
A Full Pattern-based Paradigm for XML Query Processing

Véronique Benzaken1, Giuseppe Castagna2, and Cédric Miachon2

1 LRI, UMR 8623,C.N.R.S., Université Paris-Sud, Orsay, France
2 C.N.R.S., Département d’Informatique, École Normale Supérieure,Paris, France

Abstract. In this article we investigate a novel execution paradigm—ML-like pattern-matching—
for XML query processing. We show that such a paradigm is welladapted for a common and
frequent set of queries and advocate that it constitutes a candidate for efficient execution of XML
queries far better than the current XPath-based query mechanisms. We support our claim by com-
paring performances of XPath-based queries with pattern based ones, and by comparing the latter
with the two efficiency-best XQuery processor we are aware of.

1 Introduction, Motivations, and Goals

In this article we investigate a novel execution paradigm—namely ML-like pattern-
matching—for XML query processing. We show that such a paradigm is well adapted
for a common and frequent set of queries and thus could be usedas a compilation
target for XQuery. More precisely, to do so, we endow the pattern-matching based lan-
guageCDuce with an SQL-like query language that we introduce in this article and dub
CQL. CDuce [4, 20] (pronounce “seduce”) is a strongly and statically typedpattern-
basedhigher-order functional programming language for XML. It is standard compliant
(XML, Namespaces, Unicode, XML Schema validation, DTD, etc.) and fully operative
and implemented (the distribution ofCDuce/CQL is available at www.cduce.org). One
of the distinguishing characteristics ofCDuce is its pattern algebra.CDuce inherits and
extends XDuce [21] pattern algebra and implements it by a very efficient “just in time”
compilation [19].CQL is a query language in which queries are written using pat-
terns (in the sense ofCDuce patterns) and where the execution mechanism is based on
pattern-matching (in the sense of ML-like languages).CQL/CDuce patterns are more
similar to ML patterns than to XPath expressions. With respect to XPath expressions,
CDuce patterns are far more declarative inasmuch as while theformer strictly indicate
navigation paths, the latter reflect the whole structure of matched values and they can
be composed by applying boolean combinators.

To demonstrate that pattern-matching is relevant for querycompilation and evalu-
ation in the XQuery context, we also introduce, for free, some syntactic sugar to yield
an XQuery-like programming style. We call this extensionCQLX. We chose to ex-
periment withCQLX as we wanted to fully exploit the already implementedCDuce’s
pattern compilation schema and runtime support rather thanre-implementing it in the
context of XQuery.

Several proposals for defining query languages for XML have been made [2, 6, 14,
15] and a comparative study can be found in [1]. Among them we choose to briefly
recall the main features of XQuery[15] as (one of) our purpose is to show that the
experiments performed withCQL apply obviously to it.

XQuery [15, 17] is becoming the W3C standard in terms of querylanguages. An
earlier proposal was Quilt [11], which borrowed many functionality from XPath [13],

XQL [23], XML-QL [16], SQL, and OQL. XQuery is a strongly and statically typed
functional language whose type system was largely inspiredby XDuce [21].

<books-with-prices>
{ for $b in $biblio//book,

$a in $amazon//entry
where $b/title = $a/title
return

<book-with-prices>
{ $b/title }

<price-amazon>{$a/price/text() }
</price-amazon>
<price-bn>

{ $b/price/text() }
</price-bn>

</book-with-prices> }
</books-with-prices>

A query is expressed by a FLWR expression:for (it-
eration on a set of nodes),let (variables binding),
where (filter the elements according to a condition),
andreturn (construct the result for each node satis-
fying thewhere clause) The query on the side is an
example of FLWR expression (it is the Q5 query of
the XML Query Use Cases). Pattern expressions in
XQuery, such as$amazon//entry or $a/price/text(),
are based on XPath [13]. Many works among
them [12] attempts to optimise XQuery evaluation.

The immanent purpose of this article is to investigate whether pattern-matchingà la
CDuce is well adapted for main memory XML query processing. The answer is posi-
tive andCDuce’s patterns and pattern-matching mechanism can serve as an execution
mechanism for XQuery. Indeed, the need for efficient main memory query processing
is still of crucial interest. As pointed out by many works a bunch of application sce-
narios such as message passing, online processing do not manipulate huge documents.
We advocate thatCDuce patterns are a better candidate for XML patterns (againin the
sense of [10]) than path expressions. We base our plea on the following observations:

1. CDuce patterns are more declarative: different patterns canbe combined by boolean
combinators, thus, in a declarative way. Furthermore, theycan represent the whole
structure of matched values. This allows the capture of larger quantities of infor-
mation in a single match.

2. CDuce patterns are more efficient: our measurements show thata query written in
CQLX using the navigational style is always slower (sometimes even after some
optimisation) than the same query written inCQL (even when the latter is ob-
tained from the former by an automatic translation). Of course this claim must be
counterbalanced by the fact that our comparison takes placein CDuce, a language
whose implementation was specifically designed for efficient pattern matching res-
olution. Nevertheless we believe that this holds true also in other settings: the fact
thatCDuce patterns can capture the whole structure of a matched value (compared
with paths that can capture only a subpart of it) makes it possible to collect phys-
ically distant data in a single match, avoiding in this way further search iterations.
To put it simply, while a path expression pinpoints in a tree only subtrees that all
share a common property (such as having the same tag) aCDuce pattern does more
as it can also simultaneously capture several unrelated subtrees.

Our claim is supported by benchmark results. We performed our experiments inCDuce
rather than XQuery since this is of immediate set up: XPath/XQuery patterns are im-
plemented inCDuce as simple syntactic sugar, while an efficient integration ofCDuce
patterns in XQuery would have demanded a complete rewritingof the runtime of a
XQuery processor (but, again, we think that this is the way togo). So instead of com-
paring results between standard XQuery and a version of XQuery enriched withCDuce
patterns, we rather compare the results betweenCQL (the standardCDuce query lan-

guage) andCQLX (that isCQL in which we only use XQuery patterns and noCDuce
pattern).

Furthermore, in order not to bias the results with implementation issues, in all our
experiments withCQLX we avoided, when this was possible1, the use of “//” (even
if the “//”-operator is available inCDuce): whenever in our tests we met a (XQuery)
query that used “//” (e.g. the query earlier in this section)we always implemented it
by translating (by hand) every occurrence of “//” into a minimal number of “/”. Such a
solution clearly is much more efficient (we program by hand a minimal number of “/”
searches instead of using “//” that performs a complete search on the XML tree) and
does not depend on how “//” is implemented inCDuce (inCDuce “//” is implemented
by a recursive function whose execution is much less optimised than that of “/” which,
instead, enjoys all the optimisations of theCDuce runtime). Therefore it is important to
stress that in this article we are comparing hand-optimisedXQuery patterns inCQLX

with automatically generated (therefore not very optimised) CDuce patterns inCQL:
the results of our tests, which always give the advantage to the second, are thus very
strong and robust.

The existence of an automatic translation from (a subset of)XPath patterns to
CDuce ones, is a central result of our work. This work demonstrates that XPath-like
projections are redundant and in a certain sense, with respect to patterns, problematic
as they induce a level of query nesting which penalises the overall execution perfor-
mance. We thus defined a formal translation ofCQLX to CQL and showed that it pre-
serves typing. This translation maps everyCQLX query into a (flat)CQL one (i.e., with
all nesting levels induced by projections removed), and is automatically implemented
by theCDuce/CQL compiler. Not only such a translation is useful from a theoretical
point of view, but(i) it accounts for optimising queries and(ii) shows that the approach
can be applied both to standard XQuery (in which case the translation would be used
to compile XQuery into a pattern aware runtime) and to a conservative extension of
XQuery enriched withCDuce patterns (in which case the translation would optimise
the code by a source to source translation, as we do forCQL(X)). Whatever inCDuce
or in XQuery this transformation allows the programmer to use the preferred style since
the more efficient pattern-based code will be always executed. We also adapt logical op-
timisation techniques which are classical in the database field to the context of pattern
based queries and show through performance measurement that they are relevant also
in this setting.

To further validate the feasibility of pattern-matching asan execution model we also
comparedCQL performances with those of XQuery processors. Since our language is
evaluated in main memory (we do not have any persistent store, yet) as a first choice we
comparedCQL performance with Galax [3] that besides being a referenceimplementa-
tion of XQuery, uses the same technologies asCDuce (noticeably, it is implemented in
OCaml). However, the primary goal of Galax is compliance with standards rather than
efficiency and for the time being the (web) available versiondoes not implement any
real optimisation and has poor memory management (even if [22] proposes some im-
provements), which explains thatCQL outperformed Galax (of an order of magnitude

1 Of course there exist types (such as t = <a>[t | []]) and queries (//<a>) for which such a
translation is not possible,

up to tens of thousands of time faster). Therefore we decidedto run a second series of
tests against Qizx [18] and Qexo [7], the two efficiency best XQuery implementations
we are aware of. The tests were performed on the first five XML Query Use Cases [9]
and on queries Q1, Q8, Q12, and Q16 of the XMark benchmark [24]. This set of tests
gave a first positive answer to practical feasibility ofCQL-pattern matching. We were
pleased to notice thatCQL was on the average noticeably faster than Qizx and Qexo
especially when computing intensive queries such as joins2 (cf. Q4 and Q5 use cases in
Section 4 and query Q8 and Q12 of XMark). These results are even astounding if we
consider that while Qizx and Qexo are compiled into bytecodeand run on mature and
highly optimised Java Virtual Machines (that of course we parametrised to obtain the
best possible results),CDuce essentially is an interpreted language (it produces some
intermediate code just to solve accesses to the heap) with just-in-time compilation of
pattern matching. In the “todo” list ofCDuce a high priority place is taken by the com-
pilation ofCDuce into OCaml bytecode. We are eager to redo our tests in such a setting,
which would constitute a more fair comparison with the Java bytecode and should fur-
ther increase the advantage of theCQL execution model.

Outline The article is organised as follows. In Section 2 we briefly recall CDuce fea-
tures which are useful for understanding the definition ofCQL: types, expressions and
patterns. In Section 3 we presentCQL’s syntax and semantics. We give the typing rules
for the defined language. We then presentCQLX showing how to define projections.
We formally define the translation fromCQLX to CQL and show that such a translation
yields an unnestedCQL query and preserves typing. In Section 4 we propose several op-
timisations and in Section 5 we report on performance measurements we did. We draw
our conclusions and present our current and future researchdirections in Section 6.

2 Types, expressions and patterns

A CQL query is written as

select e0 from p1 in e1, p2 in e2,. . . ,pn in en where c

where thepi ’s andei ’s respectively denoteCDuce patterns and expressions. To define
CQL then we have to defineCDuce patterns and (a minimal subset of) expressions.
A complete presentation ofCDuce is beyond the scope of this paper (see instead the
documentation—tutorial and user manual—and do try the prototype available atwww.
cduce.org), therefore we present here only (a subset of)CDuce values and just one
complex expression,transform, used to define the semantics ofCQL queries.

Since inCDuce/CQL patterns are types with capture variables let us start ourpre-
sentation with them.

2.1 Types

CDuce type algebra includes three family of scalar types:(i) Integers, that are classified
either by the type identifierInt, or by interval typesi - - j (wherei andj are integer literals),

2 We would like the reader to notice that we did not perform any further optimisation relying
on specific data structure such as hash tables. Our very purpose was to assessCDuce pattern
matching as an execution primitive for XML query processingin which XQuery could be
compiled.

or by single integer literals like42 that denotes the singleton type containing the integer
42. (ii) Characters, classified by the type identifiersChar (the Unicode character set)
and Byte (the Latin1 character set), by intervalsc - - d (wherec and d are Character
literals that is single quoted characters like’a’, ’b’, . . . , or backslash-escaped directives
for special characters, Unicode characters, . . .), or by single character literals denoting
the corresponding singleton types.(iii) Atoms that are user defined constants; they are
CDuce identifiers escaped by a back-quote such as‘nil, ‘true, . . . and are ranged over by
the type identifierAtom or by singleton types.

The other types ofCDuce’s type algebra are (possibly recursively) defined fromthe
previous scalar types and the typesAny andEmpty (denoting respectively the universal
and empty type) by the application of typeconstructorsand typecombinators.

Type combinatorsCDuce has a complete set of Boolean combinators. Thus ift1 and
t2 are types, thent1& t2 is their intersection type,t1||| t2 their union, andt1\\\ t2 their
difference. For instance the typeBool is defined inCDuce as the union of the two
singleton types containing the atoms true and false, that is‘true | ‘false.

Type constructorsCDuce has type constructors for record types{ a1= t1;. . . ;an = tn },
product types(t1,t2), and functional types (t1–>t2). For this paper the most interesting
constructors are those for sequences and XML.

Sequence types are denoted by square brackets enclosing a regular expression on
types. For instance, inCDuce strings are possibly empty sequences of characters of
arbitrary length, and thusString is defined and implemented as[Char∗] (i.e. it is just
a handy shortcut). The previous type shows that the content of a sequence type can be
conveniently expressed by regular expressions on types, which use standard syntax3:

R ::= t | R R | R|R | R∗ | R+ | R?
The general form of an XML type is< t1 t2 > t3 with ti ’s arbitrary types. In practiset1 is
always a singleton type containing the atom of the tag,t2 is a record type (of attributes),
andt3 a sequence type (of elements). As a syntactic facility it is possible to omit the
back-quote in the atom oft1 and the curly braces and semicolons int2, so that XML
types are usually written in the following form:<tag a1=t1 a2=t2 . . . an=tn>[R].

In the first row Figure 1 we report a DTD for bibliographies followed by the corre-
spondingCDuce types: note the use of regular expression types to definethe sequence
types of elements (PCDATA is yet anotherCDuce convention to denote the regular ex-
pressionChar*).

2.2 Expressions and patterns

Expression constructors mostly follow the same syntax as their corresponding type con-
structors, so a record expression has the form{ a1 =e1;. . . ;an=en }, while a pair expres-
sion is(e1,e2). The same conventions on XML types apply to XML expressions:instead
of writing <‘book {year="1990"}>[. . .] we rather write<book year="1990">[. . .]. In the
second row of Figure 1 we report on the left a document validating the DTD of the
first row and on the right the corresponding (well-typed) value in CDuce: note that

3 These are just a very convenient syntactic sugar (very XML-oriented) for particular recursive
types.

XML CDuce

<!ELEMENT bib (book*)>
<!ELEMENT book (title, (author+ | editor+),

publisher, price)>
<!ATTLIST book year CDATA #REQUIRED >
<!ELEMENT author (last, first)>
<!ELEMENT editor (last, first, affiliation)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT last (#PCDATA)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT affiliation (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<!ELEMENT price (#PCDATA)>

CDuce Types:

type Bib = <bib>[Book*]
type Book = <book year=String>[Title

(Author+ | Editor+) Publisher Price]
type Author = <author>[Last First]
type Editor = <editor>[Last First Affiliation]
type Title = <title>[PCDATA]
type Last = <last>[PCDATA]
type First = <first>[PCDATA]
type Affiliation = <affiliation>[PCDATA]
type Publisher = <publisher>[PCDATA]
type Price = <price>[PCDATA]

<?xml version="1.0"?>
<bib>

<book year="1994">
<title>TCP/IP Illustrated</title>
<author>

<last>Stevens</last>
<first>Richard</first>

</author>
<publisher>Addison-Wesley</publisher>
<price> 65.95</price>

</book>
<book year="1984">

<title>The Lambda Calculus</title>
<author>

<last>Barendegt</last>
<first>Henk</first>

</author>
<publisher>North-Holland</publisher>
<price>92.00</price>

</book>
</bib>

<bib>[
<book year="1994">[

<title>"TCP/IP Illustrated"
<author>[

<last>"Stevens"
<first>"Richard"

]
<publisher>"Addison-Wesley"
<price>"65.95"

]
<book year="1984">[

<title>"The Lambda Calculus"
<author>[

<last>"Barendegt"
<first>"Henk"

]
<publisher>"North-Holland"
<price>"92.00"

]
]

Fig. 1. DTD/CDuce-types and document/values for bibliographies

strings are not enclosed in brackets since they already denote sequences (of characters).
Besides expression constructors there are also function definitions and operators (ex-
pression destructors). For the purpose of this article we are particularly interested in
operators that work on sequences. Besides some standard operators, the most impor-
tant operator for processing XML data (and the onlyCDuce iterator we present here) is
transform, whose syntax is:

transform e with p1 -> e1 | p2 -> e2 | . . . | pn -> en

with n≥ 1 and wheree, e1, e2, . . . , en are (expressions that return) sequences andp1,
p2, . . . , pn arepatternswhose semantics is explained below.

The expression above scans the sequencee and matches each element ofe against
the patterns, followinga first match policy(that is, first againstp1 then, only if it fails,
againstp2, and so on). If somepi matches, then the correspondingei is evaluated in an
environment where variables are substituted by the values captured by the pattern. If no
pattern matches, then the empty sequence is returned. When all the elements ofe have
been scanned,transform returns the concatenation of all results.4

4 In short,transform differs from the classicmap (also present inCDuce) since it uses pattens to
filter elements of a sequence and therefore, contrary tomap it does not preserve the length of
the sequence.

Clearly, in order to fully understand the semantics of transform we need to explain
the semantics of patterns. The simplest patterns are variables and types: a variable pat-
tern, say,x always succeeds and captures inx the value it is matched against. Ife is a
sequence of integers thentransform e with x -> (if x>=0 then [x] else []) returns the sub-
sequence ofecontaining all the positive integers. A type patternt instead succeeds only
when matched against a value of typet. More complex patterns can be constructed by
using type constructors and/or the combinators “&” and “|”. So p1&p2 succeeds only if
bothp1 andp2 succeed (p1 andp2 must have pairwise distinct capture variables), while
p1|p2 succeeds ifp1 succeeds orp1 fails andp2 succeeds (p1 and p2 must have the
same set of capture variables). For instance the patternx&Int succeeds only if matched
against an integer, and in that case the integer at issue is bound tox. Since the type of
positive integers can be expressed by the interval0- -∗ (in integer intervals∗ stands for
infinity) then the previous transformation can be also written astransform e with x&(0- -
∗) -> [x] . We can use more alternatives to transform the negative elements into positive
ones instead of discarding them:transform ewith x&(0- -∗) -> [x] | x&(∗- -0) -> [-x].

If we know thate is a sequence formed only of integers, then in the expressionabove
we can omit “&(∗- -0)” from the second pattern as it constitutes redundant information
(actuallyCDuce automatically gets rid at compile time of all redundantinformation).

Patterns built by type constructors are equally simple. Forinstance, the pattern
<book year=y>[<title>t <author>[_ f] ;_] matches any bibliographic entry bind-
ing to y the value of the attributeyear, to t the string of the title, and tof the <first>
element of the first author name. The wildcard_ is often used in patterns as a shorthand
for the typeAny (it matches any value, in the case above it matches the<last> element
in the name) while “;_” matches tails of sequences.

Assuming thatbooks denotes a variable of type[Book∗] the code below:

transform books with
| <book year=("1999"|"2000")>[_ <author>[_ <first> f] ;_] -> [f]
| <_>[_ <author>[<last>s ;_] ;_] -> [s]

scans the sequence of elements ofbooks and for each book it returns the string of the
first name if the book was published in 1999 or 2000, or the string of the last name
otherwise.

Besides variables and types there are two (last) more building blocks for patterns:
default patterns and sequence capture variables.

Default patterns are of the form(x:=v); the pattern always succeeds and bindsx to
the valuev. Default patterns are useful in the last position of an alternative pattern in
order to assign a default value to capture variables that didnot match in the preceding
alternatives. This allows the programmer to assign defaultvalues to optional elements
or attributes. For instance imagine that we want to change the previoustransform so that
if the publication year is not 1999 or 2000 it returns the lastname of thesecondauthor
element if it exists, or the string"none" otherwise. It will be changed to:

transform books with
| <book year=("1999"|"2000")>[_ <author>[_ <first> f] ;_] -> [f]
| <_>[_ Author <author>[<last>s _] ;_] | (s:="none") -> [s]

We guarded the second branch by an alternative pattern assigning "none" to s when the
first pattern fails (that is, when there is no second author).Note that the string"none" is

(var(pi)∧var(pj)=∅, for i 6= j)

Γ,(t1/p1), . . . ,(ti−1/pi−1) ⊢ ei : [ti+] Γ,(t1/p1), . . . ,(tn/pn) ⊢ e : t, c : Bool

Γ ⊢ select e from p1 in e1, . . . ,pn in en where c : [t∗]
(select)

Fig. 2. Typing rule for queries

returned also when the book has editors instead of authors (see the definition ofBook
type in Figure 1). To filter out books with only editors, the pattern of the second branch
should be<_>[_ (Author (<author>[<last>s _] | (s:="none")) ;_]. The pattern succeeds
if and only if the title is followed by an author, in which caseeither it is followed by a
second author (whose lastname is then captured bys), or by a publisher (ands is then
bound to"none").

Sequence capture variables patterns are of the formx::R whereR is a type regular
expression; the pattern bindsx to asequenceof elements. More precisely it bindsx to the
sequence of all elements matchingR (regular expressions match sequences of elements
rather than single elements). Such patterns are useful to capture whole subsequences
of a sequence. For instance, to return for each book in the bibliography the list ofall
authors and to enclose it in a<authors> tag can be done compactly as follows:

transform books with <book>[_ (a::Author+) ;_] -> [<authors>a]

Note the difference between[x::Int] and[(x & Int)]. Both accept sequences formed of
a single integer, but the first one bindsx to a sequence (of a single integer), whereas the
second one binds it to the integer itself.

Finally we want to stress that the type inference algorithm of CDuce/CQL is better
than that of XQuery since it always infer a type more precise than the one inferred by
XQuery. An example can be found in the extended version of this paper [5].

3 CQL: a Pattern-based query language for XML processing

The formal syntax ofCQL is given by the following grammar:
Queries

q::=select e from f where c | select e from f

Bindings
f ::=p in e , f | p in e

Conditions
c::=‘‘‘ true | ‘‘‘ false | not(c) | c or c | c and c | member(e , e) | e bop e

Expressions
e::=x | v | [e. . . e] | flatten(e) | q | 〈〈〈 e ℓ = e. . . ℓ = e〉〉〉 e | op(e)

Patterns
p::=x | t | p&&& p | p ||| p | (p,p) | 〈〈〈 p ℓ = p. . . ℓ = p 〉〉〉 p | [[[r]]] | (x:=v)

Pattern regular expressions
r::=p | (x :::::: r) | r ||| r | r r | r+ | r∗ | r?

Types
t::=B | t ||| t | t&&& t | t \\\ t | (((t ,,,t))) | 〈〈〈 t ℓ = t . . . ℓ = t 〉〉〉 t | [[[R]]] | Empty | Any

whereopranges over sequence operators (op∈{ distinct_values, count, avg, max, min, sum}),
bopover boolean relations (bop∈{ =, >>, >=, <<, <=}), x over variables, andv overval-

ues(viz.closed expressions in normal formal and constants for integers and characters);
flatten takes a sequence of sequences and returns their concatenation (thus, for instance,
the infix operator@ that denotes the concatenation of two sequences is encoded as
e1@e2 = flatten [e1 e2]).

The non-terminalRused in the definition of types is the one defined in Section 2.1.
Patterns, ranged over byp, and types, ranged over byt, are simplified versions of those
present inCDuce and have already been described; note that types include full boolean
combinations: intersection (t&&&t), union (t ||| t), and difference (t \\\ t). The reader can
refer to [4] for a more detailed and complete presentation.

<books-with-prices>
select <book-with-price>[t1

<price-amazon>p2
<price-bn>p1]

from <bib>[b::Book*] in [biblio],
<book>[t1&Title _* <price>p1] in b,
<reviews>[e::Entry*] in [amazon],
<entry>[t2&Title <price>p2 ;_] in e

where t1=t2

As an example, the query Q5 of XQuery de-
scribed in the introduction would be written in
CQL as shown on the left-hand side.

The typing rule for theselect-from-where
construction is given in Figure 2. It states that the
conditionc must be of typeBool and that theei ’s
must be non-empty homogeneous sequences. In

this rule(t/p) is the type environment that assigns to the variables ofp the best type
deduced when matchingp against a value of typet andvar(p) is the set of variables
occurring inp 5 (see [4] for formal definitions and the optimality of the deduced types).

transform e1 with p1 –>
transform e2 with p2 –>

.. .
transform en with pn –>

if c then [e0] else []

The semantics of aselect-from-where expression
(in the form as it is at the beginning of Section 3)
is defined in terms of the translation intoCDuce
given on the left-hand side. In our contexttrans-
form plays exactly the same role as the “for” con-
struct of XQuery core does [17]. However, the

peculiar difference is that our pattern matching compilation schema is based on non-
uniform tree automata which fully exploit types to optimisethe code [19] as well as its
execution. This translation is given only to define in an unambiguous way the semantics
of the new term. It is not intended to impose any execution order, since such a choice is
left to the query optimiser. In fact the optimiser can implement this more efficiently; for
instance, ifc does not involve the capture variables of somepi , the query optimiser can,
as customary in databases, push selections (and/or projections) on some components as
shown in Section 4.

3.1 CQLX

In order to investigate and compare pattern-matching with XQuery, we have extended
CQL with projection operatorsà la XPath. Lete, be an expression denoting a sequence
of XML elements, andt be aCDuce type, thene///t denotes the set of children of the ele-
ments inewhose type ist. The formal semantics is defined by encoding:e///t is encoded
astransform ewith <_>[(x:: t | _)∗] –> x. It is convenient to introduce the syntaxe///@a
to extract the sequence of all values bound to the attributea of elements ine, which is
encoded inCDuce astransform ewith <_ a=x>_ –> [x]

5 The conditionvar(pi)∧ var(p j) = ∅ for i 6= j is not strictly necessary but may be useful in
practise and simplifies both the proofs and the definition of the optimisations.

XQuery:

<bib>
{
for $b in $biblio/bib/book
where $b/publisher = "Addison-Wesley"

and $b/@year > 1990
return

<book year="{ $b/@year }">
{ $b/title }
</book>

}
</bib>

CQLX:

<bib> select <book year=y>[t]
from b in [biblio]/<book>_ ,

p in [b]/<publisher>_ ,
t in [b]/<title>_ ,
y in [b]/@year

where (p = <publisher>"Addison-Wesley")
and (y>>"1990"));;

CQL:

<bib> select <book year=y>[t]
from <bib>[b::Book*] in [biblio],

<book year=y>[t&Title _+
<publisher>"Addison-Wesley";_] in b;;

where y>>"1990"

Fig. 3. XQuery and the twoCQL programming styles.

Figure 3 illustrates how to code the same query in XQuery,CQLX, andCQL. The
query at issue is the query Q1 from the XQuery Use Cases. WhileXQuery andCQLX

code make use of simple variables that are bound to the results of projections, theCQL
one fully exploits the pattern algebra ofCDuce (we leave as an exercise to the reader
how to use regular expressions on types to modify the patternin the second from clause
of theCQL query so as to completely get rid of thewhere clause).

Finally, since we useCQLX to mimic XQuery in a full pattern setting, it is important
to stress that the semantics ofwhere clauses inCQL (hence inCQLX) is not exactly the
same as in XQuery. The latter uses a set semantics according to which a value satisfying
thewhere close will occur at most once in the result (e.g. as forSELECT DISTINCT of
SQL), while CQL/CQLX follow the SQL convention and use a multi-set semantics.
As usual, the multi-set semantics is more general since the existential semantics can
easily obtained by using thedistinct_values operator (which takes a sequence and elides
multiple occurrences of the same element). The presence of such an operator has no
impact on the translation fromCQLX to CQL.

3.2 Translation from CQLX to CQL

It is quite easy to see that projections can be encoded inCQL, since the twotrans-
form expressions used to encode projections correspond, respectively, to: flatten(select
x from <_>[(x:: t | _)∗] in e), and toselect x from <_ a=x>_ in e. Nonetheless it
is interesting to define a more complex translation fromCQLX to CQL that fully ex-
ploits the power ofCDuce patterns to optimise the code. Therefore in this section we
formally define a translation that aims at(i) eliminating projections and pushing them
into patterns(ii) transforming as many as possible selection conditions intopatterns.
As a result of this translation the number of iterations is reduced and severalwhere
clauses are pushed into patterns. In order to formally definethe translation we first need
to introduce the expression and evaluation contextsE  andC :

q̄ ::= select ē from f̄ where c̄ | select ē from f̄

ē ::= x | v | [ē. . . ē] | flatten(ē) | ē〈〈〈 ℓ =ē. . .ℓ =ē 〉〉〉 ē | (ē,ē) | op(ē) | q̄

f̄ ::= p in ē, f̄ | p in ē

c̄ ::= ‘true | ‘false | not(c̄) | c̄ or c̄ | c̄ and c̄ | ē bopē | member(ē,ē)

E ::=   | [e1 . . .en E ē1 . . . ēm] | flatten(E) | 〈〈〈 ē ℓ = e. . . ℓ = e〉〉〉 E
| 〈〈〈 ē ℓ = e. . . ℓ =E ℓ =ē . . .〉〉〉 ē | (E,ē) | E/t | E/@a | op(E)

C  ::=   | not(C) | c or C | C or c̄ | c and C | C and c̄
| e bop E | E bopē | member(e,E) | member(E,ē)

wherem,n≥ 0.

Definition 1. The translationP J K is defined by the following rewriting rules:
- P J select Eq from f where c K = P J select EP J q K from f where c K, q is not aq̄ expression
- P J select Eē/t from f where c K = P J select Ex from f , x in [ē/t] where c K, x /∈ bv(f)
- P J select Eē/@a from f where c K = P J select Ex from f , x in [ē/@a] where c K, x /∈ bv(f)
- P J select ēfrom f where Cq K = P J select ēfrom f where CP J q K K, q is not aq̄ expression
- P J select ē0 from f where Cē/t K = P J select ē0 from f , x in [ē/t] whereCx K, x /∈ bv(f)
- P Jselect ē0 from f where Cē/@aK = P J select ē0 from f,x in [ē/@a] where C[x] K, x/∈bv(f)
- P J select ēfrom f where c̄ K = P J select ēfrom F J f Kbv(f) where c̄ K

whereF J K is defined as:

- F J p in e, f KΓ = F J p in eKΓ, F J f KΓ∪bv(F Jp in eKΓ)

- F J p in Eq KΓ = F J p in EP J q K KΓ
- F J p in Eē/t KΓ = if ē has type[Any] then<_>[(x::t|_)*] in ē, F J p in Ex KΓ∪{x} , x /∈ Γ

else[(<_>[(x::t|_)∗] | x::‘nil)∗] in [ē], F J p in Eflatten(x) KΓ∪{x} , x /∈ Γ
- F J p in Eē/@a KΓ = if ē has type[Any] then<_ a=x>_ in ē, F J p in E[x] KΓ∪{x} , x /∈ Γ

else[(<_ a=x>_ |x::‘nil)∗] in [ē], F J p in Ex KΓ∪{x} , x /∈ Γ
- F J p in ē KΓ = p in ē

Apart from technical details, the translation is rather simple: contexts are defined so that
projections are replaced according to an innermost-rightmost strategy. For instance if
we have to translatex/t1/t2, (x/t1) will be considered first thus removing the projection
on t1 prior to performing the same translation on the remainder. The first three rules
replace projections in the select part, 2nd and 3rd rules incidentally perform a slight
optimisation (they get rid of one level of sequence nesting)in the case the projection is
applied to a sequence with just one element (this case is verycommon and dealing with
it allows for further optimisation later on); the 4th, 5th, and 6th rules replace projections
in the “where” part by defining new patterns in the “from” part, while the 7th rule
handles projections in the “from” part. The latter resorts to an auxiliary functionF that
needs to store in a setΓ the capture variables freshly introduced.

So far, we have proved just a partial correctness property ofthe translation, namely
that it preserves the types (the proof is omitted for space reasons):

Theorem 1 (Type preservation).Γ ⊢ q : t ⇒ Γ ⊢ P J q K : t

The result ofP is a query inCQL since all projections have been removed. From a prac-
tical viewpoint, the use of a projection in a query is equivalent to that of a nested query.
<bib>
select <book year=y>[t]
from b in (select v from <_>[(yb::Book| _)*] in [biblio], v in yb)

p in (select v from <_>[(yp::Publisher| _)*] in [b], v in yp)
t in (select v from <_>[(yt::Title| _)*] in [b], v in yt)
y in (select yy from <_year=yy>_ in [b])

where (p = <publisher>"Addison-Wesley") and (y>>"1990")

Let Q be the query ob-
tained from theCQLX query
in Figure 3 by replac-
ing <book>_, <publisher>_,
and<title>_ respectively by

<bib>
select <book year=y>[t]
from <_>[(yb::Book|_)*] in [biblio],

b in yb,
<_>[(yp::Publisher|_)*] in [b],
p in yp,
<_>[(yt::Title|_)*] in [b],
t in yt,
<_ year=y>_ in [b]

where (p = <publisher>"Addison-Wesley")
and (y>>"1990")

Fig. 4.P J Q K

Book, Publisher, andTitle (the resulting query
is semantically equivalent but more readable
and compact). If we expand the projections of
Q into its corresponding sequence ofselect’s
we obtain the query at the end of the previ-
ous page (we used boldface to outline modi-
fications).

The translationP J K unnests theseselect’s
yielding the query of Figure 4. In the next sec-
tion we show that this has a very positive im-
pact on performances.

4 Pattern Query Optimisation

In this section we adapt classical database optimisation techniques to our patterns. Such
optimisations evaluate, as customary in the database world, conditions just when needed
thus reducing the size of intermediate data contributing inthe result construction and
also avoiding to visit useless parts of the document. More precisely, we proceed in four
steps.

Conjunctive Normal Form.The first step consists in putting thewhere condition in
conjunctive normal form and then moving into thefrom clause the parts of the condition
that can be expressed by a pattern. This is expressed by the following rewriting rule:

select e from f where c ; select e from f ,Θ1(CNF(c)) where Θ2(CNF(c))

where CNF(c) is a conjunctive normal form ofc, Θ1(c) represents the part ofc that can
be expressed by a pattern and thus remounted in the “from” part, andΘ2(c) is the part
of c that remains in the “where” condition. Formally,Θ1 andΘ2 are the first and second
projections of the functionΘ defined as:

Definition 2. Let i denote a scalar (i.e. an integer or a character) and v a value

Θ(v=e) = (v in [e], ‘true) Θ(count(e) = i) = ([_i] in [e], ‘true)

Θ(e>= i) = (i– –∗ in [e], ‘true) Θ(count(e) >> i) = ([_i _+] in [e], ‘true)

Θ(e>> i) = (Ji +1K– –∗ in [e], ‘true) Θ(count(e) >= i) = ([_i _∗] in [e] , ‘true)

Θ(e<= i) = (∗– –i in [e], ‘true) Θ(count(e) << i) = ([(_?)i−1] in [e] , ‘true)

Θ(e<< i) = (∗– –Ji −1K in [e], ‘true) Θ(count(e) <= i) = ([(_?)i] in [e], ‘true)

Θ(member(v,e)) = ([_∗ v _*] in [e], ‘true)

Θ(c1 and . . . and cn) = ((((Θ1(c1), . . . ,Θ1(cn)) ,,,Θ2(c1) and . . . and Θ2(cn)))).

Θ(c) = (ε,c) (if none of the above applies)

where we use the notation_i to denote the juxtaposition ofi occurrences of “_”. So for
instance the third rule indicates that the constraint, say,count(e) = 3 can be equivalently
checked by matchingeagainst the pattern[_ _ _] (i.e. [_3]). We also used the notation
J f (i)K for the constant that is the result off (i).

If we apply the rewriting to the query in Figure 4, then we can use the first case
of Definition 2 to express the conditionp = <publisher>"Addison-Wesley" by a pattern,

<bib>
select <book year=y>[t]
from <_>[(yb::Book_)*] in [biblio],

b in yb,
<_>[(yp::Publisher|_)*] in [b],
p in yp,
<_>[(yt::Title|_)*] in [b],
t in yt,
<_ year=y>_ in [b],
<publisher>"Addison-Wesley" in [p]

where y>>"1990"

<bib>
select <book year=y>[t]
from <_>[(yb::Book|_)*] in [biblio],

<_ year=y>_&
<_>[(yp::Publisher|_)*]&
<_>[(yt::Title|_)*] in yb,
<publisher>"Addison-Wesley" in yp,
t in yt

where y>>"1990"

Fig. 5. Θ onP J Q K Fig. 6.P J Q K after the first 3 optimisation steps

yielding the query of Figure 5 (the rewriting does not apply to y >> "1990" since"1990"
is not a scalar but a string).

Useless Declarations Elimination.The second step consists in getting rid of useless
intermediatein-declarations that are likely to be generated by the translation of CQLX

into CQL:

select e◦ from f1, x in e, f2, p in [x], f3 wherec ; select e◦ from f1, x&p in e, f2 , f3 where c

Pattern Consolidation.The third step of optimisation consists in gathering together
patterns that are matched against the same sequences.

select e◦ from f1,p1 in e, f2, p2 in e, f3 where c ; select e◦ from f1, p1&p2 in e, f2, f3 where c

Note that both rewriting systems are confluent and noetherian (when applied in the or-
der). The result of applying these rewriting rules to the query in Figure 5 is shown in
Figure 6.

Pushing SelectionsThe fourth and last step is the classical technique that pushes selec-
tions as close as possible to the declarations of the variables they use. So for instance the
clausey >> "1990" in Figure 6 is checked right after the capture ofy. This is obtained by
anticipating an if_then_else in the implementation6. The algorithm, which is standard,
is omitted.

This kind of optimisation is definitely not new. It corresponds to a classical logical
optimisation for the relational model. The benefit is to reduce the size of the intermedi-
ate data that is used to the obtain the result.

5 Experimental Validation

Performance measurements were executed on a Pentium IV 3.2GHz with 1GB of RAM
running under FreeBSD 5.2.1. We compared performance results of the same query
programmed in the different flavors ofCQL. So we tested a same query in:(i) CQLX,
that isCQL in which we use the same path expressions as the XQuery query and no
CDuce pattern,(ii) CQLP, theCQL program automatically generated by applying to

6 More precisely, the query in Figure 6 is implemented by
transform [biblio] with <_>[(yb::Book|_)*] ->

transform yb with <_ year=y>[(yp::Publisher|yt::Title|_)*] ->
if (y>>"1990") then transform yp with <publisher>"Addison-Wesley" -> [<book year=y>[t]]

else []

Size Size2 fltCQL CQLX CQLopt
X CQLP CQLopt

P CQL Qizx Qexo

Q1 36 Kb 0.01 0.01 0.01 0.02 0.01 0.01 0.45 0.60
Q1 1.8 Mb 0.23 0.26 0.25 0.26 0.26 0.24 0.76 1.01
Q1 14 Mb 1.90 2.00 1.99 1.98 2.07 1.93 2.18 2.89
Q1 35 Mb 4.79 5.13 5.04 5.03 5.24 4.90 4.44 5.80
Q2 36 Kb 0.01 0.01 0.01 0.01 0.01 0.01 0.46 0.61
Q2 1.8 Mb 0.24 0.26 0.26 0.25 0.25 0.25 1.00 1.04
Q2 14 Mb 1.87 2.06 2.06 2.01 2.01 1.99 3.77 3.55
Q2 35 Mb 4.74 5.27 5.27 5.14 5.14 5.08 8.16 7.79
Q3 36 Kb 0.01 0.01 0.01 0.01 0.01 0.01 0.47 0.60
Q3 1.8 Mb 0.24 0.25 0.26 0.25 0.25 0.25 0.99 1.03
Q3 14 Mb 1.90 2.03 2.02 2.01 2.02 2.01 3.66 3.27
Q3 35 Mb 4.81 5.18 5.18 5.14 5.14 5.13 7.90 6.86
Q4 36 Kb 0.01 0.05 0.05 0.05 0.05 0.05 0.53
Q4 70 Kb 0.02 0.17 0.17 0.14 0.14 0.14 0.68
Q4 144 Kb 0.02 0.61 0.61 0.52 0.52 0.49 1.17
Q4 575 Kb 0.09 10.73 10.73 9.94 9.94 8.63 10.97
Q4 1.8 Mb 0.24113.01 113.01 89.31 89.3188.70 104.12
Q5 36 Kb 535 Kb 0.08 1.69 0.79 1.17 0.71 0.54 4.44 27.88
Q5 144 Kb 43 Kb 0.03 0.52 0.24 0.38 0.24 0.17 1.79 9.31
Q5 575 Kb171 Kb 0.11 7.87 3.49 5.92 3.34 2.46 20.74127.39
Q5 1.8 Mb 535 Kb 0.31 78.27 36.54 53.25 31.0422.93 197 >1h
Q5 3.5 Mb 535 Kb 0.55157.70 72.28105.38 62.2445.02 392

(flt = file load time, Size2 column reports the sizes of the second document in joins)
Fig. 7.Summary of all test results on the XQuery Use Cases

theCQLX query the transformationΘ(P J K) of Sections 3.2 and 4 and the two rewritings for
pattern consolidation and useless declaration elimination that clean up the “garbage” introduced
by the translation,(iii , iv) CQLX

opt
CQLP

opt, which are obtained by optimising the two previous
queries by the classical optimisation algorithm of pushingselections, presented at the end of
Section 4, and finally(v) CQL that is a handwritten (and hand optimised) query inCQL. As we
explained in the introduction, in order to strengthen our results we chose not to use “//” inCQLX

(since this is less heavily optimised by theCDuce runtime than “/”) and instead always use the
static types to translate it in terms of “/” (as all the queries we considered allowed us to do so).
This gives a clear further advantage toCQLX .

To perform our tests we chose, somewhat arbitrarily, queries Q1, Q2, Q3, Q4, and Q5 of the
XML Query Use Cases. We then performed a second set of tests based on the XMark benchmarks.
Here our choice of queries was less random as we explain below.

Finally to testCQL runtime we compared our results with three different implementations of
XQuery: Galax [3], Qizx [18], and Qexo [7, 8]. Galax is a reference implementation of XQuery
and, asCDuce, it is implemented in OCaml. Qizx/open is an open-source Java implementation
of XQuery specifications developed for commercial distribution and whose target is the efficient
execution of queries over large databases. Qexo is a partialimplementation of the XQuery lan-
guage that achieves high performance by compiling queries down to Java bytecode using the
Kawa framework. The sources of the queries are omitted for space reasons but they can all be
found in the extended version [5].

5.1 Use Cases

Briefly, query Q1 performs a simple selection. Queries Q2 andQ3 are “reconstructing” queries,
they both scan the whole bibliography, while the first one returns a flat list of title author pairs

(each pair being enclosed in a<result> element), the second returns the title and all authors
grouped in a<result> element. For each author in the bibliography, query Q4 liststhe author’s
name and the titles of all books by that author, grouped inside a "result" element. Last, query
Q5 performs a join between two documents: for each book foundboth in the document bound to
biblio and in that bound toamazon Q5 lists the title of the book and its price from each source.

The results of our tests are presented in Table 7, from which we omitted the times for Galax:
as a matter of fact we did not completed all the tests of Galax since it was soon clear that the
performances of Galax are several orders of magnitude worsethan those of Qizx and Qexo.

Size fltCQL CQLX CQLP CQL Qizx Qexo

Q1 1.5 Mb 0.15 0.15 0.15 0.15 0.57 0.74
Q1 29 Mb 2.57 2.58 2.58 2.58 2.16 2.58
Q1 72 Mb 6.61 6.65 6.64 6.62 4.42 5.08
Q1 145 Mb 14.10 14.18 14.1514.13 8.16 9.31
Q8 1.5 Mb 0.15 0.21 0.21 0.17 1.0034.51
Q8 29 Mb 2.57 26.03 22.9613.09 75.90 >1h
Q8 72 Mb 6.61 156 133 72.81 476
Q8 145 Mb 14.19 630 542 285 1838

Q12 1.5 Mb 0.16 0.21 0.21 0.20 0.87
Q12 29 Mb 2.59 21.22 20.5714.70 38.30
Q12 72 Mb 6.68 127 122 86.35 216
Q12 145 Mb 14.36 481 457 319 824
Q16 1.5 Mb 0.15 0.16 0.16 0.16 0.62 0.78
Q16 29 Mb 2.57 2.65 2.64 2.63 2.15 2.63
Q16 72 Mb 6.63 6.87 6.85 6.82 4.42 5.08
Q16 145 Mb 14.24 14.60 14.5414.50 8.16 9.31

(flt = file load time)
Fig. 8. Summary of all test results on XMark

Measurements were performed for
each query on randomly generated
documents of different sizes (ex-
pressed in KBytes). We also followed
the spirit of the benchmark and we
generated documents with a selectiv-
ity rate (that we judged) typical of
the bibliographic application (that is
quite low). Each test was repeated
several times and the table reports the
average evaluation times (in seconds).
We have reported the loading time (in
the column headed by “flt”, file load
time) of the XML document from the
global execution time in order to sep-
arate the weight of the query engine
and that of the parser in the overall
performances (of course we are inter-
ested in the former and not in the lat-
ter). The execution times always in-
clude the time for performing optimi-
sation, when this applies, for type checking (just forCQL variants) and the file load time.

By comparing the load time with the overall execution time (we recall that the latter includes
the former) it is clear that the only computationally meaningful queries are the Q4 and Q5 ones
(Q4 was not executed in Qexo since it does not implement the distinct_values operator). In these
two cases the best performances are obtained byCQL.7

5.2 XMark

Following the suggestion of Ioana Manolescu (one of the XMark authors) we chose four queries
that should give a good overview of the main memory behaviourof the query engines.

More precisely, our choice went on Q1, just because it is the simplest one, Q8 of the “chasing
references” section since it performs horizontal traversals with increasing complexity, Q12 of the

7 A word must be spent on the performances of Q5 for Qizx. Whenever Qizx syntactically
detects a conjunctive join condition it dynamically generates a hash table to index it (for low
selective benchmarks, as the one we performed in our tests, this brings far better performance,
of course). Since we wanted to compare the performances of the query engines (rather than
the OCaml and Java libraries for hash tables) and because we believe that index generation
must be delegated to the query optimiser rather than implemented by the compiler, then in
our test we disabled this index generation (this is done by just adding an “or false” to the join
condition).

“join on values” section since it tests the ability to handlelarge intermediate results, and finally
on Q16 of the “path traversals” section to test vertical traversals.

The results are summarised in Table 8. We did not perform the tests on the optimised ver-
sions ofCQLX andCQLP since on the specific queries they are the identity function.Q12 times
for Qexo are absent because execution always ended with an unhandled exception (probably be-
cause of a bug in the implementation of the arithmetic library of Qexo but we did not further
investigate).

Once more if we compare the load time with the execution time we see that the only interest-
ing queries to judge the quality of the engines are Q8 and Q12.In the other queries the execution
time is very close to the load time, so the performance is completely determined by parsers. In
these cases it is interesting to note that whileCQL uses an external parser, namely Expat (but
theCDuce interpreter has an option that the programmer can specify to use the less efficient but
more debug-friendly Pxp parser), Qexo and Qizx have event driven parsers that interact with the
query engines in order to avoid loading of useless parts of the document, whence the better per-
formances. That said, when performances are determined by the query engine, as in Q8 and Q12,
CQL shows once more the best results8.

6 Conclusion and Perspectives

In this article we presentedCQL, a full pattern-matching based query language for XML em-
bedded inCDuce. Our main purpose was to demonstrate that patterns and pattern matching
(in CDuce sense) are a good candidate as an evaluation mechanism for XML query process-
ing. To do so, we first coupledCDuce patterns with a syntax very common in the database area
(select-from-where) and defined the new syntax in terms of a translation semantics. Then, we
extended this syntax to allow for an XQuery-like style (CQLX). We chose to experiment with
CQLX rather than with XQuery because we wanted to rely on the very efficient pattern match-
ing compilation and execution ofCDuce. Indeed, patterns are compiled into non-uniform tree
automata [19] which fully exploit type information. In order to demonstrate the power of pure
patterns, we provided an automatic translation from the former into the latter. Such a translation
not only shows that projections are useless in the context ofCDuce patterns but also gives a
formal way of unnesting queries. Then we investigated further optimisations: the well-known
database logical optimisations. We therefore adapted suchoptimisations to the context ofCQL,
providing a first step toward devising a general query optimiser in such a context.

In order to validate our approach we performed performance measurements. The purposes
of such measurements were twofold: first, we wanted to demonstrate the efficiency of pattern-
matching based query languages by comparingCQL with efficiency-oriented implementations of
XQuery and, second, we wanted to check the relevance of classical database logical optimisation
techniques in a pattern-based framework. In both cases, theobtained results were encouraging.

We are currently working on the following topics:(i) develop further (classical) query opti-
misation techniques such as joins re-ordering,(ii) extend the pattern algebra in order to partially
account for descendants axes (at the expense of loosing typeprecision but still reaching a typed
construction)(iii) formally study the expressive power ofCQL and finally, in a longer-term,(iv)
couplingCQL with a persistent store and study physical optimisation techniques.

Acknowledgements.The authors want to thank Massimo Marchiori for the pointer to Qexo,
Xavier Franc for the details on Qizx implementation, and Alain Frisch for the comments on this
paper and his help with the implementation ofCDuce. Thanks to Dario Colazzo for his help on

8 Once more the test for Qizx was performed with the dynamic generation of hash tables dis-
abled.

XQuery type system. Very special thanks to Ioana Manolescu for her invaluable suggestions and
careful reading of a preliminary version of this paper.

References

1. Serge Abiteboul, Peter Buneman, and Dan Suciu.Data on the Web : from Relations to
Semistructured Data and XML. Morgan Kaufmann Publishers, 2000.

2. S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener.The Lorel query language for
semistructured data.International Journal on Digital Libraries, 1(1):68–88, 1997.

3. Bell-labs.Galax. http://db.bell-labs.com/galax/.
4. V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-friendly general purpose lan-

guage. InICFP ’03, 8th ACM Int. Conf. on Functional Programming, pages 51–63, 2003.
5. V. Benzaken, G. Castagna, and C. Miachon. CQL: a pattern-based query language for XML.

Complete version. Available athttp://www.cduce.org/papers, 2005.
6. N. Bidoit and M. Ykhlef. Fixpoint calculus for querying semistructured data. InInt. Work-

shop on World Wide Web and Databases (WebDB), 1998.
7. P. Bothner. Qexo - the GNU Kawa implementation of XQuery. Available at

http://www.gnu.org/software/qexo/.
8. P. Bothner. Compiling XQuery to java bytecodes. InProceedings of the First Int. Workshop

on XQuery Implementation, Experience and Perspectives <XIME-P/>, pages 31–37, 2004.
9. Don Chamberlin, Peter Fankhauser, Daniela Florescu, Massimo Marchiori, and Jonathan

Robie. XML Query Use Cases. T.-R. 20030822, World Wide Web Consortium, 2003.
10. Don Chamberlin, Peter Fankhauser, Massimo Marchiori, and Jonathan Robie. XML query

(XQuery) requirements. Technical Report 20030627, World Wide Web Consortium, 2003.
11. D. Chamberlin, J. Robie, and D. Florescu. Quilt: An XML query language for heterogeneous

data sources. InWebDB 2000 (selected papers), volume 1997 of LNCS, pages 1–25, 2001.
12. Z. Chen, H. V. Jagadish, L. Lakshmanam, and S Paparizos. From tree patterns to generalised

tree paterns: On efficient evaluation of xquery. InVLDB’03, pages 237–248, 2003.
13. J. Clark and S. DeRose. XML Path Language (XPath). W3C Recommendation,

http://www.w3.org/TR/xpath/, November 1999.
14. G. Conforti, G. Ghelli, A. Albano, D. Colazzo, P. Manghi,and C. Sartiani. “The Query

Language TQL”. InIn 5th Int. Workshop on the Web and Databases (WebDB), 2002.
15. World Wide Web Consortium. XQuery: the W3C query language for XML – W3C working

draft, 2001.
16. A. Deutsch, M. F. Fernandez, D. Florescu, A. Y. Levy, and D. Suciu. “XML-QL: A Query

Language for XML”. InWWW The Query Language Workshop (QL), 1998.
17. M. Fernández, J. Siméon, and P. Wadler. An algebra for XMLquery. InFoundations of

Software Technology and Theoretical Computer Science, number 1974 in LNCS, 2000.
18. X. Franc. Qizx/open. http://www.xfra.net/qizxopen.
19. A. Frisch. Regular tree language recognition with static information. InProc. of the 3rd IFIP

Conference on Theoretical Computer Science (TCS), Toulouse, Kluwer, 2004.
20. Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. Semantic Subtyping. InPro-

ceedings, Seventeenth Annual IEEE Symposium on Logic in Computer Science, pages 137–
146. IEEE Computer Society Press, 2002.

21. H. Hosoya and B. Pierce. XDuce: A typed XML processing language.ACM Transactions
on Internet Technology, 3(2):117–148, 2003.

22. Amélie Marian and Jérôme Siméon. Projecting XML elements. In Int. Conference on Very
Large Databases VLDB’03, pages 213–224, 2003.

23. A. J. Robie, J. Lapp, and D. Schach. “XML Query Language (XQL). In WWW The Query
Language Workshop (QL), Cambridge, MA, , 1998.

24. Albrecht Schmidt, Florian Waas, Martin L. Kersten, Michael J. Carey, Ioana Manolescu, and
Ralph Busse. Xmark: A benchmark for xml data management. InProceedings of the Int’l.
Conference on Very Large Database Management (VLDB), pages 974–985, 2002.

