
Pattern by Example: Type-driven Visual
Programming of XML Queries

Véronique Benzaken and Giuseppe Castagna and Dario Colazzoand Cédric Miachon
1Université Paris-Sud 11, LRI, Orsay - France and2CNRS - PPS, Université Paris 7, Paris - France and3Courtanet - Paris - France

Abstract
We present Pattern-by-Example (PBE), a graphical languagethat
allows users with little or no knowledge of pattern-matching and
functional programming to define complex and optimized queries
on XML documents. We demonstrate the key features of PBE by
commenting an interactive session and then we present its seman-
tics by formally defining a translation from PBE graphical queries
into CQL ones. The advantages of the approach are twofold. First,
it generates queries that are provably correct with respectto types:
the type of the result is displayed to the user and this constitutes
a first and immediate visual check of the semantic correctness
of the resulting query. The second advantage is that a semantics
formally—thus, unambiguously—defined is an important advance-
ment over some current approaches in which standard usage and
learning methods are based on “trial and error” techniques.

Categories and Subject Descriptors D.1.7 [Programming Tech-
niques]: Visual Programming; H.2.3 [Database Management]:
Languages—Query Languages

General Terms Design, Languages, Theory

Keywords Visual programming, Database Programming Lan-
guages, Functional Programming, Type Systems.

1. Introduction
One of the reasons, if not the main one, of the success of relational
databases is the query language SQL. The key features that made
SQL the standard query language for relational databases are its
ease of use, its formal foundation and clear semantics, and its
high declarativity. This last point is quite important because both
it makes the writing of SQL queries independent from the physical
organization of data and, for the same reason, makes SQL queries
highly optimizable.

As we discuss in the related work section, a further boost to
relational databases was given by the introduction of graphical
query languages, such asQuery-by-Example(QBE). Despite the
simplicity of SQL and of the relational model these graphical query
languages allowed more persons to access relational databases and
in a more user friendly way. This is done without missing most
of the advantages of the previous approach since the semantics of
these languages is given by a translation into the relational algebra
or calculus.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPDP’08, July 16–18, 2008, Valencia, Spain.
Copyright c© 2008 ACM 978-1-60558-117-0/08/07. . . $5.00

Nowadays there is a clear trend to increasingly use XML to
make data available on the Web. Querying data in this format
poses the same challenges as for relational data and even amplifies
the problems. The arbitrary structural nesting of XML due toits
tree-based structure is at the origin of the increased complexity
in defining adequate languages and tools to query databases of
XML documents. W3C puts forward the XQuery language [4] but
other proposals exists. Here we focus on those stemming fromthe
community of typed functional languages, such as XDuce [12]or
CDuce [1]. While XQuery relies on XPath to deconstruct XML
trees, and on afor operator to iterate over this deconstruction the
other rely on pattern-matching for deconstructing values and, in
the case ofCQL (the query language embedded inCDuce[2]),
on a selet-from-where iterator. While XPath is good for a
deconstruction that navigates vertically in the document it is not
able to perform a fine grained selection on horizontal navigation,
that is on sequences of elements. For instance, imagine thatwe have
to select in an XML documentbib.xml containing a bibliography
(see Figure 2 for an instance), all the titles of books as wellas the
their publication year published by Addison Wesley after 1991 that
have exactly two authors. In XQuery we cannot directly select both
these titles and their corresponding publication year but we have to
stop at books’ level, and then performthree subselectionsone for
authors, one for titles and one for years as in (iterator keywords are
underlined)<bib> for $b indoument("bib.xml")/bib/book[ount(./author)=2℄ where$b/publisher="Addison-Wesley" and $b/�year>1991 return<book year="$b/�year">$b/title </book> </bib>
It would be better if we could capture in two variables andin
one shotexactly the titles of the books that match the required
conditions, that is, that have a specific given form. In functional
languages the form of a value can be described by patterns. Patterns
then can be used to perform horizontal selection, by matching them
against heterogeneous sequences of elements in order to capture
only some given subparts. For this reason in a previous work [2]
we proposedCQL an XML oriented query language that combines
the vertical selection capabilities of XPath-like expressions with the
horizontal selection capabilities ofCDuce patterns [1], which are
patterns designed for XML elements. InCQL the query above is
written as<bib>selet <book year=y> t from<book year=y&(1992--*)>[t::Title Author Author<publisher>"Addison-Wesley" (_\Author)* ℄in load_xml("bib.xml")/Book

CQL syntax is an enriched form of the SQL’s one:(i) in theselet part we can use fully structured expressions instead of
just relations,(ii) on the right of a «in » in from clauses, sim-
ple relations (that is, sets of tuples) are replaced by XPath-like ex-
pressions that allow vertical navigation to select heterogeneous se-

quences of elements and(iii) rather than simply captured by vari-
ables (as in SQL) the extracted sequence is navigated horizontally
by patterns that match the sequence elements and capture subparts
in variables. In the expression above the pattern on the leftof the
« in » keyword selects all and only the book elements whose at-
tribute year is in the interval (1992,∞) and that haveexactlytwo
author subelements followed by a publisher element that contains
the string"Addison-Wesley", this followed by any element (the
wild-card “_”) that is not (the difference sign\) an author (the*
denotes a regular expression that indicates that there may be zero
or more such elements); of the selected book elements the pattern
captures the year in the variabley and the title in the variablet.

CQL not only makes it possible to combine vertical and hor-
izontal navigation but provides a very precise type inference
and better logical optimizations which make it more efficient
for in main memory execution than major implementations of
XQuery [2]. However, the use of patterns may be difficult to a
basic programmer, especially in advanced (e.g. nested) queries. In
this context a graphical interface to define queries is much more
necessary than in the SQL case. This is the goal of our work that,
mimicking what was done for SQL, will first define a tableau-based
graphical representation of queries for XML-documents andthen
give its semantics via a translation intoCQL. The rich structure of
XML makes the task much more challenging than for the relational
model: we do not work on a set of fixed and flat relations; instead
the information we extract may have a complex structure. In order
to generate the table corresponding to some extracted data our sys-
tem will heavily rely on the type system. For instance in the query
example we gave above, once we have extracted the data on books
the graphical interface will use the type system and the given DTD
to generate a table that contains a column for the year, another for
the authors, a third for the publisher and a last one for the price:
the users will then have just to fill the cells with the corresponding
conditions and capture variables to complete the query.

Related work

The use of graphical languages for expressing queries is notnew in
the database field. This is mainly due to the requirement thatnon-
expert users should be able to interact with the database system
while not being acquainted with the subtleties of the underlying
query language which may be complex to use.

Query-by-Example (QBE)[16] is the first graphical query lan-
guage for relational databases. It has been developed in the70’s by
Zloof at IBM and gave rise to a wide category of commercial graph-
ical languages such as, for example, Paradox or Microsoft Access.
The central concept of QBE is the notion of tableaux. A tableau is
a graphical interface (a table indeed) allowing the user to express
some queries simply by defining specific variables in the table.

In the context of XML, many attempts to define graphical query
languages have been proposed: QSByE (Querying Semi-structured
data by Example) [11], XQBE [6], Miro-web [5], EQUIX [9],
BBQ [14], Pesto [7], QURSED [15], visXcerpt [3] and Xing [10].
Due to space limitations, we shall give the spirit of these ap-
proaches rather than giving an exhaustive state of the art. Hence,
we choose to present XQBEXQuery by Exampleas it is the most
complete language. We refer the reader to [13] for a completesur-
vey.

Unlike QBE, rather than manipulating tableaux, XQBE manip-
ulates XML trees. The purpose was to offer an intuitive interface
in order to automatically generate XQuery queries. XQBE offers
most of XPath expressive power,1 permits the definition of nested
queries, to build new elements etc. In order to give the reader a
flavor of XQBE let us consider the following query which corre-

1 Apart from some functions such as for instanceposition()

sponds to query Q1 of XML Query Use Cases[8]. List all books
published by “Addison-Wesley” since 1991. This is exactly the
query we presented in the introduction without the condition on
the number of authors. Thus to define it it suffices to remove in
the XQuery expression the predicate on the path. In XQBE sucha
query is expressed as shown in Figure 1.

Figure 1. XQBE Q1
In XQBE, the workspace is divided in two separate zones: the

source space (on the left) and the result space (on the right). Each
zone contains labeled graphs which represent fragments of the
XML document to be processed. XML elements are represented
by rectangles annotated by their tag, attributes are represented by
black disks together with their names. For instance, on Figure 1 the
source zone expresses a query which extracts all books elements<book> having an attributeyearwhose value is greater than 1991,
and having a child<publisher> with value"Addison-Wesley".
In the corresponding result space, again the result is described by
a tree. For our example, the graph states that the result willconsist
of all the titles of<book> elements which have been selected in the
source space (such a binding is materialized by the arc connecting
the respective node from source to result space). These willthen
be encapsulated in a unique fresh element<bib> (the trapezoidal
shape indicates the fact that the result is considered as new).

Most of graphical query languages for XML use graph-based
representations of both documents and queries. Their main limi-
tations are that no semantics is formally assigned to those graphs
hence they do not account for correctness proofs of the translation
(usually to XQuery) they implement and last, except for [3] they
never exploit the underlying type system in order to yield optimized
versions of the resulting queries.

Unlike those, (i) we formally assign a semantics to our graph-
ical tableaux-based interface and (ii) formally establisha (partial)
correctness proof of the translation toCQL.

We will proceed as follows. First we present in Section 2 the
system by showing and commenting an interactive session with
our prototype. To that end we also introduceCQL, since its regular
expression types are used as conditions in the graphical interface
whose use will result in the generation of aCQL expression. The
formal development follows in Section 3. In particular we formally
introduce the notions of tableau and PBE query and define their
semantics by translating PBE queries intoCQL queries. Since
the translation in far from being trivial we define the translation
incrementally, by progressively increasing the complexity of the
translated queries. This will allow us to point out the most difficult
or subtle points of the translation. A partial correctness result of
this translation is also given.

Throughout the presentation we use some conventions and syn-
tactic sugar ofCDuce/CQL, most of which are quite intuitive and
need no explanation. On the same vein, we just present a very sim-
plified version of the language. Space constraints do not allow us to
do a complete treatment, which anyhow would not bring any fur-
ther insight. The interested reader can consult the documentation
available on theCDuce web site (www.due.org) and try the dis-
tribution of the full featured language available there too.

2. A guided tour
In this section we present a guided tour of PBE (Pattern by Ex-
ample) our graphical query language designed to help non-expert
users to write complex queries. PBE usesCQL as a back-end since
it generates and evaluates optimizedCQL queries, but other back-
ends can be considered. Actually, PBE can be used independently
from CQL, since its usage only requires the knowledge of the types
thatCQL borrows fromCDuce, types that are very close to other
type systems for XML. However, the presentation of PBE seman-
tics is far simpler inCQL, which is the reason why we start this
presentation by an overview ofCQL.

2.1 Presentation ofCQL

The goal is not to give a full presentation ofCQL (for that see [2])
but rather to present a minimum set of features that are enough to
present PBE. The most important feature are types. PBE andCQL
useCDuce’s types, which can be seen as a compact notation for
DTDs (actually, for Relax-NG):

Types T ::= btype | [t℄ | <tag{A}>[t℄ | Any | v
| T|T | T&T | T \ T

RegExps t ::= T | t t | t|t | t? | t* | t+ | ε

Attributes A ::= a=TA | ε

Types are eithertype constructors, that is: basic types (e.g.,Int,Bool, Char, . . .); heterogeneous sequences types (delimited by
square brackets and whose content is described by a type regular
expressiont); XML elements (that is, tagged sequences whose tag
may contain a possibly empty list of attribute type declarations
which assign types to attribute names—ranged over bya—); Any,
the type of all values;v, the singleton type that contains only the
valuev. Or they aretype combinators, that is, union, intersection,
or difference of types. Regular expression types, ranged over byt,
are obtained from types and the empty string (denoted byε) by
juxtaposition, union, and the constructors for optional elements,
possibly empty, and nonempty sequences.

We will use some conventions, in particular the underscore “_"
to denoteAny, PCDATA to denote the regular expression typeChar*,
andString to denote the type[Char*℄. We also use identifiers to
denote types (and follow the convention of capitalizing them), as in
the following declarationstype Bib = <bib>[Book*℄type Book = <book year=String>[Title (Author|Edit)+Publisher Prie℄type Author = <author>[Last First℄type Edit = <editor>[Last First℄type Title = <title>[PCDATA℄type First = <first>[PCDATA℄type Last = <last>[PCDATA℄type Publisher = <publisher>[PCDATA℄type Prie = <prie>[Int℄
which defines the types for the bibliography example we will use
throughout the paper.

For this paper,CQL expressions are variables (ranged over by
x, y, . . .), constants (e.g.true, 1, 2, . . . ranged over byc), theselet_from_where expression, the constructors for sequences
(a juxtaposition of blank-separated expressions delimited by square
brackets), and XML elements (a sequence expressione labeled
by a tag and a possibly empty set of attributes), banged expres-
sions!e (which “opens” the sequencee so that, for instance, if
e1, e2, . . . , en are sequences, then[!e1 !e2 . . . !en℄ returns their
concatenation), and operators (e.g.=, >, max, if_then_else, ...).
Values, ranged over byv, are closed expressions that do not contain
“select”, operators, or banged sub-expressions.
e ::= x | c | [e . . . e℄ | <taga=e . . . a=e>e | !e | op(e, .., e)

| selet e from p in e, . . . ,p in e where e

The expressionselet es from p1in e1,...,pnin en where ew

deserves explanation. The expressionew in thewhere clause must
be of boolean type, while the expressionsei’s in thefrom clauses
must return sequences. Select iterates on these sequences matching
each element ofei against the corresponding patternpi. Pattern
variables capture subparts of the matching elements and these vari-
ables can then be used ines or in the successivefrom clauses. The
result of aselet is the sequence of evaluations of the expression
es in the environments obtained by iterating on thefrom clauses.

Patterns are nothing but types with capture variables. We distin-
guish two kinds of patterns for capture variables: “simple variables
patterns” that have the form of a variable and can occur wherever a
type can, and “sequence capture patterns” that have the formx::t,
can occur wherever a regular expression type can, and capture in
x the sequenceof all values matched by the regular expressiont.
So in theCQL query given in the introductiony is a simple cap-
ture variable (the intersection of two patterns succeeds only if each
pattern succeeds, thereforey captures the value of attributeyear
only if this is of type1992--*), while t captures the sequence
of all titles of the book (in this case just one). Differentlyfrom
union types, that are symmetric, union patterns implement afirst
match policy: the right pattern is checked only if the left one fails.
So, for instance when the pattern[(x::Author|_)*℄ is matched
against a sequence it captures inx the sequence of all (values of
type) authors present in it (if an element is of typeAuthor, then it
is captured byx, otherwise is discarded by matching it against the
wildcard “_”—i.e. the typeAny).

We apply the convention to use single quotes to delimit charac-
ters and double quotes to delimit strings (which are sequences of
characters). For formal and complete definitions of the syntax, the
semantics, and the typing ofCQL the reader can refer to [2].

2.2 A tour of PBE

We demonstrate PBE by querying the document in Figure 2 and
assuming that it conforms to theCDuce typeBib defined by the
declarations given in the previous section (from which we omitEdit in order to limit the size of figures) that we will have entered
in the tab “Data” of our PBE interface, visible in Figures 3–11. 2

Queries are expressed by means oftableaux. Two different
kinds of tableaux are presented:Filter tableaux and Construct
tableaux. The former are used for extracting information (they are
entered in the upper half of the interface), while the latterare
used for building the sequence of XML values that constitutes
the result of the query (they are entered in the lower half of the
interface). PBE tableaux allow for expressing a wide variety of
queries. Let us start with a simple query: “return all books in the
bibliography”. Assume that the document to be queried is stored
in the do (persistent) variable. The filter tableau offers a list of
persistent XML documents and the user will choose among them
thedo variable as shown in the left part of Figure 3.
Once the document is selected, PBE displays the filter tableau
associated to the type ofdo (i.e., Bib) as shown in Figure 4.
The column marked by a# symbol represents the tag which can be
tested and captured3 while the fact that the content ofBib elements
is a sequence ofBook elements (recall,Bib = <bib>[Book*℄) is
represented byBook*. In the row, PBE provides fresh variablesx1,x2 to capture the corresponding components and a default (type)
constraintAny which is always satisfied

The user who wants to capture all the books of the bibliographydo in a variablebooks (Figure 5), has just to declare this variable

2 Declarations are generated from a DTD by the programdtd2due.
3 In the full version ofCQL/CDuce XML tags are full fledged expressions
that can contain namespaces and have arbitrary complex types such astypeAorB = <(`a|`b)>[Any*℄.

<bib><book year="1995"><title>TCP/IP Illustrated</title><author><last>Stevens</last><first>W.</first></author><publisher>Addison-Wesley</publisher><prie>65</prie></book><book year="1992"><title>Advaned Programming in Unix</title><author><last>Stevens</last><first>W.</first></author><publisher>Addison-Wesley</publisher><prie>65</prie></book><book year="2000"><title>Data on the Web</title><author><last>Abiteboul</last><first>Serge</first></author><author><last>Buneman</last><first>Peter</first></author><author><last>Suiu</last><first>Dan</first></author><publisher>Morgan Kaufmann</publisher><prie>39</prie></book></bib>
Figure 2. reference XML document

Figure 3. Filter tableau creation

in the corresponding column (the one labeled byBook*). The right
part of the cell remains unchanged (Any), since we do not need to
express further constraints on variablebooks.

Getting and, presumably, re-structuring the result is performed
by means of aconstruct tableauthat is defined in the lower part
of the window as illustrated in Figure 6. Construct tableauxare
defined by adding new columns and filling the cells by using the
variables introduced in the other tableaux. From the content that is
filled in a cell, PBE deduces and inserts the type that labels the cor-
responding column. Not only does the construct tableau indicates
how the result is re-structured (here we choose to encapsulate all
books in a<result> tag) but it also provides a fresh variableq1

Figure 4. Filter tableau fordo
Figure 5. Adding variablebooks in the filter tableau

Figure 6. Construct tableau creation for q1

that denotes the query so that it can be later reused (e.g. fordefining
nested queries).
Clicking on the “View query” button right below a construct
tableau, makes PBE compute and display in the “Queries” tab the
correspondingCQL query and its result (Figure 7). PBE also infers
that the type ofq1 is[<result>[Book*℄*℄, an information useful
in caseq1 was reused in other queries. As with any other variable,q1 can be reused by selecting it in the pull down menu of Figure 3
to which it is automatically added at the moment of its definition.

This first example was very simple. We shall now present two
more advanced examples that illustrate(i) how to program nested
queries and(ii) what is the use of several rows in a filter tableau.
Imagine that we want to define a query that returns a sequence of
elements tagged by<entry> where each such element corresponds
to a book of our example bibliography and contains its title element
as well as the authors’ last name elements encapsulated in a<auth>

Figure 7. CQL code and result for q1.

tag. While the plain English semantics is a little bit twisted, the
meaning should be quite clearer by looking at how the query is
expressed in Figure 8.

Figure 8. A nested PBE query

The first filter tableau is defined for thebooks variable that was
introduced (and automatically added in the pull-down menu)by
the previous query, and extracts intitle and a the list of titles
(well, just one) and of authors of each book, respectively. This
row captures for each book the relationship between its title and its
authors. In order to extract for each author ina his/her last-name we

use a second filter tableau which captures in the variablelast the
corresponding information. To encapsulate each<last> element
in a tag<auth>, we define the construct tableauq3. This tableau is
then reused in the construct tableau of the queryq4, in which the
title is requested as well as the result ofq3 for this title.

The definitions of the queriesq3 and q4 and their respective
results are shown in Figure 9. When it is executed standaloneq3

Figure 9. CQL code for queries q3 and q4

returns a single list containing all the authors in the bibliography
(since in that casea is bound to all authors), as shown in the first
« Result » section of Figure 9. Instead when it used insideq4 the
queryq3 encapsulates the authors of the book currently selected by
the outer iteration. It is important to notice thatq3 does not occur
in the code forq4. As a matter of fact, it would be wrong to do it,
as the code that occurs inq4 at the position ofq3 is not the code
defined forq3 as a stand-alone query. Indeed when generating the
codeq4 PBE must generate custom code for the call ofq3, that
takes into account the environment in which the nested queryis
evaluated. The technique we use to keep track of the environment
in which nested queries are called and to minimize the number
of possible patterns needed for expressing the query are formally
explained from Section 3.2.3 on.

Our last example illustrates the use of several rows in a filter
tableau. Assume that we want to select the books whose title begins
either by letter “T” or by letter “D”.These constraints are expressed
in the CQL type algebra respectively as['T' _*℄, ['D' _*℄.
Their “or” is obtained by the tableaux in Figure 10, since in PBE
multiple rows are interpreted as union patterns. Note that each row
declares the same variables: rows differ only for their constraints
(see also Definition 3.2 which enforces this property). It isworth
stressing that by using the knowledge of the DTD and the stated
constraints of the filter tableau, PBE deduces type :[('D'|'T')Char*℄ for the capture variabletext in the construct tableau. The
CQL query generated by the system and its result are given on
Figure 11.

Figure 10. Multiple rows tableau

Figure 11. Result of the multi-row query

3. Formal development
In this section we give the the formal definition of PBE by first
precisely defining its syntax and then stating its semanticsvia a
translation intoCQL.

3.1 PBE syntax

The syntax of PBE is constituted by three distinct kinds of tableaux,
filter tableauxand construct tableauxthat were informally pre-
sented in the previous section, andcondition tableaux(or condition
boxes). Let us discuss each of them.

3.1.1 Filter tableaux

Filter tableaux are tables in which(i) rows are labeled by already
defined variables,(ii) columns are labeled by attribute names, by a
hash sign (exactly one column), and/or by type regular expressions
and(iii) cells contain fresh variables and regular expression type
constraints. For instance, in the previous section we defined the
following tableauBook # Title Author+ Publisher Prie

books (x1,t1) (x2,t2) (x3,t3) (x4,t4) (x5,t5)

which filters the elements that compose the sequence denotedby
the variablebooks. The user defines only the content of the row,
the rest (that is the number of columns and their labels) are au-
tomatically deduced from the type of filtered variablebooks, that
is Book. But how is that PBE decided to insert a single column

labeledAuthor+ instead of—equivalently—, say, three columns
respectively labeledAuthor?, Author, Author*? The reason to
prefer the former to the latter should be pretty clear: we want to
minimize the number of filter columns in order to use as few vari-
ables as possible. In order to formalize the way in which thischoice
is made, we need the definition ofsequence maximal product.

First notice that every type regular expressiont is of the form
R1R2 . . . Rn (with n≥1) whereRi’s are type regular expressions
different from the juxtaposition. Let us callR1 . . . Rn theexpanded
form of t. Notice also that everyRi in an expanded form is of the
form tR◦ (where◦ is either*, +, ?, or the empty string—in the
latter casetR is either a regular expression union or a type): we
call tR thebaseof R. Finally, we writeT1 ≃ T2 if and only if T1

andT2 denote the same type (e.g.[(A|B) C℄≃[(A C)|(B C)℄;
see [1] for definition).

DEFINITION 3.1. LetR1 . . . Rn be a type regular expression in its
expanded form and let us denote the base ofRi by tRi

. R1 . . . Rn

is a sequence maximal productif [tRi
℄ 6≃ [tRi+1

℄ for i =
1...(n−1).

For example, «B* B+ C B » is not a maximal product since the
first two elements have the same base. There exists a naive algo-
rithm to transform every type regular expression into a maximal
product and consisting in merging consecutive expressionswith
the same base (e.g., «t* t » becomest+ and «B* B+ C B » be-
comes «B+ C B »). Therefore, henceforward we consider all type
regular expressions be maximal products. Notice, however,that
this is just a syntactic property with no semantic implication. It
heavily depends on way the user wrote DTD’s for data: for in-
stance, «(A|B)* (A*C+|B*C+) » is a maximal product although
« (A|B)* C+ » would be a smarter denotation.

DEFINITION 3.2. LetT be an XML type, afilter tableauassociated
to T is:

T # a1 · · · ak R1 · · · Rn

y (x0, t10) (x1, t11) · · · (xk, t1
k
) (xk+1, t1

k+1
) · · · (xk+n, t1

k+n
)

...
...

...
...

...
...

y (x0, tm
0

) (x1, tm
1

) · · · (xk, tm
k

)(xk+1, tm
k+1

) · · · (xk+n, tm
k+n

)

where
1. y is a variable of type[T*℄ or a persistent root of typeT ,
2. T = <tag {a1=T1 . . . ak=Tk}>[R1 . . . Rn℄,
3. R1 . . . Rn is a maximal product,
4. xj are fresh variables (j = 0 . . . k + n),
5. ti

j are regular expression types (i = 1..m, j = 0..k + n).

Henceforth we will mainly work on what we call (improperly in
the case of filter tables) rows of a tableau and we use the follow-
ing compact notation to denote the (set of) row(s) of a filter tableau

FT(y|tag|k|(x0, ~t0)|(x1, ~t1) . . . (xk , ~tk)|(xk+1, ~tk+1) . . . (xk+n, ~tk+n))

wheretag is the tag of the XML type associated toy, k the number
of its attributes and each~ti represent the vectort1i , . . . , t

m
i

3.1.2 Construct tableaux

A construct tableauis a single row table that defines the structure
of the result of a query. The user specifies the tag in which theresult
must be encapsulated and adds as many columns as (subsequences
of) elements in the result. Each element is specified by filling
the cell in the corresponding column with a variable whose type
will determine the label of the column. For instance, the construct
tableau of Figure 10 is:<title> [('D'|'T') Char* ℄

q5 text

In general, users can define not only the tag of the result but also its
attributes, which yields the definition:

DEFINITION 3.3. If x1, ..., xk+n are variables,a1, ..., ak are at-
tribute names and tag is an expression denoting a tag, then they
define the followingconstruct tableau

tag a1 · · · ak R1 · · · Rn

y x1 · · · xk xk+1 · · · xk+n

whereRi is the (regexp) type ofxk+i (i = 1 . . . n−k) andy a fresh
variable of type[(<tag {a1=t1 . . . ak=tk}>[R1 . . . Rn℄)*℄.

As we did for filter tableaux we introduce a compact notation to
denote a row of construct tableau, that is

CT (y|tag|k|(a1, x1) . . . (ak, xk)|xk+1 . . . xk+n),

wherek is the number of attributes.

3.1.3 Condition Box

PBE condition boxes are the same as in QBE, that is, theyCONDITION BOX
e1

...
en

are used to specify constraints. In particu-
lar, condition boxes are useful for declar-
ing join conditions between two vari-
ables. Condition boxes are of the form as
shown on the side, that is they are single
column tables whose rows contain aCQL
expression of boolean type. Usually these expressions are applica-
tions of operators to variables, such as the equality of two variables
x=y (a typical condition used for joins) or to a variable and con-
stants, such asy>5. As we did for filter and construct tableaux we
introduce some special notation to record rows of conditionboxes.
For the sake of the presentation we consider just a very special case
of conditions formed by the application of a binary boolean opera-
tor to either variables or values. Then a row of a condition box con-
taining expressione1 op e2 will be represented asCB(op, e1, e2).

3.1.4 PBE Queries

DEFINITION 3.4. A PBE queryis defined by a non-empty set of
persistent roots, a finite set of filter tableaux, a finite non-empty set
of construct tableaux, and an optional condition box.

In order to be well defined every free variable used in a query
must be either a persistent root or defined elsewhere. Noticealso
that in the result of a query (i.e. in a construct tableau) we do not
let the user specify general expressions but just variables(it is a
design choice); therefore we also require that no persistent root
appears free in a construct tableau, since this would be the same
as specifying a constant. In order to formally state when a PBE
query is correctly defined we need to introduce the notions offree
and declared variables of a tableau

DEFINITION 3.5. Let f , c, and d denote the following three
generic objects:f = FT(y|tag|k|(x0,~t0)|(x1,~t1) . . . (xk,~tk)|
(xk+1,~tk+1) . . . (xk+n,~tk+n)), c = CT(y|tag|k|(a1, x1) . . .
(ak, xk)|xk+1 . . . xk+n), and d = CB(op, e1, e2). The free and
declared variables of these objects respectively are

fv(f) = {y}
fv(c) = {x1 . . . xk+n}
fv(d) = var(e1)∪var(e2)

dv(f) = {x0 . . . xk+n}
dv(c) = {y}
dv(d) = ∅

wherevar denotes the function that returns the free variables of a
CQL expression.

If O is a set of objects, then we denote byfv(O) and dv(O)
the union of the respective sets of free and declared variables of its
objects.

DEFINITION 3.6. For a given PBE query let us denote byP the set
of its persistent roots, byF the set of all rows of its filter tableaux,

byC the set of all rows of its construct tableaux and byΘ the rows
of a possible condition box. The query iswell definedif and only if

1. fv(F) ∪ fv(C) ∪ fv(Θ) ⊆ dv(F) ∪ dv(C) ∪ P

2. fv(C) ∩ P = ∅

Note that the freshness conditions in tableaux definitions ensure
that every variable is declared in one and only one tableau row that
it univocally identifies.

3.2 Semantics

The semantics of PBE is defined via an (effective) translation from
PBE queries (more precisely, from variables denoting PBE queries)
to CQL queries. The translation is defined in form of inference
rules. For the sake of presentation, the translation is introduced
gradually in several steps: first, we define a naive translation for
unnested queries without condition box. Then, we observe that the
definition creates some redundancies and modify the translation to
avoid them. Next we add nested queries, that is, PBE queries with
several interrelated construct tableaux and, finally, the condition
box.

3.2.1 Unnested queries without condition

Let P , F , C , andΘ be defined as in Definition 3.6. We start by
considering the case in which bothΘ andfv(C)∩dv(C) are empty
(no condition and no nesting).

CT(x|tag|k|(a1, x1) . . . (ak, xk)|xk+1 . . . xk+n) ∈ C

F ⊢f xi → li i = 1 . . . k+n

F , C ⊢s x → selet <tag a1=x1 . . . ak=xk>[!xk+1 . . . !xk+n℄ from l1, . . . , lk+n

(R2)

∃f ∈ F , x ∈ dv(f) y ∈ fv(f) ∩ P

F ⊢f x → pattern(f) in [y℄ (F3)

∃f∈F , x∈dv(f) y∈fv(f) y 6∈P F\f ⊢f y → l

F ⊢f x → l , pattern(f) in y
(F4)

x 6∈ dv(C)

F , C ⊢s x → Ω
(R6)

x 6∈ dv(F)

F ⊢f x → Ω
(F2)

Figure 12. Naive translation of unnested queries without condi-
tion.

The inference rules are given in Figure 12. The main judgment
is F , C ⊢s x → e which translates a variablex identifying a
query—that is, a variable declared by a row inC —into a CQL
querye. This is done in ruleR2which straightforwardly generates
the selet clause (just notice that element variables are banged
since they denote sequences) and relies on a new form of judgment
to generate thefrom clauses. A judgmentF ⊢f x → l generates
a list l of from clauses of the form «p in e », wherep is aCQL
pattern ande is aCQL expression whose form is either[y℄ or y.
As we assume that there are no nested queries, then all variables
free inC must be declared by one (and only one) row inF (recall
that these variables cannot be persistent roots). For this reason we
just need two rules to generate thefrom clauses: we useF3 when
the free variable of theF -row at issue is a persistent root (in
which case we can stop the search since the variable is completely
defined); we useF4 when the free variable of theF -row at issue is
a capture variable defined in some other row (in which case we have
to find this row and recall the judgment⊢f under an environment
F from which this row is removed—to avoid loops—in order to
generate the clausesl that define this variable: these clauses must

precede the definition of the variable, of course). Finally the pattern
corresponding to a filter tableau row is generated by the function
pattern() which has the following definition.

DEFINITION 3.7. Let f be a filter tableau row of the form
FT(y|tag|k|(x0, ~t0)|(x1, ~t1)..(xk, ~tk)|(xk+1, ~tk+1)..(xk+n, ~tk+n)),
wherey is of type either<s0{a1=s1..ak=sk}>[R1..Rn℄ (i.e., y
is a persistent root), or[<s0{a1=s1..ak=sk}>[R1..Rn℄*℄ (i.e.,y
is a capture variable), andm denotes the arity of the various~ti’s.
Thenpattern(f) = p1| . . . |pm where, for j=1..m,pj is defined
as:<(x0&tj

0&sj
0) a1=x1&tj

1&sj
1 . . . ak=xk&tj

k&sj

k>[
xk+1::s

j
k+1

. . . xk+n::sj
k+n℄

where fori = 1..n

s
j

i+k =

t
j

i+k&Ri if Ri is a type
t
j

i+k&[Ri℄ otherwise

The j-th row of a filter table generates the patternpj composing
a union pattern. In eachpj , if xi is a variable that captures an
attribute, then the pattern associated toxi is ai=xi&tj

i . Otherwise
we use regular expressions and the pattern isxi+k :: s

j

i+k. The
s

j

i+k is different according to the form of the regular expression
typeRi. In the caseRi is a type (e.g. the type regular expressionTitle), then s

j

i+k = t
j

i+k&Ri, otherwise (e.g. the type regular
expressionBook*, which is not a type)sj

i+k = t
j

i+k&[Ri℄.
Finally, rulesR6andF2 explicitly manage the case of ill-defined

PBE queries by generating an error, denoted byΩ.
Let us follow the translation on a PBE queryq that groups the

title and the price of each book indo under a new tag<result>
and is defined as followsBib # Book*

doc (x0, _) (bks, _)Book # Title Author+ Publisher Prie
bks (x1, _) (tls, _) (x2, _) (x3, _) (prc, _)<result> Title Prie

q tls prc

Formally C = {CT(q|result|0| |tls prc)}, F = {FT(doc|bib|0|(x0, Any)| |(bks, Any)), FT(bks|book|0|(x1, Any)|(tls, Any)
(x2, Any)(x3, Any)(prc, Any))}, Θ = ∅.

Rule R2 is evaluated first since there exists a row inC which
declares the queryq. Thus we have:

F , C ⊢s q → selet <result> [!tls !pr ℄ from l1,l2
Sincetls is based on the variable bks which is not a persistent root,
then for the computation ofl1 corresponding totls we apply rule
F4, which gives:

F ⊢f tls → l3,<(x1)>[tls::Title x2::Author+x3::Publisher pr::Prie℄ in bks
To computel3 we repeat the operation onbkswhich being based
on the persistent rootdoc triggersF3:

F ⊢f bks→ <(x0)> [bks::Book* ℄ in [do℄
Thusl1 denotes the list:<(x0)>[bks::Book* ℄ in [do℄,<(x1)>[tls::Title x2::Author+ x3::Publisher pr::Prie℄ inbks
and the same computation gives forl2:<(x0)>[books::Book* ℄ in [do℄,<(x1)>[tls::Title x2::Author+ x3::Publisher pr::Prie℄ inbks
In conclusion the rules of Figure 12 translate the PBE queryq into
the followingCQL query:

selet <result> [!tls !pr ℄ from<(x0)>[bks::Book* ℄ in [do℄,<(x1)>[tls::Title x2::Author+x3::Publisher pr::Prie℄ in bks,<(x0)>[bks::Book* ℄ in [do℄,<(x1)>[tls::Title x2::Author+x3::Publisher pr::Prie℄ in bks
It is clear that half of the lines in thefrom clauses are useless.
This redundancy is due to the fact that the rules compute several
times the clauses that define the variablestls andprc. To avoid this
duplication we add a new memoization environment that records
the set of variables already defined during the deduction, aswe
show in the next section.

3.2.2 Redundancy elimination for unnested queries without
condition

The rules in Figure 13 define a modification of the previous trans-
lation that eliminates the redundancy we pointed out, by using in
the ⊢f -judgments a new environmentΣ that stores the variables
occurring in patterns returned bypattern().

CT(x|tag|k|(a1, x1)...(ak, xk)|xk+1...xk+n) ∈ C

F , Σi−1 ⊢f xi → (li, Σi) Σ0=∅ i=1..k+n

F , C ⊢s x → selet <tag a1=x1...ak=xk>[!xk+1 . . . !xk+n℄ from l1, . . . , lk+n

(R2)

x ∈ Σ

F , Σ ⊢f x → (∅, Σ)
(F1)

x 6∈ Σ ∃f ∈ F , x ∈ dv(f) y ∈ fv(f) ∩ P

F , Σ ⊢f x → (pattern(f) in [y℄, Σ ∪ dv(f))
(F3)

x 6∈ Σ ∃f ∈ F , x ∈ dv(f) y ∈ fv(f) y 6∈ P

F\f, Σ ∪ dv(f) ⊢f y → (li, Σ
′)

F , Σ ⊢f x → (li , pattern(f) in y, Σ′)
(F4)

x 6∈ dv(C)

F , C ⊢s x → Ω
(R6)

x 6∈ Σ ∪ dv(F)

F , Σ ⊢f x → Ω
(F2)

Figure 13. Memoization for unnested queries without condition.
The rulesF3 andF4, besides returning the list of clausesl, they

now also return a new environmentΣ that that enriches the current
one with the variables defined inl.

The overall recording of the defined variables is performed in
the ruleR2 by the premisesF , Σi−1 ⊢f xi → (li, Σi) where
the Σi’s are used as accumulators. EachΣi indeed contains all
variables defined in the preceding environments, that is in any Σk,
such ask < i (whereΣ0 = ∅). The last environmentΣn will then
contain all the defined variables.

The elimination of redundancy is then crucially performed by
the new ruleF1 which returns an empty set offrom clauses in
the case where the variable to be sought is already defined—that
is, it belongs toΣ—: in this case there is no clausel to add in the
construction of the query as all definitions are already present. Rule
F2 is straightforwardly modified.

By applying these rules to the example of the previous section
we obtain the followingCQL queryselet <result> [!tls !pr ℄ from<(x0)>[bks::Book* ℄ in [do℄,<(x1)>[tls::Title x2::Author+x3::Publisher pr::Prie℄ in bks
which is indeed the one we expected.

3.2.3 Nested queries without condition

We extend the previous translation to account for nested queries,
that is, queries whose construct tableaux declare variables free in
other construct tableaux (fv(C) ∩ dv(C) 6=∅).

x ∈ dv(F)

F , C ⊢s x → x
(R1)

CT(x|tag|k|(a1, x1)...(ak, xk)|xk+1...xk+n) ∈ C

{xj1 , . . . , xjm
} = dv(F) ∩ {x1, . . . , xk+n}

F , C ⊢s xi → ei i=1..k+n
F , Σh−1 ⊢f xjh

→ (lh, Σh) h=1..m Σ0=∅

F , C ⊢s x → selet <tag a1=e1 . . . ak=ek>[!ek+1 . . . !ek+n℄ from l1, . . . , lm

(R2)

x 6∈ dv(F) ∪ dv(C)

F , C ⊢s x → Ω
(R6)

(F1), (F2), (F3), (F4) as in Fig. 13

Figure 14. Translation rules for nested queries without condition.

Intuitively, when during the translation of a query we meet a
variable, we must check whether this variable is declared ina filter
tableau (it is indv(F)) or in a construct tableau (it is indv(C)).
In the former case we must proceed as before, that is, insert the
variable as it is in theselet expression and generate thefrom
clauses that define it. In the latter case, instead of inserting the
variable in theselet expression we have to insert the query
generated by recursively calling the translation.

This is done by modifying theR-rules for ⊢s (the F -rules,
which are for⊢f -judgments, do not change) as shown in Figure 14.
In particular this is done in ruleR2 which for eachxi (indepen-
dently from whether it is indv(F) or in dv(C)) calls for its trans-
lation (premisesF , C ⊢s xi → ei). If the variable is declared in
a filter tableau, this results in calling the new ruleR1which returns
the variable (now considered as aCQL expression), otherwise the
rule R2 is called on the new variable and the correspondingCQL
expression generated. The rule also generates thefrom clauses for
the variables that are indv(F), by the same technique as before.
The ruleR6 is modified since variables free in a construct tableau
may now be defined in another construct tableau (this modification
is not necessary forF2).Bib # Book*

doc (x0, _) (bks, _)Book # Title Author+ Publisher Prie
bks (x1, _) (tls, _) (a, _) (x2, _) (x3, _)Author # Last First

a (x4, _) (ln, _) (fn, _)<auth> Last First
p ln fn<result> Title <auth>[Last First℄
q tls p

Figure 15. Return titles and authors in a new element<result>,
where the tagauth replaces the tagauthor.

Let us apply the translation to the tableaux of Figure 15 which
contains nested construct tableaux:

C = {CT(q|result|0| |tls p) CT(p|auth|0| |ln fn)}.
To translate the queryq we applyR2 and in particular evaluate

F , C ⊢s tls → e′ andF , C ⊢s p → e′′. Sincetls is defined
in F , thene′ is theCQL variabletls. This, with the call of⊢f to
generate the definitions fortls yields:selet <result>[!tls !e′′ ℄ from<(x0)>[bks::Book* ℄ in [do℄,<(x1)>[tls::Title a::Author+x2::Publisher x3::Prie℄ in bks
wheree′′ is the result of the evaluation of the queryp. This being
a variable defined inC fires the ruleR2. Since the row definingp
only contains variables defined inF , then the translation is as in
the previous section, yielding:selet <result>[!tls!selet <auth>[!ln !fn℄from <(x0)>[books::Book*℄ in [do℄,<(x1)>[tls::Title a::Author+x2::Publisher x3::Prie℄ in bks<(x4)>[ln::Last fn::First℄ in a℄from <(x0)>[bks::Book*℄ in [do℄,<(x1)>[tls::Title a::Author+x2::Publisher x3::Prie℄ in bks

We notice that a new form of redundancy appears as the clauses
for x0 andx1 are uselessly computed twice. This is due to the fact
that the work done for translating the inner query was already done
when computing the translation of the outer query. The solution
is as before, that is, we memoize the variables already met bythe
translation, with the difference that the variables to be stored are
now defined inC and the environment that stores them is added to
⊢s-judgments.

3.2.4 Redundancy elimination for nested queries without
condition

We need to modify only theR-rules, whose judgments specify
now a environmentΣ both as input and as output. These two
Σ’s respectively store and return all the variables defined inthe
construct tableau being translated, so that these variables are taken
into account (when generatingfrom clauses) just once.F-rules
instead need no modification, even though these rules (in particular
F2) now work on richerΣ’s that convey more information.

x ∈ dv(F)

F , C , Σ ⊢s x → (Σ, x)
(R1)

x 6∈ dv(F) ∪ dv(C)

F , C , Σ ⊢s x → Ω
(R6)

CT(x|tag|k|(a1, x1)...(ak, xk)|xk+1...xk+n) ∈ C

{xj1 , . . . , xjm
} = dv(F) ∩ {x1, . . . , xk+n}

F , Σh−1 ⊢f xjh
→ (lh, Σh) h = 1 . . . m

F , C , Σm ⊢s xi → (Σ′

i, ei) i = 1 . . . k+n

F , C , Σ0 ⊢s x → (Σm, selet <tag a1=e1..ak=ek>[!ek+1..!ek+n℄ from l1..lm)

(R2)

(F1), (F2), (F3), (F4) as in Fig. 13

Figure 16. Memoization for nested queries without condition.

In particular, R1 and R2 are straightforwardly extended (by
adding the context environment and, forR1, returning it unmodi-
fied).R2first generates all thefrom clauses needed at the top level,
and then it translates possibly nested queries under the environment
Σm which records all the variable defined in the generation of the
top-levelfrom clauses. The rules in Figure 16 translate the tableaux
of Figure 15 into the following (expected) query:

selet <result>[!tls!selet <auth>[!ln !fn℄from <(x4)>[ln::Last fn::First℄ in a℄from <(x0)>[bks::Book* ℄ in [do℄,<(x1)>[tls::Title a::Author+x2::Publisher x3::Prie℄ in bks
The rules in Figure 16 are not complete, though. A rule is still
missing. The problem is that if in ruleR2 Σ0 = Σm holds, then
the various sub-calls to theF-rules would not generate any clause,
thus yielding an emptyfrom part (and a syntax error). This in
particular happens when all clauses needed for the definition of the
variables free in some construct tableau were already generated. To
see an instance of the problem, it suffices to replace in Figure 15
the first construct tableau (the one that defines thep variable), by
the following one. <auth> Author+

p a

for which the sole rules of Figure 16 would returnselet <result>[!tls!selet <auth>[!a℄from ℄from <(x0)>[bks::Book* ℄ in [do℄,<(x1)>[tls::Title a::Author+x2::Publisher x3::Prie℄ in bks
whose syntax is incorrect since the grayedfrom clause is empty.
To avoid this problem it suffices to add to the rules of Figure 16
the following ruleR4 that for Σ0 = Σm returns[e℄ instead of"selet e from ":

(if Σ0 = Σm)
CT(x|tag|k|(a1, x1)...(ak, xk)|xk+1...xk+n) ∈ C

{xj1 , . . . , xjm
} = dv(F) ∩ {x1, . . . , xk+n}

F , Σh−1 ⊢f xjh
→ (lh, Σh) h = 1 . . . m

F , C , Σm ⊢s xi → (Σ′

i, ei) i = 1 . . . k+n

F , C , Σ0 ⊢s x → (Σm, [<tag a1=e1 . . . ak=ek>[!ek+1 . . . !ek+n℄ ℄) (R4)

With this new rule the previous example translates to:selet <result>[!tls ![<auth>[!a℄℄ ℄from <(x0)>[bks::Book*℄ in [do℄,<(x1)>[tls::Title a::Author+x2::Publisher x3::Prie℄ in bks
3.2.5 Nested queries with condition.

Finally, the most general case, in whichΘ 6=∅ needs the new rules
C1-C7of Figure 17. These have as inputF , Σ andΘ and generate
a CQL conditionC that translates the rows that use variables inΣ
(that is, variables used by the query being translated). Theoutput
also includes the listl of from clauses that were created during the
construction ofC. These clauses are created whenΘ uses variables
not already treated (hence, not belonging toΣ). Of course, we
need to keep track of these variables for subsequent analysis steps,
in order to avoid the creation of duplicatedfrom clauses. This
explains the third output of⊢c, an environmentΣ′ that collects all
the newly encountered and treated variables.

The first twoC-rules handle the base cases where there are
no conditions to create, either becauseΣ is empty and thus the
query being translated does not define any new variable (C1) or
because there are no more condition rows to translate (C2). Rule
C3 handles the case where the selected condition uses only one
variablex and this variable is not already defined by afrom clause
(i.e.,x 6∈ Σ) . This means that the condition is not relevant for the
query being created, and therefore we may drop this condition-box

row and continue with other conditions. RuleC4 handles the case
of one-variable condition where the variable was already treated.
Rules C5 and C6 are the two-variables counterparts ofC3 and
C4, respectively (in this senseC1 is an optimization ofC3 and
C5). Finally, ruleC7 handles the case of a two-variable condition,
where just one of the two variables has not been treated (it isnot
in Σ). Since one of the two variables is already defined, we have to
generate thefrom clauses that define the other one, which is done
by the last premise in the rule. We omitted the symmetric cases of
C3, C4, andC7 in which operands are swapped.

TheR-rules are modified as well, in particular by the addition
of Θ to the inputs and of the calls to⊢c to generate conditions.
When these calls do not generate any condition (rulesR2, R4), then
the rules work as before. If instead the calls generate a condition
C, then this is added to the translation. RuleR3 addsC as thewhere clause of the generatedselet expression (plus all the
generatedfrom clauses). RuleR5handles the special case in which
the various sub-calls generates an empty set offrom clauses (it is
the non-empty condition counterpart of ruleR4) and therefore there
is noselet expression to which stickC as awhere clause: in this
case anif_then_else CQL operator is used instead.Bib # Book*

doc (x0, _) (bks, _)Book # Title Author+ Publisher Prie
bks (x1, _) (tls1, _) (x2, _) (x3, _) (x4, _)Entries # Entry*
bstore2 (x5, _) (reviews, _)Entry # Title Prie Review

reviews (x6, _) (tls2, _) (x7, _) (x8, _)<result> Title
q tls1

CONDITION BOX
tls1=tls2

Figure 18. Titles that appear both indo and inbstore2.

The PBE query of Figure 18 defines the query Q5 ofXML Query
Use Cases[8], which is interesting since it contains a join condition
tls1 = tls2. The generation of the correspondingCQL query, relies
on ruleC7, when thefrom clause fortls1 occurringΘ has been
created, buttls2 has not been defined yet. The result is:selet <result>[!tls1from <(x0)>[bks::Book*℄ in [do℄,<(x1)>[tls1::Title x2::Author+x3::Publisher x4::Prie℄ in bks,<(x5)>[reviews::Entry*℄ in [bstore2℄,<(x6)>[tls2::Title x7::Prie x8::Review ℄ in reviewswhere tls1=tls2

The translation of well-defined PBE queries always terminates
and yields well-typedCQL expressions, as stated by the following
theorem

THEOREM3.8. Let Q = (F , C , P, Θ) be a PBE query. For
everyx ∈ dv(C) there exists a uniquee such that the judgment
F , C , ∅,Θ ⊢s x → e is provable. Furthermore, ifQ is well
defined, thene is a well-typedCQL expression (in particular,
e 6= Ω) up to exhaustiveness of pattern matching.4

4 The definition of well-defined query does not ensure that all the rows of a filter
tableau are useful. For instance, every row following a row with all constraints equal
to Any will never be used. This property can be easily checked at construction time
but its definition would have required the introduction of several technical definitions
of theCDuce type system. We preferred to keep the definition simple,as these errors
are statically detected as soon as the query is generated (more precisely, as soon as the
pattern() funcion is called).

x ∈ dv(F)

F , C , Σ, Θ ⊢s x → (Σ, x)
(R1)

(if Σ0 6= Σm)
CT(x|tag|k|(a1, x1) . . . (ak, xk)|xk+1 . . . xk+n) ∈ C

{xj1 , . . . , xjm
} = dv(F) ∩ {x1, . . . , xk+n}

F , Σh−1 ⊢f xjh
→ (lh, Σh) F , C , Σm, Θ ⊢s xi → (Σ′

i, ei)
F , Σm, Θ ⊢c (∅, ∅, Σm) i = 1 . . . k+n h = 1 . . . m

F , C , Σ0, Θ ⊢s x → (Σm, selet <tag a1=e1 . . . ak=ek>[!ek+1 . . . !ek+n℄ from l1, . . . , lm)

(R2)

(if Σ0 6= Σ′)
CT(x|tag|k|(a1, x1) . . . (ak, xk)|xk+1 . . . xk+n) ∈ C

{xj1 , . . . , xjm
} = dv(F) ∩ {x1, . . . , xk+n}

F , Σh−1 ⊢f xjh
→ (lh, Σh) F , C , Σm, Θ ⊢s xi → (Σ′

i, ei)
F , Σm, Θ ⊢c (C, lc, Σ

′) i = 1 . . . k+n h = 1 . . . m

F , C , Σ0, Θ ⊢s x → (Σ′, selet <tag a1=e1..ak=ek>[!ek+1..!ek+n℄ from l1..lm,lc where C)

(R3)

(if Σ0 = Σm)
CT(x|tag|k|(a1, x1) . . . (ak, xk)|xk+1 . . . xk+n) ∈ C

{xj1 , . . . , xjm
} = dv(F) ∩ {x1, . . . , xk+n}

F , Σh−1 ⊢f xjh
→ (lh, Σh) F , C , Σm, Θ ⊢s xi → (Σ′

i, ei)
F , Σm, Θ ⊢c (∅, ∅, Σm) i = 1 . . . k+n h = 1 . . . m

F , C , Σ0, Θ ⊢s x → (Σm, [<tag a1=e1 . . . ak=ek>[!ek+1 . . . !ek+n℄ ℄) (R4)

(if Σ0 = Σm)
CT(x|tag|k|(a1, x1) . . . (ak, xk)|xk+1 . . . xk+n) ∈ C

{xj1 , . . . , xjm
} = dv(F) ∩ {x1, . . . , xk+n}

F , Σh−1 ⊢f xjh
→ (lh, Σh) F , C , Σm, Θ ⊢s xi → (Σ′

i, ei)
F , Σm, Θ ⊢c (C, ∅, Σm)

i = 1 . . . k+n h = 1 . . . m

F , C , Σ0, Θ ⊢s x → (Σm, if C then [<tag a1=e1 . . . ak=ek>[!ek+1 . . . !ek+n℄ ℄ else [℄) (R5)

x 6∈ dv(F) ∪ dv(C)

F , C , Σ, Θ ⊢s x → Ω
(R6)

x ∈ Σ

F , Σ ⊢f x → (∅, Σ)
(F1)

x 6∈ Σ ∪ dv(F)

F , Σ ⊢f x → Ω
(F2)

x 6∈ Σ ∃f ∈ F , x ∈ dv(f) y ∈ fv(f) ∩ P

F , Σ ⊢f x → (pattern(f) in [y℄, Σ ∪ dv(f))
(F3)

x 6∈ Σ ∃f ∈ F , x ∈ dv(f) y ∈ fv(f)
y 6∈ P F\f, Σ ∪ dv(f) ⊢f y → (li, Σ

′)

F , Σ ⊢f x → (li , pattern(f) in y, Σ′)
(F4)

F , ∅, Θ ⊢c (∅, ∅, ∅)
(C1)

F , Σ, ∅ ⊢c (∅, ∅, Σ)
(C2)

r = CB(op, x, v) ∈ Θ x 6∈ Σ
F , Σ, Θ\r ⊢c (C, l, Σ′)

F , Σ, Θ ⊢c (C, l, Σ′)
(C3)

r = CB(op, x, v) ∈ Θ x ∈ Σ
F , Σ, Θ\r ⊢c (C, l, Σ′)

F , Σ, Θ ⊢c (C and (x op v), l, Σ′)
(C4)

r = CB(op, x1, x2) ∈ Θ x1 6∈ Σ x2 6∈ Σ
F , Σ, Θ\r ⊢c (C, l, Σ′)

F , Σ, Θ ⊢c (C, l, Σ′)
(C5)

r = CB(op, x1, x2) ∈ Θ x1 ∈ Σ x2 ∈ Σ
F , Σ, Θ\r ⊢c (C, l, Σ′)

F , Σ, Θ ⊢c (C and (x1 op x2), l, Σ′)
(C6)

r = CB(op, x1, x2) ∈ Θ x1 ∈ Σ x2 6∈ Σ
F , Σ, Θ\r ⊢c (C, l1, Σ

′) F , Σ′ ⊢f x2 → (l2, Σ
′′)

F , Σ, Θ ⊢c (C and (x1 op x2) , l1,l2 , Σ′′)
(C7)

Figure 17. Translation rules for nested queries with condition.

3.3 Further design issues

So far the interpretation of tableaux, although technically difficult,
is rather uncontroversial: the given semantics implementswhat
one intuitively expects from tableaux. There are however some
design choices that are not so obvious and that can be interesting
to allow more advanced uses of the language. In particular, should
constraints given in some filter tableau for a variable defined in
a different filter tableau apply locally or globally? Note that the
latter choice is the one done by QBE. We discuss more in depth
this option in what follows.

Downward search for filter tableaux
The current translation builds a query starting from the vari-

ables given in a construct tableau, and looking for all the variables
necessary to this construction in the filter tableaux. But following
what is done in QBE, the user may want to give constraints on the
variables of a filter tableau by using a different filter tableau on the
same variable.

As an example consider the following query

Bib # Book*
doc (x0, _) (bks, _)Book # Title Author+ Publisher Prie
bks (x1, _) (tls, _) (x2, _) (x3, _) (x4, 50--*))<result> Title

q tls

which returns the titles of books whose price is greater thanor
equal to50. Users may be tempted to use an alternative way to
define the constraint on the price by introducing a new variable prc
for price and restricting it in a new filter tableau as done hereafter:Bib # Book*

doc (x0, _) (bks, _)Book # Title Author+ Publisher Prie
bks (x1, _) (tls, _) (x2, _) (x3, _) (prc, _)Prie # Int
prc (x4, _) (x5, 50--*) <result> Title

q tls

Whether the two PBE queries above should have the same seman-
tics is a design choice. With the current translation the filter tableau

for prc would be useless and the queryq return the titles ofall
books. However it may be useful that filter tableaux can influence
each other and thus to allow the use of filter tableaux to specify
conditions for portions of XML trees which otherwise would not
be explored to capture the subtrees necessary to build a query. In
practice, this would correspond to perform a downward search for
filter tableaux that relate variables already defined in the translation.
This can obtained by adding and modifying the translation rules by
the “downward” rules given in Figure 19

x 6∈ Σ ∃f ∈ F , x ∈ dv(f) y ∈ fv(f) ∩ P

{x1 . . . xn} = dv(f) Σ0 = Σ ∪ dv(f)
F\f, Σi−1 ⊢fd

xi → (li, Σi) i = 1 . . . n

F , Σ ⊢f x → (pattern(f) in [y℄, l1, ... , ln , Σn)
(F3)

x 6∈ Σ ∃f ∈ F , x ∈ dv(f) y ∈ fv(f)
{x1 . . . xn} = dv(f) y 6∈ P

F\f, Σ ∪ dv(f) ⊢f y → (ly, Σ0)
F\f, Σi−1 ⊢fd

xi → (li, Σi) i = 1 . . . n

F , Σ ⊢f x → (ly , pattern(f) in y , l1, ... , ln , Σn)
(F4)

x ∈ Σ

F , Σ ⊢fd
x → (∅, Σ)

(FD1)
x 6∈ Σ ∪ fv(F)

F , Σ ⊢fd
x → (∅,Σ)

(FD2)

x 6∈ Σ ∃f ∈ F , x ∈ fv(f)
{x1 . . . xn} = dv(f) Σ0 = Σ ∪ dv(f)
F\f, Σi−1 ⊢fd

xi → (li, Σi) i = 1 . . . n

F , Σ ⊢fd
x → (pattern(f) in y , l1, ... , ln , Σn)

(FD4)

Figure 19. Modified rules for downward search.

The newF -rules call the⊢fd
judgment on every variable de-

fined by the rowf being translated (similar modifications must be
done forC7 and theR-rules in Figure 17) and this deep search is
reiterated by the ruleFD4 (there is not aFD3 rule since persistent
roots are already completely defined).

4. Conclusion and future work
PBE is a graphical interface that allows users with little orno
knowledge of XPath, XQuery, orCQL to define complex and op-
timized queries on XML documents. The only required skill isto
be able to understand XML types written using pretty intuitive and
standard conventions of type regular expressions. At road test we
found the usage of PBE quite simple and intuitive. Of course this
is a subjective view, but PBE has two objective and importantad-
vantages with respect to other graphical query languages. The first
is that it generates queries that are provably correct with respect
to types. The type of the result is displayed to the user and this
constitutes a first and immediate visual yardstick to check seman-
tic correctness of the resulting query. The second advantage is that
its semantics is formally—thus, unambiguously—defined: this is
an important advancement over some current approaches in which
the standard usage and learning methods are based on “trial and
error” techniques (a.k.a. “click and hope”) since while theformal
semantics will be of littel or no use to the unexperienced program-
mer, it is an important basis to develop, test, and optimize possible
implementations of PBE.

The implementation of PBE developed in OCaml is in alpha-
testing. It relies for its graphical part on LablGTK, on theCDuce’s
type engine for computing table entries, and usesCQL as back-
end. Its kismet is its inclusion in the officialCDuce distribution
(http://www.due.org), but before some improvements are

still needed. Some are purely ergonomic, such as the possibility
of defining DTDs by using tableaux, the early detection of useless
filter tableaux rows (see Footnote 4), the elimination of explicit
variables by replacing them by “drag-and-drop” techniques. Others
are enhancement features: foremost we want to allow the userto
split an automatically generated column into several equivalent
ones (for instance, if a user wants to capture exactly the second
author of a book, (s)he should be allowed to split theAuthor+
column of the first filter tableau in Figure 8 into three columns,
one for the first author, another for the second author, and a last
one for the remaining authors); but we want also devise a way
to express unions or complex constraints without the necessity of
writing complex type regular expressions in filter tableau rows.

References
[1] V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-friendly

general purpose language. InICFP ’03, 8th ACM Int. Conf. on
Functional Programming, pages 51–63. ACM Press, 2003.

[2] V. Benzaken, G. Castagna, and C. Miachon. A full pattern-based
paradigm for XML query processing. InPADL 05, 7th Int. Symp. on
Practical Aspects of Declarative Languages, number 3350 in LNCS,
pages 235–252. Springer, 2005.

[3] S. Berger, F. Bry, S. Schaffert, and Ch. Wieser. Xcerpt and visXcerpt:
From pattern-based to visual querying of XML and semistructured
data. InVLDB, pages 1053–1056, 2003.

[4] S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J. Robie,
J. Siméon, and M. Stefanescu.XQuery 1.0: An XML Query Language.
W3C Working Draft,http://www.w3.org/TR/xquery/, May
2003.

[5] L. Bouganim, T. Chan-Sine-Ying, T-T. Dang-Ngoc, J-L Darroux,
G. Gardarin, and F. Sha. Miro web: Integrating multiple datasources
through semistructured data types. InThe VLDB Journal, pages
750–753, 1999.

[6] D. Braga, A. Campi, and S. Ceri. “XQBE (XQuery By Example):
A visual interface to the standard XML query language”.TODS,
30:398–443, 2005.

[7] M. J. Carey, L. M. Haas, V. Maganty, and J. H. Williams. Pesto :
An integrated query/browser for object databases. InVLDB, pages
203–214, 1996.

[8] D. Chamberlin, P. Fankhauser, D. Florescu, M. Marchiori, and
J. Robie. XML Query Use Cases. Technical Report 20030822,
World Wide Web Consortium, 2003.

[9] S. Cohen, Y. Kanza, Y. A. Kogan, W. Nutt, Y. Sagiv, and A. Sere-
brenik. Equix easy querying in XML databases. InWebDB (Informal
Proceedings), pages 43–48, 1999.

[10] M. Erwig. Xing: A visual XML query language.Journal of Visual
Languages and Computing, 14(1):5–45, 2003.

[11] I. Filha, A. Laender, and A. da Silva. Querying Semi-structured Data
By Example: The QSByE Interface. InWorkshop on Information
Integration on the Web, 2001.

[12] H. Hosoya and B. Pierce. XDuce: A typed XML processing language.
ACM Transactions on Internet Technology, 3(2):117–148, 2003.

[13] C. Miachon. Langages de requêtes pour XML à base de patterns :
conception, optimisation et implantation.PhD thesis, Université Paris
Sud, available at: http://www.lri.fr/ miachon/these-cedric-miachon.ps,
2006.

[14] K. D. Munroe and Y. Papakonstantinou. BBQ: A visual interface for
integrated browsing and querying of XML. InVLDB, 2000.

[15] M. Petropoulos, Y. Papakonstantinou, and V. Vassalos.Graphical
query interfaces for semistructured data: the QURSED system. TOIT,
5(2):390–438, May 2005.

[16] M. Zloof. Query-by-example: A data base language.IBM Systems
Journal, 16(4):324–343, 1977.

