A Full Pattern-based Paradigm for XML Query Processing

Véronique Benzakén Giuseppe Castagfzand Cédric Miachoh

1 LRI, UMR 8623,c.N.R.S., Université Paris-Sud, Orsay, France
2 C.N.R.S., Département d’Informatique, Ecole Normale SupérieBagjs, France

Abstract. Inthis article we investigate a novel execution paradigmiMe pattern-matching—
for XML query processing. We show that such a paradigm is aedpted for a common and
frequent set of queries and advocate that it constituteadidate for efficient execution of XML
queries far better than the current XPath-based query mésrha. We support our claim by com-
paring performances of XPath-based queries with pattesacdanes, and by comparing the latter
with the two efficiency-best XQuery processor we are aware of

1 Introduction, Motivations, and Goals

In this article we investigate a novel execution paradignamely ML-like pattern-
matching—for XML query processing. We show that such a pgrads well adapted
for a common and frequent set of queries and thus could be asedcompilation
target for XQuery. More precisely, to do so, we endow thegratmatching based lan-
guageCDuce with an SQL-like query language that we introduce is #rticle and dub
CQL. CDuce [4, 20] (pronounce “seduce”) is a strongly and stdtidgied pattern-
basedhigher-order functional programming language for XML sistandard compliant
(XML, Namespaces, Unicode, XML Schema validation, DTD,)aad fully operative
and implemented (the distribution @DucelCQL is available at www.cduce.org). One
of the distinguishing characteristics@Duce is its pattern algebr&Duce inherits and
extends XDuce [21] pattern algebra and implements it by g @#icient “just in time”
compilation [19].CQL is a query language in which queries are written using pat-
terns (in the sense dDuce patterns) and where the execution mechanism is based on
pattern-matching (in the sense of ML-like languag€&€&pL/CDuce patterns are more
similar to ML patterns than to XPath expressions. With respe XPath expressions,
CDuce patterns are far more declarative inasmuch as whil®tinger strictly indicate
navigation paths, the latter reflect the whole structure afaimed values and they can
be composed by applying boolean combinators.

To demonstrate that pattern-matching is relevant for qaeryipilation and evalu-
ation in the XQuery context, we also introduce, for free, e@yntactic sugar to yield
an XQuery-like programming style. We call this extensioQLx. We chose to ex-
periment withCQLx as we wanted to fully exploit the already implement&duce’s
pattern compilation schema and runtime support rather teamplementing it in the
context of XQuery.

Several proposals for defining query languages for XML hasertmade [2, 6, 14,
15] and a comparative study can be found in [1]. Among them kaose to briefly
recall the main features of XQuery[15] as (one of) our pugssto show that the
experiments performed witiQL apply obviously to it.

XQuery [15,17] is becoming the W3C standard in terms of quenguages. An
earlier proposal was Quilt [11], which borrowed many funotility from XPath [13],

XQL [23], XML-QL [16], SQL, and OQL. XQuery is a strongly andeagically typed
functional language whose type system was largely insfuyedDuce [21].

<hooks-with-prices> A query is expressed by a FLWR expressifon{it-

{ for gb in gbiblio//bc/)/ok, eration on a set of nodedpt (variables binding),

a in $amazon//entry - ; i
where $bititle = Saftitle where (filter the elements according to a condmon),
return andreturn (construct the result for each node satis-

<b? %'E}ﬁ'l?'}p”ce* fying thewhere clause) The query on the side is an

<price-amazon>{$a/price/text()} example of FLWR expression (it is thesQuery of
</price-amazon> the XML Query Use Cases). Pattern expressions in

<price-bn>
. {_$b/Brice/text()} XQuery, such asamazon//entry or $a/price/text(),
</price-bn>
<,bogk_with_prices>} are based on XPath [1'3]'. Many works among
</books-with-prices> them [12] attempts to optimise XQuery evaluation.

The immanent purpose of this article is to investigate wlefhattern-matching la
CDuce is well adapted for main memory XML query processinge @nswer is posi-
tive andCDuce’s patterns and pattern-matching mechanism can serap axecution
mechanism for XQuery. Indeed, the need for efficient main wrgmuery processing
is still of crucial interest. As pointed out by many works anbb of application sce-
narios such as message passing, online processing do niptutaa® huge documents.
We advocate thafDuce patterns are a better candidate for XML patterns (agdime
sense of [10]) than path expressions. We base our plea onltbeihg observations:

1. CDuce patterns are more declarative: different patternbearombined by boolean
combinators, thus, in a declarative way. Furthermore, tiayrepresent the whole
structure of matched values. This allows the capture ofelaggantities of infor-
mation in a single match.

2. CDuce patterns are more efficient: our measurements shova tipaery written in
CQLx using the navigational style is always slower (sometimenefter some
optimisation) than the same query written @QL (even when the latter is ob-
tained from the former by an automatic translation). Of seuthis claim must be
counterbalanced by the fact that our comparison takes pac®uce, a language
whose implementation was specifically designed for efftgpattern matching res-
olution. Nevertheless we believe that this holds true atsother settings: the fact
thatCDuce patterns can capture the whole structure of a matcHed (@mpared
with paths that can capture only a subpart of it) makes itiptes$o collect phys-
ically distant data in a single match, avoiding in this wasttier search iterations.
To put it simply, while a path expression pinpoints in a tred¢ycubtrees that all
share a common property (such as having the same ta@uae pattern does more
as it can also simultaneously capture several unrelatetdemso

Our claim is supported by benchmark results. We performe@gperiments irCDuce
rather than XQuery since this is of immediate set up: XPafu&ry patterns are im-
plemented inCDuce as simple syntactic sugar, while an efficient integradif CDuce
patterns in XQuery would have demanded a complete rewriintpe runtime of a
XQuery processor (but, again, we think that this is the wagdh So instead of com-
paring results between standard XQuery and a version of X@areiched withCDuce
patterns, we rather compare the results betw@éh (the standardCDuce query lan-

guage) andCQLx (that isCQL in which we only use XQuery patterns and @G®uce
pattern).

Furthermore, in order not to bias the results with impleragah issues, in all our
experiments withCQLx we avoided, when this was possihléhe use of “//” (even
if the “//"-operator is available ilCDuce): whenever in our tests we met a (XQuery)
query that used “//” (e.g. the query earlier in this sectiam) always implemented it
by translating (by hand) every occurrence of “//” into a miil number of “/”. Such a
solution clearly is much more efficient (we program by handiaimmal number of “/”
searches instead of using “//” that performs a completeckean the XML tree) and
does not depend on how “//” is implementeddDuce (inCDuce “//” is implemented
by a recursive function whose execution is much less opéichiean that of “/” which,
instead, enjoys all the optimisations of ti®uce runtime). Therefore it is important to
stress that in this article we are comparing hand-optim¥@dery patterns ifCQLx
with automatically generated (therefore not very optirdjs€Duce patterns ifCQL:
the results of our tests, which always give the advantagkedcécond, are thus very
strong and robust.

The existence of an automatic translation from (a subseX&ath patterns to
CDuce ones, is a central result of our work. This work dematss that XPath-like
projections are redundant and in a certain sense, with cesp@atterns, problematic
as they induce a level of query nesting which penalises tleeathexecution perfor-
mance. We thus defined a formal translatiorC@)Lx to CQL and showed that it pre-
serves typing. This translation maps ev€i@Lx query into a (flat)CQL one (i.e., with
all nesting levels induced by projections removed), andutematically implemented
by the CDucelCQL compiler. Not only such a translation is useful from a tiedizal
point of view, but(i) it accounts for optimising queries afid) shows that the approach
can be applied both to standard XQuery (in which case theslwion would be used
to compile XQuery into a pattern aware runtime) and to a codive extension of
XQuery enriched withCDuce patterns (in which case the translation would optimise
the code by a source to source translation, as we d&@Irx)). Whatever inCDuce
or in XQuery this transformation allows the programmer te tiwe preferred style since
the more efficient pattern-based code will be always exelcitle also adapt logical op-
timisation techniques which are classical in the databast the context of pattern
based queries and show through performance measuremettigliare relevant also
in this setting.

To further validate the feasibility of pattern-matchingeasexecution model we also
comparedCQL performances with those of XQuery processors. Sinceanguage is
evaluated in main memory (we do not have any persistent,steteas a first choice we
comparedCQL performance with Galax [3] that besides being a referémpéementa-
tion of XQuery, uses the same technologie€&saice (noticeably, it is implemented in
OCaml). However, the primary goal of Galax is compliancewsitandards rather than
efficiency and for the time being the (web) available vergioes not implement any
real optimisation and has poor memory management (everRJfjbposes some im-
provements), which explains thGQL outperformed Galax (of an order of magnitude

1 Of course there exist types (such as t = <a>[t | []]) andigag//<a>) for which such a
translation is not possible,

up to tens of thousands of time faster). Therefore we dedidedn a second series of
tests against Qizx [18] and Qexo [7], the two efficiency beQuXry implementations
we are aware of. The tests were performed on the first five XMe@Wse Cases [9]
and on queries Q1, Q8, Q12, and Q16 of the XMark benchmark [} set of tests
gave a first positive answer to practical feasibility@®L-pattern matching. We were
pleased to notice th&QL was on the average noticeably faster than Qizx and Qexo
especially when computing intensive queries such asjgafsQ4 and Q5 use cases in
Section 4 and query Q8 and Q12 of XMark). These results are as®unding if we
consider that while Qizx and Qexo are compiled into bytecarg run on mature and
highly optimised Java Virtual Machines (that of course weapgetrised to obtain the
best possible results];Duce essentially is an interpreted language (it produceseso
intermediate code just to solve accesses to the heap) vethnttime compilation of
pattern matching. In the “todo” list dDuce a high priority place is taken by the com-
pilation of CDuce into OCaml bytecode. We are eager to redo our tests massetting,
which would constitute a more fair comparison with the Jaytetode and should fur-
ther increase the advantage of th@L execution model.

Outline The article is organised as follows. In Section 2 we brieflyateCDuce fea-
tures which are useful for understanding the definitiof©QfL: types, expressions and
patterns. In Section 3 we presénL’s syntax and semantics. We give the typing rules
for the defined language. We then pres€@Lyx showing how to define projections.
We formally define the translation froQLyx to CQL and show that such a translation
yields an unnestedQL query and preserves typing. In Section 4 we propose skyera
timisations and in Section 5 we report on performance measents we did. We draw
our conclusions and present our current and future resefirettions in Section 6.

2 Types, expressions and patterns

A CQL query is written as
select eg from Py in €1, P2in €,...,Pn in €, where C

where thep;’s ande’s respectively denot€Duce patterns and expressions. To define
CQL then we have to defin€Duce patterns and (a minimal subset of) expressions.
A complete presentation dfDuce is beyond the scope of this paper (see instead the
documentation—tutorial and user manual—and do try thegpype available atww.
cduce. or g), therefore we present here only (a subset@duce values and just one
complex expressionsansform, used to define the semantics@)L queries.

Since inCDucelCQL patterns are types with capture variables let us starpoer
sentation with them.

2.1 Types

CDuce type algebra includes three family of scalar tygigdntegers, that are classified
either by the type identifignt, or by interval types- - j (wherei andj are integer literals),

2 We would like the reader to notice that we did not perform amyHer optimisation relying
on specific data structure such as hash tables. Our very geifpas to asse€sDuce pattern
matching as an execution primitive for XML query processingvhich XQuery could be
compiled.

or by single integer literals liké2 that denotes the singleton type containing the integer
42. (i) Characters, classified by the type identifietsar (the Unicode character set)
andByte (the Latinl character set), by intervals-d (wherec andd are Character
literals that is single quoted characters likg 'b’, ..., or backslash-escaped directives
for special characters, Unicode characters, ...), or bylsioharacter literals denoting
the corresponding singleton typési) Atoms that are user defined constants; they are
CDuce identifiers escaped by a back-quote suchiasrue, ... and are ranged over by
the type identifieAtom or by singleton types.

The other types o€ Duce’s type algebra are (possibly recursively) defined ftioen
previous scalar types and the types/ andEmpty (denoting respectively the universal
and empty type) by the application of typenstructorsand typecombinators

Type combinatorsCDuce has a complete set of Boolean combinators. Thijsaihd
to are types, them &ty is their intersection typet; | t their union, and;j \ to their
difference. For instance the tymool is defined inCDuce as the union of the two
singleton types containing the atoms true and false, thatiés| ‘false.

Type constructorsCDuce has type constructors for record tygeg =ts;...;an=tn },
product typests,t), and functional typest{—>t,). For this paper the most interesting
constructors are those for sequences and XML.

Sequence types are denoted by square brackets enclosigglarrexpression on
types. For instance, iftDuce strings are possibly empty sequences of characters of
arbitrary length, and thuString is defined and implemented p€harx] (i.e. it is just
a handy shortcut). The previous type shows that the confemsequence type can be
conveniently expressed by regular expressions on typashwise standard syntéx

Ri:=t| RRI|RR| R« | R+ | R?
The general form of an XML type ist; to >t3 with t;’s arbitrary types. In practisg is
always a singleton type containing the atom of the taig, a record type (of attributes),
andts a sequence type (of elements). As a syntactic facility itdssible to omit the
back-quote in the atom df and the curly braces and semicolong4nso that XML
types are usually written in the following fornktag aj=t; ax=ty ... ay=t,>[R].

In the first row Figure 1 we report a DTD for bibliographieslémed by the corre-
spondingCDuce types: note the use of regular expression types to dbéfingequence
types of elementsPCDATA is yet anothefCDuce convention to denote the regular ex-
pressionChar®).

2.2 Expressions and patterns

Expression constructors mostly follow the same syntaxeis tiorresponding type con-
structors, so a record expression has the fpar=ey;...;a,=€, }, while a pair expres-
sion is(e1,e2). The same conventions on XML types apply to XML expressiorstead
of writing <‘book {year="1990"}>[. ..] we rather write<book year="1990">[...]. In the
second row of Figure 1 we report on the left a document vahidathe DTD of the
first row and on the right the corresponding (well-typed)ueain CDuce: note that

3 These are just a very convenient syntactic sugar (very XMerted) for particular recursive
types.

XML

CDuce

<IELEMENT bib (book*)>

<IELEMENT book (title, (author+ | editor+),
publisher, price)>

<IATTLIST book year CDATA #REQUIRED >

<IELEMENT author (last, first)>

<IELEMENT editor (last, first, affiliation)>

<IELEMENT title (#PCDATA)>

<IELEMENT last (#PCDATA)>

<IELEMENT first (#PCDATA)>

<IELEMENT affiliation (#PCDATA)>

<IELEMENT publisher (#PCDATA)>

<IELEMENT price (#PCDATA)>

CDuce Types:

type Bib = <bib>[Book*]

type Book = <book year=String>[Title
(Author+ | Editor+) Publisher Price]

type Author = <author>[Last First]

type Editor = <editor>[Last First Affiliation]

type Title = <title>[PCDATA]

type Last = <last>[PCDATA]

type First = <first>[PCDATA]

type Affiliation = <affiliation>[PCDATA]

type Publisher = <publisher>[PCDATA]

type Price = <price>[PCDATA]

<?xml version="1.0"?>
<bib>
<book year="1994">
<title>TCP/IP lllustrated</title>
<author>
<last>Stevens</last>
<first>Richard</first>
</author>
<publisher>Addison-Wesley</publisher>
<price> 65.95</price>
</book>
<book year="1984">
<title>The Lambda Calculus</title>
<author>
<last>Barendegt</last>
<first>Henk</first>
</author>
<publisher>North-Holland</publisher>
<price>92.00</price>
</book>
</bib>

<bib>[
<book year="1994">[
<title>"TCP/IP lllustrated"
<author>[
<last>"Stevens"
<first>"Richard"

]
<publisher>"Addison-Wesley"
<price>"65.95"

]
<book year="1984">[
<title>"The Lambda Calculus"
<author>[
<last>"Barendegt"
<first>"Henk"

]
<publisher>"North-Holland"
<price>"92.00"
]
]

Fig. 1. DTD/CDuce-types and document/values for bibliographies

strings are not enclosed in brackets since they alreadytdesrguences (of characters).
Besides expression constructors there are also functifimititens and operators (ex-
pression destructors). For the purpose of this article veeparticularly interested in
operators that work on sequences. Besides some standaatapethe most impor-
tant operator for processing XML data (and the oBuce iterator we present here) is
transform, whose syntax is:

transform ewith py ->e1 | p2->€ | ... | ph->€&n

with n > 1 and whereg, e, e, ..., &, are (expressions that return) sequences@nd
P2, ..., Pn arepatternswhose semantics is explained below.

The expression above scans the sequerared matches each elementexdigainst
the patterns, following first match policy(that is, first againsp; then, only if it fails,
againstpy, and so on). If somg; matches, then the correspondigs evaluated in an
environment where variables are substituted by the valapticed by the pattern. If no
pattern matches, then the empty sequence is returned. Wiliba alements o& have
been scannedransform returns the concatenation of all resuts.

4 In short,transform differs from the classimap (also present i€ Duce) since it uses pattens to
filter elements of a sequence and therefore, contraryajpit does not preserve the length of
the sequence.

Clearly, in order to fully understand the semantics of tfama we need to explain
the semantics of patterns. The simplest patterns are V@siabd types: a variable pat-
tern, sayx always succeeds and capturexitne value it is matched against.dfis a
sequence of integers theansform e with x -> (if x>=0 then [x] else []) returns the sub-
sequence of containing all the positive integers. A type patteinstead succeeds only
when matched against a value of tyippdlore complex patterns can be constructed by
using type constructors and/or the combinat@sé&nd “|”. So p1&p2 succeeds only if
bothp; andp, succeedfd; andpz must have pairwise distinct capture variables), while
p1lp2 succeeds ifp; succeeds op; fails and p2 succeedsi; and p, must have the
same set of capture variables). For instance the patgim succeeds only if matched
against an integer, and in that case the integer at issuauisdtox. Since the type of
positive integers can be expressed by the intedval (in integer intervals stands for
infinity) then the previous transformation can be also eritastransform e with x&(0- -

%) -> [x] . We can use more alternatives to transform the negativeszleninto positive
ones instead of discarding thetransform e with x&(0- -x) -> [X] | X&(x--0) -> [-X].

If we know thate is a sequence formed only of integers, then in the expresdione
we can omit &(x--0)" from the second pattern as it constitutes redundant in&tion
(actuallyCDuce automatically gets rid at compile time of all redundafdrmation).
Patterns built by type constructors are equally simple. iRstance, the pattern
<book year=y>[<title>t <author>[_ f];_] matches any bibliographic entry bind-
ing toy the value of the attributgear, to t the string of the title, and t6 the <first>
element of the first author name. The wildcari$ often used in patterns as a shorthand
for the typeAny (it matches any value, in the case above it matchesittse> element
in the name) while /' ” matches tails of sequences.
Assuming thabooks denotes a variable of tygBookx] the code below:
transform books with

| <book year=("1999"|"2000")>[_ <author>[_ <first>f];_]1->[f]
| <_>[_ <author>[<last>s;_];_1->[s]

scans the sequence of elementdafks and for each book it returns the string of the
first name if the book was published in 1999 or 2000, or thengtdf the last name
otherwise.

Besides variables and types there are two (last) more bgildiocks for patterns:
default patterns and sequence capture variables.

Default patterns are of the forr:=v); the pattern always succeeds and birds
the valuev. Default patterns are useful in the last position of an aktiéve pattern in
order to assign a default value to capture variables thahdidnatch in the preceding
alternatives. This allows the programmer to assign defalites to optional elements
or attributes. For instance imagine that we want to changetéviousransform so that
if the publication year is not 1999 or 2000 it returns the e of thesecondauthor
element if it exists, or the strintone" otherwise. It will be changed to:
transform books with

| <book year=("1999"|"2000")>[_ <author>[_ <first>f];_]->[f]
| < >[_ Author <author>[<last>s _] ;_] | (s:="none")->[s]

We guarded the second branch by an alternative pattermasgigone” to s when the
first pattern fails (that is, when there is no second autiMoje that the stringnone" is

(var(pi)Avar(p))=2, fori#j)

r(t/p1),---,(ti—1/pPi-1) & i+l T, (te/pa),-..,(ta/pn) Fe:t, c: Bool
[selectefrom ppiney, ...,pnin €y where C : [tx]

(selecy

Fig. 2. Typing rule for queries

returned also when the book has editors instead of autheestf® definition oBook
type in Figure 1). To filter out books with only editors, thetpgan of the second branch
should be<_>[_ (Author (<author>[<last>s _] | (s:="none")) ;_]. The pattern succeeds
if and only if the title is followed by an author, in which casiher it is followed by a
second author (whose lastname is then captures),byr by a publisher (and is then
bound to'none").

Sequence capture variables patterns are of the foRwhereR is a type regular
expression; the pattern bingso asequencef elements. More precisely it binago the
sequence of all elements matchiRgregular expressions match sequences of elements
rather than single elements). Such patterns are usefulpiu@awhole subsequences
of a sequence. For instance, to return for each book in tHebiaphy the list ofall
authors and to enclose it inauthors> tag can be done compactly as follows:

transform books with <book>[_ (a::Author+) ;_]->[<authors>a]

Note the difference betwegrn:Int] and[(x & Int)]. Both accept sequences formed of
a single integer, but the first one binklto a sequence (of a single integer), whereas the
second one binds it to the integer itself.

Finally we want to stress that the type inference algoritlir@buce/CQL is better
than that of XQuery since it always infer a type more predmmtthe one inferred by
XQuery. An example can be found in the extended version efgthper [5].

3 CQL: a Pattern-based query language for XML processing

The formal syntax o£QL is given by the following grammar:

Queries

g::=select efrom f where ¢ | select efrom f
Bindings

fi:=pine, f | pine
Conditions

c:='true | ‘false | not(c) | corc | candc | member(e,e) | ebope
Expressions

e=x|Vv|[e..e]|flattene) | g | (elf=e...(=e)e | op(e)
Patterns

p=x |t | p&p [plp | (pp) | (pL=p...L=p)p|[r] | (x=v)
Pattern regular expressions

re=p | (xzr) | r|r |orr | or+ | rx | r?
Types

t:=B | t|t | t&t | t\t | (t,t) | (t £=t...6=t)t | [R] | Empty | Any
whereopranges over sequence operatosH{ distinct_values, count, avg, max, min, sum}),
bopover boolean relationdppc{=, >, >=, <, <=}), x over variables, ans overval-

ues(viz.closed expressions in normal formal and constants for @érsegnd characters);
flatten takes a sequence of sequences and returns their concaieftiatis, for instance,

the infix operator@ that denotes the concatenation of two sequences is encaded a
e1@e; = flatten [e; €]).

The non-terminaR used in the definition of types is the one defined in Section 2.1
Patterns, ranged over ly and types, ranged over Ibyare simplified versions of those
present inCDuce and have already been described; note that types afilidhoolean
combinations: intersectiort&t), union ¢ | t), and differencet(\ t). The reader can
refer to [4] for a more detailed and complete presentation.

As an example, the querysQof XQuery de-

<books-with-prices>

select <book-with-price>[t1 scribed in the introduction would be written in
<price-amazon>p2 _ ;
. <price-bn>p1] CQL as shoyvn on the left-hand side.
from <bib>[b::Book*] in [biblio], The typing rule for theselect-from-where
<book>[t1&Title _* <price>p1]in b, ST P hat th
<reviews>[e::Enfry*] in [amazon], construction is given in Figure 2. It states that the

<entry>[t2&Title <price>p2;_]ine conditionc must be of typeBool and that they's
where t1=(2 must be non-empty homogeneous sequences. In
this rule(t/p) is the type environment that assigns to the variableg tife best type
deduced when matching against a value of typeandvar(p) is the set of variables
occurring inp ® (see [4] for formal definitions and the optimality of the dedd types).
The semantics of select-from-where expression
(in the form as it is at the beginning of Section 3)
is defined in terms of the translation intbuce
: given on the left-hand side. In our contentns-
transform €y with Pn —> f5rm plays exactly the same role as the “for” con-
if ¢ then [ep] else[]
struct of XQuery core does [17]. However, the

peculiar difference is that our pattern matching compilatschema is based on non-
uniform tree automata which fully exploit types to optimtee code [19] as well as its
execution. This translation is given only to define in an ub&mous way the semantics
of the new term. Itis not intended to impose any executioegEince such a choice is
left to the query optimiser. In fact the optimiser can imparhthis more efficiently; for
instance, it does not involve the capture variables of sopnehe query optimiser can,
as customary in databases, push selections (and/or poojgcbn some components as
shown in Section 4.

transform €; with p; —>
transform € with pp —>

3.1 CQLx

In order to investigate and compare pattern-matching wifuxry, we have extended
CQL with projection operatora la XPath. Lete, be an expression denoting a sequence
of XML elements, and be aCDuce type, thee/t denotes the set of children of the ele-
ments ine whose type i$. The formal semantics is defined by encodigf:is encoded
astransform ewith <_>[(x::t | _)*] —>x. It is convenient to introduce the synte@a

to extract the sequence of all values bound to the attriauteelements ire, which is
encoded inCDuce agransform e with <_ a=x>_ —> [x]

5 The conditionvar(p;) A var(pj) = @ for i # j is not strictly necessary but may be useful in
practise and simplifies both the proofs and the definitiorhefdptimisations.

XQuery: CQLx:

<bib> select <book year=y>[t]

<bib> from b in [biblio}/<book>_,
{ p in [b]/<publisher>_,
for $b in $biblio/bib/book t in [b/<title>_,
where $h/publisher = "Addison-Wesley" yin [bJ/@year §
and $b/@year > 1990 where (p = <pub‘l‘|sheri 'Addison-Wesley")
return and (y>>"1990");;
<book year="{ $b/@year }">
{ $brtitle } .
</book> %
<}/bib> <bib> select <book year=y>[t]

from <bib>[b::Book*] in [biblio],
<book year=y>[t&Title _+
<publisher>"Addison-Wesley";_]in b;;
where y>>"1990"

Fig. 3. XQuery and the twd@CQL programming styles.

Figure 3 illustrates how to code the same query in XQUEQLx, andCQL. The
query at issue is the query Q1 from the XQuery Use Cases. \Mi@ieery andCQLx
code make use of simple variables that are bound to the sesfyirojections, th€QL
one fully exploits the pattern algebra @Duce (we leave as an exercise to the reader
how to use regular expressions on types to modify the paitteire second from clause
of the CQL query so as to completely get rid of thvdere clause).

Finally, since we us€QLyx to mimic XQuery in a full pattern setting, it is important
to stress that the semanticsvdfere clauses ifCQL (hence inCQLy) is not exactly the
same as in XQuery. The latter uses a set semantics accoodirtgch a value satisfying
thewhere close will occur at most once in the result (e.g. asSBLECT DI STI NCT of
SQL), while CQL/CQLx follow the SQL convention and use a multi-set semantics.
As usual, the multi-set semantics is more general sincextisteatial semantics can
easily obtained by using thiistinct_values operator (which takes a sequence and elides
multiple occurrences of the same element). The presencechf @ operator has no
impact on the translation fro@QLx to CQL.

3.2 Translation from CQLy to CQL

It is quite easy to see that projections can be encod&dQn, since the twarans-
form expressions used to encode projections correspond, tesggdo: flatten(select
X from < >[(x:t]_)*] in e), and toselect X from <_a=x>_in e. Nonetheless it
is interesting to define a more complex translation fré@Lx to CQL that fully ex-
ploits the power ofCDuce patterns to optimise the code. Therefore in this seati®
formally define a translation that aims @} eliminating projections and pushing them
into patterng(ii) transforming as many as possible selection conditionspatterns.
As a result of this translation the number of iterations idueed and severalhere
clauses are pushed into patterns. In order to formally déffieéranslation we first need
to introduce the expression and evaluation contExiSlandCO

q ::= select efrom f where C | select efrom f

ex=x | v]| [e..q | flaten(e) | & (=e...L=€e)e | (€6 | op® | q
fu=pine f | pine
C:='true | ‘false | not(C) | corc | candC | ebope | member(e€

EM:=00] [e1...enEE)...€n] | flatten(ED) | (€ {=e...{=¢) E[

| (el=e.t=El¢=e...)e | (Ee | EMt | EM@a | op(ED
COO:=00] not(C) | corCI | Corc | candCl] | CJandC

| ebopHID | EOJbope | member(eELL) | member(ELT]E)
wherem,n > 0.

Definition 1. The translation?[] is defined by the following rewriting rules:

- P[select ELCOIfrom f where €] = P[select ECIP[q | Cfrom f where c), g is not ag expression
- [select ECE/t(from f where C] = P[select ECk(lfrom f, Xin [€/t] where C]|, x ¢ bv(f)

- P[select ECE/@allfrom f where €] = P[select ECkIfrom f, Xin [€/@a] where C], x ¢ bv(f)

- P[select efrom f where CLHO] = [select €from f where CLIP[q] 0], q is not aq expression
- [select &g from f where CLE/t] = P[select & from f, Xin [€/t] where CCX], x ¢ bv(f)

- P[select & from fwhere CLE/@al]] = P[select & from f,Xin [€/ @a] where CLTX] (0], x¢ bv(f)

- P[select efrom f where C| = P[select &from F [f Jpy(r) where C]

where# [] is defined as:

-Flpine flr=F[pinelr. F[f Irubvrppine,)

-Flpin ELOU]r = F[pin ECP[q]O]r

- F[pin ECEtO]r =if € has typdgAny] then<_>[(x::t|_)*] ine, F[pin ECXO]rupg, x¢ T
else[(<_>[(x::t|] | x:nil)*T in [€], [pin Elatten()O]rupg, X ¢ T

- F[pin ELE/@al]r = if € has typéAny] then<_a=x>_in €, F[pin EC0X]O]rupg, x¢ T

else[(<_a=x>_|x:nil)«] in [€], 7[pin ECXO]rupg, x¢ T
-F[pine]r=pine

Apart from technical details, the translation is ratherplien contexts are defined so that
projections are replaced according to an innermost-rigistratrategy. For instance if
we have to translatet1/t2, (x/t1) will be considered first thus removing the projection
on t1 prior to performing the same translation on the remaindhe first three rules
replace projections in the select part, 2nd and 3rd ruleslé@mtally perform a slight
optimisation (they get rid of one level of sequence nestinghe case the projection is
applied to a sequence with just one element (this case isceenynon and dealing with
it allows for further optimisation later on); the 4th, 5timch6th rules replace projections
in the “where” part by defining new patterns in the “from” parthile the 7th rule
handles projections in the “from” part. The latter resootah auxiliary functionf that
needs to store in a sEtthe capture variables freshly introduced.

So far, we have proved just a partial correctness propertigefranslation, namely
that it preserves the types (the proof is omitted for spaasars):

Theorem 1 (Type preservation)l' -q:t=TF 2[q]:t

The result of? is a query inCQL since all projections have been removed. From a prac-
tical viewpoint, the use of a projection in a query is equavdlto that of a nested query.
<bib> -
select <book year=y>[t] Le.t Q be the query ob
from b in (select v from <_>[(yb::Book|)*] in [biblio], v in yb) tained fromtheCQLx query

pin (selectv from < >[(yp::Publisher|)*]in [b],vinyp) in Figure 3 by replac-

t in (select v from <_>[(yt::Title| _)*] in [b], v in yt) . .

yin (select yy from <_year=yy> _in [b]) Ing <book>_, <publisher>_,

where (p = <publisher>"Addison-Wesley”) and (y>>"1990") and<title>_ respectively by

Book, Publisher, andTitle (the resulting query [<pip>
is semantically equivalent but more readabjeselect <book year=y>[t]

. . from <_>[(yb::Book|_)*] in [biblio],
and compact). If we expand the projections of "y iy,
Q into its corresponding sequence saflect’s t_:[(yp:tPublisherl_)*] in [b],
we obtain the query at the end of the previ- & 'S0t Tittel ¥ in [o].

ous page (we used boldface to outline modi- tinyt, ,
<_year=y> in[b]

fications). where (p = <publisher>"Addison-Wesley")
The translation?[| unnests thesselect’s and (y>>"1990")

yielding the query of Figure 4. In the next sec-

tion we show that this has a very positive im- Fig.4.7[Q]

pact on performances.

4 Pattern Query Optimisation

In this section we adapt classical database optimisat@miques to our patterns. Such
optimisations evaluate, as customary in the database yeortdiitions just when needed
thus reducing the size of intermediate data contributintheresult construction and

also avoiding to visit useless parts of the document. Moeeipely, we proceed in four

steps.

Conjunctive Normal Form.The first step consists in putting thehere condition in
conjunctive normal form and then moving into tihem clause the parts of the condition
that can be expressed by a pattern. This is expressed byllbwifay rewriting rule:

select efrom f wherec ~» select e from f,0(CNF(c)) where ©?(CNF(c))

where CNFc) is a conjunctive normal form af, ©*(c) represents the part efthat can
be expressed by a pattern and thus remounted in the “front; @ad@?(c) is the part
of c that remains in the “where” condition. Formal®} and©? are the first and second
projections of the functio® defined as:

Definition 2. Let i denote a scalar (i.e. an integer or a character) and v hiea

O(v=e) = (vin [€],true) O(count(®) =1) = ([]in (€], ‘true)
O(e>=1i) = (i——xin[€],‘true) O(count(e) > i) = ([_' _+]in [¢], true)
O(e> i) = ([i+1]-—xin[€], true) O(count(e)>=i) = ([_' _*]in[g] ,'‘true)
O(e<=i) = (*——iin [€], true) O(count(e) < i) = ([(L?) " Yin [€] , true)
Olex<i) = (*——[i — 1] in [€], ‘true) O(count(e) <= i) = ([(_?)'] in [€], ‘true)
O(member(v,e)) = ([_* v_*] in [€], ‘true)

(

O(cpand...and ¢y) = ((@(cy),...,0%cn)) ,©%(c1) and ... and @%(cy)).
O(c) = (g,0) (if none of the above applies)

where we use the notatioh to denote the juxtaposition @bccurrences of . So for
instance the third rule indicates that the constraint, sayt(e) = 3 can be equivalently
checked by matchingagainst the pattefn__] (i.e. [_3]). We also used the notation
[f(i)] for the constant that is the result bfi).

If we apply the rewriting to the query in Figure 4, then we cae the first case
of Definition 2 to express the conditign= <publisher>"Addison-Wesley" by a pattern,

<bib>)

select <book year=y>[t] <bib>

from <_>[(yb::Book_)*] in [biblio], select <book year=y>[t]
binyb, from <_>[(yb::Book|_)*] in [biblio],
<_>[(yp::Publisher|_)*]in [b], <_year=y> &
pinyp, <_>[(yp::Publisher|_)*]&
<_>[(yt:Title|_)*] in [b], <_>[(yt::Title|_)*] in yb,
tin yt, <publisher>"Addison-Wesley" in yp,
<_year=y>_ in[b], tinyt
<publisher>"Addison-Wesley" in [p] where y>>"1990"

where y>>"1990"

Fig.5.00n?[Q] Fig.6.?[Q] after the first 3 optimisation steps

yielding the query of Figure 5 (the rewriting does not apply t> "1990" since"1990"
is not a scalar but a string).

Useless Declarations EliminationThe second step consists in getting rid of useless
intermediaten-declarations that are likely to be generated by the tréiosiadf CQLx

into CQL:

selecte, from f1, xing, fz, pin[X], fawherec ~ selecte, from f1, x&pine, fa,f3wherec

Pattern Consolidation.The third step of optimisation consists in gathering togeth
patterns that are matched against the same sequences.

selecte, from f1,pyine, f2, p2ine fzwhere c ~ selecte, from f1, pi&pzine, fz, fawherec

Note that both rewriting systems are confluent and noethéwaen applied in the or-
der). The result of applying these rewriting rules to thergue Figure 5 is shown in
Figure 6.

Pushing Selection3 he fourth and last step is the classical technique thatgausélec-
tions as close as possible to the declarations of the vasgabéy use. So for instance the
clausey >>"1990" in Figure 6 is checked right after the capture/oThis is obtained by
anticipating an if_then_else in the implementaichhe algorithm, which is standard,
is omitted.

This kind of optimisation is definitely not new. It corresptsto a classical logical
optimisation for the relational model. The benefit is to reglthe size of the intermedi-
ate data that is used to the obtain the result.

5 Experimental Validation

Performance measurements were executed on a Pentium I\H2.24h 1GB of RAM
running under FreeBSD 5.2.1. We compared performancetsestithe same query
programmed in the different flavors @QL. So we tested a same query (n: CQLx,
that isCQL in which we use the same path expressions as the XQuery qnerno
CDuce pattern(ii) CQLp, the CQL program automatically generated by applying to

6 More precisely, the query in Figure 6 is implemented by
transform [biblio] with <_>[(yb::Book]|_)*] ->
transform yb with <_ year=y>[(yp::Publisher|yt::Title|_)*] ->
if (y>>"1990") then transform yp with <publisher>"Addison-Wesley" -> [<book year=y>[t]]
else[]

| || Sizd Sizedfitco| CQLx|CQLY"| CQLp|CQLE"[CQL[| Qizx| Qexd

Q1| 36 Kb 0.0 0.01y 0.03 0.02 0.01 0.03; 0.45 0.6Q
Q1[1.8 Mb 0.23 0.2 0.25 0.2 0.2 0.24| 0.7q 1.01
Q1| 14 Mb 190 2.00 199 198 2.07 193 21§ 2.89
Q1| 35 Mb 479 513 5.04 503 524 490| 4.44 5.80
Q2| 36 Kb 0.0 0.0 0.0 0.0 0.04 0.04; 0.4 0.61
Q2|[1.8 Mb 0.24 0.2 0.2 0.25 0.25 0.25| 1.00 1.04
Q2|| 14 Mb 1.87 206 206 2013 201 1.99| 3.77 3.55
Q2| 35 Mb 474 527 527 5.14 514 508 81 7.79
Q3|| 36 Kb 0.0 0.01y 0.03 0.0 0.01 0.03; 0.47 0.6Q
Q3]|1.8 Mb 0.24 0.25 0.2 0.2 0.2 0.25| 0.99 1.03
Q3|| 14 Mb 190 203 202 2013 2.02 2.01f 3.6 3.27
Q3|| 35 Mb 481 518 518 514 514 513 7.90 6.86
Q4| 36 Kb 0.0 0.094 0.0 0.05 0.05 0.03] 0.53

Q4| 70 Kb 0.02 0.177 0.17 0.14 0.14 0.14| 0.68

Q4{|144 Kb 0.0Z 0.6 0.6 052 0.52 0.49| 1.17

Q4||575 Kb 0.09 10.73 10.73 9.94 9.94 8.63| 10.97

Q4(|1.8 Mb 0.24113.01 113.01 89.31 89.3188.7(0(104.17

Q5|| 36 Kbj535Kh| 0.0§ 1.69 0.79 1.17 0.71 0.54| 4.44 27.89
Q5||144 Kb 43Kb| 0.03 052 0.24 0.38 0.24 017 1.79 9.31
Q5/|575 Kh171 Khy| 0.1 7.87 3.49 592 3.34 2.46| 20.74127.39
Q5||1.8 Mb535 Khj| 0.31 78.27 36.54 53.25 31.0422.93| 197 >1h
Q5||3.5Mb 535 Kh| 0.59157.70 72.28105.38 62.2445.03| 392

flt = file load time, Size2 column reports the sizes of the sdatocument in joins)
Fig. 7. Summary of all test results on the XQuery Use Cases

theCQLx query the transformatio®(?[]) of Sections 3.2 and 4 and the two rewritings for
pattern consolidation and useless declaration eliminahat clean up the “garbage” introduced
by the translationgiii , iv) CQLx°P* CQLp°P!, which are obtained by optimising the two previous
queries by the classical optimisation algorithm of pushéegections, presented at the end of
Section 4, and finallyv) CQL that is a handwritten (and hand optimised) querZ@L. As we
explained in the introduction, in order to strengthen osutts we chose not to use “//” iI@QLx
(since this is less heavily optimised by tB®uce runtime than “/”) and instead always use the
static types to translate it in terms of “/” (as all the queniee considered allowed us to do so).
This gives a clear further advantageGQLx .

To perform our tests we chose, somewhat arbitrarily, gge@ig, Q2, Q3, Q4, and Q5 of the
XML Query Use Cases. We then performed a second set of testd lom the XMark benchmarks.
Here our choice of queries was less random as we explain below

Finally to testCQL runtime we compared our results with three different iempentations of
XQuery: Galax [3], Qizx [18], and Qexo [7, 8]. Galax is a refece implementation of XQuery
and, asCDuce, it is implemented in OCaml. Qizx/open is an open-souJd@va implementation
of XQuery specifications developed for commercial disttifmu and whose target is the efficient
execution of queries over large databases. Qexo is a pamjdémentation of the XQuery lan-
guage that achieves high performance by compiling quemesmdo Java bytecode using the
Kawa framework. The sources of the queries are omitted facspeasons but they can all be
found in the extended version [5].

5.1 Use Cases

Briefly, query Q1 performs a simple selection. Queries Q2 @fdhare “reconstructing” queries,
they both scan the whole bibliography, while the first onemet a flat list of title author pairs

(each pair being enclosed in<aesult> element), the second returns the title and all authors
grouped in a<result> element. For each author in the bibliography, query Q4 tisésauthor’s
name and the titles of all books by that author, grouped esidresult" element. Last, query
Q5 performs a join between two documents: for each book fdauatd in the document bound to
biblio and in that bound tamazon Q5 lists the title of the book and its price from each source.
The results of our tests are presented in Table 7, from whielomitted the times for Galax:
as a matter of fact we did not completed all the tests of Gallasesit was soon clear that the
performances of Galax are several orders of magnitude vibesethose of Qizx and Qexo.

Measurements were performed fﬁz ” Sizd|ﬂthL|(CQLx|(CQLp|CQL|| Qizx| Qexq|

each query on randomly generateg
documents of different sizes (ex Q1| 1.5Mb| 0.15 0.15 0.15 0.15| 0.57 0.74

pressed in KBytes). We also followed Q1| 29 Mb|| 2.57 2.58 2.58 2.58| 2.1 2.58
the spirit of the benchmark and we Q| 72Mb|| 6.61 6.65 6.64 6.62| 4.42 5.08

generated documents with a selecti ~Q1{145 Mb|14.10 14.18 14.1514.13| 8.1 9.31
ity rate (that we judged) typical of Q8| 1.5Mp| 0.15 0.21 0.2 0.17| 1.0034.51
the bibliographic application (that is Q8| 29 Mb|| 2.57 26.03 22.9613.09|75.90 >1h
quite low). Each test was repeated Q8 72Mb) 6.61 156 13372.81 47§
several times and the table reports theQ8[145Mb|14.19 630 542 285) 183

average evaluation times (in secondsf?l2 15Mp| 0.1§ 0.21 0.21 0.20) 0.87
We have reported the loading time (ilez 29 Mb|| 2.59 21.22 20.5714.7Q|38.30

the column headed by “flt", file load Ql2) 72Mb| 6.68 127 12286.35 216
time) of the XML document from the Q12/145Mbj|14.3§ 481 457) 319 824
global execution time in order to sep}Q16(| 1.5 Mbj| 0.15 0.1 0.1 0.1§| 0.62 0.78
arate the weight of the query enging16| 29 Mb| 2.57 2.65 2.64 2.63 2.15 2.63
and that of the parser in the overalQ169| 72Mbj| 6.63 6.87 6.85 6.82 4.42 5.08
performances (of course we are intetQ16]145 Mb|14.24 14.6Q 14.5414.50| 8.1 9.31

ested in the former and not in the lat- _ (fit = file load time)
ter). The execution times always in- Fig. 8. Summary of all test results on XMark

clude the time for performing optimi-
sation, when this applies, for type checking (just@pL variants) and the file load time.

By comparing the load time with the overall execution time (wcall that the latter includes
the former) it is clear that the only computationally meayfiini queries are the Q4 and Q5 ones
(Q4 was not executed in Qexo since it does not implement gtandi_values operator). In these
two cases the best performances are obtainet®l.’

5.2 XMark

Following the suggestion of loana Manolescu (one of the XMarthors) we chose four queries
that should give a good overview of the main memory behawdtine query engines.

More precisely, our choice went on Q1, just because it isithelest one, Q8 of the “chasing
references” section since it performs horizontal travieragth increasing complexity, Q12 of the

7 A word must be spent on the performances of Q5 for Qizx. When®&izx syntactically
detects a conjunctive join condition it dynamically genesaa hash table to index it (for low
selective benchmarks, as the one we performed in our te&$rings far better performance,
of course). Since we wanted to compare the performanceseafubry engines (rather than
the OCaml and Java libraries for hash tables) and becausehesdthat index generation
must be delegated to the query optimiser rather than impigedeby the compiler, then in
our test we disabled this index generation (this is done bigdding an “or false” to the join
condition).

“join on values” section since it tests the ability to hanideye intermediate results, and finally
on Q16 of the “path traversals” section to test vertical éraals.

The results are summarised in Table 8. We did not performehkts ton the optimised ver-
sions ofCQLx andCQLp since on the specific queries they are the identity funct@i® times
for Qexo are absent because execution always ended withremdied exception (probably be-
cause of a bug in the implementation of the arithmetic liprair Qexo but we did not further
investigate).

Once more if we compare the load time with the execution tiraesee that the only interest-
ing queries to judge the quality of the engines are Q8 and @1tRe other queries the execution
time is very close to the load time, so the performance is detaly determined by parsers. In
these cases it is interesting to note that whil®L uses an external parser, namely Expat (but
the CDuce interpreter has an option that the programmer canfypecise the less efficient but
more debug-friendly Pxp parser), Qexo and Qizx have evevgmlparsers that interact with the
query engines in order to avoid loading of useless partsetittument, whence the better per-
formances. That said, when performances are determindielyuery engine, as in Q8 and Q12,
CQL shows once more the best restilts

6 Conclusion and Perspectives

In this article we presente@QL, a full pattern-matching based query language for XML em-
bedded inCDuce. Our main purpose was to demonstrate that patterns atterp matching
(in CDuce sense) are a good candidate as an evaluation mechamisfME query process-
ing. To do so, we first couple@Duce patterns with a syntax very common in the database area
(select-from-where) and defined the new syntax in terms of a translation senganfldhen, we
extended this syntax to allow for an XQuery-like stylé(Lx). We chose to experiment with
CQLx rather than with XQuery because we wanted to rely on the vigient pattern match-
ing compilation and execution dDuce. Indeed, patterns are compiled into non-uniform tree
automata [19] which fully exploit type information. In ond® demonstrate the power of pure
patterns, we provided an automatic translation from thenfarinto the latter. Such a translation
not only shows that projections are useless in the contefilfice patterns but also gives a
formal way of unnesting queries. Then we investigated &ribptimisations: the well-known
database logical optimisations. We therefore adapted spiiimisations to the context aiQL,
providing a first step toward devising a general query oggénin such a context.

In order to validate our approach we performed performaneasurements. The purposes
of such measurements were twofold: first, we wanted to detrairsthe efficiency of pattern-
matching based query languages by compatiqg. with efficiency-oriented implementations of
XQuery and, second, we wanted to check the relevance oicdéhsmtabase logical optimisation
techniques in a pattern-based framework. In both casesjitiaéned results were encouraging.

We are currently working on the following topic&:) develop further (classical) query opti-
misation techniques such as joins re-orderifiig,extend the pattern algebra in order to partially
account for descendants axes (at the expense of loosingtgpision but still reaching a typed
construction)iii) formally study the expressive power @GQL and finally, in a longer-term(jv)
couplingCQL with a persistent store and study physical optimisaterhhiques.

AcknowledgementsThe authors want to thank Massimo Marchiori for the pointeQexo,
Xavier Franc for the details on Qizx implementation, andiAlrisch for the comments on this
paper and his help with the implementation@Duce. Thanks to Dario Colazzo for his help on

8 Once more the test for Qizx was performed with the dynamiegsion of hash tables dis-
abled.

XQuery type system. Very special thanks to loana Manoleschédr invaluable suggestions and
careful reading of a preliminary version of this paper.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

Serge Abiteboul, Peter Buneman, and Dan Suddata on the Web : from Relations to
Semistructured Data and XMIMorgan Kaufmann Publishers, 2000.

. S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiefiee Lorel query language for

semistructured datdnternational Journal on Digital Libraries1(1):68-88, 1997.

. Bell-labs.Galax http://db. bel | - | abs. com gal ax/ .
. V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XMenttly general purpose lan-

guage. INCFP '03, 8th ACM Int. Conf. on Functional Programmingages 51-63, 2003.

. V. Benzaken, G. Castagna, and C. Miachon. CQL: a pat@secquery language for XML.

Complete version. Available at t p: // www. cduce. or g/ paper s, 2005.

. N. Bidoit and M. Ykhlef. Fixpoint calculus for queryingrséstructured data. lint. Work-

shop on World Wide Web and Databases (WehB98.

. P. Bothner. Qexo - the GNU Kawa implementation of XQuery. vaiklable at

http://www.gnu.org/software/gexo/.

. P. Bothner. Compiling XQuery to java bytecodesPhoceedings of the First Int. Workshop

on XQuery Implementation, Experience and Perspective$MXP/>, pages 31-37, 2004.

. Don Chamberlin, Peter Fankhauser, Daniela FlorescusiasMarchiori, and Jonathan

Robie. XML Query Use Cases. T.-R. 20030822, World Wide Wehgodium, 2003.

Don Chamberlin, Peter Fankhauser, Massimo Marchind,Jnathan Robie. XML query
(XQuery) requirements. Technical Report 20030627, Worid&WVeb Consortium, 2003.
D. Chamberlin, J. Robie, and D. Florescu. Quilt: An XMlegulanguage for heterogeneous
data sources. liWebDB 2000 (selected papersplume 1997 of LNCS, pages 1-25, 2001.
Z.Chen, H. V. Jagadish, L. Lakshmanam, and S Paparizom ffee patterns to generalised
tree paterns: On efficient evaluation of xqueryMbDB’03, pages 237-248, 2003.

J. Clark and S. DeRose. XML Path Language (XPath) W3C Recommendation,
http://ww. w3. or g/ TR/ xpat h/ , November 1999.

G. Conforti, G. Ghelli, A. Albano, D. Colazzo, P. Manghind C. Sartiani. “The Query
Language TQL". Inn 5th Int. Workshop on the Web and Databases (WebhR&)2.

World Wide Web Consortium. XQuery: the W3C query langufay XML — W3C working
draft, 2001.

A. Deutsch, M. F. Fernandez, D. Florescu, A. Y. Levy, and&Dciu. “XML-QL: A Query
Language for XML”. INnWWW The Query Language Workshop (Q998.

M. Fernandez, J. Siméon, and P. Wadler. An algebra for Xjdéry. InFoundations of
Software Technology and Theoretical Computer Sciemember 1974 in LNCS, 2000.

X. Franc. Qizx/open. http://www.xfra.net/gizxopen.

A. Frisch. Regular tree language recognition with stafiormation. InProc. of the 3rd IFIP
Conference on Theoretical Computer Science (TT&)louse, Kluwer, 2004.

Alain Frisch, Giuseppe Castagna, and Véronique Benza8emantic Subtyping. IRro-
ceedings, Seventeenth Annual IEEE Symposium on Logic ip@enSciencepages 137—
146. IEEE Computer Society Press, 2002.

H. Hosoya and B. Pierce. XDuce: A typed XML processingleage. ACM Transactions
on Internet Technologyd(2):117-148, 2003.

Amélie Marian and Jérdme Siméon. Projecting XML elerseit Int. Conference on Very
Large Databases VLDB’Q®ages 213224, 2003.

A. J. Robie, J. Lapp, and D. Schach. “XML Query Languag®@Il(X In WWW The Query
Language Workshop (QLfambridge, MA, , 1998.

24. Albrecht Schmidt, Florian Waas, Martin L. Kersten, MaehJ. Carey, loana Manolescu, and
Ralph Busse. Xmark: A benchmark for xml data managemenBraiceedings of the Int'l.
Conference on Very Large Database Management (VI.p&)es 974-985, 2002.

