
Semantic Subtyping

Alain Frisch
Département d’Informatique

École Normale Supérieure, Paris, France
Alain.Frisch@ens.fr

Giuseppe Castagna
C.N.R.S., Département d’Informatique

École Normale Supérieure, Paris, France
Giuseppe.Castagna@ens.fr

Véronique Benzaken
LRI, UMR 8623,C.N.R.S.

Université Paris-Sud, Orsay, France
Veronique.Benzaken@lri.fr

Abstract

Usually subtyping relations are defined either syntactically by
a formal system or semantically by an interpretation of types in an
untyped denotational model. In this work we show how to definea
subtyping relation semantically, for a language whoseoperational
semantics isdriven by types; we consider a rich type algebra,
with product, arrow, recursive, intersection, union and comple-
ment types. Our approach is to “bootstrap” the subtyping relation
through a notion of set-theoretic modelof the type algebra.

The advantages of the semantic approach are manifold. Fore-
most we get “for free” many properties (e.g., the transitivity of
subtyping) that, with axiomatized subtyping, would require tedious
and error prone proofs. Equally important is that the semantic ap-
proach allows one toderivecomplete algorithms for the subtyp-
ing relation or the propagation of types through patterns. As the
subtyping relation has a natural (inasmuch as semantic) interpre-
tation, the type system can give informative error messageswhen
static type-checking fails. Last but not least the approachhas an
immediate impact in the definitionand the implementationof lan-
guages manipulating XML documents, as this was our original
motivation.

1. Introduction
Many recent type systems rely on a subtyping relation.

Its definition generally depends on the type algebra, and
on its intended use. We can distinguish two main ap-
proaches for defining subtyping: thesyntacticapproach and
thesemanticone. The syntactic approach (by far the most
widespread) consists in defining the subtyping relation by
axiomatizing it in a formal system (a set of inductive or
coinductive rules); in the semantic approach (for instance,
[1, 3]), instead, one starts with a model of the language and
an interpretation of types as subsets of the model, then de-
fines the subtyping relation as the inclusion of denoted sets,
and, finally, when the relation is decidable, derives a sub-
typing algorithm from the semantic definition.

The semantic approach is much more technical and con-
straining, and this may explain why it has obtained less
attention than syntactic subtyping. However when used it
presents several advantages:

1. When type constructors have a natural interpretation in
the model, the subtyping relation is by definition com-
plete with respect to its intuitive interpretation as set in-
clusion: whent ≤ s does not hold, it is possible to

exhibit an element of the model which is in the inter-
pretation oft and not ofs, even in presence of arrow
types (this property can be used to return informative er-
ror messages to the programmer); in the syntactic ap-
proach one can just say that the formal system does not
provet ≤ s, and there may be no clear criterion to as-
sert that some meaningful additional rules would not al-
low to prove it. This argument is particularly important
with a rich type algebra, where type constructors inter-
act in non trivial ways; for instance, when considering
arrow, intersection and union types, one must take into
account many distributivity relations, such as, for exam-
ple,(t1 ∨ t2) → s ≃ (t1 → s) ∧ (t2 → s).

2. In the syntactic approach deriving a subtyping algorithm
requires a strong intuition of the relation defined by the
formal system, while in the semantic approach it is a sim-
ple matter of “arithmetic”. Furthermore, as most of the
formal effort is done with the semantic definition of sub-
typing, studying variations of the algorithm (optimiza-
tions, different rules) results much simpler (this is com-
mon practice in database theory where, for example, op-
timizations are derived directly from the algebraic model
of data).

3. While the syntactic approach requires tedious and error-
prone proofs of formal properties in the semantic ap-
proach many of them come for free: for instance, the
transitivity of the subtyping relation is trivial, which
makes proofs such as cut elimination or transitivity ad-
missibility pointless.

Although these properties seem quite appealing, the tech-
nical details of the approach hinder its development: in the
semantic approach, one must be very careful not to intro-
duce any circularity in the definitions: for instance, if the
type system depends on the subtyping relation—as this is
generally the case—one cannot use it to define the seman-
tic interpretation which must thus be untyped; also, usually
the model corresponds to an untyped denotational seman-
tics, and types are interpreted as ideals and this precludes
the interpretation of negative types. For these reasons all
the semantic approaches to subtyping previous to our work
presented some limitation: no higher-order functions, no
complement types, and so on. The main contribution of our
work is the development of a formal framework that over-
takes these limitations.

1

The starting point of this work is XDuce [7, 5, 6] a language
for defining transformations of XML documents. XDuce is
a functional language with an elegant definition and it pro-
vides many features and solutions that are interesting both
from theoretical and practical viewpoints. Its type system
relies on the observation that the types of XML documents
can be represented as regular tree expressions where the
typing relation coincide with (regular) language member-
ship.

XDuce fits well the semantic approach to subtyping: as
functions are not first class, values are just XML docu-
ments, and subtyping is exactly regular tree language in-
clusion. In this work we present the functional core of
our languageCDuce (read “seduce”) which extends XDuce
with first class functions, and makes boolean connectives
(union, intersection, complement) explicit in the type alge-
bra. We also recast XDuce features in a less XML-specific
framework. This yields the first, in our ken, subtyping sys-
tem with recursive types and arbitrary boolean combina-
tions (interpreted as their set-theoretic counterpart).

In XDuce a programmer can easily write overloaded
functions, but the type system is not powerful enough to
type them: as a matter of fact XDuce functions can be de-
fined in terms of a pattern matching that is very close to type
case. It seems an undue restriction not to allow different
matching branches to return different types, so to have over-
loaded functions. ThereforeCDuce extends XDuce also for
it allows the definition of (late bound) overloaded functions
(see [2]).

Since inCDuce one can express overloaded functions,
and patterns (Section 3) can discriminate on types, then we
are in the presence of a type-driven operational semantics.
In this paper, we show how to apply the semantic subtyping
in such a setting: as it is not possible to consider a model of
the language before the type system is defined, we introduce
a notion of modelof the type algebra(Section 2), start with
a non-computationalbootstrapmodel, use it to define first
the subtyping relation, then the typing one, and finally the
(operational) semantics of the language. One of the main
results of this paper (Theorem 4.1) is that the typing relation
endows the set of (well-typed) values of the language with
a structure of model equivalent to the bootstrap model.

Finally, while the negation (complement) connective
raises many difficulties in denotational models (e.g., the
complement of an ideal is not an ideal) we avoid them by
resorting to a purely set-theoretic notion of model.

2. Types

2.1. Type syntax

We want to define the syntax of a type system that in-
cludes recursive, product, arrow, intersection, union, and
negation types but excludes ill-formed (i.e., unguarded) re-
cursions such asµα.α ∨∨∨ α. This can be obtained by the

following BNF productions:

Types T ::= α | C | µα.C

Combinations C ::= A | ¬¬¬C | C ∨∨∨ C | C ∧∧∧ C

Atoms A ::= T →→→ T | T ××× T | b | 0 | 1

where α denotes type variables andb ranges over a set
of (atomic) basic typesB. The syntax above corresponds
to the types we have in mind for our language but is un-
fit to the technical developments that follow: if we used
such a presentation, then we would be obliged to introduce
some syntactic congruence over types allowing us to de-
duceµα.C ≡ C[µα.C/α] (in order to account for recursive
types in definitions and algorithms) and, say,C ≡ C∨∨∨C or
1 ≡ ¬¬¬0 (in order that algorithms, which proceed by saturat-
ing some sets of types, terminate), etc. For this reason, and
because the algorithms we define next work “sort-wise” (ar-
rows with arrows, products with products, and basic types
with basic types), we rather use a (multi-sorted) algebraic
presentation of syntactic types, which is equivalent to the
one above but tailored for the technical developments that
follow. The advantage of the algebraic presentation is thatit
hugely simplifies the statement of precise theorems and it is
close to implementation; its drawback is that it results quite
technical and tedious. So a reader mainly interested in lan-
guage features can just skip to Section 2.2 and use, instead,
the BNF presentation above (modulo the implicit semantic
equivalences for boolean connectives and recursive types).

Shallow type expressions. We define the set of types
as a fixpoint of a functor that constructs boolean combina-
tions of types over a set. More precisely, we considerT X ,
the set ofshallowtype expressions overX , whose elements
are, intuitively, boolean combination of atoms of the form
x →→→ y, x ××× y, or b, with x, y ∈ X . Without loss of gen-
erality, we consider boolean combinations that are sorted—
they separate, say, arrows from products—and in disjunc-
tive normal form—i.e., finite unions of finite intersections
of atoms and negation of atoms—: it turns out that these
choices simplify the algorithms. For a setA of atoms, we
can represent disjunctive normal forms onA as elements of
Pf (Pf (A) × Pf (A)) (wherePf (A) is the finite power-
set ofA); each term of the union is represented by the pair
formed by the set of positive atoms and the set of negative
atoms. For examplea ∨ (b ∧ c ∧ ¬d) ∨ ¬e is represented
by {({a}, ∅), ({b, c}, {d}), (∅, {e})}. We use the letteru
to range over sorts (u ∈ {basic, prod, fun}).

Definition 2.1 (Shallow type expressions)The functors
T andTu from sets to sets are defined by:

T X =
∏

u Pf (Pf (TuX) × Pf (TuX))
TbasicX = B

TprodX = X2

TfunX = X2

An element(x, y) of TprodX (respectively,TfunX) is writ-
ten asx××× y (respectively,x →→→ y).

2

Definition 2.2 (Type algebra) A type algebrais a set T to-
gether with an implicit bijection T→ T T. Elements of
T (respectively, of Tu = Pf (Pf (TuT) × Pf (TuT)),
and of Au = TuT) are calledtypes(respectively,u-types,
and atomicu-types). A typet is thus a triple ofu-types
(tbasic, tprod, tfun) that we write also(tu)u:sort.

This definition means that every shallow type expression
over types is again a type, and conversely, every type can be
seen as a shallow type expression over types.1

Regularity. We can decompose a typet ∈ T to the set
of types it is built from (theb and the types just below a
constructor). Fort to be representable in a computer, the
transitive closure of this decomposition must be finite.

Definition 2.3 (Base, regularity) Let T be a type algebra;
for a typet = (tu)u:sort the plinth i(t) ⊆ T ∪ B collects
all the elements ofT and ofB that appear int seen as a
shallow type expression over T:

i(t) =
⋃

u

⋃

(P,N)∈tu

⋃

a∈P∪N i(a)

i(b) = {b} for b ∈ B

i(t1 →→→ t2) = i(t1 ××× t2) = {t1, t2}

A finite setX ⊆ T ∪ B is a baseif for all t ∈ X , i(t) ⊆
X . A typet is said to beX-regular if i(t) ⊆ X ; it is
regular if it is X-regular for some baseX . A type algebra
is regular if all its elements are regular.

Theorem 2.4 LetX be a base. The set ofX -regular types
is finite.

The proof of this and all other theorems can be found in the
extended version available athttp://www.cduce.org .

The notion of base will be an important ingredient for
proving the termination of the algorithms we define. Indeed,
the algorithms proceed by saturating some sets of types via
some operations; to prove the termination, it is enough to
prove that all the generated types belong to a given base
(which depends on the arguments of the algorithm).

Recursive type algebras. Let T be a type algebra. Re-
cursive types are introduced as the solutions of systems of
the form {x1 = τ1; . . . ; xn = τn} where theτi are ei-
ther types (i.e., elements ofT) or elements ofT X with
X = {x1, . . . , xn}. A solution is a substitutionσ from
variablesxi to typesti that makes the equations hold; a
substitution is formally a functionσ : X → T, and
T σ : T X → T = T T is its extension to shallow ex-
pressions overX . Note that we do not require a solution to

1Types are products rather than coproducts as we want to consider het-
erogeneous combinations of types. For example, consider the type of inte-
ger listsµℓ.(int×ℓ)∨∨∨nil. This expression denotes a type that is solution of
the equation

x = ({({nil}, ∅)} , {({(int, x)}, ∅)} , ∅).
Note that the first two projections of the tuple solution are not empty.

be unique: in this way we leave the implementation of the
type algebra free to choose whether to make two types such
asµα.α →→→ α andµβ.β →→→ β equal or not.

Definition 2.5 (Recursive type algebra)A type algebraT
is recursive if for every finite setX and every functionτ :
X → T+T X , there exists a functionσ:X → T such that
σ(x) = τ(x) if τ(x) ∈ T andσ(x) = (T σ)s(x) if τ(x) ∈
T X .

Convention 2.6 From now on, we will fix aregularandre-
cursivetype algebra T and work with it.

Finally let us introduce some notation that allows us to re-
cover the BNF presentation given at the beginning of the
section:

Notation 2.7 (Boolean connectives)We define the follow-
ing abbreviations for types:

0
def
= (0u)u:sort 1

def
= (1u)u:sort

t1 ∧∧∧ t2
def
= (t1u ∧∧∧ t2u)u:sort t1 ∨∨∨ t2

def
= (t1u ∨∨∨ t2u)u:sort

¬¬¬t
def
= (¬¬¬utu)u:sort

where for every sortu we have:
0u

def
= ∅ 1u

def
= {(∅, ∅)}

t1u ∨∨∨ t2u
def
= t1u ∪ t2u

t1u ∧∧∧ t2u
def
= {(P 1 ∪ P 2, N1 ∪ N2) | (P i, N i) ∈ tiu}

¬¬¬utu
def
=

∧∧∧

(P,N)∈tu

{({a}, ∅) |a ∈ N} ∪ {(∅, {a}) |a ∈ P}

The reader can easily check that the definitions above sim-
ply correspond to the intuition of types as multi-sorted
boolean combinations in disjunctive normal form in which
boolean operators are applied component-wise. So for ex-
ample the notation for negation is obtained by a simple ap-
plication of De Morgan’s laws.

Convention 2.8 We identify an elementa ∈ Au with
{({a}, ∅)} ∈ Tu and an elementtu ∈ Tu with t =
(tu′)u′:sort ∈ T wheretu′ = tu for u′ = u andtu′ = 0u′ for
u′ 6= u. This gives natural inclusions Au ⊆ Tu ⊆ T.

With this convention, everyu-typetu can be written:

tu =
∨∨∨

(P,N)∈tu

∧∧∧

a∈P

a∧∧∧
∧∧∧

a∈N

¬¬¬ua

(we omit theu in¬¬¬u in such an equation when no confusion
is possible) and a typet can be written as a (disjoint) union
of u-types:

t =
∨∨∨

u:sort

tu

2.2. Models and subtyping relations
To define the subtyping relation, we must start by giving

some meaning to basic types. In the syntactic approach this
is done by fixing a subtyping relation for these basic types.
In our semantic approach, this is obtained by choosing an
interpretation of atomic basic types as sets.

3

Definition 2.9 (Interpretation of B) An interpretation of
B is a setC of constantstogether with a functionBJ K :
B → P(C).

Convention 2.10 From now on we will always refer to a
chosen fixed interpretation(C, BJ K). Moreover, for each
constantc ∈ C, we assume the existence of an atomic
basic typetc ∈ B such that,(i) c ∈ BJtcK and, (ii)
∀b ∈ B. (BJtcK ⊆ BJbK) or (BJtcK ∩ BJbK = ∅).

Premodels: structures and interpretations. Contin-
uing the semantic approach to subtyping, we have to inter-
pret all types as subsets of a given structure.

Definition 2.11 (Structure) A structureis a set D parti-
tioned intoDbasic, Dprod , and Dfun , together with two bi-
jections∂basic : C → Dbasic and∂prod : D2 → Dprod such
that the order∂prod(d1, d2) > d1, ∂prod(d1, d2) > d2 is
well-founded.

Convention 2.12 In a structure, the bijections∂prod and
∂basic are kept implicit, so that we can write:Dprod = D2

andDbasic = C .

What we do next is to use a structure to define a set theoretic
interpretation of our type algebra.

Definition 2.13 (Premodel) Let T be a type algebra. A
premodelof T is a structureD together with an interpre-
tation functionJ K : T → P(D) that satisfies the following
properties2 (for all b ∈ B, t, t1, t2 ∈ T, u : sort):

1. JbK = BJbK ⊆ Dbasic;
2. Jt1 ××× t2K = Jt1K × Jt2K ⊆ Dprod;
3. Jt1 →→→ t2K ⊆ Dfun ;
4. Jt1 ∨∨∨ t2K = Jt1K ∪ Jt2K;
5. Jt1 ∧∧∧ t2K = Jt1K ∩ Jt2K;
6. J¬¬¬tK = D\JtK;
7. J1uK = Du.

As we see there is no real restriction on the interpretation of
the arrow types as this is done at the level ofmodels. The
main reason for the definition of a premodel ofT is that it
induces the following subtyping relation onT:

Definition 2.14 (Subtyping) Let T be a type algebra and
(D , J K) a premodel of T. The subtyping relation≤D in-
duced on T is defined as follows:

t ≤D s ⇐⇒ JtK ⊆ JsK

The associated equivalence is written≃D .

It is straightforward from its definition that≤D is a preorder
relation. Note that≤D is determined by the equivalence
class of0, becauset ≤D s ⇔ t ∧∧∧ ¬¬¬s ≃D 0. Hencefor-
ward we will omit the subscriptD of ≤ when clear from
the context.

2This definition impliesJ0K = ∅. To make the use of∂prod explicit,
the second property should be readJt1 ××× t2K = {∂prod(d1, d2) | d1 ∈
Jt1K , d2 ∈ Jt2K}. Moreover, because of the equality1fun ∧∧∧ (t1 →→→
t2) = t1 →→→ t2, the conditionJt1 →→→ t2K ⊆ Dfun is redundant and added
just for clarity.

Models. Consider the type algebraT. For this algebra we
have a class of possible premodels that vary according to the
interpretation of arrow types of the algebra. Each premodel
induces a subtyping relation. Now among all these premod-
els we select those whose induced subtyping relation satis-
fies a given property and we call themmodels; the property
is that the subtyping relation behaves “as if” arrow types
were interpreted extensionally, as sets of binary relations
(graphs of possibly non-deterministic and non-terminating
functions). For a premodelD , we write DΩ = D ∪ {Ω}
whereΩ is a distinguished element that does not belong to
D (intuitively, it represents the type error).

Definition 2.15 (Extensional arrows) Let T be a type al-
gebra and(D , J K) a premodel of T. Theextensional inter-
pretationof an atomicfun-type(t →→→ s) ∈ Afun is defined
as 3: E Jt →→→ sK = {f ⊆ D × DΩ | ∀(d1, d2) ∈ f. d1 ∈
JtK ⇒ d2 ∈ JsK }. We naturally extend this definition to
everyfun-typetfun ∈ Tfun :

E JtfunK =
⋃

(P,N)∈tfun
((

⋂

a∈P E JaK)\(
⋃

a∈N E JaK))

Definition 2.16 (Model) A premodelD is a model if for
everyfun-typetfun , one has:JtfunK=∅ ⇐⇒ E JtfunK=∅.

This restriction is meaningful for at least three reasons :
1. It makes the subject reduction property for the language

in Section 4 hold.
2. It makes the set of all well-typed values of the language

be a model.
3. It matches the underlying intuition we have of function

spaces as sets of possibly non-deterministic and non-
terminating functions and of arrow types as constraints.

The following theorem gives a more explicit condition, that
will be used in next section to derive a subtyping algorithm:

Theorem 2.17 A premodelD is a model if and only if for
all finite subsets{ti →→→ si}i∈I and {t′j →→→ s′j}j∈J of Afun

one has:
∧∧∧

i∈I(ti →→→ si) ≤
∨∨∨

j∈J (t′j →→→ s′j) ⇐⇒

∃j ∈ J.

{

t′j ≤
∨∨∨

i∈I ti and
∀I ′ ⊆ I. (t′j ≤

∨∨∨

i∈I′ ti) or (
∧∧∧

i∈I\I′ si ≤ s′j)

The proof of this theorem relies on the observation that
E Jt →→→ sK = P(∁D×DΩ

(JtK × ∁DΩ
JsK)) (where ∁EF is

E \ F , that is the complement ofF with respect toE) and
on the following lemma:

Lemma 2.18 Let P andN be two finite sets and(Xi)i∈P ,
(Yi)i∈P , (X ′

j)j∈N , (Y ′
j)j∈N be four set families. Then:

1.
⋂

i∈P

(Xi × Yi)\
⋃

j∈N

(X ′
j × Y ′

j) =

3The property in Definition 2.15 is one particular choice, butother
choices are possible. For instance, in [4] we proposed a definition with-
outΩ, and obtained a slightly different definition of model.

4

⋃

N ′⊆N

(
⋂

i∈P

Xi\
⋃

j∈N ′

X ′
j) × (

⋂

i∈P

Yi\
⋃

j∈N\N ′

Y ′
j)

;

2.
⋂

i∈P

P(Xi) ⊆
⋃

j∈N

P(X ′
j) ⇐⇒∃j ∈ N.

⋂

i∈P

Xi ⊆ X ′
j

and the equivalence also holds forPf instead ofP.

2.3. Universal model and subtyping algorithm
So the model condition is sensible; but is it not too re-

strictive? Does there exists at least one premodel satisfying
this condition, and can we exhibit an algorithm to compute
its induced subtyping relation? The answers are all positive;
note that for cardinality reasons, there is no structureD with
Dfun = P(D × DΩ), but Lemma 2.18 suggests to restrict
to finite binary relations, that is takeDfun = Pf (D ×DΩ).

Theorem 2.19 (Universal model)Let S be the premodel
defined by interpreting functions as finite binary relations;
that is, its structure is the set of all finite terms defined by:

d : := c c ∈ C

| (d1, d2)
| {(d1, d

′
1), . . . , (dn, d′n)} d′i ∈ SΩ = S ∪ {Ω}

and the interpretation of arrow types is defined by:

Jt →→→ sK={{(d1, d
′
1), . . ., (dn, d′n)} | di ∈ JtK⇒ d′i ∈ JsK}

Then: 1. the premodelS is a model;
2. it is universal: for every modelD , and for all

t1, t2 ∈ T.t1 ≤D t2 ⇒ t1 ≤S t2;
3. there is an algorithm that decides ift1 ≤S t2.

The universality property means thatS is the model that
induces the best possible subtyping relation. Note that even
if in S types are sets of functions with finite graphs this
does notmean that a language of this framework can only
express functions with finite graphs (see Section 4). Fur-
thermoreS is not the only universal model: most of the
reasonable (and more complex) models we can think of are
universal and while there exist non-universal models, their
construction is not trivial. Finally note that we are consid-
ering modelsof the type algebra: in principle these are not
models of the language (e.g. there is no notion of applica-
tion onelements).

The algorithm and the proof of universality involve the
notion ofsimulation, which captures the idea of a coinduc-
tive set of rules (greatest fixpoint). The intended meaning is
that a type is in some simulation if and only if its interpreta-
tion in the universal modelS is the empty set. So the prob-
lem of finding a simulation containingt ∧∧∧ ¬¬¬s is equivalent
to checkingt ≤S s. The actual definition of a simulation
is motivated by Lemma 2.18 and Theorem 2.17.

Definition 2.20 (Simulation) A simulationis a set of types
R⊆T s.t. for all(tv)v:sort∈R, u:sort and(P, N) ∈ tu:

• if u = basicthen:
⋂

b∈P

BJbK ⊆
⋃

b∈N

BJbK;

• if u = prod then for everyN ′ ⊆ N :

∧∧∧

(t×××s)∈P

t ∧∧∧
∧∧∧

(t′×××s′)∈N ′

¬¬¬t′

∈R or

∧∧∧

(t×××s)∈P

s ∧∧∧
∧∧∧

(t′×××s′)∈N\N ′

¬¬¬s′

∈R;

• if u = fun then there is some(t′ →→→ s′) ∈ N such that
(t′ ∧∧∧

∧∧∧

(t→→→s)∈P ¬¬¬t) ∈ R and for everyP ′ ⊆ P :

t′ ∧∧∧
∧∧∧

(t→→→s)∈P ′

¬¬¬t

 ∈ R or

∧∧∧

(t→→→s)∈P\P ′

s∧∧∧¬¬¬s′

 ∈ R.

Theorem 2.21 Let t, s be two types. Then:t ≤S s if and
only if there is a simulationR such thatt∧∧∧¬¬¬s ∈ R.

Let us assume that the inclusion between an intersection
and a union of atomic basic types is decidable. Given a
typet, deciding whether a typet belongs to some simulation
can be done in a classical way4: start from the set{t} and
try to saturate it according to Definition 2.20 until reaching
a simulation; because of the disjunctions in the definition
of a simulation, the algorithm may have to fork and check
different branches. The termination proof is easy: letX be
a base such thatt is X -regular; then all the types that will
be added to the current set are alsoX -regular, and there are
only a finite number a such types.

2.4. Destructors
To define the typing of patterns and expressions, we in-

troduce type destructors, which are somewhat dual of type
constructors×××, →→→. Following our semantic approach, they
will be characterized semantically (up to≃D equivalence).
This means that the destructors depend only on the subtyp-
ing relation induced by the (pre)model.

Theorem 2.22 (Projection) Let D be a premodel,X a
base andt a X -regular type. If the inequalityt ≤D x××× 1
has a solutionx, then it has a least solution, writtenπ1(t),
which is alsoX -regular. Moreover:Jπ1(t)K = {d1 | ∃d2 ∈
D . (d1, d2) ∈ JtK}. And similarly forπ2.

Theorem 2.23 (Application) Let D be a model,t and t′

two types. If the inequalityt ≤D t′ →→→ x has a solution
x, then it has a least solution, writtent • t′. Moreover:
Jt • t′K = {d2 | ∃f ∈ E JtfunK. ∃d1 ∈ Jt′K. (d1, d2) ∈ f}.

Explicit formulas forπ1 and• are given in the extended ver-
sion of the article; however, the formal development only
needs the semantic characterizations above and some prop-
erties we can deduce immediately, such as the monotonicity
of π1 and•, or the fact that(

∧∧∧

ti →→→ si) • s is defined if and
only if s ≤D

∨∨∨

ti.
Actually, everyprod-type can be decomposed as a finite

union of atomicprod-types:

4We prefer to give the mathematical arguments necessary to prove a
class of algorithms instead of giving a single fully explicit algorithm: this
allows many small variations and heuristics, such as the choice of which
types to add at a given step of the algorithm, or caching mechanism.

5

Theorem 2.24 There exists an operatorπ : T → Pf (T2)
such that, for every baseX and everyX -regular typet:
1. t∧∧∧ 1prod ≃

∨∨∨

(t1,t2)∈π(t) t1 ××× t2;
2. ∀(t1, t2)∈π(t).∀i=1, 2.(ti is X-regular) and(ti 6≃ 0).

3. Pattern matching
In this section we define patterns and their semantics.

Even though patterns are part of the language syntax, we
can define their semantics in an arbitrary premodel.

3.1. Syntax
Definition 3.1 (Pre-patterns) Given a type algebra T, and
a set of variablesV, a pre-patternp on (V, T) is a possibly
infinite termp generated by the following grammar

p : := x capture,x ∈ V

| t type constraint,t ∈ T
| p1 ∧∧∧ p2 conjunction
| p1||| p2 alternative
| (((p1,,,p2))) pair
| (((x :=:=:= c))) constant,c ∈ C with JtcK = {c}

Given a pre-patternp on (V, T) we useVar(p) to denote the
set of variables ofV occurring inp (in capture or constant
patterns).

Definition 3.2 (Patterns) Given a type algebra T, and a set
of variablesV, a pre-patternp on (V, T) belongs to the
set of (well-formed) patternsP on (V, T) if and only if it
satisfies the following conditions:
1. the number of distinct subterms ofp is finite (regularity);
2. for every infinite branch ofp there are an infinite number

of occurrences of pair nodes;
3. for every subtermp1 ∧∧∧ p2 of p we have Var(p1) ∩

Var(p2) = ∅, and for every subtermp1|||p2 of p we have
Var(p1) = Var(p2).

In short, patterns are pre-patterns that(i) are regular trees,
(ii) come equipped with a well-founded order (defined by
p1 ∧∧∧ p2 > p1, p2 andp1|||p2 > p1, p2), and(iii) in which
variables in conjunctions and alternatives must satisfy some
reasonable conditions. The second condition in particular
means that patterns have to deconstruct values sooner or
later, thus ensuring the termination of pattern matching.

3.2. Dynamic semantics
This semantics of pattern matching will be used to de-

fine in Section 4 the operational semantics of the language.
It is defined here with respect to a premodel of the type al-
gebra at issue. More precisely, we denote byd/p the result
of matching an elementd ∈ D with the patternp. This
yields either a failure, denoted byΩ, or a substitution of the
variables ofp into D . Formally it is defined as follows:

Definition 3.3 (Semantics of pattern matching)Given
d ∈ D andp ∈ P the matching ofd with p, denoted byd/p,

is the element ofDVar(p) ∪ {Ω} defined by induction on the
lexicographically ordered pair(d, p) as follows:

d/t = {} if d ∈ JtK
d/t = Ω if d ∈ J¬¬¬tK
d/x = {x 7→ d}
d/p1 ∧∧∧ p2 = d/p1 ⊗ d/p2

d/p1|||p2 = d/p1 if d/p1 6= Ω
d/p1|||p2 = d/p2 if d/p1 = Ω
(d1, d2)/(((p1,,,p2))) = d1/p1 ⊗ d2/p2

d/(((p1,,,p2))) = Ω if d 6∈ Dprod

d/(((x :=:=:= c))) = {x 7→ c}

whereγ1 ⊗ γ2 is Ω whenγ1 = Ω or γ2 = Ω and otherwise
is the elementγ ∈ DDom(γ1)∪Dom(γ2) such that:
γ(x) = γ1(x) if x ∈ Dom(γ1)\Dom(γ2)
γ(x) = γ2(x) if x ∈ Dom(γ2)\Dom(γ1)
γ(x) = (γ1(x), γ2(x)) if x ∈ Dom(γ1) ∩ Dom(γ2)

This definition is rather intuitive. There are two possible
causes of failure for a pattern matching: a type constraint
which is not satisfied by the matched object, or a pair pat-
tern applied to an object which is not a pair. The alter-
native patternp1|||p2 has a first-match policy: the object is
matched againstp2 if and only if matching withp1 raises a
failure. When a variablex appears on both sides of a pair
pattern, the two captured elements are paired together. The
pattern(((x :=:=:= c))) usually appears in the right-hand side of
an alternative pattern to give a default value when the left-
hand side fails; for instance, the variablex in the pattern
(((x,,,1)))|||(((x :=:=:= c))) extracts the first component of a pair, or is
bound to the constantc when the matched value is not a pair.

3.3. Examples of patterns
To demonstrate the power of our pattern algebra, we

show by some examples how recursive and pair patterns
may be used to work with (heterogeneous) sequences. In
this section, sequences are codedà la Lisp; a sequence is
either[] (a constant withJt[]K = {[]}) or a pair(head, tail).

1. When applying the recursive patternp1 = (((x ∧∧∧
t,,,1)))|||(((1,,,p1))) to a sequence, the variablex captures the
first element of typet in the sequence. The operational
behavior ofp is simple: assume that the sequence is a
pair (head, tail); if headis of typet, thenx captures it;
otherwise, the matching continues withtail. Note that to
capture the last element of typet in a sequence, it suffices
to reverse the order of the patterns in the alternative.

2. The patternp2 = (((x ∧∧∧ t,,,p2)))|||(((1,,,p2)))|||(((x :=:=:= []))) captures
from a sequence all the elements of a given typet and
returns inx the sequence of these elements. Let us de-
scribe the operational behavior. If the sequence is a pair
(head, tail), there are two cases; ifheadis of typet, then
x captureshead, the matching continues withtail return-
ing a sequence inx, and finally the two values forx are
paired (that is,head is put in front of the returned se-
quence), as stated by the last case of⊗ (Definition 3.3);

6

if headis not of typet, then the matching simply con-
tinues withtail. If instead the sequence is not a pair (the
end has been reached) the empty sequence is returned.

3. The patternp3 = (((x,,,(((1,,,p3))))))|||(((x :=:=:= []))) captures from a
sequence all the elements whose rank is odd (first, third,
fifth, . . .).

4. The patternp4 = (((x ∧∧∧ t1,,,(((x ∧∧∧ t2,,,1))))))|||(((1,,,p4))) captures
from a sequence the first two consecutive elementsd1

of type t1 and d2 of type t2, and returns the pair
(d1, d2), whereas the patternp′4 = (((x∧∧∧ t1,,,(((x∧∧∧ t2,,,(((x :=:=:=
[])))))))))|||(((1,,,p′4))) would return instead a sequence of length 2
with these two elements, that is(d1, (d2, [])).

5. The patternp5 = (((x ∧∧∧ t,,,q)))|||(((1,,,p5))) with q = (((x ∧∧∧
t,,,q)))|||(((x :=:=:= []))) captures from a sequence the first and
longest consecutive subsequence of elements of typet.

3.4. Static semantics and pattern algorithms
To give typing rules for pattern matching in the language,

we need to study the behavior of patterns on types.

Theorem 3.4 There is an algorithm mapping every pattern
p to a type***p+++ such thatJ***p+++K = {d ∈ D | d/p 6= Ω}.

Theorem 3.5 There is an algorithm mapping every pair
(t, p), wherep is a pattern andt a type such thatt ≤ ***p+++, to
a type environment(t/p) ∈ TVar(p) such thatJ(t/p)(x)K =
{(d/p)(x) | d ∈ JtK}.

In other terms,***p+++ is a type formed by all and only those
elements that makep succeed. Ift is a subset of this type,
then(t/p) denotes the type environment of the variables of
p, as it associates to each variablex of p theexacttype of its
values, when the pattern is matched to an element of type
t. As the previous section demonstrates, our pattern algebra
allows to express complex extractions, and we get exact typ-
ing even for them, as opposed to XDuce pattern matching
algorithm [6] where variables capturing subsequences that
are not in tail position do not get exact typing (the idea un-
derlying the algorithm of each theorem is to derive a system
of equations on types from the semantic condition, and use
a general algorithm to solve it, as described in Appendix A).

For example, consider the patternp1 of Section 3.3. This
pattern succeeds if and only if it is applied to a sequence
containing at least one element of typet. Indeed, the algo-
rithm returns for***p1+++ a types ≃ (t×××1)∨∨∨(1×××s). Consider
now the typeu of the sequences alternating elements of type
t1 andt2, i.e.u = (t1×××(t2×××u))∨∨∨t[], and the type environ-
ment returned by applyingp1 to u∧∧∧***p1+++ (which defines the
type ofx, i.e. the only capture variable ofp1). If we write t′i
for ti ∧∧∧ t, then the algorithm returns for(u∧∧∧ ***p1+++/p1)(x)
the typet1 if t1 ≤ t, and the typet′1 ∨∨∨ t′2 otherwise.

4. TheCDuce language
In the previous sections we defined the type system, the

subtyping relation, the set of patterns, and a semantic notion

of matching. We now use all these notions for the definition
of the functional core of theCDuce language. A detailed
description of the language and an interactive prototype are
available athttp://www.cduce.org .

4.1. Syntax
The setsC, V andP of constants, variables and patterns

have already been introduced. LetO denote a set ofopera-
tors. The setE of expressions is defined by the syntax:

e : := c constant,c ∈ C

| o(e) operator,o ∈ O

| x variable,x ∈ V

| µf (t1→→→s1;...;tn→→→sn)(x).e abstraction
| e1e2 application
| (e1,e2) pair
| match e with p1⇒e1| p2⇒e2 pattern matching

Before defining the operational semantics of the lan-
guage we need to define its type system. Indeed the com-
putations of our language are completely type-dependent.
This is so because the pattern matching semantics is defined
for an interpretation of types as sets of values, and this in-
terpretation is induced by the type system. This may result
clearer if we observe that with this syntax for every typet
one can define its characteristic functionχt as follows:

µχ
(1→bool)
t (x).match x with t⇒true| ¬t⇒false

It is then obvious that it is not possible to give the semantics
of this expression without having associated a type to each
expression (or at least to each value).

As the semantics depends on the type system, and the
rules of the type systems are motivated by the semantics, we
first introduce these two objects formally and then comment
them and the constructs of the syntax above together.

4.2. Type system
To define the type system, we have to fix:

• an arbitrarybootstrapmodelD ; it induces a subtyping
relation≤, which in turns defines the type operatorsπi

and•, and the pattern matching operator(t/p);

• for each operatoro ∈ O, a typeto ∈ T and a mono-
tonic functiono[] : {t ∈ T | t ≤ to} → T. Intuitively,
the typeto denotes all the values on which the operator
can operate, ando[t] denotes all the possible results of
applying the operator to a value of typet.

The typing judgmentΓ ⊢ e : t is defined by the set of rules
in Figure 1. The environmentsΓ are partial maps from vari-
ables to types. We work moduloα-conversion and always
suppose that when two environments are concatenated, their
domains are disjoint.

4.3. Small-step operational semantics
Now that, thanks to the bootstrap model, we defined the

well-typed terms of the language, we can select among them
the setV of values. More precisely we distinguish among
all closedandwell-typedexpressions the following ones:

7

Γ ⊢ c : tc
(const)

Γ ⊢ x : Γ(x)
(var)

Γ ⊢ e : t ≤ to
Γ ⊢ o(e) : o[t]

(op)
Γ ⊢ e1 : t1 Γ ⊢ e2 : t2
Γ ⊢ (e1,e2) : t1 ××× t2

(pair)

(for t ≡
∧∧∧

i=1..n
ti →→→ si)

(∀j) t 6≤ t′j →→→ s′j (∀i) Γ, (x : ti), (f : t) ⊢ e : si

Γ ⊢ µf (t1→→→s1;...;tn→→→sn)(x).e : t∧∧∧
∧∧∧

j=1..m¬¬¬(t′j →→→ s′j)
(abstr) Γ ⊢ e1 : t1 →→→ t2 Γ ⊢ e2 : t1

Γ ⊢ e1e2 : t2
(appl)

(for s1 ≡ s∧∧∧ ***p1+++, s2 ≡ s∧∧∧¬¬¬ *** p1+++)

Γ ⊢ e : s ≤ ***p1 +++∨∨∨ *** p2 +++ Γ, (si/pi) ⊢ ei : ti

Γ ⊢ match e with p1⇒e1| p2⇒e2 :
∨∨∨

{i|si 6≃0} ti
(match) Γ ⊢ e : s ≤ t

Γ ⊢ e : t
(subsum)

Figure 1. Typing rules

v : := c | µf (t1→→→s1;...;tn→→→sn)(x).e | (v1,v2)

The type system gives a natural interpretation of types as
sets of values, and it turns out thatV is indeed a model.

Theorem 4.1 Let JtK
V

= {v | ⊢ v : t}. The pair
(V , J K

V
) is a model and it induces the same subtyping re-

lation as the bootstrap model.

This result depends on the presence of multiple arrow types
in abstraction interfaces; for instance, without these over-
loaded functions, a relation such as(t1 →→→ s1) ∧∧∧ (t2 →→→
s2) ≃ (t1∨∨∨t2) →→→ (s1∧∧∧s2) would hold inV , and we would
have to adapt the definition of model to get a corresponding
property.

Two important consequences of this theorem are that(i)
a value is of typet if and only if it is not of type¬¬¬t, and(ii)
t ≤ s really means that all the values of typet are values
of type s. Since the type destructors•, πi and the pattern
matching operators on types***p+++ and(t/p) depend only on
the subtyping relation induced by the (pre)model, then one
can reinterpret their meaning in terms of sets of values.

The operational semantics of the language is given in
Figure 2, whereΩ is a special object denoting a type er-
ror, which is not an expression of the language;v/p is the
substitution that results from applying patternp to v, as in-
troduced in Definition 3.3 for an arbitrary premodel (note
that the definitionv/p depends on the modelV , hence on
the type system);e[σ] is the application of the substitution
σ to the expressione (the standard substitution[v/x] is a
special case in which the pattern is a capture variable); and
finally C[] denotes an evaluation context, defined as:

C[] : := [] | o(C[]) | (C[],e) | (e,C[]) | C[]e | eC[] |
(match C[] with p1⇒e1| p2⇒e2)

For each operatoro, we fix a binary relation
o
→⊆ JtoKV

×

E such that: if⊢ v : t, t ≤ to andv
o
→ e then⊢ e : o[t].

4.4. Commentaries on the language, its type system
and its semantics

The language syntax has constants, variables and pairs,
which are used as customary and do not deserve any par-
ticular comments. The(subsum) rule implies that the type

system is semantic in the sense that the typing judgment
⊢ e : t only depends on the≃-equivalence class oft. Oper-
ator applications are precisely typed:o[] can be seen as an
abstract version ofo(), describing its behavior when only
the type of the argument is known.

The matching expression follows a first match policy:
the second pattern is used if and only if the first one failed to
match the value (that is,v/p1 = Ω). Eachpi binds the vari-
ablesVar(pi) in ei. To understand the typing rule(match),
recall that(t/p) is the typing environment that maps ev-
ery variablex ∈ Var(p) to the type formed by all the val-
ues thatx can assume when a value of typet is matched
against the patternp. For the pattern matching to be ex-
haustive, the types of the matched value must be a sub-
type of ***p1 +++ ∨∨∨ *** p2+++. Because of the first match policy,
the value has actually types ∧∧∧ ***p1+++ when p1 succeed to
match it, and types∧∧∧¬¬¬ *** p1+++ otherwise. If a pattern cannot
succeed (si ≃ 0), the result of the corresponding branch is
discarded: this is useful when typing an overloaded abstrac-
tion (some branches may be useless when checking under a
given constraint in the interface, and their result types must
not be taken into account to prove the constraint at issue:
see the example farther on).

Less standard is the definition of functions. The expres-
sionµf (t1→→→s1;...;tn→→→sn)(x).e denotes a possibly recursive
definition (asf may occur free ine) and it intuitively cor-
responds to the least fixpoint ofλf.λx.e; the arrow types in
an abstraction are constraints on its behavior. Together with
pattern matching, they allowf to be an overloaded function.

The rule(abstr) may seem overly complicated; it is a
refined version of:

(∀i) Γ, (x : ti), (f :
∧∧∧

ti →→→ si) ⊢ e : si

Γ ⊢ µf (t1→→→s1;...;tn→→→sn)(x).e :
∧∧∧

ti →→→ si

(abstr’)

which probably looks more familiar. In this form, it
is the standard rule forλ-abstraction, the body being
type-checked once for each constraint given in the ab-
straction. A closed and well-typed abstractionv =
µf (t1→→→s1;...;tn→→→sn)(x).e is a value of the language, so for
any typet, one must have either⊢ v : t or⊢ v : ¬¬¬t; with the
(subsum) rule, one can prove thatv has typet →→→ s if and

8

Reductions

o(v) → e if ⊢ v : to, v
o
→ e

v1v2 → e[v1/f ; v2/x] if v1 = µf (...)(x).e
match v with p1⇒e1| p2⇒e2 → e1[v/p1] if v/p1 6= Ω
match v with p1⇒e1| p2⇒e2 → e2[v/p2] if v/p1 = Ω, v/p2 6= Ω
C[e1] → C[e2] if e1 → e2

Errors

o(v) → Ω if 6⊢ v : to
v1v2 → Ω if v1 6∈ Vfun
match v with p1⇒e1| p2⇒e2 → Ω if v/p1 = Ω, v/p2 = Ω
C[e] → Ω if e → Ω

Figure 2. Small-step operational semantics

only if
∧∧∧

ti →→→ si ≤ t →→→ s. But when this is not the case,
the(abstr’) rule does not prove that⊢ v : ¬¬¬(t →→→ s). This
is exactly the purpose of the conjunction of negative arrow
typest′ in the rule(abstr).

We next show an example to illustrate the need of dis-
carding useless branches when typing a pattern matching in
the body of an overloaded function. Consider the typing of:

µf (int→→→bool;bool→→→int)(x).match x with int⇒true| bool⇒3

When checking the first constraint of the interface,int →→→
bool, the pattern matching is typed under the assumption
x:int; since the first branch of the match accepts any value
of type int, then the second branch is useless (this corre-
sponds tos2 ≃ 0 in rule (match)). If we were obliged to
take its result typeint into account, then we could not prove
the constraintint →→→ bool, but justint →→→ (bool∨∨∨ int).

The abstraction interface can be used to express fine-
grained constraints on the behavior; let us show this by
an example. Letb and empty be two atomic basic types
(for instance,empty = t[]) and t, s two types such that
t = s∨∨∨ empty ands = b××× t. Values of typet can be seen
as lists of elements of typeb (with a terminator inempty),
and values of types are non-empty lists. A concatenation
function can be written:
µf (t×××t→→→t)(x).match x with

(((empty,,,ℓ)))⇒ℓ
| ((((((head,,,tail))),,,ℓ)))⇒(head,f(tail,ℓ))

But we can use a stronger constraint in the interface —and
force a better type (strictly smaller thant×××t →→→ t)— such as
((t×××t)∧∧∧¬¬¬(empty×××empty)→→→s ; (empty×××empty)→→→empty)
and leave the rest unchanged: the function still type-checks.
Thus besides to type the union of different expressions,
overloaded types can also be used to give a finer descrip-
tion of the behavior of a same expression.

4.5. Properties
Theorem 4.2 (Subsumption elimination)Let Γ e : t
denote the judgment defined by the rules in Figure 3 plus
the rules in Figure 1 without (abstr), (appl) and (subsum). If
Γ ⊢ e : t then there exists a typet′ ≤ t such thatΓ e : t′.

Using a substitution lemma and the semantic characteriza-
tion of the pattern matching type operator(t/p), it is very

easy to prove that well-typed programs cannot go wrong:

Theorem 4.3 (Subject reduction) If ⊢ e : t, then
(1) e 6

∗
→ Ω and

(2) e
∗
→ e′ implies⊢ e′ : t.

Note that the second point (preservation of typing) doesnot
hold for the type system with(abstr’) instead of(abstr)
while the first one (absence of type error) of course does.
Though not as important as the subject reduction property,
the following result shows that the circle is really complete:

Theorem 4.4 Let t1 andt2 be two types such thatt1 • t2 is
defined. Then:⊢ v : t1 • t2 ⇔ ∃v1, v2. (⊢ v1 : t1)∧ (⊢ v2 :

t2) ∧ (v1v2
∗
→ v).

4.6. Typing algorithms
For the type-driven dynamic semantics to be effective,

one must be able to decide thetype-checkingproblem for
thevaluesof the language; in other terms one must be able
to decide if for a given typet and valuev, ⊢ v : t holds.
Note that asv is a value, it is by definition a well-typed ex-
pression. Here is a naive algorithm. First determine the uni-
verseu of v. The problem is then to check if there is some
(P, N) ∈ tu such that∀a ∈ P. v ∈ JaK and∀a ∈ N. v 6∈
JaK. If v is a constantc, the tests(c ∈ BJbK) are easy. If
v is an abstractionµf (t1→→→s1;...;tn→→→sn)(x).e, the condition
(v ∈ Jt0 →→→ s0K) simply means

∧∧∧

ti →→→ si ≤ t0 →→→ s0.
If v is a pair(v1, v2), the condition(v ∈ Jt1 ××× t2K) means
(v1 ∈ Jt1K andv2 ∈ Jt2K), hence two recursive calls.

For the static semantics to be effective, one must be able
to decide thetype-inferenceproblem for theexpressionsof

(for t ≡
∧∧∧

i=1..n
ti →→→ si)

(∀j) t 6≤ t′j →→→ s′j (∀i) Γ, (x:ti), (f :t) e : ui ≤ si

Γ µf (t1→→→s1;...;tn→→→sn)(x).e : t∧∧∧
∧∧∧

j=1..m¬¬¬(t′j →→→ s′j)

Γ e1 : t1 Γ e2 : t2
Γ e1e2 : t1 • t2

Figure 3. Semi-algorithmic rules

9

the language; that is if for a given expressione, there ex-
ists a typet such that⊢ e : t holds. Theorem 4.2 is a
step towards an algorithm, as it removes the only typing
rule not associated to a syntactic construction in the lan-
guage. Thus is syntax-directed, but it does not satisfy
the subformula property since(abstr) does not impose the
choice of the negative arrow types. Therefore this rule may
require the algorithm to backtrack, possibly infinite many
times. As these negative arrow types are mainly a technical
trick to make the subject reduction theorem hold, one may
consider instead of(abstr) the more restrictive rule(abstr’)
discussed before, and we get immediately a (not complete)
type-inference algorithm.

Acknowledgments We are very grateful to Juliusz
Chroboczek, Mariangiola Dezani, Haruo Hosoya, Ben-
jamin Pierce, François Pottier and Jérôme Vouillon for the
interesting discussions and for their comments and stimu-
lating remarks which helped us to improve the presentation.
We would like to thank Francesco Zappa Nardelli for sug-
gesting the nameCDuce. Work partially supported by the
European FET contractMyThS, IST-2001-32617.

References
[1] A. Aiken and E. L. Wimmers. Type inclusion constraints

and type inference. InProceedings of the Seventh ACM Con-
ference on Functional Programming and Computer Architec-
ture, pages 31–41, Copenhagen, Denmark, June 93.

[2] G. Castagna, G. Ghelli, and G. Longo. A calculus for over-
loaded functions with subtyping.Information and Computa-
tion, 117(1):115–135, 1995.

[3] F. Damm. Subtyping with union types, intersection typesand
recursive types II. Research Report 816, IRISA, 1994.

[4] A. Frisch. Types récursifs, combinaisons booléenneset fonc-
tions surchargées: application au typage de XML. DEAPro-
grammation, Université Paris 7, Sept. 2001. Available at
http://www.di.ens.fr/˜frisch .

[5] H. Hosoya and B. C. Pierce. XDuce: A typed XML process-
ing language. InProceedings of Third International Work-
shop on the Web and Databases (WebDB2000), 2000.

[6] H. Hosoya and B. C. Pierce. Regular expression pattern
matching for XML. In The 25th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, 2001.

[7] H. Hosoya, J. Vouillon, and B. C. Pierce. Regular expression
types for XML. In Proceedings of the International Confer-
ence on Functional Programming (ICFP), 2000.

A. Pattern algorithms
Definition A.1 LetV be afinite set of variables, writtenα,
α1, α2, β, A right-hand side is either a typet ∈ T, a
disjunctionα1∨∨∨α2, a conjunctionα1∧∧∧α2, a negation¬¬¬α,
a productα1 ××× α2, or a variableα. A system onV is a
mappingS from variables to right-hand sides. The system
is also written(α ≡ S(α))α∈V .

A semantic solution for this system is a mappings :
V → P(D) such that for everyα ∈ V : s(α) = JtK when
S(α) = t, s(α) = s(α1) ∪ s(α2) whenS(α) = α1 ∨∨∨ α2,
s(α) = Jα1K ∩ Jα2K whenS(α) = α1 ∧∧∧ α2, s(α) =
D\s(α1) whenS(α) = ¬¬¬α1, s(α) = s(α1) × s(α2) when
S(α) = α1 ××× α2 ands(α) = s(α1) whenS(α) = α1. A
syntactic representation of a semantic solution is a mapping
σ : V → T such that for everyα ∈ V , Jσ(α)K = s(α).

For a given systemS, we writeα ; β if S(α) is ei-
ther the variableβ or a negation,disjunction or conjunction
whereβ appears.

Theorem A.2 (Guarded systems)Let S be a system. As-
sume that the relation; has no cycle. ThenS has a unique
semantic solutions, and there is an algorithm to compute a
syntactic representation ofs.

Theorem A.3 Letp be a pattern; the semantic condition in
the definition of***p+++ is equivalent to the following guarded
system of equations (the variables are the***p′+++ for the sub-
termsp′ of p):

***x+++ ≡ 1 ***p1|||p2+++ ≡ ***p1+++∨∨∨ *** p2+++
***t+++ ≡ t ***p1 ∧∧∧ p2+++ ≡ ***p1+++∧∧∧ *** p2+++
***(((x :=:=:= c)))+++ ≡ 1 ***(((p1,,,p2)))+++ ≡ ***p1+++××× *** p2+++

By combining the two previous theorems, we get an algo-
rithm to compute***p+++.

Theorem A.4 (Positive systems)A system without nega-
tion and intersection has a smallest semantic solutions
(P(D)V being ordered by pointwise inclusion), and there
is an algorithm to compute a syntactic representation ofs.

Theorem A.5 Letp be a pattern,t a type such thatt ≤ ***p+++
and x ∈ Var(p). Let X be a base containingt and all
the***p′+++ for the subtermsp′ of p. The semantic condition
in the definition of(t/p)(x) corresponds to the smallest
solution of the following positive system (the variables are
the (t′/p′)(x) for the subtermsp′ of p and theX -regular
typest′):

(t′/x)(x) ≡ t′

(t′/p1|||p2)(x) ≡ ((t′∧∧∧***p1+++)/p1)(x)∨∨∨((t′∧∧∧¬¬¬*** p1+++)/p2)(x)

(t′/p1 ∧∧∧ p2)(x) ≡ (t′/pi)(x) if x ∈ Var(pi)

(t′/(((p1,,,p2))))(x) ≡
∨∨∨

(t1,t2)∈π(t′)

(t1/p1)(x)××× (t2/p2)(x)

if x∈Var(p1)∩Var(p2)

(t′/(((p1,,,p2))))(x) ≡ (π1(t
′)/p1)(x) if x∈Var(p1)\Var(p2)

(t′/(((p1,,,p2))))(x) ≡ (π2(t
′)/p2)(x) if x∈Var(p2)\Var(p1)

(t′/(((x :=:=:= c))))(x) ≡ tc if t′ 6≃ 0

(t′/(((x :=:=:= c))))(x) ≡ 0 if t′ ≃ 0

(formally, we have to introduce a finite number of extra vari-
ables, because our definition of a system has only binary
disjunctions or products of variables on right-hand side)

By combining the two previous theorems, we get an algo-
rithm to compute(t/p).

10

