
Parasitic Methods:An Implementation of Multi-Methods for JavaJohn Boyland�Computer Science Department,Carnegie Mellon University,5000 Forbes Avenue,Pittsburgh, PA 15213-3891, USAE-mail: john.boyland@acm.org Giuseppe CastagnaCNRS, LIENS,�Ecole Normale Sup�erieure,45 rue d'Ulm,75005 Paris, France.E-mail: castagna@dmi.ens.frAbstractIn an object-oriented programming language, method selec-tion is (usually) done at run-time using the class of the re-ceiver. Some object-oriented languages (such as CLOS) havemulti-methods which comprise several methods selected onthe basis of the run-time classes of all the parameters, notjust the receiver. Multi-methods permit intuitive and type-safe de�nition of binary methods such as structural equal-ity, set inclusion and matrix multiplication, just to namea few. Java as currently de�ned does not support multi-methods. This paper de�nes a simple extension to Javathat enables the writing of \encapsulated" multi-methodsthrough the use of parasitic methods, methods that \attach"themselves to other methods. Encapsulated multi-methodsavoid some of the modularity problems that arise with fullygeneral multi-methods. Furthermore, this extension yieldsfor free both covariant and contravariant specialization ofmethods (besides Java's current invariant specialization).Programs using this extension can be translated auto-matically at the source level into programs that do not; theyare modular, type-safe, and allow separate compilation.1 IntroductionIn an object-oriented language, method selection is (usu-ally) done at run-time using the class of the receiver. Someobject-oriented languages (such as CLOS [DG87, Ste90])have multi-methods (also known as generic functions) whichcomprise several methods selected on the basis of the run-time classes of all the parameters, not just the receiver. Un-fortunately Java, like its predecessor C++, does not providemulti-methods. Stroustrup, the designer of C++, regretsthat he was unable to consider providing multi-methods inhis language, essentially because, as he admits, he was not�E�ort sponsored by the Defense Advanced Research ProjectsAgency, and Rome Laboratory, Air Force Materiel Command, USAF,under agreement number F30602-97-2-0241. The views and conclu-sions contained herein are those of the authors and should not beinterpreted as necessarily representing the o�cial policies or endorse-ments, either expressed or implied, of the Defense Advanced ResearchProjects Agency, Rome Laboratory or the U.S. Government.Permission to make digital/hard copy of part or all this work forpersonal or classroom use is granted without fee provided that copiesare not made or distributed for pro�t or commercial advantage, thecopyright notice, the title of the publication and its date appear, andnotice is given that copying is by permission of ACM, Inc. To copyotherwise, to republish, to post on servers, or to redistribute to lists,requires prior speci�c permission and/or a fee.OOPSLA '97 Atlanta, GA, USAc 1997 ACM 0-89791-000-0/97/0010...$3.50

able to �nd how to do it (see Section 13.8 of [Str94]). Withthis work, we demonstrate that this situation can be avoidedfor Java.In this paper, we show how one can implement the spe-cial case of \encapsulated" multi-methods for Java. Whilespeci�c to Java, our ideas can be applied with little changeto other languages. Our solution does not implement multi-methods in their most general form, since we want to pre-serve two of the most important properties of Java: mod-ularity and separate compilation. Another goal is that ourextension should be conservative, that is, have no e�ect onexisting Java programs. To these ends, we adapt the well-established technique of encapsulated multi-methods (one ofthe solutions proposed by Bruce et al. [BCC+96] for typingbinary methods). We call the enabling technical feature par-asitic methods.A parasitic method is a Java method in its own rightwhich, additionally, extends the functionality of other meth-ods (the host methods) for certain argument cases. If ahost method is called with arguments that �t the parasiticmethod's parameter types, the parasitic method body iscalled instead of the host method body. A parasitic methodusually covariantly specializes host methods, that is, han-dles some subset of the cases handled by the hosts. Inearlier work [BC96], we have shown that covariant special-ization is type safe, if, as with the parasitic methods de-scribed here, the new method only partially overrides theoriginal method, that is, it overrides the method only forthose arguments it can handle. A parasitic method mayalso contravariantly specialize a host method, that is, han-dle any possible set of arguments passed to the host, andhandle other cases as well. In this case, the host methodbody will never be executed. Analogous to a mistletoe plantthat draws nourishment from its host oak tree, a parasiticmethod draws from its host methods calls that the para-site can handle (according to the dynamic types of the ar-guments). Parasitic methods reconcile covariant and con-travariant specialization in a single simple framework, whilestandard Java allows only invariant specialization (that is,a method can be overridden only by a method de�ned forthe same parameter types), without sacri�cing type safetyor separate compilation.Extending Java with parasitic methods is conservative;the extension does not a�ect the typing or the semantics (oreven the performance) of Java programs that do not con-tain parasitic methods. Indeed, we show later that parasiticmethods can be considered as a sort of syntactic sugar sincethey can be directly translated into standard Java.

The paper is organized as follows. In Section 2, we in-troduce parasitic methods using several examples. We thendescribe how they are inherited and overridden, and infor-mally describe type-checking and run-time selection. Thelatter two topics are detailed precisely in Section 3. In Sec-tion 4, we demonstrate a translation of parasitic methodsinto standard Java. Some of the design issues we engagedare exposed in Section 5. We discuss practical implicationsin Section 6, review related work in Section 7, and presentissues for further work in Section 8. A conclusion ends thebody of the paper.2 Parasitic MethodsIn this section we describe parasitic methods informally.First we give several examples. Then we describe what hostsa parasite \attaches" to, what additional static checkingrules parasitic methods entail, and which parasite is selecteddynamically when a host with multiple parasites is called.We end the section with a discussion of how our proposalpreserves modularity.2.1 ExamplesIn this section, we show several di�erent ways to use para-sitic methods. We start by showing what we consider their\standard" use, namely the covariant specialization of an-other method. Next, we show how parasites can be used toexpress contravariant method overriding. Lastly, we showsome static parasites.Despite their di�erent uses, all parasitic methods obeythe same selection discipline: at compile-time the standardJava overloading resolution1 is performed for every methodinvocation (ignoring whether methods are declared as par-asites or not); at run time if a method is selected and hasa parasite, it passes the control to it when the parasite isapplicable to the run-time types of the method's arguments.2.1.1 Covariant parasitesA method is declared parasitic using the method modi�erparasitic. For a simple example of parasitic methods, con-sider a class IntList with a method union that takes asargument another instance of IntList and produces a listthat contains all the elements of this (Java's identi�er formessage receiver), as well as all elements from the argumentthat do not already occur in this. The method might beimplemented using a naive O(mn) algorithm (where m andn are the lengths of the two lists), or perhaps by a moresophisticated O(m lgm+n lgn) algorithm that sorted them�rst.Later, we de�ne a subclass IntSortedList, in whichmethods are overridden so that the instances of this classare always ordered. The method union can be inheritedfrom IntList. However it is clear that computing the union1The static class of the receiver and its superclasses are examinedfor accessible de�nitions of the method. The most speci�c method ap-plicable to the static types of the arguments, if one exists, is chosenat compile time. Otherwise, the call is agged as either being am-biguous or having no applicable method. In standard Java, the actualmethod to be invoked will be determined at run time, using dynamicmethod lookup (i.e., using the dynamic type of the receiver to selectamong the methods that override the statically selected method).

class IntList {public IntList union(IntList l){ body for unioning two lists }}class IntSortedList extends IntList {public parasitic IntSortedList union(IntSortedList l){ body for merging two ordered lists }} Figure 1: Parasite of an inherited host methodof two ordered lists can be done more e�ciently using a sim-ple O(m + n) merge. The merge is implemented in a par-asitic method in the de�nition of IntSortedList as shownin Figure 1. In Figure 1, the class IntSortedList inheritsa method union that works on general IntList's and alsode�nes a new more speci�c method that handles the case ofunioning two sorted lists. Java uses compile-time overload-ing to select methods, and so if the static type of two lists isIntSortedList, the more e�cient method will be selected.However, if one of the two lists being unioned has statictype of IntList, the Java compiler will select the general,less e�cient method. By making the more e�cient methoda parasitic method, the general method yields to the e�cientmethod at run-time. Indeed when a method is declared par-asitic it automatically parasitizes every method less speci�cthan it (a method is less speci�c than a second method ifit has the same name and number of parameters, and thetype of each parameter is a supertype of the type of thecorresponding parameter in the second method; informally,a method is less speci�c than a parasite if it handles everyargument the parasite could handle). In the example thenthe method declared in IntList parasitizes the method in-herited from IntSortedList. Technically, the parasite doesnot override the host (the inherited method). It \attaches"itself to the host and diverts calls away that the parasitecan handle. In essence, before executing its body, the gen-eral method checks the run-time type of the argument andcalls the speci�c method if it is applicable. (As with staticmethod selection, null is assumed to be an instance of everyclass.)In Figure 1, the method in the subclass parasitizes amethod inherited from the superclass. Of course, it is alsopossible to parasitize a method that is de�ned in the sameclass. For instance, in our example, even if only one of thetwo lists to union is ordered, it is possible to execute moree�ciently (if m is the length of the ordered list, we havean O(n lgn + m) algorithm). Thus an even more e�cientsolution would be to override the method inherited fromIntList as well, as shown in Figure 2. In this case, whenthe argument of the method is an instance of IntList, theoverriding version of union is executed.22In the example in Figure 2, the return type of overriding methodunion(IntList l) in class IntSortedList is a subclass of the returntype of the method it overrides. This discipline of overriding was im-plemented in an early version of the Java compiler and Drossopoulouand Eisenbach have shown it to be type safe [DE97]. Thus, althoughthe actual Java speci�cation requires the result type of an overridingmethod to be the same as the result type of the method it overrides,we have chosen to adopt the less strict discipline.2

class Union {public static parasitic IntList union(IntList l1, IntList l2){ return union(IntSortedList.sort(l1),IntSortedList.sort(l2)); }public static parasitic IntList union(IntList l1, IntSortedList l2){ return union(IntSortedList.sort(l1),l2); }public static parasitic IntList union(IntSortedList l1, IntList l2){ return union(l1,IntSortedList.sort(l2)); }public static parasitic IntSortedList union(IntSortedList l1, IntSortedList l2){ body for merging two ordered lists }} Figure 4: Static parasitic method exampleclass IntList {public IntList union(IntList l){ body for unioning two lists }}class IntSortedList extends IntList {public IntSortedList union(IntList l){ body for e�ciently unioning twolists when the �rst is ordered }public parasitic IntSortedList union(IntSortedList l){ body for merging two ordered lists }} Figure 2: Parasite of a local host methodinterface IntBag {... // various method signatures}class IntList implements IntBag {public IntList union(IntList l) { ... }... // implementation of interface's signatures}class IntSortedList extends IntList {public parasitic IntSortedList union(IntBag b){ super general version }public parasitic IntSortedList union(IntSortedList l){ e�cient speci�c version }} Figure 3: Contravariant Parasite

2.1.2 Contravariant parasitesIn the examples above, all the parasites covariantly special-ize their host, that is, they handle fewer arguments thantheir host. Our proposal gives the programmer the power ofcontravariant specialization, in which a new method handlesmore cases than the method it takes the place of. A par-asite not only attaches to all less speci�c methods de�nedin the class (that is, declared or inherited), but also to anymore speci�c inherited method. In the latter case, the hostyields all control to the parasite, as if it had been overrid-den. For example, suppose in IntSortedList, we decidedto implement union for any IntBag object, where IntBagis declared as an interface and that IntList implementsit (see Figure 3). By declaring the general version of themethod parasitic, we completely shadow the union methodin IntList. When an instance of IntSortedList receives aunion message, it executes the second method declared inits class if the argument is an IntSortedList, the �rst oneotherwise.2.1.3 Parasites for static methodsIt is also possible to attach parasites to static methods, aslong as the parasites are also static. In this case, all themethods must be declared in a single class, since staticmethods are not overridden in subclasses, only shadowed.Figure 4 shows how one could write a multi-method of fourmethods for unioning lists. Here, for uniformity, all meth-ods are declared parasitic, although the �rst has no hosts.The static method IntSortedList.sort is used to sort a listand return an IntSortedList instance. The most speci�cmethod will be chosen at run-time.2.2 InheritanceWhen one class extends another class with parasitic meth-ods, the parasite-host relation is inherited.As with regular methods, a parasitic method is overrid-den whenever a method with the same name and the sameparameter types is de�ned in the subclass. Otherwise, as-suming the method is accessible, it is inherited .When a parasitic method is overridden by a non-parasiticmethod, the new method remains implicitly parasitic, withexactly the hosts (and the parasites) it had before, exceptthat if any of these methods is overridden by a method de-clared parasitic, the connection is broken.For the sake of an example, we de�ne in Figure 5 theclass IntSortedList, a subclass of IntList from Figure 1,with three union methods for arguments of type IntList,3

class IntSortedList extends IntList {public IntSortedList union(IntList l){ body for e�ciently unioning twolists when the �rst is ordered }public parasitic IntSortedList union(IntSortedList l){ body for merging two ordered lists }public parasitic IntSortedList union(IntSet l){ specialized body for IntSet }}class IntSet extends IntSortedList {public IntSortedList union(IntSortedList l){ some specialized body }} Figure 5: Overridden parasiteIntSortedList, and IntSet respectively, together with anew subclass IntSet where the \middle" parasite of signa-ture IntSortedList union(IntSortedList) is overridden.The parasite for IntSortedList has been overridden witha normal method, and thus it keeps the host it had before,that is the method union(IntList l). Furthermore the in-herited method union(IntSet l) becomes a parasite of themethod declared in IntSet. For example the command,(new IntSet()).union((IntList)new IntSortedList())executes the \some specialized body" while(new IntSet()).union((IntSortedList)new IntSet())executes the \specialized body for IntSet."2.3 Intuitive hostsAs shown by the preceding examples, a method declared par-asitic attaches itself to every less speci�c method declaredin the class or inherited. It also parasitizes every inheritedmethod that is more speci�c. Furthermore, a method notdeclared parasitic is nonetheless parasitic if it overrides aparasitic method. It has the hosts that this method had,with the exception of any methods that have subsequentlybeen overridden by methods declared parasitic. In otherwords, the parasite-host relation is only changed when oneof the two methods at issue is overridden by a method de-clared parasitic. This rule permits the body of the parasiteto be changed without changing the parasite-host relation.The inheritance of the parasite-host relation was oneof the most di�cult design issues of our work (see Sec-tion 5 later on). The actual machinery may seem overlycomplicated but, actually, it obeys a few simple principles.The reader/programmer must consider that all the parasiticmethods with the same name and number of arguments to-gether form a multi-method. These methods interact so thatwhenever one of them is called, the most speci�c (more pre-cisely, a maximally speci�c) among those that can handlethe arguments is executed. Now if we have a class with amulti-method and we want to de�ne a subclass of it, we maywish either to inherit the multi-method as it is or to modifyit. In the latter case, three possible modi�cations can beenvisaged: (1) To replace (override) one or more methods

of the multi-method; (2) to replace the whole multi-methodby a brand new (multi-)method; (3) to add new methods tothe multi-method.The �rst case is obtained by the standard Java overrid-ing; so if we want to override a particular method of themulti-method it su�ces to declare in the subclass a newmethod with the same signature (with possibly smaller re-turn type) but not declared parasitic.The second case, de�ning a new multi-method, is ob-tained when a subclass declares one or more parasitic meth-ods that are either more or less speci�c than some method ofthe old multi-method. The newly de�ned parasitic methodsform a new multi-method that, in a sense, \partially over-rides" the old multi-method. Roughly speaking, the meth-ods of the old multi-method are called when no method ofthe new multi-method applies. In other words, a method is�rst looked for locally among the methods declared in theclass and if none applies, the search continues in the oldmulti-method.The addition of new methods (the third case) is straight-forward when the methods to add are more speci�c thanall the methods of the multi-method (which should be themost frequent case). As we have seen in many examples inthis section, it su�ces to declare the new methods parasitic.However, our system is less exible when the method toadd is less speci�c than some method of the multi-method,since this addition can be obtained only by overriding all themethods more speci�c than the new method with methodsthat perform super calls.In conclusion, the programmer needs to remember thatplain overriding causes the replacement of the method in themulti-method, while parasitic overriding (or declaration) en-tails a new multi-method partially overriding the old multi-method, if it exists.2.4 Static type-checking and other rulesWe add a single type rule to handle parasitic methods:The result type of a parasite must be assignmentcompatible with the result type of its hosts.A parasite is called from the host if the run-time types ofthe arguments �t the parasite. The condition says it is acompile-time error if the return value of the parasite couldnot be returned by the host.Further restrictions apply. The parasite cannot name anexception in its throws clause not mentioned in the host'sthrows clause. The parasitic method must be static if andonly if the host method is static. An inherited host cannotbe �nal (because we change its meaning in the subclass). Forsimplicity, we require the parasite to have the same accessi-bility as the host. For ease of implementation, we disallowparasites from being abstract, and hosts from being native.2.5 Intuitive selectionWhen multiple parasites are attached to the same host, thereis the issue of priority: which parasite is checked for appli-cability �rst. The priority closest to the semantics of mostmulti-method systems would be to use the most-speci�c par-asite. However, requiring that such a parasite always existposes many problems (see Section 2.6 for a detailed explana-tion). Thus we decided to use textual order as a tie-breaker:the textually last parasite that applies is chosen.4

However, since parasites themselves can have other par-asites, the most speci�c parasite (if it exists) will alwaysbe called, no matter what priority is used. If a less spe-ci�c parasite is selected, then this parasite will be a host tomore speci�c parasites which then have another \chance."Thus the semantics of parasites can be informally stated asfollows:When a host method with attached parasites isselected, the system searches for a parasite thatis applicable to the run-time types of the methodarguments.The search starts from the class of the method re-ceiver and follows an ascending order. Namely,the parasites are checked within a class from thelast de�ned to the �rst de�ned and every class issearched before its superclasses.The �rst parasite found to be applicable is exe-cuted in the place of the method. If no parasiteapplies, then the body of the method is executed.Thus textual order is a simple solution to the problem ofhow to choose the \most-speci�c" method, which must beaddressed by any multi-method system.32.6 ModularityAs we said in the introduction we do not implement multi-methods in their most general form since we want to preservetwo of the most important properties of Java: modularityand separate (type-checking and) compilation.Textual order is one important ingredient. For example,if I1 and I2 are two unrelated interfaces, there is no harmin de�ningclass A {void m(Object x) { ... }parasitic void m(I1 x) { ... }parasitic void m(I2 x) { ... }}Indeed, if later a new class B that implements both I1 andI2 is added to the system, it is not necessary to modify thede�nition of A, since the conict caused by an expressionsuch as (new A()).m((Object)new B()) is handled by thetextual order.4Consider what would happen if we had adopted the se-mantics that the most speci�c parasite were chosen, insteadof using textual ordering. If there were such a class B inthe �nal program that implemented both interfaces, thenno most speci�c parasite would exist. Thus a \most spe-ci�c parasite" rule would break modularity. Extending thetype system with an explicit null type and new types of theform T1&T2, representing the greatest lower bound of thetwo types, would permit a set of parasites to be checkedseparately. For instance, by adding a parasiteparasitic void m(I1&I2 x)to the example, one could ensure the existence of a mostspeci�c parasite in all situations. But this solution wouldnot only entail a signi�cant change to the type system, but3Textual order thus plays somewhat the same role as class prece-dence lists in CLOS.4Without the cast, the expression would be an ambiguous methodinvocation and would be rejected by the Java compiler.

also require the writing of many parasites that may neverbe called.The other ingredient for modularity is maintaining Java'srestriction that all methods must be declared in the class ofthe receiver (this in Java). The price to pay is less exibil-ity in the use of multi-methods; parasitic methods achievethe full generality of multi-methods only if the writer of aclass anticipates what subclasses will be derived from it, asexplained by Bruce et al. [BCC+96]. For example in orderto de�ne all the possible cases of union in Figure 2, the classIntList should be de�ned asclass IntList {public IntList union(IntList l){ body for unioning two lists }public parasitic IntSortedList union(IntSortedList l){ body for e�ciently unioning two listswhen the second is ordered }}But then either the programmer writing the class IntListmust already know that the class IntSortedList will bede�ned, or else the second method must be added to theclass IntList, which then must be recompiled. In moregeneral systems such as CLOS and Cecil, there is no suchrestriction on where multi-methods may be declared.5It would be possible to de�ne an extension of Java withgeneral multi-methods, on the lines of the work [Cas97], butat the expenses of modularity. In languages that permitmethods to be added to existing classes, parasitic meth-ods would be equivalent to general multi-methods. Sucha feature is compatible with separate compilation (as inO2 [BDK92] where method addition and separate compi-lation coexist), but breaks modular type-checking.3 Type-Checking and SelectionIn this section, we de�ne hosts, type rules, and parasiteselection precisely. We begin with some de�nitions and thenproceed to consider hosts, types and selection individually.3.1 Formal de�nitionsWe de�ne two relations on types: subtyping, and a broaderrelation, assignment subtyping. A type T is a subtype oftype T 0 (written T � T 0) if T = T 0 or if T is a descendant ofclass or interface T 0 (in case of array types, recursively applythis de�nition to the element types). We say T is a strictsubtype of T 0 (written T < T 0) if only the second conditionholds. Additionally the null type is a strict subtype of allreference types.6 A type T is an assignment subtype of typeT 0 (written T �A T 0) if T is a subtype of T 0 or there is aprimitive widening conversion (x5.1.2 in [GJS96]) from T toT 0. For example, int is an assignment subtype of float,but not a subtype. Method invocation conversion (x5.3) islegal precisely from a type to an assignment supertype.5A similar observation can be made for general multi-method man-agement. In languages such as CLOS and Cecil, new method de�ni-tions can be added to existing multi-methods at any time and any-where in the source code. This can be simulated in our extensionby adding new parasites in some particular classes, with a certainamount of recompilation.6Reference types (x4.3 of [GJS96]) are class types, interfacetypes, and array types. Together with the null type and primitivetypes (boolean, byte, short, int, long, char, float, and double)they comprise the types of Java.5

Subtyping is extended to method signatures. Considerthe following method de�nition:T m(S1 x1,..., Sn xn) f ... gThis method has signature (S1; : : : ; Sn) ! T or, in short,~S ! T . A type vector ~S is a subtype of ~S0 if they havethe same number of components and respective componentsare subtypes (Si � S0i). If at least one component is a strictsubtype as well, the vector ~S is a strict subtype of ~S0 (written~S < ~S0).A method signature ~S ! T is more speci�c than anothermethod signature ~S0 ! T 0 if and only if ~S < ~S0 (the returntypes are ignored).7 Analogously, a signature ~S ! T is lessspeci�c than another method signature ~S0 ! T 0 if and onlyif ~S > ~S0.We say a method named m with signature ~S ! T isde�ned in a class C if it is declared in C or is inheritedfrom a superclass or a superinterface. The existing Javatype system ensures that for two di�erent methods with thesame name de�ned in a class C with signatures ~S ! T and~S0 ! T 0, we have ~S 6= ~S0.3.2 HostsA parasitic method is one declared using the parasiticmethod modi�er, or one overriding a parasitic method. Aparasitic method m with signature ~S ! T de�ned in a classmay have hosts, which are drawn from the set of methodsde�ned in the class with the same name and number of ar-guments. We writem(~S)! T -C m(~S0)! T 0if this parasite has a host with signature ~S0 ! T 0 in theclass C.De�nition 1 Let C be a class, possibly extending a class B.m(~S)! T -C m(~S0)! T 0 if and only if both methods arede�ned in C and one of the following conditions is satis�ed:1. A method m with signature ~S ! T is declared parasiticin class C and ~S < ~S0.2. A method m with signature ~S ! T is declared parasiticin class C and a method m with signature ~S0 ! T 0 isinherited from B and ~S > ~S0.3. No method m with signature either ~S ! T or ~S0 ! T 0is declared parasitic in class C, and m(~S) ! T -Bm(~S0)! T 0.An important property of this de�nition is that there cannever be a cycle in the parasite-host relation within anyclass. New edges are only added between method signatureswhen one is declared parasitic, and the de�nition does notinherit any edge impacting such method signatures.According to the de�nition above, a parasite is eithermore speci�c or less speci�c than its host. This means that7The Java language speci�cation uses the broader relation ~S <A~S0 for compile-time overloading resolution. Note that our choice im-plies that whenever one signature is more speci�c than another thenthe two signatures may di�er for parameters with reference types butare the same for the parameters with primitive types.

the signatures of the two methods di�er over some parame-ters with reference types but must be the same over param-eters with primitive types (see Footnote 7). This restrictioncan be harmlessly weakened to permit parasites with prim-itive type arguments to have hosts where the correspondingarguments' types are assignment subtypes, but we preferrednot to do so since it might have confused the programmerwithout bringing any signi�cant enhancement.It is possible to declare a method with a contravariantparasite:class A {public void m(B x) { ... }}class B extends A {public parasitic void m(A x) { ... }}class C extends B {public void m(B x) { ... }}The method in C will never be executed since it is shad-owed by the (inherited parasitic) method declared in B. Thecompiler issues warnings for such cases.3.3 TypingFrom the typing point of view, a method with signature~S ! T having a host with signature ~S0 ! T 0 must returnan assignment subtype (T �A T 0). If the condition is notsatis�ed, the compiler generates an error message. If theinvolved parasite is inherited, then the compiler signals thatthe host's return type must be an assignment supertype ofany parasite's return type. If the involved parasite is not in-herited, then the compiler signals that the parasite's returntype must be assignment compatible with the return typeof its host.3.4 SelectionLet us de�ne more formally the discipline of selection of par-asitic methods. For a class C let �Cm be the set of signaturesof the (possibly inherited) parasites of a method m(~S)! Tin the class C:�Cm = f~S0 ! T 0 j m(~S0)! T 0 -C m(~S)! TgOn �Cm we de�ne a total order �Cm as follows.De�nition 2 Let C be a class, possibly extending a class Band consider ~Si ! Ti; ~Sj ! Tj 2 �Cm. ~Si ! Ti �Cm ~Sj !Tj , if and only if one of these conditions is satis�ed.1. the method for m with signature ~Si ! Ti appears inclass C after the de�nition of the method with signa-ture ~Sj ! Tj ;2. the methods form with signature ~Si ! Ti is declared inC while the method with signature ~Sj ! Tj is inheritedfrom B;3. the method for m with signature ~Si ! Ti and the onewith signature ~Sj ! Tj are both inherited from B, and~Si ! Ti �Bm ~Sj ! Tj6

The order relation �Cm on �Cm is a total order, since it isa subrelation of the total order obtained by listing the an-cestors of C in the (single) inheritance order and listing themethods within each class in order of declaration.Then the selection discipline for parasites has the follow-ing de�nition:De�nition 3 (Selection) When m in class C is appliedto a tuple of arguments of type ~S then the method whosesignature is min w.r.t. �Cm of f ~Si ! Ti 2 �Cm j ~S � ~Sig, isthen applied to the arguments. If this set is empty, the bodyof the host method is executed.This de�nition entails an iteration if the selected parasiteitself has parasites. Since the de�nition of hosts ensuresthat the parasite-host relation never has cycles, this iterationmust terminate.4 TranslationParasitic methods are easily translated to standard Javausing that language's type testing primitives (see Figures6 and 7), by adding conditional calls to the parasites at thebeginning of the body of each non-abstract host method.First, the body of each parasite is packaged in a final (non-overrideable) method so that it can be called by the hosts.The name of this new method is formed by concatenatingthe class name, a dollarsign and the original method name.Next, if the host method is inherited (as in Figure 1), it isrewritten as an overriding method that simply calls super.8Then, a host's body is preceded by conditions that checkapplicability for each parasite in the inverse order they aredeclared in the class (tests for inherited parasites come last,as seen in Figure 8). As with standard Java, the null type isconsidered a subtype of every reference type. Only if noneof the parasites is applicable, does control fall through tothe original method body.Some tests for applicability can be omitted. More pre-cisely, in order to test that a parasitic method is applicable,the system need not consider a host's arguments when theirtypes are assignment subtypes of the type of the correspond-ing parasitic method parameter. This situation occurs forcontravariant parasites, as seen in Figure 9.The generated argument checks are always legal sincethey are only needed to go down the inheritance hierarchy.The return statements type-check as long as the type con-dition described in Section 3.3 is satis�ed.Our modi�ed compiler generates legal Java class �lesthat can be veri�ed and executed by a standard Java run-time system. It is even possible to use a standard Javacompiler to compile clients or subclasses of classes using par-asitic methods, but in this case of course, the parasite-hostrelation is not preserved in subclasses.8Because of the de�nition ofmore speci�c used for static overload-ing resolution in standard Java, this step may introduce (or eliminate)ambiguous method resolution in the resulting program. Our imple-mentation avoids this problem by translating directly to Java bytecode. Even when compiling a client class using a class with para-sitic methods, our implementation hides the generated methods fromstatic dispatching, but if a standard Java compiler is used to compilethe client, they become visible.

class IntList { ... } // unchangedclass IntSortedList extends IntList {public IntList union(IntList l) {if (l == null ||l instanceof IntSortedList) {return IntSortedList$union((IntSortedList)l);}else return super.union(l);}public IntSortedList union(IntSortedList l) {return IntSortedList$union(l);}public final IntSortedListIntSortedList$union(IntSortedList l){ body for merging two ordered lists }}Figure 6: Translation of Figure 1 (the host is inherited).class IntList { ... } // unchangedclass IntSortedList extends IntList {public IntSortedList union(IntList l) {if (l == null ||l instanceof IntSortedList) {return IntSortedList$union((IntSortedList)l);}else { body for e�ciently unioning twolists when the �rst is ordered }}public IntSortedList union(IntSortedList l) {return IntSortedList$union(l);}public final IntSortedListIntSortedList$union(IntSortedList l){ body for merging two ordered lists }} Figure 7: Translation of Figure 2 (the host is local).class IntSet extends IntSortedList {public IntSortedList union(IntList l) {if (l == null || l instanceof IntSortedList) {return IntSet$union((IntSortedList)l);} else if (l == null || l instanceof IntSet) {// this branch will never be taken but it is checked// last since it corresponds to an inherited parasitereturn IntSortedList$union((IntSet)l);} else {return super.union(l);}}public IntSortedList union(IntSortedList l) {return IntSet$union(l);}public final IntSortedListIntSet$union(IntSortedList l) {if (l == null || l instanceof IntSet) {return IntSortedList$union((IntSet)l);} else { some specialized body }}}Figure 8: Translation of IntSet from Figure 5 (the parasiteis overridden)7

interface IntBag { ... } // unchangedclass IntList implements IntBag { ... } // unchangedclass IntSortedList extends IntList {public IntList union(IntList l) {if (l == null ||l instanceof IntSortedList) {return IntSortedList$union((IntSortedList)l);} else {return IntSortedList$union((IntBag)l);}}public IntSortedList union(IntBag b){ return IntSortedList$union(b); }public final IntSortedListIntSortedList$union(IntBag b){ super general version }public IntSortedList union(IntSortedList l){ return IntSortedList$union(l); }public final IntSortedListIntSortedList$union(IntSortedList l){ e�cient speci�c version }}Figure 9: Translation of Figure 3 (contravariant parasite).5 Design issuesThe Java extension de�ned in this work is the result of aseries of decisions. We summarize here the main design op-tions, showing for each the pros (�) and, above all, the cons() that made us to reject them.Multi-methods1. Multi-methods could be added to Java by extending thelanguage with CLOS's generic functions.� This would be the most powerful extension of Javawith multi-methods and it subsumes all the others.	 We excluded it from the very beginning since it wouldhave broken modularity and separate compilation. Inany case their power can be obtained from parasitesby breaking modularity. So we preferred to make theiruse an exception rather than the standard.2. We could have considered all methods as parasitic meth-ods by default. This is what it is done in KOOL [Cas97]and what we proposed [BC96] for the database program-ming language O2 (the goal being to make O2's covariantspecialization statically safe).� This solution is very clean and easy to understand.Practically speaking this solution consists of havingdynamic (rather than static) resolution for Java over-loaded methods.	 It changes the semantics of existing programs that useoverloading (but in our opinion it would be the bestsolution for a brand new language).Parasites3. Replace the use of the textual priority for the choice ofparasites by a condition ensuring the existence of a best

matching parasites. In other words, instead of perform-ing parasite selection with an upward search for the the�rst parasite that can handle the arguments, select theparasite whose parameters best match the actual argu-ments.� This option was attentively considered since it is veryintuitive and clean, and the conditions to ensure statictype-safety are well-known (see [ADL91] or [Cas97]).Furthermore, by a clever compilation the average se-lection time can be logarithmic in the number of par-asites (while with textual ordering it is linear).	 A plain implementation of this discipline would breakmodularity as we have shown in Section 2.6. We con-sidered a way to recover modularity in this case thatconsists of requiring the set of parasite signatures toalways contain a least type. Such a requirement couldnot be met in many situations without also extendingthe type systems with an explicit null type and newtypes of the form T1&T2, in which one of T1 and T2is an interface type, representing the greatest lowerbound of the two types. A parasite de�ned for thetype T1&T2 would then be executed when there is aselection conict between T1 and T2. But besides thefact that we disliked the introduction of new types,this would have sometimes required the programmerto de�ne a large number of parasites that would benever selected (typically, parasites de�ned for T1&T2where the Ti's are unrelated interfaces that will neverhave a common subtype) and could be very cumber-some.4. Permit downward casts in primitive types for parasites� This solution treats primitive types in the same wayas reference types.	 It does not �t the semantics of Java very well (thereis no corresponding instanceof operator for primi-tive types). However it is a possible choice for futureextensions.Overriding and inheritance5. Use invariant result type overriding.� It is standard Java.	 It is a useless and unjusti�ed restriction and limits thepower of parasitic methods (and of standard Java'smethods in general).6. Inherit parasitic methods as if declared locally. (Part ofan earlier draft of this proposal.)� This solution has the advantage of the simplicity. Itdi�ers from the one we presented here in that a par-asitic method does not parasitize more speci�c inher-ited methods but, on the contrary, if these methodsare also parasitic it is parasitized by them.	 This solution is less expressive; it is possible to addnew parasites in a subclass and to override the exist-ing ones, but the structure of the parasite-host rela-tion is inherited as it is and it cannot be modi�ed. Inparticular, one cannot de�ne contravariant parasitessuch as ones that cover a whole set of inherited par-asites. This is a agrant violation of object-orientedprinciples.8

7. Adopt a more powerful typing discipline for contravari-ant parasites: the host is redeclared with the return typeof the parasite (possibly a strict subtype).� More precise typing discipline that (slightly) enhancesthe language's expressiveness.	 This extension would have complicated the typing dis-cipline for parasites by requiring additional type rulessuch as \if a method with a contravariant parasite isoverridden, the return type must be a subtype of thecontravariant parasite."8. Parasitic method de�nitions are not inherited in sub-classes.� It �ts the concept of \parasite" according to which aparasite attaches to a particular host.	 It does not �t Java's and, more generally, object-oriented inheritance philosophy according to which amethod de�nition is valid in all subclasses as long asa new de�nition with the same signature is not given.Implementation9. Rewrite runtime system.� Potentially more e�cient.	 This solution may slow down programs not using par-asitic methods.	 Implementation becomes harder to optimize.	 Makes adoption of multi-methods much less likely.10. Call parasitic method signature directly, rather thancreate new final methods.� Potentially more e�cient since fewer dispatches arerequired.� If a parasite is overridden, then the translation wouldnot need to override the host as well.	 Overridable parasitic bodies make analysis and thusoptimization harder.	 Overridable methods are potentially more expensiveto call than final methods.	 In certain situations, super calls leads to surprisingin�nite recursion.6 PracticeThe practical bene�t of parasitic methods is manifest. Thesimplest example is given by the method Object.equal thatis used and overridden in a large number of Java programs.Even in the simple built-in class java.lang.Boolean, wehave:public boolean equals(Object obj) {if ((obj != null) && (obj instanceof Boolean)) {return value == ((Boolean)obj).booleanValue();}return false;}With parasitic methods this can be equivalently (and morenaturally) written as

public parasitic boolean equals(Boolean obj) {return (obj != null) && (value == obj.booleanValue());}A much larger example of code in which parasitic methodswould be useful is the method sameStructure de�ned inclass UpdatableImpl of Doug Lea's collections packageversion 0.96.9Moreover, the systematic use of the parasitic keywordin every overloaded method de�nition transforms the over-loaded method selection from static into dynamic. In otherwords, the method to execute is selected according to thedynamic type of its arguments rather than the static ones.Of course the price for this is run-time overhead, but theresulting behavior is, in our opinion, much more intuitiveand predictable. For instance, the following program (dueto Doug Lea)class Classifier {String identify(Object x) { return "object"; }String identify(Integer x) { return "integer"; }}class Relay {String relay(Object obj){ return (new Classifier()).identify(obj); }}public class App {public static void main(String[] args) {Relay relayer = new Relay();Integer i = new Integer(17);System.out.println(relayer.relay(i));}}prints \object" as result, while a de�nition of Classifiersuch asclass Classifier {String identify(Object x) { return "object"; }parasitic String identify(Integer x){ return "integer"; }}prints \integer".7 Related WorkAgrawal et al [ADL91] describe the basic problem of type-checking systems of multi-methods and forming precedencesbetween applicable method branches. Checking types hastwo parts: the set of method branches comprising a multi-method must be mutually consistent, and the static call sitesmust type-check. The �rst part consists of applying the rulethat if one method branch is more speci�c than another,the former's return type must be included in the latter's.In our context, this rule is the one that a parasite's returntype must be an assignment subtype of the host's returntype. The second part consists of checking the call usingthe static types of the arguments to compute the static typeof the result. In our context, this check is already performedby the Java compiler.The same condition as consistency was found in the moretype-theoretic approach of [CGL92, Cas97], where it was9See http://gee.cs.oswego.edu/dl/classes/collections for codeand documentation of this package.9

called covariance condition. There a second condition onthe formation of multi-methods was required, namely theexistence of a most specialized branch. Such a conditionis not necessary (in a sense, it is trivially satis�ed) in ourapproach since the use of textual order makes the searchorder be total.Mugridge, et al. [MHH91] de�ne the language Kea, wheremulti-methods and encapsulation are obtained thanks to amechanism similar to the partial overriding of [BC96]. How-ever, the self parameter is considered a parameter like theothers (thus this approach is not strictly comparable toours), and programs may not be modular since the addi-tion of a class can invalidate previously acceptable multi-methods. Furthermore, the approach seems incompatiblewith Java's overloading and thus not applicable to our spe-ci�c problem.Chambers and Leavens [CL95] show that type-checkinguses of multi-methods in a powerful language with mod-ules (Cecil) can be done in the context of separate compila-tion. They also describe an algorithm for statically checkingwhether a set of multi-method implementations is completeand consistent. However, the test must be performed atlink-time, as it requires a list of all concrete classes. Ourproposal permits checking to be done separately for eachJava class.8 Future workOur proposal here is not meant to be the �nal word onparasitic methods. We have several extensions that we areconsidering:1. The set of hosts of a parasitic method is currently deter-mined by the rules of De�nition 1. We want to allow theprogrammer to explicitly de�ne the set of hosts of a par-asites by specifying their signatures in an extends clausethat precedes the body of the parasite. This possibility,besides giving a total control over the parasite-host re-lation, would also allow every kind of specialization (co-variant, contravariant, invariant), at the granularity ofparameters. Thus for exampleclass A {void m(A x, B y){ ... }}class B extends A {parasitic void m(B x, A y) extends m(A x, B y){ ... }}the parasite in B specializes the method in A covariantlyon the �rst parameter and contravariantly on the second.2. The implementation of the prototype we propose is basedon the translation we described in Section 4. Such animplementation is far from being the most e�cient one.Many optimizations are possible. For example when amulti-method is called, the most speci�c method (if it ex-ists) is selected among those that handle the arguments.However this process of selection may involve several dis-patchings. For instance, if a programmer declared themethods of a class so that a more speci�c parasite al-ways precedes the less speci�c ones, then in the worstcase, the message can be dispatched successively to allthe parasitic methods; the �rst dispatches to the second

that dispatches to the third and so on. A clever com-piler could drastically reduce this cost by calculating themethod to be executed and by dispatching directly to it.Other examples of possible optimizations include inlin-ing the �nal $-methods into the hosts, and redirectingdispatches to methods with contravariant parasites to godirectly to the parasite.3. We may consider dispatching also on primitive types. Adi�culty here is that there is no analog to "instanceof"to determine, for instance, if a double value can be rep-resented as an int.9 ConclusionMulti-methods are selected dynamically based on the type ofarguments, and provide a type-safe solution to the problemof binary methods with inheritance. Our implementation ofthem in Java, parasitic methods, uni�es covariant and con-travariant specialization in a single feature. Parasitic meth-ods give the programmer run-time multi-method dispatchin the same spirit as Java's current (static) method selec-tion. They permit the programmer to write more elegantand readable code than the equivalent (but error prone) useof instanceof and type casts.The extension preserves Java's type-safety, modularityand separate compilability, and has a cost only when it isused. In fact, inasmuch as the existence of multi-methodsencourages programmers to write specialized e�cient ver-sions of methods, programs using parasitic methods may befaster than ones without. Furthermore, we have learnedthat some instructors recommend students never use typeoverloading in Java methods (at least when they have re-lated parameter types), because static resolution yields un-expected behavior. Parasitic methods would make typeoverloading acceptable again.Parasitic methods are straightforward to implement; wecurrently have an implementation on top of the Java Devel-opment Kit (version 1.0.2).Parasitic methods would work nicely in Java extendedwith parametric polymorphism as proposed by Odersky andWadler [OW97] and by Banks et al [BLM97]. Both encap-sulated multi-methods and parametric classes are featuresoriginally proposed in the type theory community. We arepleased to see that they are starting to take root in morepractical settings.Finally most design trade-o�s in our work derive fromthe fact that we wanted to de�ne a conservative extension ofJava. Most of the di�culties in particular were due to keep-ing the semantics of Java's static overloading unchanged.Indeed a cleaner, but non-conservative, extension would beto consider all methods as parasitic methods (this is whatit is done in KOOL [Cas97] and what we proposed [BC96]for the database programming language O2). Practicallyspeaking, this solution consists precisely in having dynamic(rather than static) resolution for Java overloaded methods.In any case, we are certain this would be the best solutionfor a brand new language.AcknowledgmentsThe authors are grateful to Manuel F�ahndrich, Edwin Chan,and Doug Lea for their valuable information and sugges-tions. We are sincerely obliged to the OOPSLA's referees10

whose pertinent remarks stimulated us to deeply modifyand, we hope, decisively improve the work we had submit-ted. Special thanks to Gary Leavens for his constructiveremarks on several drafts.References[ADL91] Rakesh Agrawal, Linda G. DeMichiel, andBruce G. Lindsay. Static type checking of multi-methods. In Conference Proceedings of OOP-SLA'91 { Object Oriented Programming Sys-tems, Languages and Applications, pages 113{128, New York, October 1991. ACM Press.Appeared as ACM SIGPLAN Notices 26 (11),November 1991.[BC96] John Tang Boyland and Giuseppe Castagna.Type-safe compilation of covariant specializa-tion: A practical case. In ECOOP '96 | Object-Oriented Programming (10th European Confer-ence), volume 1098 of Lecture Notes in ComputerScience, pages 3{25. Springer-Verlag, Berlin,Heidelberg, New York, July 1996.[BCC+96] K. Bruce, L. Cardelli, G. Castagna, The Hop-kins Object Group, G. Leavens, and B. Pierce.On binary methods. Theory and Practice of Ob-ject Systems, 1(3):221{242, 1996.[BDK92] F. Bancilhon, C. Delobel, and P. Kanellakis, edi-tors. Implementing an Object-Oriented DatabaseSystem: The Story of O2. Morgan Kaufmann,1992.[BLM97] Joseph A. Banks, Barbara Liskov, and An-drew C. Meyers. Parameterized types and Java.In Conference Record of the Twenty-fourth An-nual ACM SIGACT/SIGPLAN Symposium onPrinciples of Programming Languages, pages132{145, New York, January 1997. ACM Press.[Cas97] G. Castagna. Object-Oriented Programming:A Uni�ed Foundation. Progress in Theoreti-cal Computer Science series. Birk�auser, Boston,1997.[CGL92] G. Castagna, G. Ghelli, and G. Longo. A calcu-lus for overloaded functions with subtyping. InACM Conference on LISP and Functional Pro-gramming, pages 182{192, 1992. Extended andrevised version in Information and Computation117(1):115-135, 1995.[CL95] C. Chambers and G. T. Leavens. Type-checkingand modules for multi-methods. ACM Transac-tions on Programming Languages and Systems,17(6):805{843, November 1995.[DE97] Sophia Drossopoulou and Susan Eisenbach. Javais type safe { probably. In ECOOP '97 | Object-Oriented Programming (11th European Confer-ence), volume 1241 of Lecture Notes in ComputerScience, pages 389{418. Springer Verlag, Berlin,July 1997.

[DG87] L. G. DeMichiel and R. P. Gabriel. CommonLisp Object System overview. In B�ezivin, Hul-lot, Cointe, and Lieberman, editors, Proc. ofECOOP '87 European Conference on Object-Oriented Programming, number 276 in Lec-ture Notes in Computer Science, pages 151{170,Paris, France, June 1987. Springer.[GJS96] James Gosling, Bill Joy, and Guy Steele. TheJava Language Speci�cation. Addison-Wesley,Reading, Massachusetts, 1996.[MHH91] W. B. Mugridge, J. Hamer, and J. G. Hosk-ing. Multi-methods in a statically-typed pro-gramming language. In Pierre America, editor,Proceedings of ECOOP '91 Conference, Geneva,Switzerland, volume 512 of Lecture Notes inComputer Science. Springer, 1991.[OW97] Martin Odersky and Philip Wadler. Pizza intoJava: Translating theory into practice. InConference Record of the Twenty-fourth AnnualACM SIGACT/SIGPLAN Symposium on Prin-ciples of Programming Languages, pages 146{159, New York, January 1997. ACM Press.[Ste90] Guy Steele. Common Lisp the Language. DigitalPress, 2nd edition, 1990.[Str94] Bjarne Stroustrup. The design and evolution ofC++. Addison-Wesley, Reading, Massachusetts,1994.

11

