
Set-theoretic Foundation of Parametric
Polymorphism and Subtyping

Giuseppe Castagna1 Zhiwu Xu1,2 ∗

1CNRS, Laboratoire Preuves, Programmes et Systèmes, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France.
2State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Science, Beijing, China

Abstract. We define and study parametric polymorphism for a
type system with recursive, product, union, intersection, negation,
and function types. We first recall why the definition of such a sys-
tem was considered hard—when not impossible—and then present
the main ideas at the basis of our solution. In particular, we intro-
duce the notion of “convexity” on which our solution is built up and
discuss its connections with parametricity as defined by Reynolds
to whose study our work sheds new light.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Polymorphism; Data
types and structure; F.3.3 [Logics and Meanings of Programs]:
Studies of Program Constructs—type structure

General Terms Theory, Languages

Keywords Types, subtyping, polymorphism, parametricity, XML

1. Introduction
The standard approach to defining subtyping is to define a collec-
tion of syntax-driven subtyping rules that relate types with similar
syntactic structure. However the presence of logical operators, such
as unions and intersections, makes a syntactic characterization dif-
ficult, which is why a semantic approach is used instead: type t is
a subtype of type s if the set of values denoted by t is a subset
of the set of values denoted by s. The goal of this study is to ex-
tend this approach to parametric types. Since such type systems are
at the heart of functional languages manipulating XML data, our
study directly applies to them. Parametric polymorphism has re-
peatedly been requested to and discussed in various working groups
of standards (eg, RELAX NG [5] and XQuery [7]) since it would
bring not only the well-known advantages already demonstrated
in existing functional languages (eg, the typing of map, fold, and
other functions that are standard in functional programming), but
also new usages peculiar to XML. A typical example is SOAP [24]
that provides XML “envelopes” to wrap generic content. Functions
manipulating SOAP envelopes are thus working on polymorphi-
cally typed objects encapsulated in XML structures. Polymorphic

∗ This author was partially supported by the National Natural Science Foun-
dation of China under Grant No. 61070038 and by a joint training program
by CNRS and the Chinese Academy of Science.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’11, September 19–21, 2011, Tokyo, Japan.
Copyright c© 2011 ACM 978-1-4503-0865-6/11/09. . . $10.00

higher-order functions are also needed, as shown by our practice
of Ocsigen [1], a framework to develop dynamic web sites where
web-site paths (uri) are associated to functions that take the uri pa-
rameters —the so-called “query strings”[8]— and return a Xhtml
page. The core of the dynamic part of Ocsigen system is the func-
tion register new service whose (moral) type is:

∀X<:Params.(Path× (X → Xhtml))→ unit

That is, it is a function that registers the association of its two
parameters: a path in the site hierarchy and a function that fed with
a query string that matches the description X (Params being the
XML type of all possible query strings) returns an Xhtml page.
Unfortunately, this kind of polymorphism is not available and the
current implementation of register new service must bypass
the type system (of OCaml, OCamlDuce [10], and/or CDuce [2]),
losing all the advantages of static verification.

So why despite all this interest and motivations does no satis-
factory solution exist yet? The crux of the problem is that, despite
several efforts (eg, [17, 23]), it was not known how to define —and
a fortiori how to decide— the subtyping relation for XML types in
the presence of type variables. Actually, a purely semantic subtyp-
ing approach to polymorphism was believed to be impossible.

In this paper we focus on this problem and —though, hence-
forth we will seldom mention XML— solve it. The solution —
which is more broadly applicable than just to an XML processing
setting— is based on some strong intuitions and a lot of technical
work. We follow this dichotomy for our presentation and organize
it in two parts: an informal description of the main ideas and in-
tuitions underlying the approach and the formal description of the
technical development. More precisely, in Section 2 we first ex-
amine why this problem is deemed unfeasible or unpractical and
simple solutions do not work (§2.1-2.3). Then we present the in-
tuition underlying our solution (§2.4) and outline, in an informal
way, the main properties that make the definition of subtyping pos-
sible (§2.5) as well as the key technical details of the algorithm that
decides it (§2.6). We conclude this first part by giving some ex-
amples of the subtyping relation (§2.7) and discussing related work
(§2.8). In Section 3 we present the key steps of the formal treatment
to support the claims of Section 2 in particular the soundness and
completeness of the algorithm and the decidability of the subtyp-
ing relation. We conclude our presentation with Section 4 where
we discuss at length the connections between parametricity and
our solution, as well as the new perspectives of research that our
work opens. It may seem odd that we focus on a subtyping relation
without defining any calculus to use it. Defining the polymorphic
subtyping relation and defining a polymorphic calculus are distinct
problems (though the latter depends on the former), and there is no
doubt that the former is the very harder one. Once the subtyping
relation is defined, it can be immediately applied to simple poly-
morphic calculi (eg, an extension with higher-order functions of the

language in [17]) but the definition of calculi that fully exploit the
expressiveness of these types and of algorithms that (even partially)
infer type annotations are different and very difficult problems that
we leave for future work.

2. The key ideas
2.1 Regular types
XML types are essentially regular tree languages: an XML type
is the set of all XML documents that match the type. As such
they can be encoded by product types (for concatenation), union
types (for regexp unions) and recursive types (for Kleene’s star).
To type higher order functions we need arrow types and we also
need intersection and negation types since in the presence of arrows
they can no longer be encoded. Therefore, studying polymorphism
for XML types is equivalent to studying it for the types that are
coinductively (for recursion) produced by the following grammar:

t ::= b | t× t | t→ t | t ∨ t | t ∧ t | ¬t | 0 | 1
where b ranges over basic types (eg, Bool, Real, Int, . . .), and
0 and 1 respectively denote the empty (ie, that contains no value)
and top (ie, that contains all values) types. In other terms, types
are nothing but a propositional logic (with standard logical con-
nectives: ∧,∨,¬) whose atoms are 0, 1, basic, product, and arrow
types. We use T to denote the set of all types.

In order to preserve the semantics of XML types as sets of doc-
uments (but also to give programmers a very intuitive interpreta-
tion of types) it is advisable to interpret a type as the set of all
values that have that type. Accordingly, Int is interpreted as the
set that contains the values 0, 1, -1, 2, . . . ; Bool is interpreted
as the set the contains the values true and false; and so on. In
particular, then, unions, intersections, and negations (ie, type con-
nectives) must have a set-theoretic semantics. Formally, this corre-
sponds to define an interpretation function from types to the sets
of some domain D (for simplicity the reader can think of D as the
set of all values of the language), that is J K : T → P(D), such
that (i) Jt1 ∨ t2K = Jt1K ∪ Jt2K, (ii) Jt1 ∧ t2K = Jt1K ∩ Jt2K,
(iii) J¬tK = D \ JtK, (iv) J0K = ∅, and (v) J1K = D. Once we
have defined such an interpretation, then the subtyping relation is
naturally defined in terms of it:

t1 ≤ t2
def⇐⇒ Jt1K ⊆ Jt2K

which, restricted to XML types, corresponds to the usual interpre-
tation of subtyping as language containment.

2.2 Higher-order functions
All definitions above run quite smoothly as long as basic and
product types are the only atoms we consider (ie, the setting studied
by Hosoya and Pierce [18]). But as soon as we add higher-order
functions, that is, arrow types, the definitions above no longer work:

1. If we take as D the set of all values, then this must include also
λ-abstractions. Therefore, to define the semantic interpretation
of types we need to define the type of λ-abstractions (in partic-
ular of the applications that may occur in their bodies) which
needs the subtyping relation, which needs the semantic inter-
pretation. We fall on a circularity.

2. If we take as D some mathematical domain, then we must
interpret t1 → t2 as the set of functions from Jt1K to Jt2K.
For instance if we consider functions as binary relations, then
Jt1 → t2K could be the set

{ f ⊆ D2 | (d1, d2)∈f and d1∈Jt1K implies d2∈Jt2K } (1)

or, compactly, P(Jt1K×Jt2K), where the S denotes the com-
plement of the set S within the appropriate universe (in words,

these are the sets of pairs in which it is not true that the first pro-
jection belongs to Jt1K and the second does not belong to Jt2K).
But here the problem is not circularity but cardinality, since this
would require D to contain P(D2), which is impossible.

The solution to both problems is given by the theory of semantic
subtyping [11], and relies on the observation that in order to use
types in a programming language we do not need to know what
types are, but just how they are related (by subtyping). In other
terms, we do not require the semantic interpretation to map arrow
types into the set in (1), but just to map them into sets that induce
the same subtyping relation as (1) do. Roughly speaking, this turns
out to require that for all s1, s2, t1, t2, the function J.K satisfies the
property:

Js1→s2K ⊆ Jt1→t2K ⇐⇒ P(Js1K×Js2K) ⊆P(Jt1K×Jt2K)
(2)

whatever the sets denoted by s1→s2 and t1→t2 are. Equation (2)
above covers only the case in which we compare two single arrow
types. But, of course, a similar restriction must be imposed also
when comparing arbitrary Boolean combinations of arrows. For-
mally, this can be enforced as follows. Let J.K be a mapping from
T to P(D), we define a new mapping EJ.K as follows (henceforth
we omit the J.K subscript from EJ.K):

E(0)=∅ E(1)=D
E(¬t)=D \ E(t) E(b)=JbK

E(t1 ∨ t2)=E(t1) ∪ E(t2) E(t1 × t2)=Jt1K× Jt2K
E(t1 ∧ t2)=E(t1) ∩ E(t2) E(t1 → t2)=P(Jt1K×Jt2K)

Then J.K and D form a set-theoretic model of types if, besides
the properties (i-v) for the type connectives we stated in §2.1, the
function J.K also satisfies the following property:

Jt1K ⊆ Jt2K ⇐⇒ E(t1) ⊆ E(t2) (3)

which clearly implies (2). All these definitions yield a subtyping re-
lation with all the desired properties: type connectives (ie, unions,
intersections, and negations) have a set-theoretic semantics, type
constructors (ie, products and arrows) behave as set-theoretic prod-
ucts and function spaces, and (with some care in defining the lan-
guage and its typing relation) a type can be interpreted as the set of
values that have that type. All that remains to do is:

1. show that a model exists1 (easy) and

2. show how to decide the subtyping relation (difficult).

Both points are solved in [11] and the resulting type system is at
the core of the programming language CDuce [2].

2.3 The problem and a naive (wrong) solution
The problem we want to solve in this paper is how to extend the
approach described above when we add type variables (in bold):

t ::= α | b | t× t | t→ t | t ∨ t | t ∧ t | ¬t | 0 | 1
where α ranges over a countable set of type variables V . We
did not include any explicit quantification for type variables: in
this work (as well as, all works in the domain we are aware of,
foremost [17, 23]) we focus on prenex parametric polymorphism
where type quantification is meta-theoretic. Once more, the crux of
the problem is how to define the subtyping relation between two
types that contain type variables. Since we know how to subtype
closed types (ie, types without variables), then a naive solution is
to reuse this relation by considering all possible ground instances
of types with variables. Let σ denote a ground substitution, that is

1 We do not need to look for a particular model, since all models induce
essentially the same subtyping relation: see [9] for details.

a substitution from type variables to closed types. Then according
to our naive definition two types are in subtyping relation if so are
their ground instances:

t1 ≤ t2
def⇐⇒ ∀σ. Jt1σK ⊆ Jt2σK (4)

(provided that the domain of σ contains all the variables occurring
in t1 and t2). This closely matches the syntactic intuition of sub-
typing for prenex polymorphism according to which the statement
t1 ≤ t2 is to be intended as ∀α1...αn(t1 ≤ t2), where α1...αn
are all the variables occurring in t1 or t2. Clearly, the containment
on the right hand side of (4) is a necessary condition for subtyping.
Unfortunately, considering it also as necessary and, thus, using (4)
to define subtyping yields a subtyping relation that suffers too many
problems to be useful.

The first obstacle is that, as conjectured by Hosoya in [17], if
the subtyping relation defined by (4) is decidable (which is an open
problem), then deciding it is at least as hard as the satisfiability
problem for set constraint systems with negative constraints, which
is NEXPTIME-complete and for which, so far, no practical algo-
rithm is known.

But even if the subtyping relation defined by (4) were decidable
and Hosoya’s conjecture wrong, definition (4) yields a subtyping
relation that misses the intuitiveness of the relation on ground types.
This can be shown by an example drawn from [17]. For the sake of
the example, imagine that our system includes singleton types, that
is types that contain just one value, for every value of the language,
and consider the following subtyping statement:

t× α ≤ (t× ¬t) ∨ (α× t) (5)

where t is a closed type.
According to (4) the statement holds if and only if t × s ≤
(t×¬t)∨ (s× t) holds for every closed type s. It is easy to see that
the latter holds if and only if t is a singleton type. This follows from
the set theoretic property that if S is a singleton, then for every set
X , either S ⊆ X orX ⊆ S. By using this property on the singleton
type t, we deduce that for every ground substitution of α either
α ≤ ¬t (therefore t×α ≤ t×¬t, whence (5) follows) or t ≤ α
(therefore t × α = (t × α\t) ∨ (t × t) and the latter is contained
component-wise in (t × ¬t) ∨ (α × t), whence (5) holds again).
Vice versa, if t contains at least two values, then substituting α by
any singleton containing a value of t disproves the containment.

More generally, (5) holds if and only if t is an indivisible type,
that is, a non-empty type whose only proper subtype is the empty
type. Singleton types are just an example of indivisible types, but in
the absence of singleton types, basic types that are pairwise disjoint
are indivisible as well. Therefore, while the case of singleton types
is evocative, the same problem occurs in a language with just the
Int type, too.

Equation (5) is pivotal in our work. It gives us two reasons to
think that the subtyping relation defined by (4) is unfit to be used
in practice. First, it tells us that in such a system deciding subtyp-
ing is at least as difficult as deciding the indivisibility of a type.
This is a very hard problem (see [3] for an instance of this problem
in a simpler setting) that makes us believe more in the undecid-
ability of the relation, than in its decidability. Second, and much
worse, it completely breaks parametricity yielding a completely
non-intuitive subtyping relation. Indeed notice that in the two types
in (5) the type variableα occurs on the right of a product in one type
and on the left of a product in the other. The idea of parametricity is
that a function cannot explore arguments whose type is a type vari-
able, it can just discard them, pass them to another function or copy
them into the result. Now if (4) holds it means that by a simple sub-
sumption a function that is parametric in its second argument can be
considered parametric in its first argument instead. Understanding
the intuition underlying this subtyping relation for type variables

(where the same type variable may appear in unrelated positions in
two related types) seems out of reach of even theoretically-oriented
programmers. This is why a semantic approach for subtyping poly-
morphic types has been deemed unfeasible and discarded in favor
of partial or syntactic solutions (see related works in §2.8).

2.4 Ideas for a solution
Although the problems we pointed out in [17] are substantial, they
do not preclude a semantic approach to parametric polymorphism.
Furthermore the shortcomings caused by the absence of this ap-
proach make the study well worth of trying. Here we show that—
paraphrasing a famous article by John Reynolds [22]—subtyping
of polymorphism is set-theoretic.

The conjecture that we have been following since we discovered
the problem of [17], and that is at the basis of all this work, is that
the loss of parametricity is only due to the behavior of indivisible
types, all the rest works (more or less) smoothly. The crux of the
problem is that for an indivisible type t the validity of the formula

t ≤ α or α ≤ ¬t (6)

can stutter from one subformula to the other (according to the as-
signment of α) losing in this way the uniformity typical of para-
metricity. If we can give a semantic characterization of models in
which stuttering is absent, we believed this would have yielded a
subtyping relation that is (i) semantic, (ii) intuitive for the pro-
grammer,2 and (iii) decidable. The problem with indivisible types
is that they are either completely inside or completely outside any
other type. What we need, then, is to make indivisible types “split-
table”, so that type variables can range over strict subsets of any
type, indivisible ones included. Since this is impossible at a syn-
tactic level, we shall do it at a semantic level. First, we replace
ground substitutions with semantic (set) assignments of type vari-
ables, η : V → P(D), and add to interpretation functions a se-
mantic assignment as a further parameter (as is customary in deno-
tational semantics):

J.K : T →P(D)V →P(D)

Such an interpretation (actually, the pair (J.K,D)) is then a set-
theoretic model if and only if for all assignments η it satisfies the
following conditions (in bold the condition that shows the role of
the assignment parameter η):

JαKη = η(α) J¬tKη = D\JtKη
J0Kη = ∅ Jt1 ∨ t2Kη = Jt1Kη ∪ Jt2Kη
J1Kη = D Jt1 ∧ t2Kη = Jt1Kη ∩ Jt2Kη

Jt1Kη ⊆ Jt2Kη ⇐⇒ E(t1)η ⊆ E(t2)η

(where E() is extended in the obvious way to cope with semantic
assignments). Then the subtyping relation is defined as follows:

t1 ≤ t2
def⇐⇒ ∀η∈P(D)V . Jt1Kη ⊆ Jt2Kη (7)

In this setting, every type t that denotes a set of at least two
elements ofD can be split by an assignment. That is, it is possible to
define an assignment for which a type variable α denotes a subset
of D that is neither completely inside nor completely outside the
interpretation of t. Therefore for such a type t, neither equation (6)
nor, a fortiori, equation (5) hold. It is then clear that the stuttering
of (6) is absent in every set-theoretic model in which all non-empty
types—indivisible types included—denote infinite subsets of D.
Infinite denotations for non-empty types look as a possible, though

2 For instance, type variables can only be subsumed to themselves and
according to whether they occur in a covariant or contravariant position,
to 1 and to unions in which they explicitly appear or to 0 and intersections
in which they explicitly appear, respectively. De Morgan’s laws can be used
to reduce other cases to one of these.

specific, solution to the problem of indivisible types. But what we
are looking for is not a particular solution. We are looking for
a semantic characterization of the “uniformity” that characterizes
parametricity, in order to define a subtyping relation that is, we
repeat, semantic, intuitive, and decidable.

This characterization is provided by the property of convexity.

2.5 Convexity
A set theoretic model (J.K,D) is convex if and only if for every
finite set of types t1,. . . , tn it satisfies the following property:

∀η.(Jt1Kη=∅ or · · · or JtnKη=∅)
⇐⇒

(∀η.Jt1Kη=∅) or · · · or (∀η.JtnKη=∅)
(8)

This property is the cornerstone of our approach. As such it de-
serves detailed comments. It states that, given any finite set of types,
if every assignment makes some of these types empty, then it is so
because there exists one particular type that is empty for all pos-
sible assignments.3 Therefore convexity forces the interpretation
function to behave uniformly on its zeros (ie, on types whose in-
terpretation is the empty set). Now, the zeros of the interpretation
function play a crucial role in the theory of semantic subtyping,
since they completely characterize the subtyping relation. Indeed
s ≤ t ⇔ JsK ⊆ JtK ⇔ JsK ∩ JtK ⊆ ∅ ⇔ Js ∧ ¬tK = ∅. Conse-
quently, checking whether s ≤ t is equivalent to checking whether
the type s ∧ ¬t is empty; likewise, equation (3) in §2.2 is equiva-
lent to requiring that for all t it satisfies JtK = ∅ ⇐⇒ E(t) = ∅.
We deduce that convexity forces the subtyping relation to have a
uniform behavior and, ergo, rules out non-intuitive relations such
as the one in (5). This is so because convexity prevents stuttering,
insofar as in every convex model (Jt∧¬αKη=∅ or Jt∧αKη=∅)
holds for all assignments η if and only if t is empty.

Convexity is the property we seek. The resulting subtyping rela-
tion is semantically defined and preserves the set-theoretic seman-
tics of type connectives (union, intersection, negation) and the con-
tainment behavior of set-theoretic interpretations of type construc-
tors (set-theoretic products for product types and set-theoretic func-
tion spaces for arrow types). Furthermore, the subtyping relation is
not only semantic but also intuitive. First, it excludes non-intuitive
relations by imposing a uniform behavior distinctive of the para-
metricity à la Reynolds: as we discuss at length in the conclusion,
we push the analogy much farther since we believe that parametric-
ity and convexity are connected, despite the fact that the former is
defined in terms of transformations of related terms while the lat-
ter deals only with (subtyping) relations. Second, it is very easy to
explain the intuition of type variables to a programmer:

For what concerns subtyping, a type variable can be consid-
ered as a special new user-defined basic type that is unre-
lated to any other atom but 0 and 1 and itself.4 Type vari-
ables are special because their intersection with any ground
type may be non-empty, whatever this type is.

3 We dubbed this property convexity after convex formulas: a formula is
convex if whenever it entails a disjunction of formulas, then it entails one
of them. The ⇒ direction of (8) (the other direction is trivial) states the
convexity of assignments with respect to emptiness: η ∈ P(D)V ⇒W
i∈IJtiKη = ∅ implies that there exists h ∈ I such that η ∈P(D)V ⇒

JthKη = ∅.
4 This holds true even for languages with bounded quantification which, as
it is well known, defines the subtyping relation for type variables. Bounded
quantification does not require any modification to our system, since it can
be encoded by intersections: a type variable α bounded by a type t can
be encoded by a fresh (unbounded) variable β by replacing β∧t for every
occurrence of α. We can do even more, since by using intersections we can
impose different bounds to different occurrences of the same variable.

Of course, neither in the theoretical development nor in the sub-
typing algorithm type variables are dealt with as basic types. They
need very subtle and elaborated techniques that form the core of
our work. But this complexity is completely transparent to the pro-
grammer which can thus rely on a very simple intuition.

All that remains to do is (i) to prove the convexity property
is not too restrictive, that is, that there exists at least one convex
set-theoretic model and (ii) to show an algorithm that checks the
subtyping relation. Contrary to the ground case, both problems are
difficult. While their solutions require a lot of technical results (see
Section 3), the intuition underlying them is relatively simple. For
what concerns the existence of a convex set-theoretic model, the
intuition can be grasped by considering just the logical fragment of
our types, that is, the types in which 0 and 1 are the only atoms.
This corresponds to the (classical) propositional logic where the
two atoms represent, respectively, false and true. Next, consider
the instance of the convexity property given for just two types, t1
and t2. It is possible to prove that every non-degenerate Boolean
algebra (ie, every Boolean algebra with more than two elements)
satisfies it. Reasoning by induction it is possible to prove that
convexity for n types is satisfied by any Boolean algebra containing
at least n + 1! elements and from there deduce that all infinite
Boolean algebras satisfy convexity. It is then possible to extend the
proof to the case that includes basic, product, and arrow types and
deduce the following result:

Every set-theoretic model of closed types in which non-
empty types denote infinite sets is a convex set-theoretic
model for the polymorphic types.

Therefore, not only do we have a large class of convex models,
but also we recover our initial intuition that models with infinite
denotations was the way to go.

All that remains to explain is the subtype checking algorithm.
We do it in the next section, but before we want to address the
possible doubts of a reader about what the denotation of a “finite”
type like Bool is in such models. In particular, since this denotation
contains not only (the denotations of) true and false but infinitely
many other elements, then the reader can rightly wonder what these
other elements are and whether they carry any intuitive meaning. In
order to explain this point, let us first reexamine what convexity
does for infinite types. Convexity is a condition that makes the
interpretation of subtyping in some sense independent from the
particular syntax of types. Imagine that the syntax of types includes
just one basic type: Int. Then Int is an indivisible type and
therefore there exist non-convex models in which the following
relation (which is an instance of equation (5) of Section 2.3) holds.

Int× α ≤ (Int× ¬Int) ∨ (α× Int) (9)

(eg, a model where Int is interpreted by a singleton set: in a non-
convex model nothing prevents such an interpretation). Now imag-
ine to add the type Odd, subtype of Int, to the type system: then (9)
no longer holds (precisely, the interpretation at issue no longer is a
model) since the substitution of α by Odd disproves it. Should the
presence of Odd change the containment relation between Int and
the other types? Semantically this should not happen. A relation
as (9) should have the same meaning independently from whether
Odd is included in the syntax of types or not. In other terms we
want the addition of Odd to yield a conservative extension of the
subtyping relation. Therefore, all models in which (9) is valid must
be discarded. Convexity does it.

The point is that convexity pushes this idea to all types, so that
their interpretation is independent from the possible syntactic sub-
types they may have. It is as if the interpretation of subtyping as-
sumed that every type has at least one (actually, infinitely many)
stricter non empty subtype(s). So what could the denotation of type

Bool be in such a model, then? A possible choice is to interpret
Bool into a set containing labeled versions of true and false,
where labels are drawn from an infinite set of labels (a similar inter-
pretation was first introduced by Gesbert et al. [15]: see Section 2.8
on related work). Here the singleton type {true} is interpreted as
an infinite set containing differently labeled versions of the single
element true. Does this labeling carry any intuitive meaning? One
can think of it as representing name subtyping: these labels are the
names of subtypes of the singleton type {true} for which the sub-
typing relation is defined by name subtyping. As we do not want
the subtyping relation for Int to change (non conservatively) when
adding to the system the type Odd, so for the same reason we do
not want the subtyping relation for singleton types to change when
adding by name subtyping new subtypes, even when these subtypes
are subtypes of a singleton type. So convexity makes the subtyping
relation insensitive to possible extensions by name subtyping.

2.6 Subtyping algorithm
The subtyping algorithm for the relation induced by convex models
can be decomposed in 6 elementary steps. Let us explain the intu-
ition underlying each of them: all missing details can be found in
Section 3.

First of all, we already said that deciding t1 ≤ t2—ie, whether
for all η, Jt1Kη ⊆ Jt2Kη—is equivalent to decide the emptiness of
the type t1∧¬t2—ie, whether for all η, Jt1∧¬t2Kη=∅—. So the
first step of the algorithm is to transform the problem t1 ≤ t2 into
the problem t1∧¬t2 ≤ 0:

Step 1: transform the subtyping problem into an emptiness deci-
sion problem.

Our types are just a propositional logic whose atoms are type
variables, 0, 1, basic, product, and arrow types. We use a to range
over atoms and, following the logic nomenclature, call literal,
ranged over by `, an atom or its negation:

a ::= b | t× t | t→ t | 0 | 1 | α ` ::= a | ¬a

By using the laws of propositional logic we can transform every
type into a disjunctive normal form, that is, into a union of inter-
sections of literals: _

i∈I

^
j∈J

`ij

Since the interpretation function preserves the set-theoretic seman-
tics of type connectives, then every type is empty if and only if its
disjunctive normal form is empty. So the second step of our algo-
rithm consists of transforming the type t1∧¬t2 whose emptiness
was to be checked, into a disjunctive normal form:

Step 2: put the type whose emptiness is to be decided in a disjunc-
tive normal form.

Next, we have to decide when a normal form, that is, a union of
intersections, is empty. A union is empty if and only if every mem-
ber of the union is empty. Therefore the problem reduces to decid-
ing emptiness of an intersection of literals:

V
i∈I `i. Intersections

of literals can be straightforwardly simplified. Every occurrence of
the literal 1 can be erased since it does not change the result of the
intersection. If either any of the literals is 0 or two literals are a vari-
able and its negation, then we do not have to perform further checks
since the intersection is surely empty. An intersection can be sim-
plified also when two literals with different constructors occur in it:
if in the intersections there are two atoms of different constructors,
say, t1×t2 and t1→t2, then their intersection is empty and so is the
whole intersection; if one of the two atoms is negated, say, t1×t2
and ¬(t1→t2), then it can be eliminated since it contains the one
that is not negated; if both atoms are negated, then the intersection

can also be simplified (with some more work: cf. the formal devel-
opment in Section 3). Therefore the third step of the algorithm is
to perform these simplifications so that the problem is reduced to
deciding emptiness of intersections that are formed by literals that
are (possible negations of) either type variables or atoms all of the
same constructor (all basic, all product, or all arrow types):

Step 3: simplify mixed intersections.

At this stage we have to decide emptiness of intersections of
the form

V
i∈I ai ∧

V
j∈J ¬a

′
j ∧
V
h∈H αh ∧

V
k∈K ¬βk where all

the ai’s and a′j’s are atoms with the same constructor, and where
{αh}h∈H and {βk}k∈K are disjoint sets of type variables: we just
reordered literals so that negated variables and the other negated
atoms are grouped together. In this step we want to get rid of the
rightmost group in the intersection, that is, the one with negated
type variables. In other terms, we want to reduce our problem to
deciding the emptiness of an intersections as the above, but where
all top-level occurrences of type variables are positive. This is quite
easy, and stems from the observation that if a type with a type
variable α is empty for every possible assignment of α, then it
will be empty also if one replaces ¬α for α in it: exactly the same
checks will be performed since the denotation of the first type for
α 7→ S ⊆ D will be equal to the denotation of the second type
for α 7→ S ⊆ D. That is to say, ∀η.JtKη = ∅ if and only if
∀η.Jt{¬α/α}Kη = ∅ (where t{t′/α} denotes the substitution in t
of t′ for α). So all the negations of the group of toplevel negated
variables can be eliminated by substituting ¬βk for βk in the ai’s
and a′j’s:

Step 4: eliminate toplevel negative variables.

Next comes what probably is the trickiest step of the algo-
rithm. We have to prove emptiness of intersections of atoms ai and
negated atoms a′j all on the same constructors and of positive vari-
ables αk. To lighten the presentation let us consider just the case in
which atoms are all product types (the case for arrow types is sim-
ilar though trickier, while the case for basic types is trivial since it
reduces to the case for basic types without variables). By using De
Morgan’s laws we can move negated atoms on the right hand-side
of the relation so that we have to check the following containment^

t1×t2∈P

t1×t2 ∧
^
h∈H

αh ≤
_

t′1×t
′
2∈N

t′1×t′2 (10)

where P and N respectively denote the sets of positive and neg-
ative atoms. Our goal is to eliminate all top-level occurrences of
variables (the αh’s) so that the problem is reduced to checking
emptiness of product literals. To that end observe that each αh is
intersected with other products. Therefore whatever the interpre-
tation of αh is, the only part of its denotation that matters is the
one that intersects D2. Ergo, it is useless, at least at top-level, to
check all possible assignments for αh, since those contained in D2

will suffice. These can be checked by replacing γ1
h×γ2

h for αh,
where γ1,

h , γ2
h are fresh type variables. Of course the above reason-

ing holds for the top-level variables, but nothing tells us that the
non top-level occurrences of αh will intersect any product. So re-
placing them with just γ1

h×γ2
h would yield a sound but incomplete

check. We rather replace every non toplevel occurrence of αh by
(γ1
h×γ2

h)∨αh. This still is a sound substitution since if (10) holds,
then it must also hold for the case where (γ1

h×γ2
h) ∨ αh is substi-

tuted for αh (with the ∨αh part useless for toplevel occurrences).
Rather surprisingly, at least at first sight, this substitution is also
complete, that is (10) holds if and only if the following holds:^

t1×t2∈P

t1θ × t2θ ∧
^
h∈H

γ1
h × γ2

h ≤
_

t′1×t
′
2∈N

t′1θ × t′2θ

where θ is the substitution {(γ1
h×γ

2
h) ∨ αh/αh}h∈H .5 As an aside,

we signal that this transformation holds only because αh’s are posi-
tive: the application of Step 4 is thus a necessary precondition to the
application of this one. We thus succeeded to eliminate all toplevel
occurrences of type variables and, thus, we reduced the initial prob-
lem to the problem of deciding emptiness of intersections in which
all literals are products or negations of products (and similarly for
arrows):

Step 5: eliminate toplevel variables.

The final step of our algorithm must decompose the type con-
structors occurring at toplevel in order to recurse or stop. To that
end it will use set-theoretic properties to deconstruct atom types
and, above all, the convexity property to decompose the emptiness
problem into a set of emptiness subproblems (this is where convex-
ity plays an irreplaceable role: without convexity the definition of
an algorithm seems to be out of our reach). Let us continue with our
example with products. At this stage all it remains to solve is to de-
cide a containment of the following form (we included the products
of fresh variables into P):^

t1×t2∈P

t1×t2 ≤
_

t′1×t
′
2∈N

t′1×t′2 (11)

Using the set-theoretic properties of the interpretation function and
our definition of subtyping, we can prove (see Lemma 6.4 in [11]
for details) that (11) holds if and only if for all N ′⊆N ,

∀η.

0@J
^

t1×t2∈P

t1 ∧
^

t′1×t
′
2∈N′

¬t′1Kη=∅ or J
^

t1×t2∈P

t2 ∧
^

t′1×t
′
2∈N\N′

¬t′2Kη=∅

1A
We can now apply the convexity property and distribute the quan-
tification on η on each subformula of the or. This is equivalent to
state that we have to check the emptiness for each type that oc-
curs as argument of the interpretation function. Playing a little more
with De Morgan’s laws and applying the definition of subtyping we
can thus prove that (11) holds if and only if

∀N ′⊆N.

0@ ^
t1×t2∈P

t1 ≤
_

t′1×t
′
2∈N′

t′1

1A or

0@ ^
t1×t2∈P

t2 ≤
_

t′1×t
′
2∈N\N′

t′2

1A
To understand the rationale of this transformation the reader can
consider the case in which both P and N contain just one atom,
namely, the case for t1×t2 ≤ t′1×t′2. There are just two cases to
check (N ′=∅ andN ′=N) and it is not difficult to see that the con-
dition above becomes: (t1≤0) or (t2≤0) or (t1≤t′1 and t2≤t′2),
as expected.

The important point however is that we were able to express
the problem of (11) in terms of subproblems that rest on strict
subterms (there is a similar decomposition rule for arrow types).
Remember that our types are possibly infinite trees since they were
coinductively generated by the grammar in §2.1. We do not consider
every possible coinductively generated tree, but only those that are
regular (ie, that have a finite number of distinct subtrees) and in
which every infinite branch contains infinitely many occurrences of
type constructors (ie, products and arrows). The last condition rules
out meaningless terms (such as t = ¬t) as well as infinite unions
and intersections. It also provides a well-founded order that allows
us to use recursion. Therefore, we memoize the relation in (11)
and recursively call the algorithm from Step 1 on the subterms we
obtained from decomposing the toplevel constructors:

5 Note that the result of this substitution is equivalent to using the substitu-
tion {(γ1

h×γ
2
h) ∨ γ3

h/αh}h∈H where γ3
h is also a fresh variable: we just

spare a new variable by reusingαh which would be no longer used (actually
this artifice makes proofs much easier).

Step 6: eliminate toplevel constructors, memoize, and recurse.

The algorithm is sound and complete with respect to the subtyping
relation defined by (7) and terminates on all types (which implies
the decidability of the subtyping relation).

2.7 Examples
The purpose of this subsection is twofold: first, we want to give
some examples to convey the idea that the subtyping relation is
intuitive; second we present some cases that justify the subtler and
more technical aspects of the subtyping algorithm we exposed in
the previous subsection. All the examples below can be tested in
our prototype subtype-checker.

In what follows we will use x, y, z to range over recursion
variables and the notation µx.t to denote recursive types. This
should suffice to avoid confusion with free type variables that are
ranged over by α, β, and γ.

As a first example we show how to use type variables to inter-
nalize meta-properties. For instance, for all ground types t1, t2, and
t3 the relation (t1 → t3)∧ (t2 → t3) ≤ (t1∨t2)→ t3 and its con-
verse hold. This meta-theoretic property can be expressed in our
type system since the following relation holds:

(α→ γ) ∧ (β → γ) ∼ (α∨β)→ γ

(where∼ denotes that both≤ and≥ hold). Of course we can apply
this generalization to any relation that holds for generic types. For
instance, we can prove common distributive laws such as

((α∨β)× γ) ∼ (α×γ) ∨ (β×γ) (12)

and combine it with the previous relation and the covariance of
arrow on codomains to deduce

(α×γ → δ1) ∧ (β×γ → δ2) ≤ ((α∨β)× γ)→ δ1 ∨ δ2
Similarly we can prove that the set of lists whose elements have

type α, that is, α list = µx.(α×x) ∨ nil, contains both the α-lists
with an even number of elements

µx.(α×(α×x)) ∨ nil ≤ µx.(α×x) ∨ nil

(where nil denotes the singleton type containing just the value nil)
and the α-lists with an odd number of elements

µx.(α×(α×x)) ∨ (α×nil) ≤ µx.(α×x) ∨ nil

and it is itself contained in the union of the two, that is:

α list ∼ (µx.(α×(α×x))∨nil) ∨ (µx.(α×(α×x))∨(α×nil))

We said that the intuition for subtyping type variables is to
consider them as basic types. But type variables are not basic types.
As an example, if t is a non-empty type, then we have that:

α ∧ (α× t) 6≤ t1 → t2

which implies that α∧ (α× t) is not empty. This is correct because
if for instance we substitute the type t ∨ (t× t) for α, then (by the
distributivity law stated in (12)) the intersection is equal to (t× t),
which is non-empty. However, note that if α were a basic type, then
the intersection α ∧ (α × t) would be empty. Furthermore, since
the following relation holds

α ∧ (α× t) ≤ α

then, this last containment is an example of non-trivial containment
(in the sense that the left hand-side is not empty) involving type
variables. For an example of non-trivial containment involving
arrows the reader can check

1→ 0 ≤ α→ β ≤ 0→ 1

which states that 1→ 0, the set of all functions that diverge on all
arguments, is contained in all arrow types α → β (whatever types

α and β are) and that the latter are contained in 0 → 1, which is
the set of all function values.

Type connectives implement classic proposition logic. If we use
α ⇒ β to denote ¬α ∨ β, that is logical implication, then the
following subtyping relation is a proof of Pierce’s law:

1 ≤ ((α⇒ β)⇒ α)⇒ α

since being a supertype of 1 logically corresponds to being equiv-
alent to true (note that arrow types do not represent logical impli-
cation; for instance, 0→1 is not empty: it contains all function val-
ues). Similarly, the system captures the fundamental property that
for all non-empty sets β the set (β∧α) ∨ (β∧¬α) is never empty:

(β ∧ α) ∨ (β ∧ ¬α) ∼ β

from which we can derive

1 ≤ (((β∧α) ∨ (β∧¬α))⇒ 0) ⇒ (β ⇒ 0)

This last relation can be read as follows: if (β∧α) ∨ (β∧¬α) is
empty, then β is empty.

But the property above will never show a stuttering validity
since the algorithm returns false when asked to prove

nil× α ≤ (nil× ¬nil) ∨ (α× nil)

even for a singleton type as nil.
The subtyping relation has some simple form of introspection

since t1≤t2 if and only if 1 ≤ t1⇒t2 (ie, by negating both types
and reversing the subtyping relation, t1∧¬t2 ≤ 0). However, the
introspection capability is very limited insofar as it is possible to
state interesting properties only when atoms are type variables:
although we can characterize the subtyping relation ≤, we have
no idea about how to characterize its negation 6≤. 6

The necessity for the tricky substitution α 7→ (γ1×γ2)∨α per-
formed at Step 5 of the algorithm can be understood by considering
the following example where t is any non-empty type:

(α× t) ∧ α ≤ ((1× 1)× t).
If in order to check the relation above we substituted just γ1 × γ2

for α, then this would yield a positive result, which is wrong: if
we replace α by b ∨ (b×t), where b is any basic type, then the in-
tersection on the left becomes (b×t) and b is neither contained in
1 × 1 nor empty. Our algorithm correctly disproves the contain-
ment, since it checks also the substitution of (γ1 × γ2) ∨ α for the
first occurrence of α, which captures the above counterexample.

Finally, the system also proves subtler relations whose meaning
is not clear at first sight, such as:

α1 → β1 ≤ ((α1∧α2)→(β1∧β2)) ∨ ¬(α2→(β2∧¬β1)) (13)

In order to prove it, the subtyping algorithm first moves the occur-
rence of α2 → (β2∧¬β1) from the right of the subtyping relation
to its left: (α1→β1)∧(α2→(β2∧¬β1)) ≤ ((α1∧α2)→(β1∧β2));
then following the decomposition rules for arrows the algorithm
checks the four following cases (Step 6 of the algorithm), which
hold straightforwardly:8>>><>>>:

α1∧α2 ≤ 0 or β1 ∧ (β2 ∧ ¬β1) ≤ β1 ∧ β2

α1∧α2 ≤ α1 or (β2 ∧ ¬β1) ≤ β1 ∧ β2

α1∧α2 ≤ α2 or β1 ≤ β1 ∧ β2

α1∧α2 ≤ α1 ∨ α2

6 For instance, it would be nice to prove something like:

(¬β1 ∨ ((β1⇒α1) ∧ (α2⇒β2))) ∼ (α1→α2 ⇒ β1→β2)

since it seems to provide a complete characterization of the subtyping
relation between two arrow types. Unfortunately the equivalence is false
since β1 6≤ α1 does not imply β1 ∧ ¬α1 ≥ 1 but just β1 ∧ ¬α1 6≤ 0.
This property can be stated only at meta level, that is: α1→α2 ≤ β1→β2

if and only if (β1 ≤ 0 or (β1≤α1 and α2≤β2)).

Notice that relation (13) is quite subtle insofar as neither α1 →
β1 ≤ (α1∧α2)→ (β1∧β2) norα1 → β1 ≤ ¬(α2 → (β2∧¬β1))
hold: the type on left hand-side of (13) is contained in the union
of the two types on the right hand-side of (13) without being
completely contained in either of them.

2.8 Related work
This work extends the work on semantic subtyping [11], as such the
two works share the same approach and common developments.
Since convex models of our theory can be derived from the models
of [11], then several techniques we used in our subtyping algorithm
(in particular the decomposition of toplevel type constructors) are
directly issued from the research in [11]. This work starts precisely
from where [11] stopped, that is the monomorphic case, and adds
prenex parametric polymorphism to it.

The most advanced work on polymorphism for XML types,
thus far, is the Hosoya, Frisch, and Castagna’s approach described
in [17], whose extended abstract was first presented at POPL ’05.
Together with [11], the paper by Hosoya, Frisch, and Castagna
constitutes the starting point of this work. A starting point that,
so far, was rather considered to establish a (negative) final point.
As a matter of fact, although the polymorphic system in [17] is
the one used to define the polymorphic extension of XDuce [18]
(incorporated from version 0.5.0 of the language), the three authors
of [17] agree that the main interest of their work does not reside
in its type system, but rather in the negative results that motivate
it. In particular, the pivotal example of our work, equation (5), was
first presented in [17], and used there to corroborate the idea that
a purely semantic approach for polymorphism of regular tree types
was an hopeless quest. At that time, this seemed so more hopeless
that the equation (5) did not involve arrow types: a semantically
defined polymorphic subtyping looked out of reach even in the
restrictive setting of Hosoya and Pierce seminal work [18], which
did not account for higher-order functions. This is why [17] falls
back on a syntactic approach that, even if it retains some flavors of
semantic subtyping, it cannot be extended to higher-order functions
(a lack that nevertheless fits XDuce). Our works shows that the
negative results of [17] were not so insurmountable as it had been
thought.

Hitherto, the only work that blends polymorphic regular types
and arrow types is Jérôme Vouillon’s work that was presented at
POPL ’06 [23]. His approach, however, is very different from ours
insofar as it is intrinsically syntactic. Vouillon starts from a particu-
lar language (actually, a peculiar pattern algebra) and coinductively
builds up on it the subtyping relation by a set of inference rules. The
type algebra includes only the union connective (negation and in-
tersection are missing) and a semantic interpretation of subtyping
is given a posteriori by showing that a pattern (types are special
cases of patterns) can be considered as the set of values that match
the pattern. Nevertheless, this interpretation is still syntactic in na-
ture since it relies on the definition of matching and containment,
yielding a system tailored for the peculiar language of the paper.
This allows Vouillon to state impressive and elegant results such
as the translation of the calculus into a non-explicitly-typed one, or
the interpretation of open types containment as in our equation (4)
(according to Vouillon this last result is made possible in his system
by the absence of intersection types, although the critical example
in (5) does not involve any intersection). But the price to pay is a
system that lacks naturalness (eg, the wild-card pattern has different
meanings according to whether it occurs in the right or in left type
of a subtyping relation) and, even more, it lacks the generality of
our approach (we did not state our subtype system for any specific
language while Vouillon’s system is inherently tied to a particular
language whose semantics it completely relies on). The semantics

of Vouillon’s patterns is so different from ours that typing Vouil-
lon’s language with our types seems quite difficult.

Other works less related to ours are those in which XML and
polymorphism are loosely coupled. This is the case of OCaml-
Duce [10] where ML-polymorphism and XML types and patterns
are merged together without mixing: the main limitation of this ap-
proach is that it does not allow parametric polymorphism for XML
types, which is the whole point of our (and Vouillon’s) work(s).
A similar remark can be done for Xtatic [12] that merges C#
name subtyping with the XDuce set-theoretic subtyping and for
XHaskell [19] whose main focus is to implement XML subtyping
using Haskell’s type-classes. A more thorough comparison of these
approaches can be found in [10, 17].

Polymorphism can be attained by adopting the so-called data-
binding approach which consists in encoding XML types and val-
ues into the structures of an existing polymorphic programming
language. This is the approach followed by HaXML [26]. While
the polymorphism is inherited from the target language, the rigid
encoding of XML data into fixed structures loses all flexibility of
the XML type equivalences so as, for instance, (t×s1) ∨ (t×s2)
and (t×s1∨s2) are different (and even unrelated) types.

Our work already has a follow-up. In a paper included in these
same proceedings [15] Gesbert, Genevès, and Layaı̈da use the
framework we define here to give a different decision procedure for
our subtyping relation. More precisely, they take a specific model
for the monomorphic type system (ie, the model defined by Frisch
et al. [11] and used by the language CDuce), they encode the sub-
typing relation induced by this model into a tree logic, and use a sat-
isfiability solver to efficiently decide it. Next, they extend the type
system with type variables and they obtain a convex model by inter-
preting non-empty types as infinite sets using a labeling technique
similar to the one we outlined at the end of Section 2.5: they label
values by (finite sets of) type variables and every non empty ground
type is, thus, interpreted as an infinite set containing the infinitely
many labelings of its values. Again the satisfiability solver provides
a decision procedure for the subtyping relation. Their technique is
interesting in several respects. First it provides a very elegant so-
lution to the problem of deciding our subtyping relation, solution
that is completely different from the one given here. Second, their
technique shows that the decision problem is EXPTIME, (while
here we only prove the decidability of the problem by showing the
termination of our algorithm). Finally, their logical encoding paves
the way to extending types (and subtyping) with more expressive
logical constraints representable by their tree logic. In contrast, our
algorithm is interesting for quite different reasons: first, it is defined
for generic interpretations rather than for a fixed model; second, it
shows how convexity is used in practice (see in particular Step 6
of the algorithm); and, finally, our algorithm is a straightforward
modification of the algorithm used in CDuce and, as such, can ben-
efit of the technology and optimizations used there.7 We expect the
integration of this subtyping relation in the CDuce to be available
in the near future.

Finally, we signal the work on polymorphic iterators for XML
presented in [4]. It introduces a very simple strongly normalizing
calculus fashioned to define tree iterators. These iterators are lightly
checked at the moment of their definition: the compiler does not
complain unless they are irremediably flawed. This optimistic typ-
ing, combined with the relatively limited expressive power of the
calculus, makes it possible to type iterator applications in a very
precise way (essentially, by performing an abstract execution of
the iterator on the types) yielding a kind of polymorphism that

7 Alain Frisch’s PhD. thesis [9] describes two algorithms that improve over
the simple saturation-based strategy described in Section 3.4. They are used
both in CDuce compiler and in the prototype we implemented to check the
subtyping relation presented in this work.

is out of reach of parametric or subtype polymorphism (for in-
stance it can precisely type the reverse function applied to hetero-
geneous lists and thus deduce that the application of reverse to a
list of type, say, [Int Bool* Char+] yields a result of type
[Char+ Bool* Int]). As such it is orthogonal to the kind of
polymorphism presented here, and both can and should coexist in
a same language.

3. Formal development
In this section we describe the technical development that supports
the results we exposed in the previous section. We (strongly) sug-
gest readers to skip this section on first reading and directly jump
to the conclusions in Section 4. The prose is reduced to the strict
necessary, and limited to explain points that were not dealt with in
the previous section.

3.1 Types
Definition 3.1. (Types) Consider a countable set of type variables
V ranged over by α and a finite set of basic (or constant) types
ranged over by b. A type is a regular tree coinductively produced
by the following grammar

t ::= α | b | t× t | t→ t | t ∨ t | ¬t | 0

and in which every infinite branch contains infinitely many occur-
rences of atoms (ie, either a type variable or the immediate appli-
cation of a type constructor: basic, product, arrow)

We write t1\t2, t1∧t2, and 1 respectively as abbreviation for
t1∧¬t2, ¬(¬t1∨¬t2), and ¬0.

The condition on infinite branches bars out ill-formed types
such as t = t ∨ t (which does not carry any information about
the set denoted by the type) or t = ¬t (which cannot represent
any set). It also ensures that the binary relation B⊆ T 2 defined by
t1 ∨ t2 B ti, ¬t B t is Noetherian (that is, strongly normalizing).
This gives an induction principle on T that we will use without any
further explicit reference to the relation.

Notation. Let t be a type. We use var(t) to denote the set of
type variables occurring in t and by tlv(t) (toplevel variables) all
the variables of t that have at least one occurrence not under a
constructor, that is: tlv(α) = {α}, tlv(¬t) = tlv(t), tlv(t ∨ s) =
tlv(t) ∪ tlv(s), and tlv(t) = ∅ otherwise. We say that t is ground
or closed if and only if var(t) is empty.

3.2 Subtyping
Definition 3.2 (Set-Theoretic Interpretation). A set-theoretic in-
terpretation of T is given by a set D and a function J K : T →
P(D)V → P(D) such that, for all t1, t2, t ∈ T , α ∈ V and
η ∈ P(D)V : Jt1 ∨ t2Kη = Jt1Kη ∪ Jt2Kη, J¬tKη = D \ JtKη,
JαKη = η(α), and J0Kη = ∅.

Definition 3.3. (Subtyping Relation) Let J K : T → P(D)V →
P(D) be a set-theoretic interpretation. We define the subtyping
relation ≤J K⊆ T 2 as follows:

t ≤J K s⇔ ∀η ∈P(D)V . JtKη ⊆ JsKη

We write t ≤ s when the interpretation J K is clear from the
context.

Lemma 3.4. Let t, s be two types, then: t ≤J K s ⇔ ∀η ∈
P(D)V . Jt ∧ ¬sKη = ∅.

Proof.

t ≤J K s⇔ ∀η ∈P(D)V . JtKη ⊆ JsKη

⇔ ∀η ∈P(D)V . JtKη ∩ (D \ JsKη) = ∅
⇔ ∀η ∈P(D)V . Jt ∧ ¬sKη = ∅.

For each basic type b, we assume there is a fixed set of constants
B(b) ⊆ C whose elements are called constants of type b. For two
basic types b1, b2, the sets B(bi) can have a non-empty intersection.

If, as suggested in Section 2, we interpret extensionally an arrow
t1→t2 as P(Jt1K×Jt2K) (precisely as P(D2\(Jt1K×(D\Jt2K)))),
then every function type is a subtype of 1→1. We do not want
such a property to hold because, otherwise, we could subsume
every function to a function that accepts every value and, therefore,
every application of a well-typed function to a well-typed argument
would be well-typed, independently from the types of the function
and of the argument. For example, if, say, succ: Int→Int, then we
could deduce succ: 1→1 and then succ(true) would have type 1.
To avoid this problem we introduce an explicit type error Ω and use
it to define function spaces:

Definition 3.5. If D is a set and X,Y are subsets of D, we write
DΩ for D + {Ω} and define X → Y as:
X → Y

def
= {f ⊆ D ×DΩ | ∀(d, d′) ∈ f. d ∈ X ⇒ d′ ∈ Y }

This is used in the definition of the extensional interpretation:

Definition 3.6 (Extensional Interpretation). Let J K : T →
P(D)V → P(D) be a set-theoretic interpretation. Its associated
extensional interpretation is the unique function E() : T →
P(D)V →P(ED) where ED = D+D2+P(D ×DΩ), defined
as follows:

E(α)η = η(α) ⊆ D
E(b)η = B(b) ⊆ D

E(t1 × t2)η = Jt1Kη × Jt2Kη ⊆ D2

E(t1 → t2)η = Jt1Kη → Jt2Kη ⊆P(D ×DΩ)

E(0)η = ∅
E(t1 ∨ t2)η = E(t1)η ∪ E(t2)η

E(¬t)η = ED \ E(t)η

The definition of set-theoretic model is then as expected:

Definition 3.7 (Foundation, Convexity, and Models). Let J K :
T →P(D)V →P(D) be a set-theoretic interpretation. It is

1. convex if it satisfies equation (8) for all finite choices of types
t1, ..., tn;

2. structural if D2 ⊆ D, Jt1×t2Kη=Jt1Kη×Jt2Kη and the relation
on D induced by (d1, d2) I di is Noetherian;

3. a model if it induces the same subtyping relation as its associ-
ated extensional interpretation, that is: ∀t∈T . ∀η ∈P(D)V .
JtKη=∅ ⇐⇒ E(t)η=∅. A model is convex if its set-theoretic
interpretation is convex; it is well-founded if it induces the same
subtyping relation as a structural set-theoretic interpretation.

From now on we consider only well-founded convex models.
We already explained the necessity of the notion of convexity
we introduced in §2.5. The notion of well-founded model was
introduced in §4.3 of [11]. Intuitively, well-founded models are
models that contain only values that are finite (eg, in a well-founded
model the type µx.(x×x)—ie, the type that “should” contain all
and only infinite binary trees—is empty). This fits the practical
motivations of this paper, since XML documents—ie, values—are
finite trees.

3.3 Properties of the subtyping relation
We write Afun for atoms of the form t1→ t2, Aprod for atoms of
the form t1× t2, Abasic for basic types, and A for Afun ∪ Aprod ∪
Abasic. Therefore V ∪ A ∪ {0, 1} denotes the set of all atoms.
Henceforth, we will disregard the atoms 0 and 1 since they can
be straightforwardly eliminated during the algorithmic treatment
of subtyping.

Definition 3.8. (Normal Form) A (disjunctive) normal form τ is
a finite set of pairs of finite sets of atoms, that is, an element of
Pf (Pf (A ∪ V) ×Pf (A ∪ V)) (where Pf (.) denotes the finite
powerset). Moreover, we call an element of Pf (A ∪V)×Pf (A ∪
V) a single normal form. If J K : T → P(D)V → P(D) is an
arbitrary set-theoretic interpretation, τ a normal form and η an
assignment, we define JτKη as:

JτKη =
[

(P,N)∈τ

\
a∈P

JaKη ∩
\
a∈N

(D \ JaKη)

(with the convention that an intersection over an empty set is taken
to be D).

Lemma 3.9. For every type t ∈ T , it is possible to compute a
normal form N (t) such that for every set-theoretic interpretation
J K and assignment η, JtKη = JN (t)Kη.

Proof. We can define two functions N and N ′, both from types to
Pf (Pf (A ∪ V)×Pf (A ∪ V)), by mutual induction over types:

N (0) = ∅
N (a) = {({a},∅)} for a ∈ A ∪V

N (t1 ∨ t2) = N (t1) ∪N (t2)

N (¬t) = N ′(t)

N ′(0) = {(∅,∅)}
N ′(a) = {(∅, {a})} for a ∈ A ∪V

N ′(t1∨t2) = {(P1∪P2, N1∪N2) | (Pi, Ni) ∈ N ′(ti), i=1, 2}
N ′(¬t) = N (t)

Then we check the following property by induction over the type t:

JtKη = JN (t)Kη = D \ JN ′(t)Kη

For instance, consider the type t = a1∧(a3∨¬a2) where a1, a2,
and a3 are any atoms. ThenN (t) = {({a1, a3},∅), ({a1}, {a2})}.
This corresponds to the fact that for every set-theoretic interpreta-
tion and semantic assignment N (t), t, and (a1∧a3) ∨ (a1∧¬a2)
have the same denotation.

Note that the converse result is true as well: for any normal
form τ , we can find a type t such that for every set-theoretic
interpretation η and semantic assignment J K, JtKη=JτKη. Normal
forms are thus simply a different, but handy, syntax for types.
In particular, we can rephrase in Definition 3.7 the condition for
a set-theoretic interpretation to be a model as: for any normal
form τ , ∀η∈P(D)V . JτKη=∅ ⇔ E(τ)η=∅. For these reasons
henceforth we will often confound the notions of types and normal
forms, and often speak of the “type” τ , taking the latter as a
canonical representation of all the types inN−1(τ).

Let J K be a set-theoretic interpretation. Given a normal form τ ,
we are interested in comparing the assertions ∀η∈P(D)V .E(τ)η =
∅ and ∀η∈P(D)V . JτKη = ∅. Clearly, the equation ∀η ∈

P(D)V .E(τ)η = ∅ is equivalent to:

∀η ∈P(D)V . ∀(P,N) ∈ τ .
\
a∈P

E(a)η ⊆
[
a∈N

E(a)η (14)

Let us write EbasicD = D, EprodD = D2 and EfunD = P(D ×DΩ).
Then we have ED =

S
u∈U EuD where U = {basic, prod, fun}.

Thus we can rewrite Inequality (14) as:

∀η ∈P(D)V . ∀u ∈ U . ∀(P,N) ∈ τ .\
a∈P

(E(a)η ∩ EuD) ⊆
[
a∈N

(E(a)η ∩ EuD) (15)

For an atom a ∈ A , we have E(a)η ∩ EuD = ∅ if a /∈ Au and
E(a)η ∩ EuD = E(a)η if a ∈ Au. Then we can rewrite Inequality
(15) as:

∀η ∈P(D)V . ∀u ∈ U. ∀(P,N) ∈ τ. (P ⊆ Au ∪ V)⇒\
a∈P∩Au

E(a)η ∩
\

α∈P∩V

(η(α) ∩ EuD) ⊆

[
a∈N∩Au

E(a)η ∪
[

α∈N∩V

(η(α) ∩ EuD)

(16)

(where the intersection is taken to be ED when P = ∅). Further-
more, if the same variable occurs both in P and in N , then (16) is
trivially satisfied. So we can suppose that P ∩N∩V = ∅. This jus-
tifies the simplifications made in Step 3 of the subtyping algorithm,
that is the simplification of mixed single normal forms.

Step 4, the elimination of negated toplevel variables, is justified
by the following lemma:

Lemma 3.10. Let P,N be two finite subsets of atoms and α an
arbitrary type variable, then we have

∀η ∈P(D)V .
\
a∈P

E(a)η ⊆
[
a∈N

E(a)η ∪ η(α)⇔

∀η ∈P(D)V .
\
a∈P

E(θ¬βα (a))η ∩ η(β) ⊆
[
a∈N

E(θ¬βα (a))η

where β is a fresh variable and θ¬βα (a) = a{¬β/α}

Proof. Straightforward application of set theory.

Note that Lemma 3.10 only deals with one type variable, but
it is trivial to generalize this lemma to multiple type variables (the
same holds for Lemmas 3.13 and 3.14).

Using Lemma 3.10, we can rewrite Inequality (16) as:

∀η ∈P(D)V . ∀u ∈ U . ∀(P,N) ∈ τ . (P ⊆ Au ∪ V)⇒\
a∈P∩Au

E(a)η ∩
\

α∈P∩V

(η(α) ∩ EuD) ⊆
[

a∈N∩Au

E(a)η (17)

since we can assume N ∩ V = ∅.
Next, we justify Step 5 of the algorithm, that is the elimination

of the toplevel variables. In (17) this corresponds to eliminating
the variables in P ∩ V . When u = basic this can be easily done
since all variables (which can appear only at top-level) can be
straightforwardly removed. Indeed, notice that if s and t are closed
types then s ∧ α ≤ t if and only if s ≤ t. Since unions and
intersections of basic types are closed, then we have the following
lemma

Lemma 3.11. Let P,N be two finite subsets of Abasic, X a finite
set of variables. Then

∀η∈P(D)V .
\
b∈P

E(b)η ∩
\
α∈X

(η(α) ∩ C) ⊆
[
b∈N

E(b)η

⇔
\
b∈P

B(b) ⊆
[
b∈N

B(b)

(with the convention
T
a∈∅ E(a)η = C)

The justification of Step 5 for u = prod is given by Lemma 3.13.
In order to prove it we need to prove a substitution lemma for the
extensional interpretation.

Lemma 3.12. Let J K be a well-founded model and E() its associ-
ated extensional interpretation. For all types t, t′, variable α, and
assignment η, if E(t′)η = η(α), then E(t{t′/α})η = E(t)η.

Proof. Consider a type t. Then E(t{t′/α})η = E(t)η holds, if and
only if

∀d ∈ D . d ∈ E(t{t′/α})η ⇔ d ∈ E(t)η

Since the model is well-founded, we can apply the induction on d.
Meanwhile, we also use the Noetherian order relation B on t (See
Section 3.1). That is, we prove this statement by induction on (d, t).
In the following only the direction “⇐” is proved, the same to the
other direction “⇒”.

Case β: if β 6= α, the result holds straightforwardly; Otherwise,
the result also holds since E(t′)η = η(α) holds.

Case b or 0: trivially since α /∈ var(t).
Case t1 ∨ t2: as d ∈ E(t1 ∨ t2)η, we have either d ∈ E(t1)η or

d ∈ E(t2)η. Assume d ∈ E(t1)η, then by induction, we have
d ∈ E(t1{t′/α})η. Thus the result follows.

Case t1 ∧ t2: similarly to Case t1 ∨ t2.
Case ¬t1: assume d /∈ E(¬t1{t′/α})η, that is d ∈ E(t1{t′/α})η,

then by induction, we have d ∈ E(t1)η, which contradicts
d ∈ E(¬t1)η. Therefore, the result follows.

Case t1 × t2: then d = (d1, d2). Since E(t1 × t2)η = E(t1)η ×
E(t2)η, we have di ∈ E(ti)η. By induction, we get di ∈
E(ti{t′/α})η. Thus, (d1, d2) ∈ E((t1 × t2){t′/α}).

Case t1 → t2: then d = {(d1, d
′
1), . . . , (dn, d

′
n)}. Considering

any (di, d
′
i), either both di ∈ E(t1)η and d′i ∈ E(t2)η hold

or di /∈ E(t1)η holds. By induction, we have either both di ∈
E(t1{t′/α})η and d′i ∈ E(t2{t′/α})η or di /∈ E(t1{t′/α})η.
Thus, d ∈ E((t1 × t2){t′/α}).

Lemma 3.13. Let (D, J.K) be a well-founded model, P,N two
finite subsets of Aprod and α an arbitrary type variable.

∀η∈P(D)V .
\
a∈P

E(a)η ∩ (η(α) ∩ EprodD) ⊆
[
a∈N

E(a)η ⇔

∀η∈P(D)V .
\
a∈P

E(θ×α (a))η ∩ E(α1×α2)η ⊆
[
a∈N

E(θ×α (a))η

where θ×α (a) = a{(α1×α2)∨α/α} and α1, α2 are fresh variables.

Proof. “⇐” direction: consider a generic assignment η, and sup-
pose we have η(α)∩EprodD =

S
i∈I(S

i
1×Si2) where Sij are subsets

of D and I may be infinite (notice that every intersection with D2

can be expressed as a infinite union of products: at the limit single-
ton products can be used). If |I| = 0, that is, η(α) ∩ EprodD = ∅,
clearly, we have\

a∈P

E(a)η ∩ (η(α) ∩ EprodD) = ∅ ⊆
[
a∈N

E(a)η

Assume that |I| > 0. Then for each (Si1 × Si2), we construct
another assignment ηi defined as ηi = η ⊕ {Si1/α1,S

i
2/α2}, where

⊕ denotes both function extension and redefinition. Then, we have

E((α1×α2) ∨ α)ηi

= (ηi(α1)× ηi(α2)) ∨ ηi(α) by definition of E()
= (Si1×Si2) ∨ η(α) by definition of ηi

= η(α) since
S
i∈I(S

i
1×Si2) ⊆ η(α)

= ηi(α) by definition of ηi

We can thus apply Lemma 3.12 and for any term t deduce that
E(t{(α1×α2)∨α/α})ηi = E(t)ηi. In particular, for all a ∈ P ∪N
we have E(θ×α (a))ηi

def
= E(a{(α1×α2)∨α/α})ηi = E(a)ηi. Now,

notice that η and ηi differ only for the interpretation of α1 and α2.
Since these variables are fresh, then they do not belong to var(a),
and therefore E(a)ηi = E(a)η. This allows us to conclude that

∀a ∈ (P ∪N) . E(θ×α (a))ηi = E(a)η

Therefore,

∀i∈I(
\
a∈P

E(θ×α (a))ηi ∩ E(α1×α2)ηi ⊆
[
a∈N

E(θ×α (a))ηi)

⇒∀i∈I(
\
a∈P

E(θ×α (a))ηi ∩ E(α1×α2)ηi ∩
\
a∈N

E(θ×α (a))ηi ⊆ ∅)

⇒
[
i∈I

(
\
a∈P

E(θ×α (a))ηi ∩ E(α1×α2)ηi ∩
\
a∈N

E(θ×α (a))ηi)

!
⊆ ∅

⇒
[
i∈I

(
\
a∈P

E(a)η ∩ E(α1×α2)ηi ∩
\
a∈N

E(a)η)

!
⊆ ∅

⇒
\
a∈P

E(a)η ∩ (
[
i∈I

E(α1×α2)ηi) ∩
\
a∈N

E(a)η ⊆ ∅

⇒
\
a∈P

E(a)η ∩ (
[
i∈I

(Si1×Si2)) ∩
\
a∈N

E(a)η ⊆ ∅

⇒
\
a∈P

E(a)η ∩ (η(α) ∩ EprodD) ∩
\
a∈N

E(a)η ⊆ ∅

⇒
\
a∈P

E(a)η ∩ (η(α) ∩ EprodD) ⊆
[
a∈N

E(a)η

This proves the result.

“⇒” direction: this direction is rather obvious since if a type is
empty, then so is every instance of it. In particular, suppose there
exists an assignment η such that\

a∈P

E(θ×α (a))η ∩ E(α1×α2)η ⊆
[
a∈N

E(θ×α (a))η

does not hold. Then, for this assignment η we have\
a∈P

E(θ×α (a))η ∩ (E(α1×α2)η) *
[
a∈N

E(θ×α (a))η

and a fortiori\
a∈P

E(θ×α (a))η ∩ (E(α1×α2)η ∪ η(α)) *
[
a∈N

E(θ×α (a))η

That is,

E(θ×α (
^
a∈P

a ∧ α ∧
^
a∈N

¬a))η 6= ∅

therefore \
a∈P

E(a)η′ ∩ (η′(α) ∩ EprodD) ⊆
[
a∈N

E(a)η′

doesn’t hold for η′ = η ⊕ {E((α1×α2)∨α)η/α} which contradicts
the hypothesis.

The case for u = fun is trickier because 1 → 0 is contained in
every arrow type, and therefore sets of arrows that do not contain

it must be explicitly checked. If, analogously to u = prod, we
used just {(α1→α2) ∨ α/α}, then the subtypes of 0 → 1 that do
not contain 1 → 0 would never be assigned to α by the algorithm
and, thus, never checked. Therefore, {((α1→α2) \ (1→ 0)) ∨ α/α}
must be checked, as well.

Lemma 3.14. Let (D, J.K) be a well-founded model, P,N two
finite subsets of Afun and α an arbitrary type variable. Then

∀η∈P(D)V .
\
a∈P

E(a)η ∩ (η(α) ∩ EfunD) ⊆
[
a∈N

E(a)η ⇔

∀η∈P(D)V .
\
a∈P

E(θ→α (a))η ∩ E(α1→α2)η ⊆
[
a∈N

E(θ→α (a))η

and ∀η∈P(D)V .
\
a∈P

E(θ α (a))η ∩ E((α1→α2) \ (1→ 0))η

⊆
[
a∈N

E(θ α (a))η

where α1, α2 are fresh variables, θ→α (a) = a{(α1→α2) ∨ α/α},
and θ α (a) = a{((α1→α2) \ (1→ 0)) ∨ α/α}.

Proof. “⇐” direction: suppose that there exists one assignment η
such that \

a∈P

E(a)η ∩ (E(α)η ∩ EfunD) ⊆
[
a∈N

E(a)η

does not hold. Then for this assignment, there exists at least an
element d such that

d ∈ (
\
a∈P

E(a)η \
[
a∈N

E(a)η) ∩ (E(α)η ∩ EfunD)

If one of these elements d is such that d ∈ E(1 → 0)η, then
|N | = 0: indeed since 1→0 is contained in every arrow type, then
subtracting any arrow type (ie, |N | > 0) would remove all the
elements of 1→0. Clearly, we have

d ∈ (
\
a∈P

E(θ→α (a))η \
[
a∈N

E(θ→α (a))η) ∩ E(α1 → α2)η

Indeed since |N | = 0 the set above is an intersection of arrow
types, and since they all contain 1→0, they all contain d as well.
This contradicts the premise, therefore, the result follows. (Note
that when doing the substitution for αwe don’t need to consider the
case that E(α)η contains a part of E(1 → 0)η since there always
exists an element d belonging to such a part.)
Otherwise, assume that |N | > 0 and therefore d /∈ E(1 → 0)η.
Since d ∈ (

T
a∈P E(θ→α (a))η \

S
a∈N E(θ→α (a))η) then we have\

a∈P

E(a)η *
[
a∈N

E(a)η.

Let η1 be an assignment defined as η1 = η ⊕ {D/α1,∅/α2}. Then,
we have E(α1 → α2)η1 = E(1→ 0)η1. Therefore:

E(θ α (α))η1

=(E(α1 → α2)η1 \ E(1→ 0)η1) ∪ η1(α)

(by definition of E())
=η1(α) (by definition of η1)

We thus apply Lemma 3.12 and for any a ∈ P ∪N , we deduce that
E(θ α (a))η1 = E(a)η1 = E(a)η. From this, we infer that\

a∈P

E(θ α (a))η1 *
[
a∈N

E(θ α (a))η1

By an application of Lemma 6.7 in [11], we have

∀t01 → t02 ∈ N.∃P ′ ⊆ P.8><>:
Jθ α (t01 \

W
t1→t2∈P ′ t1)Kη1 6= ∅

and
P ′ = P or Jθ α (

V
t1→t2∈P\P ′ t2 \ t02)Kη1 6= ∅

Thus there exist at least an element in Jθ α (t01 \
W
t1→t2∈P ′ t1)Kη1

and, if P 6= P ′, an element in Jθ α (
V
t1→t2∈P\P ′ t2 \ t02)Kη1.

The next step is to build a new assignment η′ such that Jθ α (t01 \W
t1→t2∈P ′ t1 ∨ α1)Kη′ contains an element and, if P 6= P ′,

Jθ α ((
V
t1→t2∈P\P ′ t2 ∧ α2) \ t02)Kη′ contains an element.

To do so we invoke the procedure explore pos defined in the proof
of Lemma 3.29 (this procedure was defined for the proof of that
lemma, and it returns also the elements that inhabit the types, which
are here useless. We do not repeat its definition here). Let V S =S
a∈P∪N var(a) ∪ {α1, α2}. For each β ∈ V S, we construct a

finite set sβ which is initialized as an empty set and appended
some elements during the processing of explore pos. Thanks to the
infinite support, to build an element in θ α (t01 \

W
t1→t2∈P ′ t1 ∨

α1) is similar to build an element in θ α (t01 \
W
t1→t2∈P ′ t1) (it

has proved that such an element exists). And to build an element
in θ α ((

V
t1→t2∈P\P ′ t2 ∧ α2) \ t02), is to build an element in

θ α (
V
t1→t2∈P\P ′ t2\t02) first and then append this element to sα2 .

In the end, we define a new (finite) assignment as η′ = {sβ/β, . . .}
for β ∈ V S. (If any type contains infinite product types it is
also possible to construct such an assignment by Lemma 3.30).
Therefore, under the assignment η′, we get

∀t01 → t02 ∈ N.∃P ′ ⊆ P.8><>:
Jθ α (t01 \

W
t1→t2∈P ′ t1 ∨ α1)Kη′ 6= ∅

and
Jθ α ((

V
t1→t2∈P\P ′ t2 ∧ α2) \ t02)Kη′ 6= ∅

or8><>:
Jθ α (t01 \ (

W
t1→t2∈P ′ t1 ∨ α1))Kη′ 6= ∅

and
P ′ = P

By an application of Lemma 6.7 in [11] again, we conclude that\
a∈P

E(θ α (a))η′ ∩ E(α1 → α2)η′ *
[
a∈N

E(θ α (a))η′

Since |N | > 0, then E(1→0)η′ is contained in
S
a∈N E(θ α (a))η′.

Thus removing it from the the left hand side does not change the
result, which allows us to conclude that:\
a∈P

E(θ α (a))η′∩E((α1 → α2)\(1→ 0))η′ *
[
a∈N

E(θ α (a))η′

which again contradicts the hypothesis. Therefore the result fol-
lows as well.

“⇒” direction: similarly to the “⇒” direction in the proof of
Lemma 3.13.

The check of the substitution {((α1 → α2) \ (1→ 0)) ∨ α/α} is
necessary to the soundness of the algorithm. To see it consider the
following relation (found by Nils Gesbert): ((α → β) ∧ α) ≤
((1 → 0) → β). If the check above were not performed, then
the algorithm would return that the relation holds, while it does
not. In order to see that it does not hold, consider a type t1 =
(1 → 0) ∧ γ, where γ is some variable. Clearly, there exists
an assignment η0 such that Jt1Kη0 is nonempty. Let η be another

assignment defined as η = η0 ⊕ {J¬t1Kη0/α,∅/β}. Next, consider
a function f ∈ J(α → β) ∧ (¬α → 1)Kη, that is, a function
that diverges (since JβKη = ∅) on values in JαKη (ie, J¬t1Kη).
Take f so that it converges on the values in J¬αKη (ie, Jt1Kη). This
implies that that f 6∈ J¬αKη: indeed, assume f ∈ J¬αKη, that is
f ∈ Jt1Kη0, then f ∈ J1 → 0Kη and, thus, f would diverge on all
values: contradiction (note that Jt1Kη0 6= ∅). Therefore f ∈ JαKη,
and then f ∈ J(α → β) ∧ αKη. Instead, by construction f does
not diverge on Jt1Kη0, which is a nonempty subset of J1 → 0Kη0.
Therefore f /∈ J(1→ 0)→ βKη.

If we remove the check of {((α1 → α2) \ (1→ 0)) ∨ α/α} from
the algorithm, then the answer of the algorithm would be positive
for the relation above since it would just check that all the following
four relations hold:8>>><>>>:

1→ 0 ≤ 0 or β ∧ α2 ≤ β (1)

1→ 0 ≤ (α{(α1 → α2) ∨ α/α}) or α2 ≤ β (2)

1→ 0 ≤ α1 or β ≤ β (3)

1→ 0 ≤ α1 ∨ (α{(α1 → α2) ∨ α/α}) (4)

where α1, α2 are two fresh variables. Clearly, these four relations
hold if (a superset of) J1→ 0K is assigned to α (see the substitution
{(α1 → α2) ∨ α/α}). However, if there exists a nonempty set s ⊆
J1→ 0Kη which is not assigned to α (eg, the non-empty set Jt1Kη0

defined before), then we should substitute for the occurrences of α
that are not at top-level by ((α1 → α2) \ ((1 → 0) ∧ γ)) ∨ α
rather than by (α1 → α2) ∨ α. Thus Case (2) and Case (4) would
not hold, and so does not the whole example. Therefore, we need
to consider the case that a nonempty subset of J1 → 0K is not
assigned to α, namely a strict subset of J1→ 0K is assigned to α.

Since the interpretation J1 → 0K is infinite, there are infinitely
many strict subsets to be considered. Assume there exists a strict
subset of J1 → 0K that is assigned to α, and there exists an
occurrence of α not at top level such that once it moves up to the
top level it occurs in the subtyping relation of the form in Lemma
3.14 (otherwise η(α)∩EfunD would be straightforwardly ignored).
Since 1→ 0 is contained in every arrow type, then either the strict
subset of J1 → 0K can be ignored if the occurrence is positive, or
the subtyping relation does not hold if the occurrence is negative
(see Case (2) above). Note that what the strict subset actually
is does not matter. Therefore, we just take the empty set into
consideration, that is the case of {((α1 → α2) \ (1→ 0)) ∨ α/α}.
Thus, only two cases — whether J1 → 0K is assigned to α or not
— are enough for Lemma 3.14.

As an aside notice that both lemmas above would not hold if the
variable α in their statements occurred negated at toplevel, whence
the necessity of Step 4.

Finally, Step 6 is justified by the two following lemmas in whose
proofs the hypothesis of convexity plays a crucial role:

Lemma 3.15. Let (D, J.K) be a convex set-theoretic interpretation
and P,N two finite subsets of Aprod. Then:

∀η.
\
a∈P

E(a)η ⊆
[
a∈N

E(a)η ⇔

∀N ′ ⊆ N .

8><>:
∀η.J

V
t1×t2∈P t1 ∧

V
t1×t2∈N′ ¬t1Kη = ∅

∨
∀η.J

V
t1×t2∈P t2 ∧

V
t1×t2∈N\N′ ¬t2Kη = ∅

(with the convention
T
a∈∅ E(a)η = EprodD).

Proof. The Lemma above is a straightforward application of the
convexity property and of Lemma 6.4 in [11]. In particular thanks
to the latter it is possible to deduce the following equivalence

∀η.
\
a∈P

E(a)η ⊆
[
a∈N

E(a)η ⇔

∀η.∀N ′ ⊆ N .

8><>:
J
V
t1×t2∈P t1 ∧

V
t1×t2∈N′ ¬t1Kη = ∅

∨
J
V
t1×t2∈P t2 ∧

V
t1×t2∈N\N′ ¬t2Kη = ∅

The result is a straightforward application of the convexity prop-
erty.

Lemma 3.16. Let (D, J.K) be a convex set-theoretic interpretation
and P,N be two finite subsets of Afun. Then:

∀η.
\
a∈P

E(a)η ⊆
[
a∈N

E(a)η ⇔

∃(t0→s0)∈N . ∀P ′⊆P .

8>>>>><>>>>>:

∀η.Jt0 \ (
W
t→s∈P ′ t)Kη = ∅

∨8><>:
P 6= P ′

∧
∀η.J(

V
t→s∈P\P ′ s) \ s0Kη = ∅

(with the convention
T
a∈∅ E(a)η = EfunD)

Proof. Similarly to previous lemma, the proof can be obtained by a
straightforward application of Lemma 6.7 in [11] and the convexity
property.

3.4 Algorithm
The formalization of the subtyping algorithm is done via notion
of simulation that we borrow from [11] and extend to account
for type variables and type instantiation. We use θ to range over
(syntactic) substitutions, that is, partial functions from V to T (we
reserve the meta-variable σ we introduced in Section 2 for ground
substitutions).

Definition 3.17. Given a type t ∈ T , the application of a substitu-
tion θ to t is defined as follows:

bθ = b

(t1 × t2)θ = (t1θ)× (t2θ)

(t1 → t2)θ = (t1θ)→ (t2θ)

(t1 ∨ t2)θ = (t1θ) ∨ (t2θ)

(¬t)θ = ¬(tθ)

0θ = 0

αθ = θ(α) if α ∈ dom(θ)

αθ = α if α 6∈ dom(θ)

This definition is naturally extended to normal forms by apply-
ing the substitution to each type in the sets that form the normal
form. It is then used to define the set of instances of a type.

Definition 3.18 (Instances). Given a type t ∈ T , we define [t]≈,
the set of instances of t as:

[t]≈
def
= {s | ∃θ : V → T . tθ = s}

Definition 3.19 (Simulation). Let S be an arbitrary set of normal
forms. We define another set of normal forms ES as

{τ | ∀s∈[τ]≈. ∀u∈U.∀(P,N)∈N (s). (P⊆Au ⇒ CP,N∩Au
u)}

where:

CP,Nbasic

def
=
\
b∈P

B(b) ⊆
[

b∈N∩Abasic

B(b)

CP,Nprod

def
= ∀N ′⊆N.

8><>:
N (
V
t1×t2∈P t1 ∧

V
t1×t2∈N′ ¬t1) ∈ S

∨
N (
V
t1×t2∈P t2 ∧

V
t1×t2∈N\N′¬t2) ∈ S

CP,Nfun

def
= ∃t0 → s0 ∈ N . ∀P ′ ⊆ P .8>>>>><>>>>>:

N (t0 ∧
V
t→s∈P ′ ¬t) ∈ S

∨8><>:
P 6= P ′

∧
N ((¬s0) ∧

V
t→s∈P\P ′ s) ∈ S

We say that S is a simulation if:

S ⊆ ES

The notion of simulation is at the basis of our subtyping al-
gorithm. In what follows we show that simulations soundly and
completely characterize the set of empty types of a well-founded
convex model. More precisely, we show that every type in a simu-
lation is empty (soundness) and that the set of all empty types is a
simulation (completeness), actually, the largest simulation.

Lemma 3.20. Let J K : T →P(D)V →P(D) be a set-theoretic
interpretation and t a type. If ∀η ∈ P(D)V . JtKη = ∅, then
∀θ : V → T . ∀η ∈P(D)V . JtθKη = ∅

Proof. Suppose there exists θ : V → T and η ∈P(D)V such that
JtθKη 6= ∅. Then we consider the semantic assignment η′ such that

∀α ∈ var(t) . η′(α) = Jθ(α)Kη

Thus, we have JtKη′ = JtθKη 6= ∅. It contradicts that ∀η ∈
P(D)V . JtKη = ∅. Therefore, the result follows.

Lemma 3.20 shows that if a type is empty, then all its syntac-
tic instances are empty. In particular if a type is empty we can
rename all its type variables without changing any property. So
when working with empty types or, equivalently, with subtyping
relations, types can be considered equivalent modulo α-renaming
(ie, the renaming of type variables).

The first result we prove is that every simulation contains only
empty types.

Theorem 3.21 (Soundness). Let J K : T → P(D)V → P(D)
be a convex structural interpretation and S a simulation. Then for
all τ ∈ S , we have ∀η ∈P(D)V . JτKη = ∅

Proof. Consider a type τ ∈ S . Then ∀η ∈ P(D)V . JτKη = ∅
holds, if and only if

∀d ∈ D . ∀η ∈P(D)V . d /∈ JτKη

Let us take d ∈ D and η ∈ P(D)V . Since the interpretation is
structural we can prove this property by induction on d. Since S is
a simulation, we also have τ ∈ ES , that is:

∀s∈[τ]≈ .∀u∈U . ∀(P,N)∈N (s). (P⊆Au ⇒ CP,N∩Au
u) (18)

where the conditions CP,Nu are the same as those in Defini-
tion 3.19. The result then will follow from proving a statement

stronger than the one of the lemma, that is, if τ∈ES , then
∀d∈D.∀η∈P(D)V .d /∈ JτKη. Or, equivalently:

∀s ∈ [τ]≈ . ∀u ∈ U ′ . ∀(P,N) ∈ N (s) .
(P⊆Au ⇒ CP,N∩Au

u)⇒ d /∈
T
a∈P JaKη \

S
a∈N JaKη

(19)
Let us take s ∈ [τ]≈, (P,N) ∈ N (s) and u be the kind of d. Let
us consider the possible cases for the an atom a ∈ P . Consider first
a /∈ V: if a ∈ A \ Au, then clearly d /∈ JaKη. If a ∈ V then we
know (by Lemma 3.11 if u = basic, Lemma 3.13 if u = prod, and
Lemma 3.14 if u = fun) that (19) holds if and only if it holds for
an s ∈ [τ]≈ in which the variable a 6∈ P . As a consequence if we
can prove the results P ⊆ Au then (19) holds.

So assume that P ⊆ Au. Applying (18), we obtain that
CP,N∩Au
u holds. It remains to prove that:

d /∈
\
a∈P

JaKη \
[
a∈N

JaKη

u = basic, d = c. The condition CP,N∩Abasic
basic is:

∀η ∈P(D)V .
\
b∈P

B(b) ⊆
[

b∈N∩Abasic

B(b)

As a consequence, we get:

d /∈
\
a∈P

JaKη \
[

a∈N∩Abasic

JaKη

and a fortiori:

d /∈
\
a∈P

JaKη \ (
[

a∈N∩Abasic

JaKη ∪
[

a∈N\Abasic

JaKη)

which yields the result.

u = prod, d = (d1, d2). The condition CP,N∩Au
u is:

∀N ′ ⊆ N∩Aprod .

8><>:
N (
V
t1×t2∈P t1 ∧

V
t1×t2∈N′ ¬t1) ∈ S

∨
N (
V
t1×t2∈P t2 ∧

V
t1×t2∈N\N′ ¬t2) ∈ S

For each N ′, we apply the induction hypothesis to d1 and to d2.
We get:

d1 /∈J
^

t1×t2∈P

t1 ∧
^

t1×t2∈N′

¬t1Kη ∨ d2 /∈J
^

t1×t2∈P

t2 ∧
^

t1×t2∈N\N′

¬t2Kη

That is:

d /∈ (
\

t1×t2∈P

Jt1Kη \
[

t1×t2∈N′

Jt1Kη)×(
\

t1×t2∈P

Jt2Kη \
[

t1×t2∈N\N′

Jt2Kη)

Since to Jt1Kη×Jt2Kη = Jt1×t2Kη, then we get:

d /∈
\
a∈P

JaKη \
[

a∈N∩Aprod

JaKη

and a fortiori:

d /∈
\
a∈P

JaKη \
[
a∈N

JaKη

u = fun, d = {(d1, d
′
1), . . . , (dn, d

′
n)}. The condition CP,N∩Au

u

states that there exists t0 → s0 ∈ N such that, for all P ′ ⊆ P

N (t0 ∧
^

t→s∈P ′

¬t) ∈ S ∨

8><>:
P ′ 6= P

∧
N ((¬s0) ∧

V
t→s∈P\P ′ s) ∈ S

Applying the induction hypothesis to the di and d′i (note that if
d′i = Ω, then d′i /∈ JτKη is trivial for all τ):

di /∈ Jt0 ∧
^

t→s∈P ′

¬tKη ∨

8><>:
P 6= P ′

∧
d′i /∈ J(¬s0) ∧

V
t→s∈P\P ′ sKη

Assume that ∀i . (di ∈ Jt0Kη ⇒ d′i ∈ Js0Kη). Then we have
d ∈ Jt0 → s0Kη.
Otherwise, let us consider i such that di ∈ Jt0Kη and d′i /∈ Js0Kη.
The formula above gives for any P ′ ⊆ P :

(di ∈
[

t→s∈P ′

JtKη) ∨ (P ′ 6= P ∧ d′i ∈ {Ω} ∪
[

t→s∈P\P ′

J¬sKη)

Let’s take P ′ = {t → s ∈ P | di /∈ JtKη}. We have
di /∈

S
t→s∈P ′JtKη, and thus P ′ 6= P and d′i ∈ {Ω} ∪S

t→s∈P\P ′J¬sKη. We can thus find t → s ∈ P \ P ′ such that
d′i /∈ JsKη,and because t → s /∈ P ′, we also have di ∈ JtKη. We
have thus proved that d /∈ Jt→ sKη for some t→ s ∈ P .
In both cases, we get:

d /∈
\
a∈P

JaKη \
[

a∈N∩Afun

JaKη

and a fortiori
d /∈

\
a∈P

JaKη \
[
a∈N

JaKη

The intuition of the simulation is that if we consider the state-
ments of Lemmas 3.15 and 3.16 as if they were rewriting rules
(from right to left), then ES contains all the types that we can de-
duce to be empty in one step reduction when we suppose that the
types in S are empty. A simulation is thus a set that is already
saturated with respect to such a rewriting. In particular, if we con-
sider the statements of Lemmas 3.15 and 3.16 as inference rules
for determining when a type is equal to 0, then ES is the set of
immediate consequences of S , and a simulation is a self-justifying
set, that is a co-inductive proof of the fact that all its elements are
equal to 0.

Completeness derives straightforwardly from the construction
of simulation and the lemmas we proved about it.

Theorem 3.22. Let J K : T → P(D)V → P(D) be a convex
set-theoretic interpretation. We define a set of normal forms S by:

S
def
= {τ | ∀η ∈P(D)V . JτKη = ∅}

Then:
ES = {τ | ∀η ∈P(D)V . E(τ)η = ∅}

Proof. Immediate consequence of Lemmas 3.15, 3.16 and 3.20.

Corollary 3.23. Let J K : T → P(D)V → P(D) be a convex
structural interpretation. Define as above S = {τ | ∀η ∈
P(D)V . E(τ)η = ∅}. Then J K is a model if and only if
S = ES .

This corollary has two implications: first, that the condition
for a set-theoretic interpretation to be a model depends only on
the subtyping relation it induces; second, that the simulation that
contains all the empty types is the largest simulation. In particular
this second implication entails the following corollary.

Corollary 3.24 (Completeness). Let J K : T → P(D)V →
P(D) be a well-formed convex model and s and t two types.
Then s≤t if and only if there exists a simulation S such that
N (s∧¬t) ∈ S .

The corollary states that to check whether s≤twe have to check
whether there exists a simulation that contains the normal form,
denoted by τ0, of s∧¬t. Thus a simple subtyping algorithm is to
use Definition 3.19 as a set of saturation rules: we start from τ0
and try to saturate it. At each step of saturation we add just the
normal forms in which we eliminated top-level variables according
to Lemmas 3.10, 3.11, 3.13, and 3.14. Because of the presence
of “or” in the definition, the algorithm follows different branches
until it reaches a simulation (in which case it stops with success)
or it adds a non-empty type (in which case the whole branch is
abandoned).

All results we stated so far have never used the regularity of
types. The theory holds also for non regular types and the algorithm
described above is a sound and complete procedure to check their
inclusion. The only result that needs regularity is decidability.

3.5 Decidability
As anticipated in the related work section, the subtyping relation on
polymorphic regular types is decidable in EXPTIME. 8 We prove
decidability but the result on complexity is due to Gesbert et al. [15]
who, as we already hinted, gave a linear encoding of the relation
presented here in their variant of the µ-calculus, for which they
have an EXPTIME solver [14], thus obtaining a subtyping decision
algorithm that is EXPTIME 9 (in doing so they also spotted a subtle
error in the original definition of our subtyping algorithm).

To prove decidability we just prove that our algorithm termi-
nates. We do so by first showing that it terminates on finite trees
(which is the crux of the problem since the only potential source
of loop are the substitutions of free variables performed in Step 5)
and then show that when we switch to regular trees the algorithm
always ends up on memoized terms (see Appendix A).

More precisely, the substitutions of free variables performed in
step 5 may be problematic since not only they increase the size of
the terms but they also introduce fresh variables that could later
surface at top level thus triggering an infinite suite of substitutions.
This is not the case for finite tree types for which the procedure
always terminates (see Appendix A, in particular Lemma A.2). The
intuition underlying this result is that if we follow the evolution of
an occurrence of a variable in the algorithm, then this occurrence
can generate only finite types. Furthermore, instantiation adds only
a finite number of distinct new atoms (ie, γ1×γ2 and γ1→γ2), and
the equivalence of empty types modulo α-renaming implies that
we need only a finite number of fresh variables. All this suggests
that the algorithms should terminate for regular types, as well: in
passing from finite trees to finitely many distinct subtrees we do not
touch at the source of possible divergence. And indeed this is the
case since we can show that the algorithm does not touch modify
the form of the types.

3.6 Convex Models
The last step of our development is to prove that there exists at least
one set-theoretical model that is convex. From a practical point of
view this step is not necessary since one can always take the work
we did so far as a syntactic definition of the subtyping relation.
However, the mathematical support makes our theory general and
applicable to several different domains (eg, Gesbert et al’s starting

8 Strictly speaking we cannot speak of the subtyping relation in general, but
just of the subtyping relation induced by a particular model. Here we intend
the subtyping relation for the model used in the proof of Corollary 3.32,
that is, of the universal model of [11] with a set of basic types whose
containment relation is decidable in EXPTIME. This coincides with the
relation studied in [15].
9 This is also a lower bound for the complexity since the subtyping prob-
lem for ground regular types (without arrows) is known to be EXPTIME-
complete.

point and early attempts relied on this result), so finding a model is
not done just for the sake of the theory. As it turns out, there actu-
ally exist a lot of convex models since every model for ground types
with infinite denotations is convex. So to define a convex model it
just suffices to take any model defined in [11] and straightforwardly
modify the interpretation of basic and singleton types (more gener-
ally, of all indivisible types10) so they have infinite denotations.

Definition 3.25 (Infinite support). A model (D, JK) is with infinite
support if for every ground type t and assignment η, if JtKη 6= ∅,
then JtKη is an infinite set.

What we want to prove then is the following theorem.

Theorem 3.26. Every well-founded model with infinite support is
convex.

The proof of this theorem is quite technical—it is the proof
that required us most effort—and proceeds in three logical steps.
First, we prove that the theorem holds when all types at issue do
not contain any product or arrow type. In other words, we prove
that equation (8) holds for J.K with infinite support and where all
ti’s are Boolean combinations of type variables and basic types.
This is the key step in which we use the hypothesis of infinite
support, since in the proof—done by contradiction—we need to
pick an unbounded number of elements from our basic types in
order to build a counterexample that proves the result. Second, we
extend the previous proof to any type ti that contains finitely many
applications of the product constructor. In other terms, we prove
the result for any (possibly infinite) type, provided that recursion
traverses just arrow types, but not product types. As in the first
case, the proof builds some particular elements of the domain. In
the presence of type constructors the elements are built inductively.
This is possible since products are not recursive, while for arrows it
is always possible to pick a fresh appropriate element that resides in
that arrow since every arrow type contains the (indivisible) closed
type 1 → 0. Third, and last, we use the previous result and the
well-foundedness of the model to show that the result holds for all
types, that is, also for types in which recursion traverses a product
type. More precisely, we prove that if we assume that the result
does not hold for some infinite product type then it is possible to
build a finite product type (actually, a finite expansion of the infinite
type) that disproves equation (8), contradicting what is stated in our
second step. Well-foundedness of the model allows us to build this
finite type by induction on the elements denoted by the infinite one.

More precisely, we proceed as follows.

Definition 3.27 (Positive and negative occurrences). Let t ∈ T
and t′ be a tree that occurs in t. An occurrence of t′ in t is a negative
occurrence of t if on the path going from the root of the occurrence
to the root of t there is an odd number of ¬ nodes. It is a positive
occurrence otherwise.

For instance if t = ¬(α×¬β) then β is a positive occurrence of
t while α and α×¬β are negative ones.

Definition 3.28. We use T fp to denote the set of types with finite
products, that is, the set of all types in which every infinite branch
contains a finite number of occurrences of the × constructor.

The first two steps of our proof are proved simultaneously in the
following lemma.

10 Our system has a very peculiar indivisible type: 1→0, the type of the
functions that diverge on all arguments. This can be handled by adding a
fixed infinite set of fresh elements of the domain to the interpretation of
every arrow type (cf. the proof of Corollary 3.32).

Lemma 3.29. Let (D, J K) be a well-founded model with infinite
support, and ti ∈ T fp for i ∈ [1..n]. Then

∀η . Jt1Kη = ∅ ∨ . . . ∨ JtnKη = ∅⇔
∀η . Jt1Kη = ∅ ∨ . . . ∨ ∀η . JtnKη = ∅

Proof. The ⇐ direction is trivial. For the other direction we pro-
ceed as follows. If at most one type is not ground, then the result is
trivial. If var(ti) ∩ var(tj) = ∅ for any two types ti and tj , that
is, the sets of variables occurring in the types are pairwise disjoint,
then the result follows since there is no correlation between the dif-
ferent interpretations. Assume that

S
1≤i<j≤n(var(ti)∩var(tj)) 6=

∅. For convenience, we write CV for the above set of common
variables. Suppose by contradiction that

∀η . Jt1Kη = ∅ ∨ . . . ∨ ∀η . JtnKη = ∅ (20)

does not hold. Then for each i ∈ [1..n] there exists ηi such that
JtiKηi 6= ∅. If under the hypothesis that (20) does not hold we
can find another assignment η′ such that JtiKη′ 6= ∅ for every
i ∈ [1..n], then this contradicts the hypothesis of the lemma and
the result follows. We proceed by a case analysis on all possible
combinations of the ti’s: under the hypothesis of existence of ηi
such that JtiKη′ 6= ∅, we show how to build the η′ at issue.

Case 1: Each ti is a single normal form, that is, ti ∈ Pf (A ∪
V) ×Pf (A ∪ V). Recall that we want to show that it is possible
to construct an assignment of the common variables such that
all the ti’s have non empty denotation. To do that we build the
assignment for each variable step by step, by considering one ti at
a time, and adding to the interpretation of the common variables
one element after one element. In order to produce for a given
type ti an assignment that does not interfere with the interpretation
defined for a different tj , we keep track in a set s0 of the elements
of the domain D we use during the construction. Since we start
with an empty s0 and we add to it an element at a time, then at
each step s0 will be finite and, thanks to the property of infinite
support, it will always be possible to choose some element of the
domain that we need to produce our assignment and that is not in
s0. More precisely, we construct a set s0 such that s0 ∩ Jt′iKηi 6= ∅
for each i ∈ [1..n] where t′i is obtained from ti by eliminating
the top-level variables. Meanwhile, considering each variable α ∈S
i∈{1,...,n} var(ti) (clearly including CV), we also construct a set

sα which is initialized as an empty set and that at the end of this
construction is used to define η′(α).

Subcase 1: N (ti) =
V
j∈J1 b

1
j ∧

V
j∈J2 ¬b

2
j ∧

V
j∈J3 α

1
j ∧V

j∈J4 ¬α
2
j , where Ji’s are finite sets. The construction is as

follows:
If ∃d . d ∈ JtiKηi ∧ d /∈ s0, then set s0 = s0 ∪ {d}. For each
variableα ∈ var(ti), ifα is positive then sα = sα∪{d}. If such
a d does not exist, then ti is not ground, since JtiKηi ⊆ s0 and
s0 is finite. AsN (ti) =

V
j∈J1 b

1
j ∧
V
j∈J2 ¬b

2
j ∧
V
j∈J3 α

1
j ∧V

j∈J4 ¬α
2
j , then either J1 ∪ J2 = ∅ and then we chose any

element d′ such that d′ 6∈ s0, or J
V
j∈J1 b

1
j ∧

V
j∈J2 ¬b

2
jKηi

is non empty (because Jt′iKηi 6= ∅) and infinite (since the type
at issue is closed and J.K is with infinite support), and then
∃d′ . d′ ∈ J

V
j∈J1 b

1
j ∧
V
j∈J2 ¬b

2
jKηi ∧ d′ /∈ s0. In both cases

we set s0 = s0 ∪ {d′}, and for each variable α ∈ var(ti), if α
is positive we set sα = sα ∪ {d}.

Subcase 2: N (ti) =
V
j∈J1(t1j × t2j) ∧

V
j∈J2 ¬(t3j × t4j) ∧V

j∈J3 α
1
j ∧

V
j∈J4 ¬α

2
j , where Ji’s are finite sets. If |J1| =

|J2| = 0, then we are in the case of Subcase 1. If |J1| = 0 and
|J2| 6= 0, then we can do the construction as Subcase 1 since
C ⊆ J

V
j∈J2 ¬(t3j × t4j)Kηi. Suppose then that |J1| > 0: since

we have ^
j∈J1

(t1j × t2j) = (
^
j∈J1

t1j ×
^
j∈J1

t2j)

then without loss of generality we can assume that |J1| = 1,
that is there is a single toplevel non negated product type. So
we are considering the specific case for

N (ti) = (t′1 × t′2) ∧
^
j∈J3

α1
j ∧

^
j∈J4

¬α2
j .

What we do next is to build a particular element of the domain
by exploring (t′1×t′2) in a top-down way and stopping when we
arrive to a basic type, or a variable, or an arrow type. So even
though (t′1 × t′2) may be infinite (since it may contain an ar-
row type of infinite depth) the exploration will always terminate
(unions, negations, and products always are finite: in particular
products are finite because by hypothesis we are considering
only types in T fp). It can then be defined recursively in terms of
two mutually recursive explorations that return different results
according to whether the exploration step has already crossed
an even or an odd number of negations. So let t1 be a type dif-
ferent from 0 and t2 a type different from 1, we define the ex-
plore pos(t1) and explore neg(t2) procedures that, intuitively,
explore the syntax tree for positive and negative occurrences,
respectively, and which are defined as follows:

explore pos(t) case t of:
1. t = t1 × t2. Let di be the result of explore pos(ti) (for
i = 1, 2): since t is not empty so must t1 and t2 be; we add
both d1 and d2 to s0 and return d = (d1, d2).

2. t = t1 → t2: we can choose any element d ∈ 1 → 0 (we
need not to consider t1, t2) and return it.

3. t = 0: impossible.
4. t = 1: return any element d 6∈ s0.
5. t = b: we can choose any element d ∈ JbKηi and d /∈ s0

and return it.
6. t = α: we can choose any element d /∈ s0, set sα =
sα ∪ {d} and return d.

7. t = t1 ∨ t2: one of the two types is not empty. If it is t1,
then call explore pos(t1). It yields d1 /∈ s0 and we return
it. Otherwise we call explore pos(t2) and return its result.

8. t = t1∧t2, then put it in disjunctive normal form. Since it is
not empty, then then one of its single normal forms must be
non empty, as well: repeat for this non empty single normal
form the construction of the corresponding subcase in this
proof and return the d constructed by it.

9. t = ¬t′, then we call explore neg(t′) add its result to s0

and return it.

explore neg(t), case t of:
1. t = t1 × t2: we can choose any element d ∈ C and d /∈ s0

and return it.
2. t = t1 → t2: we can choose any element d ∈ C and d /∈ s0

and return it.
3. t = 0: return any element d 6∈ s0.
4. t = 1: impossible.
5. t = b: we can choose any element d /∈ JbKηi and d /∈ s0

and return it.
6. t = α: we can choose any element d /∈ s0 (which clearly

implies that d /∈ sα), and return it.
7. t = (t1 ∨ t2): call explore pos(¬t1 ∧ ¬t2) and return it.
8. t = (t1 ∧ t2): since this intersection is not 1 then one of the

two types is not 1. If it is t1 then call explore neg(t1) and
return it else return explore neg(t2).

9. t = ¬t′, then we call explore pos(t′) and return it.

Let d = explore pos(t′1 × t′2). Since Jt′1 × t′2Kηi 6= ∅, then
the call is well defined. Then set s0 = s0 ∪ {d} and sα1

j
=

sα1
j
∪ {d} for all j ∈ J3.

Finally there is the case in which also |J2| > 0, that is, there
exists at least one toplevel negative product type. Since we have

(t1 × t2) ∧ ¬(t3 × t4) = (t1\t3 × t2) ∨ (t1 × t2\t4)

then we can do the construction as above either for (t1\t3×t2)
or (t1 × t2 \ t4): multiple negative product types are treated in
the same way.

Subcase 3: N (ti) =
V
j∈J1(t1j → t2j) ∧

V
j∈J2 ¬(t3j → t4j) ∧V

j∈J3 α
1
j ∧

V
j∈J4 ¬α

2
j , where Ji’s are finite sets. If |J1| =

|J2| = 0, then we are in the case of Subcase 1. If |J1| = 0
and |J2| 6= 0, then we can do the construction as Subcase 1
since C ⊆ J

V
j∈J2 ¬(t3j → t4j)Kηi. Therefore let us suppose

that |J1| 6= 0. The remaining two cases, that is, |J2| = 0 and
|J2| 6= 0, deserve to be treated separately:
|J2| = 0 In this case we have at toplevel an intersection of

arrows and no negated arrow. Notice that for all j ∈ J1

we have 1→0 ≤ t1j→t2j , therefore we deduce that 1→0 ≤V
j∈J1(t1j → t2j). Since 1→0 is a closed type (actually,

a indivisible one) and J.K is with infinite support, then the
denotation of 1→0 contains infinitely many elements. Since
s0 is finite, then it is possible to choose a d in the denotation
of 1→0 such that d 6∈ s0. Once we have chosen such a
d, we proceed as before, namely, we set s0 = s0 ∪ {d}
and similarly add d to sα for every variable α occurring
positively at the top-level of ti (ie, for all α1

j with j ∈ J3).
|J2| 6= 0 This case cannot be solved as for |J2| = 0, insofar

as we can no longer find a closed type that is contained inV
j∈J1(t1j → t2j) ∧

V
j∈J2 ¬(t3j → t4j): since we have at

least one negated arrow type, then 1 → 0 is no longer con-
tained in the intersection. The only solution is then to build
a particular element in this intersection in the same way we
did for product types in Subcase 2. Unfortunately, contrary
to the case of product types, we cannot work directly on the
interpretation function J.K since we do not know its defini-
tion on arrow types. However, since we are in a model, we
know its behavior with respect to its associated extensional
interpretation EJ K, namely, that for every assignment η and
type t it holds JtKη = ∅ ⇐⇒ E(t)η = ∅. Since we sup-
posed that there exist n assignments ηi such that JtiKηi 6= ∅
(for i ∈ [1..n]), then the model condition implies that for
these same assignments E(ti)ηi 6= ∅. If from this we can
prove that there exists an assignment η′ such that for all
i ∈ [1..n], E(ti)η

′ 6= ∅, then by the model condition again
we can deduce that for all i ∈ [1..n], JtiKη′ 6= ∅, that is our
thesis.11

Consider
V
j∈J1(t1j → t2j) ∧

V
j∈J2 ¬(t3j → t4j). By

hypothesis we have E(
V
j∈J1(t1j → t2j) ∧

V
j∈J2 ¬(t3j →

t4j))ηi 6= ∅. By definition of E this is equivalent to\
j∈J1

(Jt1jKηi → Jt2jKηi) ∩
\
j∈J2

¬(Jt3jKηi → Jt4jKηi) 6= ∅,

11 As an aside, notice we could have used this technique also in other
cases and by the very definition of E the proof would not have changed
(apart from an initial reference to E at the beginning of each subcase as
the one preceding this footnote). Actually, strictly speaking, we already
silently used this technique in the case of products since the hypothesis
of well-foundedness of model does not state that Jt1 × t2Kη is equal to
Jt1Kη × Jt2Kη (an assumption we implicitly did all the proof long) but just
that induces the same subtyping relation as a model in which that equality
holds. We preferred not to further complicate the presentation of that case.

or equivalently,\
j∈J1

P(Jt1jKηi × Jt2jKηi)∩
\
j∈J2

¬P(Jt3jKηi × Jt4jKηi) 6= ∅

We want to construct an assignment η′ and a set of pairs
such that this set of pairs is included in the intersection
above. We then use this set of pairs to define our assignment
η′. According to Lemma 6.8 in [11], the intersection above
is not empty if and only if

∀j2 ∈ J2 . ∃J ′ ⊆ J1 .8>>>><>>>>:
Jt3j2 \

W
j1∈J′ t

1
j1Kηi 6= ∅ if J1 = J ′8><>:

Jt3j2 \
W
j1∈J′ t

1
j1Kηi 6= ∅

∧
J
V
j1∈J1\J′ t

2
j1 \ t

4
j2Kηi 6= ∅

otherwise

Therefore, consider each j2 ∈ J2 and let Jj2 denote a sub-
set J ′ ⊆ J1 for which the property above holds. Then we
proceed as we did in the Subcase 2 and use explore pos to
build two elements d1

j2 and d2
j2 . More precisely, if Jj2 6=

J1 then we set d1
j2 = explore pos(t3j2 \

W
j1∈Jj2 t

1
j1)

and d2
j2 = explore pos(

V
j1∈J1\Jj2 t

2
j1 \ t

4
j2); if Jj2 =

J1, then we set d1
j2 = explore pos(t3j2 \

W
j1∈J1 t

1
j1)

and d2
j2 = explore pos(¬t4j2) (actually, any type is ok

provided that we pick an element not in s0). We add
d1
j2 , d

2
j2 , and (d1

j2 , d
2
j2) to s0. Now consider the various

pairs of the form (d1
j2 , d

2
j2) for j2 ∈ J2. Since we chose

d1
j2 6∈ J

W
j1∈Jj2 t

1
j1Kηi, then (d1

j2 , d
2
j2) ∈ Jt1j → t2jK

for all j ∈ J1, and therefore it belongs to the intersec-
tion

T
j∈J1Jt1j → t2jKηi. Furthermore, by construction each

(d1
j2 , d

2
j2) 6∈ Jt3j2 → t4j2Kηi. Therefore the set of pairs

{(d1
j2 , d

2
j2) | j2 ∈ J2} is the element we were looking for:

we add {(d1
j2 , d

2
j2) | j2 ∈ J2} to s0 and to each sα1

j
for

j ∈ J3.
Subcase 4: The previous subcases cover all the case in which

all the literals of the single normal form at issue are on the
same constructor (all basic or product or arrow types). So
the only remaining subcase is the one in which there are
literals with different constructors. This is quite straightfor-
ward because it is always possible to reduce the problem to
one of the previous cases. More precisely
1. The case in which there are two positive literals with

different constructors is impossible since the type would
be empty (eg the intersection of a basic and a product
type is always empty), contradicting our hypothesis.

2. Suppose ti contains some positive literals all on the
same constructor. Then we can erase all the negative
literals with a different constructor since they contain
all the positive ones, thus reducing the problem to one
of the previous subcases.

3. Suppose that ti contains no positive literal on any con-
structor, that is it is formed only by negated literals on
some constructors. Since the type is not empty, then ei-
ther the union of all negated basic types does not cover
C , or the union of all negated product types does not
cover 1×1, or the union of all negated arrow types does
not cover 0→ 1. In the first case take as d any element
of C that is neither in s0 nor in the union of all negated
basic types. In the second case, keep just the negated
product types, intersect them with 1× 1 and proceed as
in Subcase 2. In the third case keep just the negated ar-

row types, intersect them with 0→ 1 and proceed as in
Subcase 3.

At the end of this construction we define a new semantic assign-
ment η′ as follows η′ = {sα/α, . . .} for α ∈

S
i∈{1,...,n} var(ti).

By construction of η′ we have JtiKη′ 6= ∅ for each i ∈ [1..n],
which contradicts the premise.

Case 2: There exists i ∈ {1, . . . , n} such that ti = t1i ∨ . . .∨ tmi
while tj is a single normal form for all j 6= i.
Form Definition 3.2, we have

JtiKη = ∅⇔ Jt1i Kη = ∅ ∧ . . . ∧ Jtmi Kη = ∅
Since

∀η ∈P(D)V . Jt1Kη = ∅ ∨ . . . ∨ JtiKη = ∅ ∨ . . . ∨ JtnKη = ∅

Then consider each tji , we have

∀η ∈P(D)V . Jt1Kη = ∅ ∨ . . . ∨ Jtji Kη = ∅ ∨ . . . ∨ JtnKη = ∅
By Case 1, we have

∀η ∈P(D)V . Jt1Kη = ∅ ∨ . . . ∨ ∀η ∈P(D)V . Jtji Kη = ∅
∨ . . . ∨ ∀η ∈P(D)V . JtnKη = ∅

If there exists one type tk such that ∀η ∈ P(D)V . JtkKη =
∅ holds, where k ∈ {1, . . . , n} \ {i}, then the result follows.
Otherwise, we have

∀η ∈P(D)V . Jt1i Kη = ∅ ∧ . . . ∧ ∀η ∈P(D)V . Jtmi Kη = ∅
⇔∀η ∈P(D)V . Jt1i Kη = ∅ ∧ . . . ∧ Jtmi Kη = ∅
⇔∀η ∈P(D)V . JtiKη = ∅
Therefore the result follows.

Other cases: Similarly to Case 2. We decompose one of the types
(assume t1), then by Case 2, either one of the other types is empty,
or all the decompositions of t1 are empty, then t1 is empty.

Finally, it just remains to prove Theorem 3.26, that is to say, that
Lemma 3.29 above holds also for ti’s with recursive products. This
result requires the following preliminary lemma.

Lemma 3.30. Let J K be a well-founded model with infinite support
and t a type (which may thus contain infinite product types). If there
exists a value d and an assignment η such that d ∈ JtKη, then there
exists a type tfp ∈ T fp such that d ∈ JtfpKη and for all assignment
η if JtKη = ∅, then JtfpKη = ∅.

Proof. Since the model is well founded then by Definition 3.7 we
can use a well-founded preorder I on the elements d of the domain
D. Furthermore, since our types are regular then there are just
finitely many distinct subtrees of t that are product types. So we
proceed by induction on I and the number n of distinct subtrees
of t of the form t1 × t2 that do not belong to T fp. If n = 0,
then t already belongs to T fp. Suppose that t = t1 × t2 6∈ T fp.
Then d = (d1, d2). By induction hypothesis on d1, d2, there exist
tfp1 , t

fp
2 ∈ T fp such that di ∈ Jtfpi Kη and for all η, JtiKη = ∅ ⇒

Jtfpi Kη = ∅, for i = 1, 2. Then we take tfp = tfp1 × t
fp
2 and the result

follows. Finally if the product at issue is not at toplevel then we can
choose any (recursive) product subtree in t and we have two cases.
Either the product does not “participate” to the non emptiness of
JtKη (eg, it occurs in a union addendum that is empty) and then it
can be replaced by any type. Or we can decompose d to arrive to a
d′ that corresponds to the product subtree at issue, and then apply
the induction hypothesis as above. In both cases we removed one
of the distinct product subtrees that did not belong to T fp and the
result follows by induction on n.

While the statement of the previous lemma may, at first sight,
seem obscure, its meaning is rather obvious. It states that in a
well-founded model (ie, a model in which all the values are finite)
whenever a recursive (product) type contains some value, then we
can find a finite expansion of this type that contains the same value;
furthermore, if the recursive type is empty in a given assignment,
then also its finite expansion is empty in that assignment. This
immediately yields our final result.

Lemma 3.31. Let (D, J K) be a well-founded model with infinite
support, and ti for i ∈ [1..n]. Then

∀η . Jt1Kη = ∅ ∨ . . . ∨ JtnKη = ∅⇔
∀η . Jt1Kη = ∅ ∨ . . . ∨ ∀η . JtnKη = ∅

Proof. By Lemma 3.29 we know that if ti ∈ T fp for i ∈ [1..n] then
the Lemma holds. Suppose by contradiction, that the result does not
hold. Then there exists η′ such that JtiKη′ 6= ∅ for all i ∈ [1..n].
Let di ∈ JtiKη′, we can apply Lemma 3.30 and for all i ∈ [1..n]
find t′i ∈ T fp such that ∀η . Jt′1Kη = ∅ ∨ . . . ∨ Jt′nKη = ∅ and
di ∈ Jt′iKη′: impossible by Lemma 3.29.

Corollary 3.32 (Convex model). There exists a convex model.

Proof. It suffices to take any model for the ground types with an
infinite domain (see [9] for examples) and interpret indivisible
types into infinite sets. For instance, imagine we have n basic types
b1, ..., bn and suppose, for simplicity, that they are pairwise disjoint.
If we use the “universal model” of [11] it yields (roughly, without
the modifications for Ω) the following model. D = C + D2 +
Pf (D2) where C = S0 ∪ S1 ∪ ... ∪ Sn with Si are pairwise
disjoint infinite sets:

J0Kη=∅ J1Kη=D
J¬tKη=D \ JtKη JbiKη=Si

Jt1 ∨ t2Kη=Jt1Kη ∪ Jt2Kη Jt1 × t2Kη=Jt1K× Jt2K
Jt1 ∧ t2Kη=Jt1Kη ∩ Jt2Kη Jt1 → t2Kη=Pf (Jt1K×Jt2K) ∪ S0

Notice that all denotations of arrow types contain S0 thus, in par-
ticular, the indivisible type 1 → 0, too. If the basic types are not
pairwise disjoint then it suffice to take for C a set of Si whose in-
tersections correspond to those of the corresponding basic types.
The only requirement is that all intersections must be infinite sets,
as well.

4. Conclusion
This work constitutes the first solution to the problem of defining
a semantic subtyping relation for a polymorphic extension of regu-
lar tree types. This problem, despite its important practical interest
and potential fallouts, has been somehow neglected by most recent
research since it was considered untreatable or unfeasible. Our so-
lution not only has immediate application to the definition of pro-
gramming languages for XML, but also opens several new research
directions that we briefly discuss below.

The first direction concerns the definition of extensions of the
type system itself. Among the possible extensions the most inter-
esting (and difficult) one seems to be the extension of types with
explicit second order quantifications. Currently, we consider prenex
polymorphism, thus quantification on types is performed only at
meta-level. But since this work proved the feasibility of a semantic
subtyping approach for polymorphic types, we are eager to check
whether it can be further extended to impredicative second order
types, by adding explicit type quantification. This would be in-
teresting not only from a programming language perspective, but
also from a logic viewpoint since it would remove some of the

limitations to the introspection capabilities we pointed out in Sec-
tion 2.7. This may move our type system closer to being an expres-
sive logic for subtyping. On the model side, it would be interesting
to check whether the infinite support property (Definition 3.25) is
not only a sufficient but also a necessary condition for convexity.
This seems likely to the extent that the result holds for the type sys-
tem restricted to basic type constructors (ie, without products and
arrows). However, this is just a weak conjecture since the proof
of sufficiency heavily relies (in the case for product types) on the
well-foundedness property. Therefore, there may even exist non-
well-founded models (non-well-founded models exist in the ground
case: see [9, 11]) that are with infinite support but not convex. Nev-
ertheless, an equivalent characterization of convexity—whether it
were infinite support or some other characterization—would pro-
vide us a different angle of attack to study the connections between
convexity and parametricity (see later on).

The second direction is to explore the definition of new lan-
guages to take advantage of the new capabilities of our system. A
first natural test will be to see how to add overloaded (typed by in-
tersection types) and higher-order (typed by arrow types) functions
to the language defined in [17]. This already looks as quite a chal-
lenging problem since it needs local type inference for both sub-
typing and instantiation,12 and we are actively working on it. But
the overall design space for a programming language that can ex-
ploit the advanced features of our types is rather large since a lot of
possible variations can be considered (eg, the use of type variables
in pattern matching) and even more features can be encoded (eg,
as explained in Footnote 4, bounded quantification can not only be
encoded via intersection types but, thanks to them, also made more
general since intersections allow the programmer to specify bounds
on a per-occurrence basis). While exploring this design space it will
be interesting to check whether our polymorphic union types can
encode advanced type features such as polymorphic variants [13]
and GADTs [27].

In our opinion, the definition of convexity is the most impor-
tant and promising contribution of our work especially in view of
its potential implications on the study of parametricity. As a mat-
ter of fact, there are strong connections between parametricity and
convexity. We have already seen that convexity removes the stutter-
ing behavior that clashes with parametricity, as equation (5) clearly
illustrates. More generally, both convexity and parametricity de-
scribe or enforce uniformity of behavior. Parametricity imposes to
functions a uniform behavior on parameters typed by type vari-
ables, since the latter cannot be deconstructed. This allows Wadler
to deduce “theorems for free”: the uniformity imposed by para-
metricity (actually, imposed by the property of being definable in
second order λ-calculus) dramatically restricts the choice of pos-
sible behaviors of parametric functions to a point that it is easy to
deduce theorems about a function just by considering its type [25].
In a similar way convexity imposes a uniform behavior to the zeros
of the semantic interpretation, which is equivalent to imposing uni-
formity to the subtyping relation. An example of this uniformity is
given by product types: in our framework a product (t1 × ...× tn)
is empty (ie, it is empty for every possible assignment of its vari-

12 To have some flavor of the problem, consider an overloaded function
even for the domain 1 that when applied to an integer returns whether it
is even or not, while it returns arguments of any other type unchanged. Its
type is (Int → Bool) ∧ (α\Int → α\Int). If we apply a currified
map : (β → γ)→ β∗ → γ∗ to odd, then we want to deduce map(even):
(Int∗ → Bool∗) ∧ ((α\Int)∗ → (α\Int)∗) ∧ ((α ∨ Int)∗ →
((α\Int) ∨ Bool)∗). That is, when we apply map(even) to a list of
integers it returns a list of booleans; when we apply it to a list that does
not contain integers, then it returns a list of the same type; when the list
contains some integers (eg, a list of reals), then it replaces integer elements
by boolean ones. This is not an instance of the output type of map.

ables) if and only if there exists a particular ti that is empty (for
all possible assignments). We recover a property typical of closed
types.

We conjecture the connection to be much deeper than described
above. This can be clearly perceived by rereading the original
Reynolds paper on parametricity [21] in the light of our results.
Reynolds tries to characterize parametricity—or abstraction in
Reynolds terminology—in a set-theoretic setting since, in Reynolds
words, “if types denote specific subsets of a universe then their
unions and intersections are well defined”, which in Reynolds opin-
ion is the very idea of abstraction. This can be rephrased as the fact
that the operations for some types are well defined independently
from the representation used for each type (Reynolds speaks of ab-
straction and representation since he sees the abstraction property
as a result about change of representation). The underlying idea
of parametricity according to Reynolds is that “meanings of an ex-
pression in ‘related’ environments will be ‘related’ ” [21]. But as he
points out few lines later “while the relation for each type variable
is arbitrary, the relation for compound type expressions [ie, type
constructors] must be induced in a specified way. We must specify
how an assignment of relations to type variables is extended to type
expressions” [21]. Reynolds formalizes this extension by defining
a “relation semantics” for type constructors and, as Wadler bril-
liantly explains [25], this corresponds to regard types as relations.
In particular pairs are related if their corresponding components are
related and functions are related if they take related arguments into
related results: there is a precise correspondence with the exten-
sional interpretation of type constructors we gave in Definition 3.6
and, more generally, between the framework used to state para-
metricity and the one in our work.

Parametricity holds for terms written in the Girard/Reynolds
second order typed lambda calculus (also known as pure polymor-
phic lambda calculus or System F). The property of being definable
in the second-order typed lambda-calculus is the condition that har-
nesses expressions and forces them to behave uniformly. Convexity,
instead, does not require any definability property. It semantically
harnesses the denotations of expressions and forces them to behave
uniformly. Therefore all seems to suggest that convexity may be
a semantic characterization of what in Reynolds approach is the
definability in the second-order typed lambda-calculus, which is a
syntactic property. Or, to put it otherwise, convexity states para-
metricity for (or transposes it to) models rather than languages.

Although we have this strong intuition about the connection be-
tween convexity and parametricity, we do not know how to express
this connection in a formal way, yet. We believe that the answer
may come from the study of the calculus associated to our subtyp-
ing relation. We do not speak here of some language that can take
advantage of our subtyping relation and whose design space we dis-
cussed earlier in this conclusion. What we are speaking of is every
calculus whose model of values (ie, the model obtained by associ-
ating each type to the set of values that have that type) induces the
same subtyping relation as the one devised here. Indeed, as para-
metricity leaves little freedom to the definition of transformations,
so the semantic subtyping framework leaves little freedom to the
definition of a language whose model of values induces the same
subtyping relation as the relation used to type its values. If we could
prove that every such language must automatically satisfy Reynolds
abstraction theorem (and, even more, prove also the converse), then
we would have a formal and strong connection between convexity
and parametricity, the former being a purely semantic (in the sense
that it does not rely on any language or calculus) characterization
of the latter. But this is a long term and ambitious goal that goes
well beyond the scope of the present work.

Acknowledgments. We were given a decisive help by Nino Sal-
ibra, who showed us how to prove that all powersets of infinite
sets are convex models of the propositional logic. Pietro Abate
implemented an early version of our prototype subtype checker.
Bow-Yaw Wang drew our attention to the connection with con-
vex theories. Claude Benzaken pointed out several useful results
in combinatorics to us. Nils Gesbert spotted a subtle mistake in our
subtyping algorithm. Many persons discussed the contents of this
work with us and gave precious suggestions. Among them we are
particularly grateful to Véronique Benzaken, Mariangiola Dezani-
Ciancaglini, Kim Nguyen, Daniele Varacca, and Philip Wadler.

References
[1] V. Balat, J. Vouillon, and B. Yakobowski. Experience report: Ocsigen,

a web programming framework. In ICFP ’09. ACM Press, 2009.
[2] V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-friendly

general purpose language. In ICFP ’03. ACM Press, 2003.
[3] G. Castagna, R. De Nicola, and D. Varacca. Semantic subtyping for

the π-calculus. Theor. Comput. Sci., 398(1-3):217–242, 2008.
[4] G. Castagna and K. Nguyen. Typed iterators for XML. In ICFP ’08,

pages 15–26. ACM Press, 2008.
[5] J. Clark and M. Murata. Relax-NG, 2001. www.relaxng.org.
[6] B. Courcelle. Fundamental properties of infinite trees. Theoretical

Computer Science, 25:95–169, 1983.
[7] D. Draper et al. XQuery 1.0 and XPath 2.0 Formal Semantics, 2007.

http://www.w3.org/TR/query-semantics/.
[8] T. Berners-Lee et al. Uniform Resource Identifier, January 2005. RFC

3986, STD 66.
[9] A. Frisch. Théorie, conception et réalisation d’un langage de pro-

grammation fonctionnel adapté à XML. PhD thesis, Université Paris
7, December 2004.

[10] A. Frisch. OCaml + XDuce. In ICFP ’06. ACM Press, 2006.
[11] A. Frisch, G. Castagna, and V. Benzaken. Semantic subtyping: dealing

set-theoretically with function, union, intersection, and negation types.
The Journal of ACM, 55(4):1–64, 2008.

[12] V. Gapeyev, M.Y. Levin, B.C. Pierce, and A. Schmitt. The Xtatic
compiler and runtime system, 2005. http://www.cis.upenn.edu/
~bcpierce/xtatic.

[13] J. Garrigue. Programming with polymorphic variants. In Proc. of ML
Workshop, 1998.

[14] P. Genevès, N. Layaı̈da, and A. Schmitt. Efficient static analysis of
XML paths and types. In PLDI ’07. ACM Press, 2007.

[15] N. Gesbert, P. Genevès, and N. Layaı̈da. Parametric Polymorphism
and Semantic Subtyping: the Logical Connection. In ICFP ’11, 2011.

[16] Graham Higman. Ordering by divisibility in abstract algebras. Pro-
ceedings of the London Mathematical Society, 3(2(7)):326–336, 1952.

[17] H. Hosoya, A. Frisch, and G. Castagna. Parametric polymorphism for
XML. ACM TOPLAS, 32(1):1–56, 2009.

[18] H. Hosoya and B. Pierce. XDuce: A statically typed XML processing
language. ACM TOIT, 3(2):117–148, 2003.

[19] K. Zhuo Ming Lu and M. Sulzmann. An implementation of subtyping
among regular expression types. In Proc. of APLAS’04, volume 3302
of LNCS, pages 57–73. Springer, 2004.

[20] J.C. Mitchell. A type inference approach to reduction properties
and semantics of polymorphic expressions. In Lisp and Functional
Programming, pages 308–319, 1986.

[21] J.C. Reynolds. Types, abstraction and parametric polymorphism. In
Information Processing, pages 513–523. Elsevier, 1983.

[22] J.C. Reynolds. Polymorphism is not set-theoretic. In Semantics of
Data Types, volume 173 of LNCS, pages 145–156. Springer, 1984.

[23] J. Vouillon. Polymorphic regular tree types and patterns. In POPL ’06,
pages 103–114, 2006.

[24] W3C. SOAP Version 1.2. http://www.w3.org/TR/soap.

[25] P. Wadler. Theorems for free! In Functional Programming Languages
and Computer Architecture, pages 347–359. ACM Press, 1989.

[26] C. Wallace and C. Runciman. Haskell and XML: Generic combinators
or type based translation? In ICFP ’99, pages 148–159, 1999.

[27] H. Xi, C. Chen, and G. Chen. Guarded recursive datatype constructors.
In POPL ’03, pages 224–235. ACM Press, 2003.

A. Termination of the subtyping algorithm
In this appendix we prove the termination of our subtyping algo-
rithm and, hence, the decidability of the subtyping relation. The
proof is done in two parts. First we prove that the algorithm ter-
minates on finite types. This implies that the algorithm stops both
on finite types and on infinite types that are not empty (since by
Lemma 3.30, then there exists a finite expansion of the type that
is not empty). Second, we prove that the algorithm terminates on
all empty infinite types since it memoizes finitely many different
types modulo alpha conversion. The bulk of the proof is proving
that the algorithm terminates on finite types. Technically, this part
of the proof proceeds in three steps. First, we introduce the notion
of saturated set of types. More precisely a set of types E ⊆ T
is saturated if it satisfies some closure properties whose definition
relies on the syntactic substitutions ({¬β/α}, {(α1×α2)∨α3/α},
{(α1→α2) ∨ α3/α}, {((α1→α2) \ (1→ 0)) ∨ α3/α}) used by the
algorithm (see Lemmas 3.10, 3.13, and 3.14). Second, we prove
that the set of all types for which our decision algorithm terminates
is saturated. Finally, we show that if a set E is saturated, then it
contains the set T f of all finite types, that is E ⊇ T f. Whence we
deduce that the decision algorithm terminates for all finite types.
From a technical viewpoint thus, saturated sets are akin to type-
closed set introduced by John Mitchell to prove strong normaliza-
tion for second order typed λ-calculus [20].

Before giving the definition of saturated set we introduce
some notations and give more details about the algorithm. In
this section we use (possibly indexed) σ to range over syntac-
tic substitutions always of the form used by the algorithm, that
is {¬β/α}, {(α1×α2)∨α3/α}, {((α1→α2) \ (1→ 0)) ∨ α3/α} or
{(α1→α2) ∨ α3/α}, and ◦ to denote their composition. We of-
ten use σ to denote a finite composition of substitutions, that is
σ1 ◦ σ2 ◦ ... ◦ σn. We also speak of subtrees of a type t. We intend
by that the types that occur in the syntax tree of t, including t itself.

The decision algorithm for which we prove termination is essen-
tially a dull implementation of the one presented in Section 2.6: it
tries to check the emptiness of some type by trying to build a simu-
lation containing it. It does so by decomposing the original problem
into subproblems and using them to saturate the set obtained up to
that point. More precisely, in order to check the emptiness of a type,
the algorithm first normalizes it; it simplifies mixed intersections;
it eliminates toplevel negative occurrences of variables by applying
the substitution {¬β/α}; it eliminates toplevel positive occurrences
of variables by applying {(α1×α2)∨α3/α}, {(α1→α2) ∨ α3/α}
or {((α1→α2) \ (1→ 0)) ∨ α3/α} substitutions; it eliminates the
toplevel constructors by applying the equations of Definition 3.19
as left-to-right rewriting rules; the last point yields a set of different
subproblems: the algorithm checks whether all the subproblems
are solved (ie, it reached a simulation), otherwise it recurses on
all of them. We introduce however a slight modification. While
the algorithm described in Section 2.6 is defined for infinite types
(and actually it works even if the types are non-regular), here we
will use a finite representation of our types and use the µ-notation
we introduced for the examples of Section 2.7. Since our (infinite)
types are regular, then using µ-types (with the usual conditions

of contractivity13) is equivalent, as proved by Courcelle [6]. This
implies a small modification with respect to the algorithm of Sec-
tion 2.6, since after the step of normalization the algorithm will
unfold all the recursive types occurring at top-level. The use of
the µ-notation will allow us to reason inductively on our types, al-
though we will not be allowed to use induction on types in our main
theorem, because of the unfolding performed after the normaliza-
tion. The implementation we consider is “dull” insofar as it will
explore all the subproblems to their end, even in the case when an
answer could already be given earlier. So for example to check the
emptiness of a disjunctive normal form, the algorithm will check
the emptiness of all types in the union, even though it could stop
as soon as it had found a non-empty type; similarly, to check the
emptiness of t1 × t2 the algorithm will check the emptiness of t1
and of t2, even though a positive results for, say, t1 would make
the check for t2 useless. We do so because we want to prove that
the algorithm is strongly normalizing, that is, termination does not
depend on the reduction strategy.

Finally to count the steps performed by the algorithm we count
the number of times the algorithm applies the rewriting rules that
decompose toplevel constructors (ie, those of Definition 3.19). We
must show that the algorithm performs finitely many steps for all
finite types.

Definition A.1 (Saturated set). Let E ⊆ T and let σ range over
syntactic substitutions of the form {¬β/α}, {(α1 × α2) ∨ α3/α},
{(α1→α2) ∨ α3/α} or {((α1→α2) \ (1→ 0)) ∨ α3/α}. We say that
E is saturated if ∀n ≥ 0, ∀σ1 . . . σn = σ and ∀t, t1, t2:

1. b ∈ E (for all basic types b),
2. ασ ∈ E (for all type variables α),
3. if ∀t′1 subtree of t1, ∀t′2 subtree of t2, t′1σ ∈ E and t′2σ ∈ E ,

then t1 × t2 ∈ E , t1 → t2 ∈ E , t1 ∨ t2 ∈ E and t1 ∧ t2 ∈ E .
4. if ∀t′ subtree of t{µx.t/x}, t′σ ∈ E , then µx.t ∈ E ,
5. if ∀t′ subtree of t, t′σ ∈ E , then ¬t ∈ E ,

Next we prove that the set of the types for which the algorithm
terminates is saturated. In order to do that we first need the follow-
ing lemma.

Lemma A.2. Let σi range over syntactic substitutions of the form
{¬β/α}, {(α1 × α2) ∨ α3/α}, {((α1→α2) \ (1→ 0)) ∨ α3/α} or
{(α1 → α2) ∨ α3/α}. For all type variables α and substitutions
σ1, ..., σn (n ≥ 0) the algorithm terminates on all types of the
form ασ1...σn.

Proof. It is easy to see that all the types of the form ασ1...σn are
finite trees, and that they coincide with all the terms inductively
generated by the following productions:

T ::= S | ¬S
S ::= α | (T×T) ∨ T | (T→T) ∨ T | ((T→T)\(1→0)) ∨ T

In words a type ασ1...σn is always a possibly negated finite union
of possibly negated variables, or possibly negated products or ar-
rows (possibly minuse 1→0) of types of the same form. We are
going to prove by induction on these terms that the algorithm ter-
minates. Actually we prove a more general result namely that for
all terms T inductively defined by the following productions (in
bold the production we added)

T ::= S | ¬S
S ::= α | (T×T) ∨ T | (T→T) ∨ T | ((T→T)\(1→0)) ∨ T

| T ∧ T

13 In our case we also have the condition that ensures finiteness of Boolean
combinations, that is, that a recursion variable must be separated from its
binder by at least one type constructor.

and for all n > 0, and σ1, ..., σn, the algorithm terminates on
Tσ1...σn.

Since the language of the latter productions includes that of the
former ones, then the result is obtained as the special case of n = 0.

We prove this latter result for Tσ1...σn by induction on the
lexicographically ordered pairs (w, n), where n is the number of
substitutions and w is the weight of syntax tree of T (recall that T
is inductively defined) defined as follows: variables and basic types
(the latter are not used in this lemma) have weight one, products and
arrows sum the weights of their types, unions and intersections take
the max of their weights, while the weight of the negation of a type
is the weight of the type. Formally (recall that the types considered
in this lemma are finite):

weight(b) = weight(α) = 1

weight(t1×t2) = weight(t1→t2) = weight(t1) + weight(t2)

weight(t1∨t2) = weight(t1∧t2) = max{weight(t1),weight(t2)}
weight(¬t) = weight(t)

This weight has the property that the application of normalization
and of usual distributive laws of Boolean connectives, does not
change the weight of a type.

(Case n = 0) We first consider the case T = S, that is with no
outer negation. The first case for S is easy since if S is α, then
the algorithm stops immediately returning false. If it is a union
or a intersection then first the algorithm normalizes yielding a
term of the following form (note that normalization does not
change the weight):^

i1∈P1

(T 1
i1 × T

2
i1) ∧

^
j1∈N1

¬(T 1
j1 × T

2
j1)

∧
^

i2∈P2

(T 1
i2 → T 2

i2) ∧
^

j2∈N2

¬(T 1
j2 → T 2

j2)

∧
^

i3∈V0

αi3 ∧
^

i3∈V1

¬αi3

If both P1 and P2 are not empty, then the algorithm immedi-
ately stops returning false. If just one of the two is non-empty,
then the algorithm ignores the negated atoms of the other con-
structors and applies the substitutions σ to eliminate all top-
level variables (both positive and negative). Next it applies the
decomposition rules, that is, for every set N ′ ⊆ N1, the algo-
rithm checks the emptiness of^

i1∈P1

T 1
i1σ ∧

^
j1∈N′

¬T 1
j1σ ∧

^
i3∈V0

α1
i3

and ^
i1∈P1

T 2
i1σ ∧

^
j1∈N1\N′

¬T 2
j1σ ∧

^
i3∈V0

α2
i3

and similarly for arrow types.
The result follows by induction hypothesis since, even though
n has increased, the weight w strictly decreased.

For the case T = ¬S, the easy cases are the one for negated
variables (for which the algorithm stops immediately). For the
negated intersections ¬(T1 ∧ T2) since the algorithm has to
check emptiness of ¬T1 ∨ ¬T2 and since the weight does not
change, this was already solved for unions earlier in this case.
Similarly, the cases for unions are transformed into intersec-
tions and their case is deal exactly as we did for intersections
earlier in this case.

(Case n > 0) This case is mostly straightforward and is obtained
by separating the first substitution from the others Tσ1σ2...σn.

First notice that when all the substitutions are of the form
{¬β/α}, then the lemma follows straightforwardly by induc-
tion hypothesis: none of these substitutions changes the weight
of the term and thus this becomes a case in which n = 0
(furthermore, the lemma trivially holds since we check the
emptiness of a variable or of its negation). Thus the inter-
esting case is when there is at least one substitution of the
form {(α1 × α2) ∨ α3/α}, {((α1→α2) \ (1→ 0)) ∨ α3/α} or
{(α1 → α2) ∨ α3/α}. Without loss of generality we can con-
sider that the first substitution σ1 has one of these two forms,
since otherwise we can move the first occurrence of such a
substitution to the first position by applying its the preceding
substitutions (which are just renamings and negations) to its im-
age. So, for instance, if σ = σ1...σn are all of the form {¬β/α}
and σn+1 is {(α1 × α2) ∨ α3/α}, then we can remove σ and
add in the first position {(α1σ × α2σ) ∨ α3σ/α}.
Suppose that the first substitution σ1 is {(α1 × α2) ∨ α3/α}.
If T = α, then Tσ1σ2...σn = (α1σ2...σn × α2σ2...σn) ∨
α3σ2...σn. We can redo the proof of the corresponding case
with n = 0 and apply the induction hypothesis since αiσ2...σn
has the same weight as ασ1...σn (since the weight(α) =
weight(αi) = 1) but smaller n. If T = β 6= α, then Tσ1σ2...σn =
Tσ2...σn and so the result follows by induction. All the
other cases are similar. The only subtle one is when T =
(T1 × T2) ∨ α and α is not in the domain of any σi’s, that is
Tσ = (T1σ×T2σ)∨α (and similarly for arrows). In that case
the algorithm eliminates the toplevel variable by performing
the substitution σ′ = {(α1 × α2) ∨ α3/α} and by decompos-
ing the intersection of the so obtained two top-level products
into two subproblems of checking the emptiness of Tiσσ′ ∨ αi
for i = 1, 2. Since the αi’s are fresh, then both problems are
equivalent to checking emptiness of (Ti ∨ αi)σσ′, and since
the weight of (Ti ∨ αi) is strictly smaller than that of T , then
the result follows by induction hypothesis.

Although the result of the previous lemma is unsurprising, it is
quite interesting since it gives us the first key to understand why
the algorithm is strongly normalizing. It suggests that if during the
execution we follow the evolution of an occurrence of a variable,
then the test of this occurrence will never generate infinite types,
but just finite ones. So substitutions by themselves and the new
types they introduce cannot be the source of an infinite loop. So the
only way to generate loops is by combining some variables with
some subtree of the original tree. But the regularity of trees makes
the number of these combinations finite, which is a consequence of
the following theorem.

Theorem A.3. Let SN = {t | the algorithm terminates for t}. SN
is saturated.

Proof. We associate to each type t in SN a rank n where n is the
number of steps that the algorithm performs when fed with the
type t (recall that a step is the application of a decomposition of
a toplevel type constructor) and prove the theorem by induction on
n. (Recall that we cannot use the induction on the structure of types
because µ-types are unfolded after that they are normalized). More
precisely, we have to prove that the five conditions of Definition A.1
are satisfied by SN and when considering types of a given rank we
will assume by induction hypothesis that the five conditions are
satisfied by all types of strictly smaller rank:

Case 1: it is trivial to show that for every basic type b we have
that b ∈ SN : the algorithm immediately stops returning false, as b
is never empty.

Case 2: This case is proved by Lemma A.2.

Case 3: We suppose that ∀t′1 subtree of t1, ∀t′2 subtree t2, t′1σ ∈
SN and t′2σ ∈ SN . We have to prove that t1 × t2, t1 → t2,
t1 ∨ t2, and t1 ∧ t2 are all in SN . Let us consider the four subcases
separately.

Subcase (t1 × t2): In this case the algorithm checks whether t1
and t2 are empty. Since we assumed that both are in SN (recall
that we suppose that the set of subtrees of a type include the
type itself), then the algorithm terminates also for (t1 × t2).

Subcase (t1 → t2): In this case the algorithm ends immediately
since no arrow type is empty. Therefore (t1 → t2) ∈ SN .

Subcase t1 ∨ t2: This case is similar to the one for (t1 × t2) since
to check that a union is empty the algorithm checks whether
each type is empty.

Subcase t1 ∧ t2: This is the difficult case. First of all notice that
a type is in SN if and only if its disjunctive normal form is in
SN , too14. So without loss of generality we can consider just
types in normal form. Thus, let

t1 =
_
i1∈I1

^
j1∈Ji1

`i1j1

and

t2 =
_
i2∈I2

^
j2∈Ji2

`i2j2 ,

then the normal form of the intersection is

t1 ∧ t2 =
_

i1∈I1,i2∈I2

^
j1∈Ji1

`i1j1 ∧
^

j2∈Ji2

`i2j2 .

Since we have a union, then the algorithm checks the emptiness
of each intersection

V
j1∈Ji1

`i1j1 ∧
V
j2∈Ji2

`i2j2 , let us de-
note it by tij . We write tij in clearer form, by separating the
different constructors and their negations

tij =
^

i1∈P1

bi1 ∧
^

j1∈N1

¬bj1

∧
^

i2∈P2

(t1i2 × t
2
i2) ∧

^
j2∈N2

¬(t1j2 × t
2
j2)

∧
^

i3∈P3

(t1i3 → t2i3) ∧
^

j3∈N3

¬(t1j3 → t2j3)

∧
^

i4∈V0

αi4

tij may contain some negative type variables. If it is the case
then the various thk are obtained from the literals of tij by apply-
ing one or several substitutions of the form {¬β/α}, to eliminate
toplevel negative occurrences of type variables. This is why we
just considered toplevel positive occurrences of variables. We
now proceed by an analysis of all possible cases:
• at least two of P1, P2 and P3 are not empty: The algo-

rithm stops immediately and returns true: tij will be empty
since it contains different positive atoms. So tij ∈ SN .

• |P1| > 0 and |P2| = |P3| = 0: since the negative product
types contain all the basic and arrow types, then we can
erase them and rewrite tij as

V
i1∈P1

bi1 ∧
V
j1∈N1

¬bj1 ∧V
i4∈V0 αi4 . According to Lemma 3.11, we can decide

whether tij is empty or not, that is, tij ∈ SN .

14 Actually all its disjunctive normal forms, since the disjunctive normal
form of a type is not unique

• |P2| > 0 and |P1| = |P3| = 0: we can rewrite tij as^
i2∈P2

(t1i2 × t
2
i2) ∧

^
j2∈N2

¬(t1j2 × t
2
j2) ∧

^
i4∈V0

αi4 .

If |V0| = 0, following Lemma 3.15, for any set N ′ ⊆ N2,
the algorithm will check^

i2∈P2

t1i2 ∧
^

j2∈N′

¬t1j2

and ^
i2∈P2

t2i2 ∧
^

j2∈N2\N′

¬t2j2

Since every (t1i × t2i) is from t1 or t2 (i ∈ P2∪N2), then all
t1i ’s and t2i ’s are subtrees of t1 or t2. Let t′ be any subtree
of t1i . Then t′ is also a subtree of t1 or t2. Following the
premise, we have t′σ ∈ SN for all σ. Furthermore we
also assumed that both t1i and t2i are in SN . To check the
emptiness of (t1i × t2i), the algorithm checks the emptiness
of both t1i and t2i . Then not only (t1i × t2i) is strongly
normalizing, but also both t1i and t2i normalize in strictly
less steps than (t1i × t2i). So we can use the induction
hypothesis for t1i and t2i and assume that the conditions
of saturation are satisfied for them. In particular since we
have that for every substitution σ and subtree t′ of theirs,
t′σ ∈ SN , then we can apply the case 5 of Definition A.1
and deduce that also ¬t1i ∈ SN . Similarly, by applying case
3 of Definition A.1 we obtain by induction that

V
i2∈P2

t1i2∧V
j2∈N′ ¬t1j2 ∈ SN and

V
i2∈P2

t2i2 ∧
V
j2∈N2\N′ ¬t2j2 ∈

SN . So tij is in SN as well.

If |V0| > 0, the algorithm performs the substitutions σi =
{(α1

i × α2
i) ∨ α3

i/α} for i ∈ V0 (where α1
i , α2

i , and α3
i are

fresh type variables) yielding

tij =
^

i2∈P2

(t1i2σ
′ × t2i2σ′) ∧

^
j2∈N2

¬(t1j2σ
′ × t2j2σ′)

∧
^

i4∈V0

(α1
i4 × α

2
i4)

where σ′ = σ1 . . . σm (i ∈ V0). Following Lemma 3.15,
for any set N ′ ⊆ N2, the algorithm will check

(
^

i2∈P2

t1i2σ
′ ∧

^
j2∈N′

¬t1j2σ′) ∧
^

i4∈V0

α1
i4

and

(
^

i2∈P2

t2i2σ
′ ∧

^
j2∈N2\N′

¬t2j2σ′) ∧
^

i4∈V0

α2
i4

Since all the t1i ’s and t2i ’s are subtrees of t1 or t2, then for
every t′ subtree of the t1iσ′’s or t2iσ′’s we have t′σ ∈ SN :
the t′ will always come from a part of t1i , to which we have
applied a substitution of the expected form. Furthermore,
we also know that all variables are in SN . So we can
proceed as in the case in which |V0| = 0, and deduce the
result by applying the induction hypothesis.

• |P3| > 0 and |P1| = |P2| = 0: similarly to the previous
case, we can rewrite tij as^

i3∈P3

(t1i3 → t2i3) ∧
^

j3∈N3

¬(t1j3 → t2j3) ∧
^

i4∈V0

αi4 .

If |V0| = 0, following Lemma 3.16, for any j3 ∈ N3 and
any set P ′ ⊆ P3, the algorithm will check^

i3∈P ′

¬t1i3 ∧ t
1
j3

and ^
i3∈P3\P ′

t2i3 ∧ ¬t
2
j3

Similarly to Case |P2| > 0 and |P1| = |P3| = 0, by
induction, we can prove

V
i3∈P ′ ¬t1i3 ∧ t

1
j3 ∈ SN andV

i3∈P3\P ′ t
2
i3 ∧ ¬t

2
j3 ∈ SN . So tij is in SN , as well.

If |V0| > 0, the algorithm performs the substitutions σi =
{(α1

i → α2
i) ∨ α3

i/α} or {((α1
i → α2

i) \ (1→ 0)) ∨ α3
i/α}

for i ∈ V0 (where α1
i , α2

i , and α3
i are fresh type variables)

yielding

tij =
^

i3∈P3

(t1i3σ
′ → t2i3σ

′) ∧
^

j3∈N3

¬(t1j3σ
′ → t2j3σ

′)

∧
^

i4∈V0

(α1
i4 → α2

i4)(∧¬(1→ 0))

where σ′ = σ1 . . . σm (i ∈ V0). Since the top-level vari-
ables are finite, then the possible substitutions are also finite
(2|V0|). According to Lemma 3.16, for any j3 ∈ N3, any set
P ′ ⊆ P3 and any set V ′ ⊆ V0, the algorithm will check

(
^
i3∈P ′

¬t1i3σ′ ∧ t
1
j3σ
′) ∧

^
i4∈V′

¬α1
i4

and

(
^

i3∈P3\P ′

t2i3σ
′ ∧ ¬t2j3σ′) ∧

^
i4∈V0\V′

α2
i4

Note that (
V
i3∈P ′ ¬t1i3σ′∧ t

1
j3σ
′)∧

V
i4∈V′ ¬α1

i4 contains
some top-level negative type variables. By applying one or
several substitutions of the form {¬β/α}, we eliminate these
toplevel negative occurrences of type variables. That means
the algorithm will check (

V
i3∈P ′ ¬t1i3σ′σ′′ ∧ t

1
j3σ
′σ′′) ∧V

i4∈V′ α
1
i4 instead. The rest of the proof proceeds as we

did in Case |P2| > 0 and |P1| = |P3| = 0.
• |P1| = |P2| = |P3| = 0: If at least one of N1, N2 of N3

is empty, then the algorithm stops immediately (returning
false, since the negation of one or two constructors contains
all the types of the other missing constructors). Otherwise,
if |Ni| > 0 for i = 1, 2, 3, then the algorithm checks
separately whether 1C∧

V
j1∈N1

¬bj1 (where 1C denotes a
basic type that contains all the constants C , that is 1∧¬(1×
1) ∧ ¬(0 → 1)) is empty, that is the case of |P1| > 0 and
|P2| = |P3| = 0; whether (1× 1) ∧

V
j2∈N2

¬(t1j2 × t
2
j2)

is empty, that is the case of |P2| > 0 and |P1| = |P3| = 0;
and whether (0 → 1) ∧

V
j3∈N3

¬(t1j3 → t2j3) is empty,
that is the case of |P3| > 0 and |P1| = |P2| = 0. It returns
true only if all them succeed: indeed the only case in which
an intersection of negated types is empty is when the basic
type component is 1C , the product component is 1×1, and
the arrow component is 0→ 1.

Case 4: If t = µx.t′, then we have two subcases. Either x occurs
free in t′. In which case µx.t′ is a subtree of t′{µx.t′/x}. Therefore
the result follows directly from the assumption that every subtree
of t′{µx.t′/x} is in SN . Or x does not occur free in t′, then t = t′

and the result will be obtained by applying the case of the proof
corresponding to the form of t′: just notice that by contractivity
there may not be an infinite sequence of µ-abstractions: eventually
the recursion must traverse a type constructor.

Case 5: Let t =
W
i∈I
V
j∈Ji

`ij and suppose that for all subtrees
t′ of t and finite composition of substitutions σ, also t′σ is in SN .

To prove this case we must prove that ¬t ∈ SN , as well. The
normal form of ¬t is:_

j1∈Ji1 ,...,jn∈Jin

¬`i1ji1 ∧ . . . ∧ ¬`injin

where I = {i1, . . . , in}. Therefore the algorithm checks whether
each ¬`i1ji1 ∧. . .∧¬`injin

is empty. To prove that all these checks
terminate it suffices to proceed as in Subcase t1 ∧ t2 of Case 3: we
consider all the possible forms of the literals in the intersection and
apply the corresponding decomposition rules. Once more the result
follows by induction.

Finally, if a set is saturated, then it contains all finite types.

Theorem A.4. If E ⊆ T is saturated, then T f ⊆ E

Proof. The intuition is that since a saturated set contains all
basic variables, all type variables and it is closed for all con-
structors, then it contains all types. Formally, we prove a (ap-
parently) stronger result, namely that if E is saturated, then
∀n ≥ 0, ∀σ1 . . . σn = σ (where, as before, σ denotes substitu-
tion of the form {¬β/α}, {(α1×α2)∨α3/α}, {(α1→α2) ∨ α3/α}) or
{((α1→α2) \ (1→ 0)) ∨ α3/α}), and ∀t ∈ T f, the type tσ is in E .

Without loss of generality we can consider T f as the set of
types that do not contain any subtree of the form µx.t (if a finite
trees contains such a subtree, then the µ-constructor can be easily
eliminated). We proceed by induction on the structure of t. The base
cases follow immediately from the first two cases of the definition
of saturation, which state that E contains b (and therefore bσ) and
ασ, for all basic types b and type variables α.

If t = (t1 × t2) then by induction hypothesis ∀t′1 subtree of
t1 and ∀t′2 subtree t2, t′1σ ∈ E and t′2σ ∈ E . Therefore we can
apply the third case of the definition of saturation and deduce that
(t1×t2) ∈ E . Now take a new substitution σ′ and consider tσ′, that
is (t1σ′× t2σ′): all it remains to prove is that tσ′ ∈ E . It is easy to
see that every subtree of tiσ′ (i = 1, 2) is of the form t′iσ′ with t′i
subtree of ti. But since ∀t′i subtree of ti and all σ one has t′iσ ∈ E ,
then in particular t′iσ′ σ′′ ∈ E for all σ′′. So we can once more
apply the case 3 of Definition A.1, deduce that (t1σ′ × t2σ′) ∈ E ,
which corresponds to state that tσ′ ∈ E , that is, the result. The
cases in which t is t1 → t2, t1 ∨ t2, t1 ∧ t2, of ¬t are similar.

Notice that the proof of this theorem cannot be extended to the
case for t of the form µx.t since we cannot apply the induction
hypothesis on its unfolding.

Corollary A.5. The algorithm terminates on all finite types.

We can combine the result of this corollary with the result
of Lemma 3.30 to obtain that the algorithm terminates also on
infinite non-empty types: if an infinite type is non-empty, then by
Lemma 3.30 there exists a finite expansion of it which is not empty
and on which, by Corollary A.5 the algorithm terminates (provided
that the algorithm implements a breadth-first search).

Corollary A.6. The algorithm terminates on all non-empty types.

Finally, the algorithm terminates also on empty infinite types.
Here the point is simple. During its execution the algorithm checks
the emptiness of several types: the previous result assures that the
check terminates on non-empty types, while for the types that are
empty, the algorithm terminates because it has to check only finitely
many different options. The latter is a consequence of the regularity
of the types and the fact that all the types that are checked are (a
finite combination of) subterms of the original type to which sub-
stitutions all of the same form are applied, substitutions that we
(morally) keep symbolical. The algorithm works coinductively and

memoizes the intermediate types it is considering. Before memoiz-
ing and recursing however the system checks whether the current
type is already memoized or, by applying the Lemma A.8 below,
it is an instance of a memoized type in which case it stops. The
only case in which the algorithm might diverge is by generating a
sequence of empty types and memoizing them, but this does not
happen since eventually this chain produces an instance of a type
previously occurring in the chain.

Lemma A.7. Let t, t′ be two types

∀η . E(t)η = ∅⇒ ∀η . E(t ∧ t′)η = ∅

Proof. Straightforward since E(t ∧ t′)η = E(t)η ∩ E(t′)η.

Lemma A.8. Let t be a type. Then

∀η . E(t)η = ∅⇒ ∀η . E(tσ)η = ∅

where σ = ∀n ≥ 0 . σ1 . . . σn and σi denotes substitution
of the form {¬β/α}, {(α1×α2)∨α3/α}, {(α1→α2) ∨ α3/α} or
{((α1→α2) \ (1→ 0)) ∨ α3/α}.

Proof. An application of Lemma 3.20.

Theorem A.9. The algorithm terminates on all types.

Proof. Consider a generic type t. If t is a finite type, then according
to Corollary A.5, the algorithm terminates. Assume that t is an in-
finite type (recursive type). If t is nonempty, then by Corollary A.6
the algorithm terminates, too. The only remaining case is when t
is an empty infinite type. LetN (t) be a disjunctive normal form of
t. According to set theory, N (t) is empty if and only if all its sin-
gle normal forms are empty. Let us just consider one of its single
normal forms.

To check the emptiness of t, the algorithm first checks whether
t is memoized (ie, whether this type was already met during the
check and is therefore supposed to be empty), or t is an instance
of a type t′ that is memoized (see Lemma A.8), or t from which
we removed some atom intersections is an instance of a memoized
type (this step is correct by Lemma A.7). If it is, then the algorithm
terminates, otherwise, it memoizes t.15 Next if |tlv(t)| > 0, then
the algorithm performs the appropriate substitution(s) (see Lem-
mas 3.10, 3.13, and 3.14). Then according to the decomposition
rules (see Lemmas 3.15 and 3.16), the algorithm decomposes t into
several types which are the candidate types to be checked on the
next iteration. t is empty if and only if some of the candidate types
(depending on the decomposition rules) are empty. If a candidate
is not empty, then the algorithm stops on that candidate (Corol-
lary A.6), otherwise the algorithm reiterates the memoization pro-
cess. This iteration (performed on empty candidates) eventually
stops on a memoized term. To see why let us consider the form
of all types that can be met during the checking of the emptiness
of t (that we suppose to be empty). These are single normal forms
(cf. Definition 3.8), that is, intersections of atoms. Now in any of
these intersections we can distinguish two parts: there is a part of
the intersection that is formed just by type variables (these are ei-
ther the variables of the original type or some fresh variables that
were introduced to eliminate a toplevel variable), and a second part
that intersects basic and/or product and/or arrow types. If the check
of memoization fails, then the first part of the type formed by the
intersection of variables is eliminated, and the appropriate substi-
tution(s) is (are) applied to the second part. Then the atoms in this
second part to which the substitution(s) is applied are decomposed

15 If t happens to be nonempty, then in the real algorithm t will be removed
from the memoized set, but this is just an optimization that reduces the
number of required checks and does not affect the final result.

to form the next set of single normal forms. It is then clear that
the second part of all the candidate single normal forms met by
the algorithm are formed by chunks of the original type to which a
succession of substitutions of the same form as those used in Lem-
mas 3.10, 3.13, and 3.14 is applied. So we can formally character-
ize all the single normal forms examined by the algorithm when
checking the emptiness of a type t.

First, consider the original type t (for the sake of simplicity we
will next give full details only for the case in which t ≤ 1 × 1,
but the proof is the same in general cases, as well). Next consider
the set of all subtrees of t: since t is regular, then this set is finite.
Finally consider the set C of all Boolean combinations of terms of
the previous sets (actually, just single normal forms would suffice):
modulo normalization (or modulo type semantics) there are only
finitely many distinct combinations of a finite set of types, therefore
C is finite as well. It is clear from what we said before that all the
types that will be considered during the emptiness check for t will
be of the form

(t′∧β1∧...∧βh){(α1
1×α2

1) ∨ α3
1/α1}...{(α

1
n×α2

n) ∨ α3
n/αn}

∧γ1 ∧ . . . ∧ γp
(21)

where t′ ∈ C, h, n, p ≥ 0, αi ∈ var(t′) ∪ {α1
j , α

2
j , α

3
j |1 ≤ j ≤

i − 1}, {βi|1 ≤ i ≤ h} ∪ {γi|1 ≤ i ≤ p} ⊆ {α1
i , α

2
i , α

3
i |1 ≤

i ≤ n}, {βi|1 ≤ i ≤ h} ⊆ {αi|1 ≤ i ≤ n}, and {γi|1 ≤ i ≤
p} ∩ {αi|1 ≤ i ≤ n} = ∅ (note that the γi’s could be moved in
the scope of the substitution, but we prefer to keep them separated
for the time being).

Let us now follow one sequence of the check in which all
the checked types are empty (since this is the only case in which
the algorithm might diverge) and imagine by contradiction that
this sequence is infinite. All the types in the sequence are of the
form described in (21). Since C is finite, then there will be in the
sequence a type t′ occurring infinitely many times. Let s1 and s2 be
two single normal forms in the sequence containing this particular
t′, namely:

s1 = (t′ ∧ β1 ∧ . . . ∧ βh){(α1
1×α2

1) ∨ α3
1/α1}...

{(α1
n×α2

n) ∨ α3
n/αn} ∧ γ1 ∧ . . . ∧ γp

s2 = (t′ ∧ β1 ∧ . . . ∧ βk){(α1
1×α2

1) ∨ α3
1/α1}...

{(α1
m×α2

m) ∨ α3
m/αm} ∧ γ1 ∧ . . . ∧ γq

Since we are checking the emptiness of these two types then the
types can be considered modulo α-renaming of their variables. This
justifies the fact that, without loss of generality, in the two terms
above we can consider the first min{n,m} substitutions, the first
min{h, k} β-variables and the first min{p, q} γ variables to be the
same in both terms.

Let us consider again the infinite sequence of candidates that
are formed by t′ and consider the three cardinalities of the β
variables, of the substitutions, and of the γ variables. Since N3 with
a point-wise order is a well-quasi-order, we can apply Higman’s
Lemma [16] to this sequence and deduce that in the sequence there
occur two types as the s1 and s2 above such that s1 occurs before
s2 and n ≤ m, h ≤ k and p ≤ q.

Let us write σji for the substitution

{(α1
i×α2

i) ∨ α3
i/αi}...{(α

1
j×α2

j) ∨ α3
j/αj}

with i ≤ j. We have that s2 is equal to

(t′∧β1∧...∧βh∧...∧βk)σm1 ∧γ1∧...∧γp∧...∧γq

we exit the rightmost β’s, yielding:

(t′∧β1∧...∧βh)σm1 ∧γ1∧...∧γp∧...∧γq∧(βh+1∧...∧βk)σm1

since the γ are independent from the α’s we can move the leftmost
ones inside a part of the substitutions obtaining

((t′∧β1∧...∧βh)σn1∧γ1∧...∧γp)σmn+1

∧γp+1∧...∧γq∧(βh+1∧...∧βk)σm1

which by definition of s1 is equal to

s1σ
m
n+1∧γp+1∧...∧γq∧(βh+1∧...∧βk)σm1

In conclusion s2 has the following form:

s2 = s1σ
m
n+1∧γp+1∧...∧γq∧βh+1σ

m
1 ∧...∧βkσm1

therefore it is an intersection a part of which is an instance of
the (memoized) type s1. Therefore the algorithm (and thus the se-
quence) should have stopped on the check of s2, which contradicts
the hypothesis that the sequence is infinite.

In order to understand how the algorithm actually terminates on
empty infinite types, consider for instance the following type:

α ∧ (α× x) ∧ ¬(α× y)

where x = (α ∧ (α × x)) ∨ nil and y = (α × y) ∨ nil. First,
the algorithm memoizes it. By an application of Lemma 3.13, the
algorithm performs the substitution yielding

(α1×α2)∧ (((α1×α2)∨α3)× x)∧¬(((α1×α2)∨α3)× y).

Following Lemma 3.15, the algorithm checks the candidate types
as follows:8>>>>>>>>>><>>>>>>>>>>:

8><>:
α1 ∧ ((α1 × α2) ∨ α3) = 0 (1)

or
α2 ∧ x ∧ ¬y = 0 (2)

and8><>:
α1 ∧ ((α1 × α2) ∨ α3) ∧ ¬((α1 × α2) ∨ α3) = 0 (3)

or
α2 ∧ x = 0 (4)

Type (1) is finite and nonempty, and type (3) is finite and empty. It
is not necessary to check type (4) insofar as one of its expansions,
α1 ∧ nil, is not empty. So the algorithm terminates on type (4) as
well. Considering type (2), it is neither memoized nor an instance
of a memoized type, so it is memoized as well. Then the algorithm
unfolds it and gets

α2 ∧ ((α1×α2) ∨ α3) ∧ (((α1×α2) ∨ α3)× x)

∧ ¬(((α1×α2) ∨ α3)× y)

The algorithm matches the unfolded type with the memoized ones.
It is an instance of

α2 ∧ α ∧ (α× x) ∧ ¬(α× y)

where the substitution is {((α1×α2) ∨ α3)/α}. Although it is not
memoized, it can be deduced to be empty from the memoized
α ∧ (α× x) ∧ ¬(α× y) and Lemma A.7.

