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Abstract

One of the criticisms moved to the SML module system is that it does not allow code
reusing and, more generally, and incremental style of programming. In this work we propose
to extend this module system by adding overloading and late binding, and we show how
by this extension it is possible to program modules in an incremental style, similar to the
one of object-oriented languages.

1 Introduction

SML module systemsL [Mac85, MTHI0] are very general and powerful. The allow modular de-
composition of pragrams and the definition of transformations (called functors) for the modules
(called structures). However they offer a very limited code reusing and incremental program-
ming. More precisely, the SML modules do not possess the characteristic of code inheritance
and reusing of object-oriented languages. This lack is sensible in program evolution.

If at a given moment of the program’s life we decide to add it new functionalities by declaring
new structures that specialize the existing ones, the use of old functors for these new structures
is allowed. On the contrary it is not possible to refine the behavior of these old functors by
adding to them new functionalities. Therefore either the new structures use the functors defined
for the old one or they use new functors of their own that will be not correlated with the old
ones. In such a case the possibility of evolution of the existing programs is seriously limited the
An important distinction has been extensively used in language theory for the last two decades,
between parametric (or universal) polymorphism and ad hoc polymorphism: [Str67]. Parametric
polymorphism allows one to write a function whose code can work on different types, while by
using ad hoc polymorphism, also known as overloading, it is possible to write a function which
executes a different code for each type.

Traditional languages offer a very limited form of overloading: the actual meaning of an
overloaded operator is always decided at compile time, according its definition and the type of
its arguments.

In languages that use subtyping the dynamic type of an expression does not generally
coincide with its static type. In that case the selection of the code to associate to an overloaded
function may be different for different calls. Thus, it is possible to differentiate at least two
disciplines to select code for overloaded functions:
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e The selection is based on the static type of the arguments: the least type information is
used. We call this discipline early binding.

e The selection is based on the dynamic type of the arguments: the maximal type informa-
tion is used. We call this discipline late binding.

The use of overloading with early binding does not significantly affect the underlying lan-
guage. On the contrary, the ability to define new overloaded functions when combined with
subtyping and late binding can add expressive power in programming, namely, by increasing
code reusability and giving raise to an incremental style of programming typical of object-
oriented languages. We illustrate how to achieve this style of programming with an example.

Suppose that our programming language has overloading and subtyping, and consider two
programs M4 and Mp. Fach program has a parameter x whose type is A for M4 and B for
Mp, where B is a subtype of A (denoted B < A). The two programs are identical except for
a variant part that handle the argument x in a different way. Call the variant part P4 for M4
and Pp for Mp. This situation is illustrated in figure 1.

Using overloading it is possible to rewrite these two programs into a unique program M
which reuses the common part of M4 and Mp and calls an overloaded subprogram P, which
executes either P4 or Pp according to the type of its argument. Without loss of generality, we
suppose that P depends on the parameter of M. Note that, as B < A, then M (x : A) accepts
an argument of both types A and B.

In order to state the precise relationship between programs in figure 1 and 2 we use contexts
of A-calculus. The program M of figure 2 is then equivalent to:

M = dz: AC[P(z)] (1)

where the context C[ ] corresponds to the code shared between M4 and Mp, and P is an
overloaded function with two branches! P4 and Pg. Now, M4 and Mp are equivalent to:

My = /\x:A.C[PA(x)] (2)
Mp = Az:B.C[Pg(x)]

The rewriting of M 4 and Mg into M ensures reusability of their common parts and properly
reflects the original program structure. Nevertheless, this transformation does achieve the
correct behavior only if code selection is performed with the late binding discipline.

Consider the definition for M given by (1). Since z: A, a call to M always execute the
branch P4 of P if early binding is used. In other words, with early binding the definition given
in (1) for M becomes equivalent to

Az A.C[Pa(x)],

(i.e, to M4), even when the actual parameter of M is a subtype of B. Thus, with early binding,
the overloading schema of figure 2 does not reflect at all the behavior of the original program.

1We consider that an overloaded function is formed by all the different codes associated to it, and we call
branch every distinct piece of code composing it.

Ma(z : A) Mg(z: B)

Figure 1: Two programs with a shared part
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PA(y:A) PB(ZB)

Figure 2: Overloading and reusability

Indeed, with early binding, the only way to execute different branches of P within M is to
define M itself as an overloaded function of two branches M4 and Mg (as defined by (2)), thus
going back to the original program scheme, and losing then reusability.

On the contrary, if late binding is used, the code to execute for P is chosen only when the
formal parameter x has been substituted by the actual parameter. Thus, with late binding the
definition of M in (1) is equivalent to M4 when M is applied to arguments of type A and to
Mp when it is applied to arguments that are subtype of B. Actually, with late binding the
function M in (1) is émplicitly an overloaded function with two branches; thanks to late binding
these virtual branches share the code C[].

In [CGL95] one of the authors has studied the integration of overloading and late binding
in functional languages in order to obtain a typed model of object-oriented languages. In
this paper we show how to integrate these mechanisms to a module language near to SML
modules [Mac85, MTH90]. The module language we use has been proposed by X. Leroy in
[Ler94] and it is very close in syntax and power to SML modules. These modules, that we
call manifest modules, have a simpler semantics than SML modules, specially for the crucial
constructions to define higher-order functors and to express sharing. Thus, they better fit the
study of semantic extensions as the one we describe in this work. Also, we present in this
paper a new style of module programming, based on incremental definition and code reusing
but still enjoying of the generality of SML modules and, under some suitable conditions, of
static verification of signature matching.

2 The module language

Building programs in a modular way is crucial in order to the develop large programs. A
well-known modular discipline is used in SML, where modules are handled by a small typed
language inside ML. In this sub-language, the base construction are modules (structures), which
are composed from collections of declarations (of types, values and other modules). The type
of modules are the module specifications (signatures), and modules can be built from other
modules via functions from modules to modules (functors). Modules are then combined using
functor application.

2.1 SML modules

We show below some examples of structures, signatures and functors in SML modules. The
following signatures describe trees and dictionaries structures.



signature Item =

sig
type item
val isequal: item * item -> bool
end
signature Tree =
sig

type ’a tree
val empty: ’a tree
val isnull: ’a tree -> bool
val cons: ’a * ’a tree * ’a tree -> ’a tree
val root: ’a tree -> ’a
val left: ’a tree -> ’a tree
val right: ’a tree -> ’a tree
end
signature Dict =
sig
type key
type ’a dict
val empty : ’a dict
val isnull: ’a dict -> bool
val find: key * ’a dict -> ’a
val insert : key * ’a * ’a dict -> ’a dict
end

The following structure has signature Item:

structure IntItem : Item =
struct

type item = int

fun isequal (a,b) = (a
end

b)

Trees can be used to build dictionaries. The functor MkDict below builds a dictionary from
a tree structure.

exception Notfound
functor MkDict(t: Tree): Dict =
struct
type key = t.i.item
type ’a dict = (key * ’a) t.tree
val empty = t.empty
val isnull = t.isnull
fun find (k,d) = if isnull(d) then raise Notfound
else let (k’,a) = t.root(d) in
if t.i.isequal(k,k’) then a
else ... (* Recursive breadth-first search *)
fun insert (k,a,d) = if isnull(d) then t.cons((k,a),empty, empty)
else (* Recursive search of a free position *)
end

2.1.1 Subtyping

The type discipline of SML allows a form of structural subtyping via the notion of signature
matching. A structure s matches a signature S, if s contains at least all the components specified



by S; also, the common components to s and S must have compatible types, but types on s
can be more polymorphic. Following, we declare a signature OrdItem for items with an order
and a signature OrdTree for ordered trees. The structure IntOrder below matches not only
signature OrdItem but also the signature Item of items without any order.

signature OrdItem =
sig
type item
val isequal: item * item -> bool
val isless: item * item -> bool
end
signature OrdTree =
sig
structure i: OrdItem
type ’a tree
val empty: ’a tree
val isnull: ’a tree -> bool
val insert: ’a * ’a tree -> ’a tree
val remove: ’a * ’a tree -> ’a tree
val root: ’a tree -> i.item
val left: ’a tree -> ’a tree
val rigth: ’a tree -> ’a tree
val max: ’a tree -> ’a
val min: ’a tree -> ’a
end
structure IntOrd =
struct
type item = int
val isequal = op =
val isless = op <
end

Signature matching applies recursively on structures. Thus, any structure implementing
the signature OrdTree matches also the signature Tree. On the other hand, the type rules for
functor application requires matching between the actual parameter and the formal parameter
signature. Thus, subtyping can be used to apply functor MkDict on a structure matching
OrdTree, which is a subtype of the formal parameter signature of MkDict.

2.2 Manifest modules

The semantics of SML modules is very complex, particularly in the the case of higher-order
functors and sharing. In this work, we choose to use manifest modules, a variant from SML
modules proposed in [Ler94] which have simpler semantics and the same expressive power of
SML modules.

Manifest modules have the same constructions as SML modules, but type constrains in sig-
natures, such as abstraction, transparency and sharing, are specified via a unique sort of type
specifications: the manifest type specifications. Manifest type specifications appear in signa-
tures as annotations on type constructors. An explicit type annotations o on type constructor
t (of the form type t = o) requires t to be implemented as type o, and therefore makes t
compatible with o. Absence of annotations on a specified type constructor (of the form type
t) make type constructor t abstract, and annotations on two type constructors are used to
state sharing constraints. The structure

structure intOrder =



struct

type t = int

fun cmp il i2 = il < i2
end

has signature

intOrder : sig
type t = int
fun cmp : t -> t -> bool
end

where the manifest type annotation for t states that intOrder.t is compatible with int. On
the other hand, type constructor in signatures can be specified as abstract. The specification of
type t in the following signature is abstract: if this signature is used during signature matching
within a structure s, the corresponding type s.t will be consider abstractly during the typing.

signature Intlist =

sig

type t

val nil : t

val cons : int -> t -> t
end

Furthermore, the type system of manifest is totally syntactical, that is, there is no need to
introduce a special syntax for types: types are given by the module language syntax.

2.3 Manifest modules with overloading and late binding

In this section we consider having manifest modules together with an overloading mechanism
on functors, for which code selection is performed using late binding. We illustrate the use of
such a language by some examples.

2.3.1 Overloading and modular programming

Consider the functor Use which builds and uses a dictionary. The dictionary is built from a
tree structure and its elements are taken from a priority queue. The functor takes as arguments

the tree and priority queue structures?.
functor Use (p: PQueue, t: Tree with t.i.item = p.item) =
struct

(* Manipulations on q *)
structure dict = MkDict(t)

fun solve(q,d) =
val fkey = p.front q
val el = dict.find(fkey,d) in

end

The first version of this functor uses dictionaries built on top of simple trees which make
the search operation quite inefficient. In a further version one can use ordered tree to improve
searching. The following functor builds dictionaries on top of ordered trees:

2We do not define the signature PQueue.



functor mkODict(t:0rdTree): Dict =
struct
type key = t.i.item
type ’a dict = (key * ’a) t.tree
val empty = t.empty
val isnull = t.isnull
fun find (k,d) = if isnull(d) then raise Notfound
else let (k’,a) = root(d) in if t.i.isequal(k,k’) then a
else if t.i.isless(k,k’) then find (k,left(d))
else find (k,right(d))
fun insert (k,a,d) = if t.isnull(d) then t.cons((k,a),empty, empty)
else (* Ordered search of a free position *)
end

Now, we want when and ordered tree is passed to Use, the corresponding dictionary is built
using the functor mk0Dict. In the actual definition of SML modules, the only way to achieve this
behavior is to define a new functor3, say, OUse replacing Use for arguments matching OrdTree
and from which it will differ only in the line structure dict = MkODIct(t). Of course this
has two drawbacks: it causes code duplication and it leaves to the programmer the task of
choosing when to use Use or QUse.

An easy solution which avoids rewriting the program and delegate the choice of the code
to the system is to overload the functor MkDict used within the body of Use by adding to
its definition the functor mkODict given above. The syntax we propose for this overloading
operation is:

functor mkDict = mkDict addfunctor mk0ODict

which adds to the definition of mkDict given in the previous section, the definition of
mk0Dict, both definitions forming by now an overloaded functor with two branches, called
mkDict. We use late binding to select the branch to execute while applying an overloaded
functor. Then, if we apply Use to a tree without order, the first version of MkDict will be used
as before. But, if Use is applied to a tree matching OrdTree, thanks to late binding, the branch
of Use corresponding to MkODict will be executed and the dictionary build will be more efficient
on searching.

This example faithfully reflects the situation given in the introduction: Use is M, Tree is A,
OrdTree is B, MkDict in the previous section is P4, MkODict is Pg and MkDict in the definition
of Use is P.

2.3.2 Overloading and module’s sharing

In manifest modules, sharing between types is specified by a manifest type equation. For
instance, in a functor of the form

functor F(structure sl: sig type t;..end s
structure s2: sig type t=sl.t;.. end)

the signature of structure s2 contains a manifest type specification of type t, i.e, the speci-
fication type t=s1.t which can be only satisfied if the actual parameters a et b of F have equal
types a.t and b.t. In manifest modules, the manifest type specification is the base construc-
tion to specify types in signatures. In particular, manifest types can be compared by subtyping
with other type specifications, as showed by the subtyping rules in section (?7). Thus, verify-
ing sharing constraints while applying a functor is obtained for free while verifying signature

3Even if we consider SML with higher-order functors, a functor Use properly typed cannot be written, because
of contravariance of signature matching.



matching by subtyping on signatures. As selection on overloaded functors uses also subtyping
on signatures, the expression of sharing within overloaded functors does not need any particular
extension of module typing, besides those showed in section (??) used to express overloading
within functions.

3 A calculus with modules and overloaded functors

We define here the base calculus on modules with overloaded functors.

3.1 Syntax

As in [Ler94], we suppose given a base language which is left unspecified. In the following
grammar 7 stands for type expressions in the base language, and p stands for paths to access
structure components. We use t for type identifiers and z for structure identifiers.

Structure expressions (ranged over by s) can be path expressions, structure definitions,
functor applications or signature restrictions. Structures are collections of type declarations
and structure declarations; we do not consider value declarations since they are not relevant in
this context.

We limit our study to first order unary functors: the extension to multi argument functors
is straightforward®, while we leave higher-order functors to future work. Signatures (or module
types) are either structure signatures (ranged over by S) or functor signatures (ranged over by
F). Structure signatures contain abstract type specifications (of the form type t) or transpar-
ent type specifications (of the form type t = 7), and other structure specifications. Functor
signatures are dependent types (i.e, the parameter variable of a functor can appear in its result
type) or unions of dependent types (signatures of overloaded functors).

Structures can be restricted in view by signature matching (with s : S) by hiding some
declarations or by transforming other declarations (e.g. type bindings of the form type t =
7, become abstract in the result signature if the restriction signature contains an abstract
specification of the form type t)

Overloaded functors are built from a regular functor by appending new branches using the
and construction®.

Access paths:

p == structure identifier
| p.x access to a structure component
Structure expressions:
s u=p identifier and access to a field
| struct d end structure construction
| f(s) functor application
|s:S restriction by a signature
Structure body:
d m=¢c|bd
Structure components
b n=type t=r1 type definition
| structure = =s structure definition

4Multi argument functors can be obtained by adding cartesian products of signatures
5The construction addfunctor we used in the examples before can be considered as syntactic sugar to deal
with functor identifiers.



Functor expressions:

f u=functor (x:9)s functor definition
| f and (z:95)s functor overloading
Type expressions:
T u=t type identifier
| p.t access to a type component

| ... base language-dependent
Structure signatures:
S n=sig D end
Signature body:

D:=¢|B;D
Signature components:
B :=type t abstract type specification
| type t =71 manifest type specification
| structure x: S structure specification

Functor signatures
F ::=functor (x:5)S’ dependent functor signature
| FUfunctor (z:S5)S’ overloaded functor signature

Note that overloaded functor signatures are of the form
functor(z; : S1)S7 U functor(zs : S2)S5 U ... U functor(x, : S,)S,

Intuitively this is the signature of an overloaded functor formed by n branches, the i-th branch
being a regular functor of signature functor(z; : S;)S;. When an overloaded functor of this
signature is applied to a structure that exactly matches S; then the structure is passed to
the j—th branch of the functor. When the signature of the argument does not exactly match
the parameter signature of one of the branches the system selects among the branches whose
parameter signature is matched by the argument, the one with the most specialized (i.e. least)
parameter signature (this is formally stated by rules (7) and (8) of the dynamic semantics in
Section 3.3). Thus, for example, if we apply the overloaded functor mkDict of Section 2.3 to an
argument that matches both Tree and OrdTree, the branch defined for OrdTree is selected.

In the following we may abridge the signature above by |J;'_, functor(z; : S;)S..

Note also that signature restrictions (denoted by s : S) are first class values. The expression
s : S coerces the structure s to have exactly signature S, provided that s matches .S; thus the
expression s : S, which forces s to have the signature S, plays the same role as an explicit
coercion [BLY0] of functional languages with subtyping. This is a very important feature
in a system like ours where the the computation is driven by signatures. Indeed, signature
restrictions can be used to force the selection of a particular code for an overloaded application.
In the example of Section 2.3, if OT is a structure that matches OrdTree then we know that
mkDict (OT) will select the code defined for ordered trees. However, we can force the selection
of the code for generic trees by using the following expression: mkDict (0T :Tree). Similarly the
application Use(P , OT:Tree) makes the functor Use to work with a generic dictionary even
if we applied it an OrdTree.

3.2 Static semantics
3.2.1 Subtyping and type equivalence

We use E to denote typing environments, BV (S) to denote the set of variables bound by
a declaration, and S{z <« s} (respectively s'{x — s}) to denote the type (respectively, the



Modules subtyping:

forie{l,...,m}, E;Di;...;DnF Dy <: Dj *)
Et sig Dy;...;D, end <:sig Dj;...; D), end

ErS<: 8

E+ (structure x:S) <: (structure z:5’)

E (type t =7) <: (type t)
E |- (type t) <: (type t)

Etr=1

El (type t=7) <: (type t =171')
Etrt=r

E+ (type t) <: (type t=7)

Type equivalence:
Ei;type t=m; By Ft~T

Etp:sig Dy;type t =7; D2 end

Etpt~t{n—pn|neBV(D)}

(*) o is a mapping from {1,...,m} to {1,...,n}

Figure 3: Subtyping and type equivalence

expression) obtained by substituting s for z in S (respectively, s').

The judgment E F S; <: Sy states that signature S is a sublype (more properly sub-
signature) of signature Sy in environment E. Judgment F F 7 =~ 7’ states that the type 7 is
equivalent to type 7' in environment FE.

The subtyping relation is obtained from the deduction rules of Figure 3 plus the standard
congruence, transitivity and symmetry rules for ~ and the transitivity and reflexivity rules for
<.

These rules do not deserve any special comment since they coincide with the ones of [Ler94].
Just notice that we have not included subtyping rules neither for dependent nor for overloaded
functor signatures, since we do not consider higher order functors.

3.2.2 Well-formed signatures

Once we have defined the subtyping relation on signatures we can select among them the
signatures that are well formed. The definition of well-formedness is necessary to constrain
overloaded functors to a given shape. Indeed, the use of late binding does not allow to form
overloaded functors in a completely free way, otherwise the type system would not be sound.
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A necessary condition for the safety of the system is that if a functor contains two branches
defined for parameters of signature S and S’, then whenever S <: S’ the result signatures
of the branches must be in a covariant relation. More formally let S denote the overloaded
functor signature |J_, functor(z;: S;)S,. The signature S is well formed in the environment
E (denoted by WFg(S)) if and only if

Vi, je{l,...,n} (EFS;<:S; = FE;structurex:S;F S; <;Sj) (3)

Intuitively the condition above (called the covariance condition) is necessary to assure that
the signature of the structure obtained after execution of an expression is a subtype of the
one statically inferred for the expression. For example suppose that f is an overloaded functor
of signature functor (x:S51)S] U functor (z:52)S45 and that Sy <: S;. Let s be a structure
expression that exactly matches S; and apply f to it. Then, statically, we deduce that the first
branch of f will be selected and we infer for f(s) the signature Sj. ¢ But, since Sy <: Si, it
is possible that at execution time s reduces to a structure s’ of signature So. This happens for
example if s is the following expression: (functor (x:S1)z)(s"). Therefore the branch selected
for f(s) at run-time will be the second one, and the resulting signature S5. Nevertheless,
condition (3) guarantees that S5 <: S}, i.e. that the signature obtained after the execution is a
subtype of the one deduced statically.

A broader discussion and more formal justification of the use of covariance for overloading
and late binding can be found in [CGL95, Cas95]

3.2.3 Typing

Typing rules for structure expressions are showed in Figure 4. They use judgments of the form
E '+ s: S, stating that structure s has type S in the context FE.

Worth to be noted are the fifth and sixth rules, that deal with overloaded functor construc-
tion and application. When a new branch is appended to an overloaded functor f, the system
checks the signature of the new branch, appends this signature to the signature of f and checks
that the resulting new signature is well formed. When an overloaded functor f is applied to an
argument of signature .S, the system selects among all the branches whose parameter signatures
are matched by the argument (i.e. all those such that £+ S <: S;), the branch whose parameter
type S; “best matches” the argument (i.e. such that S; = min;e{S; | EF S <: S;}).

Note also that, contrary to [Ler94], we do not use a subsumption rule to type expressions, but
we rather use the algorithmic version of the system (in which subtyping is used directly inside the
rules of elimination: functor and oveloaded functor application). This has the advantage that
every typable expression has a unique signature, that is the one it exactly matches. This allows
us to use this system also for the dynamic selection of the branches, while with subsumption,
having each argument many signatures, the selection would not be deterministic.

The type rules use a strengthening operation noted S/p which enriches the structure type
S with information about the complete path p identifying the abstract components of S. This
operation is defined as follows:

(sig D end) = sig D/pend
(type t;D)/p type t =p.t; D/p
(structure z :S;D)/p structure x: S/p;D/p
S/p = S otherwise

6More precisely S1{z < s}, but for the sake of the example suppose that the result types are closed
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3.3 Dynamic semantics

In this section we define how the structure expressions are “calculated” at link-time. In par-
ticular we describe how the late binding selection for overloaded functor is performed. To this
end we define a call-by-value operational semantics for the closed (i.e. without free structure
identifiers) structure expressions. Let first define what a structure value (or simply a value) is:

Structure values:

v ::= struct u end
| (v:S)
Value components:
U =€

| type t =T;u
| structure x = v;u

Thus a value is either a structure whose structure components are (structure) values, or its
restriction. The operational semantics is then defined by the following rewriting rules

[Beta]
(functor(z : S)s)(v) = s{z «— v} 4)
[Restriction]
(v:8)er = vz (5)
[Access]
(struct wuj;structure z =v;uz end).x = s (6)
[Overload]

Let (f and (z: S,)s) : U, functor(x : S;)S} and let v : S.
If S, = min;—q. ,{S; | S <: S;} then

(f and (x: Sp)s)(v) = s{z v} (7)
If S, # min;—q. ,{S; | S <: S;} then

(f and (z: Sn)s)(v) =

~
—~
<
S~—
~—~
o
S~—

[Context]
If s = &' then
sx = s 9)
fls) = f(s) (10)
(s:8) = (¢:9) (11)
(struct u;structure x = s;d end) =—

(struct w;structure x =s';d end) (12)

Let us comment the rules above in detail. First of all note that they describe a deterministic
operational semantics. Rule (4) implements the classical call-by-value discipline for functor
application. Rule (5) erases the restriction from a structure when a component of this structure

12



is accessed. We could have used instead of (5) more sophisticated rules, say, to propagate the
restriction to the components 7. However, rule (5) is easier to understand and and does the
least work needed. It just means that restrictions are useful only to hide some information of
a structure and to sway the selection over a particular branch when the structure at issue is
passed to an overloaded functor. But when a component of the structure is accessed then the
restriction loose its utility and thus it can be erased. In other terms, this rule bounds the use
of restrictions to alter the selection of a branch, only to the outer level of structures. Rule (6)
performs the selection of a structure component. Rules (9), (10), (11) and (12) describe the
rection inside a context.

The important rules are rules (7) and (8) which perform the late binding selection for
overloaded functor application. More in detail. When an overloaded functor is applied to an
argument the reduction take place only if the argument is a value (this implements the late
binding). The first thing to do is to consider the type of the overloaded functor and of the
argument. Note that the deductions of the types do not need any typing context since both
the overloaded functor and its argument are closed expressions (see proposition 3.1). From the
set of the parameter signatures of the overloaded functor we pick up those that are matched
by the argument, i.e. all S; such that S <: S;. Again, for the same reason as before, typing
environments are not needed. If the set of matched signatures has a least element, then we can
perform the reduction: when the least signature coincide with the parameter signature of the
rightmost branch, this branch is selected [rule (7)]; otherwise the search is continued over the
remaining branches [rule (8)].

An interesting point of the rule (7) is that it allows the redefinition of a specific branch of
an overloaded functor. Indeed nothing prevents from having several branches of an overloaded
functor defined for the same signature. However, the peculiar definition of (7) makes that the
rightmost of them is always selected. Practically speaking, this means that if an overloaded
functor f has defined a branch for the signature S and we want to redefine this branch, we do
not need to rewrite the whole f; it suffices to append to it the new definition of the branch:
f and (z: S)s. This is a very interesting feature since the definition of the new branch f may
be in a module different from the one containing the definition of f, that thus ought not be
recompiled. Using the syntactic sugar of Section 2.3, we have for example that if mk20Dict is
a functor with signature functor(t:0rdTree) :Dict then the result of

functor mkDict = mkDict addfunctor mk20Dict

is the replacement of mk20Dict for the old branch defined by mkODict. More generally if G
denotes a functor with signature functor(z : S)S’ then the construction

functor F = F addfunctor G

adds to the functor denoted by F a new branch for arguments of signature S, or if such a branch
already existed in F, it redefines it. Note that in case of redefinition the type system (more
precisely, the covariance condition) forces the type of the result of the new branch to be the
same as the one of the old branch.

Proposition 3.1 If s = s then for any context C[ ] such that C[s] = C[], if C[s] is a
closed expression then also s is closed

Proof. A straightforward induction on = . Just notice that the body of functors are not
reduced. O

7So that for example the restriction of the expression struct structure z = s ; type t end to the signature
sig structure z :S end would rewrite to struct structure z = (s:S) end.
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Proposition 3.2 If s is a closed structure and s = s’ then also s’ is closed.

Proof. A trivial induction on the definition of = . For the case of context reduction use
Proposition 3.1. O

4 Open issues

Of course this system inherits the drawbacks of manifest modules. In particular it is not
possible to establish the soundness of the type system in [Ler94] (and, thus, of our system)
by proving preservation of typing under a (call-by-value) operational semantics. Indeed, the
classical technique used to prove subject reduction does not work there because of the circularity
of the definition of the type system (to prove subject reduction for expressions one needs a
substitution lemma for subtyping, which implies substitution for type equivalence that needs
expressions subject reduction). We believe that once this proof done for the system in [Ler94] it
will be easy to use this result to prove the consistency of our type system. Much more unlikely,
instead, is the use of semantic tools for our system: the only denotational models for such a
kind of overloading that we are aware of cannot handle but early binding [Tsu92, CGL93, ?].

Although important, the proof of soundness of the type system is not our main concern for
the future. Indeed, other proposals of module systems lack of such a proof (e.g. [HL94]). We
are much more interested at short term, in elaborating techniques to assure that the execution
of every closed structure expression ends up with a value (i.e. either a structure or a signature
restriction of a structure cfs. Section 3.3). This is actually not the case. This property fails
because of the rewriting rule [Overload]. In fact, note that, in order to be applied, this rule
requires the existence of a most specialized branch matched by the argument. But if such a
branch does not exist (i.e. if the set {S; | S <:.S;} has not a least element) the computation is
stuck and the execution ends with an application, which is not a value. To see how this may
happen, consider the following expressions:

functor f = functor(x:sig val a:int end) ...
and (x:sig val b:bool end) ... ;

structure s = struct
val a = 1;
val b = true
end;

If the functor f is applied to s then the argument matches the parameter signatures of both
branches, but there does not exist a most specialized branch since the two parameter signatures
are incomparable. The static type system would reject the term f(s) since in this case it
wouldn’t be possible be able to choose one of the branches not even statically. However, in
some cases it may happen that an expression can be statically typed but at run time it is not
possible to perform the selection. This for example happens with the expression f(Id(s))
where Id is defined as follows

functor Id = functor(x:sig val a:int end) x

The expression £ (Id(s)) is statically typed as if the first branch of £ were selected. But it
is clear that at run-time, after one step of reduction, we would meet the same situation as the
previous example.

There exist at least three type-theoretic solutions to assure that every execution of a closed
structure expression will return a value.

The first solution is to impose in the well-formation of signatures that the parameter signa-
tures of an overloaded functor must form a chain. This solution is simple but it would narrow
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the field of application of overloading since the use of overloading would then be restricted to
the specialization of already existing functors.

A second more articulated solution [CGL95] consists in restricting the definition of well-
formed signature, by stating that a signature | J!_, functor(x;: S;)S/ is well formed if and only
if it satisfies the covariance condition of Section 3.2.2 and

Vi,j € [1..n], if S; and S; have a common lower bound then 3% € [1..n], S, = S; N S;

(where N denotes the greatest lower bound of two signatures). With this further condition
(called multiple inheritance condition) the signature of the functor £ in example above is not
well formed since there is no branch whose parameter signature is the glb of the parameter
signatures of the branches. With this condition the type system would force the programmer
to add to £ a further branch:

functor f = functor(x:sig val a:int end) ...
and (x:sig val b:bool end)
and (x:sig wval a: int; val b:bool end) ... ;

Though adapted to object-oriented programming, this rule would be infeasible with module
systems. Indeed for an overloaded functor of n branches the system could require, in the worst
case, the addition of @ further branches. It is useless to say that hardly few of them would
be interesting, since most of the branches would handle structures that the program will never
use. Therefore the third solution is to ask the programmer to point out the structures signa-
tures that he/she considers interesting. This can be done by introducing names for signatures
and name subtyping, and by restricting parameter signatures of overloaded functors to named
signatures.

In the example above the programmer could decide to name the following signatures

name A = sig val a:int end;
name B = sig val b:bool end ;

name C = sig val a: int;
val b:bool;
val c:char

end;

to declare that the name C is a subtype of A
subtype C of A
and he would then define the functor f as follows

functor f = functor(x:A)
and (x:B)

Declaring that a name is a subtype of another name is feasible only if the corresponding signa-
tures are in the same relation. Also, C is not a subtype of B since this has not been explicitly
declared. This last observation implies that the problem of selection with £ no longer happens.
In fact even if £ is applied to an argument of signature C,®. it matches A but not B Thus the
first branch is selected. The condition to add to covariance to define well-formation is in this
case [Cas95]:

Vi, j € [1..n], for every minimal signature of LB(S;, S;), 3h € [1..n],S, = D

8Elements whose signature is a name can be obtained, for exemple by modifying the typing rules for explicit
restrictions
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(where LB(S;,S;) denotes the set of common lower bounds of S; and S;). Note that this
condition is much less restrictive than the one before, and now it concerns only those signatures
and subtypes that the programmer has indicated as interesting. Although this last solution is
more flexible than the previous ones, it requires some extra work to the programmer, and looses
the full generality of the overloading presented here.

What we have sketched above are three type theoretic solutions to the problem of the
selection. However we believe that type theoretic techniques are not best fitted to handle such
a problem. That is the reason why we did not use them in the presentation of the system and
we just hinted them at the end of our work.

We believe that the definition of the system must be the one we gave in Sections 3.2 and 3.3.
Thus our attitude is to consider that if the programmer has defined the functor f as

functor f = functor(x:sig wval a:int end) ...
and (x:sig val b:bool end) ... ;

then he/she meant that this functor will be never applied to an argument matching both
the first and the second parameter signatures. Of course, it is necessary to provide to the
programmer some tools that statically assure him that this effectively will be never happen.
But to this end we believe that instead of using type system solutions —as the three hinted
before— the answer is rather to be found in the use of data-flow analysis [?] or of more general
techniques based on “abstract interpretation” [JN95]. Very briefly, a data flow analysis would
consist in constructing the set of all types that an expression in a program may take at run
time. We call this set the dynamic set of the expression. This set is constructed by a static
analysis of the program through an iterative process: starting from the static type of each term
it is possible to extend the current dynamic set of a given expression by repeatedly adding new
types according to the flow of the program. We stop when we reach a fix-point. It is clear that
if after this analysis no dynamic set of an argument of £ contains a subtype of the parameter
signatures of £ then the above definition of f is type safe. Such a technique is already used
in object-oriented programming; for example, Eiffel use it to verify that covariantly specialized
methods do not cause the raising of a “message not understood” exception [Mey91]. A more
general technique consists in defining an “abstract interpretation” of the data and to run the
program on in. The interpretation is refined by an iterative process, which ends with a fix-point.
This interpretation is defined so that if the program executed on the interpretation has some
properties then so it has the program for any data.

We leave the study of these techniques to future work.

5 Conclusion

References

[BL90] K.B. Bruce and G. Longo. A modest model of records, inheritance and bounded
quantification. Information and Computation, 87(1/2):196-240, 1990. A preliminary
version can be found in 3rd Ann. Symp. on Logic in Computer Science, 1988.

[Cas95] G. Castagna. Covariance and contravariance: conflict without a cause. ACM Trans-
actions on Programming Languages and Systems, 17(3), 1995.

[CGLI3] G. Castagna, G. Ghelli, and G. Longo. A semantics for A&-early: a calculus with over-
loading and early binding. In M. Bezem and J.F. Groote, editors, International Con-
ference on Typed Lambda Calculi and Applications, number 664 in Lecture Notes in

16



[CGLYS|

[HL94]

[IN95]

[KMS9]

[Ler94]

[Mac85]
[Mey91]
[MTH90]

[Str67]

[Tsu92]

Computer Science, pages 107-123, Utrecht, The Netherlands, March 1993. Springer-
Verlag.

G. Castagna, G. Ghelli, and G. Longo. A calculus for overloaded functions with sub-
typing. Information and Computation, 117(1):115-135, 1995. A preliminary version
has been presented at the ACM Conference on LISP and Functional Programming,
San Francisco, June 1992.

R. Harper and M. Lillibridge. A type-theoretic approach to higher-order modules
with sharing. In 21st Annual Symposium on Principles Of Programming Languages,
pages 123-137, Portland, Oregon, January 1994. ACM Press.

N. D. Jones and F. Nielson. Abstract interpretation. In S. Abramsky, D. M. Gabbay,
and T. S. E. Maibaum, editors, Semantic Modelling, volume 4 of Handbook of Logic
in Computer Science, pages 527-636. Oxford Science Publication, 5 edition, 1995.

Tsung-Min Kuo and Prateek Mishra. Strictness analysis: a new perspective based on
type inference. In Proc. of Conference on Functional Programming Languages and
Computer Architecture, pages 260-272, 1989.

Xavier Leroy. Manifest types, modules, and separate compilation. In Proceedings of
the 21st Symposium on Principles of Programming Languages, pages 109-122. ACM
Press, January 1994.

David MacQueen. Modules for standard ML. Polymorphism Newsletter, 11, 1985.
Bertrand Meyer. Fiffel: The Language. Prentice Hall, 1991.

Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. The
MIT Press, 1990.

C. Strachey. Fundamental concepts in programming languages. Lecture notes for
International Summer School in Computer Programming, Copenhagen, August 1967.

Hideki Tsuiki. A record calculus with a merge operator. PhD thesis, Faculty of
Environmental Information, Keio University, November 1992.

17



Typing of module expressions and definitions:

FEy;structure z: S;EsbFax: S

Etp:sig Dj;structure x: S; Dy end
Etrpx:S{n—pn|neBV(D)}

E; structure z:Sks: S’ v & BV(E)

E + functor(z : S)s : functor(x : 5)S’
Et f:functor(z:S)S Ers:S" ERS'< S
EtF f(s): S{x < s}

EFf: U;:ll functor(x : S/)S; E; structure x:S), Fs:S,
Et fand (z:S,)s : U, functor(z: S})S;

()

Et f:J, functor(x:S;)S, Frs:S
E+ f(s): Si{z < s}
Ebp:S
Etp:S/p

(**)

Et+s:S8 ERS <S8
Er(s:85):8
Erd:D

E| struct dend: sig D end

FE; type t=7Fd: D

t¢ BV(E)
EF (type t=7;d) : (type t =T;D)

EFs:S E:; structure z:Skd: D x & BV(E)

E | (structure = = s;d) : (structure z : S; D)

(*) = ¢ BV(E) and WFg (U], functor(z: S})S;)
(**) S; =minj—1 ,{S; | EF S <: S;}

Figure 4: Type rules
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