theF, -formulae.

By declaringF; < F we can use fof -formulae all code written fo#'-formulae. By
specializingdec := dec&p;, every code that usek:c is specialized as well. Thus all
code forF' is automatically specialized (and, thus, reused)for However, this situation is
more complex than the one we present in this article, since it regdesc to bedynamically
extensiblgwhence the use of:'="). This is discussed in Section 2.1 of [CGL93]. In this
article we focus on the logical aspects of the system and we do not iledhis issue that
looks more related to implementatidn.

2.3. Extension of the SML module system

In the SML module system [MTH90] a module may export both sonpedyand the
operations defined for these types. Thugypeof the operation components of amodule—
and, thus, the type of the module itself—may depend ow#haeof the type components
of the module. Since we are in presence of types that depend on values, tres: a cl
sical approach to characterize the SML module system is to use first orderdggpen
types [MQ86, MH88, Ler94, HL94].

Modules are handled bfgnctors Functors are functions that transform modules into
other modules and that are subtype polymorphic (intuitively, atoanrdefined for modules
that export some given components works also on modules that expagtommponents).
Functors can be considered as modules parametrized by some other modules.tf@ne
criticisms to the SML module system is that although it has subgyptris not possible
to perform code reuse and specialization as done in “object-oriented prognginnin
order to make it possible, Aponte and Castagna defined in [AC96a] ansexteof the
SML module system with late-bound overloaded functors. The stasiiatgem is the one
of Leroy [Ler94], and the addition of late-bound overloaded functomallto choose the
most specific transformation of a module according to its type. Thdtrissa module
programming language whose style is very similar to the one of CW&e the “generic
functions” (“generic functors” in this case) operate on modules ratherdgharbjects, and
their behavior can be incrementally specialized as long as new modules types(ses,
in the SML terminology) are defined. The idea can be illustrated by tlefimg example.

Consider a dictionary modutekDict parameterized by a tree modulef typeTree:

functor mkDict (¢:Tree) :Dict = struct ... end

The type of such a functor is a first order dependent type:
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mkDict ; wt: Tree.Dictf)

the dependency is necessary since the type of the result depends onpghef the
elements of) the argumenof the functor (we stress this dependency by writing Djgt(If

a signatur@rdTree for ordered trees is available, ahédTree<Tree then, by subtyping,

it is possible to feedkDict by ordered trees to make new dictionaries. It is also possible
to define a new functaik0rdDict: wt: OrdTree.Dict(), that provides an optimal search
operation by keeping the ordered tree balanced. However all the code thesesilkDict

will continue to produce inefficient code for ordered trees.

The solution is to overload the functakDict by the more efficient code for or-
dered trees (in [AC96a] this is performed by the commartlend functor MkDict
by Mk0OrdDict), so that the functor will execute two different pieces of code according
to whether the argument module implementgrae or an0rdTree. In other words, the
mkDict will be an overloaded functor of typgrt:Tree.Dict¢) , nt:OrdTree.Dictf) } An
outline of the code of this example can be found in Appendix A.2. rRore details the
reader can refer to [AC96a].

One of the problems with this system is to prove its type sourglnd$e standard
technique for type soundness is to prove the subject reduction py@petuctions preserve
types). Unfortunately the subject reduction property does not holddimy’s system and,
therefore, it does not hold for the [AC96a] system either. While Lavag able to prove
the soundness of his system by semantic tools (he uses a transtatian System with
dependent types, second-order existential typesYatypes [Ler94]), his proof does not
extend to overloaded functors whose theoretical bases are not establidiréds a first
step towards establishing these bases and proving soundness of khia {#d964a].

3. INFORMAL DESCRIPTION

In this section we give an intuitive description of our systef®. At the risk of some
redundancy, we prefer to defer the formal definition\df% to Section 4 and show here,
step by step, the path that leads to the definition of the whole systemweSstart by
defining dependent types, that is the systeh (§ 3.2). Then, we introduce subtyping
for dependent types, that is the systafiic. Even if \Il< owes a lot to the Aspinall and
Compagnoni systeriP<, we show thai P< does not fit our purposes since, because of its
formalization, it is not prone to extension akH< is needed{ 3.3). Finally, we introduce
overloading for the previous system, yielding the systdi¥ (§ 3.4). We conclude this
section by several examples, and by summarizing all the technical resultslth&tshown
in the rest of the paper.

3.1. A brief introduction to dependent type theory

Types are used to classify terms, but with dependent types we have segmpé#saand
terms are not completely distinct. For example in Section 1 we descrilgefiitfttion
string_to_array where the type of the result depended on the input of the functiois. Th
was expressed by a type of the form: string. A(s). We have also seeype families
such as the family of arrays of charact¢ehar[11, char([2],...}. Type families can
be considered as mappings from terms to types; for example the abowe ddairays of
characters corresponds to the map+ char[n]. Since we use to classify types then
this mapping can be “typed” by the “kindIn: nat..
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Type families can be expressed hynotation. So for example
An:nat.char[n] : IIn:nat.x

denotes the type family described right above Breduction therfAn: nat.char [n])(3)
is the type of the arrays of characters of size 3, thahisr [3].

More generally, we are considering a dependent type system where termasasiéie
by types and types (or, more generally, type families) are classified lgg kifiypes are
either atomic types (e.gint), applications of type families (if they have the kirjl or
m-types of formrz: A.B (that are used to typ&-abstractions). In particulaf;-types are
the generalization of arrow types of simply-typ&dalculus: A — B is the special case
of rx: A.B wherex does not appear free i.

From the point of view of the formula-as-type analogy, the intrcttbn of dependent
types brings significant progress with respect to simply typed lambdalaosl In the
latter case, only propositional formulae can be represented by types,depigmdent types
make first order quantification representable as well. As a result, maroalayistems can
be encoded in systems based on dependent types, as done in LF, the Hdlrdmiogl
Framework [HHP93].

3.2. Dependent types: the systemIl
The system\IT [HHP93] is the pure first order dependent type system (a differentorersi
of the system is called P [Bar92]) . It is the core of Edinburgh Logical Framework. Our
presentation oIl is mainly based on [HHP93]. There are four syntactic categories:

Terms M = x| Xe:AM| MM

Types A = a|rr:AA| Az AA| AM
Kinds K = x|Oz:AK

Contexts I == <> |Iz:A|T,a: K

1. A term (denoted by, N, ...) is either a term variable (denoted byy, z,...), an
abstraction or an application.

2. Atype (denoted by, B, C, . ..) is either an atomic type (denoted &Y, ax-type of
the formzz: A. B or a type applicationi M or a type familyAz: A. M.

3. Akind is either the constant representing the collection of all types, br: A. K
which classifies type families (of the forf: A. B where B lives in the kind<). Thus,the
general form of a kind i$lz,:A; .2, : A, x With n > 0.

4. A context is an ordered list of typing assignments of the fer, and of kinding
assignments of the form: K. If z: A appears i then we say that € Dom(T") and we
usel'(z) to denoteA. If a: K appears i’ then we say thatt € DomI") and we use
Kindr («) to denotek .

The atomic types play the role of (dependent) type constdntgpical examples of type
constants arént, nat, bool (all declared of kind), andchar [ ] (ofkindIIn:nat.x). We

useM [z := N] (resp.,B[z := N])todenote the substitution of for every free occurrence
of z in term M (resp., in typeB). g-reduction, denoted bys 3, is thecompatible closure

31n [Bar92] and [AC96b] then's are called typevariables This may be misleading since althougls are
declared in contexts, they cannot be abstracted.
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Context Formation Typing
'+% z e DomT)
F-EMPTY E— T-VAR
<>k % I'kxz:(x)
'kA:x x¢DomTl) I'z:AFM:B
F-TERM T-A
Lo AFx I'FAz:AM : mx:A.B
'K o¢Doml) 'FM:mz:AB 'FN:A
F-TYPE T-APP
Fa:KEx 'k MN : B[z := N]
Lo:AFK IFM:A IFA=4B
F-I1 —_— T-CONV
IFIlz:AK I'M:B
Kinding
I'x aeDomTI)
K-VAR
't «: Kindr(a)
''-A:Mle:BK TH-M:B
K-APP
< Lo AR B:x* T AM : K[z := M|
- -
I'F7mx:AB: %
TFA:K THK' K=5K'
I'z:AFB: K K-CONV T'FA:K!
K-A '

T'Az:A.B : llx:A K

FIG. 1. TheAll type system

(see [Bar84]) of the union of the following two notions of redocti

(Az:AM)N —p, Mz := N]
(Az:A.B)N =3, B[z := N]

B-conversion, denoted by is the equivalence relation generated frémeduction, that

is, the reflexive, symmetric, and transitive closure-ef.*
The abstract syntax above defines pre-terms, pre-types, pre-kinds, andnpests,

namely possibly not well-formed terms, types, kinds, and contextsll-fdfmed terms,

types, kinds, and contexts are determined by the following fouretgs:

4Sincep-reduction angs-conversion areompatiblerelations, then they are defined on terms, typesikinds
(since in the last one both types and terms may occur).
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I'Fx I is a well-formed context
'K K is akind in context’
I'-A:K typeA haskindK in contextl’
'kM:A termM hastyped in contextl

We write " - J for an arbitrary judgment of the forfi - K, T'- A: KorT' - M : A.
The rules for deriving the judgments I are in Figure 1.

3.3.  Adding subtyping toAIl: the systemAlIl<

The addition of subtyping to an existing type system is usualljopered in a standard
two-step process. First, a subtyping relatioms defined on the (well-formed) types of the
system. Then the subsumption rule is added to the typing rules (hed the conversion
rule is present it replaces it). We already said that the subsumptiostaiés that if a term
is typed by some typd, then it is also typed by every super-typeAf Usually this rule
has the form we saw in the Introduction:

'EM: A 'HA<B

'-M:B
Note that, as the subtyping relation is defined on (well-formed) tyfhes) no kinding
judgment is required in this rule: ifi and B are in subtyping relation, then they are
well-formed.

In this work, for reasons that we explain at length in the Section 3n&2eed to define
subtyping in a different manner.

More precisely, we do not define the subtyping relation onXtés types and do not
substitute the subsumption rule above for the T-CONV ruldeftrevious section. Instead,
we define the subtyping relation on th&l's pre-typegthat may be not well-formed) and
replace T-CONV by the following subsumption rule
'FM:A THA<B TFAB:«*

'-M:B
wherel' - A, B: K is a shorthand forF' - A: K andl" + B: K. This rule states exactly
the same property as the generic subsumption rule above. Howewartith extra kinding
premises that are made necessary by the fact that, iesejefined on all pre-types.

Subsumption

T-SUB

3.3.1. The subtyping relation

The subtyping relation on the pre-types arises from a subtypingaelah atomic types.
This relation for atomic types is declared in a contBxdnd lifted up to all types by the
rules of Figure 2. More precisely, subtyping declarations occur in aegbhtunder the
form of bounded kind assignment< A : K. In that case we say thate Dom(T") and
thata is boundedn T'; we also usé’(a) to denoted, and still useKindr («) to denotek'.

In summary, the systerill< is defined by the rules in Figure 2 plus all the rulesXoF
defined in the previous section, but whérenay contain bounded kind assignments and
T-SUB is substituted for T-CON\?

Since the rules in Figure 2 do not contain any kinding judgment, theninduced
subtyping relation is defined on all pre-types. The restriction ofréiistion to types (that
is, to well-kinded pre-types) has the usual general meaning: a term oéa tyige can be

5We must also add an obvious formation rule for type contertstaining subtyping constraints (see Ap-
pendix A.1).
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T+T(a)M..M, < A
S-APT LFaM,.M,<A
My =3 M! - M, =3 M
_A R n
S-Ap T+ aM,.M, < aM].M!
S TFA'<A T,2:A+B<B
-W I'trmz:A.B < mx:A'.B'
SA A'=5 A Dz:A+-B<B
' Az:A.B < Ax:A'.B’
T+ B[z := My]M,..M, < C
S-ApSL
P [F (Az:AB)M,.M, <C
T+ C < B[z := My|M,..M,,
S-ApSR =
P '+ C < (Az:A.B)M,..M,

FIG. 2. Ali¢ subtyping rules

safely used wherever a term of a super-type is expected. Let us comment eathrntirig
from the simplest ones:

- The S rule is the generalization of subtyping rule for arrow types. It istcrariant
on the domains and covariant on codomains. However, since the bouadllearican
appear free in the codomains, then the codomains are compared under thet@asstivap
x belongs to the domain common to both types, that is, the smaller one.

- The SA rule “subtypes” type families. Recall that type families are functiongnfr
terms to types. This rule states that two such functions are comparetivigain (As
a matter of fact this rule is useless Ml< and should be omitted: see the Excursus in
Section 4.4).

- The S-ApSL and S-ApSR rules state that subtyping is invariagthead reductions:
to deduce that &, head redex s in a subtyping relation we must deduce it for its reductum.

- The S-ApR states that is reflexive on atomic types. The reflexivity is extended
pointwise to all possible applications of the atomic type.

- The S-ApT (combined with reflexivity) performs the transitivestioe of the subtyping
declarations. Intuitively in order to prove thAtF o < I'(I'(I'(«))) three S-ApT rules
topped by a S-ApR rule must be used. As for S-ApR the relation enebed pointwise to
possible applications.

Note that not all the assignments in a contExéqually contribute to the definition of

subtyping. Only bounded kind assignmentx A: K really matter, since they are used
by the rule S-ApT. Kinding assignments K are handled by the rulesSand SA only

to ensure that for every subtyping rule the well-kindedness ofythes appearing in the

conclusion under a given context implies the well-kindedness of fiestgppearing in the

premises under the corresponding contexts.
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'k a bounded in T

S*-var
' a <T'(a)

'k re: AB,mx: A'.B' : x
TH© A" <A, T,z:A'F°B=<B
I't4¢ 70:A.B L wx:A'.B’

PH° Az: AB,Ax: A'.B' . K
A'=5 A Dz: A"+ B=<B
T4 Az:A.B < Az:A'.B'

S-n

S@-A

k< A<B ' AM,BM : K
k4 AM < BM

g -app

THFAB:K A=3B

S*¢-conv
I A< B

T'HABC:K
[F“A<B THYB=C

S*-trans
I'tac A <LC

FIG. 3. AP< subtyping rules

3.3.2. A different presentation of subtyping (comparison with [AC6b])

Apart from S« and SA, the remaining rules ofIl< are quite technical and do not let the
reader to grasp the intuition of the subtyping relation. So we decmadd this section in
order to provide some intuition. However, this section is not negggs the development
of this work: it is not used for definingITI¥ and can be skipped at first reading (as signaled
by the detour panel).

In order to provide the reader with the intuition underlying sulitig, we describe a
set of subtyping rules different from the ones)dfi<. These rules define a subtyping
relation “equivalent” (in the sense we precise later on) to the ondlof. The rules are
shown in Figure 3. Apart from some minor differenGethese rules are those used by
David Aspinall and Adriana Compagnoni [AC96b] to define the sysidra, that is one
of the best subtyping system faidl available in the literature. In order to differentiate
this second system from all the systems that are the contributiorisohiticle, we use
lowercase italicized names for rules and g scripts all over. We also use a different
symbol,<, to denote the new relation. Let us commentiif&: subtyping rules:

- TheS*“-var rule deduces the subtyping declarations containdd in

- TheS*“-r andS*“-A have the same meaning as the corresponding rul®H in

- The rule S*“-appis a direct consequence of the interpretationSdf—A: if two
functions are pointwise related then the images of a same point are relatetl.as

6There are some extra kinding judgments and the Bde here is more general than the one in [AC96b]. See
Footnote 10 for an example.
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- Finally the rulesS*¢-convandS*“ -trans state that< is a pre-order, that is a reflexive
and transitive relation.

The two sets of rules in Figures 2 and 3 define the same subtyping reldtiis is stated
by the following property proven in Section 6.3:

ProperTY 3.1. ForeveryA, B suchthat' - A, B : K we have
' A<B < T'FALB
(where by" F J we mean that the judgment is provable)

Itis very important to notice that the property above says that thesetsof rules define
the same relation oRII’s types ( is not defined on pretypes), but it dagst say that the
two sets of rules are completely equivalent, namely that it is possiblsgeither of them
without any difference. In particular, while the rules Xfi< constitute the core rules of
this article, those oA P< are inadequate to the purposes of this work. Indeed, the rules in
Figure 2 satisfy two crucial properties that those in Figure 3 do not;

1. They do not use kinding judgments. This makes them prone tosgtenindeed,
recall that we want to extend this system with overloaded types. As wesdwlater, the
kinding of overloaded types depends on the subtyping relation. Sdntportant to have
the definition of subtyping separated from the one of kinding sintteeravise, we would
have a circularity that is very difficult to handle.

2. They do not use the transitivity rule (which is admissiblerule, i.e., it is a conse-
quence of the other rul&s This, intuitively, implies that the addition of new types and new
rules to this type system is likely to yieldcanservative extensiiithe explicit use of the
transitivity rule may cause a problem with conservativity since thiis does not satisfy the
subformula property). So we have extensions that do not interfighehe original theory,
independently from its definition.

For these reasons, the definitions of this article never use the rufégure 3 and they can
(actually, must) be ignored. However, the reader can use them as a cue tetandé¢he
subtyping relation and draw intuition about it. But he must als@lare that in case of
extension the equivalence of two set of rules may be lost.

TECHNICAL EXCURSUS. The reader may be puzzled by the fact that of two sets of rules
defining the same relation, one set is completely inadequate to ceuaposes that the
other fits. Apart from the fact thaill< andAP< do not define the same subtyping relation
(= is not defined for pretypes), this “anomaly” mainly concerns the pésgktensions of
the rules. The fact that two sets of rules define the same relationnd@siply that this
holds for every possible extension of these sets. As a trivial exaopsider the system
formed just by the symmetry rule (that states théd ib) belongs to the relation thefd, a)
belongs to it, too) and the system with no rules at all. The two demtusystems define
the same relation (the empty relation), but it is clear that every-symmetric extension of
these sets of rules will not define the same relation.

“Given a set¥ of deduction rules a (new) rule mdmissibleif for every instance of the rule it is possible
to prove by the rules of” that its premises imply its consequence. Furthermore, ukes is derivable—or
derived—if the rule can be obtained by composing some rules’of

8Given a language” and a notion of derivability- on &, atheory .7 is a collection of sentences i#f with
the property that if7 F ¢ theny € 7. Atheory J' is anextensionof a theory.7 if 7 C J'. J'isa
conservative extensiof 7 if 7' N.¥ = 7.
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If we do not consider extensions and we stick to the actual langtlage the relation
between\Il< and AP< is quite typical. All< is the algorithmic version oAP< and
Property 3.1 is the classic formulation of the soundness and letemess of the algorithmic
subtyping. Note that because of Property 3XI]< constitutes an importantimprovement
over the subtyping algorithm of [AC96b] for which this propertes not hold. In fact, for
the algorithm defined in [AC96b] only the following implicat®hold

I A<B = TFrY (4% <(B)>
THE (A% < (B)» = TH< (4)% < (B)*

(wherel-“¢ denotes deduction in the Aspinall-Compagnoni’s algorithm @ denotes
the 3,-normal-form ofA) which are weaker than Property 3'9.

However, the interest ofIl< is not confined to this aspect. While Property 3.1 is an
interesting property in the context af’<, it becomes crucial in the context of this article,
since it frees the system from the transitivity rule without affgdtmexpressiveness. And
while we know how to add late-bound overloaded functionslig, the corresponding
extension oh P< is still an open probleni]

METHODOLOGICAL EXCURSUS.  Our first attempt for this work was to add rules
for overloaded types to the Aspinall-Compagnoni system. Thus \a@etta circularity
among the definitions of context formation, kinding, typing atyging. This complicated
the proofs. For example the proof of the “classical” substitutilemma for subject-
reduction is done in [AC96b] by simultaneous induction over the forms of judgment.
This same technique did not work in our case because the indugtjprttresis does not
suffice to prove that the conditions for well-kinding of overloadedsy(gee Section 3.4.4)
are preserved by substitution.

In A&, this proof does not have that problem since the subtyping systenmaiogspend
on the kinding system. The subtyping relation is defined over pre-typéis,taxpressions
that may not be well-kinded. Thus our second try was to erase thegipddmises from the
Aspinall-Compagnoni subtyping system. This did not work eithesibse of the transitivity
rule that became:

rHA<B TFB<C
r-A<c

but in presence of such a rule it is not possible to deduce the wallfgrof B from the
well-kinding of A and C' (and so we cannot ensure that the derivations of judgements
with well-kinded types contain only well-kinded types) Ada the transitivity rule can be
eliminated since the structural subtyping rules extend the traitgitf subtyping on atomic
types to higher types. But if we remove the transitivity rule from gprfall-Compagnoni
system we do not obtain an equivalent system. And we cannot use ththalgosystem of

9As customary, we define the subtyping algorithm by a set ofygig rules that satisfy the subformula
property. When the set of rules is “syntax directed” (i.eere is a one-to-one correspondence between provable
judgments and proof trees), then the algorithm is detestin{e.g. se§1.3 of [Cas97] for details). The set of
subtyping rules oAll < can be straightforwardly turned into a deterministic aitijwn by adding to the [S-ApSR]
rule the conditionC # (Az:A’.B')M}..M!, A C £ aM, ... M/, and to the rule [S-ApT] the condition
A # aMj ... M], (note the indexes). The system with these conditions isvefguit to the one without the
conditions as proved in Section 6.4.

10 For example ifA; — g, B; (i = 1,2), thenl' F4¢ Ay < B, (and thus F A < Ba) butl' #4¢ Ay <
B,. Furthermore, in the original definition of subtyping in [A6b] one also haB -4¢ 7x: A;.C X wa: B,.C
(@andl' F 7z: A1.C < wx: B1.C) butl’ 4 nx: A1.C < 7x: B1.C.
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Aspinall and Compagnoni since it is defined@nnormalized types, not on types (whence
the failure of Property 3.1 for this system).

Thus we decided to define a new transitivity free set of rules that didsekinding
judgments and that defined on (well-kinded) types the same systemrzellASpimpagnoni
one. The result of this attempt is the definitionbf< . O

3.4. Adding overloading toAll<: the systemAIl¥
In this section we give the description of the complete system, calléd which includes
dependent types, subtyping, and late-bound overloaded functidii$. is obtained by
adding late-bound overloaded functions\id<. Equivalently, it can be also considered as
the generalization to dependent types ofX&ecalculus of overloaded functions described
in this same journal [CGL95], and revised in [Cas97].

3.4.1. Overloaded functions

An overloaded function is a function that executes a different code accdulihg type
of its argument. Thus an overloaded function is formed by a set of oxgdfoactions (i.e.
A-abstractions), each one defining a different code (we chibibch of the function. We
follow the ideas of the\&-calculus and glue these functions together into an overloaded
one by the symbol & (whence the name of the calculus). Thus, we add Mlth’s terms
the term

(M&N)

which intuitively denotes an overloaded function with two branchésand N, one of
which will be selected according to the type of the argument. We mugtglissh ordinary
function application from the application of an overloaded function stheg constitute
different mechanisms. Thus we uses” to denote “overloaded application” and’‘or
simple juxtaposition for the usual application.

We build overloaded functions as lists, starting with emptyoverloaded function,
denoted bye, and concatenating new branches by means of & Thus, an overloaded
function is a list of ordinary functions and, in the term abaVkjs an overloaded function
while IV is an ordinary function, (a branch of the resulting overloaded fungtidherefore,
an overloaded function with branches\/,, Ms, ... M,, can be written as

(... (e&My)&Ms) .. )& M,).

The type of an overloaded function is the set of the types of its branchiéss, if
M; : mx: A;.B; then the overloaded function above has type
{mz: A1.B1, mx: Ay.Bs, ..., mx: A,,. By}

and if we apply this function to an argumehitof type 4, then the selected branchis;.
That is

(e&M& ... &M,)eN - M;-N (1)

where— means “reduces in zero or more steps” (the introduction of subtypithgesliire
some restrictions to this reduction).

1 The former is implemented by substitution, while the laissmplemented by selection.
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3.4.2. Subtyping

If we were extending\IT by overloaded functions we could (nearly) stop here. But we
are extending\I1<, so we have subtyping as well. Thus, we have to define the sulgtypin
relation for the new overloaded types. The definition follows from thservation that
an overloaded function can be used in place of an overloaded function of diffgpen
when, for each branch that can be selected in the latter, there is at least one brédxgch in
former that can replace it. Thus, an overloaded t§pee., a set ofr-types, is smaller than
another overloaded typkE if and only if for every type inl" there is at least one type M
smaller than it. Formally, we add to the rules)Xdi< (without the SA rule) the following
subtyping rule:

ViedJdiel I't7nz:A;.B; < ﬂ'yZC]'.D]‘

F " {FJISAi.Bi}iGI S {ﬂ'y:cj-Dj}jEJ
Equivalently, in order to prove thdtrz: A;.B; }ic 1 is a subtype of ny:C;.D; } je.7 one has
to show that there exists a total magrom .J to I such that for every € .J it is provable
thatrz: Ay (). By < my:C;.D;.

Another consequence of using subtyping is that in a reduction likéh@ jype ofV may
match none of thel; , but rather be a subtype of some of them. In this case, we choose the
branch whosel; “best approximates” the type, saly of N. That is, we select the branch
jsuchthatd; = min,—; ,{A; | A < A;}. Arestriction on the formation of overloaded
types and the type system will ensure the existence of this minir@ection 3.4.4).

It is well-known that in presence of subtyping a computation may changeeisely,
may decrease—the type of a tetlf the term at issue is the argument of an overloaded
function, then different degrees of computation may lead to different braelgttions.
Thus we have to determine when the selection for an overloaded applicatishb@
performed. We follow date selectiorfor late binding discipline since it allows a high level
of code reuse and an incremental style of programming 2eleof [Cas97]). Therefore
we impose that a reduction such as (1) can be performed if and onlyisfclosed (i.e.,
without free term variables) and in normal form (i.e., it cannot be reducgdrame).

S-OVER

3.4.3. Annotations

Determining a selection discipline is not enough to make the exterssiooherent
calculus. We also have feeezethe type of overloaded functions. Consider the following
example: letM be a term of typerx: C.B, a subtype ofrxz: A.B. Then the body of the
following function (we omit the leading)

Ay: (mz: A.B).(y &M)

has type{rz: A.B,7x: C.B}. If we apply this function toM itself, this application
reduces ta\/ &M of type {rx: C.B, wz: C.B}, which is nonsensical, since both branches
are defined for arguments of the same type (so there no longer is a “beskiapgiting”
branch). Therefore, in order to record that the first branch was intendeddiomants of
type A and the second one for arguments of typewe annotate the & by the (intended)
type of the term:

)\y: (71':[72 AB)(y &{nm:A.B,wm:C.B}M).

12For example, ifA < B andM: A, then the redex\z: B.x) M has typeB but its reductum, has typeA
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All the overloaded functions will have their (static) type annotatethens.

PRACTICAL EXCURSUS. The use of annotations is needed only in the theoretic
approach. They are needed because in an overloaded t&¢m/, & Mo & . . . & M),) the
various subterm@/; may be different from-abstractions. In practice (that is, with multi-
methods, generic functions, or the overloaded functorsin Sectioméd Bppendix A.2) this
never happens. In all practical implementations of overloading, tmapmsing functions
are in M\-abstracted form. We think thatlI¥ won’t make an exception. Thus, in a
possible implementation inspired by this work, overloaded funstieould be of the form
(Az: Ay . Ma&dx: Ay Mok ... &Nx: A, . My,), which provides all it is needed in practice:
each branch specifies the domain it was defined for, and its codomaiatistrictly
necessary to executibh Thus, for overloaded functions of this form type annotations are
unecessary

3.4.4. Kinding

The deep interaction between overloading, subtyping, and late bindingsnla& lan-
guage very powerful and expressive, but it complicates the kinding eflaaded types.
In order to satisfy the subject reduction property not every set-tyfpes can be allowed
in the language. Given an environméhta well-kinded overloaded typerz: A;.B;}icr,
besides being formed by well-kindedtypes, must satisfy three conditions:

(Normal types)For everyi € I the typerx: A;.B; is closed (it does not contain free
termvariables) and in normal form.

(Covariant typesyoralli,j € I'if ' - A; < Aj thenl,z: A; - B; < B;

(Unique selection}or every typed whose free variables arebom(I") the se{ 4; | '
A < A;,i € I} either is empty or has a unique least element.

Note that all these conditions, which define the kinding relation, efiaed in terms of the
subtyping relation. This is the reason why it is so important tecet@gubtyping relation
whose definition does not directly depend on the kinding one (se@é&igol 7).

Let us examine each condition in detall

e Suppose that the condition [normal types] was not fulfilled and oper@aded types
were allowed in the calculus. Then we could write a term such as

]\41&t{7r:c:Ay.B77r:c:AN.B}‘Z\/I2

whereA is a type family of the kindIz: A'.x and N a term of the typed’.
Suppose thay ¢ Fv(M;) U Fv(M,) U Fv(N) and insert this term in a wider context

(/\y:s'(Ml&{wz:Ay.B,wz:AN.B}M2))N
Then after3-reduction we would obtain the term

Ml[y pp— N]&{wz:Ay.B,ﬂ'z:AN.B}[y::N]M2[y — N]

13The absence of codomains could cause the subject-redyrtiperty not to hold, but this would not affect
the type-safety of the system.
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that is

]\41&t{7rz:AN.B,7rz:AN.B}‘Z\/I2

which clearly is not well-formed (more precisely, it is untypable) sin@nbh selection is
ambiguous.

A similar problem appears when the types are not in normal ¥arm

¢ Condition [covariant types] ensures that during computation the ¢y@eterm may
only decrease. More specifically, if we have a two-branched overloaded foddtaf type
{mxz: A;.By,mx: Ay.By} with A, < A; and we apply it to a ternV that at compile-time
has typed;, then the compile-time type df/ « V is B; (more preciselyB; [z := N]). But
if the normal form of NV has typeA, (which is possible, sincd, < A,) then the run-time
type of M« N will be B, (more preciselyBs [z := N]) and thereforeB, < B; must hold
(more precisely, it must hold under the hypothesis thatd,).

e Condition [unique selection] concerns the selection of the correct bréetall that
if we apply an overloaded function of tyderz: A;.B; };c; to a term of typeA, then the
selected branch has type: A;.B; such thatd; = min;c;{4;|A < A;}. This condition
is necessary and sufficient to ensure the existence and uniqueness cdricis!Br

The last two conditions are already present in Me-calculus where they have similar
justifications.

Thefirstcondition instead is new and it resembles the meet-closurenyab 7% [Cas96,
Cas97]. Note however that this restriction is less constraining theet-iosure since it
allows dependency on types of any form. Indeed, while this conditioninesg)that in
{nz: A;.B;}ics the variousrz: A;.B; must be closed, no restriction is imposed on the
form of A; and B; which, therefore, may also be dependent or overloaded types (meet-
closure requires thél;’s to be atomic). Thus there is a real, though limited, interaction
between overloaded and dependent types.

PracTIiCcAL EXCURSUS. The conditiorjnormal form]is quite severe. From a practical
point of view the requirement that types are in normal form is rathentiess. Instead,
the condition that types are closed is very penalizing. The experient®lyjict-oriented
programming shows that overloaded functions are defined only aletag (that is, not
in subterms, so that closure is trivially satisfied) and that iwdo levels (in subterms)
overloaded functions are used (applied) rather than defined (abstiaci#d think that
in many cases this should hold also for languages with dependent (gy&s though we
have no evidence to support this claim). However, as a referee pointéusigstriction
rules out some interesting terms. For example, overloaded functi@migdturn arrays
parametrized by their length are not allowed, since their type woaidlopen codomains
(codomains with free variables different from thebstracted one):

mn:nat.{nz: A.char[n] , 7z: B.int [n]}

1 sinces-reduction is aompatiblereduction (see Footnote 4), then it can take place in everyroence of a
term and thus, in particular, in type annotations of ovetemhterms. It is clear that normal forms would not be
necessary if we did not reduce annotations.

15The restriction in [unique selection] that the free varibbf A are inDom(T"), although natural, is quite
technical and deep. Itis crucial for proving that the satibn of [unique selection] is invariant under substnti
See the proof of Lemma 4.9 and note that it would not have vebitkee had for example required the stronger
conditionI - A : %.
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If nis not free inA and B, then such a situation can be dodged by swapping the arguments:
{mnz: Amn:nat.char[n], mz: B.an:nat.int [n]}

In any case we believe that in practice closure requirement for codanaainld be relaxed.
We would lose subject reduction but this should not affect type s@ssdsimilarly to what
happens for the system of [Ler94] we cited in the motivation section).

The closure of domains, instead is much more severe a restrictmrexample, it does
not allow one to write an overloaded function defined on arrays ofwifft types since it
would have a type with open domains, like this one

mn:nat.{nz: char[n].A, 7z: int [n].B} (2)

In this case there is no simple expedient to satisfy closure. Nor weasily relax the
closure condition since while the type in (2) causes no harm to tyjredseess, a type such
as

mn:nat.{nz: char[n].A, nz: char [3].B} 3)

must be forbidden since far = 3 the two domains would be equated. The problem is how
to weaken the closure requiremenfoérmal form]so that the type in (2) is accepted and
the one in (3) is rejected. This issue does not seem of immediat@adirice one has to
ensure some property for all possible term substitutions inadosa However, the pointis
well worth of studying and we look to do it in future work.

3.4.5. Typing
The typing system is obtained by adding the following three ruldssaI1 < typing rules:
'k~
Te The:{}

't M :{nz:A;.Bi}i<n T'FN:mx:Api1.Bppr TE{me:AiBiticpsr @ *
It M&{W'T:Ai'Bi}iS"‘HN : {7TTA7B7}7Sn+1

T-&

' M: {WwAsz}zgn F"NA]
['FMeN : Bj[x:=N]

These typing rules deserve few comments. The first rule states that fitg emerloaded
function has an empty overloaded type. The second rule states that théaymverloaded
functionis obtained by the union of the types of its branches, peaiidat the type resulting
from this union is well-formed. The last rule states that if the argnhof an overloaded
function has typed; then thej-th branch of the functiomaybe selected®

Note that in (T-&) the well-kindness of the resulting overloadedetyin particular the
three conditions we just saw) must be checked.

T-OAPP

3.4.6. Reduction

16Note that the branch effectively selected at run time mayiffereint from the;j-th branch either because
A; does not correspond to the “best approximating” branchgoabseV is not a closed normal form (see next
section).
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The reduction for overloaded function applications in a confeistdefined as follows:

If 1. N is closed and in normal form,
2. thereexists € [1.n]stTH N:A;andVj e [1.n] TFN:A; = T'H A; < Aj
then

M, eN fori<n
Ms-N fori=n

The B%-reduction is simpler than what the definition above let suppose. Thatre
ing rule states that if we pass an arguméntof type A; to the overloaded function
(M, &A= An-Brtn=1.n M, ) then we select the branch defined foy (more precisely we
select the branch/, if it is defined for A;, otherwise the branch is searchedlih). But
in order to perform the reduction two preconditions must be fulfill@te first condition
requires thatV is a closed normal form because, as explained in Section 3.4.2, we want
to implement late-bound overloading. The second condition ensuresthaidst specific
branch compatible with the type of the argument is selected. Indeed, iendgah an
overloaded function with two branches, one for integers and the otheedits is applied
to an argument of type integer. If integer is a subtype of real then bgwuption the
argument has also type real. Thus either branch could be executed if the senditoo
would not ensure that the most specific one, namely the one for intégeedected’

Finally note that when the reduction is performed, all expressiongtrtitipate in the
selection are closed. Thus, the definitionsf does not depend on the typing assignments
in T but just only on its subtyping declaratiots.

(M]&{ﬂ'.t:Ah.Bh}h:l..nMQ) o N _>6& {

TECHNICAL EXCURSUS.  The requirement thalv is a closed normal form is very
strong. As explained fok& in Section 7.2 of [Cas97] this condition may be weakened.
For example, one can always safely perform the reduction when thev@tolverloaded
function has only one branch, or when the type of the argumen¢afaf the type hierarchy.
An interesting choice (but others are possible) is to weakegthaule as follows:

For A; suchthal' - N : A;andVj € [1.n] TN :A; = T'FA; < A,
If N is closed andin normalforrar {4; | 1 <j<n,I'+A; < A;} ={A;}, then

M, eN fori<n

M {WZ‘:Ah.Bh}hzl..nM N
(M & 2o N =8¢\ N fori—n

In words, when selecting a branch we check whether there are othertiamdth smaller
domain. If not, we know that the selection cannot further changelserdfore we perform
the reduction even iV is not closed.

7The #%-reduction depends on typing, which in turn depends on kipdiThe subtyping relation depends
on 3-conversion (rule S-ApR), therefore, strictly speakirige subtyping relation is not independent from the
typing and kinding relations. So it seems that by definingAfereduction we reintroduced the circularity we
so hardly struggled against in Section 3.3.2. However,dbjgendence is far milder than the one\d?< and it
does not cause any problem in the meta-theoretic study. ¥amnle, in the proof for substitution of subtyping
(Lemma 4.6, Case S-ApR), the induction concerns only théypiry derivation, but not the typing or kinding
judgments.

18This greatly simplifies the treatment of reduction. The dtfin of reduction can be given for a generic
contextI” but it has not to deal with it. So all the proofs of this artithat deal with3% are given for a generiE.
It would be quite different if the reduction depended on ffpetassignments iR. In that case we would have to
define rules that handle contexts, such as:

r,(I:A) [ M1 —),5 Mg
TEAx: AM; —g Ax: A.M>

and deal with them explicitly in the proofs.
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This rule is interesting because, for example, it allows to dedudethe context
n: int that:1°

((Az:int.z 4+ )& (A\z: string.zQx)) en  — n+n

However, such a rule would complicate the calculus (for exampls, saime example
shows that in this case reductions depend on the type assignmehesadritext”, with
the problems described in Footnote 18). Furthermore, this motificavould not be
straightforward (for example, itis not clear how to prove thatrsoproperties are preserved
under substitution, such as the property of minimality in a $etp®n types). Therefore,
we prefer to proceed in this work as fak and consider just the simpler formulation.

3.4.7. Examples

As a first example of use of overloaded dependent types we can think of geingrtde
functionstring to_array defined in the Introduction so that it can be applied to natural
numbers as well. Since a natural numbareeds{log,, n] digits to be represented, then
such a function will have the following type:

{ mz:nat.char[[log;,#]] , mz:string.char[length(z)] }

To give a more detailed example we show two distinct encodings of thesgam product.
The first one requires indexed types, is more complicated, but also effazient. The
second one is simpler, works for all types, but since it uses latergniirequires run-time
type inference.

Let . be an atomic type with two constafftd: . and2: ¢, and A a type indexed over.
This can be expressed by the following contBxt= w:x, 1:¢, 2:¢, A : lx:.x. Add
a further constant : wz:1.A1 — A2 — Az (note thatd1, A2, Az, z1, etc. stand for the
applicationsA(1), A(2), A(x) andz(1)) with the following semantics:

R a; forz=1
rrajas = .
172 as otherwise

(the last example of this section shows how to encodeThen, we can use dependent
types to define the cartesian productsidfand A2:

Alx A2 = 7z:1.Ax
(L,)) = Aar: Al hag: A2 \x:1.7xa a9
fst = Az: A1x A2.x1
snd = A\z: A1x A2.x2

A simpler encoding can be obtained by using overloaded types togethenwaithtbmic
typesa; andasy and two constantg,; : a; andp,: a» (in this and in the following example
we omit type annotations arnds):

AI® A2 = {mx:0q. Al 7w . A2}
(,2) = Aap: Al dag: A2.(Az: o .a1 & Ax: n.a9)
fst = Ax: A1Q A2.2 e py

snd = Az: A1®Q A2.z e py

19We use the operator @ to denote string concatenation. Thiggke was suggested by one of the referees.
20\We did not explicitly consider constants in the formal sxa@ATT% . Rather, we take the attitude of [Bar92]
and call constants all variables that we “engage” not torabist
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Thenitis possible to define genefistandseconaperators that work with both encodings.
For exampldirst can be defined as

(Az: (A1x A2).21 & \z: (A1® A2).z e py)
whose type is
{mx: (my: 1. Ay). Al | o {ry: a1 . Al | 7y: g A2}. A1}

Note that all these definitions can be applied to pairs of terms whoseadypasibtypes of
Al and A2.

As a last example, imagine that we want to use dependent types to encteke tiife
want to define the encoding so that we can use triples where pairs are exj@ecifetth¢y
were record types with labels 2, and3). This can be obtained by concatenating the two
following contexts:

Lo =t123:%, 13 < tgagix, 112 < tga3ix, Lo < tgoik, 11 <199k, Loy, 2000, 3ii3
'y = A:llx: 1103 %, —:7@:1123. Ax

Contextl'y declares three singleton typas ¢, 13 respectively containing constarits2,
and3. It also declares two unions of these singletans,(that contains both; and:,)
and:;»3 (that contains all the other type®) Contextl’; declares the typd indexed over
L1123, together with a constant such that-i : Ai fori = 1,2,3. Finally we encode as
follows:

7 = Az t193.2a1: Al dag: A2.haz: A3.(Ay: v1.a1 &Ny 12.a2& Ay: 13.a3& Ay L103.—y) @

whose typé& is mz: 1193.41 — A2 — A3 — Az and whose semantics clearly is

a; forz =1
?rajasaz = { ao forx =2
az forz =3

With these declarations the dependent-types-based encoding for pairefei@s Bust the
pairing operator has to be modified to take into account the fourth argiohen

Alx A2 = w2 Az
(,2) = Aap: Al dag: A2.Mx:119.7xa1a2(—3)
fst = Azx: Alx A2.x1

snd = Axz: Al1x A2.22
Triples are similar

Alx A2x A3 = 7T£132L123.A$
(_,_,_) )\aliAl.)\agiAQ.)\(LgZA3.)\$ZL123.?$(11G2(I3

2linstead of2: 12, 3: 13 we could equivalently have declared{t; — 2 , t2 — t3}, SOto have2 = s e 1
and3 =se(sel)

22Note that, strictly speaking, the type of the inner overkmhdunction is not well-kinded: sincg < ¢123,
then the [covariant types] condition requirgs:; + Ai < Ay. This semantically holdsz; is a singleton
containings, thusy: ¢; impliesy = 4. But this equality can be proved only by extending the systéth the
distinguished singleton types introduced by David Aspima]Asp95]. This would lead us too far.
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Note that by the rule S A1x A2x A3 < Al x A2. Thus, thanks to subtyping, we need
not to define first and second projections for triples since the furefsirand snd defined
for pairs work also for triples (in object-oriented terminology weukbsay that triples
“inherit” first and second projections from pairs). Instead, we haveefind the third
projection. A term may be statically typed as a pair and dynamically becomple. tri
Thus, it is interesting to define the third projection also for palfshe pair dynamically
becomes a triple then this projection function returns the third cavapbof the triple,
otherwise it returns-3. This is obtained by the following overloaded function:

trd = (Ay: A1x A2.-3) & (A\y: A1x A2x A3.y3)
whose type iny:(nz:i12.Az). A3, wy:(wz:ii0g.Az). A3},

3.4.8. Properties

The hardest and most technical part of this work is to prove Mt enjoys good
theoretical properties. This is what the rest of this article is devaiedviore precisely,
after having formally presentedI® (Section 4.1) we proceed as follows.

First, we prove the confluence of the calculus. Namelydlet 3, U 3, U 3%, if
M —g M; andM —g M, then there exist$V such thatd/; —z N andM; —3 N
(Section 4.2).

Second, since we started from a set of rules, thosdlof, that do not include (general)
transitivity and reflexivity rules we have to prove that the subtgpelation on types is a
preorder, that is, that the two rules are admissible (Sections 4.3 dnd 4.

Third, we prove that our type system is sound since well-typed teemiste only into
well-typed terms. Thatis, if - M : AandM — N thenl' - N : A (Section 4.5).

Thanks to the absence of transitivity from the subtyping rules,tlién not very difficult
to prove that\I1¥ is a conservative extension of bothl< andA& (Section 4.6).

A delicate pointis that, sincelI® extends\&, it inherits from the latter non termination:
in A& it is possible to encode a fix-point combinator of type— A) — A for every type
A (see$§6.2 of [Cas97]), and this same technique appliedi& as well. However in\& it
is possible to single out an interesting class of sub-calculi thatraegy normalizing. We
show that this result extends MI¥ (Section 5). The interest in normalization properties
in MII¥ stems from the fact that subtyping relies @rconversion. Terms may appear
in types and3-conversion of terms is used to define subtyping. Strong normalizafio
terms implies decidability of-equality, which implies decidability of subtyping. Indeed,
in presence of the decidability gfconversion it is easy to lift the proof of the decidability
of the subtyping (and thus of typing) relation dil< (this proof is given in Section 6.4) to
the strongly normalizing subsystems)di%. Thus, in these subsystems)Xi¥ we have
decidability for both subtyping and typing relations (which is th@mresult of Section 7,
and does not hold for the whoMI¥).

In Section 6 we prove some properties that are specifitlto, namely that the subtyping
rules of \Il< describe an algorithm, thafl< is equivalent to\ P<, and the already cited
proof of decidability of the subtyping relation afl< that is then used in the last section
for studying decidability il\IT* (Section 7).



24 G. CASTAGNA, G. CHEN

4. FORMAL PRESENTATION OF AII¥

In this section we give the formal definition afI* and we prove that it enjoys several
fundamental properties.

4.1. The system\II¢

The system\II¥ is an extension ok& with first order types. There are four syntactic
categories: contexts, denoted Bykinds, denoted by<, types, denoted by, B, C, D,
and terms, denoted by/, N, P and@. We useU to range over the last three syntactic
categories (all these meta-variable may appear indexed). Sometimes we \wilé dan
overloaded type as a set oftypes indexed over a set of indexes (typically, they will be
initial segments of natural numbers); we us@and ./ to range over set of indexes and
h,1i, j, k to range over indexes. There are four judgment forms on these exqrsssi

'K K is akind in context’

A K type A has kindK in contextl’
rEM:A term M has typeA in contextl’
'HA<B A'is a subtype o3 in contextl’

These judgments are same as thoskllr .

Pre-terms, pre-types, pre-kinds, and pre-contexts (i.e., possiblyeibformed terms,
types, kinds, and contexts) are thoselih< extended by an empty overloaded functien,
non empty overloaded functiodg& 4 M, applications of overloaded functione A/, and
overloaded pre-typegsz:A;.B;}icr,. The structure of kinds and contexts is unchanged.

M = x| \e:AM | MM |e| M&*M | M o M
A = a|meAA| A AA| AM | {rz:AA, ... 1A A}
K = x|lxz:AK
' '= <> |Iz:A|Ta: K|T,a<A: K
4.1.1. Rules

The set of rules definingI1* is obtained by adding to the rules &fl< the kinding
and subtyping rules for overloaded types and the typing rules foihttee thew terms for
overloading. The complete set of rules is given in Appendix A.1.

The subtyping rule for overloaded types is
ViedJdiel I't7nz:A;.B; < WyZC]'.D]‘

'k {FJISAi.Bi}iGI S {ﬂ'yZCj.Dj}jEJ

S-OVER

while the kinding rule is:
Tk~ Viel . TFrx:A;.B;: %
Vi € I . mx:A;.B;is closed and in normal form
Vi,jel I'FA; <A;j=T,2:A;FB; <B;j
VAFV(A) C Dom(I') = ((Vie I.THA<A;)V
(el TFASAAVjelITHA<A; =>TFA; <Aj)
Ok {rz:A;.Bi}ier :

K-OVER

This huge rule simply formalizes the conditions that we stated in&e8té.4. Namely, the
first line in the premises states that a well-kinded overloaded typersid by well-kinded
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m-types (' - x ensures thdt is well-formed even for an empt). These types, according
to the second line, are closed and in normal form. The third line reqoiregriance while
the last two lines formalize the condition of unique selection.

Finally we add to the typing rules ofil< the following rules:

' x
T- -
© F'te:{}
T-& I'FM:{rz:Ai.B;}i<n TFN:mx:Api1.Bopr T {mz:A;.Bi}icnyr i %
[ F M&tmeAiBitisonn N {ma:A; By Yicnt1
T-OAPP I'FM:{rnz:A;.B;}i<n 'FN:A;

TFMeN : B[z :=N|

4.1.2. Notions of reduction

The S-reduction is defined as thmompatible closuref the union of threenotions of
reduction (for definitions se€§3.1 of [Bar84]), 3:, 8., and 8¢ defined in Sections 3.2
and 3.4.6.

In the following we use~ i to denote the symmetric relation ef gz, and use—»g
(respectively=p) to denote reflexive, transitive closure of the reductiop (respectively
of = U <g). We usel/ ¥ to denote the?-normal-form ofU and = to denote syntactic
identity of expressions.

We writeI" - J to denote an arbitrary judgment and with an abuse of notation we will
write J — 4 J' to denote thatl’ is obtained by replacing @-redex in.J by its reductum.

4.2. Confluence

The first property that we prove fodI¥ is confluence (expressiobsin this section are
not assumed to be well-typed. We just require that all the type anonsabf overloaded
terms occurring in them are closed, so that substitutions do not affertt)thThe proof is
a simple application of the Hindley-Rosen Lemma [Hin64, Ros73].

LemMMA 4.1 (Hindley-Rosen Lemma). Let R;, R, be two notions of reduction. If
R1, R, are confluent and» g, commutes with» i, thenR; U R» is confluent.

SetnowR; = 3, U 3; andR, = %. If we prove that these notions of reduction satisfy
the hypothesis of the lemma above, we obtain confluence of our systeencofifluence
of 31 U f3, is easy to prove since it essentially reduces to the confluena#l ofFor 3%
it is easy to verify that it satisfies the diamond property: for examplesicier the two
B%-reductions,

MyN 3o (M&AM,) o N —pe (M1 &AM)) e N

whereM, — 3« M;. A has not been changed in the second reduction, and the branch
selection in(M &4 M}) e N is determined byd and the typing ofV, so this expression
B%-reduces taV/; N. On the other handy/s N — e MjN.

Thus it remains to prove that the two notions of reduction commutehdoend we can
use the Lemma 3.3.6 of [Bar84], which is restated here. For any reduaitionrz, let
— r denote the reflexive closure &f.
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LEMMA 4.2 ([Bar84]). Let Ry, R, be two notions of reductior/ be a term. If
Ny g, U =g, Ny, then3N, Ny—spx, N &g, No. then—pg,, — g, commute.

Now consider Lemma 4.2. The next proposition shows thaifor= %, Ry = 51 U
the hypothesis of the lemma are satisfied. Therefore we can concludethatcommutes
with —» 31U -

ProprosiTION 4.3 (Weak commutativity). If Ny 5,08, U =g« N, then
E|N3 s.t. Nl—»ﬁ&Ng (—g?ugz N2

Confluence of3-reduction follows from the Hindley-Rosen Lemma:

CoroLLARY 4.4 (Confluence). Supposé/,U’,U" are pre-expressions. If —z U’
andU —3 U", then there exists a pre-expressigrsuch thaty/’ —3 V andU" —3 V.

4.3. Structural Properties and 3,-reduction

In this section we prove some structural properties of YR typing and subtyping
systems, as well as some properties of thereduction. All these properties are rather
technical and not very interesting by their own sake. But they are necessheymbfs of
Section 4.4. Thus we strongly suggest to the reader to skip this séatibe first reading
and to pass directly to Section 4.4.

In all this Section 4.3 long/ denotes either a typing{: A), or a kinding (4: K), or a
context formation [) judgment (i.e., subtyping judgments are not included).

4.3.1. Substitution

Since subtyping system is independent from typing and kinding ardaaded types
are formed only by closed types, then it is not very difficult to provessitution property
for subtyping, that is ifT’ = B < C'is derivable, then for any term/, the judgment
[z := M| F B[z := M] < C[z := M] is derivable as well.

But first let us precisely define substitution for a context.

DEFINITION 4.5 (Substitution of context). The substitutiom'[z := M] of a variable
x by atermM in the context is defined as follows:
<> [z := M) =gy <>
T,y : Az := M) =gey Thlz:=M],y: Alz := M]
(Ty,z: A)fx = M| =g4e5 Ti[z:= M]

Note that, ifT" is a well-formed context (i.el’ - x) andT = TI';,z : C,T5, then
[z := M] =T1,Ty[z := M] sincez ¢ I'y.

LEMMA 4.6 (Substitution for subtyping). If I' - B < C, thenT'[z := M|+ Bz :
M] < Clz := M]. Furthermore the depth of the derivationldf: := M] F B[z := M]
Clz := M] is not greater than the depth of the derivatiorlof B < C

IA I

Proof. By induction on the depth of the derivationibf- B < ' and performing a case
analysis on the last rule of the derivation.

Note that in the lemma above there is no requirementofe.g. it may be non-typable).
If the substitution variable does not appear in the subtyping juedgnthen the converse
of the above result holds:
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LEMMA 4.7. z ¢ Fu(A)UFv(B) ATjz:=M|FA<B =T FA<B
Proof. Straightforward induction on the depth of the derivatioi'df A < B. O

Next we study the preservation under substitution of the conditid well-formation of
overloaded types. First,we consider the covariance condition:

LemMA 4.8 (Preservation of covariance by substitution)if ¢ Fuv(A)U Fuv(A')U
Fo(B)UFv(B')andT' F A< A'=TFB<B,thenT[z =M+ A< A =>
[[z:= M|+ B<B'

Proof.
lMz:=MFA<A =>TFHAZA Lemma4.7
= I'+FB<PHB By assumption
= I'fz:=M]|FB<B Lemma 4.6

O
Then we consider the uniqueness of selection (see also Footnote 15):

LemMMaA 4.9 (Preservation of unigueness by substitution).
Let{A; | ¢ € I} be a set of closed types. Then

VA s.t. Fo(A) C Dom(T),
(Vie LTHA<LA)V 4)
(el THFASA AVjeITFA<A; =TFA <A
implies
VA s.t. Fo(A) C Dom(D[z := M])
(Vie LT[z =M/ A< A;)V
Fiel.Tz:=MFA<LAA
VielITlz:=M|FA<A;=Tx:=M]FA; <A))

Proof. Fix an A such thatFv(4A) C Dom(['[z := M]). Note thatFv(A) C
Dom(T[xz := M]) C Dom(T). Therefore the equation (4) holds for this particular
A.

If the first clause of (4) holds, that{§i € I.T I/ A < A;),then(Vi € I. [z := M] ¥/

A < A;) holds. Indeed, imagine that there existe I such thaf'[z := M]F A < A,.
SinceFv(A) C Dom(I'[z := M]) thenz ¢ Fv(A). Therefore we can apply Lemma 4.7
and obtail” - A < A;,. Contradiction.

If the second clause of (4) holds, thenebe the unique index ih such that

We first prove the existence part by showing that

[z:=MFA<A, AVjelIT[z:=M|FA<A;=>Tz:=M]FA, <A; (6)

Observe that
r-A<A, Formula (4)
= D'z := M| F Alz := M] < Aplz :== M] Lemma 4.6

= Iz =M|FA<LA, x ¢ Fv(A) andAy is closed
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and that
Tlz:= M]F A< A
= T'FALA Lemma4.7
= I'F A, <A Implication (5)
= I'[z:= M| F Ap[z := M] < Aj[z := M] Lemma 4.6
= Tz:=M]F A, <A Ap, A; are closed

These two last observations imply (6).
In order to prove the uniquenessiofor (6), assume that there exidgtss [ that satisfies
(6). This impliesthal’ - A < A; (Lemma 4.7) and that for ajl € I

F'FA<A;
= Iz:=M]FA<A; Lemmad.6

= I'[z := M]F Ay < A; Assumption for (6)
= 'k A, < A; Lemmad4.7
= h=k By the uniqueness df for (5)

ProrosiTiON 4.10 (Context properties).
1. IfT  J is provable, then for every preflX of I', I’ I x is provable by a derivation of
strictly lesser depth.

2.,z AT, HJ = TI't B A: x, wherel'; F A : x has a smaller proof than
Fl,iL'ZA,FQ'_J.

3.fI,I" + Jis provable andl’,z : A,T'  xthen alsol',z : A,T' + .J is provable
(weakening).

Proof. The first and third points can be easily proved by induction on the dzfptte
derivation of the judgmerit F J. The second point is a straightforward consequence of
the first one.d

PROPOSITION 4.11 (Substitution). Letl’ =T4,z:C,Is. IfT'+ J andTy, - M:C
are derivable, then alsb[z := M| | J[z := M] is derivable. More precisely:
1THFK = Tz :=M¢F Kz := M]
2THAK = Tz:=M|F Az := M]: K[z := M]
3TFN:A = T'flz:=M]F Nz :=M]: Alx := M]

(Substitution for subtyping has already been proved in Lemma 4.6)

Proof. By induction on the depth of the the derivationlot- J, by a case analysis on
the last applied rule. The proof is quite straightforward. We juist tme following points.
Proposition 4.10 must be used for the case F-TERM when the variabbelirted by the
rule isz. The case for T-VAR is the only case which uses the hypothesis\/ : C. The
case T-SUB is proved by applying Lemma 4.6. The case K-CONV uses thenpydhat
K =3 K' impliesK [z := M| =g K'[z := M]. The cases for the elimination rules (i.e.,
K-APP, T-APP, T-OAPP) hold because of the propéify := M]y := N[z := M]] =
Uly := N][z := M]. The case K-OVER uses Lemmas 4.8 and &9.
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4.3.2. Kinding Properties
LEmMMA 4.12. IfT'F xandz € Dom(T') thenI' F ['(x) : *
Proof. A simple induction on the length &f. O

A simple but important consequence of the previous result is
ProrosiTiON 4.13. IfT'F M : Athenl' - A : .

Proof. By induction on the depth of the derivationbf- M : A and performing a case
analysis on the last applied rule. Use Lemma 4.12 in the case T-VAR aséd¢bad point
of Proposition 4.11 for the cases T-APP and T-OARP.

4.3.3. Generation Principle
The generation for kinding tells us what information we can infer frddimeing judgment
about a kind.

ProrosiTiON 4.14 (Generation for kinding).
'Fa: K = K =3 Kindr(a)
F'kre:AB: K = K=xAT,z:AFB:%
F'FAz:AB: K = 3K'st. K=lls:AK' AT,2: A+ B:K'
'HAM:K = 3B,K'st.T'FA:Nle:BK' ATFM:BAK'[t:=M)]=3 K
PHA{r2:A;.Bi}iecr : K = K=xAViel, T'z:A;FB;:*

Proof. By inspection of the kinding rules:

ProprosITION 4.15 (Uniquenessofkinds). If ' A: Kand I' - A : K', then
K =3 K'

Proof. Uniqueness of kinding can be obtained by observing the fact that all kireds
of the formIlz;:A; .. Iy Ay x andlzy i Ay . My Ay ox =g g A L ey, AL K iff
n=m,A; =g Al,i=1.n. 0

4.3.4. Context change
The properties in this subsection concern the preservation of judgragwablility with
respect to change of context.

ProrosiTiON 4.16 (Bound change for subtyping).If I'y,z: A,I's F B < C, then
Fl,.’IJ . AI,FQ FB S C

Proof. By induction on the derivationdf,,z : A, To F B < C. O

This property shows that subtyping does not depend on the types afoifitext term
variables. The only declarationslirthat concerns subtyping are bounded kind assignments
suchasy < A: K. 2

Now, we study the preservation of the conditions in the overloadeslfiyrmation under
type changes of term variables in the context. First, we show the pegserof covariance
condition under term bound change.

230f course this holds in our system only because the definitfori does not depend on kinding judgments.
If instead of the subtyping relation we had used a kindingti@h this would not hold (e.g. see Proposition 4.19).
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Lemma 4.17 (Preservation of covariance by term bound changé).l'y,z : C, Ty F
A < A" implies Ty,2 : C,Ty - B < B',then T,z : C',\Ts A < A’ implies
F],ZL‘ : OI7F2 FB S Bl.

Proof. A trivial application of Proposition 4.181

Next lemma shows the preservation under bound change of the “unicibyapich”
property of overloaded types.

LemMMA 4.18 (Preservation of branch unicity by term bound change).
Letl' =T'y,2:C, Ty andl” =T'y,z: C',T'5. Forevery sef A, | i € I} of closed types,
VA st Fv(A) C Dom(T).((Vie I.TH A<A;)
VENeIL.LTFA<A AVjelITHA<A; = TFA <A4)))
implies
VAs.t. Fu(A) C Dom(I").((Vie I.T'/ A< A;)
VENELT FASA AVjeIT'FA<A; = T'FA; < A))

Proof. Use the same technique as Lemma 4.9 and use Proposition 4.16 instead of
Lemmas 4.7 and 4.6

PRrROPOSITION 4.19 (Bound narrowing). Letl’; F A’ < Aandl’, - A, A’ : x. Then
Iy,2: ATy F JimpliesTy,x: A, Ty F J.

Proof. By induction on the derivation of the judgment. For the case T-VARquer
an application of of T-SUB. For the case T-Sub use bound change fopsabtProposi-
tion 4.16). For the case K-OVER use Lemma 4.17, and 4.18.

The remaining cases are easy.

ProposiTION 4.20 (Kinding for subtyping). IfT'H A,B: K,T + A < B, then for
every subtyping judgmeht - C < D in the derivation of” - A < B, there exists a kind
K'suchthaf” - C,D : K'.

Proof. First of all note that without loss of generality we can consider onljvd&ons in
which there never are two consecutive applications of K-CONV. Then progeiedibction
on the depth of the derivation &f H A < B by performing a case analysis on the last
applied rule. The cases for S-ApR, S-OVER, and S-ApT are straightfdrwBine cases
S-ApSR and S-ApSL are direct consequence of Lemma 4.11. A more difficelicése
one for S« (and SA which is similar): consided = 7z: C;.D, andB = wx: Cs.Ds.
From Proposition 4.14 we obtain thBtz: C; - D; : x (i=1,2). From Lemma 4.10, we
deduce thal' - C; : . Therefore it remains to prove thBtz : Cy F D; : x. This can be
obtained by using Proposition 4.19. The result follows by indurctiypothesistO

4.3.5. B.I" strong normalization

In this subsection, we will introduce th&I'-reduction and prove that it is strongly
normalizing. This fact implies that the maximal number1t -reduction steps from a
type A is always finite. We will use this number in the induction measuretferroofs of
several important results, including the proof of transitivityréhation.

We begin by showing thg, subject reduction, which is also a property needed in the
proofs of transitivity elimination and decidability of subtyping.
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PROPOSITION 4.21 (3, subject reduction). If T+ .J, J —g, J',thenT + J'.

Proof. This is the classical proof of subject reduction for simply typedalculus
performed by induction on the derivation Bft- .J. It relies on the generation for kinding
(Proposition 4.14)0

LetI" be a context, the one st€preduction, denoted by, is defined as the compatible
closure of the following reduction:

a = I'(a)

For the proof ofg,I" strong normalization we proceed in two steps. First, we prove the
(2 strong normalization, then we use it to prove thé&' strong normalization. Intuitively,
the first assertion holds becausereduction does not introduce new redexes (existing
redex may be duplicated or modified). The second result is obtained by a&ssgpevery
a fB.I'-reduction sequence to&-reduction sequence that binds it, a technique similar to
the one introduced in [Che96].

In more detail 3, strong normalization is straightforward since it suffices to obsdrat t
B2 reduction concerns only redexes of the farha:: A. B) M whereM is aterm. Reduction
of such redexes may duplicate redexed4nbut it will not introduce new redexes.

PROPOSITION 4.22 (f3, strong normalization). Let K, A, M respectively denote a
pre-kind, a pre-type, and a pre-term. Th&h A, M are 3, strongly normalizing.

Proof. ConsiderM . Define a functior from pre-terms to a multiset of natural numbers.
S(M) = {n|n isthe size of &, redex inM}

where “the size of &, redex” is the total number of symbols in the redexMf—3, N,
then a redexk in M will be erased and some subredexes R will be duplicated.
Therefore S(NV) is obtained fron5 (M) by replacing one big number by a finite sequence
of strictly smaller numbers. By the well-known multiset order, theéuction will terminate.
This holds also if we considet or K instead ofA/. O

TheT-reduction is obviously strongly normalizing for well-formé&d(circularities are
not allowed). The3,T'-reduction is the combination @, andT'-reduction. Note that the
combination of two normalizing reductions may be not normalizing gsider the union
of these two rewriting rulesa — b andb — a). In our specific case, thé,-reduction
may increase the number Bfredexes, and on the other hand;-aeduction may increase
the number of3,-redex. We prove thg,I" strong normalization by transforming®&I'-
reduction into g3;-reduction by the functio® which takes an expression and returns its
I-reduction normal form:

2y (U) “ theT-normal form of/

Notice that%'r is well-defined on well-formed terms, types and kinds. We will omit the
subscripfl” and simply write%&” when it is clear from the context.

ProrosiTiON 4.23 (f3,[ strong normalization). For g,['-reduction, we have the fol-
lowing results:

1IfI' F K, then K isg,I" strongly normalizing;
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2IfT + A: K, then A isB-T" strongly normalizing;
3T F M : A, then Misg;T strongly normalizing.

Proof. First of all note thafl, andl’ reductions commute in a very precise way, namely.
If M —r M; andM — g, M, then there exist& such that\/; —g, N andM, —r N.

M ——— M,
r

B2 B2

My ——>N
r

Indeed d -reduction does not affect an existifig-redex while a3;-reduction may dupli-
cate an existin@’-redex or delete it.

Let U, Uy, Us,, ... be aB;T-reduction sequence starting frothand consider a generic
U; >r Uz'+1. If RisT then%(Uz) = %D(UZ+1 )

If R is (3, then by observing that th&,-reductum of al'-normal-form is al’-normal-
form and by composing the commutativity property above we obtain. #a&t/;) — g,
%(Ui+1):

U; . e L %(Uﬂ
r r r
B2 B2 B2 ... B2 B2
Uit > ST > (Uiy1)
r r r

So for everyi either & (U;) —p, #(Uir1) or #(U;) —=° F(Uir1) (a zero step
reduction) holds.

Sincel  is strongly normalizing we cannot have an infinite sequence of zeraeslaption
(otherwise these would correspond to an infinite sequenteretluctions on thé/;’s).

Thus, #&(U), % (U,), % (Us), ... is a By-reduction sequence starting frog#’ (U)
where % (U;) = % (U;+1) for somei. Sincef,-reduction is strongly normalizing and
the zero-step reductions are finite, then there exists a numlserch that#’(U,,) =
I (Upt1) = F(Upta),.... This implies that the reduction sequeriég, U, 41, ... is a
I-reduction. Buf-reduction is normalizing, so the sequeitéd/, , U, ... must terminate.
O

4.4, Admissible Rules

In this section, we prove that the subtyping relation defined\af is a preorder on
well-kinded types. More precisely we prove that the rules (S-CONV) @@RANS)
(cf. Section 3.3) aradmissiblgsee Footnote 7 for definitions) in our system. Both prop-
erties are proved by joint induction on the concerned expressions arftearutnber of
B2-reduction steps (that are finite, singg -reduction is strongly normalizing: Proposi-
tion 4.23).
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TECHNICAL EXCURSUS. A notable feature of the subtyping system\&¢ (and
All<) is that the proof of sub-family judgments is never needed in thectiedwf the
type of a term. Observe that, givéh A, B : %, the derivation off - A < B does
not contain any instance of the rule /5- Since the typing system uses subtyping only
on types (and not on type families, rule T-SUB), then the rule Gn be harmlessly
eliminated from the system (actually, we did not include itin Appefd.: the rules in the
appendix really define a stiping relation). In other words, while i\ P< the rule SA is
necessary to deduce subtyping on types (when the types are applicatigps families),
in AII* (and Ml<) this rule is only used in the deductions of dalmily judgments such
asT F Axy: Ay Axor Ay o A Ay B < Axq: A Axot A Lo Axy: AL LB

We decided to keep it in our system only becau3e has it. With this rule we can show
the equivalence of Property 3.1 and state it for 4llB such thatl’ - A, B : K (instead
justforall A, B suchthafl' - A, B : %).

We ignore this rule in future. Although it is present in severaktgpstems, the rule $-
is somewhat anomalous, since it defines true sub-family rel{jionwhich expressions
could possibly be kinded Wyxz1: A;...Ilx,: A, % withn > 1). In this sense (and under
the assumption that typing matters more than subtyping), thes 18-ApR, S-ApSL, and
S-ApSR are much more reasonable and intuitive since they confibgsg to pre-types,
even in presence of type families.

This feature, the non-utility of the $ralso simplifies the meta-theoretic study. One of its
consequencesis that we newdto prove that the general subtyping family application rule
S*“-app is admissible iRII¥. In the rest of this article we will heavily use reflexivity and
transitivity of subtyping (that we prove in this section), but ot need the subtyping
family application property. The only case in which the adrhifisy of this rule is needed
is to prove Property 3.1. That is the reason why we prove the adbititysof this rule for
A< (Proposition 6.2) but not foAIT*. O

LetT" be a contextant an expression. We denote MaxRed (U) the maximal length of
af,I'-reduction starting front/, and bySiz€U') the number of distinct symbols appearing
in U (so for exampleSizé\x : «.z) = 5 since we have, :, ., z, anda.)

4.4.1. Admissibility of Reflexivity

PropPosSITION 4.24 (Admissibility of Reflexivity). If A =3 B A T F A, B : %,
thenT' - A < B.

Proof. SinceA, B are well kinded types, they can only have one the following forms

aM,..M, n >0
wx:C.D
(Az:C.D)M;..M,, n>1
{WHZZAZ'.BZ'}Z'E[

LetI' be acontextand, B two types such thdt - A, B : x. Define the induction measure
Weight.(A, B) as the pair:

Weight (A, B) =45 < MaxReg (A) + MaxReg (B), Sizé A) + SizéB) >

and use the lexicographical order for pairs (most significative compamethe left).
By induction onWeight. (A, B) and examination of all possible cases.
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With reflexivity, the bound3 equivalence property becomes a special case of bound
narrowing.

ProposITION 4.25 (Boundg-equivalence). Let A =5 A’ andT'; + A, A" : K.
Then:
Fl,.’IJ : A,FQ FJ = Fl,.’IJ : AI,FQ FJ
Fl,OéSAZK,F2'_J = Fl,OZSAIZK,F2|_J

Proof. By induction on the derivation of the judgment.

4.4.2. Admissibility of Transitivity
In order to prove that the rule

TFABC:x TFA<C TFC<B

TFA<B trans

is admissible il\[1¥ we consider the subtyping system extended with the above tratysitivi
rule (we denote it I and judgments provable in the extended systerh Hyand we
perform a transitivity-elimination process. Namely, we prove thaefeery derivation in
MI¥ there exists a derivation iAII® for the same judgment. The method is essentially
a process of transforming transitivity applications into derivatiam which transitivity
occurs only in a smaller degree, as it is usual in cut elimination proceskesefore, it is
necessary to define a well-founded measure over transitivity applicaéindshow that in
each step of transformation, this measure will reduce.
We associate to every application of the transitivity rule

IT'A,B,C:x TFA<B TFB<C
TFA<C

the lexicographically ordered measieight. (A4, B, C) defined as
< MaxRed (A) + MaxRed (B) + MaxReg (C), Sizé A) + SizéB) + SizdC) >

PROPOSITION 4.26 (Transitivity elimination inATI¥). If T+, A < B,then T F
A< B.

Proof. The proof is done by induction on the number of applications of ttiaityg
appearing in a derivation.

The inductive case is straightforward: if in a given derivation thererar> 1 appli-
cations of transitivity then consider any subderivation containing &xaoe transitivity
application. By induction we can transform it into a transitivity fiderivation. Thus the
global derivation has now — 1 transitivity applications. The result follows by using the
induction hypothesis once more.

So let us consider the case in which there exactly is one application ofaihstivity
rule. Consider the subderivation ending by the transitivity.

THA,B.,C':x TFA<B TFB<C

TrA<C trans
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The derivations o’ - A’ < B’ andT + B' < (C' are transitivity-free, i.e. they are
derivations in\TT1%, wheread™ -; A’ < C’ is aAII¥ judgment.

We show by induction okeightthat this derivation can be transformed into a transitivity
free derivation.

We proceed by case analysis of the last pair of rules used to derive the gsevhihe
transitivity rule.
CASE (S-m, S-1). The derivation must end by

F"AQSAl F,ﬁ:AQ'_B]SBQ F|—A3SA2 F,$2A3|—BQSB3

JK I'tmx:A1.B; < mx:As.Bs -qT 't 7mx:As.By < mr:A3z.B3
'ty mx:Ay.By < mx:Az.Bs

-T

trans

whereJ K is the kinding judgment' - nz: Ay. By, max:Ay. By, mx: A3.Bg : *.
This derivation can be transformed into
JK]. rl_A';SAz F"AzSAl JK2 F,$A3|—31SBQ F,$A3|—BQSB3
F'_tA;;SAl F,IE:Ag'_tBlgB:;
r |_t 7T$:A1.Bl S 7T$:A3.B3

whereJK1 =T+ Ay, Ay, Az : xandJK2 =T,z : A3 F By, By, B3 : *.
The derivability of the judgmentéK'1, JK2 andl', z : A3 F By < B, can be obtained
as follows.
't 7nz:A.By,mx:Ay. By, mx: A3.B3 : %
>Tax:AiFB %« AT,z: Ay b By:x AT,2: A3+ By : % Prop. 4.14

=Tk A, Ay, As % Prop. 4.10
F'FA3, Ay :x NTFA3 <Ay ANT,2: Ay - By < By

=TI,2: A3+ By < By Prop. 4.16
IF'FA3, Ay :x NTFA3 <Ay AT,z : A F By i %

=>T,z: A3+ By : % Prop. 4.19
FFA3, Ay :x NTHA3 <A AT,z: A1+ By 1 %

=>T,x:A3F By 1 % Prop. 4.19

Inthe lastimplicatiod’ - A3 < A; follows by induction hypothesisfrofi - A;, Ay, As :
*, 'F Az < Ay, andl’ F A, < A;.

Inconclusion' - Ay, Ay, A3z : x,',z : A3 F By,Bs,Bg : xandl',z : A3+ By < By
are all derivable without transitivity. Furthermore, we have twavrgaibderivations in
which the transitivity appears only once at the end, the sizes of whpss @re strictly
smaller than those of the original transitivity application and wheagimal 3, -reduction
steps do not increase (note indeed tHaixRed .. (£) = MaxReg (E) for everyl', F,
and E) . SoWeight.(A;, A2, A3) and Weight. , . 4(Bi1, B2, B3) are strictly less than
Weight (mz:A1.By, ma: As . Bo, mx: A3 . Bs). Finally, by induction hypothesis the transitiv-
ity application in the new derivations can be eliminated.

CASE (S-ApR, S-ApR). By transitivity ofs-conversion.

CASE (S-ApSL,.) The derivation must end by

Lk (Blz == Mi])My..M, < C
(Blo := MiDMa M S C g p )
JK TF(Az:AB)M,. M, <C TFC<D

T+, (Az:A.B)M,..M, < D

trans
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whereJK =T + (Az:A.B)M,..M,,C,D : x. By 8, subject-reduction (Lemma 4.21),
(Blz := M;])M,..M, is well-kinded in the context. So the above derivation can be
transformed into

JK' Tk (Blz:=M])M,.M,<C I'FC<D
T+, (Az:A.B)M;..M, < D

trans

S-ApSL

whereJK' =T+ (B[z := M,])M,..M,, D, C : x. The sizes of the types in the transitiv-
ity application may increase, but the maximal number of stepgh Bfreduction decreases
since(Ax:A.B)M,..M,, =3, (Blz := Mi])M,..M,,. So the derivation measueight
decreases for the new transitivity application. The result followsidyction hypothesis.

CASE (-, S-ApSR). Similar.

CAsE (S-ApT, ). Similar. Just note thaleightdecreases because there IS-geduction:
OéMl..Mn —T F(Q)Man
CASE (S-ApR, S-ApT). The derivation must end by

My =g M} -+ M, =5 M, s-apR L F ()M .M, <C

JK TFaM,.M,<aM. .M, TFaM. M, <C
TF, oM. M, <C

S-ApT
trans

whereJK =T + aM;..My,aM/..M] C : x. From the kinding assumptiofiX and
from the observation that andI'(«) have the same kind it follows that

['FC(a)My.. M, T(a)M{..M,,C :x

By the reflexivity of subtyping (Proposition 4.24), the judgrhé&nt T'(a)M;..M, <
I'(a)M]..M, is derivable. Therefore, we have a derivation ending by

JK' TFT(a)M. M, <T(a)M.M' T+T(a)M .M <C

I D(a)M,. M, <C
r l_t Ole..Mn S C

trans

S-ApT

whereJK' =T F I'(a)M1..M,,,T'(a)M|..M],C : x. Again theWeightmeasure de-
creases because of thereduction.

CASE (S-ApSR, S-ApSL). The derivation must end by

JK TFC<AeABM. .M, ~ PN TEAsAB)M. M, <C
THC<C

S-ApSL
trans

whereJK =T+ C, (Az:A.B)M,..M,,, Bz := M,]M,..M,, : x. The derivation can be
transformed into

JK' TFC<B[x:=M]M,..M, Tt Blz:=M]M,.M,<C'

trans
e Cc<c
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whereJK' =T + C, Blz := M|M,..M,,,C' : x. TheWeightdecreases because of the
B>-reduction.
CasE (S-OVER,S-OVER). Suppose that the last step of the derivation is

JK T F{rx:A; Bitict <{mw:En.Fothen D F{me:Ep.Frtren < {m2:Cj.Dj}ics
T '_t {Wﬁ:Ai.Bi}iel S {7T$:C]'.Dj}jej

trans

whereJK =T F {nx:A4;.Bi}ticr,{mx:Ep.Fy}her, {mz:C;.D;}jcr : *.
Since this is the only application of the transitivity rule, the @ssumptions can only
be derived by the S-OVER rule. That s,

Vi€ J 'k re:Ey).Fyy) < ma:Cj.D;
'k {Ww:Eh-Fh}heH S {ﬂ'CUZCj.D]‘}]'EJ

S-OVER

and
VheH T H Wx:Aw(h)-Bw(h) < mx:E.Fp
Ok {rmx:A;.Bi}ier < {nx:Ep.Fy}nen

S-OVER

with both¢ : J — H andy : H — I total.
For everyj € J,

Db ma: Ay o)) By S m@:Egj)-Fy) N TEmeEyg) . Fyy) < me:C5.D;

SinceWeighthas decreased we can apply the induction hypothesis obtaining that for every
jed
D' 7wz Ay o) -Buo) < m2:0;.D;
which means that
VieJdJdiel I'nu:A; By <7ma:Cj.D;

The result follows by S-OVER.
|

CoroLLARY 4.27 (Admissibility of transitivity). If ' A, B,C :x, 'FA<B,
andI'-B<(C,thenTF A<C.

4.5. Subject Reduction

In this section, we show the generation for typing and prove subjeattieah.

This result relies on the admissibility of transitivity stated ia grevious section. Indeed,
the first step in proving subject reduction consists in proving thatyetyping derivation
can be transformed into a derivation where there are no consecutive appitcafi the
subsumption rule. This follows straightforwardly from the sd#ivity of subtyping since
whenever there are two consecutive applications of subsumption such as

DEM:A THASB THABix
TFM:B TSUB 1 B<c EBC:
I'tM:C

T-SUB
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then it is possible to deduce from the transitivity of subtypihgt - A < C and,
therefore, replace them by

F'FM:A THALZC TFHAC:%
r-MmM:C

T-SUB

Generation for typing describes the information we can infer about aftgpea provable
typing judgment.

ProrosiTION 4.28 (Generation for typing).
'tz:C=TFI(@x)<C
PFA:AM:C=3Bst.T,2: AFM:BATFa:AB<LC
'FMN:C=3ABst.T'FM:mz:ABANTFN:AANTFB[z:=N]<C
TFMeN:C=TFM:{rz:A;.Bi}i<n A (3i<n.TFN:AATF Bifz:=N]<C)
TFM&*My:C=TFM :{re: Ai.Bi}i=1.n-1 AT My : m:An. B, ANTFALC

whereA = {mz: A;.B;}i=1..n

Subject reduction is one of the main concerns in the study of dependesg tyith
subtyping. Since subtyping is separated from other judgments ¢tiod igrquite simple.

PROPOSITION 4.29 (Subject reduction). If T'+Jand J -z J',thenT + .J'.

Proof. It is enough to prove the one step case, since the result follows lutiod
on the number of the steps. We prove the one step case by inductitre atetivation
of the judgment” - .J and performing a case analysis on the reduction. Without loss of
generality, we assume that there are not two consecutive applicationssofrsption.

We show the most significative cases. The others are either similaaaytgfiorward.

Case J=TF (Az:AM)N : B A (Ae:AM)N —p, M[z := NJ.
By Proposition 4.28 there exist andD such that® - Az: AM : 7z:C.D,I' - N : C,
and

I'+D[z:=N]<B 7)

We apply once more Proposition 4.28 and we obtain that there dxisteh thaf”, z: A +
M : Fandl' F rz: A.F < 7a: C.D. From this last judgment we deduce that C < A
andthat’,z : C - F < D. By Lemma 4.16 we obtain

T,z:AFF<D (8)

FromD',z: A+ M : F we deducd’, z: A I x (Proposition 4.10) and thus+ A : x (rule
F-TERM). Sincel' - N : C thenI' - C : % (Proposition 4.13). We can apply T-SUB to
obtainI' F N : A and by a weakening (third point of Proposition 4.10).

Lz:AFN: A 9

By using Proposition 4.13 and generation for kinding (Proposiida) we obtain that
[,z: AF F,D : . We can then apply T-SUB to (8) afidx: A - M : F' and deduce

Lx:A-M:D (10)



INFORMATION AND COMPUTATION 16§(1):1-67, (2001) 39

Finally by (9), (10), and", z: A F = : A we can apply the Substitution Lemma 4.11 and
obtain

(T',z: A)[x := N+ M[z := N]: D[z := N]
ButT', z: A I x therefore by Definition 4.5T", z:: A)[z := N] = I'. By Proposition 4.13

'+ D[z := N] : . Therefore by (7) we can apply T-SUB and dedlice M [z := N] : B,
that is the result.

CASET FIIz:A.K andA —5 A'.
In this case, we have a derivation ending by

T,z2:AFK

'kIz:A.K F-IT

It follows from the context property (Proposition 4.10) thiat- A : x is derivable by a
proof less deep than the derivation farz : A F K. Therefore, we can apply the induction
hypothesis and gdt - A’ : x. By boundg-equivalence (Proposition 4.25) and the fact
thatl',z : A- KandA =5 A’ ,we getl',z : A’ - K, the resulf” - TIz:: A’. K follows.

Case I' + (Ml&{"m:Ai'Bi}izl--"Mg) e N : C and (Ml&{ﬂm:A"'Bi}"zl“"M2) o NV —p&
M1 o N.

Let A = {mx: A;.B;}i=1.,. FromT F (M;&"M,) e N : C we can deduce thdt ~
(M &AMy) : A,T F M, : {mz: A;.B;}i=1..n—1, and

THA:x (11)

Acting as in the first case of this proof we can apply Proposition 4.28tand couple it
with the subsumption rule to deduce that there exists[1..n] such thaf” - N : A, and
T+ Bz := N] < C.

From (11) we deduce that

D,a:Ap b By : % (12)

Therefore we have thdt, z: A, + % (Proposition 4.10) and thugs ¢ Dom(T") (rule
F-TERM).

Sincel' - N : A, andl', 2: Aj, - xthen by a weakening (third point of Proposition 4.10)
we deducd’, z: A, F N : A,. We can thus apply the Substitution Lemma 4.11 to (12)
and obtain

L'k Bplz:=N]:% (13)

By definition of 3% reduction we have that there exigts [1..n—1]suchthal’ - N : A;
and

Therefore
= Iz :A; F B; < By By covariance to deduce (11)

= I'[z := N]F Bj[x := N] < Bp[z := N] Lemma4.6
= I'l Bj[z := N] < Bplz := N] Sincex ¢ Dom(T")
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Finally we have

M : {FJISAi.Bi}izl__n,l ATFN: Aj =

= My e N : Bj[z := N] T-OAPP
= M; e N : By[z := N] By (13) and T-SUB
=M, eN:C By T-SUB and Proposition 4.13

4.6. Conservativity

In this section, we show thaflT® is a conservative extension bothXdfl< and of \&.

In other words, leT" + .J be a judgment derivable ik[1%: if expressions in/ are free of
overloaded types and terms, thé .J is derivable in\Il<; if expressions ir/ are free of
dependent types and terms, tHeh .J is derivable in\&:.

This is not a straightforward property since for example a derimagéading with a
judgment free of overloading terms and types may contain overloaded tertygesrin
some judgments in the middle of the derivation. So a judgmentrowgple inA\II< might
be provable in\IT¥ even if the judgment is free of overloading. For example we might
have two overloading free typesand B, and a type&” containing overloaded types such
thatA < C < B is provable in\IT¥ but A < B is not provable in\Tl< (this happens for
example wherF< is extended by recursive types: see [Ghe93]).

4.6.1. Conservativity with respect toAll<

DEerINITION 4.30 (Free of overloading). We say a pre-expressidnis free of over-
loadingif it does not contain overloaded terms (overloaded function and agpliteor

types.

We use:f3 to denotes-conversion in the syste, and-* to denote judgments provable
in systemsS.

Lemma 4.31 (Conservativity of conversion). Giventhe pre-expressiobsV,if U, V
are free of overloading, then
1. U =g U'" = U'isfree of overloading

_ A& _ Al
2. U_,B V = U—ﬁ \%

ProPOSITION 4.32 (Conservativity of judgment). Suppose thal" is a context in
which all expressions are free of overloadingis either a typing , or kinding, or context
formation, or subtyping judgment. Then,

L R N

Proof. The proof is very easy. This is due to the fact that the rules that defirmystem
satisfy the subformula property. This is important in particutar the subtyping rules,
which are transitivity free.

Therefore we can first prove the assertion on the subtyping systemduogtion on
the depth of the derivation. The interesting cases are S-ApR akhavBere there arg
conversions and that are straightforwardly proved by using Lemma(2)31

And finally the resultis proved by a simultaneous induction on #pelof the derivations
of context formation, typing and kinding judgments.
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4.6.2. Conservativity with respect to&
In this subsection we prove thafI¥ is a conservative extension d&-calculus, whose
pre-expressions are defined as follows

= x| A AM | MM |e| M&*M | M e M
= a|lA—>A|{A—- A .. A A}

*

= <> |Tz:ATLa<A: K

RIS
. :

In the rest of this sectiod — B denotes the typez: A.B wherez is not free inB.

DEFINITION 4.1.  Let T' be aAI¥® context, we useSD(I') and T D(I') to denote
respectively the set of all subtyping declarations, and the set of allgyj#nlarations ifi".
More precisely we have:

<> forT' =<>
SD([) = SD(I"),a < A:x forT=T"a < A: %
SD(T) for=T"JandJ Za < A: %
<> forl =<>
TD(I)=<¢ TD(I),z:A forT =1",z: A
TD(I) forl =1",JandJ # z: A

In order to compara& with AII¥ we give a definition of\&, which results in a system
that is slightly different from the one of [CGL95]. There are twdfeliences between
“standard”\& andAII¥ and they both concern the subtyping of atomic types. The first is
that, in\&, itis possible to have in a context two subtyping declarationtf®same lower
bound (such as < A, a < B) while this is not allowed im\II¥. The second difference
is that, inA&, the upper bound, sa¥, occurring in a subtyping declaratien< A, must
be an atomic type, while iATI¥, A can be any typé* The variant of\& presented below
takes the\II¥ approach and allows at most one subtyping declaration A for each
atomic typea but allows A to be any type. Finally, sinc&& does not have dependent
types, then no type contains terms. Therefore, contexts in subtymggient do not need
to contain typing declarations. Thus, let be a generic context of subtyping declarations
of the forma < A:x (where A is a A& pre-type). The subtyping relation induced for
A& -calculus by is defined as follows:

Subtyping
SN A <A S BB
S*-REFL ———— S
S a<a S A5B<A 5B
S T(a) <A VieJ3iel s A » B < A} > Bj
S*-TRANS S**-OVER
S "A& a< A S Fk& {A, — Bi}iel < {A; — B]l-}]'EJ

The remaining rules oA&-calculus are given below. Note that the T-SUB rule is only
connection between subtyping and the rest of the system. Note also thatastsdo not

24These two differences are closely related. They both serasdid to relate types with different structures
(e.g. an overloaded type andratype). In this work we followed the theoretically orientagproach of [AC96b]
in which there is at most one subtyping declaration for eaomi type. In [CGL95] instead atomic types may
form a lattice, since it is a more practically-oriented $ioin (it allows the so-called “multiple-inheritance”). We
believe that an implementation af1% should rather use this second solution.
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contain kinding declarations, all the atomic types are considered welieft?

Context formation
¥ A% z¢ Dom(D)
FP4-EMPTY ——— F**.TERM
<>SEME D,z: AR %
I A% a¢ Dom(l)
F**-SUBTYPE
Do < Ak M 5
Kinding
Tk x 4.« TH¥B:x
K**.VAR —— K —
I q:x A5 B x
k%

Vie LT A, 5 B; : %
Vi,je LT A, < A; = TH¥ B, < B
K*-OVER  v4 (Vie LT F* A ¢ A;) v
VEGELTF A< A AVjEL T A< A =T 4, < 4A)

r l—)‘& {Az — Bi}ie] Ik

Typing
I'Fx € Dom(l) I'k*
T VAR T ¢ _—
L g D(x) Frhe:{}
T FA& {A, — Bi}i§n+1 Ik
DM M {A — Bi}ti<n
z: AR M: B P N: A,y — Bon
TN T-&
M e:AM:A— B DR &A= Bitisnti N {A; = Bi}icu

T M:A->B ¥ N:A
T ¢-APP

' MN:B

" T H* M :{4; - Bi}i<n TF* N : 4,
T “-OAPP

¥ MeN: B;

P M:A SDID)F A<B T A B:x
T ¢-SUB

r=**m:.B

The notions of reduction arg® andp, as defined foAll%. It is easy to verify by using
Theorems 4.2.2 and 4.2.4 of [Cas97] that the above definition is equivad the one
in [CGL95] (modulo the differences on the subtyping of atomic types

DerFINITION 4.33 (Free of dependent types).We say that aII¥ judgment F .J is
free of dependent typeglenghtT') = length(SD(T')) + length(7'D(T")) (that is,T" does
not contain kinding declarations of the fomm K or a < A : Tlx: A’.K) and

25We preferred to maintain the notation "< A: «" for subtyping declarations, even though the"could be
clearly omitted.



INFORMATION AND COMPUTATION 16§(1):1-67, (2001) 43

1.if J = A < B, thenA, B are \& pre-types;

2.if J = A : %, thenA is a \& pre-type;

3.ifJ= M : A, thenM is a A& pre-term and4 a \& pre-type;
4. foralla € Dom(T), T'(a) is a A& pre-type.

ProrosiTiON 4.34 (Conservativity of subtyping w.r.i&). If '+ A < Bisfree of
dependent types, theh F*1“ 4 < B implies SD(I') F** A < B.

Proof. By induction on the derivation df ALY 4 < B, and performing a case analysis
on the last rule of the derivation

Similarly, we have

ProrosiTiON 4.35 (Conservativity w.r.tA&). If I' - J is free of dependent types,
thenl' FMI¥ ] implies T' F*¢ J.

Proof. Straightforward induction on the derivation Bf- J. The case of subsumption
requires the use of Proposition 4.34. For the case, iote thatl, z : A FM“ B : x
implies thatl' FM“ B : x. Indeed, it is easy to see that well-formation under a coritext
depends only on the subtyping declaration$'pthat is, that for every judgment of the
form« or A: x, we have that' F** .J impliesSD(I") -** .J. This last observation is used
also for the case K-OVERI

5. STRONG NORMALIZATION

System\II¥ is not strong normalizing since it is a conservative extensiovkotalculus
that is not strongly normalizing [CGL95]. But, as fd&, strong normalization holds for a
subsystem olIl*, that we call\Ilg . The study of strong normalization is not undertaken
for its own sake, but because in this framework strong normalizatiqties decidability
of subtyping, which in its turn implies the decidability of the &/pystem. Thus thanks
to the strong normalization result of this section and the result ofi@e&twe are able
to show that\Il,, is a (type) decidable subsystem BI% (whose type system is not
decidable). In this section we adaptill,, the technique developed in [CGL95] to prove
strong normalization foh& ~— a subsystem of&:.

In order to prove strong normalization in the subsysteéar of A&-calculus, [CGL95]
introduces a variant of the Tait proof technique [Tai67] (improved lna@ in [Gir87]).
Recall that the Tait method consists of the following steps:

1. define a set of terms called reducible Bet
2. showthatM € R = M € &, where#/ is the set of strongly normalizing terms,
3. showthatM : A = M € R, thatis, well-typed terms belong to the reducible set.

The reducible set is a union of sets indexed over types: Uaerypest4. FOr example
for the simply typed\-calculusR 4 is defined inductively as

1. M € Ry &S Mey A is an atomic type
2. MeRy.g & VN€eR4s.MN € Rp

A naive (and wrong) generalization of the above definitiondo-calculus might be,

1. M € Ry &S Mey A is an atomic type
2. M€ Ry & VA< AVN € Ra. MN € Rp
3. M e R{Ai—)Bi}z‘eI & VA e [Az]ZEIVN €Ry.MeoeN € RBi
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where[A4;];c; denotes the set of types that are less than or equal to at least onedf the

However, this definition is not well-founded. The definition of &t R4, (and
Ria,-B,}.e;) is givenin terms of a sef 4+ that might not be “structurally smaller than”
Rap (@nd Ry, B,},.,)- Consider the typesl = {} andB = {A — A}. Then
B < A, butB is intuitively “bigger” thanA, sinceA occurs in it. This partly explains why
the \&-calculus is not strongly normalizid§ On the other hand, this observation helps
finding a normalizing subsystem. A possible solution to thidbfem is to define a measure
functionrank from types to naturals and require that each subtyping rule for a judgmen
B < A has an additional condition theank(B) < rank(A). Therank function should
have the property that iB is a proper subexpression df thenrank(B) < rank(A).

To adapt the above techniqueXtl®, we define theank function aspSizewhich is a
partial approximation of the size of a type, where the informatiorveeieto type family is
ignored. More precisely, the measyS8izeis defined as follows:

pSizéa) =0

pSiz¢ AM) = pSizé¢A)
pSizérz:A.B) = pSiz¢A) + pSizéB) + 1
pSiz¢Az:A.B) = pSizéB)

pSIZQ{ﬂ'CﬂAzBZ}ZE[) = maxiel{pSiZémU:Ai.Bi)} +1

Obviously, if B is a proper subexpression of a typethenpSizé B) < pSiz€ A). Further-
more, for any termV, pSizéA[z := N]) = pSiz¢A).

DEFINITION 5.1 (Al system). The Al system is the subsystem)dl® where
each subtyping rule for a judgmehtt B < A has the additional condition pSiz8) <
pSizéA).

The main result of this section is that terms\iii,, are strongly normalizing.

Example Consider again the types$ = {} andB = {A — A}. Note thatB < A holds
in ATI* but it does not hold il\IT,, since pSize4) = pSizé{}) = 1 < 4 = pSizé{ {} —
{} }) = pSizéB).

Intuitively, it is clear that in a normalizing calculuB < A must not hold. Otherwise
Ax: B.zex would be well-typed (with typB — A) and from such a term it would not be
too difficult to derive a non-normalizing terrnl

5.1. Typed inductive property
In the Tait method, we need to prove that every well-typed term belong teducible
set. Such a proof is difficult at the presence of overloaded types. To miakgs gimpler,
in [CGL95], an intermediate notion of set of terms being “typed ind@ttis introduced.
The main steps in the proof strong normalization\&  -calculus (and oAIL,,) are:

1. Define when a se¥ is typed inductive
2. Define.* theapplication closureof the typed inductive set,

26For example, note that the type = { {} — {} } is trivially well-formed. SinceB < {}, then the
application of a term of typé3 to itself is well-typed. Once we are able to type auto-ajgpilim it is then very
easy to define non-normalizing terms or fix-point combirga{gee [CGLI5] for details).
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3. ShowthatV € .¥ & M € .¥* & M is well-typed,
4. Show that the set of (well-typed) strongly normalizing terms jetyinductive.

In order to ensure that the typed-inductive property and its applicatmsure are well-
defined, we need an inductive measure that satisfies the following pesperti

Weight.(AM;..M,,) < Weight.(aM;..M,) ifa<Ael
Weight.(B[z := M| M,..M,) < Weight.((Az:A.B)M;..M,,)

The Weight. should be based on botb-reduction andl'-reduction. This suggests to
include the maximal number of steps@fT" reduction in the induction measure. Observe
that we need only to consider the reductions such that the redex is at theftae@im. So
we define théheadI'-reduction denoted by- -, and thehead,-reduction denoted by
—p3,, as follows:

OzM]..Mn —hI F(Oé)M]..Mn
(AZL‘AB)M]Mn —hBs B[QZ = M]]MzMn

The head g»I'-reduction denoted by—,zor, is defined as the reflexive and transitive
closure of»,r U —44,. Sincef,I'-reduction is normalizing, so does the head -
reduction. Given a pre-typé and a context', we define the measuMaxRed (A) as the
maximal length of head,'-reduction fromA. Note that a head,'-redex for A4, if it
exists, is always! itself, especially there are neithef,T'-reduction in a type label, such
asBin Az:B.C, nor in a term. HencdylaxRedg is invariant under substitutions on term
variables:MaxRed (A[z := N]) = MaxRed (A).

Furthermore, the measupSizeshould be taken into account. So we defileight as
the lexicographical order dflaxRed defined in Section 4.4, amBize

Weight.(4) = < MaxReg (A), pSiz¢A) >

Observe thalaxReg (A), and sdMeight.(A), depends only on the subtyping declarations
of I'. Therefore, we have, for exampgight. ,.;(A) = Weight-(A).

The following lemma shows thatkeighf. can be used as an induction measure in the
definitions and proofs concerning type structure.

LEmMA 5.2 (Properties ofMeight).  Suppose that all types in the following state-
ments are well-formed under the contExt

1. Weight (A[z := N]) = Weigh}-(A)

2a < AeTl = Weight(AM,..M,) < Weight(aM,..M,,) for any setM,, .., M,,.

3.Weight (B[z := M;]M>..M,,) < Weight ((Az:A.B)M,..M,,)

4 Weight (A), Weight- (B) < Weight- (r2: A.B)

5.Weight (B[z := N]) < Weight.(r2:A.B)

Proof. 1) By the definition ofWeight(4) and the properties thdflaxReg (A[z :=
N]) = MaxRe@(A) and pSiz¢A[z := N]) = pSiz¢A); 2) By I'-reduction; 3) By
B2-reduction; 4) BypSize Note thatWeight.(B) = Weight. .. ,(B); 5) By 1) and 4).0

Not1aTION 5.3 (M o N). We useél/ o N to denote eithen! - N or M e N (according
to the type of\/). N o M denotesN o M; o...o M, forn > 0.
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One of the differences betweevil® and A& is the explicit use of the context in
the typing rules. Hence, a typed inductive set must be indexed onygmhand context:
Z<r.a>. The following definition of a basic set characterizes context related gieper
that a typed inductive set must satisfy. The definition for typed é¢tide set is based on
the notion of basic set.

DEeFINITION 5.4 (Basic set). A family.” of sets of termg§.”<r 4>}, indexed over
well-formed context’ and typeA, is abasic setf

1M e L as> = ' M : A,

2 F A:x,

BI'Fx* ATCI" ATFA: % = e as C e 4>,
4T FAA  x ANTHFA<SA = Seras C S as.

wherel’ C I'" means that" is an extension df’, thatis, I’ = I', I""” for somel”’.

An example of a basic se¥r 4> is the set of normalized terms of typeunder the
contextl.

We write M ¢ .7 if there existsI', A such thatM € Z<r a> and M € .7 if
M, € .¥,...,M, € .. WhenT is clear from the context, we may omit the lalieln
Z<1,A>, and just write ..

A special case of the fourth condition of basic set is wHesz A’, we have

Fact 5.5. T'F A,AI tx N A =3 A = y<F7A> = ,5”<F7A,>,
Proof. By the admissibility of reflexivity.J

Now, we need to adapt the notatier; .4 from [CGL95]. Here we need to add the
context to the subscript. Intuitivelyf €, “<r a> means that “if\/ has type4, then)M
belongs to<r 4"

NOTATION 5.6 (€;5 L<r,4>)-
Melf y<1"7,4> = (F"MA = M€y<1"’,4>)

The next definition introduces the notidd! 4 o N €;¢ 7. Intuitively, it means that
for M with type A under the environmerit, if M o Nis well-typed, then it belongs t&”.
M may have some other types, sBybut the condition here does not require théato N
is well-typed whenl/ is considered as a term in tyf@g More precisely, we have

DEFINITION 5.7 (MT40 N €;; .#). Suppose that” is a basic setN € .7 and
thatl' - M : A. The relationM ™4 o N €;; . is defined as follows,

1.MF7A €if Y = M €ir y<r7,4>;
2. MU-aMi Mo N o N €ir S & MUAMMa 6 N o N €ir S fora<A:KeTl;
I MU(Ae: A B)My .My o N o N €ir S o MUBla:=M]M2. M, o N o N €ir
4'M1"77rz:A.B oN o ]\_f/ ez’f BZP=N

(N € Fer,as A MN €5 Fer plaen)s A (MN)BlE=No N1 €,y 7);
5.M"AmeAiBitict o No N' €, .7 & (3i€ I

N € Sera> AN MoN €5 e paenys A (Mo N)DBilE=No N1 ¢, #);

By Weight (A), the relationM ™4 o N €;; .7 is well-defined.
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Note that the casg/™-*M1-M o N ¢,, . wherea : K € I'is covered in the first case.
For suchM, M N, ..N,, with n > 1 will never be well typed.
For convenience, the above notion is extended to the general ndtigp, ..

DEFINITION 5.8 (M €;¢ ). The relationM €;; .7 is defined over the structure
of term/,

1z Cif EZR=" (HF,A. T Eif r§Z}<F,A>)

26 €y S & True

3Xz:C.N €;; & & (A,A T+ Ae:C.N : mx:C.A = Ax:C.N €5 L<r nz:C. A>)

4.M1&WM2 €ir Y < dI Ml&WMQ €if y<1“7w>

5MoNoN' €ir S & ElF,A.MF’AoNo]\-f" €ir 7.

With these preparations, we can now introduce the notions of typedtiivd set and its
application closure.

DerINITION 5.9 (Typed Inductive Set). Let.” = {.“<r 4>} be a basic set oflly,
terms andN a sequence of well-typed terms? is typed-inductiveif it satisfies the
following conditions :

(E) £ € ,5/<1~7{}>
(z) Vze Y<F,A>,Z\7 €. VAo N €ir S

(&1) VM, € Sr w>, M» € y<1“:”:A-B>’]\7 €7
(MIF’WO N i & A M2F,7rz:A.Bo Nes = (Ml&WU{wx:A.B}M2) oN €;;.)

(M) VM € Seras,N€.#. Mlz:=N]"4oN €;; .7
= (Az:B.M)lmeB-A LN o N €ir S

(&) VM) € Serws, Mz € FLer npaps. M&WVImmABYN, € 7
()‘2) VM € y<(F,z:A),B>' Az:A.M €if y<F,7Tx:A.B>

DerFINITION 5.10 (Application Closure of). Let{.?<r 4>} be atyped-inductive
set. Itsapplication closure i\l , denoted by{.%. .}, is inductively defined on the
structure ofA as follows:

CAsE aM;..M, Therearetwosubcases: (1yif: K € I',thenM € 21 v, v > €
M e Seram . m,> (2Qif a < A: K el thenM € % oy, m.> © M€
St aMy . My> N M ESZ an m, s

CASE(A:E'AB)Ml M, MGY T,(Az:A.B)M;. M><=>M€y<p (Az:A.B)M;..M,>
AM€y<FBsz1]M2 M, >

Casemz:A.B: M € 5% paps & MEScrrpans ANV, NT'FxAT C
"' ANN€ S s = MN € SZ I,N]>)

CASE {7T’EA B}zel M € y*r rwi s Biier> & M oe y<r {mz:A; Bi}ic1> A
(VieIVI', N.I"Fx AL CI" AN € SZy 4,5 = MoeN €S, g w_N]>)
This definition is well-formed.

Lemma 5.11 (Well-definedness o1 4.). The set”’r ,. is well-defined on
each well-formed typd.
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Proof. Induction onWeighf(A4). O
The notion of application closure has a simpler presentation:

Lemma 5.12  (Equivalent presentation of application closure)M € .1 4. ifand
onlyif M € Scpas A (VI', NT' -« AT CT' AN € .2, g = MUAoN €y
)

Proof. Induction onWeighf (A4). O

5.2. The application closure
A typed inductive set is a basic set, so” has all four properties of Definition 5.4.
The application closure”* is a “subset” of#” in the sense tha¥*;. 4. C S<r,a> for
each context’ and typeA. Evidently, not all “subsets" af” enjoy the nice properties of
basic sets. But we can show th&t* is still a basic set. Actually we need only to verify
that the last two conditions of basic set hold fgr .
First we show that”%;. ,. enjoys the third property of basic sets.

Lemma 5.13 (Invariance of”* under context extension).
I'Fx ATCI A THAix = 2040 C S50 s

Proof. By the definition of.”*, . is typed inductive, thus a basic set. Therefore,
I'Ex ATCI' A THFA: % = Seras C S as

The proof proceeds by induction &keight. (4). O

GivenatermM € 1 . 4 p~, We wantto show that, forany tertd € 2 4., we
have M N € Y;RB[Z::Nb. Due to subtyping, it may happen thit will be applied to
an argumenlV € . 4, whereA’ < A. Hence, we want to show that

PFA' <A = SZras © 20 as
A special case of this property is whell and A are 3-convertible:
A= A" = Flp s =S2r >

To prove this property, we first study a special case whergtbenversion is restricted
to heads, reduction, which has been defined as (see Section 5.1)

(Ax:A.B)My...M,, —np, Blx := Mi|M>.. M,

* is invariant under head, reduction.

LEMMA 5.14 (* and heads,-reduction).
Fl_A:*/\A—)hBZA’ﬁ yzF,A>:yzF7A’>

Let A"%2 denote the head normal form b, reduction.
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COROLLARY 5.15 (B hnfands*). Tk A:x = 20 40 = 52 4nsys

Now we show that”* is invariant undeg conversion.

LemMmaA 5.16 (&* type conversion).
LHEAA x NA=pg A" = SZr 4o =210
Proof. First note thal' - A, A" : x N A=3 A" = Yr a> = S<r,a> The proof
proceeds by induction oweight.(A). O

Now we can show the main result of this sectiorZ. . is monotonic with respect to
subtyping.

LeMMA 5.17 (Subtyping implies application closure containment).
FTFASBATEFAB:x= % 4,0 CS2

<I',B>

Proof. Since typed inductive set is basic set, we have
THFA<B = y<rA>Cy<FB>
GivenA, B satisfying the condition of the lemma and € .. ,., we need to show that
M € S%r p-.. Note that, we havé/ € S<r .
The proof proceeds by induction on the derivation depttWefght. (4) + Weight.(B).
Note that for any™ such thafl™ Fx A T' C T,

Weight., (4) + Weight., (B) = Weight(A4) + Weight.(B)
We proceed according to the last rule used to ddrive A < B.

CAsE (S-r). Assume that the last step of the derivationifdr A < B is

'-C<E T,x:CFHF<D
I'tne:E F < nx:C.D

-

whereA = nu:E.F, B = m:C.D. LetM € SZ. ., p p~; We need to show that

VI'N.I"Fx AL CI" ANN€ % oy = MN €S2

[z:=N]>
LetT' be suchthat” - x A T' C T'. The proof proceeds as follows,
N e St os = N&e o>
= I'FN:C
I'-C<E = SZros CSZrps induction hypothesig 1 H)
I'e:CFF<D = I'"F Flz:= N] < D[z := N]
A pSizéF[x := N|) = pSiz€F') < pSizénaz:E.F)
A pSizéD[z := N|) = pSizéD) < pSiz¢rz:C.D)
= yzl—"7F‘[m::N]> g y<l—‘ D[z:=N]> IH
Siros © S ps = N €S2 ps
Me Sl uprs = MESI npps
= MN € ,5’<F, JFlz:=N]>
= MN €721 plo=n)>
= y<F’,7rz:E.F> g yzF’,wz:C.D>
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CAsE (S-ApR). Suppose that the last step of the derivatioifer A < Bis

My =g M ---Mn =5 M,
S-ApR
T+ oM. M, < oM, M,

The result follows from the Lemma 5.16.

CASE (S-ApT). Suppose the last step of the derivationifor A < Bis

T+ T ()M ..M, <B
TF oM. M, <B

S-ApT

Then

LI ot My> = L E0 (), > definition of 7
5”<*F7B> I1H
CAsEs (S-ApSL) and (S-ApSR). Similar.

N

CAsE (S-OVER). Suppose that the last step of the derivation bfA < B is

VieJdiel I'ne:Ay.B; < ma:Cj.D;
'k {WTE:Ai.Bi}iE] S {W.T:Cj.Dj}je]

S-OVER

whereAd = {WCU:AZ'.BZ'}ZE],B = {WCU:O]‘.D]‘}]‘GJ.

Assume thatM € SZp (. 4. piyie,> @MAN € IZp oo, LetT” be such that
I"Fx A T CT' we need to prove thal/ e« N € %y, f, (.. _ - We proceed as
follows:

FI F {Wﬂ::Ai-Bi}iEI S {WCU:O]‘.D]'}]‘EJ

= Jhel I'"Fnz:Ay.By, <wx:C;.D; by definition
A pSizérx:Ay.By) < pSiz¢A) A pSizénz:C;.D;) < pSizéB)
:>FI|—Cj§Ah/\FI,.’E:Cj|—Bh§Dj S
A pSizéC;) < pSizénz:C;.D;) N pSiz€Ay,) < pSizérx:Ay.By)
= yzF’,Cj> §y2F,7Ah> IH

*
= Ne¢€ 5’<F,7Ah>

= MeN €S2 g lven)> by def. of*
On the other hand,
F,,.’E : Cj "Bh SD]
= I"F By[z := N]| < Dj[lz := N| A
pSiz€B [z := N]) = pSiz¢By) < pSizénz:A,.Br) < pSizéA) A
pSiz€D;[z := N|) = pSiz€D;) < pSizérz:C;.D;) < pSiz€B)
:> r5”2(1_",Bh[z::]\,]> g r5”2(1_",[)1'[I::1\[]> IH
= M .N € yzl—"7D]‘[$::N]>
= Me yér',{nzzcj.Dj}jeJ> by def. of™*
= r57};1“’,{71'1:141-.Bi},-51> < r57}:1“,{7rz:0j.D]-}ng>
O

COROLLARY 5.18.
FFASB/\F"BSA/\F"AIB* = y;F,A>:yéF,B>
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5.3. Relation betweens and .o*

Inthis section we study the relationship between typed-inductive’setd its application
closure.*. The main result is Corollary 5.22, that states that every typed industt
contains all the well typed terms. Its proof relies on the followingresm In the following,
N € " willmean thatV € .. ,. for some typed and environment.

LEMMA 5.19 (. implies.*).
Me S5 4e @ TFM:ANVYN e S* M oN € 7
Proof.

(=) We prove the stronger property
Me S5 4 = YN e S* MV Ao N € 7

by induction on the length af .
(<) WhenN is empty, by definition, we have

TEM:ANMYAY e S = Me S 4
The proof proceeds by induction &deight. (A).
O

The following lemma shows that if : A € I', thenA is a minimal typé’ for the term
variablez.

LeMMaA 5.20 (Minimal type for variable).
I',z:AIsyrxz:B = I'',z: A\ s FA<B
Proof. By observation of the typing ruleés
Now we prove the main result of this subsection.
ProrosiTIiON 5.21. For every typed-inductive set
'EM:A:x = MGY;FJD
Proof. We prove the following stronger property, given a contéxtermspP;, .., P,,, M
and type<’,, .., C,,, B (with n > 0):

Vo =[x := Py, ...,z = Pp].
(VZ S [].T]]F,’I‘l : Cl, vy i1 Ci1FP:CiNP; € ;chi[zlizpl 1111 zi—15:Pz'—1]>)
AL,z 2O,y : Co - M i Bix= Mo € SZp g,

Let o be the substitution satisfying the condition of the above piypedbom (o) =
{z1,..;zpn}, ' =T, : C1,...,z, : Cp. Note that

27We speak of “a minimal type” rather than “the least type” siray subsumption every typB such that
I'+ B < A < Bisaminimal types of:, too.



52 G. CASTAGNA, G. CHEN

1. "o =(D,x1 : Cy, ..,z : Cp)o =T Definition 4.5
3. Cl[’El = Pl, L1 = Pifl] = CiO'

4 I"FA<B = I'+ Ao < Bo Lemmad.6

5. ' Ao < Bo :s5=> Y2F7Ag> C ,}W:F’Blv Lemma5.17

6. ',z : Cl, vy i1 - Ci1FCi:x NTFCio: % PrOpOSiti0n4.11
7. T'F Bo: % Proposition4.11

Induction on the size af/. We analyse the different cases fuf.

CASsEM =z. ThenI+z:B = I'tzo: Bo = ' Bo : *.
1)z ¢ Dom(c). Thenazo = z. LetN € .7*.

N e .7* = Ne.& Definition5.10
I'tz:B = I'txz:Bo substitution
Ne s ATkz:Bo = "B o N €;; .7 Definition5.9
'txz:Bo A mF’BUONEif S = -Teyzr,&» Lemmas.19
ro=x = 10 € SZr pos

2)x = x; € Dom(o). Then,

_ . _ 3 * _ *
o = T;0 = PZ € fy<l",c'i[x1::}317...7wi,1::Pi,1]> - fy<1—‘70i0'>

z;:C;, e NThkz;: B
= I"FC;<B Lemma5.20
= I'+Cio < Bo substitution for subtyping

I'+Cijo<Bo ANTFCio,Bo:x
= SZrcios © LI Bos Proposition5.17
= x0 € y<*F,Ba>

CASE M = (M &WVm=C-DY L) It follows from generation for typing, substitution
property and the closeness of overloaded type that

I'F M &EWAT=CDIANL B = T My W ATV My m2:C.D

AW U{ne:C.D} < B

AW U{nz:C.D} : %

= I'F(WU{rx:C.D})o : % Prop. 4.11
I't WU {rz:C.D} < B = I'F (WU {r2:C.D})o < Bo
L'E(WU{re:C.D})o < Bo :x = J20 (wigrmo.p}os S 7or,Bo> LEMMES.17
I't WU {nz:C.D} : x = (WU{mz:C.D})oc =W U{rmz:C.D}
= (Ml&WU{nz:O.D}MZ)O. — (Mlo.)&WU{wz:C.D} (M20')

LetN € .7*,
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'MW AT My :72:C.D

Mo € S2p wos N Mao € 52 <I'{rz:C.D}o> 1H

Mo € yzF,VK> N Myo € S2r (wcDys W U {rz:C.D} closed
(Mio)"W oN €;p S N (Myg)'m#:CD o N €ir ~ Lemmas.19

(M &V Hme:C-DY ) o) T (WHma:C.DYo o N e, .9 Definition’.9

(M & CPIMy) o € LEL wigmao. DY o> Lemma5.19
(Ml&WU{ﬂ'z:C.D}M2)0. € ’y<F,Ba>

CASE M = (Az:C.M'"). Let N € .7*, first prove that (Az:C.M')g)"(7=:C-D)e . N ¢,
. for someD. Note that

I'cAXe:CM':B = dD.T",2:C+M':D AN T"+F72:C.D < B
AT+ 7mx:C.D : %
= I't (rz:C.D)o :

I't 72:C.D <B = I'F (m2:C.D)o < Bo
't (r2:C.D)o <Bo:x = SZ

R

*
(rz:C.D)o> < '5/<F Bo>

There are two subcases:
1)N=NUN";
I'z:C-M':D = (Molx: N])E&QFDJ[QE_N]> IH
= (M'olz := N))"Pele=N o N' g;; . Lemma5.19
= (\:Co.M'g)Tm#:CoDo N o Nt ;.7 Definition5.9 (A;)

2)N = {:

Maz:CEM:D = Mo €% o) pos IH

M'o €ir y< (T,z:Co),Do>
Ax:Co.M'o €;p < xu:00.00> Definition5.9
((Aw:O.MI)U_)F,ﬂ'w:OO'.DO' eif B4

UUUU

We conclude that N. ((Az:C.M")o)"-(m=:C-D)e N ., 7. Furthermore,

F (Az:C.M")o : (r2:C.D)o A ((Az:C.M')g) »(7e:C-D)o N €ir S
= (Az:C.M')o € LZp (00Dyos Lemma5.19
= (A\:C.M")o € L% g,

CASE M = (M' e N). Then,

I"'M'eN:B
= I"FM: {Wyi:Ai-Bi}iGI AT "NAZ AT l_Bz[yz = N] <B
AT F (Bilyi := N])o : %
= M'o e S%, I (i As B}1EI)U>/\NU€,§’FAJ>/\FI-( ilyi := N))o < Bo IH

= MUGY*F{W%A B}1e1>/\NU€y r.a,0> NTF Bilyi == No] < Bo
= (M'o)"AimvediBikicr o (No) € 20 v nojs © P20 Bos Definition5.10
= (M'eN)o € S pos

Case M = (M'N). Similar. O

CoroLLARY 5.22. If Sis atyped inductive set, then
MGYFA>®M€§’<FA>®F|—MA
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Proof.
M€ SZr ps = M € S<r a> by definition ot~
MeSoras = THFM:A by definition of
'EM:A = M € .2y 4. ByProposition5.21

5.4. Strong normalization is typed-inductive

Now we can prove that inll,, strong normalization is a typed-inductive property, and
therefore well-typed terms iAll, are strongly normalizing.

Define# cras ={M |TFM:A AN M e Ml A M isstrongly normalizing
and. A = {H <1 a>}.

PRroOPOSITION 5.23 (¥ is typed-inductive). . is typed-inductive.

Proof. First we have to verify thatZ/” is a basic set. The first three conditions of the
definition of a basic set (Definition 5.4) are straightforward. Ferfiurth condition just
note that by the subsumption ruldif- M : Aandl' - A < A’ thenl' - M : A’

Then we need to show that/” satisfies the conditior(s), (z), (&1), (A1), (&2) and (\2)
of the definition of typed-inductive set. We analyse the c&ség;(others are straightforward
or similar.

AssumeM, € MW w,My € F<rrwaps, N € 2, MW oN €5 H A
My ™ 4B o N €, 2% . Then one step reductions frafil, & {7:4-B} 11,) o N will
have only three possibilitiest/, " o N, M2 ™48 o N or (M| &WAm=:A-BY A1) o N,
where in the last case just one of the primed terms is a one-step redoetagftresponding
non-primed one. The first two terms are possible only if they are typlbd (subject-
reduction) but in that case by assumption they are strongly normgliBg induction on
the maximal length of reduction of the tupte M;, M, N >, we can prove that the last
term is strongly normalizing. Therefore, we hayd, &V im=A-BI My ) o N €, 2. O

The 3¢ strong normalization follows.

THEOREM 5.24 (B¥ Strong normalization). In A, if T = N : A, thenN is B¢
strongly normalizing.

Proof. From The previous proposition and Corollary 5122

6. PECULIAR PROPERTIES OF All<

MI¥ is a conservative extensiondfl < (see Section 4.6.1). Therefore, several properties
we proved in the previous sections faf* hold for AlI< as well. In particula\Il<
satisfies confluencg,'-strong normalization, admissibility of reflexivity and transityy
and subject reduction.

However, some properties all< that are specific to it, and do not generalize\fd*.

In this section, after having recalled the definition\df<, we study three of them:

1. We prove that the rule for subtyping family applications (rti€-app in Section 3.3.2)
is admissible imII<. We already explained in the excursion at the beginning of Section 4.4
why this proof is interesting foAll< but not for \II*. We think it is important to show
this property here since it justifies the presence of the sulein All<. [Section 6.2]
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2. We show the equivalence betwegl< and AP< (see Section 3.3.2). This result
is somewhat outside the main stream of this article. However, it erésting to have
it here since it shows the “roots” ofl1¥ and, more than the previous point, it justifies
the definition of some rules of[I¥ that have their form only to have this equivalence to
hold. We simply outline the proof of equivalence; the full proo&isilable on the Web.
[Section 6.3]

3. We prove the decidability ofll< and define a sound and complete algorithmic set
of rules. This result is important since it forms the core of thelgtaf decidability of
MI¥ of Section 7. Of course we could have studied decidability directhp\fd¥ without
dealing withAll<. We preferred to start b¥II< for two reasons. First, it is interesting to
show how the\I1 < algorithm modularly extends tol1%. Second, while decidability holds
for Ml<, it does not hold for fulh[1¥ but just for the normalizing subsystem studied in
Section 5; so we preferred to show it also for a less powerful but fsliesy such asll<,
rather than just for a particular subsystem\éf%. [Section 6.4]

6.1. Definition of All<
A< has the same four syntactic categoriesBY, as well as the four judgment forms.
The syntax of pre-terms, pre-types, pre-kinds and pre-contexts aresesaf\[1% without
overloaded types and terms.

= z|As:AM | MM

a|rx:AA| Ax:AA| AM

* | Mz:A.K

= <> |Tz:AlTa: K| TLa<A: K

R

There are only two notions of reduction, namelyg, and—g,. So, here—z=—3,0u3,-
The formation, kinding, and typing rules fafl< are those oAIT* (Appendix A.1) from
which we erase K-OVER &; T-&, and T-OAPP. The subtyping rules are given in Figure 3.
Note that, although S-ApR has the same form aslii¥, the 3 conversion occurring in
there is only a combination ¢f, andj3, (5% is not involved).

6.2. Subtyping family application
The theorem of admissibility of the subtyping family applicatioleru

T'FAM,BM:K THA<B
TF AM < BM

just requires a simple lemma:
LEmMMA 6.1. TFaM;.M,,: K A aboundinl = T'FT(a)M,..M, : K

Proof. By the observation that there exidt, .., A,, and K’ such thata < TI'(«) :

May: Az, Ay . K' € T'whereK'[Z7 := M| = K. O

THEOREM 6.1 (Subtyping family application).
'-AM,BM : K NT'FA<B = I'FAM < BM
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Proof. By induction on the depth of derivation 6f- A < B. Cases (Sr) and (S-ApR)
are immediate. For case (8-use Proposition 4.6 while for (S-ApT) use Lemma 6.1. In
the case (S-ApSL) we have that the derivation ends by

'k A”[.T,‘ = Ml]MzMn S B

S-ApSL
TF (AeA ANM, M, <B P
From the assumption, we have:
CF (Az:A" A"YMy.M,)M : K
= 3D, K'st.TF (Aw: A" A")M, ..M, : Iy:D.K' Prop.4.14
ANK=K'[z:=M] AT+FM:D

= '+ A"[z := Mi]M,..M,, : Iy:D.K' subject reduction
= T+ A"z := M]My.M,M : K'[y := M] K-APP

By the 8, subject reduction (Lemma 4.2104" [z := M,])M,..M,, M is well-kinded in
the contexf". Therefore,

I'F A"z = MMy M,M,BM : K A T+ A"[z := My]M,..M, < B
= T'F A"[x:= M|My..M,M < BM IH
= TF (Az:A".A"YM,.M,M < BM S-ApSL

Case (S-ApSR) is similar to the last case.

6.3. Equivalence betweenll< and A P<

In this section we outline the proof of the equivalence betwdén andAP<. It can be
skipped at first reading and requires the contents of Section 3.3.2.

Since the key difference between the two systems is in the definitidmea$ubtyping
relation, we concentrate our efforts on this relation. We expect the &lguive to state that
when A and B have the same kinfl’, thenT' = A < B holds in our system if and only if
' ¢ A < B holds inAP<. But shouldA, B be kinded inA\P< or in AIl<? If the latter
choice is taken, then the difficulty is to show that every subtypingirull< is admissible
in AP< (since kindings may be different). If kindings are assumelifia, then the subject
reduction in\II< does not apply and we do not know whether kinding is preserved (which
is critical wheng-reductions are involved in the proof).

So we take a different approach and prove equivalence by using a intermead@tkis
/\P£ that is defined by the same rules &B<, except that the subtyping rules and the
subsumption rule contain kinding judgments for all formulae odngrin them. We show
that this system is equivalent bothXbl< andAP<. We use these two equivalence results
to prove the equivalence betwegH <« andAP< and in particular to give an answer to the
guestion of the previous paragraph, showing that the equivalence sfibityping relations
must be stated by usingl< kinding.

Once more in order to avoid confusion we use a different relation sy=lto denote
/\P£ subtyping, usef scripts for/\P£ rules and judgments, and use lowercase italicized
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names for rules. The subtyping rules)dPé are:

a bounded i
St-var -
I'FfaxT(a)
; 'Fypre:AB,ms:A B :x TFy A< A e Ay BB
ST
Ity mx:AB < mw:A' B’
; Py Az:ABAx:A'B': K A=A INe: A-B=x B
ST-A
k¢ Az:A.B < Az:A.B'
I'Fy AM,BM:K TF; A< B
S7-app
Tk AM < BM
Fl—fA,B:K AZQB
Sf-conv
F"fA#B
T+;ABC:K T+ ASB I'F; B<C
Sf-trans

Fl‘fA%O

/\Pé differs from A P< also in the subsumption rule which contains kinding judgments for
the types at issue (as MI%):

F"fM:A FI‘fA#B F"fA,B:*
T/-sub

'ty M:B

As announced we do not give a detailed proof of equivalence, but we rathieeatit The
interested reader will find full proofs in [Che96, Che98] available an\Web.

First, it is easy to verify that some structural properties proved iniGedt3 for \[T¢
hold for )\Pz, as well: generation for kinding, context properties, uniquenessnufski
boundg-equivalence, and agreement of judgments. However, the proofs differtfrose
of AII¥ in thatAP£ requires simultaneous induction on formation, kinding, typingl an
subtyping, while in\II¢ (or All<) two separated inductions can be used, one for the first
three judgments, another for subtyping.

The circularity between kinding, typing, and subtypingkiﬁ’i is also the central dif-
ficulty in proving its equivalence withll<. We handle it by proving the results in the
following order (whereJ denotes either a kind, or a kindingA: K, or a typingM: A,
but not a subtyping relation):

T+ AB:KANA=3B = TFA<B

.TH; AM,BM :K ANTHFA<B = T'+ AM < BM

T+ AxB=>TFA<B

TFA<BATHFAB:K = Tk; AgB

THJ = TkpJ

Tk J = TFHJ

(TF;fAB =TF;AB:K)A(TF;AB:K= THAB:K)
T+ AgB & THFA<SBATFAB: K

O NOUAWN R

We can now precisely state the equivalence betv\)d%] andAIl<.
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THEOREM 6.2 (Equivalence betweehP£ andAll<).

F'Fy K S T'EK

'FyA:K & T'FAK

'FyM:A & T'EFM:A

'F A B © TFASKBATFA:KANTFB:K

It still remains to prove the equivalence betweéﬁé and AP<. The proof is quite
straightforward. (Recall thak andF““ respectively denote the subtyping relation and
judgments (derivable) in Aspinall and Compagnoni’s sysidri).

TuroREM 6.2 (Equivalence betweehP! andAPx).
TH K & TFYK

TH;A:K & TH< A:K
TH;M:A & TH<M: A
TH;ASB & I'F*< A< B

Proof. By simultaneous induction, by using the agreement ofjudgment&ﬂ‘ér O
The equivalence betweeil< and)P< then follows:

CoroLLARY 6.1 (Equivalence betweehP< andll<).
-+ K < I'FK
'k A:K ©TFHA:'K
rk*M:A &« TFM:A
'r**A<B & THFA<SBATFA:KANTFB:K

EXCURSUS ON RECENT WORK We already explained thafl< is a byproduct oAl
since it was defined in preparation to this work. Howex&k, is not deprived of interest on
its own. Although we just proved th&ll < is equivalent to\P<, in Section 3.3.2 we argued
that AIl< improvesAP< in that it allows type level transitivity elimination in subtyping
This is obtained thanks to the rules S-ApSR and S-ApSL that efadexhd-reduction in
the subtyping rules. These rules have been generalized in [Che97] (acstulde extension
of the Calculus of Constructions by subtyping), t6:S-

A=3C THC<D D=3B TI'+AB,CD:s
T-FA<B

wherel' = A, B,C, D : s denotes thatd, B, C, D are well-formed, and to $* (for the
algorithmic subtyping syster):
A%BO r-c<»n B—)BD
'-A<B

Several authors have used similar techniques. In their work on typadtipnal semantics
for (a variant of) F¥, Compagnoni and Goguen [CG97] use the subtyping rule

A—,C THCL<D B-—,D
'A<B

28 A detailed analysis on this technique of achieving travigitielimination can be found in [Che98].
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where— ,, denotes weak-head reduction.
In his study on coercive subtyping for UTT (a system more expressivéhid&alculus
of Constructions) Luo [Luo97] deals with type conversion by thiefadhg rule:

A=C THC<sD D=B THFAB,C,D:x c=¢
TFrA<,B

where ¢, ¢’ are coercions,= is the type conversion defined in his system &hd-
A,B,C, D : x states thatd, B, C, D are well-formed.

A significant achievement in this direction is the work of Zwanenpngn99], where
transitivity elimination for general PTS systems is obtained byukes

A%BO r-c<n B—)BD
TFA<B

Although a very similar to the 8- rule in [Che97], Zwanenburg is the first who provides
a direct proof of transitivity elimination with this rule. Thisqgress allows him to con-
struct and study the subtyping extension to general PTS systems, intliedes the one
of [Che97].

The common feature of all these approaches is that the resultbig@ng systems enjoy
the transitivity elimination property. As in this work, the sida of this problem is the key
step in their studies of meta theoretic properties.

Compared to these recent and more general approaches the pair of eSS and S-
ApSR is still interesting: it is simple (as part of a subtypingeyy and efficient (as part
of a subtype checking algorithm).

6.4. Decidability and Minimal Typing

We already hinted that the set of subtyping rules fdl< can be straightforwardly
turned into a deterministic algorithm by adding to the [S-ApSR# ithe conditionC' #
(Az:A".B"YM{..M], N C # aM]...M], and to the rule [S-ApT] the conditiod #
aMj ... M) (Footnote 9 in Section 3.3.2).

Of course, it is necessary to prove that every judgment provable by trestunted
rules can also be proved just by using the rules with the extra condifthe converse is
straightforward), that is, we have to show that the conditions entral with respect to the
definition of the subtyping relation.

Let us briefly hint to how this equivalence can be proved:

Proof. To show that the condition on the rule [S-ApT] is neutral it sufficesée that
whenevel' - aM; ... M, < aN;...N,thenM,; =5 N, (observe the rules and note that
the only way to decompose a variable on the right-hand side is tcheseile [S-ApR]).
Therefore if we have a proof df - aM; ... M, < aN;...N, ending by [S-ApT] then
we can prove the same judgment just by using [S-ApR].

The proof that the conditions on [S-ApSR] are neutrals is insteaairdd by induction
on the depth of the derivations (with the extra result that the déoim that satisfies the
condition does not have greater depth). For example consider the calsiemanderivation
of '+ (Ay:C.D)M; ... M,, < (Az: A.B)N; ... N, ends by the rule [S-ApSR]; then by
induction hypothesis there exists a derivation fok- (Ay: C.D)M; ... M,, < Bz :=
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N,]Ns ... N, that satisfies the conditions. Therefore, the last rule of this devivatiust
be [S-ApSL], whencé& + D[y := M ]M, ... M, < Blz := N1|N,...N,,. By applying
[S-ApSR] we deduc®& + D[y := M 1]Ms ... M,, < (Az: A.B)N; ... N,. This last rule
either satisfies the conditions or it does not. In the first case we already dwhole
derivation that satisfies the conditions; in the latter case we can apply mace the
induction hypothesis and obtain such a derivation. In both cases @faiplication of
[S-ApSL] rule yields a derivation of the initial judgment that sidis the conditionsd

The decidability of subtyping follows from the equivalence betwaéin and AP< and
the decidability of the latter, but it can also be easily obtained direatiy fthe subtyping
rules of All<.

THreoreM 6.3 (Decidability of subtyping). If I' F A: K1,I' - B: K5, then the sub-
typing judgment’ - A < B is decidable.

Proof. Associate to each subtyping judgméht A < B the measur&Veight.(A, B)
of Section 4.4.1 and note that each subtyping rule decreases this méasure.

The next step towards proving decidability is to design algorithmisions of the remaining
judgments (typing, kinding, and context formation). Here we dbscanly the most
significative algorithmic rules: all the algorithmic rules can be fdim Appendix A.1.3
(just remove the rules specific #d1%, that is, AS-OVER, Lub-OVER, AK-OVER, AF;
AT-&, and AT-OAPP).

Judgments in algorithmic rules are denotedIb¥ ., J. In particular, we writel® +_,
A < Btodenote judgments deduced by using the rules with the extra comslit the very
beginning of this section (even though in what follows we tend tdt ¢ime .« script for
subtyping since they virtually denote the same system). With theestion that premises
are evaluated in order, the rules form an algorithm.

The main step to an algorithmic set of rules is as customary: we remosalisemption
rule (which is not syntax-directed) and embed the subtyping relatidghdrelimination
rules (those for applications, namely K-APP and T-APP). As usual, themresof type
variables causes the further problem that the type to eliminate in a eliimmrule may
not be in “canonical” form. For example, consider the application of twmsev/ N under
a contextl’. We first try to type each teri - M: A andI’ - N: B, and then to infer
from that a typeC such thatl' F M N : C. When the typed of M is equivalent to a
type of the formrz:D.E, then it suffices to check that - B < D and to infer that”
is E[z := N]. But because of type variables the actual formdofay beaM;..M,, or
(Ay:Ay.A2)M,..M,,. Therefore, we need to infer from these types a type of the form
mz:D.E (let us call it ar-type). InAP<, this is achieved by using a function FLYBA)
that returns the least-type super-type ofi (strictly speaking, it returna minimal =-type
super-type ofd). Here we essentially take the same approach with the only difference that
the leastr-type is inferred rather than calculated. So we introduce a new relation

'k, A<uwB
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to express the fact thd is the leastr-type super-type ofi under the contextt. The rules
to derive this relation are:

Lub-REFL
', m2:A.B <, jup T2:A.B

F l—d F(Oz)Ml..Mn Sﬂ—lub A
Lub-ApT

r '_d OZ-Z\/Il---]\4n <rlub A

r l_d B[’IJ = Ml]M2Mn Sﬂ'lub C
Lub-ApSL

I |—ﬂ (ATAB)Man Sﬂ—lub C

The properties of this relation are stated by the following projpmsit

ProrosiTiON 6.3 (Properties ofrlub judgments).

1, A< uw B =T+HA<B

2'F A< nz:B.C = 3B, C'st. Tk, A <juw mx:B'.C' AN T F nx:B'.C' <
nx:B.C

3.Given atypel, itis decidable if there existsx: B.C suchthaf +_, A <,y 72:B.C
is derivable.

AT+, A<, ju BANTFA: K = TFB:K

5I'+, A <rlub mx:B.C NTF, A <rlub mx:B'.C' = B=B'ANC=(C'

Proof. The fourth claim is proved by induction on the depth of the derivatén
'+, A <. B using subject reduction. The others are straightforward.

While the use of a FLUB function or of thelub judgment is a matter of style, the key
difference between our approach akB< is in the typing and kinding application rules.
We define subtyping directly on types withgist normalizing them:

', A:lls:BK '+, M:B' T'+,B' <B
AK-APP

'+, AM : K[z := M]

Tk, M:A T+, A< wmz:B.C T+, N:B T+,B <B
AT-APP

'+, MN :C[z := N]

In the same way as we removed the subsumption rule by embedding sgpigpthe
applications rules, we eliminate the conversion rule K-CONV by emimegdonversions
in the context-formation rule F-SUBTYPE.

To obtain an algorithmic system we also remove from T-VAR and K-VA&d¢bntext-
formation premises (yielding AT-VAR and AK-VAR of Appendix A.1.3) this way typing
and kinding become independent from context formation. Therefote, J no longer
impliesT" - x. So additional kinding checlist-_, A : x must be added to the introduction
rules (rules AKs, AK-A, and AT-\) and an additional kinding chedk |-, K must be
added to context formation rule F-SUBTYPE. This suffices to infer thk-lindedness of
contexts in the remaining rules.
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Proofs of soundness and completeness of the algorithmic system dle latiger than
those in\ P<, but do not require any specific technigue or insight.

For the proof of soundness of the algorithmic rules, we need to erthat well-
kindedness of types in the premises of subsumption is satisfied. iShkishieved by
using the properties oflub judgments and generation for kinding.

THEOREM 6.4 (Soundness of algorithmic system)Forall ', A, K, M,

1. TH, K = I'FK
2.THF+xATF,A:K = TFAK
3. THFxATF, M:A=>TFM:A

Proof. Simultaneously by induction on the depth of the derivation in theritlgmic
system.
CasE (AT-APP). Suppose we have a derivation ended by an application of tn&TuAPP

Tk, M:A T+, A< wmz:B.C TF,N:B TF,B <B

L'k, MN :Clz := N| AT-APP
We have:

'txATF, M:A = T'FM:A IH

= THA:% Proposition 4.13
', A <yup 70:B.C = ' A <7mz:B.C Proposition 6.3(1)
I'FxATF,N:B = I'FN:B IH

= IFB:x Proposition 4.13
NkF, A<ywmx:B.C ANTHFA:x = T'Frx:B.C : % Proposition 6.3(4)

= I'FB:% Propositions 4.14, 4.10

So we have the following derivation ending by an instance of the TwA®P, and whose
premises are derived by two instances of the rule T-SUB:
'-M:A THFA<maz:B.C TrHAm:BC:x I'N:B" I'B'<B I'+B',B:x

I'-M: nmx:B.C I'HN:B
' MN : Clz := N]

The case for AK-APP is similar. Others are easy.

COROLLARY 6.4.
'ty xATHLA K > THAK
'ty xANTHF, M:A=>TFM:A

As usual in the presence of subtyping and/or typing conversion teetimic system does

not prove all the judgments of the original system. Neverthelessitinplete in the sense
that every context, type, or term that is well-kinded/typed in theioaiggystem is so in the

algorithmic one:

THEOREM 6.5 (Completeness of algorithmic system).
1. THFK =TIk, K
2.THFA:K = 3K,st.TF,A: K, NK,=3 K ANTFK,
3. TFM:A = JA,st. T+, M: A, ANTHA, <A
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Proof. Simultaneously by induction on derivations in the original system.
CaskE (K-APP). Suppose the last step of derivation is

IT'rA:Mlz:B K THM:B
' AM : K[z := M]

K-APP

We have
'+ A:Oe:B.K = 3K, st.T+, A: K, N K, =5 Iz:B.K |H

= 3B, K's.t. K, =lz:B".K' A

B'=3 B ANK =K confluence

I'HM:B =T+, M:B"ANTFB"<B IH
I'+-M:B = I'FxATFB:% Prop. 4.10,4.13
FFxATH, A K, = T+A:K, Theor. 6.4

= I'+K, Prop. 4.13

= I'FB:x F-11, Prop. 4.13
I'-B,B:«ANB' =3B = T'FB<DB Prop. 4.24

= I'FB"< B Prop. 4.27

= '+, B"<DB

So we have a derivation ending by

-, A:le:B'"K' '+, M:B" TF+_,B"<B

Lky AM : K'[z := M] AK-APP
andK'[z := M| =g K[z := M].
CAasE (T-APP). Suppose the derivation ends by
'-M:7m2:AB THFN:A
L+ MN : B[z := N| T-APP

Then there exist’, A’, B’, A” such that
'-M:nmx:AB = T'kF, M:C ANTFC<7z:A.B IH
'FC<ne:AB = T+, C<pyuwrr:A".B'ANT + nx:A".B' <wx:A.B Prop. 6.3

> THFALZA Prop. 4.14
'-N:A =5 I'F, N:A" ANTHA"<A IH

> THA" <A Prop. 4.27

= Ik, A" < A4

Therefore, we have a derivation ending by

TH, M:C Thr,C<pypru:A B Tk, N:A" Tk, A" <A
T+, MN:B'[z:= N]

AT-APP

andI' - B'[z := N| < B[z := N] follows from Proposition 4.11.

Other cases are easy.
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In the proof of completeness, we have used reflexivity and trangitfisubtyping. To
apply reflexivity, we need kinding condition, which is proved by cahfgoperties, agree-
ment of judgments, and soundness of the algorithmic rules. Genefatikinding has
been used to decompose subtyping betwegypes so that transitivity can apply.

A minimal typeof a termM under a context' is atypeA such thal’ - M : A and for any
othertypeB if I' F M : B, thenl' F A < B. Note that, by this definition, the minimal
type of a termM/ may not be unique: iB is a minimal type ofi/, then every well-formed
type B-equivalent toB is also a minimal type of\/. But our algorithmic system will
always return the same minimal type. This type may not be in normal.fBonexample,
if z: A € I, then the algorithm returnd for z, even ifA is not in normal form. To obtain
the minimal normalized type of a term, one can simply normalize thengpened by the
algorithm.

In order to show the minimal typing property, it remains to show thatA4, in the
proposition of completeness is unique.

ProposITION 6.5 (Uniqueness and minimality of algorithmic typing).
', M:AANT+F, M:B = A=B
', M:AANTHFM:B=TFA<B

Proof. The first implication is proved by induction on the sizeMdf, using uniqueness
of wlub (Proposition 6.3). The second implication follows from Theofb. O

The minimal typing property follows.

CoROLLARY 6.6 (Minimal typing property forAll<).
'rM:A = 3Bst.TFM:BAVCTHFM:C=TFB<C(O)

Decidability results can be straightforwardly proved by showing that dalgorithms
always terminate. They are summarized in the following proposition.

ProposiTION 6.7 (Decidability of algorithmic\ll<). For all I', K, M, A and B,
the following problems are decidaBfe

ITFA:KATFB:K'=>TF,A<B?
2'Fx = dKst. T+, A: K?
3'Fx = JAst.TF, M:A?

4T+, K?

Proof. The assertions must be proved in the order shown. The first imglicatas
proved in Theorem 6.3. The second and third implications are provedtameously
by settingWeightI" -, U:V) = SizdU) and showing that each algorithmic typing
and kinding rule strictly decreas&¥eight For the last implication seizé<>) = 1,
Sizél',a: K) = Sizél',a < A: K) = Sizdl') + SizéK), andSizél', z: A) = Siz€l);
then note that all the algorithmic formation rules strictly decré&sigh(I" ., K) defined
as the lexicographical order of the following pa{Siz€I') + Sizé K), lengti(T")). O

29We say that the problemd = T is decidable if under the hypothesis the formulay is decidable. As
usuall' + J stands for I" I .J is derivablé.
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By the equivalence between algorithmic rules and the original ones, aindhe decid-
ability of judgments iMII<.

CoroLLARY 6.8 (Decidability of AIl<). The following problems are decidable: for
allT', K, M, AandB,

ITFA: K ATFB:K' > THFA<B?
2I't% => dK st. THFA: K?
3% = JAst. THFM:A?

A K ?

7. DECIDABILITY AND ALGORITHMIC SYSTEM FOR ~ AlT¥

In this section we show how the proofs of Section 6.4XHi can be lifted to\TI*. In
particular we examine the algorithmic type systemXr, its soundness, its completeness,
and we discuss the minimal type property and decidability results.

The algorithmic subtyping system fodI¥ is obtained by adding the subtyping rule
for overloaded types S-OVER to the algorithmic subtyping systemlIbf (that is, by
adding suitable conditions to the subtyping rules\Bif* as explained at the beginning of
Section 6.4) . The algorithmic subtyping system is equivalent totiggnal one:

rES<T &T't+, ST

wherel-_, denotes judgments of the algorithmic system. The proof of thisvatprce is
strictly the same as the one outlined in the previous sectioAlfior.

For any subsystem ofTI¥ in which the corresponding-equivalence is decidable, the
termination of the algorithm can be proved in a similar way\&ls, that is by using the
measuréNVeight In other words, the subtyping is decidable in every subsysteTIsf
with decidables-equivalence. An example of such a subsystem is the systégnwe
introduced in Section 5.

The whole algorithmic system is obtained by a few modifications éalgorithmic
system ofAll< and it is summarized in Appendix A.1.3. First, the setrdfib rules is
extended by a new rule

Lub-OVER
L'k, {m2:Ai B;iYi<n <miuwp {m2:A4;.B;}i<n

Recall that, in\II<, the judgment' k., A <., B is used to infer the least-type super-
type of A. With the new rule, it will infer either the leasttype or the least overloaded-type
super-type ofA.

It is easy to verify that all properties for the relatibrn-_, A <,;.» B (Proposition 6.3)
still hold. In addition, we have a new property:

Ik C S {Wﬂj:Ai.Bi}ign
= Dby O gy {72:4].Bj}jcm A TF {ra:AfBj}jcm < {m2:4;.Bi}icn

The algorithmic context rules are the same as thosalfior. We add K-OVER to algorith-
mic kinding rules ofAll<, while the following rules are added to the algorithmic typing
rules of All<:
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r '—Q/ *
AT- I
© Tr,e:{}
r "d M : W1 S {Wﬂ:Asz}zgn r "d {Wﬂ:Asz}zgn Lok
AT-& 'k, N: Wy <7mz:A,1.Bpga Ik, {mz:A; Biticnyr 1 %
['b,, M&tm@diBitisntt N s {72 4;.B; bicng
I |—ﬂ M : W Sﬂlub {WfE:Ai-Bi}ign—H r l—d {W.T:Ai.Bi}i§n+1 Lk

'k, MeN:Bjjz:=N]
Note that in the rule AT-& the hypothesIS I-,, {mz:4;.B;}i<nt1 : * does not imply
'k, {mrz:A;.B;}i<n : %, S0 both kinding hypothesis are needed.
As in the case oAll<, using induction and the subsumption rule, it is easy to prove the
soundness of the algorithmic system.

NoTATION 7.1. Weusel' W M : A< B:Ktodenotel H M : A ANTFAKL
BATFAB:K

Tueorem 7.1 (Soundness of algorithmic systemXifi®%). Forall ', A, K, M,
1. ', K = I'FK

22.TFxATF,AK =>THAK

3 THFxATF, M:A=>TFM:A

Proof. Simultaneously by induction on the depth of the derivation in theritlgmic
system.

CASE (AT-&). Suppose thal’ - = and that the derivation ends by an application of the
rule AT-&. We have:

'k, {Ww:Ai-Bi}i§n+l Lk = I'k {Ww:Ai-Bi}iSTH»l s
= I'Frx:App1.Bpgr
'k, {Wﬂ:Asz}zgn Lk = 'k {WwAsz}zgn s
'+, M:W; = T'FM:W,
= I'FEWpix
LMWy <{nz:A; Bi}ti<n :* = 't M :{m2:4;.Bi}i<n
', N:W, = T'FN:W,
= I'FEWy:ix
F'EN: Wy <mx:Apy1.Bpy1:x = I'EN 7x:Apy1. By

So we have a derivation ending by

I'FM:{rz:AiBi}i<n T'FN:mx:Api1.Boyr T'H{mz:A;.Bi}icnyr %
Ik M&immAeBitisni N {r2:A;. B Yicni1

T-&
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Case (AT-OAPP). Suppose thdt I x and that the derivation ends by an application of
the rule AT-OAPP. We have:

'k, MW <1w {WfE:Ai-Bi}ign—H = TFM:WATEWL {W$:Ai-Bi}i§n+1
> TTHFW:xAVi<n+1.TFA; :%x
Ik, {r2z:AiBibicnyr @ % = T'F{mz:4;.B;i}i<nt1 : %
LMW <{nz:A; Biti<nt1:x = I'F M :{rz:A;B;}i<n1
', N:A = T'FN:A
= T'FA:%x
FEN:A<A; % = I'EN:A;

So we have a derivation ending by

't M :{rnz:A;.Bi}i<ny1 T'FN:A; T-OVER
TFMeN :Bj[z:= N] ©

Other cases are similar to those fdil<. O
Again we have the completeness of the algorithmic system:

THEOREM 7.2 (Completeness of algorithmic system)di®).

.TFK =T+, K
2. THFA:K = 3K,st.Tr, A: K, AN K,=3 K ATFK,
3. TFM:A = 3A,st.TF, M: A, ATFA, <A

Proof. Simultaneously by induction on the depth of the derivation in thgiral system.

Case (T-&). Suppose that the derivation ended by an application of the réle T

'FM:{nz:A;Bi}i<n T'FN:mx:Api1.Bppr T E{me:A;.Biticnsr @ *

T-&
Ik M&{ﬂx:Ai‘Bi}iS"JﬂN : {Ww:Ai-Bi}i§n+l

Then

't M :{rz:A;B;i}i<n
I'EN:mx:Ap1.Bra
't M:{rz:A;Bi}i<n

E'Wl. r '_d M - W1 S {WTA1B1}1§TL IH
E'WQ. r '_d N : W2 S W.T:An+1.Bn+1 IH
I F{mx:A; Bi}ticn t *

Ik, {m2x:A; Bi}icn t %

Ik, {m2z:AiB;ticngr @ %

R

'k {Wm:Ai.Bi}iSn+1 Lk
So we have a derivation ending by

'k, M: Wy <{mz:4;.Bi}ti<n Ik, {mx:AiBi}icn 1 %

'k, N: Wy <7ma:Apy1.Bny Ik, {rz:Ai.Bi}icnyr 1 %
Tk, M&{mz:AiBiticnti N . {mz:A;i.B; Yi<nt1

Let A, = {mz:A;.B;}i<n+1, the result follows from the reflexivity of subtyping.

AT-&

CAse (T-OAPP). Suppose that the derivation ended by an application of thé-@APP:
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L' M:{rnz:Ai.Bi}i<n I'-N: A

T-OAPP L'+ MeN : Bz :=N]

I'FM:{rz:AiB;}i<n = Tk, M :W <{mz:4; B;}i<n
= I'FW <uw {FTA;B;}ZSm
AT FA{rz:Al.Bl}icm < {m2:A; B;}i<n

'k, M:W > T'FM:W
= TFW: %
= I'F{nzx:A}.B}}icm : *

So we have a derivation ending by

Ll M:W <pup {mx:A}.Bl}icm Ik, {rz:A].Bl}icm : *

AT-OAPP
© TF., MeN:Blz:=N]

We continue as follows:
'k {Wﬂ:A;Bz’}zgm S {WxAsz}zgn

= Jh.T kA .B) <mx:A;.B; S-OVER

= TFHA <A AT,z:A;+F B, <B; generation of typing

= THFA<A, AT,2:AFB, <B;, THA<A,

= 'k A} <A, Al = min;<,, {A] [T - A < Aj}
= Iz: A;. [ B} < Bj, covariance
:>F,.7;:A|—B;.§B;L FI-ASA;.

= Iz AF B; < B; transitivity

TF,N:A=>TFN:A
PHN:AAT,z:AF B, <B; =T+ Blz:= N] < B[z := N]

Thereforel' -, M o N : B[z := N] < B;[z := NJ, thatiis the result.

Other cases are similar to thosedH <. O

By an argument similar to the one fail<, we can prove the minimal typing property
for \ITI¥, that is that whenevdr ., M : A, thenA is a minimal type of the term/.

Finally, note that the rules we added to the algorithmic systeiilf do not affect the
termination of the algorithm, provided that the correspondingpnversion is decidable.
Therefore from the above results we can also conclude that any subsyst&iti af which
(B-conversion is decidable, context formation, kinding, typing, ardyging are decidable
too.

8. CONCLUSION
In this work we have presented how to merge into a unique formalegmeigdent types,
subtyping, and late bound overloading. The logical system we obtameeVitably rather
complex, but also very expressive.
The combination of subtyping with first order types does not need farieer justified
since its need is acknowledged by several articles in the literature whasemeés are
given in Section 2.1. The same papers show that some amount of oveg@adetessary,
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as well. Up to now, this need was partially satisfied by the use of inteosetytpes, which
implement a very limited form of overloading.

The lack of elegant theories and, more generally, of studies of overloatiggxplain,
if not justify, the use of intersection types as an ersatz of overloaditogvever, it is not
very difficult to add overloaded functions to first order types, once wpatie of a complete
theory of overloading. As a matter of fact, the relative complexityidf* does not come
from the use of overloading but from the use of late binding. lis binding that requires
uneasy conditions on the kinding of types, conditions that enforeeiticularity among
kinding, typing and subtyping. Therefore, it is because of late biptlat we could not
start from existing systems of dependent types and subtyping, teieM® develop a brand
new formalization \ll<, which because of its broken circularity is prone to extensions.
More recent works of other authors seem to confirm that the techniques wntfiosluced
in All< are the good ones, as we explained in the excursus ending Section 6.3.

The reward of these efforts is a very powerful system that, thanks phedis late
binding, allows the same kind of modular and incremental programnhiagttas been
made popular by object-oriented languages.

Inthis article we developed the theoretical part of the system and stathege amount of
theoretical properties ranging from confluence to subject reduction, froiseceativity to
transitivity elimination, from normalization properties to deciddillt is now necessary
to explore the practical applications of this system, by defining apja@pdecidable
subsystems and by embedding them in programming languages and the dagghoil
theorem provers. In that perspective it will be necessary to exploreatdesystems in
which the formation and rewriting rules of the overloaded types can beaeneak
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APPENDIX

A.l. AII* SYSTEM

A.1.1. Typing and subtyping rules

A.1.1.1. Formation for Kind and Context

F-EMPTY T
<>F %
F-A:x* x & Dom(T)
F-TERM T.z:AFx
'-K a & Dom(T")
F-TYPE Ta:KFx
Fr-A: K a & Dom(T")
F-SUBTYPE Fo<A KF»
Nz:AFK
I AR R
F FIlz:AK
A.1.1.2. Kindingrules
'k x a € Dom(T)
K-VAR
'k a: Kindr(a)
K Fe:AFB:x%
m 'k 7me:AB:x
KA Iz:AFB: K
't Az:A.B:Mlz:A.K
'k A:llz:B.K 'M:B
K-APP T AM : K[z := M]
IFA:K TFK K=K
K-CONV TFA:K'

| T Viel . Tkrx:A;.B; : %
Vi e I.nx:A;.B; is closed and in normal form
Vi,jel I'FA; <A;j=T2:A;FB; <B;j
VA.Fv(A) CDom(I') = (Vie I.TH A< A)V
K.OVER (el THFA<SAAYjeITHFA<SA; =TFA; <Ay
Lk {mz:A;.Bi}icr : *

A.1.1.3. Typing rules

[k x xz € Dom(T)
T-VAR
'z:T'(z)
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I'z:AFM:B

TA TF A:AM : r2:A.B
'-M:nmx:A.B TEFN:A
T-APP
'+ MN : Bz := N]
| R
T- -
© The:{}
1.8 I'FM:{rz:Ai.B;}icn TFN:mx:Api1.Bopr T {m2:A;.Bi}icnyr 1 %
Ik M&{ﬂx:Ai‘Bi}iS"JﬂN : {Ww:Ai-Bi}i§n+l
T-OAPP =
'+ MeN: B[z :=N]
T'EM: A I'rA<B I'-AB:
T-SUB = el

'-M:B

A.1.1.4. Subtyping rules
r-4'< A4 Lz:A+-B<B

S I'trnx:A.B < wx:A'.B'

S-ApR . i”;;ﬁ M angﬂﬁlz\Zﬁ M],\} ,’l
S0t ST
e Friccgsﬁfwig)l 1\]4%2134
S-OVER VieJdiel TkrwABi<7y:C;.D;

I'F{rz:A;. Bitier < {my:Cj.Dj}jes

A.1.2. Reduction
The 3-conversion is given by context closure of the union of the folloggwihree notions
of reduction:

(Az:AM)N —p, M[z := N]
(Az:A.B)N —p, B[z := N]

The 3%-reduction in a context is defined as follows:

If 1. NV is closed and in normal form,
2. thereexists € [1.n]s.t.T F N: A;andVj e [1.n] THEFN:A; = THA; <A

then
M, e N fori<n

{mz:Ap.Bn}th=1..n
(M1& M2)°N_)ﬁ&{M2-N fori=n
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A.1.3. Algorithmic Rules for AIT¢

A.1.3.1. Algorithmic Subtyping Rules
'+, A<A T,0:AF,B<B

AST ', m:A.B < mx:A'.B’

ASARR T Sjla:z\jlj-\{{- i, f Zz\zfz M;lm

AS-ApT Flf iji{“ﬁfh ]'\f’;aA A%aM! ... M,
AS.OVER VieJ3iel Tk, nwA.B;<myC.D;

F l_.d {Wl‘:Ai.Bi}ie[ S {Wy:cj-Dj}jEJ
A.1.3.2. wlub Rules:

Lub-REFL
ub '+, mx:A.B < up m2:A.B
'k, F(Q)Man <rtup A
Lub-ApT
ub P r l_ml aMl--Mn Swlub A
Ik, Blz:= Mi]My.. M, <z, C
Lub-ApSL
ub-Ap T+, (Az:A.B)M;.. My, <niu C
Lub-OVER

Ik, {r2z:AiBiticn <wituwp {m2:A4;.B;i}i<n

A.1.3.3. Algorithmic Context Formation Rules:

AF-EMPTY _
<>k, *x
AF-TERM kb, *x ', A:x z ¢ DomI)
Iz:AbF, %
'+, K a¢DomTl)
AF-TYPE To KFo»
'+, KTFH,A:K' K=3K' a¢DomT)
AF-SUBTYPE Tao<A KF,»
re: A, K
I o Bl
AF Ik, z:AK

A.1.3.4. Algorithmic Kinding Rules:



AK-VAR

AK-7

AK-A

AK-APP

AK-OVER
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a € DomT)
'k, a:Kindr(a)

', A:%x I'x: Ak, B:x%
', mx:A.B : %

', A:x Ie: A+, B: K
'+, Az:A.B :lIz:A.K

', A:lle:BK '+, M:B" T'+,B <B
'+, AM : K[z := M]

'k, % Viel. Tk, mr:A;.B; : %
Vi e I.nx:A;.B; is closed and in normal form
Vi,jel. Tk, A;<A;j=T,z:A;F, B; <B,
VAFV(A) C Dom(I') = (VieI.TH, A<A;)V
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@ielTh, ASAANYjeITh, A<A; =Tk, A <A)))

Ok, {rx:A;Bi}ier :

A.1.3.5. Algorithmic Typing Rules:

AT-VAR

AT-)

AT-APP

AT-¢

AT-&

AT-OAPP

signature

x € bomT)
Fk, z:T(x)

', A:x I'z: A+, M: B
'k, Ax:AM :7x:A.B

Tk, M:A TF,A<gwrz:B.C TF,N:B T+, B <B
L'+, MN :C[z := N]

'k, %
F,e:{}

r "d M : W1 S {Wﬂ:Asz}zgn r "d {Wﬂ:Asz}zgn Lok
'k, N: Wy <7ma:Apy1.Bny Ik, {rz:Ai.Bi}icnyr 1 %
r+, M&{WZ:Ai'Bi}i5"+1N : {Wm:Ai-Bi}i§n+1

T l_m, M:W Sﬂ-lub {Ww:Ai-Bi}i§n+l r "d {Ww:Ai-Bi}iSTH»l Ik

Tr, MeN:Bz:=N)|

A.2. OVERLOADED FUNCTORS

Item = sig type item;
val isequal: item * item -> bool

end
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signature Tree = sig structure i: Item;
type ’a tree;
val empty: ’a tree;

val cons: ’a * ’a tree * ’a tree -> ’a tree;
end

signature OrdItem = sig type item;
val isequal: item * item -> bool;
val isless: item * item -> bool

end

signature OrdTree = sig structure i: OrdItem;
type ’a tree;

end
signature Dict =
sig
type key
type ’a dict
val empty : ’a dict

val isnull: ’a dict -> bool
val find: key * ’a dict -> ’a
val insert : key * ’a * ’a dict -> ’a dict

end
mkDict =
functor(t:Tree): Dict =
struct
type key = t.i.item;
type ’a dict = (key * ’a) t.tree
val empty = t.empty;
val isnull = t.isnull
fun find (k,d) = if isnull(d) then raise Notfound
else let (k’,a) = t.root(d) in if t.i.isequal(k,k’) then a ...
fun insert (k,a,d) =
end
and (*>>> overloading: "and" stands for "&" <<<x*)
functor(t:0rdTree): Dict =
struct

type key = t.i.item
type ’a dict = (key * ’a) t.tree

fun find (k,d) = if isnull(d) then raise Notfound
else let (k’,a) = t.root(d) in
if t.i.isless(k,k’) then find (k,left(d)) else
fun insert (k,a,d) = if isnull(d) then t.cons((k,a),empty,empty)
else (* Ordered search of a free position *)

end



