février 1999 — Journées Francophones des Langages Applicatifs — JFLA99

Mobile Computations
and Hostile Hosts

Jan Vitek! & Giuseppe Castagna?

1: Object Systems Group, CUI
Unwersité de Genéve,
Genéve, Suisse

2: C_.N.R.S,

Laboratoire d’Informatique

de 'Ecole Normale Supérieure,
48 rue d’Ulm, Paris, France

Abstract

This paper scratches the surface of the problem of classifying
the attacks that a mobile computation can be subjected to in an
open network. The discussion is based on a simplified version of
the Seal calculus. We show how the impact of these attacks on
the semantics of the calculus and on the notion of observational
equivalence.

1. Introduction

Wide area networks hold great promises in terms of distributed
computing. Applications that scale to the size of the Internet and
seamlessly provide access to massive amounts of information and value
added services are now technically feasible. But programming these new
applications is proving more difficult than anticipated. The blame lies
in part with current distributed programming paradigms which are too
static to accommodate the dynamics of an open systems of the size of
the Internet.

Mobile agent programming is a promising alternative to client-server
computing based on the simple idea that, instead of moving packet of
data between stationary programs, a distributed system should be built
by moving programs and allowing mobile programs to interact whenever
they are located on the same site. Agents are being used for collaborative
applications [16] and data mining where the data space is huge. In such
applications, moving an agent to the server reduces network connectivity,
eliminates latency and overcomes limitations imposed by firewalls. Other

1

Mobile Computations and Hostile Hosts

application domains include network management [17] and e-commerce
[11].

The main technical, and social, obstacle to mobile agents is security.
Not only appropriate security mechanisms must be provided by agent
execution environments, but users must become confident enough in
these mechanisms to permit foreign programs to migrate freely and
execute on their machine.

In the last couple of years a number of process calculi have been
designed to model aspects of distributed programming. Several of these
calculi, including the Ambient calculus [4], the Join calculus [8], dpi [9]
and the Seal calculus [21], advocate programming models based on the
notion of mobile computations.

Programming distributed applications over open network raises many
security issues. They can be roughly categorized into:

e protection of hosts and,

e protection of mobile computations.

The former corresponds to protecting the resources of the machine
on which mobile computations execute. The latter corresponds to
protecting the agents themselves from attacks which may originate from
an opponent listening on the network, from other mobile computations,
and even from hosts themselves. Some of these problems are well
understood. Technologies such as sandboxes and software fault isolation
or the type systems of Hennessy and Riely [9] have been successful in
protecting host from malicious agents. Results such as that of Abadi,
Fournet and Gonthier [1] show that it is possible to implement secure
communication channels over an untrusted network. The aspect that
remains mostly unexplored is the protection of mobile computations from
their execution environment.

The goal of this paper is to discuss informally some points in the
design space of agent programming languages. We pay particular
attention to the protection mechanisms that an agent language can
provide, and how they can protect agents from environmental attacks.

The structure of this paper is the following. In Section 2, we outline
the threat model and state some assumptions about agent systems. In
Section 3, we outline the main features of the Seal calculus, a calculus of
mobile computations which will be our motivating example. In Section
4, we discuss a number of attacks and related protection mechanisms.

Mobile Computations and Hostile Hosts

2. Security

The mobile agent paradigm is an interesting case study for the security
community. An agent is a program executing in an environment that it
does not fully trust, and which interacts with co-located agents which 1t
also does not fully trust. This mistrust is mutual. The reason for this
mistrust is the susceptibility of an agent and the kernel to the following
kinds of attack:

e Unauthorized disclosure: Secret data stored within an agent,
the kernel, or the enclosing environment of the kernel is leaked to
an unauthorized agent.

¢ Unauthorized modifications: The code or data of an agent is
subvertly modified, thus damaging the agent. When such attacks
succeed on the kernel, then the whole platform is paralyzed.

e Denial of service: An agent reduces the availability of some
shared system resource by consuming an inordinate amount. CPU,
memory and network bandwidth are classic targets for these
attacks.

¢ Introduction of viruses and Trojan horses: An agent or the
kernel is tricked into executing malicious code. This code can cause
disclosure, modification and denial of service attacks.

The remarkable thing in the case of agent system is the symmetry of
the security concerns: both the agent and their execution environment
must be protected. The pendant is that, depending on the application,
either one of them could have strong economical incentive to breach the
security of the other. An agent may seek to obtain data from the site 1t
is running on or damage the site in some way. An execution environment
may have been engineered to steal data or corrupt certain agents that
migrate to it.

In the following we will differentiate between agents which regard
as mobile programs written in an agent language, agent execution
environments which provide the set of services that the agent may
invoke during its execution on a host, and agent runtime which is
the underlying platform that implements the semantics of the agent
langnage.!

There are different threats that must be considered when attempting
to secure an agent program.

ITo relate these concepts to Java programming, we could schematically say that an
agent corresponds to an Applet, an environment to the JDK libraries and a runtime
to the JVM implementation.

Mobile Computations and Hostile Hosts

e Exogenous threats: These are attacks that occur outside of the
agent system, either while the agent is transferred over the network
or stored on disk.

e Endogenous threats: These threats are specific to an agent
system.

— Horizontal hostility: Attacks between agents running on
the same host.

— Vertical hostility: Attacks against an agent mounted by
the execution environment (the libraries) or by the runtime
system of the agent platform.

In general, we refer to vertical hostility — attacks originating from
the environment or the runtime — as hostile host attacks. The remainder
of this paper will study protection mechanisms which can be provided by
agent languages and their vulnerability to hostile environment. The goal
of the study is to highlight language design issues and foster discussion
rather than provide definitive answers.

Hostile hosts have been presented quite pessimistically in the
mobile agent literature [6]. Even if security requirements are basically
symmetrical — with both agent and hosts looking to protect their
respective resources, data and services — control is asymmetrical. The
host which executes an agent must see the agent’s internal workings
and has full control the agent. On the face of it, little can be done
to protect a program from the very machine that decodes every single
one of the program’s instructions and executes that instruction. Given
enough time, an attacker will be able to analyze the inner workings of
any agent and subvert its intended meaning.

This pessimistic view may somewhat be offset by practical
considerations. Firstly, one must consider the cost of mounting hostile
host attacks and secondly, a host may offer some guarantees that make
such attacks less likely. The first part refers to the difficulty of modifying
an agent system runtime which is a non-trivial undertaking, and, even
more significantly, the cost of analyzing the code of agents in order
to know how to attack them. If human intervention is required for
each different agent type that migrates to a malicious host, than an
apt defense may well lie in program obfuscation and transformation
techniques. Collberg et al. [7] propose algorithms to automatically
generate families of almost identical agents with different code in ways
that are resilient to static analysis techniques. As for guarantees, a host
may belong to a reputable organization, say Microsoft (we presume), or
be certified by some international organization, or be built using with

Mobile Computations and Hostile Hosts

tamperproof hardware [22, 12]. In those cases, one may trust that the
semantics of the runtime be respected.

Modifications of the execution environment are easier to achieve than
runtime hacking, in the case of Java such attacks often simply hinge on
getting a malicious file in the CLASSPATH of a user. These attacks are
less powerful than runtime modifications, but can still be used to induce
an agent into error or subvert information. But at least, in this class of
attacks the semantics of the programming language are not violated.
Some agents languages allow agents to nest [4, 21], thus each agent
runs within the environment provided by its encapsulating agent. In
these languages, a reputable host may well contain some shady agents
which will entice visitors to come execute within them and then mount
execution environment attacks.

We shall conclude this section by remarking that in a world where
large numbers of mobile agents move around to carry out their different
tasks. The most dangerous attacks are the ones which can be automated
and thus do not require human intervention past the initial coding. We
also point to intriguing results that may protect agents from the most
adverse of conditions: Tschudin and Sander have had success in their
work on computing with encrypted functions (protecting the integrity
and privacy of agent from the host) [15], Riordan and Schneier has
presented the concept of clueless agents as agents that are triggered by
signals hidden in the environment in ways that make it quite hard for an
attacker to provide the appropriate signals [13] and Roth has discussed
cooperating agents which work in groups so that it requires several hosts’
cooperation to break a group’s secrets [14].

3. A mobile calculus

We base our discussion on a calculus of mobile computations called the
Seal™ calculus, this calculus belongs to the family of process calculi that
descend from Milner’s w-calculus, reader familiar with 7 will find many
similarities in the model. The Seal™ calculus is a stripped down variant
of the full Seal calculus presented in [21].

The Seal™ calculus unifies several concepts from distributed
programming into three abstractions: locations, processes and
resources. Locations are meant to stand for physical places such as
those delimited by the boundaries of address spaces, host machines,
routers, firewalls, local area networks or wide area networks. Locations
also embody logical boundaries such as protection domains, sandboxes
and applications. The process abstraction stands for any flow of control
such as a thread or operating system process. Finally, resources unify

Mobile Computations and Hostile Hosts

physical resources such as memory locations and peripheral device
interfaces with services such as those offered by other applications, the
operating system or a runtime system.

Names Names may denote two different kinds of computational
entities, seals and channels; names are values and as such can be
exchanged in communication. The semantics of the calculus ensures
that names can not be manufactured or guessed.

Processes In a process calculus every expression denotes a process —
a computation — running in parallel with other processes. The calculus
includes all usual forms: the inert process, sequential composition of
actions, parallel composition of processes and replication. A process can
also be a location with a process body, which we call seal.

Locations Seals are named, hierarchically—structured, locations. The
expression n[P] denotes a seal named n running process P. Since a seal is
also a process, then a seal can contain a hierarchy of subseals of arbitrary
depth. A configuration is depicted in Figure 1, an alternate graphical
representation is the configuration tree in the same figure; process-
labeled vertices represent seals while edges represent seal inclusion.

Resources The only resources in Seal™ calculus are channels.
Channels are named computational structures used to synchronize
concurrent processes. Channels are located in seals, the calculus provides
operations to access the channels of another seal. Processes are restricted
to use only the channels for which they know the names.

Interactions Since processes (and ressources) are located, process
interactions can be either remote or local. The Seal™ calculus allows
only three distinct patterns of interaction. Two of them are remote

NETWORK|[
HosTA[P’ |
SanpBox[P | Arr1[Q]] |

Arp2[Q']] |
HosTB[P" | ApP3[Q"]]

]

Figure 1: Seal calculus term and configuration tree.

6

Mobile Computations and Hostile Hosts

interactions: a process located in the parent synchronizes with a process
located in a child on (1) a channel of the child or (2) a channel of
the parent. The third one is the local interaction: two co-located
processes synchronize over a local channel. These interaction patterns
are restrictive. For example, they do not allow processes located in
sibling seals to communicate directly, and even less those located in
arbitrary seals. Communication across a seal configuration must be
encoded; in other words every distributed interaction up to packet
routing must be programmed. Channel synchronization is used both
for communication (the channel is used to pass a name) and for mobility
(the channel is used to move a seal), and each of these two forms of
interaction corresponds to different actions pairs.

Mobility The calculus allows to move seals along with their body
process and subseals over channels. The operator for sending a seal
on a channel is 7°(y). P, and should be read as a process that is
waiting to send a child seal y along channel & and then behave like
P. Symmetrically, the operator #*(z). P denotes a process waiting to
receive a seal along channel and name it z. On the configuration tree,
mobility corresponds to a tree rewriting operation. A move disconnects
a subtree rooted at some seal y and grafts it either onto the parent of
y, onto one of y children, or back onto y itself. The rewriting operation
relabel the edge associated to the moved seal. The diagrams below show
an initial configuration (a) and all three possible configurations obtained
after a move. (b) is obtained by moving n into the parent and renaming
it to m. (¢) is obtained by moving n in # and renaming it to m. (d) is
obtained by renaming n to m.

(@) (b) (c) (d)

We now give a reduction semantics to the calculus.

Mobile Computations and Hostile Hosts

3.1. Syntax

We assume infinite sets of names and co-names disjoint and in bijection
via (7); we declare T = z. Location denotations extend names with
symbols x and 1. Bold font variables denote either a name or the
corresponding co-name, thus x may be either = or Z.

names
co-names nu=a| T |* locations
X process variables

bl bl

VY, %2
VY, %2

3 3

ey
5 ey
:]j|

bl

33
S IESTIES

The set of processes, ranged over by P, @, R, S, is defined by the following
grammar:

Pu:=0 | P|Q | we)P | a.P | 'P | z[P] | =2[X]

0 denotes the inert process. P | @ denotes parallel composition. (v x)P
is a restriction. «.P denotes an action a and a continuation P. P
denotes replication. Finally, [P] and z[X] denote, respectively, a seal
named x with body P and a seal x with body a process variable X.

The set of actions 1s defined by:
a==72(g) | 2"(Ag) | Ty | «Ny)

Z"7 () . P denotes a process offering § at channel z located in seal 7.
27(AY) . P is ready to input names § at « in . T {y). P denotes the
sender process offering seal y at « in 5. 27(y). P is waiting to read a
seal at z in 7 and run 1t under names y. Location denotations %, 1 and
n denote respectively the current seal, the parent seal, a subseal bearing
name n.

We abbreviate 1 ...2, to & and (vz1)...(vz,) are abbreviated
to (v ¥). The location x is often omitted from channels, so for
example z*(\g) is abbreviated to x(\g). P{9z} denotes simultaneous
substitutions of distinct names z; ...z, by y1...y,. ¢ ranges over
substitutions.

3.2. Reduction semantics

The reduction relation i1s defined using by the means of two auxiliary
notions: structural congruence and heating. Structural congruence, =, is
the least congruence relation on processes satisfying the following axioms
and rules:

PIQ=Q|P (PIQIR=P|(Q|R) P=P|P
8

Mobile Computations and Hostile Hosts

Structural congruence does not deal with the extrusion of free names.
Like in the m-calculus, we need rules to extrude free names, and in
particular to extrude them across seal boundaries. Consider:

2"(Ay)-5() | o[(v2)7'(2)]

We expect to reduce the term to:

(v 2)(z() | n[0])

Interestingly, name extrusion across seal boundaries has also security
implications and thus warrants special treatment. On a more pragmatic
level, in a typical implementation, when a seal boundary coincides with
an address space boundary, extrusion has a computational signification:
it means local names must be promoted to global names. In order
to perform this extrusion, we define a heating relation on terms. A
term is “heated” to allow synchronization. Heating singles out all
the v—abstractions that must be extruded, that is, those that bind
arguments of the output action about to be performed. Heating will
extrude as few w-abstractions as possible. So for example the term
2 Ay).7() | n[(rw)(v2)ZT(2)] reduces to (v 2)(Z() | n[(rw)0])
rather than to (v w)(v 2)(Z() | n[0]). A term in heated form is called
an agent. Agents are written wP where w is an agent prefix and P is
a process. The set of agent prefizes ranged over by w is defined by the
following grammar:

w = € empty prefix | (v f)<37> name concretion
| (v &){P) process concretion | (AF) name abstraction
| </\X> process abstraction

Free names (fn) have a standard definition and alpha-conversions are
performed whenever needed.

The heating relation < relates a well-formed process to a term of the
form x7.wP and is defined as the least relation respecting the following
axioms and rules:

Mobile Computations and Hostile Hosts

Table 1: Heating.
[

F(). P < 7. ()P
2"(Ay). P < x”.</\37>P

' (y). P | y[Q] < T.(Q)P

2 (y). P < 2" (AX)(P|y[X])

ye&fuw),yé{e,n, P < x".wP' = (ry)P < x".wvyP
y€ fuw),yé{e,n, P < x".wP' = (ry)P < x". (vywP’
bn(w)Nf(@Q)=0,P < x".wP' = P|Q < x".w(P'|Q)
y&bn(w), P < x".wP' = y[P] < xY.wy[P']

The first two axioms handle communication. The fourth axiom says that
a receive action heats into an abstraction where the process variable X
stands for the body of the seals specified by y, after synchronization the
residual consists of the continuation P in parallel with the seal where X
has been substituted by some process (). The following two rules select
the names that will be extruded. The last rule allows actions originating
from a seal y to synchronize with matching actions in the parent, the
action label is changed from ' to 2% to prevent further propagation.

We define the reduction relation — as the least relation on well-
formed processes that satisfies:

Table 2: Reduction.

| P—-qQ P—-qQ P—-qQ
(va)P = (va)Q PIR—=Q|R z[P] = 2[Q]

P=P P -SQ Q=qQ
P—=qQ

P < x5 .wuP Q < TF.w @ P <xV.u P Q< xV.wQ
Pl Q= (wiP) e (w:') PlQ—= (wiP') e (wQ)

The pseudoapplication relation (_) e (_) used in the definition of
synchronization is a partial commutative binary function from agents
to processes. Let i, & be vectors of the same arity and & ¢ fn(P), then

10

Mobile Computations and Hostile Hosts

we define pseudoapplication:

L ((Ag)P) ¢ (v 7)(£)Q) (v) (P{77} | Q)
2. (AX)P)e (v D)(R)Q) = @D)(P{/x}|Q)
3. Undefined otherwise.

The core of the semantics is given by the last two rules. They describe
synchronization on a channel that is respectively local or remote.

3.3. Equivalences

A notion of observational equivalence based on a bisimulation may be
defined for the Seal calculus. We give a commitment semantics (defined
in the appendix) that relates a process P to a label £ and an agent w@

(written: P BN w@) and can be proved equivalent to the reduction
semantics (see [21]) and choose bisimilarity as it is a widely adopted
notion of process equivalence [10]. Note, though, that our notion is
higher order as we are sending processes over channels, the definition is
thus related to Thomsen’s Higher Order Applicative Bisimulation [18, 3].

If R is a relation on well formed processes, then we define the relation
Ry on processes such that P Ry P’ iff for any # we have z[P] R z[P'],
and we also define the relation R on agents:

eP R P if PR P
</\i">P R </\i">P’ iff Veo.dom(c) =ZANPocR Plo
wip(&)P R (wi(z)P' iff PR P
(AxX)P R (AX)P iff vQ.P{Yx} R P{Yx}
(Vf)<Q>P R (Vf)<Q>P/ iff PRPAQRyQ

A relation R is a strong simulation if P R P’ and P RN w() 1implies

that there exists w'@)’ such that P’ BN W'Q and wQ R W'Q. A
relation R on processes is a strong bisimulation if R and R™! are strong
simulations. Strong bistmilarity ~ is the greatest strong bisimulation.

Let P =% w() if either P BN w(@ holds or there exists a P’ such that
P75 €eP and P’ == w@. A relation R is a weak simulation if P R P’

and P RN w(@ implies there exists w’'Q’ such that P’ N W'’ and
w@Q R &'Q'. A relation R on processes is a bisimulation if R and R™!
are weak simulations. Bisimilarity ~ is the greatest weak bisimilarity.

11

Mobile Computations and Hostile Hosts

4. Protection

The Seal™ calculus has been designed to provide protection for agents
against attacks from other agents and attacks from the agent execution
environment (in our case, enclosing seals).

This section presents three protection mechanisms and then gives
three examples of attacks and their impact on language design.

4.1. Names and secrets

The calculus emphasizes the role of names, they are used to name seals
and to name channels of communication. Without knowing the name on
which a process wishes to interact, no communication is possible.

Thus, restrictions, terms of the form (v)P, can be viewed as
language enforced protection mechanisms. The semantics of the calculus
guarantees that no other process than P may guess z. In practice this
means that £ may be some large, randomly selected, number which has
a high probability of being unique.

The semantics allow these secrets to be exchanged between processes,
so the term z(Ay).P | (va)Z(x).QQ reduces in one step to
(wa) (P{y} | Q).

Alternatively, z can be regarded as a shared cryptographic key,
similarly to Abadi’s and Gordon’s spi calculus [2]. Assuming a value
z and a shared key z, we can model the ciphertext K;(z) by the seal

y[1 71 (2)]

It is only by knowing « that an interlocutor may learn z.

Names can be thus used to test an environment, if the environment
knows certain names than a degree of trust can be established.

4.2. Encapsulation boundaries

The process running within a seal are always protected by their seal’s
boundary. They can not escape to wreak havoc, but nor can the
environment peek and poke in the seal’s internals.

The interactions with the environment are limited and clearly
identified to communication of the form z(Ay), Z'(y), =™ (y) and Z'(y).
The environment can not interfere with any other term. Thus for
example, the seal w[*(Ay).P | (vx)*(x).Q] will always reduce in one
step to w[(v x)(P{%/y} | Q)] irregardless of the execution context.

12

Mobile Computations and Hostile Hosts

4.3. Linear movement

Seals in our calculus, just like the Ambients of Cardelli and Gordon, move
in a linear fashion. That is, when a seal is sent along a channel it ceases
to exist at the source and materializes at the destination. For example
the following term moves joe inside a bus agent through a channel named
door:

Mb“s@'o@ | joe[P] | bus[doort(joe)] — bus[joe[P]]

This allows some patterns of programming such as using seals to hold
linear resources. For instance, if we write the term

y[z'(v)]

we know that seal will send a single message along . As another
example, a seal that decrypts the encrypted seal (¢[!z 1 v]) only once is
coded as:

decrypt[doorT(c) . 2¢(Az). MT<C> . MT(Z)]

Here the seal receives the encrypted value from its parent and names
it ¢. Then it uses the key x to decrypt ¢ and obtain the secret z.
Finally i1t sends back ¢ and z to the parent. All these communications
are performed through a channel named door.

The semantics of the calculus guarantee that this seal can be given
freely and that it will only perform its service once.

4.4. Denial of service attacks

The Seal™ calculus requires synchronous agreement of senders and
receivers before a message exchange 1s allowed to go through. Thus for
example 7Y (z) | y[zT(Aw)] may reduce since there are matching output
and input offers.

Another calculus design which we are considering for seals is to have
asynchronous message passing. Thus we would have rules of the form:

#(2) | y[P] = y[F'(2) | P]

where X' synchronizes with xT Such a formulation simplifies the
semantics but at the cost of allowing a denial of service attack which
can be mounted by a parent flooding a seal with messages. (In an actual
implementation [20] the cost of holding and managing large amounts
of message is great, further when the seal migrates it will require larger
amounts of bandwidth.)

13

Mobile Computations and Hostile Hosts
4.5. Trojan horse attacks

Trojan horse attacks against seals can be mounted by a malicious
execution environment whenever a seal accepts to input another seal.
The new subseal may have been engineered to cause some damage by
missbehaving. Still those attacks are somewhat limited in scope since
the seal boundaries still protect the victim.

A much more serious attack can be mounted by a malicious runtime
system that would change the heating rules to inject arbitrary processes
into incoming seals:

() +Q.P < & AX)(P|y[X | Q])

The process @ is put in parallel with the unsuspecting seal and allowed
to interfere with the insides of the seal.

4.6. Replay attacks

A replay attack occurs if a host is able to duplicate a seal, 1.e., it requires
an operation such as COPY z AS y so that the following reduction be
possible:

copy zasy | K ()] = [F (0)] | y[F ()]

With such an operation, a host may try to automatically break
the security of incoming agents (in this case the cryptographic key k)
by making multiple copies and playing several pre-recorded interaction
sequences. Simple observation of the response of an agent to messages
may be enough to understand an agent’s encoding? Clearly, replay
attacks forbid using seals to implement linear resources.

We now show how to extends the calculus to replay attacks into
account. In fact the extension is modest. The only thing we must change
is the seal receive action which becomes:

z"(g)

(instead of 2" (y}) that is, instead of creating a single instance of the seal,
we allow the creation of several instances. Thus the term z(n m) means
receive a seal along channel # and instantiate two identical copies under
names n and m.

2A slightly naive example involves a shopping agent sent to buy plane tickets on
the behalf of the user. A platform may try to offer the same ticket at several different
prices in order to learn how much the agent is ready to pay. The interesting point
here is that the attack is trivial to program and can be played out automatically
without fear of detection.

14

Mobile Computations and Hostile Hosts

The changes to the semantics are equally modest. In the case of
the reduction semantics, we simply change one rule in the definition of
heating:

2 (y1 - yn) - P < 2 APy [XT] | yalX])

and perform a similar change for the commitment semantics. The
definition of bisimulation is not affected by this change.

In such an extended calculus, cOPY is a derived operation defined as
follows.

coprywasz = (vy)(yiz) | y(zz).P)

Intuitively the result of corynasm | n[P] reduces to m[P] | n[P].
More precisely, the operation first creates a brand new channel name y
to prevent any other process running in parallel from interfering with
the protocol. Then, the subprocess on the right tries to move n on the
local channel, while the one on the left waits to receive the seal and
instantiate two copies of it, one named n and the other named m.

In the full Seal calculus, we have chosen to incorporate copying in
the semantics; we feel that there are legitimate uses of copying such
as the ability to replicate services dynamically for fault tolerance or to
checkpoint seals and provide transparent persistence. Further, it may be
very hard for an implementation of the calculus to prevent copies from
arising due to for instance machine failures and subsequent restart and
duplication on the transport layer.

4.7. Breach of privacy attacks

Name passing calculi such the 7-calculus, Ambients, the Seal™ calculus
and Join strongly rely on static scoping of names. In the m-calculus,
we expect the following equivalence to hold (r#)Z(y) ~ O, that is, a
process trying to output on a restricted name can not be distinguished
with the inert process. In the ambient calculus, we have the so-called,
perfect firewall equation, z € fn(P) = (va)z[P] &~ 0, which states
that an ambient whose name is restricted is bisimilar to the inert process
provided the restricted name does not occur free in the ambient’s body,
in our calculus this condition is not required as discussed in [5].

Static scoping is preserved by the semantics of these calculi which
guarantee that names can not be guess or counterfeited. This guarantee
can also be used to model cryptography by names as in the spi calculus
[2]. Static scoping has an added advantage, it simplifies analysis of
system, as we have the guarantee that the initial interaction with the
outside must take place on free names.

15

Mobile Computations and Hostile Hosts

As we have also seen in the semantics, scoping is static but the
position of restrictions may vary in the course of computation due
to the phenomenon of scope extrusion. For example, the expression
(vy)Z(y). P is ready to send a v—abstracted name y along a channel
x, after synchronization we expect that the scope of the restriction will
encompass the residual of the above term along with the receiver. The
difficulty with scope extrusion is that as long as the scope of a name
remains within a trusted environment, then we can be sure that static
scoping is preserved. On the other hand, as soon as restriction spans
several sites the guarantees become more difficult to ensure.

Breach of privacy attacks occur if an environment is able to guess
names that occur free within an agent. For example, assume a
FN a:</\y> . P operation which returns some free name y occurring within
seal z. This would allow the following reduction:

Na(Ay). P | oK ()] = P{4) | R (v)]

To obtain this in the calculus we may add FN as an action and add a
rule which, for the commitment semantics, does the following:

FN n{Ay) . P | n[Q] = P{*/,} | n[Q] for x € fn(Q)

A side effect of this rule is that the perfect firewall equation does not
hold anymore and that it is therefore not possible to rely on privacy of

names. Consider the following terms: z[(v y)y[FT(v)]] ~ z[0] in the
Seal™ calculus they are bisimilar, but with the addition of FN we can
distinguish them in the following context:

ae(A2). P | 2wy (0)]] # FNa(Az). P | 2[0]

because FNz(Az).P | m[(vy)y[FT(v)]] reduces to P{&.} |
ol w)ulE ()]

In fact, we must take a finer notion of bisimulation, let’s call it =
which we define as follows:

Pry; @ ifand only if P~ Q A fn(P) = fn(Q)

We conjecture that ~; is a congruence.

While we do not want to add FN as a regular operator to the calculus,
it has no legitimate use, a more sensible variant 1s fn which performs a
free variable test. That is, 1t does not reveal names that were not known
beforehand, it merely checks for the presence of a given free name. With
such an operator we could check, before allowing a seal to migrate away,

16

Mobile Computations and Hostile Hosts

whether the seal contains some restricted names (such as a key). So for
example we could write:

foe K.P | alwyylK] = Plel@wy)yE ()]

The corresponding rule in the commitment semantics would be:

fan x.P|n[Q] = P | n[Q] for x € fn(Q)

We conclude by remarking that while ~; is strictly finer than ~ it
only differentiates on unreachable free names, that is, free names that
can never be part of normal reduction, & does already differentiates on

(reachable) free names, thus z(Az) % y(Az).

5. Conclusions

Mobile computations are an exiting paradigm for structuring distributed
applications; their main drawback comes from a perceived lack of
security. This paper has discussed some of the protection mechanisms
that can be provided by agent languages and discussed their implications.

References

[1] M. Abadi, C. Fournet, and G. Gonthier. Secure implementation of
channel abstractions. 1998. Long version (Draft).

[2] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols:
The Spi calculus. In Proceedings of the Fourth ACM Conference on
Computer and Communications Security, Zurich, Aprid 1997. ACM
Press, 1997.

[3] L. Cardelli and A. D. Gordon. Mobile Ambients—annex—.
Manuscript, Microsoft Research, 1997.

[4] L. Cardelli and A. D. Gordon. Mobile Ambients. In M. Nivat, editor,
Foundations of Software Science and Computational Structures,

number 1378 in LNCE, pages 140—155. Springer-Verlag, 1998.

[6] G. Castagna and J. Vitek. Confinement and commitment for the
seal calculus. Nov. 1998.

[6] D. M. Chess. Security issues in mobile code systems. In Mobile
agents and security [19].

17

Mobile Computations and Hostile Hosts

[7]

[15]

[16]

C. Collberg, C. Thomborson, and D. Low. Manufacturing cheap,
resilient, and stealthy opaque constructs. In Conference Record
of POPL °98: The 25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 184-196, San Diego,
California, 19-21 Jan. 1998.

C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A
calculus of mobile agents. In CONCURY96, pages 406-421, 1996.

M. Hennessy and J. Riely. Type-safe execution of mobile agents in
anonymous networks. In Proceedings of the Workshop on Internet
Programming Languages, (WIPL). Chicago, Ill., 1998.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes,
Parts I and I1. Journal of Information and Computation, 100:1-77,
Sept. 1992.

J.-H. Morin. HyperNews: a Hyper—-Media Electronic Newspaper
based on Agents. In Proceedings of HICSS-31, Hawai International
Conference on System Sciences, pages 5867, Kona, Hawaii,
January 1998.

E. R. Palmer. Introduction to citadel: a secure crypto coprocessor
for workstations. In Technical Committee TC 11 of the
International Federation for Information Processing IFIP, editor,
10th International Information Security Conference IFIP SEC’9),
Curacao, Dutch Antilles, May 1994.

J. Riordan and B. Schneier. Environmental key generation towards
clueless agents. In Mobile agents and security [19].

V. Roth. Mutual protection of cooperating agents. In Secure
Internet Programming: Security Issues for Mobile and Distributed
Objects. Jan Vitek and Christian Jensen (Eds.), Springer Verlag,
1999.

T. Sander and C. F. Tschudin. Protecting mobile agents against
malicious hosts. In Mobile agents and security [19].

D. Spoonhower, G. Czajkowski, C. Hawblitzel, C.-C. Chang, D. Hu,
and T. von Eicken. Design and evaluation of an extensible web &
telephony server based on the J-kernel. Technical Report TR98-
1715, Cornell University, Computer Science, Nov. 4, 1998.

D. Tennenhouse. Active networks. In USENIX, editor, 2nd
Symposium on Operating Systems Design and Implementation
(OSDI ’96), October 28-31, 1996. Seattle, WA, Berkeley, CA, USA,
Oct. 1996. USENIX.

18

Mobile Computations and Hostile Hosts

[18]

[19]

B. Thomsen. Plain CHOCS. A second generation calculus for higher
order processes. Acta Informatica, 30(1):1-59, 1993.

G. Vigna. Mobile agents and security, volume 1419 of Lecture Notes
i Computer Science. Springer-Verlag Inc., New York, NY, USA,
1998.

J. Vitek, C. Bryce, and W. Binder. Designing JavaSeal: or How
to make Java safe for agents. In D. Tsichritzis, editor, Electronic
Commerce Objects. University of Geneva, 1998.

J. Vitek and G. Castagna. A calculus of secure mobile computations.
In WIPL98 — Workshop on Internet Programming Languages.
Chicago, Ill., Spinger-Verlag, March 1998.

B. S. Yee. A sanctuary for mobile agents. Technical Report
(CS97-537, UC San Diego, Department of Computer Science and
Engineering, Apr. 1997.

Appendix: Commitment semantics

Commitment is indexed by a set of labels

Con= o el | X[y)

and 1s the smallest relation satisfying following groups of rules.

Structure:
bn(w)nfn(R)=0
P=P P 5uQ P -5 wQ
P-5uQ P|R-5w(Q|R)
zgfn()ufn(w) wgfn(t)Az€fn(w)
J N w@ J N w@
(va)P BN wve)Q (va)P BN (va)w@®
Seals:
ygbn(w)
P w0 P15 eQ

P XS i) eP1E (P alP] D er[Q)

19

Mobile Computations and Hostile Hosts

Communication:
7). P (F)P 2"(AG) . P 5 (AG)P
Px—*>wlpl QE—*>WQQ/ Px—y>W1P/ Qiy)WZQ/

P|QL>e(w1P’)o(w2Q’) P|QL>e(w1P’)o(w2Q’)

Mobility:

). P ep anyy. P OXN(P | y[X])

B bn(w)nf(P =0
P epr B Ly

PlQ S w(P Q)

20

