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Mobile Computations and Hostile Hostsapplication domains include network management [17] and e-commerce[11].The main technical, and social, obstacle to mobile agents is security.Not only appropriate security mechanisms must be provided by agentexecution environments, but users must become con�dent enough inthese mechanisms to permit foreign programs to migrate freely andexecute on their machine.In the last couple of years a number of process calculi have beendesigned to model aspects of distributed programming. Several of thesecalculi, including the Ambient calculus [4], the Join calculus [8], dpi [9]and the Seal calculus [21], advocate programming models based on thenotion of mobile computations.Programming distributed applications over open network raises manysecurity issues. They can be roughly categorized into:� protection of hosts and,� protection of mobile computations.The former corresponds to protecting the resources of the machineon which mobile computations execute. The latter corresponds toprotecting the agents themselves from attacks which may originate froman opponent listening on the network, from other mobile computations,and even from hosts themselves. Some of these problems are wellunderstood. Technologies such as sandboxes and software fault isolationor the type systems of Hennessy and Riely [9] have been successful inprotecting host from malicious agents. Results such as that of Abadi,Fournet and Gonthier [1] show that it is possible to implement securecommunication channels over an untrusted network. The aspect thatremainsmostly unexplored is the protection of mobile computations fromtheir execution environment.The goal of this paper is to discuss informally some points in thedesign space of agent programming languages. We pay particularattention to the protection mechanisms that an agent language canprovide, and how they can protect agents from environmental attacks.The structure of this paper is the following. In Section 2, we outlinethe threat model and state some assumptions about agent systems. InSection 3, we outline the main features of the Seal calculus, a calculus ofmobile computations which will be our motivating example. In Section4, we discuss a number of attacks and related protection mechanisms.2



Mobile Computations and Hostile Hosts2. SecurityThe mobile agent paradigm is an interesting case study for the securitycommunity. An agent is a program executing in an environment that itdoes not fully trust, and which interacts with co-located agents which italso does not fully trust. This mistrust is mutual. The reason for thismistrust is the susceptibility of an agent and the kernel to the followingkinds of attack:� Unauthorized disclosure: Secret data stored within an agent,the kernel, or the enclosing environment of the kernel is leaked toan unauthorized agent.� Unauthorized modi�cations: The code or data of an agent issubvertly modi�ed, thus damaging the agent. When such attackssucceed on the kernel, then the whole platform is paralyzed.� Denial of service: An agent reduces the availability of someshared system resource by consuming an inordinate amount. CPU,memory and network bandwidth are classic targets for theseattacks.� Introduction of viruses and Trojan horses: An agent or thekernel is tricked into executing malicious code. This code can causedisclosure, modi�cation and denial of service attacks.The remarkable thing in the case of agent system is the symmetry ofthe security concerns: both the agent and their execution environmentmust be protected. The pendant is that, depending on the application,either one of them could have strong economical incentive to breach thesecurity of the other. An agent may seek to obtain data from the site itis running on or damage the site in some way. An execution environmentmay have been engineered to steal data or corrupt certain agents thatmigrate to it.In the following we will di�erentiate between agents which regardas mobile programs written in an agent language, agent executionenvironments which provide the set of services that the agent mayinvoke during its execution on a host, and agent runtime which isthe underlying platform that implements the semantics of the agentlanguage.1There are di�erent threats that must be considered when attemptingto secure an agent program.1To relate these concepts to Java programming, we could schematically say that anagent corresponds to an Applet, an environment to the JDK libraries and a runtimeto the JVM implementation. 3



Mobile Computations and Hostile Hosts� Exogenous threats: These are attacks that occur outside of theagent system, either while the agent is transferred over the networkor stored on disk.� Endogenous threats: These threats are speci�c to an agentsystem.{ Horizontal hostility: Attacks between agents running onthe same host.{ Vertical hostility: Attacks against an agent mounted bythe execution environment (the libraries) or by the runtimesystem of the agent platform.In general, we refer to vertical hostility | attacks originating fromthe environment or the runtime| as hostile host attacks. The remainderof this paper will study protection mechanisms which can be provided byagent languages and their vulnerability to hostile environment. The goalof the study is to highlight language design issues and foster discussionrather than provide de�nitive answers.Hostile hosts have been presented quite pessimistically in themobile agent literature [6]. Even if security requirements are basicallysymmetrical | with both agent and hosts looking to protect theirrespective resources, data and services | control is asymmetrical. Thehost which executes an agent must see the agent's internal workingsand has full control the agent. On the face of it, little can be doneto protect a program from the very machine that decodes every singleone of the program's instructions and executes that instruction. Givenenough time, an attacker will be able to analyze the inner workings ofany agent and subvert its intended meaning.This pessimistic view may somewhat be o�set by practicalconsiderations. Firstly, one must consider the cost of mounting hostilehost attacks and secondly, a host may o�er some guarantees that makesuch attacks less likely. The �rst part refers to the di�culty of modifyingan agent system runtime which is a non-trivial undertaking, and, evenmore signi�cantly, the cost of analyzing the code of agents in orderto know how to attack them. If human intervention is required foreach di�erent agent type that migrates to a malicious host, than anapt defense may well lie in program obfuscation and transformationtechniques. Collberg et al. [7] propose algorithms to automaticallygenerate families of almost identical agents with di�erent code in waysthat are resilient to static analysis techniques. As for guarantees, a hostmay belong to a reputable organization, say Microsoft (we presume), orbe certi�ed by some international organization, or be built using with4



Mobile Computations and Hostile Hoststamperproof hardware [22, 12]. In those cases, one may trust that thesemantics of the runtime be respected.Modi�cations of the execution environment are easier to achieve thanruntime hacking, in the case of Java such attacks often simply hinge ongetting a malicious �le in the CLASSPATH of a user. These attacks areless powerful than runtime modi�cations, but can still be used to inducean agent into error or subvert information. But at least, in this class ofattacks the semantics of the programming language are not violated.Some agents languages allow agents to nest [4, 21], thus each agentruns within the environment provided by its encapsulating agent. Inthese languages, a reputable host may well contain some shady agentswhich will entice visitors to come execute within them and then mountexecution environment attacks.We shall conclude this section by remarking that in a world wherelarge numbers of mobile agents move around to carry out their di�erenttasks. The most dangerous attacks are the ones which can be automatedand thus do not require human intervention past the initial coding. Wealso point to intriguing results that may protect agents from the mostadverse of conditions: Tschudin and Sander have had success in theirwork on computing with encrypted functions (protecting the integrityand privacy of agent from the host) [15], Riordan and Schneier haspresented the concept of clueless agents as agents that are triggered bysignals hidden in the environment in ways that make it quite hard for anattacker to provide the appropriate signals [13] and Roth has discussedcooperating agents which work in groups so that it requires several hosts'cooperation to break a group's secrets [14].3. A mobile calculusWe base our discussion on a calculus of mobile computations called theSeal� calculus, this calculus belongs to the family of process calculi thatdescend from Milner's �-calculus, reader familiar with � will �nd manysimilarities in the model. The Seal� calculus is a stripped down variantof the full Seal calculus presented in [21].The Seal� calculus uni�es several concepts from distributedprogramming into three abstractions: locations;processes andresources. Locations are meant to stand for physical places such asthose delimited by the boundaries of address spaces, host machines,routers, �rewalls, local area networks or wide area networks. Locationsalso embody logical boundaries such as protection domains, sandboxesand applications. The process abstraction stands for any 
ow of controlsuch as a thread or operating system process. Finally, resources unify5



Mobile Computations and Hostile Hostsphysical resources such as memory locations and peripheral deviceinterfaces with services such as those o�ered by other applications, theoperating system or a runtime system.Names Names may denote two di�erent kinds of computationalentities, seals and channels; names are values and as such can beexchanged in communication. The semantics of the calculus ensuresthat names can not be manufactured or guessed.Processes In a process calculus every expression denotes a process |a computation | running in parallel with other processes. The calculusincludes all usual forms: the inert process, sequential composition ofactions, parallel composition of processes and replication. A process canalso be a location with a process body, which we call seal .Locations Seals are named, hierarchically{structured, locations. Theexpression n[P ] denotes a seal named n running process P . Since a seal isalso a process, then a seal can contain a hierarchy of subseals of arbitrarydepth. A con�guration is depicted in Figure 1, an alternate graphicalrepresentation is the con�guration tree in the same �gure; process-labeled vertices represent seals while edges represent seal inclusion.Resources The only resources in Seal� calculus are channels.Channels are named computational structures used to synchronizeconcurrent processes. Channels are located in seals, the calculus providesoperations to access the channels of another seal. Processes are restrictedto use only the channels for which they know the names.Interactions Since processes (and ressources) are located, processinteractions can be either remote or local . The Seal� calculus allowsonly three distinct patterns of interaction. Two of them are remoteNetwork[ HostA[P 0 jSandbox[ P j App1[Q ] ] jApp2[Q0] ] jHostB[ P 00 j App3[Q00 ] ]] App3
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Mobile Computations and Hostile Hostsinteractions: a process located in the parent synchronizes with a processlocated in a child on (1) a channel of the child or (2) a channel ofthe parent. The third one is the local interaction: two co-locatedprocesses synchronize over a local channel. These interaction patternsare restrictive. For example, they do not allow processes located insibling seals to communicate directly, and even less those located inarbitrary seals. Communication across a seal con�guration must beencoded; in other words every distributed interaction up to packetrouting must be programmed. Channel synchronization is used bothfor communication (the channel is used to pass a name) and for mobility(the channel is used to move a seal), and each of these two forms ofinteraction corresponds to di�erent actions pairs.Mobility The calculus allows to move seals along with their bodyprocess and subseals over channels. The operator for sending a sealon a channel is x?hyi :P , and should be read as a process that iswaiting to send a child seal y along channel x and then behave likeP . Symmetrically, the operator x?hzi :P denotes a process waiting toreceive a seal along channel x and name it z. On the con�guration tree,mobility corresponds to a tree rewriting operation. A move disconnectsa subtree rooted at some seal y and grafts it either onto the parent ofy, onto one of y children, or back onto y itself. The rewriting operationrelabel the edge associated to the moved seal. The diagrams below showan initial con�guration (a) and all three possible con�gurations obtainedafter a move. (b) is obtained by moving n into the parent and renamingit to m. (c) is obtained by moving n in x and renaming it to m. (d) isobtained by renaming n to m.
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Mobile Computations and Hostile Hosts3.1. SyntaxWe assume in�nite sets of names and co-names disjoint and in bijectionvia (�); we declare x = x. Location denotations extend names withsymbols ? and ". Bold font variables denote either a name or thecorresponding co-name, thus x may be either x or x.m;n; : : : ; x; y; z namesm;n; : : : ; x; y; z co-namesx ::= x j x � ::= x j " j ? locationsX process variablesThe set of processes, ranged over by P;Q;R; S, is de�ned by the followinggrammar:P ::= 0 j P j Q j (� x)P j � :P j !P j x [P ] j x [X]0 denotes the inert process. P j Q denotes parallel composition. (� x)Pis a restriction. � :P denotes an action � and a continuation P . !Pdenotes replication. Finally, x [P ] and x [X] denote, respectively, a sealnamed x with body P and a seal x with body a process variable X.The set of actions is de�ned by:� ::= x�(~y) j x�(�~y) j x�hyi j x�hyix�(~y) :P denotes a process o�ering ~y at channel x located in seal �.x�(�~y) :P is ready to input names ~y at x in �. x�hyi :P denotes thesender process o�ering seal y at x in �. x�hyi : P is waiting to read aseal at x in � and run it under names y. Location denotations ?; " andn denote respectively the current seal, the parent seal, a subseal bearingname n.We abbreviate x1 : : : xn to ~x and (� x1) : : : (� xn) are abbreviatedto (� ~x). The location ? is often omitted from channels, so forexample x?(�~y) is abbreviated to x(�~y). Pf~y=~xg denotes simultaneoussubstitutions of distinct names x1 : : : xn by y1 : : : yn. � ranges oversubstitutions.3.2. Reduction semanticsThe reduction relation is de�ned using by the means of two auxiliarynotions: structural congruence and heating . Structural congruence, �, isthe least congruence relation on processes satisfying the following axiomsand rules:P j Q � Q j P (P j Q) j R � P j (Q j R) !P � P j !P8



Mobile Computations and Hostile HostsStructural congruence does not deal with the extrusion of free names.Like in the �-calculus, we need rules to extrude free names, and inparticular to extrude them across seal boundaries. Consider:xn(�y) : y() j n[ (� z)x"(z) ]We expect to reduce the term to:(� z)(z () j n[0])Interestingly, name extrusion across seal boundaries has also securityimplications and thus warrants special treatment. On a more pragmaticlevel, in a typical implementation, when a seal boundary coincides withan address space boundary, extrusion has a computational signi�cation:it means local names must be promoted to global names. In orderto perform this extrusion, we de�ne a heating relation on terms. Aterm is \heated" to allow synchronization. Heating singles out allthe ��abstractions that must be extruded, that is, those that bindarguments of the output action about to be performed. Heating willextrude as few �-abstractions as possible. So for example the termxn(�y) : y() j n[(� w)(� z)x"(z)] reduces to (� z)(z () j n[(� w)0])rather than to (� w)(� z)(z() j n[0]): A term in heated form is calledan agent . Agents are written !P where ! is an agent pre�x and P isa process. The set of agent pre�xes ranged over by ! is de�ned by thefollowing grammar:! ::= ��� empty pre�x j (� ~x)
~y� name concretionj (� ~x)
P� process concretion j 
�~y� name abstractionj 
�X� process abstractionFree names (fn) have a standard de�nition and alpha-conversions areperformed whenever needed.The heating relation � relates a well-formed process to a term of theform x� :!P and is de�ned as the least relation respecting the followingaxioms and rules:
9



Mobile Computations and Hostile HostsTable 1: Heating.x�(~y) :P � x�: 
~y�Px�(�~y) :P � x�: 
�~y�Px�hyi :P j y [Q] � x�: 
Q�Px�hyi :P � x�: 
�X�(P jy [X])y 62 fn(!); y 62 fx; �g; P � x��� :!P 0 ) (� y)P � x��� :!(� y)P 0y 2 fn(!); y 62 fx; �g; P � x��� :!P 0 ) (� y)P � x���: (� y)!P 0bn(!) \ fn(Q) = ;; P � x��� :!P 0 ) P j Q � x���:!(P 0 j Q)y 62 bn(!); P � x":!P 0 ) y [P ] � xy:!y [P 0]The �rst two axioms handle communication. The fourth axiom says thata receive action heats into an abstraction where the process variable Xstands for the body of the seals speci�ed by y, after synchronization theresidual consists of the continuation P in parallel with the seal where Xhas been substituted by some process Q. The following two rules selectthe names that will be extruded. The last rule allows actions originatingfrom a seal y to synchronize with matching actions in the parent, theaction label is changed from x" to xy to prevent further propagation.We de�ne the reduction relation ! as the least relation on well-formed processes that satis�es:Table 2: Reduction.P ! Q(� x)P ! (� x)Q P ! QP j R! Q j R P ! Qx [P ]! x [Q]P � P 0 P 0 ! Q0 Q0 � QP ! QP � x?:!1P 0 Q � x?:!2Q0P j Q! (!1P 0) � (!2Q0) P � xy:!1P 0 Q � xy:!2Q0P j Q! (!1P 0) � (!2Q0)The pseudoapplication relation ( ) � ( ) used in the de�nition ofsynchronization is a partial commutative binary function from agentsto processes. Let ~y; ~x be vectors of the same arity and ~x 62 fn(P ), then10



Mobile Computations and Hostile Hostswe de�ne pseudoapplication:1: (
�~y�P ) � ((� ~x)
~z�Q) = (� ~x)(Pf~z=~yg j Q)2: (
�X�P ) � ((� ~x)
R�Q) = (� ~x)(PfR=Xg j Q)3: Unde�ned otherwise.The core of the semantics is given by the last two rules. They describesynchronization on a channel that is respectively local or remote.3.3. EquivalencesA notion of observational equivalence based on a bisimulation may bede�ned for the Seal calculus. We give a commitment semantics (de�nedin the appendix) that relates a process P to a label ` and an agent !Q(written: P �̀! !Q) and can be proved equivalent to the reductionsemantics (see [21]) and choose bisimilarity as it is a widely adoptednotion of process equivalence [10]. Note, though, that our notion ishigher order as we are sending processes over channels, the de�nition isthus related to Thomsen's Higher Order Applicative Bisimulation [18, 3].IfR is a relation on well formed processes, then we de�ne the relationR[] on processes such that P R[] P 0 i� for any x we have x [P ] R x [P 0],and we also de�ne the relation R on agents:���P R ���P 0 i� P R P 0
�~x�P R 
�~x�P 0 i� 8�:dom(�) = ~x ^ P� R P 0�(� ~y)
~x�P R (� ~y)
~x�P 0 i� P R P 0
�X�P R 
�X�P 0 i� 8Q:PfQ=Xg R P 0fQ=Xg(� ~x)
Q�P R (� ~x)
Q�P 0 i� P R P 0 ^Q R[] Q0A relation R is a strong simulation if P R P 0 and P �̀! !Q impliesthat there exists !0Q0 such that P 0 �̀! !0Q0 and !Q R !0Q0. Arelation R on processes is a strong bisimulation if R and R�1 are strongsimulations. Strong bisimilarity � is the greatest strong bisimulation.Let P =̀) !Q if either P �̀! !Q holds or there exists a P 0 such thatP ��! ���P 0 and P 0 =̀) !Q. A relation R is a weak simulation if P R P 0and P �̀! !Q implies there exists !0Q0 such that P 0 =̀) !0Q0 and!Q R !0Q0. A relation R on processes is a bisimulation if R and R�1are weak simulations. Bisimilarity � is the greatest weak bisimilarity.11



Mobile Computations and Hostile Hosts4. ProtectionThe Seal� calculus has been designed to provide protection for agentsagainst attacks from other agents and attacks from the agent executionenvironment (in our case, enclosing seals).This section presents three protection mechanisms and then givesthree examples of attacks and their impact on language design.4.1. Names and secretsThe calculus emphasizes the role of names, they are used to name sealsand to name channels of communication. Without knowing the name onwhich a process wishes to interact, no communication is possible.Thus, restrictions, terms of the form (� x)P , can be viewed aslanguage enforced protection mechanisms. The semantics of the calculusguarantees that no other process than P may guess x. In practice thismeans that x may be some large, randomly selected, number which hasa high probability of being unique.The semantics allow these secrets to be exchanged between processes,so the term z(�y):P j (� x)z(x):Q reduces in one step to(� x) (Pfx=yg j Q).Alternatively, x can be regarded as a shared cryptographic key,similarly to Abadi's and Gordon's spi calculus [2]. Assuming a valuez and a shared key x, we can model the ciphertext Kx(z) by the sealy [!x"(z)]It is only by knowing x that an interlocutor may learn z.Names can be thus used to test an environment, if the environmentknows certain names than a degree of trust can be established.4.2. Encapsulation boundariesThe process running within a seal are always protected by their seal'sboundary. They can not escape to wreak havoc, but nor can theenvironment peek and poke in the seal's internals.The interactions with the environment are limited and clearlyidenti�ed to communication of the form x"(�y), x"(y), x"hyi and x"hyi.The environment can not interfere with any other term. Thus forexample, the seal w [z(�y):P j (� x)z(x):Q] will always reduce in onestep to w [(� x)(Pfx=yg j Q)] irregardless of the execution context.12



Mobile Computations and Hostile Hosts4.3. Linear movementSeals in our calculus, just like the Ambients of Cardelli and Gordon, movein a linear fashion. That is, when a seal is sent along a channel it ceasesto exist at the source and materializes at the destination. For examplethe following termmoves joe inside a bus agent through a channel nameddoor: doorbushjoei j joe[P ] j bus [door"hjoei] ! bus [joe[P ]]This allows some patterns of programming such as using seals to holdlinear resources. For instance, if we write the termy [ x"(v) ]we know that seal will send a single message along x. As anotherexample, a seal that decrypts the encrypted seal (c[!x " v]) only once iscoded as: decrypt [door"hci :xc(�z) : door"hci : door"(z)]Here the seal receives the encrypted value from its parent and namesit c. Then it uses the key x to decrypt c and obtain the secret z.Finally it sends back c and z to the parent. All these communicationsare performed through a channel named door .The semantics of the calculus guarantee that this seal can be givenfreely and that it will only perform its service once.4.4. Denial of service attacksThe Seal� calculus requires synchronous agreement of senders andreceivers before a message exchange is allowed to go through. Thus forexample xy(z) j y [x"(�w)] may reduce since there are matching outputand input o�ers.Another calculus design which we are considering for seals is to haveasynchronous message passing. Thus we would have rules of the form:xy(z) j y [P ]! y [x"(z) j P ]where x" synchronizes with x" Such a formulation simpli�es thesemantics but at the cost of allowing a denial of service attack whichcan be mounted by a parent 
ooding a seal with messages. (In an actualimplementation [20] the cost of holding and managing large amountsof message is great, further when the seal migrates it will require largeramounts of bandwidth.) 13



Mobile Computations and Hostile Hosts4.5. Trojan horse attacksTrojan horse attacks against seals can be mounted by a maliciousexecution environment whenever a seal accepts to input another seal.The new subseal may have been engineered to cause some damage bymissbehaving. Still those attacks are somewhat limited in scope sincethe seal boundaries still protect the victim.A much more serious attack can be mounted by a malicious runtimesystem that would change the heating rules to inject arbitrary processesinto incoming seals:x�hyi +Q :P � x�: 
�X�(P jy [X j Q])The process Q is put in parallel with the unsuspecting seal and allowedto interfere with the insides of the seal.4.6. Replay attacksA replay attack occurs if a host is able to duplicate a seal, i.e., it requiresan operation such as copy x as y so that the following reduction bepossible: copy x as y j x [ k"(v)] ! x [ k"(v)] j y [ k"(v)]With such an operation, a host may try to automatically breakthe security of incoming agents (in this case the cryptographic key k)by making multiple copies and playing several pre-recorded interactionsequences. Simple observation of the response of an agent to messagesmay be enough to understand an agent's encoding.2 Clearly, replayattacks forbid using seals to implement linear resources.We now show how to extends the calculus to replay attacks intoaccount. In fact the extension is modest. The only thing we must changeis the seal receive action which becomes:x�h~y i(instead of x�hyi) that is, instead of creating a single instance of the seal,we allow the creation of several instances. Thus the term xhnmi meansreceive a seal along channel x and instantiate two identical copies undernames n and m.2A slightly naive example involves a shopping agent sent to buy plane tickets onthe behalf of the user. A platformmay try to o�er the same ticket at several di�erentprices in order to learn how much the agent is ready to pay. The interesting pointhere is that the attack is trivial to program and can be played out automaticallywithout fear of detection. 14



Mobile Computations and Hostile HostsThe changes to the semantics are equally modest. In the case ofthe reduction semantics, we simply change one rule in the de�nition ofheating: x�hy1 : : : yni :P � x�: 
�X�(P jy1 [X] j : : : j yn [X])and perform a similar change for the commitment semantics. Thede�nition of bisimulation is not a�ected by this change.In such an extended calculus, copy is a derived operation de�ned asfollows. copyxas z � (� y)( y?hxi j y?hx zi :P )Intuitively the result of copy nasm j n[P ] reduces to m[P ] j n[P ].More precisely, the operation �rst creates a brand new channel name yto prevent any other process running in parallel from interfering withthe protocol. Then, the subprocess on the right tries to move n on thelocal channel, while the one on the left waits to receive the seal andinstantiate two copies of it, one named n and the other named m.In the full Seal calculus, we have chosen to incorporate copying inthe semantics; we feel that there are legitimate uses of copying suchas the ability to replicate services dynamically for fault tolerance or tocheckpoint seals and provide transparent persistence. Further, it may bevery hard for an implementation of the calculus to prevent copies fromarising due to for instance machine failures and subsequent restart andduplication on the transport layer.4.7. Breach of privacy attacksName passing calculi such the �-calculus, Ambients, the Seal� calculusand Join strongly rely on static scoping of names. In the �-calculus,we expect the following equivalence to hold (� x)x(y) � 0, that is, aprocess trying to output on a restricted name can not be distinguishedwith the inert process. In the ambient calculus, we have the so-called,perfect �rewall equation, x 62 fn(P ) ) (� x)x [P ] � 0, which statesthat an ambient whose name is restricted is bisimilar to the inert processprovided the restricted name does not occur free in the ambient's body,in our calculus this condition is not required as discussed in [5].Static scoping is preserved by the semantics of these calculi whichguarantee that names can not be guess or counterfeited. This guaranteecan also be used to model cryptography by names as in the spi calculus[2]. Static scoping has an added advantage, it simpli�es analysis ofsystem, as we have the guarantee that the initial interaction with theoutside must take place on free names.15



Mobile Computations and Hostile HostsAs we have also seen in the semantics, scoping is static but theposition of restrictions may vary in the course of computation dueto the phenomenon of scope extrusion. For example, the expression(� y)x(y) :P is ready to send a ��abstracted name y along a channelx, after synchronization we expect that the scope of the restriction willencompass the residual of the above term along with the receiver. Thedi�culty with scope extrusion is that as long as the scope of a nameremains within a trusted environment, then we can be sure that staticscoping is preserved. On the other hand, as soon as restriction spansseveral sites the guarantees become more di�cult to ensure.Breach of privacy attacks occur if an environment is able to guessnames that occur free within an agent. For example, assume afnx
�y� :P operation which returns some free name y occurring withinseal x. This would allow the following reduction:fnx
�y� :P j x [K"(v)] ! PfK=yg j x [K"(v)]To obtain this in the calculus we may add fn as an action and add arule which, for the commitment semantics, does the following:fn n
�y� :P j n[Q] ��! Pfx=yg j n[Q] for x 2 fn(Q)A side e�ect of this rule is that the perfect �rewall equation does nothold anymore and that it is therefore not possible to rely on privacy ofnames. Consider the following terms: x [(� y)y [K"(v)] ] � x [0] in theSeal� calculus they are bisimilar, but with the addition of fn we candistinguish them in the following context:fnx
�z� :P j x [(� y)y [K"(v)] ] 6� fnx
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~y�P x�(�~y) :P x��! 
�~y�PP x?�! !1P 0 Q x?�! !2Q0P j Q ��! ��� (!1P 0) � (!2Q0) P xy�! !1P 0 Q xy�! !2Q0P j Q ��! ��� (!1P 0) � (!2Q0)Mobility:x�hyi :P x�hyi�! ���P x�hyi : P x��! 
�X�(P j y [X])bn(!)\fn(P 0)=;P x�hyi�! ���P 0 Q y[]�! !Q0P j Q x��! !(P 0 j Q0)
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