Parasitic Methods:
An Implementation of Multi-Methods for Java

John Boyland*
Computer Science Department,
Carnegie Mellon University,
5000 Forbes Avenue,
Pittsburgh, PA 15213-3891, USA
E-mail: john.boyland@acm.org

Abstract

In an object-oriented programming language, method selec-
tion is (usually) done at run-time using the class of the re-
ceiver. Some object-oriented languages (such as CLOS) have
multi-methods which comprise several methods selected on
the basis of the run-time classes of all the parameters, not
just the receiver. Multi-methods permit intuitive and type-
safe definition of binary methods such as structural equal-
ity, set inclusion and matrix multiplication, just to name
a few. Java as currently defined does not support multi-
methods. This paper defines a simple extension to Java
that enables the writing of “encapsulated” multi-methods
through the use of parasitic methods, methods that “attach”
themselves to other methods. Encapsulated multi-methods
avoid some of the modularity problems that arise with fully
general multi-methods. Furthermore, this extension yields
for free both covariant and contravariant specialization of
methods (besides Java’s current invariant specialization).
Programs using this extension can be translated auto-
matically at the source level into programs that do not; they
are modular, type-safe, and allow separate compilation.

1 Introduction

In an object-oriented language, method selection is (usu-
ally) done at run-time using the class of the receiver. Some
object-oriented languages (such as CLOS [DG87, Ste90])
have multi-methods (also known as generic functions) which
comprise several methods selected on the basis of the run-
time classes of all the parameters, not just the receiver. Un-
fortunately Java, like its predecessor C++, does not provide
multi-methods. Stroustrup, the designer of C++4, regrets
that he was unable to consider providing multi-methods in
his language. essentially because, as he admits, he was not

*Effort sponsored by the Defense Advanced Research Projects
Agency, and Rome Laboratory, Air Force Materiel Command, USAF,
under agreement number F30602-97-2-0241. The views and conclu-
sions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorse-
ments, either expressed or implied, of the Defense Advanced Research
Projects Agency, Rome Laboratory or the U.S. Government.
Permission to make digital/hard copy of part or all this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear, and
notice is given that copying is by permission of ACM, Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists,
requires prior specific permission and/or a fee.

OOPSLA 97 Atlanta, GA, USA
© 1997 ACM 0-89791-000-0/97/0010...$3.50

Giuseppe Castagna
CNRS, LIENS,
Ecole Normale Supérieure,
45 rue d'Ulm,
75005 Paris, France.

E-mail: castagna®dmi.ens.fr

able to find how to do it (see Section 13.8 of [Str94]). With
this work, we demonstrate that this situation can be avoided
for Java.

In this paper, we show how one can implement the spe-
cial case of “encapsulated” multi-methods for Java. While
specific to Java, our ideas can be applied with little change
to other languages. Our solution does not implement multi-
methods in their most general form, since we want to pre-
serve two of the most important properties of Java: mod-
ularity and separate compilation. Another goal is that our
extension should be conservative, that is, have no effect on
existing Java programs. To these ends, we adapt the well-
established technique of encapsulated multi-methods (one of
the solutions proposed by Bruce et al. [BCCT96] for typing
binary methods). We call the enabling technical feature par-
asttic methods.

A parasitic method is a Java method in its own right
which, additionally, extends the functionality of other meth-
ods (the host methods) for certain argument cases. If a
host method is called with arguments that fit the parasitic
method’s parameter types, the parasitic method body is
called instead of the host method body. A parasitic method
usually covariantly specializes host methods, that is, han-
dles some subset of the cases handled by the hosts. In
earlier work [BC906], we have shown that covariant special-
ization is type safe, if, as with the parasitic methods de-
scribed here, the new method only partially overrides the
original method, that is, it overrides the method only for
those arguments it can handle. A parasitic method may
also contravariantly spectalize a host method, that is, han-
dle any possible set of arguments passed to the host, and
handle other cases as well. In this case, the host method
body will never be executed. Analogous to a mistletoe plant
that draws nourishment from its host oak tree, a parasitic
method draws from its host methods calls that the para-
site can handle (according to the dynamic types of the ar-
guments). Parasitic methods reconcile covariant and con-
travariant specialization in a single simple framework, while
standard Java allows only invariant specialization (that is,
a method can be overridden only by a method defined for
the same parameter types), without sacrificing type safety
or separate compilation.

Extending Java with parasitic methods is conservative;
the extension does not affect the typing or the semantics (or
even the performance) of Java programs that do not con-
tain parasitic methods. Indeed, we show later that parasitic
methods can be considered as a sort of syntactic sugar since
they can be directly translated into standard Java.

The paper is organized as follows. In Section 2, we in-
troduce parasitic methods using several examples. We then
describe how they are inherited and overridden, and infor-
mally describe type-checking and run-time selection. The
latter two topics are detailed precisely in Section 3. In Sec-
tion 4, we demonstrate a translation of parasitic methods
into standard Java. Some of the design issues we engaged
are exposed in Section 5. We discuss practical implications
in Section 6, review related work in Section 7. and present
issues for further work in Section 8. A conclusion ends the
body of the paper.

2 Parasitic Methods

In this section we describe parasitic methods informally.
First we give several examples. Then we describe what hosts
a parasite “attaches” to, what additional static checking
rules parasitic methods entail, and which parasite is selected
dynamically when a host with multiple parasites is called.
We end the section with a discussion of how our proposal
preserves modularity.

2.1 Examples

In this section, we show several different ways to use para-
sitic methods. We start by showing what we consider their
“standard” use, namely the covariant specialization of an-
other method. Next, we show how parasites can be used to
express contravariant method overriding. Lastly, we show
some static parasites.

Despite their different uses, all parasitic methods obey
the same selection discipline: at compile-time the standard
Java overloading resolution’ is performed for every method
invocation (ignoring whether methods are declared as par-
asites or not); at run time if a method is selected and has
a parasite, it passes the control to it when the parasite is
applicable to the run-time types of the method’s arguments.

2.1.1 Covariant parasites

A method is declared parasitic using the method modifier
parasitic. For a simple example of parasitic methods, con-
sider a class IntList with a method union that takes as
argument another instance of IntList and produces a list
that contains all the elements of this (Java’s identifier for
message receiver), as well as all elements from the argument
that do not already occur in this. The method might be
implemented using a naive O(mn) algorithm (where m and
n are the lengths of the two lists), or perhaps by a more
sophisticated O(mlgm+ nlgn) algorithm that sorted them
first.

Later, we define a subclass IntSortedList, in which
methods are overridden so that the instances of this class
are always ordered. The method union can be inherited
from IntList. However it is clear that computing the union

"The static class of the receiver and its superclasses are examined
for accessible definitions of the method. The most specific method ap-
plicable to the static types of the arguments, if one exists, is chosen
at compile time. Otherwise, the call is flagged as either being am-
biguous or having no applicable method. In standard Java, the actual
method to be invoked will be determined at run time, using dynamic
method lookup (i.e., using the dynamic type of the receiver to select
among the methods that override the statically selected method).

class IntList {
public IntList union(IntList 1)
{ body for unioning two lists }
}

class IntSortedList extends IntList {
public parasitic IntSortedList union(IntSortedList 1)
{ body for merging two ordered lists }

Figure 1: Parasite of an inherited host method

of two ordered lists can be done more efficiently using a sim-
ple O(m + n) merge. The merge is implemented in a par-
asitic method in the definition of IntSortedList as shown
in Figure 1. In Figure 1, the class IntSortedList inherits
a method union that works on general IntList’s and also
defines a new more specific method that handles the case of
unioning two sorted lists. Java uses compile-time overload-
ing to select methods, and so if the static type of two lists is
IntSortedList, the more efficient method will be selected.
However, if one of the two lists being unioned has static
type of IntList, the Java compiler will select the general,
less efficient method. By making the more efficient method
a parasitic method, the general method yields to the efficient
method at run-time. Indeed when a method is declared par-
asitic it automatically parasitizes every method less specific
than it (a method is less specific than a second method if
it has the same name and number of parameters, and the
type of each parameter is a supertype of the type of the
corresponding parameter in the second method; informally,
a method is less specific than a parasite if it handles every
argument the parasite could handle). In the example then
the method declared in IntList parasitizes the method in-
herited from IntSortedList. Technically, the parasite does
not override the host (the inherited method). It “attaches”
itself to the host and diverts calls away that the parasite
can handle. In essence, before executing its body, the gen-
eral method checks the run-time type of the argument and
calls the specific method if it is applicable. (As with static
method selection, null is assumed to be an instance of every
class.)

In Figure 1, the method in the subclass parasitizes a
method inherited from the superclass. Of course, it is also
possible to parasitize a method that is defined in the same
class. For instance, in our example, even if only one of the
two lists to union is ordered, it is possible to execute more
efficiently (if m is the length of the ordered list, we have
an O(nlgn + m) algorithm). Thus an even more efficient
solution would be to override the method inherited from
IntList as well, as shown in Figure 2. In this case, when
the argument of the method is an instance of IntList. the
overriding version of union is executed.?

?Tn the example in Figure 2, the return type of overriding method
union(IntList 1) in class IntSortedList is a subclass of the return
type of the method it overrides. This discipline of overriding was im-
plemented in an early version of the Java compiler and Drossopoulou
and Eisenbach have shown it to be type safe [DE97]. Thus, although
the actual Java specification requires the result type of an overriding
method to be the same as the result type of the method it overrides,
we have chosen to adopt the less strict discipline.

class Union {

public static parasitic Intlist union(IntList 11, IntList 12)
{ return union(IntSortedList.sort(11),IntSortedList.sort(12)); }
public static parasitic IntlList union(IntList 11, IntSortedList 12)

{ return union(IntSortedList.sort(11),12); }

public static parasitic IntlList union(IntSortedList 11, IntList 12)

{ return union(l1,IntSortedList.sort(12)); }

public static parasitic IntSortedList union(IntSortedList 11, IntSortedList 12)

{ body for merging two ordered lists }

Figure 4: Static parasitic method example

class IntLlist {
public IntList union(IntList 1)
{ body for unioning two lists }
}

class IntSortedList extends IntList {
public IntSortedList union(IntList 1)
{ body for efficiently unioning two
lists when the first is ordered }

public parasitic IntSortedlList union(IntSortedList 1)
{ body for merging two ordered lists }

Figure 2: Parasite of a local host method

interface IntBag {

// wvarious method signatures

¥

class IntList implements IntBag {
public IntList union(IntList 1) { ... }

// implementation of interface’s signatures

class IntSortedList extends IntList {
public parasitic IntSortedList union(IntBag b)
{ super general version }

public parasitic IntSortedlList union(IntSortedList 1)
{ efficient specific version }

Figure 3: Contravariant Parasite

2.1.2 Contravariant parasites

In the examples above, all the parasites covariantly special-
ize their host, that is, they handle fewer arguments than
their host. Our proposal gives the programmer the power of
contravariant specialization, in which a new method handles
more cases than the method it takes the place of. A par-
asite not only attaches to all less specific methods defined
in the class (that is, declared or inherited), but also to any
more specific inherited method. In the latter case, the host
yields all control to the parasite, as if it had been overrid-
den. For example, suppose in IntSortedList, we decided
to implement union for any IntBag object, where IntBag
is declared as an interface and that IntList implements
it (see Figure 3). By declaring the general version of the
method parasitic, we completely shadow the union method
in IntList. When an instance of IntSortedList receives a
union message, it executes the second method declared in
its class if the argument is an IntSortedList, the first one
otherwise.

2.1.3 Parasites for static methods

It is also possible to attach parasites to static methods, as
long as the parasites are also static. In this case, all the
methods must be declared in a single class, since static
methods are not overridden in subclasses, only shadowed.
Figure 4 shows how one could write a multi-method of four
methods for unioning lists. Here, for uniformity, all meth-
ods are declared parasitic, although the first has no hosts.
The static method IntSortedList.sort is used to sort a list
and return an IntSortedList instance. The most specific
method will be chosen at run-time.

2.2 Inheritance

When one class extends another class with parasitic meth-
ods, the parasite-host relation is inherited.

As with regular methods, a parasitic method is overrid-
den whenever a method with the same name and the same
parameter types is defined in the subclass. Otherwise, as-
suming the method is accessible, it is inherited.

When a parasitic method is overridden by a non-parasitic
method, the new method remains implicitly parasitic, with
exactly the hosts (and the parasites) it had before, except
that if any of these methods is overridden by a method de-
clared parasitic, the connection is broken.

For the sake of an example, we define in Figure 5 the
class IntSortedList, a subclass of IntList from Figure 1,
with three union methods for arguments of type IntList,

class IntSortedlList extends IntList {
public IntSortedList union(IntList 1)
{ body for efficiently unioning two
lists when the first is ordered }

public parasitic IntSortedList union(IntSortedList 1)
{ body for merging two ordered lists }

public parasitic IntSortedList union(IntSet 1)
{ specialized body for IntSet }

class IntSet extends IntSortedList {
public IntSortedList union(IntSortedList 1)
{ some specialized body }

Figure 5: Overridden parasite

IntSortedList, and IntSet respectively, together with a
new subclass IntSet where the “middle” parasite of signa-
ture IntSortedList union(IntSortedList) is overridden.
The parasite for IntSortedList has been overridden with
a normal method, and thus it keeps the host it had before,
that is the method union(IntList 1). Furthermore the in-
herited method union(IntSet 1) becomes a parasite of the
method declared in IntSet. For example the command,

(new IntSet()).union((IntList)new IntSortedList())
executes the “some specialized body” while
(new IntSet()).union((IntSortedList)new IntSet())

executes the “specialized body for IntSet.”

2.3 Intuitive hosts

As shown by the preceding examples, a method declared par-
asitic attaches itself to every less specific method declared
in the class or inherited. It also parasitizes every inherited
method that is more specific. Furthermore, a method not
declared parasitic is nonetheless parasitic if it overrides a
parasitic method. It has the hosts that this method had,
with the exception of any methods that have subsequently
been overridden by methods declared parasitic. In other
words, the parasite-host relation is only changed when one
of the two methods at issue is overridden by a method de-
clared parasitic. This rule permits the body of the parasite
to be changed without changing the parasite-host relation.

The inheritance of the parasite-host relation was one
of the most difficult design issues of our work (see Sec-
tion 5 later on). The actual machinery may seem overly
complicated but, actually, it obeys a few simple principles.
The reader/programmer must consider that all the parasitic
methods with the same name and number of arguments to-
gether form a multi-method. These methods interact so that
whenever one of them is called, the most specific (more pre-
cisely, a maximally specific) among those that can handle
the arguments is executed. Now if we have a class with a
multi-method and we want to define a subclass of it, we may
wish either to inherit the multi-method as it is or to modify
it. In the latter case, three possible modifications can be
envisaged: (1) To replace (override) one or more methods

of the multi-method; (2) to replace the whole multi-method
by a brand new (multi-)method; (3) to add new methods to
the multi-method.

The first case is obtained by the standard Java overrid-
ing; so if we want to override a particular method of the
multi-method it suffices to declare in the subclass a new
method with the same signature (with possibly smaller re-
turn type) but not declared parasitic.

The second case, defining a new multi-method, is ob-
tained when a subclass declares one or more parasitic meth-
ods that are either more or less specific than some method of
the old multi-method. The newly defined parasitic methods
form a new multi-method that, in a sense, “partially over-
rides” the old multi-method. Roughly speaking, the meth-
ods of the old multi-method are called when no method of
the new multi-method applies. In other words, a method is
first looked for locally among the methods declared in the
class and if none applies, the search continues in the old
multi-method.

The addition of new methods (the third case) is straight-
forward when the methods to add are more specific than
all the methods of the multi-method (which should be the
most frequent case). As we have seen in many examples in
this section, it suffices to declare the new methods parasitic.
However, our system is less flexible when the method to
add is less specific than some method of the multi-method,
since this addition can be obtained only by overriding all the
methods more specific than the new method with methods
that perform super calls.

In conclusion, the programmer needs to remember that
plain overriding causes the replacement of the method in the
multi-method, while parasitic overriding (or declaration) en-
tails a new multi-method partially overriding the old multi-
method, if it exists.

2.4 Static type-checking and other rules
We add a single type rule to handle parasitic methods:

The result type of a parasite must be assignment
compatible with the result type of its hosts.

A parasite is called from the host if the run-time types of
the arguments fit the parasite. The condition says it is a
compile-time error if the return value of the parasite could
not be returned by the host.

Further restrictions apply. The parasite cannot name an
exception in its throws clause not mentioned in the host’s
throws clause. The parasitic method must be static if and
only if the host method is static. An inherited host cannot
be final (because we change its meaning in the subclass). For
simplicity, we require the parasite to have the same accessi-
bility as the host. For ease of implementation, we disallow
parasites from being abstract, and hosts from being native.

2.5 Intuitive selection

When multiple parasites are attached to the same host, there
is the issue of priority: which parasite is checked for appli-
cability first. The priority closest to the semantics of most
multi-method systems would be to use the most-specific par-
asite. However, requiring that such a parasite always exist
poses many problems (see Section 2.6 for a detailed explana-
tion). Thus we decided to use textual order as a tie-breaker:
the textually last parasite that applies is chosen.

However, since parasites themselves can have other par-
asites, the most specific parasite (if it exists) will always
be called, no matter what priority is used. If a less spe-
cific parasite is selected, then this parasite will be a host to
more specific parasites which then have another “chance.”
Thus the semantics of parasites can be informally stated as

follows:

When a host method with attached parasites is
selected, the system searches for a parasite that
18 applicable to the run-time types of the method
arguments.

The search starts from the class of the method re-
ceiver and follows an ascending order. Namely,
the parasites are checked within a class from the
last defined to the first defined and every class is
searched before its superclasses.

The first parasite found to be applicable 1s exe-
cuted in the place of the method. If no parasite
applies, then the body of the method is executed.

Thus textual order is a simple solution to the problem of
how to choose the “most-specific” method, which must be
addressed by any multi-method system.?

2.6 Modularity

As we said in the introduction we do not implement multi-
methods in their most general form since we want to preserve
two of the most important properties of Java: modularity
and separate (type-checking and) compilation.

Textual order is one important ingredient. For example,
if I1 and I2 are two unrelated interfaces, there is no harm
in defining

class A {
void m(Object x) { ... }
parasitic void m(I1 x) { ... }
parasitic void m(I2 x) { ... }
¥

Indeed, if later a new class B that implements both I1 and
I2 is added to the system, it is not necessary to modify the
definition of A, since the conflict caused by an expression
such as (new A()).m((Object)new B()) is handled by the
textual order.?

Consider what would happen if we had adopted the se-
mantics that the most specific parasite were chosen, instead
of using textual ordering. If there were such a class B in
the final program that implemented both interfaces, then
no most specific parasite would exist. Thus a “most spe-
cific parasite” rule would break modularity. Extending the
type system with an explicit null type and new types of the
form T &7, representing the greatest lower bound of the
two types, would permit a set of parasites to be checked
separately. For instance, by adding a parasite

parasitic void m(I1&I2 x)

to the example, one could ensure the existence of a most
specific parasite in all situations. But this solution would
not only entail a significant change to the type system, but

#Textual order thus plays somewhat the same role as class prece-
dence lists in CLOS.

“Without the cast, the expression would be an ambiguous method
invocation and would be rejected by the Java compiler.

(@14

also require the writing of many parasites that may never
be called.

The other ingredient for modularity is maintaining Java's
restriction that all methods must be declared in the class of
the receiver (this in Java). The price to pay is less flexibil-
ity in the use of multi-methods; parasitic methods achieve
the full generality of multi-methods only if the writer of a
class anticipates what subclasses will be derived from it, as
explained by Bruce et al. [BCCT96]. For example in order
to define all the possible cases of union in Figure 2, the class
IntList should be defined as

class IntList {
public IntList union(IntList 1)
{ body for unioning two lists }
public parasitic IntSortedList union(IntSortedList 1)
{ body for efficiently unitoning two lists
when the second is ordered }

}

But then either the programmer writing the class IntList
must already know that the class IntSortedList will be
defined, or else the second method must be added to the
class IntList, which then must be recompiled. In more
general systems such as CLOS and Cecil, there is no such
restriction on where multi-methods may be declared.”

It would be possible to define an extension of Java with
general multi-methods, on the lines of the work [Cas97], but
at the expenses of modularity. In languages that permit
methods to be added to existing classes, parasitic meth-
ods would be equivalent to general multi-methods. Such
a feature is compatible with separate compilation (as in
02 [BDK92] where method addition and separate compi-
lation coexist), but breaks modular type-checking.

3 Type-Checking and Selection

In this section, we define hosts, type rules, and parasite
selection precisely. We begin with some definitions and then
proceed to consider hosts, types and selection individually.

3.1 Formal definitions

We define two relations on types: subtyping, and a broader
relation, assignment subtyping. A type T is a subtype of
type T (written T < T") if T = T" or if T is a descendant of
class or interface T” (in case of array types, recursively apply
this definition to the element types). We say T is a strict
subtype of T' (written T' < T') if only the second condition
holds. Additionally the null type is a strict subtype of all
reference types.® A type T is an assignment subtype of type
T (written T <. T") if T is a subtype of 7" or there is a
primitive widening conversion (§5.1.2 in [GJS96]) from T to
T'. For example, int is an assignment subtype of float,
but not a subtype. Method invocation conversion (§5.3) is
legal precisely from a type to an assignment supertype.

® A similar observation can be made for general multi-method man-
agement. In languages such as CLOS and Cecil, new method defini-
tions can be added to existing multi-methods at any time and any-
where in the source code. This can be simulated in our extension
by adding new parasites in some particular classes, with a certain
amount of recompilation.

SReference types (§4.3 of [GJS96]) are class types, interface
types, and array types. Together with the null type and primitive
types (boolean, byte, short, int, long, char, float, and double)
they comprise the types of Java.

Subtyping is extended to method signatures. Consider
the following method definition:

T m(Sy z1,..., Sp ax) { ... }

This method has signature (Si,...,S,) — T or, in short,
§ T A type vector Sis a subtype of S if they have
the same number of components and respective components
are subtypes (S; < S!). If at least one component is a strict
subtype as well, the vector Sis astrict subtype of g (written
§< .

A method signature S — T'is more specific than another
method signature $" — T if and only if §<3 (the return
types are ignored).” Analogously, a signature S = T is less
specific than another method signature §" — T’ if and only
if §$> 3. B

We say a method named m with signature S — T is
defined in a class C if it is declared in C or is inherited
from a superclass or a superinterface. The existing Java
type system ensures that for two different methods with the
same name defined in a class C' with signatures 5§ = T and

U ' & ot
S"— T', we have S # S'.

3.2 Hosts

A parasitic method is one declared using the parasitic
method modifier, or one overriding a parasitic method. A
parasitic method m with signature § = T defined in a class
may have hosts, which are drawn from the set of methods
defined in the class with the same name and number of ar-
guments. We write

m(S) = T —c m(?) - T

if this parasite has a host with signature S° — T' in the

class C'.

Definition 1 Let C be a class, possibly extending a class B.
m(S) — T «—¢ m(S") = T' if and only if both methods are
defined in C and one of the following conditions is satisfied:

1. A method m with signature S — T is declared parasitic
i class C and S < §'.

2. A method m with signature S — T is declared parasitic
wn class C and o method m with signature S' — T 1s
inherited from B and S > 5’.

3. No method m with signature either SoTorS T

-

1s declared parasitic in class C, and m(S) —» T <p

m(S-"') - T

An important property of this definition is that there can
never be a cycle in the parasite-host relation within any
class. New edges are only added between method signatures
when one is declared parasitic, and the definition does not
inherit any edge impacting such method signatures.
According to the definition above, a parasite is either
more specific or less specific than its host. This means that

“The Java language specification uses the broader relation S <a
S" for compile-time overloading resolution. Note that our choice im-
plies that whenever one signature is more specific than another then
the two signatures may differ for parameters with reference types but
are the same for the parameters with primitive types.

the signatures of the two methods differ over some parame-
ters with reference types but must be the same over param-
eters with primitive types (see Footnote 7). This restriction
can be harmlessly weakened to permit parasites with prim-
itive type arguments to have hosts where the corresponding
arguments’ types are assignment subtypes, but we preferred
not to do so since it might have confused the programmer
without bringing any significant enhancement.

It is possible to declare a method with a contravariant
parasite:

class A {
public void m(B x) { ... }
}

class B extends A {
public parasitic void m(A x) { ... }

class C extends B {
public void m(B x) { ... }
¥

The method in C will never be executed since it is shad-
owed by the (inherited parasitic) method declared in B. The
compiler issues warnings for such cases.

3.3 Typing

From the typing point of view, a method with signature
ST having a host with signature § = T’ must return
an assignment subtype (T <4 T'). If the condition is not
satisfied, the compiler generates an error message. If the
involved parasite is inherited, then the compiler signals that
the host’s return type must be an assignment supertype of
any parasite’s return type. If the involved parasite is not in-
herited, then the compiler signals that the parasite’s return
type must be assignment compatible with the return type
of its host.

3.4 Selection

Let us define more formally the discipline of selection of par-
asitic methods. For a class C let X be the set of signatures
of the (possibly inherited) parasites of a method m(g) - T
in the class C:

YO ={F 5T | m(§) - T —c m(S) - T}
On T¢ we define a total order < as follows.

Definition 2 Let C be a class, possibly extending a class B
and consider S; — T;,5; — T, € ¢, 8§ - T <% S; —
T;, of and only if one of these conditions is satisfied.

1. the method for m with signature L appears in
class C after the definition of the method with signa-
ture S; — Tj;

2. the methods for m with signature S — T, is declared in
C while the method with signature S; — T is inherited
from B;

3. the method for m with signature S, = T; and the one
with signature S; — T; are both inherited from B, and
ST, <m 5:; - T

The order relation <C on % is a total order, since it is
a subrelation of the total order obtained by listing the an-
cestors of C in the (single) inheritance order and listing the
methods within each class in order of declaration.

Then the selection discipline for parasites has the follow-
ing definition:

Definition 3 (Selection) When m in class C is applied
to a tuple of arguments of type S then the method whose
signature 1s min w.r.t. <5 of {§, — T, eXxf | 55 577} 18
then applied to the arguments. If this set is empty, the body
of the host method is executed.

This definition entails an iteration if the selected parasite
itself has parasites. Since the definition of hosts ensures
that the parasite-host relation never has cycles, this iteration
must terminate.

4 Translation

Parasitic methods are easily translated to standard Java
using that language’s type testing primitives (see Figures
6 and 7), by adding conditional calls to the parasites at the
beginning of the body of each non-abstract host method.
First, the body of each parasite is packaged in a final (non-
overrideable) method so that it can be called by the hosts.
The name of this new method is formed by concatenating
the class name, a dollarsign and the original method name.
Next, if the host method is inherited (as in Figure 1), it is
rewritten as an overriding method that simply calls super.®
Then, a host’s body is preceded by conditions that check
applicability for each parasite in the inverse order they are
declared in the class (tests for inherited parasites come last,
as seen in Figure 8). As with standard Java, the null type is
considered a subtype of every reference type. Only if none
of the parasites is applicable, does control fall through to
the original method body.

Some tests for applicability can be omitted. More pre-
cisely, in order to test that a parasitic method is applicable,
the system need not consider a host’s arguments when their
types are assignment subtypes of the type of the correspond-
ing parasitic method parameter. This situation occurs for
contravariant parasites, as seen in Figure 9.

The generated argument checks are always legal since
they are only needed to go down the inheritance hierarchy.
The return statements type-check as long as the type con-
dition described in Section 3.3 is satisfied.

Our modified compiler generates legal Java class files
that can be verified and executed by a standard Java run-
time system. It is even possible to use a standard Java
compiler to compile clients or subclasses of classes using par-
asitic methods, but in this case of course, the parasite-host
relation is not preserved in subclasses.

8Because of the definition of more specific used for static overload-
ing resolution in standard Java, this step may introduce (or eliminate)
ambiguous method resolution in the resulting program. Our imple-
mentation avoids this problem by translating directly to Java byte
code. Even when compiling a client class using a class with para-
sitic methods, our implementation hides the generated methods from
static dispatching, but if a standard Java compiler is used to compile
the client, they become visible.

-1

class IntList { ... } // unchanged
class IntSortedList extends IntList {
public IntList union(IntList 1) {
if (1 == null ||
1 instanceof IntSortedList) {
return IntSortedList$union((IntSortedList)l);
}
else return super.union(l);

}

public IntSortedList union(IntSortedList 1) {
return IntSortedList$union(l);

}

public final IntSortedList
IntSortedList$union(IntSortedList 1)
{ body for merging two ordered lists }

Figure 6: Translation of Figure 1 (the host is inherited).

class IntList { ... } // unchanged
class IntSortedList extends IntList {
public IntSortedList union(IntList 1) {
if (1 == null ||
1 instanceof IntSortedList) {
return IntSortedList$union((IntSortedList)l);

else { body for efficiently unioning two
lists when the first is ordered }

}

public IntSortedList union(IntSortedList 1) {
return IntSortedList$union(l);

¥

public final IntSortedlList
IntSortedList$union(IntSortedList 1)
{ body for merging two ordered lists }

Figure 7: Translation of Figure 2 (the host is local).

class IntSet extends IntSortedList {
public IntSortedList union(IntList 1) {
if (1 == null || 1 instanceof IntSortedList) {
return IntSet$union((IntSortedList)l);
} else if (1 == null || 1 instanceof IntSet) {
// this branch will never be taken but il is checked
// last since it corresponds to an inherited parasite
return IntSortedList$union((IntSet)l);
} else {
return super.union(l);
¥
¥

public IntSortedList union{(IntSortedList 1) {
return IntSet$union(l);

}

public final IntSortedList
IntSet$union(IntSortedList 1) {
if (1 == null || 1 instanceof IntSet) {
return IntSortedList$union((IntSet)l);
} else { some specialized body ¥
¥
¥

Figure 8: Translation of IntSet from Figure 5 (the parasite
is overridden)

interface IntBag { ... } // unchanged

class IntList implements IntBag {

... Y // unchanged

class IntSortedlList extends IntList {

}

public IntList union(IntList 1) {
if (1 == null ||
1 instanceof IntSortedList) {
return IntSortedList$union((IntSortedList)l);
} else {
return IntSortedList$union((IntBag)l);
¥
}

public IntSortedList union(IntBag b)

{ return IntSortedList$union(b); }

public final IntSortedList
IntSortedList$union(IntBag b)

{ super general version ¥

public IntSortedList union{(IntSortedList 1)

{ return IntSortedList$union(1l); }

public final IntSortedList
IntSortedList$union(IntSortedList 1)

{ efficient specific version ¥

Figure 9: Translation of Figure 3 (contravariant parasite).

5 Design issues

The Java extension defined in this work is the result of a
series of decisions. We summarize here the main design op-
tions, showing for each the pros (§) and, ahove all, the cons
(2) that made us to reject them.

Multi-methods

1.

Multi-methods could be added to Java by extending the
language with CLOS’s generic functions.

¢ This would be the most powerful extension of Java
with multi-methods and it subsumes all the others.

D

We excluded it from the very beginning since it would
have broken modularity and separate compilation. In
any case their power can be obtained from parasites
by breaking modularity. So we preferred to make their
use an exception rather than the standard.

We could have considered all methods as parasitic meth-

ods by default. This is what it is done in KOOL [Cas97]

and what we proposed [BC96] for the database program-

ming language Oy (the goal being to make Os’s covariant

specialization statically safe).

¢ This solution is very clean and easy to understand.
Practically speaking this solution consists of having
dynamic (rather than static) resolution for Java over-
loaded methods.

D

It changes the semantics of existing programs that use
overloading (but in our opinion it would be the best
solution for a brand new language).

Parasites

3. Replace the use of the textual priority for the choice of

parasites by a condition ensuring the existence of a best

4.

matching parasites. In other words, instead of perform-
ing parasite selection with an upward search for the the
first parasite that can handle the arguments, select the
parasite whose parameters best match the actual argu-
ments.

¢ This option was attentively considered since it is very
intuitive and clean, and the conditions to ensure static
type-safety are well-known (see [ADL91] or [Cas97]).
Furthermore, by a clever compilation the average se-
lection time can be logarithmic in the number of par-
asites (while with textual ordering it is linear).

)

A plain implementation of this discipline would hreak
modularity as we have shown in Section 2.6. We con-
sidered a way to recover modularity in this case that
consists of requiring the set of parasite signatures to
always contain a least type. Such a requirement could
not be met in many situations without also extending
the type systems with an explicit null type and new
types of the form T3 &T5, in which one of T7 and Tb
is an interface type, representing the greatest lower
bound of the two types. A parasite defined for the
type T1 &Ts would then be executed when there is a
selection conflict between T and 75. But besides the
fact that we disliked the introduction of new types,
this would have sometimes required the programmer
to define a large number of parasites that would be
never selected (typically, parasites defined for Ty &7,
where the T;’s are unrelated interfaces that will never
have a common subtype) and could be very cumber-
some.

Permit downward casts in primitive types for parasites

4 This solution treats primitive types in the same way
as reference types.

& It does not fit the semantics of Java very well (there
is no corresponding instanceof operator for primi-
tive types). However it is a possible choice for future
extensions.

Overriding and inheritance

5.

Use invariant result type overriding.
& It is standard Java.

& It is a useless and unjustified restriction and limits the
power of parasitic methods (and of standard Java's
methods in general).

Inherit parasitic methods as if declared locally. (Part of

an earlier draft of this proposal.)

@ This solution has the advantage of the simplicity. It
differs from the one we presented here in that a par-
asitic method does not parasitize more specific inher-
ited methods but, on the contrary. if these methods
are also parasitic it is parasitized by them.

)

This solution is less expressive; it is possible to add
new parasites in a subclass and to override the exist-
ing ones, but the structure of the parasite-host rela-
tion is inherited as it is and it cannot be modified. In
particular, one cannot define contravariant parasites
such as ones that cover a whole set of inherited par-
asites. This is a flagrant violation of object-oriented
principles.

7. Adopt a more powerful typing discipline for contravari-
ant parasites: the host is redeclared with the return type
of the parasite (possibly a strict subtype).

& More precise typing discipline that (slightly) enhances
the language’s expressiveness.

D

This extension would have complicated the typing dis-

cipline for parasites by requiring additional type rules

such as “if a method with a contravariant parasite is

overridden, the return type must he a subtype of the

contravariant parasite.”

8. Parasitic method definitions are not inherited in sub-
classes.

¢ It fits the concept of “parasite” according to which a
parasite attaches to a particular host.

D

It does not fit Java’s and, more generally. object-
oriented inheritance philosophy according to which a
method definition is valid in all subclasses as long as
a new definition with the same signature is not given.

Implementation

9. Rewrite runtime system.

¢ Potentially more efficient.

© This solution may slow down programs not using par-
asitic methods.

& Implementation becomes harder to optimize.

Makes adoption of multi-methods much less likely.

10. Call parasitic method signature directly, rather than
create new final methods.

¢ Potentially more efficient since fewer dispatches are
required.

@& If a parasite is overridden, then the translation would
not need to override the host as well.

& Overridable parasitic bodies make analysis and thus
optimization harder.

© Overridable methods are potentially more expensive
to call than final methods.

& In certain situations, super calls leads to surprising
infinite recursion.

6 Practice

The practical benefit of parasitic methods is manifest. The
simplest example is given by the method Object.equal that
is used and overridden in a large number of Java programs.
Even in the simple built-in class java.lang.Boolean, we
have:

public boolean equals(Object obj) {
if ((obj != null) &% (obj instanceof Boolean)) {
return value == ((Boolean)obj).booleanValue();
¥
return false;

}

With parasitic methods this can be equivalently (and more
naturally) written as

public parasitic boolean equals(Boolean obj) {
return (obj != null) && (value == obj.booleanValue());
}

A much larger example of code in which parasitic methods
would be useful is the method sameStructure defined in
class UpdatableImpl of Doug Lea’s collections package
version 0.96.°

Moreover, the systematic use of the parasitic keyword
in every overloaded method definition transforms the over-
loaded method selection from static into dynamic. In other
words, the method to execute is selected according to the
dynamic type of its arguments rather than the static ones.
Of course the price for this is run-time overhead, but the
resulting behavior is, in our opinion, much more intuitive
and predictable. For instance, the following program (due

to Doug Lea)

class Classifier {
String identify(Object x) { return "object"; }
String identify(Integer x) { return "integer"; }
}

class Relay {
String relay(Object obj)
{ return (new Classifier()).identify(obj); }
}

public class App {
public static void main(Stringl] args) {
Relay relayer = new Relay();
Integer i = new Integer(17);
System.out.println(relayer.relay(i));
¥
}

prints “object” as result, while a definition of Classifier
such as

class Classifier {
String identify(Object x) { return "object"; }
parasitic String identify(Integer x)
{ return "integer"; }

}

prints “integer”.

7 Related Work

Agrawal et al [ADL91] describe the basic problem of type-
checking systems of multi-methods and forming precedences
between applicable method branches. Checking types has
two parts: the set of method branches comprising a multi-
method must be mutually consistent, and the static call sites
must type-check. The first part consists of applying the rule
that if one method branch is more specific than another,
the former’s return type must be included in the latter’s.
In our context, this rule is the one that a parasite’s return
type must be an assignment subtype of the host’s return
type. The second part consists of checking the call using
the static types of the arguments to compute the static type
of the result. In our context, this check is already performed
by the Java compiler.

The same condition as consistency was found in the more
type-theoretic approach of [CGL92, Cas97], where it was

“See http://gee.cs.oswego.edu/dl/classes/collections for code
and documentation of this package.

called covariance condition. There a second condition on
the formation of multi-methods was required, namely the
existence of a most specialized branch. Such a condition
is not necessary (in a sense, it is trivially satisfied) in our
approach since the use of textual order makes the search
order be total.

Mugridge, et al. [MHH91] define the language Kea, where
multi-methods and encapsulation are obtained thanks to a
mechanism similar to the partial overriding of [BC96]. How-
ever, the self parameter is considered a parameter like the
others (thus this approach is not strictly comparable to
ours), and programs may not be modular since the addi-
tion of a class can invalidate previously acceptable multi-
methods. Furthermore, the approach seems incompatible
with Java’s overloading and thus not applicable to our spe-
cific problem.

Chambers and Leavens [CL95] show that type-checking
uses of multi-methods in a powerful language with mod-
ules (Cecil) can be done in the context of separate compila-
tion. They also describe an algorithm for statically checking
whether a set of multi-method implementations is complete
and consistent. However, the test must be performed at
link-time, as it requires a list of all concrete classes. Our
proposal permits checking to be done separately for each
Java class.

8 Future work

Our proposal here is not meant to be the final word on
parasitic methods. We have several extensions that we are
considering;:

1. The set of hosts of a parasitic method is currently deter-
mined by the rules of Definition 1. We want to allow the
programmer to explicitly define the set of hosts of a par-
asites by specifying their signatures in an extends clause
that precedes the body of the parasite. This possibility,
besides giving a total control over the parasite-host re-
lation, would also allow every kind of specialization (co-
variant, contravariant, invariant), at the granularity of
parameters. Thus for example

class A {
void m(A x, B y)
R
}

class B extends A {
parasitic void m(B x, A y) extends

{ ...}

m(A x, B y)

}

the parasite in B specializes the method in A covariantly
on the first parameter and contravariantly on the second.

2. The implementation of the prototype we propose is based
on the translation we described in Section 4. Such an
implementation is far from being the most efficient one.
Many optimizations are possible. For example when a
multi-method is called, the most specific method (if it ex-
ists) is selected among those that handle the arguments.
However this process of selection may involve several dis-
patchings. For instance, if a programmer declared the
methods of a class so that a more specific parasite al-
ways precedes the less specific ones, then in the worst
case, the message can be dispatched successively to all
the parasitic methods; the first dispatches to the second

10

that dispatches to the third and so on. A clever com-
piler could drastically reduce this cost by calculating the
method to be executed and by dispatching directly to it.
Other examples of possible optimizations include inlin-
ing the final $-methods into the hosts, and redirecting
dispatches to methods with contravariant parasites to go

directly to the parasite.

3. We may consider dispatching also on primitive types. A
difficulty here is that there is no analog to "instanceof”
to determine, for instance, if a double value can be rep-
resented as an int.

9 Conclusion

Multi-methods are selected dynamically based on the type of
arguments, and provide a type-safe solution to the problem
of binary methods with inheritance. Our implementation of
them in Java, parasitic methods, unifies covariant and con-
travariant specialization in a single feature. Parasitic meth-
ods give the programmer run-time multi-method dispatch
in the same spirit as Java’s current (static) method selec-
tion. They permit the programmer to write more elegant
and readable code than the equivalent (but error prone) use
of instanceof and type casts.

The extension preserves Java’s type-safety, modularity
and separate compilability, and has a cost only when it is
used. In fact, inasmuch as the existence of multi-methods
encourages programmers to write specialized efficient ver-
sions of methods, programs using parasitic methods may be
faster than ones without. Furthermore, we have learned
that some instructors recommend students never use type
overloading in Java methods (at least when they have re-
lated parameter types), because static resolution yields un-
expected behavior. Parasitic methods would make type
overloading acceptable again.

Parasitic methods are straightforward to implement; we
currently have an implementation on top of the Java Devel-
opment Kit (version 1.0.2).

Parasitic methods would work nicely in Java extended
with parametric polymorphism as proposed by Odersky and
Wadler [OW97] and by Banks et al [BLM97]. Both encap-
sulated multi-methods and parametric classes are features
originally proposed in the type theory community. We are
pleased to see that they are starting to take root in more
practical settings.

Finally most design trade-offs in our work derive from
the fact that we wanted to define a conservative extension of
Java. Most of the difficulties in particular were due to keep-
ing the semantics of Java's static overloading unchanged.
Indeed a cleaner, but non-conservative, extension would be
to consider all methods as parasitic methods (this is what
it is done in KOOL [Cas97] and what we proposed [BC96]
for the database programming language O.). Practically
speaking, this solution consists precisely in having dynamic
(rather than static) resolution for Java overloaded methods.
In any case, we are certain this would be the best solution
for a brand new language.

Acknowledgments

The authors are grateful to Manuel Fahndrich, Edwin Chan,
and Doug Lea for their valuable information and sugges-
tions. We are sincerely obliged to the OOPSLA’s referees

whose pertinent remarks stimulated us to deeply modify
and, we hope, decisively improve the work we had submit-

ted.

Special thanks to Gary Leavens for his constructive

remarks on several drafts.

References

[ADLO1]

[BC96]

[BCC196]

[BDK92]

[BLM97]

[Cas97]

[CGLY2]

[CL95]

[DE97]

Rakesh Agrawal, Linda G. DeMichiel, and
Bruce G. Lindsay. Static type checking of multi-
methods. In Conference Proceedings of OOP-
SLA’91 - Object Oriented Programming Sys-
tems, Languages and Applications, pages 113—
128, New York, October 1991. ACM Press.
Appeared as ACM SIGPLAN Notices 26 (11),
November 1991.

John Tang Boyland and Giuseppe Castagna.
Type-safe compilation of covariant specializa-
tion: A practical case. In ECOOP "96 — Object-
Oriented Programming (10th European Confer-
ence), volume 1098 of Lecture Notes in Computer
Science, pages 3 25. Springer-Verlag, Berlin,
Heidelberg, New York, July 1996.

K. Bruce, L. Cardelli, G. Castagna, The Hop-
kins Object Group, G. Leavens, and B. Pierce.
On binary methods. Theory and Practice of Ob-
ject Systems, 1(3):221 242, 1996.

F. Bancilhon, C. Delobel, and P. Kanellakis, edi-
tors. Implementing an Object-Oriented Database
System: The Story of Oz. Morgan Kaufmann,
1992.

Joseph A. Banks, Barbara Liskov, and An-
drew C. Meyers. Parameterized types and Java.
In Conference Record of the Twenty-fourth An-
nual ACM SIGACT/SIGPLAN Symposium on
Principles of Programming Languages, pages
132-145, New York, January 1997. ACM Press.

G. Castagna. Object-Oriented Programiming:
A Unified Foundation. Progress in Theoreti-
cal Computer Science series. Birkauser, Boston,

1997.
G. Castagna, G. Ghelli, and G. Longo. A calcu-

lus for overloaded functions with subtyping. In
ACM Conference on LISP and Functional Pro-
gramming, pages 182 192, 1992. Extended and
revised version in Information and Computation

117(1):115-135, 1995.

C. Chambers and G. T. Leavens. Type-checking
and modules for multi-methods. ACM Transac-
tions on Programming Languages and Systems,

17(6):805 843, November 1995.

Sophia Drossopoulou and Susan Eisenbach. Java
is type safe — probably. In ECOOP 97 — Object-
Oriented Programming (11th European Confer-
ence), volume 1241 of Lecture Notes in Computer
Science, pages 389 418. Springer Verlag, Berlin,
July 1997.

[DG8T]

(G596

[MHHO1]

[OW97]

[Ste90]

[Str94]

11

L. G. DeMichiel and R. P. Gabriel. Common
Lisp Object System overview. In Bézivin, Hul-
lot, Cointe, and Lieberman, editors, Proc. of
ECOOP °87 European Conference on Object-
Oriented Programming, number 276 in Lec-
ture Notes in Computer Science, pages 151-170,
Paris, France, June 1987. Springer.

James Gosling, Bill Joy, and Guy Steele. The
Java Language Specification. Addison-Wesley,
Reading, Massachusetts, 1996.

W. B. Mugridge, J. Hamer, and J. G. Hosk-
ing. Multi-methods in a statically-typed pro-
gramming language. In Pierre America, editor,
Proceedings of ECOOP 91 Conference, Geneva,
Switzerland, volume 512 of Lecture Notes in
Computer Science. Springer, 1991.

Martin Odersky and Philip Wadler. Pizza into
Java: Translating theory into practice. In
Conference Record of the Twenty-fourth Annual
ACM SIGACT/SIGPLAN Symposium on Prin-
ciples of Programming Languages, pages 146
159, New York, January 1997. ACM Press.

Guy Steele. Common Lisp the Language. Digital
Press. 2nd edition, 1990.

Bjarne Stroustrup. The design and evolution of
C++. Addison-Wesley, Reading, Massachusetts,
1994.

