Semantic subtyping for thetecalculus

Giuseppe Castagna Rocco De Nicola Daniele Varacca
Ecole Normale Supérieure, Paris Universita di Firenze pdral College, London

Abstract B.2 The existence ofamodel 14
Subtyping relations for thercalculus are usually de- B.3 Proof of decidability of finiteness 17
fined in a syntactic way, by means of structural rules. We B.4 Proofof Theorem3.6 17
propose a semantic characterisation of channel types and
use it to derive a subtyping relation. C More examples 17

The type system we consider includes read-only and
write-only channel types, as well as boolean combinations1 Introduction and motivations
of types. A set-theoretic interpretation of types is predid
in which boolean combinations are interpreted as the corre-
sponding set-theoretic operations. Subtyping is defined a
inclusion of the interpretations. We prove the decidapdit
the subtyping relation and sketch the subtyping algorithm.
In order to fully exploit the type system, we define a vari-
ant of ther-calculus where communication is subjected to
pattern matching that performs dynamic typecase.

In this paper we study a type system for a concurrent
process language in which values are exchanged between
Sagents via communication channels that can be dynami-
cally generated. The language we consider is a variant of
the asynchronous-calculus, where communication is sub-
jected to pattern matching.

There exists a well established literature on typing and
subtyping for therecalculus. However, all the approaches
we are aware of rely on subtyping relations or on type equiv-

Contents alences that are defined syntactically, by means of straictur
rules.
1 Introduction and motivations 1 In our view, such syntactic formalisations of typing rela-
2 Types and subtyping 3 tions miss a clean semantic intuition of types. Consider,
for example, the type system defined by Hennessy and
21 Typt_ag """ s 3 Riely [10], which is one of the most advanced type sys-
2.2 '”“_““,"e semantics of types 4 tems for variants of thewcalculus. It includes read-only
2.3 Buildngamodel 4 and write-only channels, as well as union and intersection
2.4 Examples of type (in)equalities 5 types! In that system the following equality is introduced:
2.5 Decidability of subtyping 5
+ + — cht

3 TheCrercalculus 7 e () VN (v2) = 7 (61 V'e2) @)
31 Patterns 7 wherech®(t) is the type of channels from which we can
3.2 Thelanguage 8 only read values of typg andv denotes union. We would
33 Semantics 8 like to understand the precise semantic intuition that unde
34 Typing 9 lies an equation such as (1).
35 Anexample 10 Semantic subtyping. The basic idea is simple: the seman-

4 Extensions 10 tics of a ty!oe is the set o.f its values, ar]d union, intersectiq
4.1 Polyadicversion. 10 and negatlpn types are mterpretgd using the cprrequndmg
42 RecUrsvetypes 11 Set theoretical operators. Subtyping is then defined as-incl

11 sion of the interpretations. However, the subtyping relati

43 Llocalcalculus
is needed in order to type the values, usually by subsump-

5 Conclusion 11 tion. We are therefore trapped in a circle, where we need
subtyping to define typing, that defines the interpretation,
A Type algorithm 13 that defines the subtyping. We are able to break this circle

via a “fixed point” construction.

B Proofs L . . 13 1As a matter of fact, union and intersections of [10] are meta-
B.1 Charac_tgnsmg inclusion (Theorem 2.6 and combinators used only by the type system. The left-handcfigguation
Proposition2.7) 13 (1) could be considered as an alternative notation for giet#fand side.

Before even having defined the language, and thereforeral and intuitive set theoretic interpretation as sets eirth
before even knowing what values are, we define a “boot- values. This property turns out to be very helpful not only
strap” semantics of types, that is used to define the subtyp4o understand the meaning of the types, but also to reason
ing relation. This subtyping relation is then used to type about them. For instance, the subtyping algorithm is de-
values. This gives us another semantics of types, as sets ofluced just by applying set-theoretic properties, in th@fso
values. The key point is that, if we choose the right boot- we can rewrite types by using set-theoretic laws, and the
strap semantics, the values semantics will corresponctto th typing of pattern matching can be better understood in terms
bootstrap semantics, and the circle will be closed. of set-theoretic operations (e.g. the second pattern ir-an a

Channels as boxesln order to understand how channels ternative will have to filter all that was not already matched
by the first pattern: set theoretic difference).

h I I h [ic ac- .
and channel types relate, we have to provide a semantic ac The languageDuce [3] also demonstrated the practi-

count of channels. Our intuition is that a channelis a box in : ;))
.) . : cal impact of the semantic approach: subtyping results are
which we can put things (write) and from which we can take . .
asier to understand for a programmer, since she does not

things (read). The type of a channel, then, is characterise ; .
. . . ave to reason in terms of subtyping rules but rather of set-
by the set of the things the box can contain. Thatis, a chan- : . S
theoretic operations. Furthermore, the compiler/intetgr

nel of typech™ (t) is a box in which we must expect to find . :
. g DDA can return much more precise and meaningful error mes-
objects of type and, similarly, a channel of typeh™(t) is sages

a box in which we are allowed to put objects of tytpd3ut For inst i hecking fails th i t
if one takes this stand, the equality (1) does not seem to be (I)r Ins ancgtl typet—hc tep 'lngthal S t ticomtp' ec:.frfe urns
justified. Consider the typesh' (candy) V ch' (coal) and a value or a witness that 1S In the set-theoretic dierence

ch” (candyV coal). Both represent boxes. If we have a box peftwee? thehd?duf[fd type and the exgectted (tjyper; a?d this
of the first type, then we expect to find in it either a candy information helps the programmer understand why type-

of a piece of charcoal, but we know it is always one of the checking f&?'led' . . :
two. For instance, if we use the box twice, the second time FOr @ wider discussion on the advantages of semantic
we will know what present it contains. A box of the second SUPLYPIng we refer the reader to Castagna and Frisch’s in-
type, instead, is a “surprise box” as it can always give us F0ductory paper [6].

both candies and charcoal. Our intuition suggests that theyjain contributions. This work provides several contribu-
tv_vo types.above are different because they characterise tWgjons: We define a very expressive type and subtype sys-
different kinds of objects. tem for ther-calculus with read-only and write-only chan-
The role of the language. So why did Hennessy and Nel types, product types, and complete boolean combina-
Riely require (1)? The point is that, if in the language un- tions of types. We define a set-theoretic denotational model
der consideration there is no syntactic construction taat ¢~ for the types, where boolean combinations are interpreted
tell apart ach*(candy) channel from ach* (coal) chan- as the corresponding set-theoretic operations and channel
nel (e.g. a typecase), then it is not possible to operatipnal tyPes are interpreted as sets of boxes. We use the model
observe any difference between the types in (1). On thet0 define subtyping as set-theoretic containment. We show
contrary, if it is possible to test whether on a channele how to extend thetr-calculus in order to fully exploit the ex-

are receiving a channel of typgh' (candy) or a channel pressiveness of the type system, in pa_rticular by endowing
of typech' (coal), then a rule such as (1) would give rise iNput actions with pattern matching. Finally we show that
to an unsound system, because it would alowo carry N that setting the typing and subtyping relations are decid
a channel of typech' (candy V coal) which makes the able. A further contribution of this work is the opening of a
test onc crash (since the possibility that the argument is New way to integrate functional and concurrent features in
ach’ (candyV coal) box is not contemplated). We define the same calculus: this will be done by fully integratingr(ou

a variant of thew-calculus, called th€Tecalculus, that ex- ~ new version ofjrandCDuce systems, to yield a calculus
ploits the full power of our new type system, and in partic- With dynamic type dispatch, overloading, channelled com-
ular that permits dynamically testing the type of values re- munications and where both functions and channels have
ceived on a channel. We implement the dynamic test by en-first class citizenship.

dowing input actions with patterns, and allowing synchro- ~ For lack of space proofs are omitted, but they can be
nisation when pattern matching succeeds. The result is sfound in the extended version of this paper, available at
simple and elegant formalism that can be easily extendedhttp 1/ /www.cduce.org.

with product types, to obtain a polyaditr-calculus, and

with a restricted form of recursive types. Related work. The first work on subtyping forrwas done

by Pierce and Sangiorgi [14] and successively extended in
Advantages of a semantic approachlThe main advantage several other works [16, 7, 17].
of using a semantic approach is that the types have a natu- The work closest to ours, at least for the expressiveness

of the types, is the already cited work of Hennessy and type andl the type of all values. For what concerns type
Riely [10]. As far asrttypes are concerned, our work sub- constructorsgh' (t) denotes the type of those channels that
sumes their system in the sense that it defines a richer subean be used tput only values of typd. Symmetrically
typing relation; this can be checked by observing that their ch™(t) denotes the type of those channels that can be used
typerw(s,t) corresponds to the intersectioh” (s) Ach™ (t) to outputonly values of typé. The read and write channel
of our formalism. type ch(t) is absent from our definition. We shall use it
Brown et al. [5] enrichtwith XML-like values that are only as syntactic sugar fah™ (t) A ch™(t), that is the type
deconstructed by pattern matching. The patterns they useof channels that can be used to read aantyg to write only
are quite different from the one we introduce here: for ex- values of typd. The set of all types (sometimes referred to
ample they have patterns to match the interleaving of val- as “type algebra”) will be denoted hy .
ues, which we do not consider. On the other hand they do Although typesch(t) are just syntactic sugar, they will
not consider types, which are the main motivation of our play a crucial role in the rest of the paper. In particular, we
work. shall see that the types of the fooh(t) are all and the only
Acciai and Boreale [2] (independently from our work) types that are not base types and that denote a singleton.
define a language similar to ours, with XDuce-like pattern Wwe shall use them quite often because they are the most

matching. However the type system they propose is less richprecise type of channels (see, e.g., the typing rule (chman) i
than ours and, most importantly, their subtyping relat®n i Section 3.4).

defined syntactically. _ _ In our approach channels are physical boxes where one
As for the technical issues of semantic subtyping, our 4 insert and withdraw objects of a given type. Our in-
starting pointis the work developed by Frisefal.for func- yition is that there is not such a thing as a read-only or

tional programming languages [8, 9], that led to the deSiQ”write-only box: each box is associated to a tymnd one

of CDuce [3]. can always write and read objects of that type into and from
such a box. Thus the type ofi" (t) can be considered just

a constraint telling that a variable of that type will be bdun
only to boxes from which one can read objects of typH

we know that a message has tyge (t), it does notmean
that we cannot write into it, we simply do not have any

Plan of the paper: In Section 2 we introduce the type sys-

tem and define the subtyping relation in terms of a set-
theoretic interpretation of the types. We prove the decid-
ability of subtyping, sketch the subtyping algorithm and
conclude with the definition of patterns and pattern match- information about what can be written in it: for instance

ing whose semantics is completely specified in terms of thethis message could be a box that cannot contain any object.

modgl of :cypes. In St;ectiog 3 we (_jefir;: Thel synr:axfaﬂd S€What the type tells us is simply that we had better avoid
mantics of a pattern-based extensiomatalculus that fully writing into it since, in the absence of further informatjon

exploits the previous type system, and give relevant exam- o writing will be safe. Similarly, if a message is of type
ples of their use. In Section 4 we consider the polyadic ver- (t), then we know that it can only be a box in which
sion of our calcul_us, we enrich it with recursiye ty_p_es and writing an object of typé is safe, but we have no informa-
Sh(.)W’ when p053|_b|e, h(.)W semantic and decidability prop- tion about what could be read from that channel, since the
erties extend to this setting. We conclude by message might be a box that can contain any object. There-
. fore we had better avoid reading from it, unless we are ready
2 Types and subtyping to accept anything. However, if wvage ready to accept any-

We shall start with a relatively simple system with just thing, then our type system guarantees that we can read on
base types, channel types and boolean combinators. In @ channel with typeh™(t) because, as we will see, we have
second moment we shall add the product type constructorch™ (t) < ch(1).
and a restricted form of recursive types. It should be clearer now why we identifgh(t) and

cht(t) Ach™(t): the intersection requires that on channels

2.1 Types of typech™ (t) Ach™ (t) we must be able both to write ob-

In the simplest of our type systems, a type is inductively jects of typet and to read object of (the same) typehis
built by applying type constructors namely base type means that the channels can contain all and only messages
constructors (e.g. integers, strings, etc...), the inpithe of typet. To say it with other words, we have thath'(t)
output channel type constructor, or by applying@olean type (withv standing for either- or —) indicates what can
combinatori.e., union, intersection, and negation: be safely doneelatively to its values, andot what is for-
bidden; thus, the values in the intersection of two types are
permitted by both types.

Notice that, if we had interpreted types as interdictions
Combinators are self-explanatory, withbeing the empty then we should consideh’ (t) Ach™(t) as the channels on

Types t == b | chf(t) | ch (t) constructors
| 0] 1] -t]tvt|tAt combinators

which we cannot writeand we cannot read: this would be
the empty channel.

2.2 Intuitive semantics of types

Our leading intuition is that a type should denote the set

of values of that type. That is

[tl={v]| Fv:t}.

In our approach—where subtyping is defined as contain-

ment of type interpretations—this means tkat t if and
only if every value of types is also of typet. The basic

the types on both sides of the equality have the same
semantics—namely, the singletdft] }—and therefore it is
justified to considech(t) as syntactic sugar for the type on
the right rather than a type constructor.

Our proposed interpretation has other interesting fea-
tures that we shall describe later. In the meanwhile, the
reader who wants to familiarise with our semantics can try
to use the above definitions to verify that the difference
cht(t)\ch (t) and the differenceh®(t)\ch(t) have the
same interpretation, and that the same holdsfoi(1) and
ch~(0). 2 According to the discussion above, in order to

types (integers, strings) should denote subsets of a set 0{aleflne the semantics of a channel type, we need to know the

basic value®. The boolean operators over types should be
interpreted by using the boolean operators over sets. By fol
lowing our intuition we shall have that the interpretatidn o
the typech(t) has to denote the set of all boxes (i.e. chan-
nels) that can contain objects of type

[ch(t)] = {c| cis a box for objects ifft]} . (2)

subtyping relation. And here we are in the presence of a cir-
cular definition. We use the subtyping relation in order to
build the interpretation that we need in order to define the
subtyping relation. We devote the next section to solve this
problem.

2.3 Building a model
The minimal requirement for an interpretation function

Since every box is uniquely associated to a type, then theiS that boolean combinators should be interpreted in the cor

interpretations of channel types are pairwise disjointisTh
already gives invariance of channel typgsh(t)] C [ch(s)]
if and only if [t] = [9].

Starting from the above interpretation df(t), we can
now provide a semantics fah®(t) andch™(t). As said,
the former should denote the set of all boxes from which
one can safely expect to get only objects of typeThus
we require thath' (t) denote all boxes for objects of type
t, but also all boxes for objects of tyme for anys <'t.
Indeed, by subsumption, objects of tyemre also of type
t. Dually,ch™(t) should denote the set of all boxes in which
one can safely put objects of typeTherefore it will denote
all boxes that can contain objects of tygefor anys > t.
Let us writec! to denote a box for objects of tyge We
have

[[ch*(t)]}:{cs|s§t}, [[ch‘(t)]}:{cs|52t}.

Given the above semantic interpretation, from the viewpoin
of types all the boxes of one given typare indistinguish-

able, because either they all belong to the interpretatfon o
one type or they all do not. This implies that the subtyp-
ing relation is insensitive to the actual number of boxes of a

responding set-theoretical operators, and that basiesalu
and channels should have disjoint interpretations.

Definition 2.1 Let ,andB be sets such tha C 2, and
let [] be a function from7 to #(2). (2,[]) is a pre-
modelif

— [b] € B, [ch"(t)]NB =2, [ch (1)]NB = 2;
[1] = 2, [0] = o;
- [~ =2\[t];
- [[t1Vt2]] = [[tl]] U [[tzﬂ, [[tl/\tzﬂ = [[tl]] N [[tzﬂ.

We use this interpretation to build another interpretgtion
according to the intended meaning of equations (3).

Definition 2.2 Let(Z,[]) be a pre-model. Lgt7] denote
the image of the functiop]]. Theextensionainterpretation
of the typesis the functiofi[]| : 7 — Z(B+[.7]), defined
as follows:

- &[b] = [b];
EM) =B+[7], €[0] = 2;
Elt] = £\ T
éﬁ[tmtﬂ] = (50[[1'1]} U(ga[[tz]], g[[tl/\tz]] = éa[[tl]]ﬂé‘)[[tz]];
Eleh™ O] = {[s] | [] < [t]}:
&leh O] = {[s] [[s] = [T}

given type. We can therefore assume that for every equiva-

lence class of types, there is only one such box, which may

as well be identified witfft], so that the intended semantics
of channel types would be

[ch(t)] = {[[sﬂ | sgt} , [ch™(®)] = {[[sﬂ | szt} e

A pre-model and its extensional interpretation induce, in
principle, different preorders on types. We could use the ex
tensional interpretation to build yet another interprietat

and so on. In order to close the circle, we shall consider
a pre-model “acceptable” if it is a fixed point of this pro-
cess, that is, if it induces the same containment relation as

We have that this semantics induces covariance of in-its extensional interpretation. This amounts to the foltayv

put types and contravariance of output types. Moreover,

as anticipated, we have thelt(t) = ch™(t) Ach' (t) since

definition:

°The differences\ t is defined asA —t.

Definition 2.3 A pre-model 2,[]) is amodelif for every if and only ift; £ t1, i.e. we should expect to read at least
t1,t2, we haveti] C [to] if and only if&t1] C &to]. what we can write.
. o In order to show the role of our definitions let us de-
The last (and quite hard) point is to show that there ac- g ce this last equation. By definition, (7) holds if and only
tually exists a model, that is, that the condition imposed by it [cht (t;) A ch™(t2)] = [0]. By definition of model and
Definition 2_.3 can indeed bg sat|:_sf|ed. _ the antisymmetry of- this holds iff& [ch* (t;) A ch™ (t2)] =
Paradoxically the model itself is not important. The sub- £[0]. By definition of &[] this holds iff {[t]|[t] < [t]} N
typing relation is essentially characterised by the dedinit {It]I[tz] < [t]} = @. By the reflexivity and transitivity of

of extensional interpretatiofi[]. So what really mattersis his holds iff [tz] Z [ta], that is, by definition of subtyping
the proof that there exists at least one model. As the casegf ¢, « ;.

of recursive types proves (see § 4.2), the existence of such a
model is far from being trivial, and naive syntacticsolmso 2.5 Decidability of subtyping

—such as a term model— cannot be used. Using the semantic characterisation of the types, we are

Theorem 2.4 There exists a modél7, []) also able to prove the decidability of the subtyping refatio
' PR The decision procedure is quite complicated, and in partic-
Types are stratified according to the nesting of the chan-ular it involves finite and atomic types.
nel constructor. The mod¢l7,[]) is obtained as the limit
of a chain of model$Z,, [],), built exploiting this stratifi-
cation.

Definition 2.5 Anatomis a minimal nonempty type. A type
is finite if it is equivalent to a finite union of atoms.

2.4 Examples of type (in)equalities The reader can think of an atom roughly as a singleton.
o P yP q i We start by noting that deciding subtyping is equivalent
Given a model for the types, we define to deciding the emptiness of a type.

s<tZgcqy, s=t<ZL g =[1] . S<t = SA-t=0 (8)

We list here some interesting equations and inequations beyich can be derived as follows:
tween types that can be easily derived from the set-theoreti

interpretation of types. s<t <« [JC[t] = [In[t]°=2
Ch(t) < ch™ (O) _ Ch+(1) (4) <— [[S/\ _|t]] = [[O]] < SA-t=0.
Every channet can be safely used in a process that does Thanks to the semantic interpretatioq, we can directlyyappl
not write onc and that does not care about wiatturns. set-theoretic equivalences to types (in the rest of thepape
we will do it without explicitly passing via the interpreta-
ch™(t1))Ach™ (tz) =ch (1 Vi) (5) tion function). We then deduce that every type can be ef-

] fectively represented in disjunctive normal form, i.e. las t
If on a channel we can write values of typeand values of | nion of intersections of literals, where a literal is a base

typety, this means that we can write values of ¥p¥'t2. tyne or a channel type, possibly negated. Since a union is
Dually)) ., empty only if all its addenda are empty, then in order to
ch’ (t1) Ach™(t2) = ch” (1 At) (6) decide emptiness of a type —and thus in virtue of (8) to

if a channel is such that we always read from it values of decide subtyping— it suffices to be able to decide whether
typet; but also such that we always read from it values of an intersection of literals is empty. Since base types and
typety, then what we read from it are actually values of type channel types are interpreted in disjoint sets, intersasti

t1Ato. that involve literals of both kinds are either trivial, orrca
Union of types, as we observed in the introduction, be- be simplified to intersections involving literals of onlyen
haves differently from intersection; we only have: kind. The problem is therefore reduced to decide whether
ch™(t1)veh () < chf(tivt), (AB)A(A-bj) and (Achit)A(A —chVit;))
ch (t1)veh () < ch (1At). iep jeN icP jeN

The typech® (t;) Ach™ (o) is the type of a channel onwhich @€ _eguivalent @ (wherev stands for eith_ePr or—). The
we can write values of type and from which we can read decision of emptiness of the left-hand side depends on the

values of type;. We have bgsic types that are usgd. For whgt concerns the right-hand
side, we decompose this problem into simpler subproblems.
cht(ty) Ach™(t2) =0 @) More precisely, we reduce this problem to the problem of

deciding subtyping between boolean combinations of the R2. 3k € K such thatj(<tyor
ti's andtj’s. This problem is simpler, in the sense that it ca for every2' C P (H) such that.2" = o, for every

involv_es a strictly sm_aller n_esting of channel types. _ choice of atoms ja< g, | € 2, there is ke K such
ingUsmg set-theoretic manipulations, the problem of decid- thatt‘l; <tVVesa.
(A chiw) A (A —ch’it))) =0 The four hypotheses c1—c4 simply state that the right-hand
ieP jeN side of the inequation was simplified according to the rules
can be shown to be equivalent to described right before the statement of the theorem. The
first condition (LE) says thath' (t1) A ch™ (t2) is empty.
(/\ ch'i(t;)) < (V ch’i(ty)) . (9) The second condition (R1) and the third condition (R2) re-
icP jeN spectively make sure that one of tbb*(tg‘) and, respec-

.) tively, one of thech™ (t}}) containch’ (1) Ach™ (t2). Finally
Because of equations (5) and (6), we can push the intersecine fourth and more involved condition (CA) says that, ev-
tion on the left-hand side inside the constructors and reduc ery time we add atoms te so that we are no longer below
(9) to the case anytf then we must end up above some of theThe types
_ _ g contain those atoms of which belong precisely to t
ch'(t)Ach (tz) < \/ ch*(t3) v V ch) (10 forh e 1. The condition) 2" = @ implies thatzvv|€;§
heH ke is not below any}.

where we grouped covariant and contravariant types to- As an example of how much our relation is sensitive to
gether. In this way we simplified the left-hand side. Simi- atoms, suppose there are three atems,, err,,exc. Con-
larly we can get rid of redundant addenda on the right-handsider the case where
side of (10) by eliminating: z = int;

. . t1 = v \% \Y ;
1. all the covariant channel types om3heforwh|ch there é _ tzv:zl- erravexe
exists a covariant addendum on a smaller or em@ﬁal t, = t2Verr1,V errs .
(since the former channel type is contained in the lat- |t js easy to see that
ter);
2. all contravariant channel type ortlafor which there ch®(t1) Ach™ (t2) £ ch' (t3) Vch (1)

exists a contravariant addendum on a larger or egfual
(for the same reason as the above);

3. all the covariant channels orifathat is not larger than
or equal tot, (since therch™(t2) A ch® () = 0, so it
does not change the inequation);

since, for example, the typeh(to V err,) is a subtype of
the left-hand side, but not of the right-hand side. However
if err; = err,, the subtyping relation holds, because of
condition (CA). Indeed in that case the indexing sebf

: . Theorem 2.6 is a singleton. Every’ C &?(H) such that
4. all contravariant channel ortfathat is not smaller than N2 = @ contains@. The typeey is ti A—ts. The only

or equal tat; (since therch (ty) A ch™ (t4) =0). atominitiserr;, and itis true thaty < t,V err;.
Then the key property for decomposing the problem (10) As announced, Theorem 2.6 decomposes the subtyping
into SimplersubprOblemS is given by the fO”OWing theorem: pr0b|em of (10) into a finite set of subtyp”]g prob|ems on
simpler types (we must simplify the inequation RHS by ver-
ifying the inequalities of conditions cl—c4, and possibly
perform the|H |+ |K| 4+ 1 checks for LE, R1 and Rgnd

Theorem 2.6 Supposert t, t],tk € 7, ke K, he H. Sup-
pose moreover that the following conditions hold:

cl. foralldistinct hi' € H, t £ 7’ into the verification of condition (CA).

c2. for all distinct kk' € K, t # t¥; The condition (CA) involves two universal quantifica-
c3. forallheHt, < tQ; tions. One is on the powerset of a finite set and does not
c4. forallke K tj; <t. pose problems, but the other is on atoms of a possibly in-

finite sete, and therefore it is not possible to use it for a

For every IC H define gas t A Ane ti A= Viy th. Then
Y= BASEA ARl EAVhats decision algorithm as it is. This problem can be avoided

ch' (t1) Ach (ta) < V cht (tg‘)v V ch (t4) thanks to the following proposition
heH keK Proposition 2.7 If we replace condition (CA) with
if and only if one of the following conditions holds CA. foreveryZ” C &(H) such that\ 2" = &, for every
LE. t £t or choice of atomsja< g, | € 27, g finite, there is ke K

such thatf <t VV,cq a.

<th .
R1.3h € H suchthat < tg or then Theorem 2.6 still holds.

Therefore it suffices to check the condition just for #ye
that are finite. This can be done effectively provided that
we are able to:

1. decide whether a type is finite;
2. ifitis the case, list all its atoms.

We will assume that this is possible for base types. Then it
is possible for all types.

Lemma 2.8 There is an algorithm that decides whether a
type t is finite and if it is the case, outputs all its atoms.

Theorem 2.9 The subtyping relation is decidable.

We do not discuss here the complexity of the decision al-
gorithm, nor the possibility of finding more efficient ways
of doing it. We leave it for future work. We want to con-
clude this section by observing that reducing the subtyp-
ing problem to deciding type atomicity is not very surpris-
ing. On the contrary, it is quite characteristics of a se-

p = X capturexcV
|t type constraint, € .7
| piAp2 conjunction
| pip2 alternative

Given a pre-patterp on (V,) we useVar(p) to denote
the set of variables o¥ occurring inp (in capture or con-
stant patterns).

Definition 3.2 Given a type algebra”, and a set of vari-
ablesV, a pre-pattern p onV,) belongs to the set of
(well-formed)patternd? on (V,) if and only if it satisfies
the following condition: for every subterm A p2 of p we
have Vatp1) NnVar(pz) = @, and for every subtermipp,
of p we have Vdip1) = Var(pz).

These patterns and their semantics are borrowed from [8]:
the reader can refer to [8, 3] for a detailed description. A
pattern is matched against an element of the doragf a
model of the types. A matching returns either a substitution
for the free variables of the pattern, or a failure, denoted b

mantic set-theoretic approach. This is much clearer wheng:

considering second order polymorphic types. As shown
in [12], one can end up to solve constraints sucft asX) <

(tx ~t)V (X xt), which is true for all typeX if and only

if t is atomic (this comes from the fact that an atomic type
a is semantically characterized by the property that for all
typesX eithera< X ora < -X holds). So once more a sub-
typing problem is reduced to testing atomicity. The whole
point of [12] is to avoid such constraints since they are in-
tractable. This is obtained by giving a more syntactic (ac-
tually, parametric) interpretation of type variables sa@s
avoid to interpret (i.e. substitute) them by atomic types (i
terestingly, models of parametricity intended as gen@rici
are broken by the decidability of finite elements [1]). Here

instead we showed that with channel types atomicity is de-

cidable and thus the full power of the set-theoretic sersanti
can be exploited.
3 TheCrecalculus

3.1 Patterns
As we explained in the introduction, if we want to fully

Definition 3.3 Given a mode[] : 7 — 2, an element &

2 and a pattern pe P the matching of d with p, denoted by
d/p, is the element oV (P) U {Q} defined by induction
on structure of p as follows:

d/x = {x—d}
d/t = {} if d € [t]
= Q otherwise
d/piAp2 = d/prud/pz ifd/p,d/p2#Q
= Q otherwise
d/mlpz = d/p ifd/py#Q
= d/p2 otherwise

In short, a variable pattern always succeeds and captwges th
matched element with the variable; a type pattern matches
only the elements that belong to the interpretation of the
type but does not capture them; a conjunction pattern
matches only if both patterns match and returns the union of
the two substitutions; the alternative pattern tries toahat
the first pattern and if it fails, it tries the second one.

One remarkable property of the pattern matching above

exploit the expressiveness of the type system, we must bgs that the set of all elements for which a patterdoes not

able to check the type of the messages read on a channel.
The simplest solution would be to add an explicit type-

case process (e.fM : t]P which reduces t® or 0 depend-

ing on whetheM is of typet or not). Here, instead, we

fail is the denotation of a type. Since this type is unique,
we denote it by pf. In other terms, for every (well-formed)
patternp, there exists a unique tyde| such thaf] pf] =

{d e Dom | d/p# Q}. Not only, but this type can be

choose a more general approach, by endowing input actiongalculated. Similarly, consider a pattepiand a type <

with CDuce patterns. Pattern matching includes dynamic

1p§, then there is also an algorithm that calculates the type

type checks as a special case, and fits nicely in the semantienvironment /p that associates to each variaklef p the

subtyping framework.

Definition 3.1 Given a type algebraZ, and a set of
variablesV, a pre-patterrp on(V,.7) is a possibly infinite
term p generated by the following grammar

exactset of values thax can capture whe is matched
against values of type Formally

Theorem 3.4 There is an algorithm mapping every pattern
p to a typel pf suchthaf]{pf] ={d € 2 |d/p+# Q}.

Theorem 3.5 There is an algorithm mapping every pair have to be consideredxternal choicehat leaves the de-
(t,p), where pis a pattern and t a type such that{pf, to cision about the continuation to the external environment
a type environmertt/p) € .7 V2P) such that](t/p)(x)] = (usually having it dependent on the channel used by the en-
{(d/p)(x) | d € [t]}. vironment to communicate) andternal choicethat is per-
o) formed by the process regardless of external interactions.
The proofs are similar to those found in [8]. The teftnp) External choice is difficult to implement in presence of dis-
denotes the enwron_ment that assigns to t_he frge Va”ablestribution, (consider modellin@ || Q + R), thus often only
of p, the types obtained deconstructinglt is defined as 4,arded choices are considered: internal choice pops up as
follows. soon as two input prefixes use the same channel. Thanks
' = o to patterns we can offer an externally controllable choice,
where the type of the received message, not the used chan-

t/x = x:t nel, determines the continuation. Internal choice can also
t/piApz = t/pidt/p2 be modelled by specifying processes that perform input on
t/pilpz = mapU)(t/p1,t/p2) the same channel according to the same pattern.

The other important difference with standaretalculus
is the distinction between channel variables and channel
The well definedness of the above is guaranteed by theconstants. Every channel constant is associated a unique
condition on the free variables of the patterns.. type, which is the type of the messages it can carry (much
like Milner’s sorting discipline [15]). We make this expiic
3.2 The language by decorating channel constant with their associated type.
The syntax of theCrr-calculus is very similar to that |n what follows we will call channel constants also “boxes”
of the asynchronous-calculus [4, 11], a variant of the to distinguish them from channel variables.
T-calculus [15], where message emission is non-blocking. Thevaluesof the language are the closed messages, that
It is generally considered as the calculus representing theis to say the constants
essence of name passing with no redundant operation. We
deviate from the original calculus by having patterned inpu vi=n|c.

prefix and guarded choice between different patterns on the
same input channel. We use? to the denote the set of all values. Every value has

a unigue atomic type: a basic constatias an atomic basic
Channels a 1= X variable type by, while a channel constartt has the channel type
| channel constant ch(t). So all the values can be typed by the rules (const),
(chan), and (subs) of Figure 1 (actually with an emp}y

Messages M :i= n basic constant where in the (subs) subsumption rufeis the subtyping
|« channel relation induced by the model of Section 2.3.
Processes P := oM output 3.3 Semantics
i giﬁlpo‘(pi)ﬂ pZ::EFd Input Now consider the interpretation functidh], : .7 —
172 paralie’ 2 (V) defined as follows:
| (vd&)P restriction
| P replication Ity ={v | Fkv:t}.

!n the above definitioni is a possm!y empty f|n[te set of It turns out that this interpretation satisfies the model-con
indexes{ ranges over the t.ypes d.Emed in Section 2.1 and ditions of Section 2.3 and furthermore it generates the same
pi are patterns as defined in Section 3.1. As customary, Wesubtyping relation as=. The circle we mentioned in the
use the convention that the empty sum corresponds to thqntroduction is now closed.

inert process, usually denoted 0y

We want to comment on the presence of the simplified Theorem 3.6 (Model of values)
form of summation we have adopted: guarded sum of inputsLet [t],, = {v | ' ~v:t}. Then(¥,[],) is a model and
on a single channel with possibly different patterns. s<t<=[9g, C[t],.

A long standing debate is going on in the concur- .
rency community about the usefulness of summation oper-Since values are elements of a model of the types, Defini-
ators that permit choosing between different continuation 10N 3.3 applies fod being a value. We can thus use it to
Choice operators are very useful for specifying nondeter- d€fine the reduction semantics of our calculus:
ministic behaviours, but give rise to problems when con- =, tr o . .
sidering implementation issues. Two main kinds of choice cv | %C (P)-R — Pilv/pj

IF=x:0. By subsumption we have F x : ch(int) and
R =1 | 2P | P|Z] | (v&")Z]] Itx:ch™ (string). Then, according to the typing rules of

our system (see later on) the procB8giao” || x(y).X(y+1)
P—Q = %[P| — %[Q] is well typed, in the environmeifit, but it would give rise to

P=P—Q=P—Q a run time error by attempting to increase the stringigo”
by 1:
Plo=P PlQ=Q|P P|(QlR) =(PI|Q)IR
(vdho=0 (v&)P=(vd")P{c ~d'} IP=IP|P X“ciao” | X(y).X(y+1) — X(*ciao”+1)
(Ve) (ve2)P = (vc2)(ved)P forcy # cp

This reduction cannot happen in our calculus, because we
(vd)(P[|Q) = P|| (ve")Q for ¢ ¢ fn(P) can never instantiate a variable of type(from a logi-

cal viewpoint, this corresponds to the classiealfalsum
whereP{c! ~» d'} is obtained fronP by renaming all fre¢ quodlibetdeduction rule).
occurrences of the baxk into d', and assumed! is fresh.

3.4 Typing
Figure 2. Context and congruence closure In Figure 1, we summarise typing rules that guarantee
that, in well typed processes, channels communicate only
values that correspond to their type.
whereP[o] denotes the application of substitutiono pro- The rules for messages do not deserve any particular
cessP. The output of avalueon the boxc' synchronises comment. As customary, the system deduces only the well-
with an input on the same box only if at least one of the pat- formedness of processes without assigning them any types.
terns guarding the sum matches the communicated valueRules for replication and parallel composition are staddar
If more than one pattern matches, then one of them is non-The rule for restriction is slightly different from the udua
deterministically chosen and the corresponding process eX one since we do not need to store in the type environment
ecuted, but before its execution the pattern variableseare r the type of the chann&l In the rule for output we check
placed by the captured values. More refined matching poli- that the message is compatible with the type of the channel.
cies (best match, first match) can be easily encoded. The rule for input is the mostinvolved one. The premises
As usual the notion of reduction must be completed with of the rule first infer the type of the message that can
reductions in evaluation contexts and up to structural con- pe transmitted over the chanreel then for each summand
gruence, whose definitions are summarised in Figure 2. i they use this type to calculate the type environment of
This operational semantics is the same as thattof the pattern variables (the environmefitApi§)/pi) of
calculus but the actual process behavior has been refinedtheorem 3.5) and check whether under this environment
in two points: the summand proceds is typeable. For instance in the

— communication is subjected to pattern matching polyadic version (8 4.1) ifi : ch* (sx t) then in order to type

— communication can happen only along values (boxes) &(X, YA (int[bool))P the (input) rule verifies the type of
P under the environment: s, y:t A (int V bool).

This is all it is needed to have a sound type system. How-
ever the input construct is like a typecase/matching expres
sion, so it seems reasonable to perform a check that pat-
terns are exhaustive and there is no useless*cals is
precisely what the two side conditions of (input) do:

First of all note that these two points are not restrictive: E
ery asynchronous-calculus process is also a process of our
calculus and with the same reduction semantics: it suffices
to consider all free and restricted variables (thus excigdi
those that are bound in an input actions, which according
to our viewpoint are “real” variables) to be typed channels
of some channel type (as we do not consider well-typing is- (t < V¢, 1pif) checks whether pattern matching is exhaus-
sues, yet). So we do not lose any generality with respect to tive, that is if for whatever value (of typ sent ona
thetrcalculus. The use of pattern matching is what makes there exists at least one pattegpnthat will accept it

it necessary to distinguish between typed channels and vari (the cases cover all possibilities).

ables: matching is defined only for the former as they are
values, while a matching on variables must be delayed until
they will be bound to a value.

Since we distinguish between variables and typed chan-
nels, it is reasonable to require that communication takes 3strictly speaking, we do not restrict variables but contstasp it would
p|ace on|y if we have a physica| channel that can be usedbe formally wrong to store _it ir. For the same reason-conversion is
as a support for it; thus, we forbid synchronisation if the "andled as astructural equivalence rule.

. . .) In functional programming these checks are necessary fordsess
channel is still a variable. However there is a more tech- gince an expression non-complying to them may yield a typee In
nical reason to require this. Consider an environment process algebree non-compliance would just block syncéation.

(1pi §At #£0) checks that pattern matching is not redundant
that is that there does not exists a pattpythat will
fail with every value of type (no case is useless).

Messages
MN=M:s<t
Fn:b, ™Y FEdcha O rexrog remee o
Processes
_repP (new) rep (repl) TR TER (para)
M (vd)P rHP r PP,
t<Vialpi§ T-a: Ch+(t) r, (tAlpiS)/pi PR (input) FrEM:t TFa:ch () (output)
MRIZo M-S a(p)-R ram

Figure 1. Typing rules

As usual the basic result is the subject reduction, pre-3.5 An example
ceded by a substitution lemma. The proof of the theorem We present here an example ofar process. Consider

relies on the semantics of channel types as set of boxes.

Lemma 3.7 (Substitution)
— Ifrt/pEM :t"andl - v:t, thenl - M'[v/p] : t'.
— IfIrt/pFPandl v:tthenl - Plv/pl.

Lemma 3.8 (Congruence)
If F+Pand P=Q, thenl Q.

Theorem 3.9 (Subject reduction)
If =P and P— P thenll - P'.

The decidability of the subtyping relation does not di-
rectly imply decidability of the typing relation (only semi
decidability is straightforward). In similar situatiorestyp-

the following situation. A web server is waiting on some
channela. The client wants the server to perform some
computation on some values it will send to the server. The
server is able to perform two different kinds of computation
on values of typé& (say arithmetic operations), or on values
of typet, (say list sorting). At the beginning of each session,
the client can decide which operation it wants the server to
perform, by sending a channel to the server, along which
the communication can happen. The server checks the type
of the channel, and provides the corresponding service.

P:=a(xAch'(t)).!x(y).PL +a(xAch® (t2)).!x(y).P>

In the above process the channehas typech™ (ch™ (t1) v
cht(t)). Note thatcht(t1) v ch'(t2) # cht (t; Vtp). This

ing algorithm can be often derived by eliminating the sub- means that the channel the server received aill com-
sumption rule and embedding the subtyping checks into themunicateeitheralways values of typg or always values of

elimination rules. However the (input) rule, in its algbrit

typets, and not interleaving sequences of the two as would

mic version, requires computing the least type of the form doch* (t; vt,).

ch’ (s) which is above a given tygeand it is not so evident
that such a type exists (observe that our type algebratia
complete lattice). Nevertheless, it turns out that suctpa ty

As we discussed in the Introduction, this distinction
would not be present if the equatiah® (t) V ch' (t;) =
ch (t1 Vt2) held true. In that case we would need to write

does exist (which gives us the minimum typing property) p as

and furthermore it can be effectively computed.

Lemma 3.10 (Upper bound channel)For every type <
cht (1) there exists a least type ¢ths) that is an upper
bound of t and an algorithm that computes it.

Proof(hint) Considet A—ch*(s). We have to find the least
ssuch that this intersection is empty. Put the intersection i

the form of unions of terms like (10). Now for each adden-

dum take the correspondimg(we refer to the formin (10))

and if~ch(s) occurs in the addendum, use Theorem 2.6 (ac-

tually Proposition 2.7) to take away frotn the maximum

number of atoms such that the intersection is still empty.

The wanteds is the union of all these types.

Theorem 3.11 The typing relation is decidable.

10

P = a(x). (X(YAt).PL+ X(YAt2).P2)

which is a less efficient server, as it performs pattern match
ing every time it receives a value.

4 Extensions

4.1 Polyadic version

The first extension we propose consists in adding product
to our type constructors. This requires extending the motio
of pattern, but, most importantly, it affects the definitioh
subtyping. The new syntax for types is the following

Types t == b | cht(t) | ch (t) | txt
| O] 1]-t]tvt]tAt

Messages are extended by

Messages M = | (M,M) pair our type system, we can still type self application by us-
ing, for instance, the typeh(1): a channel that can carry
The patterns are extended by everything, can clearly carry itself.
Patterns p ::= | (p1,p2) pair

4.3 Local calculus
with the condition that the for every subteifps,p2) of p
we haveVar(p;) NVar(pz) = @.

A semantic model can be built, in analogy with Sec-
tion 2.2. The corresponding subtyping relation is also de-
cidable, as well as the typing relation.

Note that besides the extension above we do not nee
to add anything else since for instance projections can be
encoded by pattern matching. By using product types, to-
gether with the recursive types we show next, we can also
encode more structured data, like lists or XML documents.

This restriction on recursive types can be removed, by
moving to alocal version of the calculus [13], where only
the output capability of a channel can be communicated.
This can be strightforwardly obtained by restricting tha-sy

Gtax of input process so that they specify channel constants
(that is, ;e c'(x : t)P instead ofy ;. a(x: t)P), which
makes the typeh™ (t) useless. Without this type, the ex-
ample of Section 4.2 cannot be constructed, and indeed it is
possible construct a model of the types with full recursion.

The absence of input channel types makes also the de-

4.2 Recursive types cision algorithm considerably simpler, as condition (CA)

Another important addition to our type systems is that of is invoked only when channel types of both polarities are
recursive types. This is for example necessary to define thePresent. In particular the subtyping of channel types can be
type of lists. reduced to the following conditiorth™ (t) < /¢, ch™ () if

So far, types could be represented as finite labelled treesand only if there exists< | such that; <t.
Recursive types are obtained by allowing infinite trees, The details of this construction are part of ongoing work.
without changing the syntax. As in the type system of We preferred to deal here with the full type system, for sev-
CDuce we require such trees to be regular and with the eral reasons. First of all, we wanted to study the most gen-
property that every infinite branch contains infinitely many eral calculus — we chose the asynchronous version for the
nodes labelled by the product constructor. sake of exposition, but that is clearly not restrictive from

Moreover we require that every branch can contain only the point of view of types. Secondly, without input channel
finitely many nodes labelled with a channel constructor. types, the model of the types is very similar to the one of
If we were to define recursive types with equations, this CDuce, while the model we present here is new. Finally we
would amount to forbidding the recursive variable being believe the complex subtyping algorithm and the paradox

defined to be used inside a channel constructor (such a®n recursion to be interesting results on their own.

x = ch(x) V int). However a recursive type can appear
inside a channel constructor provided that the number of
occurrences of channel constructors is finite (such as in
ch(intlist) whereintlist = (int x intlist) v ch(0)).

The reason for this is that, without this restriction, there

is no model. To see why, we observe that we could have a

recursive type such that
t =bV (ch(t)Ach(b))

for some nonempty base type If we have a model, either
t=bort#b. Suppose = b, thench(t) A ch(b) = ch(b)
andb =t =bvch(b). The latter impliech(b) < bwhich is
not true wherb is a base type. Therefore it must bg b.
According to our semantics this implies(t) A ch(b) = 0,
because they are two distinct atoms. ThusbVv 0= Db,
contradiction.

Types are therefore stratified according to how many
nestings of the channel constructor there are and this strat
ification allows us to construct the model using the same
ideas presented in Section 2.

One traditional example of the use of a recursive type is
“self application”, that is a channel that can carry itséif.

11

5 Conclusion

We have presented a novel approach to defining subtyp-
ing relations for tharcalculus, and discussed its merits and
limitations. To exploit our type system, we have defined
a variant of therrcalculus with pattern matching on input.
We would like to be able to give a type respecting encoding
of CDuce intoCrm, similar to the Milner-Turner encoding
of the simply typed\-calculus inrt[15]. However, the stan-
dard translation of arrow types into channel types does not
respect equality, and a more subtle approach is needed.

Acknowledgements. We are very grateful to Alain
Frisch and Mariangiola Dezani for interesting discussions
We acknowledge the support of the European FET contracts
MyThS IST-2001-32617 antikado, 1ST-2001-32222, of
the ACI Masses de dorges“Transformation languages
for XML: logic and applications”, of the EPSRC grant
GR/T04724/01 and of ENS for a visiting professorship
grant for Rocco.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

S. Abramsky and R. Jagadeesan. A game semantics for
generic polymorphism. Iffoundations of Software Science
and Computational Structures, 6th International Confeen
(FoSSaCS)volume 2620 of_ecture Notes in Computer Sci-
ence Springer, 2003.

L. Acciai and M. Boreale. XPi: a typed process calculus fo
XML messaging. Unpublished manuscript, 2004.

V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-
friendly general purpose language.|GFP '03, 8th ACM In-
ternational Conference on Functional Programminqgges
51-63, Uppsala, Sweden, 2003. ACM Press.

G. Boudol. Asynchrony and thetcalculus. Re-
search Report 1702, INRIA, http://www.inria.fr/rrrt/rr-
1702.html. Also available from http://www-

sop.inria.fr/mimosa/personnel/Gerard.Boudol.htmB24.9

A. Brown, C. Laneve, and G. Meredithrduce: a process
calculus with native XML datatypes. Unpublished, 2004.

G. Castagna and A. Frisch. A gentle introduction to seman
tic subtyping. InSecond workshop on Programmable Struc-
tured DocumentdHakone, Japan, 2004. Invited paper. Avail-
able atww. cduce. or g/ papers.

R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: A kernel
language for agents interaction and mobiliyEE Transac-
tion on Software Engineerin@4(5):315-330, 1998.

A. Frisch, G. Castagna, and V. Benzaken. Semantic Subtyp
ing. InLICS '02, 17th Annual IEEE Symposium on Logic in

Computer Sciencgages 137-146. IEEE Computer Society

Press, 2002.

Alain Frisch. Théorie, conception et réalisation d'un lan-
gage de programmation fonctionnel adapté a XMPhD
thesis, Université Paris 7, December 2004.

M. Hennessy and J. Riely. Resource access control in
systems of mobile agentsinformation and Computatign
173:82-120, 2002.

Kohei Honda and Mario Tokoro. An object calculus forasy
chronous communication. IRroc. ECOOP 91volume 512
of LNCS pages 133-147. Springer, 1991.

H. Hosoya, A. Frisch, and G. Castagna. Parametric potym
phism for XML. In POPL '05, 32nd ACM Symposium on
Principles of Programming LanguageSCM Press, 2005.

M. Merro. Locality in the pi-calculus and applications to
distributed objects PhD thesis, Ecole des Mines de Paris,
Nice, France, 2000.

B. Pierce and D. Sangiorgi. Typing and subtyping for iiteb
processes.Mathematical Structures in Computer Science
6(5), 1996.

D. Sangiorgi and D. Walker.The t-calculus Cambridge
University Press, 2002.

P. Sewell. Global/local subtyping and capability irgiece
for a distributedrt-calculus. InProceedings of 25th ICALP
volume 1443 oLNCS pages 695-706, 1998.

12

[17] N. Yoshida and M. Hennessy. Subtyping and locality in
distributed higher order processes. Rnoceedings of 10th
CONCUR volume 1664 o£. NCS pages 557-572, 1999.

A Type algorithm

The type algorithm is obtained from the typing rules in

a standard way, namely by deleting the subsumption rule

and embedding the checking of the subtyping relation in
the elimination rules. This requires the use of the least typ
t such that = ch’ (t") for somet’, ands <t. Such at is
denoted by¢'(s). The existence and the decidability#fs)

is given by Lemma 3.10, the decidability ¢/ p) is given

by Theorem 3.5. The algorithmic rules are summarised in
Figure 3.

B Proofs

B.1 Characterising inclusion (Theorem 2.6 and
Proposition 2.7)

In this section we first prove Theorem 2.6 and then
strengthen the result as in Proposition 2.7.

We recall that in a boolean algebra, atomis a mini-
mal nonzero element. A boolean algebratsmicif every

can be inch™(d}). We can thus ignore such sets to test for
the inclusion, and similarly for thej’s.

The inclusion surely holds if for sontewe haved; < dﬁ,

or if for somek we haved, > dk, since then, for instance in
the former casech' (dy) is contained irch™ (df)) and so is
its intersection witfch™(dy).

The most difficult case occurs when

dx < dy;

forallh e H, dff > dy;

forallk € K, df < dy;

forallhe H, dff # di;

forallk e K, df £ d,.

The way of thinking the inclusion is the following. (From
now on it will be easier to think ob as a subset of the pow-
erset of its atoms; therefore we will sometimes say “con-

nonzero element is greater or equal than an atom. It is easyained” rather than “smaller”, and so on.) Considet @
to prove that an atomic boolean algebra is equivalent to acht(d;) nch(d). If d is not below any of theig then it

subset of the powerset of its atoms.

Let (D,A,V,0,1) be an atomic boolean algebra where,
as customaryyd’ < d if and only if d'vd = d. For every
d € D we denote| d (that is, the set of all elements smaller
than or equal tal) asch'(d) andd (that is, the set of all
elements larger than or equaldd asch™(d). We want to
give an equivalent characterisation of the equation

Meh* (dh) N eh (db) € | eh*(df)u | ch(df)

iel jed heH keK

that does not use the “operatoi’ (),ch™ (). Notice that

[eh™(dy) = ch™ (A dy)

iel ie

and ' .
(ech™(d)) =ch (\/dj).
jed jed
Also if there exist, b such that] < df} we can ignorel

asch’ (df) C ch* (db). Dually for thed. Therefore we can
concentrate on the case

ch®(dy)nch™(dz) | ch™(d)u | ch(df)
heH keK

where no twalf are comparable, and i are comparable.
The first case in which the inclusion holds is when

ch’(d1) Nch™(dz) = @, which happens exactly wheh «

d1. If dy < dy, withoutloss of generality we can also assume

thatdf} > ds for all h € H and thatl < d; forall k€ K. This

is because i@l # ds for someh then no element ath™ (dy)

13

must be above one of thﬁ. Suppose there is an element
of d; which is in nodg1 (more precisely, suppose that there
is an atond such that < d; and for allh, d £ df; to stress
that it is an atom denote by {x}). Thend,V {x} is not
contained in any of the?, and it must contain one of the
df. This implies that for suctlf, dk\ dz < {x}5. Consider
now two elements;, X in di such that ifx; belongs todg1
thenx, does not belong td}. Thend, V {x1, %} is not con-
tained in any of thelf, and it must contain one of th.
This implies that for suchlf, d5\ d < {x1,%2}.

More generally: for every C H consider the the sej
defined ash A Ane; 5\ Vhe df. The sety contains those
elements ofl; which belong precisely to the} for h € I.
Because altl are incomparable, the are nonempty and
pairwise disjoint. Consider a subsgf of #(H) satisfy-
ing the property 2" = @. For everyl € 2, choose an
elementx; in e. We have that, vV {x || € 2"} is not con-
tained in any of thelf. Reasoning as above we then have
that there is alf such thatl§\ d> < {x |1 € 2}.

This proves the necessity of the condition (CA): for ev-
ery 2 such that\ 2" = @, for every choice of € g,
| € 2" there must be df such thatdk\ d> < {x |1 € 27}.

We argued that the condition (CA) is necessary. Itis also
sufficient: if the condition holds, every sdtincluded in
d;, containingd,, and which is not contained in any of the
df}, must contain a set of the forop v {x | | € 2°}: just
pick one witness of noncontainment for evety, Thusd
contains one of thd.

We can strengthen the result as stated in Proposition 2.7.
Consider the case where some of #eare infinite. Since

Sitis in fact equal asl £ dp.

Messages N
Frnib, & Frcong) O Frxrpg
Processes r-p P FEP
=P 1 2
| - - ==
- wap " R repp 0@
Vialpd [ha:s g(9=ch'®) Mt/mkR rEM:t hass s<eh(@®
. Inpu
thINZ0 M- Yiaa(p)-R P F oM (output)

Figure 3. Algorithmic rules

there are only finitely manylk, the condition is satisfied
if and only if for at least two (in fact infinitely many) dif-
ferent choicesq andx| we have that the sarrdﬁ satisfies
di\d2 < {x |1 € 2}, anddf\dx < {X |1 € 2°}. There-
fore we must havef\ d, C {x || € 2" & g finite }. (We
could improve further by considering only thosewhose
cardinality is not greater than the numberdjf- we do not
need this for our purposes.)

This proves that condition (CA) is equivalent to condi-
tion (CA*): for every 2 such that\ 2 = @, for every
choice ofx € &, 1 € 2, g finite, there must be df such
thatd§\dx < {x |1 € 2}

B.2 The existence of a model
We shall construct here a model for the simplest of our

Now suppose we have a pre-modg| for 75, with cor-
responding preordex, and equivalence=,. We call?n
the set of equivalence cIass@s/:n. Then,Z,11 is defined
as follows: .

D1=B+ .

with the following interpretation of channel types:

= [eh" ()] = {[t']=n [t <nt};

= [eh O)]nyq = {[t= [t <at'}
In principle each of these pre-models defines a different pre
order between types. However, all such preorders coincide
in the following sense:

Proposition B.1 Let t,t’ € .7, and kh > n, then t< t’ if
and only if t<, t.

type systems. This amounts to build a pre-model and thenProofTo carry out the proof we use an interesting fact: ev-

show that it satisfies Definition 2.3.

ery singleton of our pre-models is denoted by some type.

Types are stratified according to the height of the nesting (Assuming this is true for base types, which we can safely

of the channel constructor. We define the height function
h(t) as follows:

fi(b) = 1(0) = A(1) = 0;
h(ch(t)) = h(ch*(t)) = A(ch™ (1)) = A(t) +1;
h(t1Vt2) = h(ti At2) = max(h(t), i(t2));
- ﬁ(—.t) h(t).
Then we set

Z0 't mty <ny .

Our pre-model for the types is built in steps. We start by
providing a model for types of height O, that is types in
0. Note that we must define the semantics only for type
constructors, because the interpretation of the combisato
is determined by the definition of pre-model. The only con-

structors of height O are the basic types, for these we assum&*®t

existence of a universe of interpretatiBnWe also assume
that every basic typd has an interpretatio[b] C B.
Therefore we setZy = B, with the semantics defined by
[b], = #[b] and interpret boolean combinators by using
the corresponding set-theoretic combinators, according t
Definition 2.1. Using this pre-model we define a subtyping
relation over.% ast <qt’ if and only if [t], C [t'],. We
shall denote by=q the corresponding equivalence.

14

assume.)

We also need a technicality: we add to our types of
height O the typek for all positive natural numbdt they
are used at level 0 as a witness of channel types. At level 0
we only know that there are infinitely many different chan-
nel types. The pre-model at level 0 is exactly formed by the
basic types plus the positive natural numbers to modelling
thek.

ThereforeZg := B+ N* with

[iko = {k} -
Now suppose we have a mode}, for .7, with corre-

sponding preordex,, and equivalence=,. We call.’ﬁvn the
of equivalence class&g/ =n. Then we set

9n+l:B+§1

with the semantics of the channel types being

[eh™ Ona = {[t]= [t <nt};
[eh ®Olnn = {)=n |t <at’};
e+ 1n = {lk]=n}-

Note that the semantics of 1 coincides with the semanticsand therefor¢ =g O if and only ift =1 0. As for the car-
of ch(0), and in general the semantics lof+ 1 coincides dinality: the proof is more general and it is the same as the
with the semantics ofh(k). Therefore in the semantics at inductive step case that we will show next.

levels greater than 0 we can substitkteith the appropriate For the inductive step suppose that we know that for ev-
channel type. ery typet € .7, we have

When is a type empty? Given a typé we put it in
disjunctive normal form. Clearlyis empty if and only if all e t=p0ifandonly ift =1 0;

summands are empty. If a summand contains literals of both
basic types and channel types itis easy to decide emptiness:
if it contains two positive literals of different kinds, thet Now take a type € Z.1, we want to prove that
is empty. If the positive literals are all of one kind, it is

empty if and only if it is empty when removing the negative e t =p, 1 Oifand only ift =n,2 0;

literals of the other kind. Finally the intersection of only
negative literals is empty if the two kinds separately cover

e |t|n=hif and only if |t|n+1 = h.

e [tlny1=hifand only if |t|n12 = h.

types.) to check that
Therefore it is enough to check emptiness for intersec-
tions of literals of one kind only. For base types: [eh™ (t)] 2 N [eh™ (t2)] e
AbAA-b. C U len* t9)nea 0 U e ()]0 4
beP beN heH keK
For channel types: if and only if
Acht) A Ach (th)A A ~ch*) A A ~ch (t§) . [eh™ (t)]ny 2N [eh™ ()]s 2
il jed heH keK _
. g U [[Cth(tQ)]]nJ,—ZU U [[Ch (t!;)]]nJrZ .
Using equations (5) and (6) of Section 2 we can simplify heH keK
the above expression to As argued in the previous section, the first condition is
equivalent to:
chi (ty) Ach™ (t2) A\ —ch (t) A A\ ~ch™ (t) . d

LE. to £yt Or
R1. 3h € H such that; <,tJ or
R2. 3k € K such thatk <, t, or
CAx the complicated condition involving, and atoms.

The induction hypothesis gives us easily the equivalence of
o [t|n=hifand onlyif [t|, = h; the first three conditions at levetsandn+ 1. For the con-
dition (CAx) note first that

heH keK

To prove Proposition B.1, we now prove by induction the
following statement: let € .7, then

e t=p0ifandonlyift =441 0;

where|t| denotes the cardinality of

We start by the case= 0. The “algorithm” for checking
emptiness works in the same way for basic types. Theonly 4 forallhe H, df > dy
difference occurs for the typés The condition to check at
level 0 is the following o forallke K, df <, dy

Nﬂﬂ[[k]]OQU[[k]]o .fora”heH,dgzndl
kep keN forallk € K, df £n d2
which can be true only if there are two differentc P or
if the only k in P is also inN. It is important here that
N is infinite, so no finite union of singletons can cover it.
Therefore the condition above is equivalent to

Zon N [k, € U [k,

keP keN

e h<nty

are equivalentto
o t<ni10h
o forallhe H,df >ni1 do

e forallk e K, di <pr101

15

o forallhc H,df #ni10h
o forallk e K, df £ni1dz

because of the induction hypothesis. For ederyH define
) as
A AtEA-\/t].
hel hel
we have to check that the condition (€A
for every 27, for everya, € Atom, a <pt;, | €

2, [ti|n finite, there must be & such thatf A
- <n Vieg ar.

is equivalent to the same condition where we replace all the

nwith n+ 1.

Recall that since all singletons are denoted, atoms ar

exactly the singleton types. We need a lemma.

Lemma B.2 Suppose that for evend 7,
e t=p0ifandonlyift=p,10;
e |t|n=hifand only ift|, 1 =h.

Pick t € 7, consider an atom & 7,1 such that there is
no atom 4 9, with a=n1 . Ifa <p;1tthen|t|ny1 and
[t|n are both infinite.

Proofsupposét|, = h with h finite. Since every singleton
is denotedt =p a1V ...V &, for disjoint n-atomsa;. Then
the same equality is true at leveH- 1. We thus deduce
a <pi1a1V...Va, from which we derive thad' =1 g
for somei. Contradiction. O

from which we can concludét|,,1 = h if and only if
|t|n+2 =h
Supposét|n;1 =h. Thent =q11a1V...V a, for some
disjoint atoms. Thus =n.2 @1 V...V ap, and since they
are still atoms (and they are still disjoinf)|n+2 = h.
Supposdt|n1 > h, thent >n11 a1V ...V ay for some
disjoint atoms. Thus >p 2 a1V ...V a,, and since they
are still atoms (and they are still disjoinf)},2 > h.
O

We finally observe that adding tlieto our types is not re-
strictive, ask = ch(0)X.

Hinging on Proposition B.1, we define preorder between
types as follows.

Definition B.3 (Order) Let t,t’ € %, then t<, t’ if and

eonIy ift <pt'.

Due to Proposition B.1, this relation is well defined and in-
duces an equivalence, on the set of type¥. Let 7 be
T |-, we are finally able to produce a unique pre-model
2 defined as: .
2=B+7.

Where

= [eh* (O] = {[t']-. |t <wt};

= [eh O ={[t')= [t <wt'}.
This pre-model defines a new preorder between types that
we denote by<. However, the following proposition proves
that< is not new but it is the limit of the previous preorders,
i.e. <.

Proposition B.4 Lett,t'c.7, thent<t’if and only if t <
t'.

We are now going to check the equivalence of the condi- ProofWe prove it by induction on the height of the types.

tions.

Suppose it is true for the+ 1 case. Then pick a choice
of n-atomsa;. By the induction hypothesis they anet 1
atoms. Suppos# |, is finite. By the induction hypothe-
sis [ty |n+1 is finite, then there must bet§ such thattk A
=02 <nt1 Vice &. Which impliesti A =dz <n Vco &

Conversely suppose it is true for Pick a choice oh+
1l-atomsa . Suppose one of thesg is not equivalent to an
n-atom. Then by lemma B.2; |n = |t |n+1 iS infinite. So we
can assume that is an-atom. Then there must betfasuch
thattf A =dz <n V,co- &. Which impliestf A —dz <ni1
Viea a&.

We have now to prove the condition on the cardinality.

That is we prove by induction omthat ift € 5, then
e t =0ifandonly ift = 0;
e [t|=hifand only if |t|o = h.

Note that to check emptiness of a type .1 we only
invoke types in,.

The condition at level 0 only requires that the tyjrdse
interpreted into distinct singletons containedih which is
the case.

The second statement, and the whole inductive step are
proven as in the proof of Proposition B.1. a

It is now easy to show the following.

We start by observing that all the atoms we have describedTheorem B.5 The pre-mode{Z, []) is a model.

above (when we proved that every singleton is denoted) arep,qofConsider the extensional interpretatiéii] of types
atoms independently of the level. They are atoms becausgs in Definition 2.2. We have to check tHal = o —

of their shape. We now prove the following
e |tlns1=himplies|t|ni2=h;

e |t|nt1 > himplies|t|ni2 > h.

16

&t] = @. Note that in fact the range ef[] is #(B +
[.7]). By proposition B.4, we have thd{.7],C) is iso-
morphic to(.7, <). Up to this isomorphism#’[] coincides
with []. O

B.3 Proof of decidability of finiteness
Given our model of types, we show that we can

1. decide whether a type is finite
2. ifitis the case, list all its atoms

To prove our claim we proceed by induction on the

height of the types. We strengthen the statement by requir-

ing that all atoms of a finite type have the same height,
or lower, oft. We assume that at height 0, this is the case.

It is a reasonable assumption: for example it is the case if

we have for base types the type of all integers plus all con-
stant types. Consider a typeof heightn+ 1 and assume

that for lower heights we can decide whether a type is finite
and, if it is the case, list all its atoms. By Theorem 2.6, this

thatt is infinite (if one of ther is) or that it is finite. In

the latter case we have a finite list of candidates to be the
atoms oft (namely allch(s) for sincluded in the the various

t1 Atp) and to list all the atoms df we just to check for
each candidate its inclusion tn Which we can do, since
they are at most of heignt+ 1.

B.4 Proof of Theorem 3.6

We first show tha(7",[]) is a pre-model. Inspecting
the typing rules, it is easy to show that for every vahsnd
every typeds, ta

1. TkFv:1,;

guarantees that we can also decide emptiness of alltypes of 2 1 -y :t; if and only if I /v : =ty

heightn+ 1. We ask ourselves which atoms can be proved
to belong tot. If we putt in normal form, we obtain the
disjunction of terms of the form

A-ch(t) .

r:=ch(tz) Ach™ (t2) A \ ~ch" (t5) A
i j

(We exclude base types, because they have been consi
ered at height 0, and “mixed types”, which can be reduced
to one of the “pure” cases.) Only atoms of the fochis),
can be contained in non-base types. For how nsamg can
have thatch(s) <t? A union is finite if and only if all its
summands are, thusis finite if and only if all ther’s are
finite. When isr finite? First of all it is finite when it is
empty, which we can test it by induction hypothesis.

Otherwise ifr is not empty, them is finite if and only
if ch*(t1) A ch™(t) is finite, which happens exactly when
to <t; andt; Aty is finite. For the “if” part, note thath(s)
belongs toch’ (t;) A ch™ (t2), if and only if s=t, Vv § for
somes < t; A—tp. Sincet; A -ty is finite and of smaller
height, then by induction hypothesis we can list all its
atoms, thus all the correspondisgs, thus all the corre-
spondingch(tz vV §') that are all the possible candidates of
atoms ofr. By induction hypothesis we also have that all
thes' have at most height.

For the “only if” part it suffices to prove that ¢h* (t1) A
ch™(tp) is infinite, then the whole of is infinite. Assume
that for noi, t; <t} and for noj, t} < t, (otherwiser is
empty). We have to find infinitely margsuch that, <s<
t1, st} foralli andt) « sforall j. Pick atomsal < t; At}
anda} < tj A-t,. Note that noa, can coincide with any

ajl, because they are taken from disjoint sets. Then for any

type s’ such thatt, < s < ty, the types:= (S VV;a}) A
=V, aj1 belongs tar. It is possible that for two differerd
the corresponding coincide. However such “equivalence
classes” ofs' are finite. Since there are infinitely masy
there are infinitely mang, sor is infinite.

In summary, for every that formst we check whether
to <t; andty Aty is finite, and at the end we find either

17

3. TEv:tyAtyifandonlyif T Fv:ty andl - v:to.

Point 1 is a simple application of the subsumption rule. For
2 suppose that exissuch thav : t andv-t. The only rule to
deduce a negative type for a value is the subsumption rule.
Therefore there must be a tygesuch thatv: s, s<t and
S< —t. But thens= 0, impossible since the empty type is
not inhabited. Suppose instead there existsch that/ v : t
andl/ v: —t; if v=c®thench(s) is not smaller than nor
than—t, impossible sinceh(s) is atomic. The same can be
deduced from the atomicity di, for v=n ([b,] = {n} see
Definition 3.1). Therefor¢”',[],,) is a pre-model.

The subsumption rules tells us the t = [s], C
[t], . For the other direction, i £ t, there is an atora in
s\t. For every atona there is a value such that” - v: a
(either a constant or a channel). By subsumplionv : s
andrl” Fv: =t, which impliesl” I/ v :t. Thus[s],, Z [t]., .

To prove that it is a model we have to check tidt=
@ <= &[t]=2. Againtherange of [is Z(B+[.7]).
By the observation above, we have tha¥], ,C) is iso-
morphic to(7, <). Up to this isomorphism#’[] coincides
with [],,. O

C More examples

First match policy. We show how is possible to impose
a first match policy in a input sum: consider the following

process
a(pi)-R
i=z.n | I

and letch’ (t) be the least type of this form that can be de-
duced forx (this can be calculated by using the set-theoretic
properties of the interpretation and it is at the basis of the

(11)

algorithmic typing rule for input actions). Defirg as
follows:
o _) P ifi=0
A= piA-lgf if1<i<n

Then the process

a(ai).R (12)
{i | 1aifAt0}

behaves exactly as the above with the only difference that
summand selection is deterministic and obeys a first match-
ing discipline. Indeed, every pattern accepts only the val-
ues that are not accepted by the preceding patterns. Note
that by applying a first match policy some of the summand
could no longer have any chance to be selected (this hap-
pens if{p; § At < V. p;f), and therefore they must not

be included in (12) since then it would not be well typed
(there would be redundant summands), which explains the
set used to index the sum.

Best match policy. It is possible to rewrite the process
in (11) so that it satisfies a best matching policy. Of course
this is possible only if for every possible choice in (11)rhe
always exist a best-matching patt&rif this is the case then
with the following definition forg;’s

a=pAIRS\ V 1pif)
{illpiSAt£TpiS At}

the process (12) is well-typed and implements the best
matching policy for (11), since the difference in the defi-
nition of g; makes the pattern fail on every value for which
there exists a more precise pattern that can capture it.

6More precisely it is necessary that for evénk € | if {pn§ AT P«
At # Othen there exists a uniques | such thaf pj § At =1pn§ AT kS At

18

