
Université PARIS 7

OVERLOADING, SUBTYPING
AND LATE BINDING:
FUNCTIONAL FOUNDATION OF
OBJECT-ORIENTED
PROGRAMMING

PhD dissertation January 1994

Advisor:
Giuseppe Longo

Referees:
Kim Bruce
Luca Cardelli
Didier Rémy

Chairperson:
Guy Cousineau

Committee Members:
Serge Abiteboul
Jean-Pierre Jouannaud
Giuseppe Longo
Didier Rémy
Patrick Sallé

Giuseppe Castagna

Laboratoire d’Informatique

de l’Ecole Normale Supérieure

Université PARIS 7

SURCHARGE, SOUS-TYPAGE
ET LIAISON TARDIVE :
FONDEMENTS FONCTIONNELS
DE LA PROGRAMMATION
ORIENTÉE OBJETS

Thèse de doctorat janvier 1994

Directeur de thèse :
Giuseppe Longo

Rapporteurs :
Kim Bruce
Luca Cardelli
Didier Rémy

Président du Jury:
Guy Cousineau

Examinateurs :
Serge Abiteboul
Jean-Pierre Jouannaud
Giuseppe Longo
Didier Rémy
Patrick Sallé

Giuseppe Castagna

Laboratoire d’Informatique

de l’Ecole Normale Supérieure

Quest tesi è dedicata a
mio nonno ’Gin
che mi mostró la dolcezza, la bontá e la tolleranza,
mio nonno Beppe
che mi mostró la coerenza e la perseveranza
Ilaria e \ldots

per i momenti felici passati assieme

Acknowledgments

Giuseppe Longo really deserves the first position in this list. It is not the task of a simple
PhD. student to praise the scientific qualities of Prof. Longo; but since I had the chance to
work with him and to share some of his time, I can witness of his exceptional human qualities.
He was always ready to listen to me, to help me in the difficult moments, to calm down with
patience my enthusiasms when they were too strong and to tolerate my faults. His attitude
was the one of a permanent “learner”: he listens to you to learn from you. Thus I want to
thank more the man than the scholar, because if it is true that I owe much to the latter, I
am indebted for a more important example to the former. And I am happy to express here
all my appreciation for him.

All my thanks also to Giorgio Ghelli. This thesis owes him a lot: the incipient intu-
ition, some ideas and results presented in this thesis come from him. The “anschauung”
he transmitted me was very helpful to perceive the general setting behind every particular
result.

Benli Pierce is a great researcher and a friend; thanks to him this thesis has one chapter
written in real english (apart from the modifications I made)

Luca Cardelli deserves a triple acknowledgment: for having started the type theoretic
research on object-oriented programming, for his suggestions and the various discussions I
had with him —thanks to him the chapter 8 of this thesis exists—, and for the incredible
courage demonstrated in accepting to be the referee of this thesis. The same holds for Kim
Bruce, which has my gratitude also for his advice and for the warm hospitality he and his
wife Fatima offered me in Williamstown. Didier Rémy completes the list of the audacious
who accepted the challenge of judging my thesis; I thank him for this and for the interest he
always demonstrated in my work.

Thanks a lot to Guy Cousineau, for his help, his amiability and his always ready advice:
I owe him a lot. With him I also want to thank the Laboratoire d’Informatique de l’École
Normale Supérieure, who offered me a pleasant and stimulating place to develop this work.
The other department I want warmly to thank is the DISI of University of Genoa, in the
person of Eugenio Moggi: his advice and his comprehension helped me a lot and I really
regretted to be obliged to abandon Genoa to end this thesis. Thanks also to the University
of Pisa for all the years I spent there and the Consiglio Nazionale delle Ricerche, Comitato
Nazionale per le Scienze Matematiche for its financial support.

I am also grateful to Mart́ın Abadi whose suggestions the results of section 8.5 come from;
to Véronique Benzaken who introduced me to O2; to John Lamping who suggested me the
study of one of the systems in chapter 4; to John Mitchell for his advice and his hospitality

3

4

at Stanford; to Hideki Tsuiki who pointed me out an error in the semantics for λ&; to Allyn
Dimock, Maribel Fernández, and some anonymous referees (I will never say which ones!) for
their comments on the drafts of some papers; to Dinesh Katiyar for his courage in assisting
four times to the same talk I gave in different places; to Kathleen Milsted for her help in
writing the introduction of this thesis; to Bob Muller and his wife Susan for their hospitality
during my visit to the Apple-Eastern Research and Technology Lab. and also to the Dylan
group for the many stimulating discussions; to Maria Virginia Apónte, François Bouladoux,
Lucky Chillan, Pierre Cregut, Adriana Compagnoni, Pierre-Louis Curien, Roberto Di Cosmo,
Furio Honsell, Delia Kesner, Simone Martini, Chet Murthy, Pino Rosolini for the discussions
I had with them.

I also want to thank the friends of these years that are not cited above: Alejandro,
Alessandra, Antonio, Carola, Cristina (J. P.-A.), Ilaria, Inés, José, Kiki, Liliane, Mario,
Michel, Nadine, Pompeo, Roberto, Tiziana, Tomás(!), Yiyo just because they were there . . .
which means a lot.

Let me end with the persons who are the demiurges of this thesis: Franca and Nico, my
parents. I want to thank them for their constant support; for having trusted in me; for having
taught me to take my responsibilities and to respect every other person; for the example they
were for me ... in a word: for their love. And if this thesis cannot certainly recompense all
they gave to me, could be a comfort to our separation to know that I do love them.

Preface

E poi che la sua mano alla mia pose

con lieto volto, ond’io mi confortai,

mi mise dentro alle segrete cose.

Dante Alighieri

Inferno; iii, 19-21

Many of the results in this thesis have already been published in review or conference pro-
ceedings. More precisely chapters 2 and 3 are based on an article to appear in Information
and Computation [CGL92b] whose extended abstract can be found in the proceedings of the
1992 ACM Conference on LISP and Functional Programming [CGL92a]. The first and the
fifth chapters are partially based on a paper whose (very) preliminary version appeared as
a Technical Report of LIENS [Cas92], and whose extended abstract has been published in
the 13th Conference on Foundation of Software Technology and Theoretical Computer Sci-
ence [Cas93b]. The extended abstract of the sixth chapter appears in the proceedings of the
International Conference on Typed Lambda Calculi and Applications [CGL93]. Chapter 9
and part of chapter 10 are contained in a paper actually under submission, whose extended
abstract appears in the proceedings of the 4th International Workshop on Data Base Pro-
gramming Languages [Cas93a]. The extended abstract of chapter 8 will be presented at the
21st Annual Symposium on Principle Of Programming Languages. Finally for the second and
the seventh chapter we also used part of the course notes for a summer school in Nice [CL91b].

Most of these papers are coauthored: without the essential contributions of Giorgio Ghelli,
Giuseppe Longo and Benjamin Pierce this thesis certainly could not be but much poorer than
what it is. We will recall the other authors at the beginning of each chapter whose results
are not due only to this thesis’s author.

5

6

Contents

Présentation de la thèse 13

Programmation orientée objets . 18

Le λ&-calcul . 19

Normalisation Forte . 26

Trois variations sur le thème . 27

Un méta-langage de λ& . 31

Sémantique . 34

Second ordre . 37

Vers une quantification bornée décidable . 38

Quantification bornée avec surcharge . 42

Surcharge de second ordre et programmation orientée objets 45

Conclusion . 48

Introduction 53

Background and notation 61

Term rewriting systems . 61

Logic . 62

I Simple typing 63

1 Object-oriented programming 65

1.1 A kernel functional object-oriented language 65

1.1.1 Objects . 65

1.1.2 Messages . 66

1.1.3 Methods and functions . 66

1.1.4 Classes . 68

1.1.5 Inheritance . 70

1.1.6 Multiple inheritance . 72

1.1.7 Extending classes . 74

1.1.8 Super, self and the use of coercions . 75

1.1.9 Multiple dispatch . 76

1.1.10 Messages as first-class values: adding overloading 77

7

8 CONTENTS

1.2 Type checking . 78

1.2.1 The types . 78

1.2.2 Intuitive typing rules . 79

2 The λ&-calculus 83

2.1 Informal presentation . 83

2.1.1 Subtyping, run-time types and late binding 84
2.2 The syntax of the λ&-calculus . 86

2.2.1 Subtyping rules. 86

2.2.2 Types . 87

2.2.3 Terms . 88
2.2.4 Type checking . 89

2.2.5 Reduction Rules . 91

2.3 The Generalized Subject Reduction Theorem 94

2.4 Church-Rosser . 97

2.5 Basic encodings . 99
2.5.1 Surjective pairings . 100

2.5.2 Simple records . 100

2.5.3 Updatable records . 101

2.6 λ& and object-oriented programming . 102

2.6.1 The “objects as records” analogy . 104
2.6.2 Binary methods and multiple dispatch 107

2.6.3 Covariance vs. contravariance . 108

2.6.4 Abstract classes . 109

3 Strong Normalization 113

3.1 The full calculus is not normalizing . 113

3.2 Fixed point combinators . 114

3.3 The reasons for non normalization . 115

3.4 Typed-inductive properties . 117
3.5 Strong Normalization is typed-inductive . 120

4 Three variations on the theme 123
4.1 More freedom to the system: λ&+ . 123

4.1.1 Modifying the good formation of types 124

4.1.2 Modifying the formation of the terms 125

4.1.3 Modifying the notion of reduction . 126

4.1.4 Conservativity . 128
4.1.5 Subject Reduction . 128

4.1.6 Church-Rosser . 129

4.1.7 Strong Normalization . 129

4.2 Adding explicit coercions . 130

4.2.1 Subject Reduction . 131
4.2.2 Church Rosser . 131

4.2.3 Strong Normalization . 132

CONTENTS 9

4.2.4 More on updatable records . 133

4.3 Unifying overloading and λ-abstraction: λ{} 134

4.3.1 Subject Reduction . 135

4.3.2 Church-Rosser . 136

4.4 Reference to other work . 139

5 A meta-language from λ& 141

5.1 The formal presentation of the toy language 142

5.1.1 The terms of the language . 142

5.1.2 The types of the language . 144

5.2 λ object . 152

5.2.1 The type system . 156

5.2.2 Some results . 158

5.3 Translation . 160

5.3.1 Simple methods without recursion . 161

5.3.2 With multi-methods . 164

5.3.3 With recursive methods . 166

5.3.4 Correctness of the type-checking . 167

5.4 λ object and λ& . 167

5.4.1 The encoding of the types . 168

5.4.2 The encoding of the terms . 170

6 Semantics 173

6.1 Introduction . 173

6.2 The completion of overloaded types . 174

6.3 Early Binding . 177

6.4 Semantics . 179

6.4.1 PER as a model . 179

6.4.2 Overloaded types as Products . 182

6.4.3 The semantics of terms . 186

6.5 Summary of the semantics . 191

II Second order 195

7 Introduction to part II 197

7.1 The loss of information in the record-based models: a short history 198

7.1.1 Implicit Polymorphism . 198

7.1.2 Explicit Polymorphism . 199

7.1.3 F≤ . 200

8 A roadmap to decidable bounded quantification 203

8.1 Introduction . 203

8.2 Syntax . 206

8.3 Expressiveness . 207

10 CONTENTS

8.4 Basic Properties . 208

8.4.1 Subtyping algorithm . 209

8.4.2 Meets and joins . 212

8.5 Semantics . 214

8.5.1 The language TARGET . 216

8.5.2 Translation . 218

8.6 Conservativity of Recursive Types . 220

8.7 The typing relation . 222

8.8 Conclusions . 223

9 Bounded quantification with overloading 225

9.1 The loss of information in the overloading-based model 225

9.1.1 Type dependency . 227

9.2 Type system . 229

9.2.1 Some useful results . 230

9.2.2 Transitivity elimination . 232

9.2.3 Subtyping algorithm and coherence of the system 237

9.3 Terms . 240

9.4 Reduction . 242

9.4.1 The encoding of records . 243

9.4.2 Generalized Subject Reduction . 244

9.4.3 Church-Rosser . 257

9.5 Decidable subtyping . 260

9.5.1 Subtyping algorithm . 260

9.5.2 Termination . 262

9.5.3 Terms and reduction . 264

10 Second order overloading and object-oriented programming 267

10.1 Object-oriented programming . 267

10.1.1 Extending classes . 270

10.1.2 First class messages, super and coerce 270

10.1.3 Typing rules for the toy language . 271

10.1.4 Multiple dispatch . 272

10.1.5 Advanced features . 274

10.2 Future work . 274

11 Conclusion 277

11.1 Proof Theory . 277

11.2 Object-oriented programming . 279

11.2.1 Inheritance . 282

11.2.2 Higher-order bounds . 284

11.2.3 Beyond object-oriented programming 284

CONTENTS 11

III Appendixes 285

A Implementation of λ object 287
A.1 The language . 288
A.2 The module . 291

B Type system of λ object 309
B.1 Types . 309
B.2 Typing rules . 309

C Specification of the toy language 311
C.1 Terms . 311
C.2 Subtyping . 312

C.2.1 Auxiliary Notation . 312
C.3 Typing Rules . 313

D Proof of theorem 5.3.8 315

E Original F≤ rules 321
E.1 Subtyping . 321
E.2 Typing . 321
E.3 Typing algorithm . 322

F Translation of F⊤≤ into explicit coercions 323

12 CONTENTS

Présentation de la thèse

L’écriture qui semble devoir fixer la langue, est précisément ce qui

l’altère ; elle ne change pas les mots, mais la génie ; elle substitue

l’exactitude à l’expression. L’on rend ses sentiments quand on parle

et ses idées quand on écrit.

Jean-Jacques Rousseau

Essai sur l’origine des langues

Durant ces deux dernières décennies une distinction importante a été largement utilisée en
Théorie des Langages entre polymorphisme paramétrique et polymorphisme “ad hoc” [Str67]
(voir aussi [CW85]). Le polymorphisme paramétrique offre la possibilité de définir des fonc-
tions dont le même code peut être exécuté sur des types différents, tandis que le polymor-
phisme “ad hoc” permet de définir des fonctions exécutant un code différent pour chaque
type. Tant la Théorie de la Démonstration que la Sémantique de la première forme de
polymorphisme ont été largement étudiées par de nombreux auteurs, sur la base de travaux
initiaux de Hindley, Girard, Milner et Reynolds ; cela a conduit à de solides pratiques de
programmation. En revanche, la deuxième forme de polymorphisme, habituellement appelée
“surcharge” (overloading) n’a reçu que peu d’intérêt théorique (sauf quelques exceptions
comme [MOM90], [WB89] ou [Rou90]). Ainsi, la mise en œuvre actuelle de cette forme de
polymorphisme, bien que très répandue, n’a pas subi à ce jour, une influence comparable à
celle exercée par la théorie du polymorphisme explicite et/ou implicite sur la pratique de la
programmation.

Très probablement cela vient du fait que les langages de programmation traditionnels
n’offrent qu’une forme très limitée de surcharge : dans la plupart d’entre eux seules des
fonctions pré-définies (essentiellement des opérateurs arithmétiques ou d’entrée/sortie) sont
surchargées, et les rares langages offrant au programmeur la possibilité de définir ses propres
fonctions surchargées décident toujours du sens de celles-ci lors de la compilation. Cette
forme de surcharge peut être vue comme une simple abréviation syntaxique qui n’affecte pas
de façon significative le langage sous-jacent.

En fait, nous pensons que la surcharge offre un gain réel de puissance dès lors que l’on
“calcule avec les types” : afin d’exploiter toutes les potentialités de la surcharge, les types
doivent être calculés pendant l’exécution du programme et le résultat de ce calcul doit affecter
le résultat final de l’exécution globale. La résolution de la surcharge quand elle est opérée à
la compilation n’effectue aucun calcul sur les types : la sélection du code à exécuter se réduit

13

14 CONTENTS

à l’expansion d’une macro. Dans les langages munis d’une discipline de types “classique”,
retarder à l’exécution le choix du code n’aurait aucun effet puisque les types ne changent pas
pendant le calcul et donc le choix serait toujours le même. Cependant, il existe une large
classe de langages de programmation dans lesquels les types évoluent pendant l’exécution.
Ceux-la sont les langages qui utilisent des hiérarchies de sous-typage : dans ce cas, les types
changent pendant l’exécution, notamment ils décroissent. C’est en ce sens qu’on “calcule
avec les types” ; ce calcul ne correspond pas à la réduction d’un terme distingué1, mais il
est intrinsèque à l’exécution du programme. Néanmoins nous pouvons l’utiliser pour affecter
le résultat final du programme, simplement en basant la sélection du code d’une fonction
surchargée sur le type à un moment donné de l’exécution.

Ainsi, dans les langages qui utilisent une relation de sous-typage on peut déterminer au
moins deux disciplines pour la sélection du code d’une fonction surchargée :

1. La sélection basée sur la moindre information de type : les types des arguments à la
compilation sont utilisés. Nous appelons cette discipline liaison précoce (early binding).

2. La sélection basée sur la meilleure information de type : les types des formes normales
des arguments sont utilisés. Nous appelons cette discipline liaison tardive (late binding).

Nous avons déjà remarqué que l’introduction de la surcharge avec liaison précoce n’affecte pas
de manière considérable le langage sous-jacent. Cependant, la possibilité de définir des fonc-
tions surchargées, dès qu’elle est associée avec le sous-typage et la liaison tardive, augmente
sensiblement les potentialités d’un langage, car elle permet un haut degré de réutilisation
du code et donc une programmation de type incrémentale. L’idée intuitive est qu’on peut
appliquer une fonction surchargée aux paramètres formels d’une fonction (ordinaire) externe
et laisser au système la tâche de sélectionner le code adéquat selon le type des paramètres
actuels de la fonction externe. Ce choix doit être effectué pendant l’exécution ; plus précisé-
ment après la substitution des paramètres formels par les paramètres actuels. Sans la liaison
tardive on serait obligé de définir aussi la fonction extérieure comme surchargée et son corps
devrait être dupliqué dans chaque branche2, tandis que grâce à la liaison tardive ce même
code est partagé. Par exemple, considérons trois types différents, A, B et C, avec B,C ≤ A,
et une fonction surchargée f , composée de trois branches fA, fB et fC , une pour chaque type.
Imaginons que nous ayons défini une fonction g avec un paramètre formel x de type A, et
que dans le corps de g la fonction f soit appliquée à x. En utilisant les contextes du λ-calcul
(c-à-d des λ-termes avec un “trou”) cela correspond à

g = λx:A.C[f(x)] (0.1)

où C[] dénote un contexte. Si l’on utilise la liaison précoce alors le code fA est toujours
utilisé car x:A ; c’est à dire la fonction (0.1) est équivalent à

λx:A.C[fA(x)]

Grâce au sous-typage g peut être appliquée aussi à des arguments de type B ou C ; avec la
liaison précoce la seule façon d’utiliser le code de f défini pour le type du paramètre actuel

1Au moins dans la plupart des langages
2Nous appelons branche chaque code distinct composant une fonction surchargée

CONTENTS 15

de g est de définir g comme une fonction surchargée de trois branches

gA = λx.C[fA(x)]
gB = λx.C[fB(x)]
gC = λx.C[fC(x)]

(0.2)

Si l’on utilise la liaison tardive alors le choix de la branche pour f est accompli quand x
a été remplacé par le paramètre actuel. Par conséquent la définition de g dans (0.1) est
équivalente à celle de (0.2). Autrement dit, par liaison tardive la fonction g dans (0.1) est
implicitement une fonction surchargée avec trois branches ; et grâce à la liaison tardive ces
branches virtuelles partagent le code C[] (soit, les branches virtuelles pour B et C réutilisent
le code défini pour A).

Dans cette thèse nous proposons une première analyse théorique (donc uniforme et générale)
de cette forme plus riche de surcharge. Cependant nous ne présentons pas un traitement
exhaustif des fonctions surchargées ; nous développons de façon détaillée une approche pure-
ment fonctionnelle centrée sur l’étude de certains mécanismes propres à la programmation
orientée objets, tels que l’envoi de messages et le sous-typage, dans le contexte d’un calcul
véritablement dépendant des types. Toutefois, l’intérêt de cette étude ne se limite pas aux
langages orientés objets. En effet, la surcharge combinée à liaison tardive permet, comme
nous venons de le montrer, la réutilisation du code ; ainsi son étude devient intéressante en
vue d’une intégration dans d’autres formalismes et/ou contextes (au moment de la rédaction
de cette thèse nous étudions son intégration dans le système de modules de SML, dans les
langages de programmation pour bases de données et dans ML). En outre, la dépendance de
types particulière à la surcharge, alliée au sous-typage revêt un intérêt théorique remarquable.

En fait, cette “dépendance par les types” (le fait que le résultat du calcul puisse dépendre
des types) ainsi que le rôle joué par la distinction entre type-à-la-compilation et type-à-
l’exécution constituent le fil rouge qui lie les différents calculs présentés dans cette thèse.
Les différents calculs (d’ordre supérieur) comme le Système F ou ses extensions, permettent
d’abstraire par rapport aux types et d’appliquer des termes à ces derniers ; mais la “valeur”
de cette application ne dépend pas véritablement du type passé comme argument et, plus
généralement, la sémantique d’une expression ne dépend pas des types qu’elle contient. Cette
“généricité” ou propriété d’“effacement des types” (type erasure) joue un rôle crucial dans
la propriété fondamentale de ces calculs : le théorème d’élimination des coupures. Dans les
interprétations sémantiques cette indépendance intrinsèque du calcul par rapport aux types
est comprise comme le fait que le sens d’une fonction polymorphe est donné essentiellement
par des fonctions constantes.

En revanche, les fonctions surchargées expriment des calculs qui dépendent véritablement
des types puisque différentes “branches” de code peuvent être appliquées en fonction des
types en entrée. Ainsi, nous sommes en présence d’une nouvelle forme de polymorphisme : la
paramétricité caractérise un même code qui opère sur différents types ; la surcharge caractérise
un ensemble de codes, un pour chaque type différent. La nouveauté de cette approche est
clairement ressentie lorsqu’on se plonge dans l’étude de la sémantique : les modèles existants
ne sont plus adéquats et le mélange de la surcharge, de la liaison tardive et du sous-typage
ouvre de nouveaux enjeux mathématiques.

16 CONTENTS

Toutefois la motivation principale de cette thèse réside dans le fait de considérer la surcharge
comme une façon d’interpréter l’envoi de message dans la programmation orientée objets.

Dans la programmation orienté objets deux façons distinctes de considérer l’envoi de
message coexistent :

La première approche considère les objets comme des tableaux qui associent une méthode
à chaque message. Lorsque le message m est passé à l’objet obj, la méthode associée à m dans
l’objet obj est recherchée. Une telle approche est décrite dans la Figure a.

object

internal state

message 1 method 1
...

...
message n method n

message i

class name 1 method 1
...

...
class name n method n

Figure a. Figure b.

Objets comme enregistrements. Messages comme fonctions surchargées.

Ce premier point de vue a été largement étudié et correspond à l’analogie “objets comme
enregistrements” introduite dans [Car88] ; dans ce contexte les objets sont des enregistrements
(bien sûr!) dont les étiquettes sont les messages et dont les champs contiennent les méthodes
correspondantes. L’envoi de message correspond alors à l’extraction de champ.

La seconde approche considère les messages comme des identificateurs de fonctions par-
ticulières et l’envoi de message comme leur application. Si, dans le contexte des langages
typés, nous supposons que le type d’un objet est (le nom de) sa classe alors les messages
sont des identificateurs de fonctions surchargées : la méthode est choisie selon la classe (ou,
plus généralement, le type) de l’objet auquel le message est passé (voir Figure b). Ainsi nous
renversons, dans un certain sens, la situation précédente : au lieu d’envoyer des messages aux
objets nous envoyons des objets aux messages.

D’emblée, cette deuxième approche semble posséder certains avantages par rapport à la
première, au moins sur le plan d’une étude théorique du cas typé. Ceci est vrai en particulier
pour les multi-méthodes, le dispatch multiple ou pour l’indépendance logique des donnés per-
sistantes comme dans les langages de programmation pour les bases de données3. En outre,
elle clarifie le rôle de la covariance et de la contra-variance dans la règle de sous-typage pour
les méthodes.

Par ailleurs, d’autres problèmes surgissent dès que l’on utilise les fonctions surchargées
pour modéliser les méthodes. Particulièrement, ceci se produit quand on souhaite intégrer la
redéfinition dynamique de nouvelles classes et un haut niveau d’“encapsulation” ; ce dernier
point par exemple rend ce formalisme inapte à la modélisation des objets dans les systèmes
distribués à grand échelle (WADS) pour lesquels les objets doivent encapsuler les méthodes
(pour des raisons évidentes de sécurité et d’efficacité).

Un regard plus attentif au modèle basé sur la surcharge nous persuade que le style de

3Dans le sens qu’il est possible d’ajouter des nouvelles méthodes pour les objets d’une classe donnée sans
perturber la définition de leurs types et donc le bon typage des applications écrites dans l’ancien schéma

CONTENTS 17

programmation qu’il modélise est tout à fait diffèrent de celui engendré par le modèle basé sur
les enregistrements. Le problème est que le terme “orienté objets” regroupe sous un même
chapeau de nombreuses techniques différentes. En effet, sous ce terme cohabitent différents
styles de programmation dont l’affinité minimale est capturée par les trois termes : “objet”,
“envoi de message” et “héritage”. Vouloir pousser plus loin la similarité en incluant d’autres
“mots magiques” tels que “encapsulation” ou “modularité” exclurait des classes significatives
de langages (e.g. CLOS pour la modularité et Simula pour l’encapsulation). Ces “mots
magiques” partitionnent l’ensemble des langages objets en différents styles le composant.

La recherche dans le domaine de la théorie des types s’est jusqu’à présent préoccupée de
la partition caractérisée par le mot clef “encapsulation des méthodes” et modélisée par les
enregistrements. À partir de [Car88] (déjà paru en 1984) toutes les études théoriques dans le
domaine se fondèrent sur l’hypothèse que les méthodes d’un objet étaient encapsulées dans
celui-ci. Ceci excluait des mécanismes tels que les multi-méthodes et le dispatch multiple,
présents dans certains langages orientés objets mais pour lesquels ce type de modèles était
inadéquat.

Au début de notre travail nous pensions que les modèles existants n’était pas assez puis-
sants pour capturer ces mécanismes. C’est pourquoi nous avons commencé à chercher un
modèle véritablement neuf. À partir des idées de [Ghe91], nous avons établi la base de ce
modèle en définissant le λ&-calcul [CGL92b]. Mais portant un regard plus attentif aux mé-
canismes que nous avions modélisés, nous nous sommes aperçu que nous avions décrit un
style de programmation complètement différent de celui exposé par les enregistrements. Les
modèles par les enregistrements n’étaient pas mis en défaut par celui que nous avions défini
mais plus simplement indépendants de celui-ci : à différents mécanismes différents modèles.

Le “nouveau” style de programmation orienté objets que nous avons modélisé corre-
spondait à celui des fonctions génériques. Il est intéressant de constater qu’à partir d’une
approche purement théorique nous avons obtenu un modèle de programmation déjà existant.
En fait, nous nous sommes bientôt rendu compte qu’à la relation

enregistrement ↔ objet
champ ↔ méthode

étiquette ↔ message

de l’approche “objets comme enregistrements” correspond la relation

fonction surchargée ↔ fonction générique
branche ↔ méthode

de notre approche. Dans les deux cas le passage de la théorie à la pratique a permi d’obtenir
une discipline de typage (dont la correction peut être formellement prouvée!). Mais comme
pour le modèle par enregistrements les bénéfices résultant de la définition d’un modèle typé
ne se réduisent pas à l’obtention d’une discipline de typage : l’étude du modèle nous suggère
d’introduire de nouveaux mécanismes dans les langages orientés objets (par exemple les mes-
sages de première classe) ou de généraliser ou redéfinir les mécanismes existants (par exemple
les coercitions explicites).

Cette thèse est une étude exhaustive de la surcharge combinée à la liaison tardive dans la

18 CONTENTS

perspective particulière de définir ce nouveau modèle, et s’attache également à présenter
l’impact pratique qu’un tel modèle peut avoir sur la définition des langages orientés objets
et leurs disciplines de types.

La thèse est composée de deux parties principales : la première se concentre sur la sur-
charge pour laquelle la dépendance de types est implicite, dans le sens où la sélection de la
branche est déterminée par le type de l’argument de la fonction surchargée. La second partie
est consacrée à l’étude de la dépendance de type explicite de la surcharge, dans le sens où la
sélection de la branche est déterminée par le type qui est l’argument de la fonction surchargée.

Nous détaillons dans les sections suivantes le contenu des chapitres de la thèse.

Programmation orientée objets

Un programme orienté objet est construit à partir d’objets. Un objet est une unité de pro-
grammation qui associe des données avec les opérations qui peuvent utiliser ou modifier ces
données. Ces opérations sont appelés méthodes ; les données sur lesquelles elles opèrent sont
les variables d’instance des objets. Les variables d’instance d’un objet sont privées, leur em-
ploi est limité à l’objet même : on ne peut y accéder que par les méthodes de l’objet. Un
objet est seulement capable de répondre à des messages qui lui sont envoyés ou passés. Un
message est le nom d’une méthode définie pour l’objet en question.

Le passage de message est le mécanisme de base de la programmation orientée objet.
En fait, un programme orienté objets consiste en un ensemble d’objets qui interagissent en
s’échangeant des messages. Chaque langage possède sa propre syntaxe pour le passage de
message. Nous utilisons la notation suivante :

[destinataire message]

Le destinataire est un objet ou une expression calculant un objet ; lors de l’envoi d’un message,
le système sélectionne entre les méthodes définies pour l’objet en question, celle dont le nom
correspond au message ; l’existence de cette méthode doit être vérifiée statiquement (c’est-
à-dire lors de la compilation) par un programme de vérification des types. Nous avons déjà
remarqué qu’une manière de comprendre le passage de message est de le considérer comme
la sélection d’un champ d’un enregistrement.

Dans cette thèse, au contraire, on considère le passage de message comme l’application
d’une fonction, où le message est (l’identificateur de) la fonction et le destinataire son argu-
ment (cette technique est utilisée par les langages CLOS [DG87] et Dylan [App92]). Toutefois
les fonctions ordinaires ne suffisent pas à formaliser cette approche. Le fait qu’une méthode
appartient à un objet spécifique implique que la sémantique du passage de message est tout
à fait différente de celle de l’application ordinaire. Deux caractéristiques différencient les
messages des fonctions :

1. Surcharge : Deux objets peuvent répondre d’une manière différente au même message.
Toutefois tous les objets d’une même classe répondent à un message de la même façon.4

4Cela n’est pas vrai dans les langages objets basés sur la délégation (delegation based).

CONTENTS 19

Sous l’hypothèse que le type d’un objet est sa classe, cela revient à dire que les messages
dénotent des fonctions surchargées, du moment que le code à exécuter est choisi sur la
base du type de l’argument. Chaque méthode associée à un message m constitue une
branche de la fonction surchargée dénotée par m.

2. Liaison tardive : La deuxième différence entre l’application d’une fonction et le passage
d’un message est que la fonction est liée à son exécutable au moment de la compilation,
tandis qu’un message est lié à la méthode à exécuter seulement pendant l’exécution,
lorsque le destinataire est complètement connu. Cette caractéristique, appelée liaison
tardive, est un des traits saillants de la programmation orientée objets. Dans notre
approche elle nâıt de la combinaison de la surcharge et du sous-typage. On peut re-
formuler l’exemple de la section précédente : supposons que les classes Cercle et Carré
soient sous-types de la classe Figure et que les trois classes aient une méthode pour le
message dessine. Si l’on utilise la liaison précoce, le passage du message suivant

λxF igure.(. . . [x dessine] . . .)

est toujours effectué en utilisant la méthode définie pour les figures. En revanche, par
liaison tardive la méthode est choisie après que la fonction a été appliquée, selon que x
est lié à un cercle, à un carré ou à une figure.

Pour commencer une étude formelle à partir de cette intuition, nous définissons une extension
du λ-calcul simplement typé capable de modéliser ces deux mécanismes : surcharge et liaison
tardive.

Le λ&-calcul

Une fonction surchargée est formée par un ensemble de fonctions ordinaires (i.e. des λ-
abstractions), chacune constituant une branche différente. Pour relier ces fonctions nous
avons choisi le symbole & (d’où le nom du calcul) ; donc nous enrichissons les termes du
λ-calcul simplement typé par le terme suivant :

(M&N)

qui, intuitivement, dénote une fonction surchargée avec deux branches, M et N , qui seront
sélectionnées selon le type de l’argument.

On doit distinguer l’application ordinaire de l’application d’une fonction surchargée, car
elles représentent deux mécanismes différents5. Ainsi nous utilisons “•” pour dénoter une
“application surchargée” et “·” pour une application ordinaire.

Nous construisons les fonctions surchargées comme des listes, c’est-à-dire en partant d’une
fonction surchargée vide dénotée par ε, et en concaténant de nouvelles branches par &. Donc
dans le terme précédent M est une fonction surchargée et N une fonction ordinaire (une
branche). Ainsi, le terme

((. . . ((ε&M1)&M2) . . .)&Mn)

5À la première est associée une substitution, à la deuxième une sélection.

20 CONTENTS

dénote une fonction surchargée avec n branches M1,M2, . . . ,Mn.
Le type d’une fonction surchargée est l’ensemble des types de ses branches. Donc nous

ajoutons aux types du λ-calcul simplement typé des ensembles de flèches. Ainsi, si Mi:Ui →
Vi alors la fonction surchargée ci-dessus a le type

{U1 → V1, U2 → V2, . . . , Un → Vn}

et si l’on applique cette fonction à un argument de type Uj on sélectionnera la branche Mj,
soit

(ε&M1& . . . &Mn) •N >∗ Mj · N (0.3)

où >∗ signifie “réécrit en zéro ou plusieurs pas”.
Nous définissons sur les types une relation de sous-typage. Intuitivement U ≤ V si tout

terme de type U peut être utilisé “type safely” là où un terme de type V est requis. Donc
un calcul ne produira pas d’erreurs de type tant qu’il maintiendra ou réduira les types des
termes. La relation de sous-typage pour les types flèches est bien connue (covariance à droite
et contra-variance à gauche) ; la relation pour les types surchargés est déduite du fait qu’une
fonction surchargée peut en remplacer une autre si pour toute branche de la seconde il y en
a une de la première capable de la remplacer.

Avec le sous-typage, le type de N dans (0.3) peut ne pas correspondre à un des Ui mais
être un sous-type de l’un d’entre eux. Dans ce cas on sélectionne la branche dont le type
Ui approche au mieux le type U de N , c’est-à-dire on sélectionne la branche j telle que
Uj = min{Ui|U ≤ Ui}.

Dans notre système les ensembles de flèches ne sont pas tous des types surchargés. En
fait un ensemble de types flèche {Ui → Vi}i∈I est un type surchargé si et seulement si pour
touts i, j dans I il satisfait les conditions suivantes

Ui ≤ Uj ⇒ Vi ≤ Vj (0.4)

Ui ⇓ Uj ⇒ il existe un unique z∈I t.q. Uz = inf{Ui, Uj} (0.5)

où T1 ⇓ T2 dénote l’existence d’un minorant commun pour les types T1 et T2.
La condition (0.4) assure que pendant l’exécution les types ne peuvent que décrôıtre.

Dans un sens elle prend en compte une certaine nécessité de covariance pour les flèches dans
la pratique de la programmation. Plus précisément, considérons une fonction surchargée M
de type {U1 → V1, U2 → V2} où U2 < U1. Si l’on applique M à un terme N ayant à la
compilation le type U1 alors le type de M•N lors de la compilation sera V1. Mais si la forme
normale de N a le type U2 (ce qui est tout à fait possible étant donné que U2 < U1) alors le
type de M•N à l’exécution sera V2 et donc la condition V2 < V1 doit être vérifiée.

La condition (0.5) concerne la sélection d’une branche. On rappelle que pour l’application
d’une fonction de type {Ui → Vi}i∈I à un argument de type U on sélectionne la branche de
type Uj → Vj telle que Uj = mini∈I{Ui|U ≤ Ui}. (0.5) est une condition suffisante pour
l’existence de ce minimum.

Jusqu’à présent nous avons montré comment inclure la surcharge et le sous-typage. Il manque
encore la liaison tardive. Une façon très simple de l’obtenir est d’imposer qu’une réduction
comme (0.3) ne soit effectuée que si N est fermé et en forme normale.

CONTENTS 21

La description formelle de λ& peut se résumer de la façon suivante :

Pré-types
V :: = A |V → V | {V ′1 → V ′′1 , . . . , V ′n → V ′′n }

Sous-typage
La relation de sous-typage est pré-définie sur les types atomiques et elle est étendue aux
(pré-)types supérieurs de la façon suivante :

U2 ≤ U1 V1 ≤ V2

U1 → V1 ≤ U2 → V2

∀i ∈ I,∃j ∈ J U ′j → V ′j ≤ U ′′i → V ′′i
{U ′j → V ′j }j∈J ≤ {U

′′
i → V ′′i }i∈I

Types

1. A ∈ Types
2. si V1, V2 ∈ Types alors V1 → V2 ∈ Types
3. si pour tout i, j ∈ I

(a) (Ui, Vi ∈ Types) et
(b) (Ui ≤ Uj ⇒ Vi ≤ Vj) et
(c) (Ui⇓Uj ⇒ ∃!h ∈ I . Uh = inf{Ui, Uj})

alors {Ui → Vi}i∈I ∈ Types

Termes (où V est un type)

M :: = xV | λxV .M |M ·M | ε |M&VM |M•M

Typage

[Taut] xT : T [Tautε] ε: {}

[→Intro]
M : T

λxU.M : U → T
[{}Intro]

M : W1 ≤ {Ui → Ti}i≤(n−1) N : W2 ≤ Un → Tn

(M&{Ui→Ti}i≤nN): {Ui → Ti}i≤n

[→Elim≤]
M : U → T N : W ≤ U

M ·N : T
[{}Elim]

M : {Ui → Ti}i∈I N : U Uj = mini∈I{Ui|U ≤ Ui}

M•N : Tj

où tout type apparaissant dans les règles est un type bien formé (i.e. appartient à Type)

Réduction
La réduction > est la fermeture compatible de la notion de réduction suivante :

β) (λxT .M)N > M [xT := N]

β&) Si N :U est clos et en forme normale, et Uj = mini=1..n{Ui|U ≤ Ui} alors

(M1&
{Ui→Ti}i=1..nM2)•N >

{
M1•N for j < n
M2 · N for j = n

22 CONTENTS

Théorèmes Principaux

- Elimination de la subsumption : Le langage admet aussi une présentation équivalente
avec la règle de subsumption (M :W et W≤U impliquent M :U)

- Élimination de la transitivité : L’ajout de la transitivité ne modifie pas la relation de
sous-typage.

- Unicité du type : Chaque terme bien typé possède un seul type

- Subject Reduction Généralisée : Soit M :U . Si M >∗ N alors N :U ′, et U ′ ≤ U .

- Confluence : Des termes égaux possèdent un reductum commun.

À ce point il est intéressant de voir comment utiliser en première approximation ce calcul
pour modéliser les langages objets. Tout d’abord il faut noter que dans λ& il est possible
d’encoder, soit les paires surjectives (surjective pairings), soit les enregistrements simples
(ceux de [Car88]), soit les enregistrements extensibles (voir [Wan87, Rém89, CM91]).

Les conditions (0.4) et (0.5) ont dans les langages objets une interprétation très naturelle :
supposons que mesg soit l’identificateur d’une fonction surchargée ayant le type suivant

mesg : {C1 → T1, C2 → T2}

Selon la terminologie orientée objet mesg est un message qui dénote deux méthodes, l’une
définie dans la classe C1 et retournant le type T1, l’autre dans la classe C2 et retournant
le type T2. Si C1 est une sous-classe de C2 (plus précisément un sous-type : C1 ≤ C2)
alors la méthode de C1 masque (overrides) celle de C2. La condition (0.4) impose alors que
T1 ≤ T2, c’est-à-dire la méthode qui en masque une autre doit retourner un type plus petit.
Si par contre C1 et C2 ne sont pas en relation mais qu’il existe une classe C3 sous-classe des
deux (C3 ≤ C1, C2) alors C3 a été définie par héritage multiple de C1 et C2. La condition
(0.5) impose qu’une branche soit définie dans mesg pour C3, c’est-à-dire qu’en cas d’héritage
multiple les méthodes définies dans plus d’un ancêtre doivent être redéfinies.

Voyons ceci sur un exemple. Considérons la classe 2DPoint avec deux variables d’instance
entières x et y, et la classe 3DPoint sous-classe de la première qui possède en plus la variable
d’instance z. Ceci peut s’exprimer par les définitions suivantes

class 2DPoint class 3DPoint is 2DPoint

{ {

x:Int; x:Int;

y:Int; y:Int;

} z:Int

: }

: :

:

où à la place des pointillés se trouvent les définitions des méthodes. En première approxima-
tion cela peut être modélisé en λ& par deux types atomiques 3DPoint et 2DPoint avec

CONTENTS 23

3DPoint≤2DPoint et dont les types-représentation sont respectivement les types enreg-
istrements 〈〈x : Int; y : Int; z : Int〉〉 et 〈〈x : Int; y : Int〉〉. Il faut noter que 3DPoint≤2DPoint
est compatible avec le sous-typage des types-représentation correspondants.

Une première méthode que l’on pourrait rencontrer dans la définition de 2DPoint est

norme = sqrt(self.x^2 + self.y^2)

masquée (overriden) dans 3DPoint par la méthode suivante

norme = sqrt(self.x^2 + self.y^2 + self.z^2)

Dans λ& cela est obtenu par une fonction surchargée avec deux branches

norme ≡ (λself 2DPoint.
√

self.x2 + self.y2

& λself 3DPoint.
√

self.x2 + self.y2 + self.z2

)

dont le type est {2DPoint → Real , 3DPoint → Real}. Il faut noter que self, qui dans les
méthodes dénote le destinataire du message, est dans λ& le premier paramètre de la fonction
surchargée, i.e. le paramètre dont la classe déterminera la sélection.

La covariance apparâıt par exemple lorsqu’on définit une méthode qui modifie les variables
d’instance. Ainsi, une méthode qui initialise les variables d’instance aura le type suivant

initialise : {2DPoint → 2DPoint , 3DPoint → 3DPoint}

Supposons que nous ayons défini une nouvelle classe ColorPoint par héritage multiple de
2DPoint et Color et que ces deux classes définissent une méthode efface 6

efface ≡ (λself 2DPoint.〈self ← x = 0〉
& λself Color.〈self ← c = “white”〉

)

Une telle définition n’est pas bien typée, car {2DPoint → 2DPoint , Color → Color} ne
satisfait pas la condition (0.5) ; en réalité en appliquant efface à un objet de classe ColorPoint
on ne saurait pas quelle méthode choisir. Par conséquent la condition (0.5) impose l’ajout
d’une méthode pour ColorPoint et donc

efface : {2DPoint → 2DPoint , Color → Color , ColorPoint → ColorPoint}

L’héritage dans ce cadre est donné par le sous-typage plus la règle de sélection des branches :
par exemple si l’on applique norme à un objet de classe ColorPoint , la méthode exécutée sera
celle définie pour 2DPoint . Plus généralement, si l’on passe un message de type {Ci → Ti}i∈I
à un objet de classe C la méthode exécutée sera celle définie dans la classe mini=1..n{Ci|C ≤
Ci}. Si ce minimum est exactement C cela signifie que le destinataire utilise la méthode
définie dans sa classe ; si le minimum est strictement plus grand que C alors le destinataire
utilise la méthode que sa classe, C, a hérité de ce minimum. Il faut noter que la recherche

6Pour simplifier les exemples nous supposons avoir des conversions implicites entres un type atomique et
son type-représentation.

24 CONTENTS

du minimum correspond précisément au “method look-up” de Smalltalk où l’on recherche la
plus petite super-classe (de la classe du destinataire) pour laquelle une certaine méthode a
été définie.

L’un des avantages de modéliser les messages par des fonctions surchargées est que, ces
dernières étant des valeurs de première classe, les messages sont aussi de première classe.
Il devient donc possible d’écrire des fonctions (même surchargées) qui prennent comme ar-
gument un message ou le rendent comme résultat. Par exemple on peut écrire la fonction
suivante :

λm{C→C}. λxC . (m • (m • x))

qui accepte comme argument un message m pouvant être envoyé à un objet de classe C
(c’est-à-dire qui a au moins une branche qui puisse travailler avec des objets de classe C),
un objet de classe (au moins) C et qui envoie deux fois le message m à l’objet x (bien sûr le
résultat du message doit être un objet de classe plus grande que C)

Mais l’avantage le plus intéressant d’utiliser cette forme de programmation objet est la
possibilité de pouvoir utiliser le dispatch multiple7 : un des problèmes majeurs de l’approche
avec enregistrements réside dans l’impossibilité de combiner de manière satisfaisante le sous-
typage avec les méthodes binaires, c’est-à-dire les méthodes qui ont un paramètre de la même
classe que celle du destinataire. Par exemple dans les modèles basés sur les enregistrements les
points et les points colorés avec une méthode d’égalité sont modélisés par les enregistrements
récursifs suivants :

EqPoint ≡ 〈〈x: Int; y: Int; equal:EqPoint→ Bool〉〉

ColEqPoint ≡ 〈〈x: Int; y: Int; c: String; equal:ColEqPoint→ Bool〉〉

À cause de la contra-variance de la flèche le type d’equal dans ColEqPoint n’est pas inférieur à
celui d’equal dans EqPoint et donc ColEqPoint 6≤EqPoint . Considérons maintenant le même
exemple dans λ&. Nous avons déjà rencontré les types atomiques 2DPoint et ColorPoint .
On peut continuer à les utiliser parce que, contrairement à ce qu’il se passe avec les enreg-
istrements, l’ajout d’une méthode à une classe ne change pas le type des instances. En λ&
une définition telle que

equal: {2DPoint→ (2DPoint→ Bool) ,ColorPoint → (ColorPoint→ Bool)}

ne possède pas un type bien formé : ColorPoint≤ 2DPoint donc la condition (0.4) nécessite
ColorPoint → Bool ≤ 2DPoint → Bool ce qui n’est pas vrai à cause de la contra-variance
de la flèche. Il faut noter qu’une telle fonction choisirait la branche sur la base du type
du premier argument seulement. Or, le code de equal ne peut être choisi que dès que l’on
connâıt les types des deux arguments. C’est pourquoi on ne veut pas accepter le type ci-
dessus (d’ailleurs il serait très facile d’écrire un terme engendrant une erreur). Toutefois dans
λ& il est possible d’écrire une fonction qui prenne en compte les types de ses deux arguments
pour effectuer la sélection. Pour equal ceci est obtenu de la façon suivante

equal: {(2DPoint × 2DPoint)→ Bool , (ColorPoint × ColorPoint)→ Bool}

7C’est-à-dire la possibilité de sélectionner une méthode en tenant compte de classes autres que celle du
destinataire du message

CONTENTS 25

Si l’on passe à cette fonction deux objets de classe ColorPoint alors la deuxième branche est
choisie ; lorsque l’un des deux arguments est de classe 2DPoint (et l’autre d’une classe plus
petite ou égale à 2DPoint) la première branche sera choisie.

Une autre caractéristique intéressante de ce modèle est qu’il permet d’ajouter une méth-
ode à une classe C déjà existante sans modifier le type de ses objets. En fait, si la méthode
doit répondre au message m, il suffit d’ajouter une branche pour le type C à la fonction sur-
chargée dénotée par m. Il est important de noter que la nouvelle méthode est immédiatement
disponible pour toutes les instances de C et il est donc possible d’envoyer le message m à un
objet de classe C, même si cet objet a été défini avant la branche de m pour C. Cet aspect est
très important quand on a à gérer des données persistantes, car on peut modifier le schéma
logique des donnés (en ajoutant des fonctionnalités) sans devoir modifier les applications déjà
écrites.

Un des apports de ce modèle est de clarifier les rôles qui jouent la covariance et la contra-
variance dans le sous-typage (equal en constitue un joli exemple) : la contra-variance est la
règle à utiliser lorsqu’on substitue une fonction par une autre de type différent ; la covariance
est la règle à utiliser lorsqu’on spécialise une branche d’une fonction surchargée par une autre.
Il est important de noter que dans ce cas la nouvelle branche ne se substitue pas à l’ancienne
branche mais plutôt la masque aux objets de certaines classes. En fait, notre formalisation
montre très clairement que la question “contra-variance ou covariance” était un faux problème
dû au mélange de deux mécanismes qui n’ont rien à voir l’un avec l’autre : la substitutivité
et le masquage. La substitutivité nous indique quand il est possible d’utiliser une expression
d’un certain type S à la place d’une expression du type T . Cette information est utilisée par
l’application : soit f une fonction de type T → U , on veut identifier une catégorie de types
dont les valeurs peuvent être passées comme arguments à f ; il faut noter que ces arguments
se substitueront dans le corps de la fonction, au paramètre formel qui a le type T . Pour
cela nous définissons une rélation de sous-typage telle que f accepte tout argument ayant un
type S plus petit que T . La catégorie en question est ainsi l’ensemble des sous-types de T .
En particulier, si T est de la forme T1 → T2 il se peut que dans le corps de f le paramètre
formel de la fonction soit appliqué à une expression de type T1 ; de ceci on déduit deux
choses : le paramètre actuel doit lui aussi être une fonction (donc si S ≤ T1 → T2 alors
S doit être de la forme S1 → S2), et en plus il doit être une fonction à laquelle on puisse
passer des arguments de type T1 (et donc T1 ≤ S1, eh oui!. . . contravariance). Evidemment,
si l’on ne souhaite pas passer des fonctions comme argument, il n’y a aucun sens à définir
la relation de sous-typage pour les flèches (c’est pourquoi O2 [BDe92] fonctionne très bien
même sans la contra-variance). Le masquage correspond à un tout autre phénomène : on
a un identificateur m (en l’occurrence un message) qui identifie par exemple deux fonctions
f : A→ C et g : B → D (A et B incomparables) ; cet identificateur peut être appliqué à une
expression e ; cette application est résolue par le passage de e à f si cette expression a un
type plus petit que A (dans le sens de la substitutivité qu’on vient d’expliquer), à g si le type
est plus petit que B. Supposons à présent que B ≤ A ; la résolution dans ce cas sélectionne
f si e a un type compris entre A et B, g si le type de e est plus petit ou égal à B ; mais
il y a un problème supplémentaire : les types peuvent diminuer pendant l’exécution ; donc
il se pourrait que le type checker voit e de type A et pense que m appliquée à e retournera
le type C (f est sélectionnée) ; mais si pendant l’exécution le type de e diminue jusqu’à

26 CONTENTS

B, l’application a le type D ; mais alors D doit être un type qui puisse se substituer à C
(dans le sens de la substitutivité plus en haut), i.e. D ≤ C. On peut appeler ceci covariance,
si l’on veut, mais il doit être clair qu’il ne s’agit pas d’une règle de sous-typage : g ne se
substitue pas à f car g ne sera jamais appliquée à des arguments de type A ; g et f sont deux
fonctions indépendantes ayant des tâches très précises : f travaille avec les arguments de m
ayant un type compris entre A et B, g avec ceux de type plus petit ou égal à B. Il n’est pas
question de définir la substitutivité, mais de donner une règle de formation pour un ensemble
de fonctions dénoté par un identificateur unique, de façon à assurer la consistance des types
pendant l’exécution.

D’une façon plus pratique : une méthode a des paramètres ; la classe de chaque paramètre
peut ou ne pas être prise en compte pour la sélection de la méthode. Lorsqu’on masque
(override) cette méthode, les paramètres dont le type est pris en compte pour la sélection
doivent être masqués de manière covariante (i.e. dans la nouvelle méthode les paramètres
correspondants doivent posséder un type plus petit), les autres de manière contra-variante
(i.e. dans la nouvelle méthode les paramètres correspondants doivent posséder un type plus
grand). Dans les modèles basés sur les enregistrements aucun argument est pris en compte
pour la sélection : la méthode est déterminée par l’enregistrement dont on sélectionne le
champ. Par conséquent, dans de tels modèles il ne peut y avoir que de la contra-variance et
le dispatch multiple est impossible.

Pour être plus précis, le modèle par enregistrements possède une forme très limitée de
covariance mais qui est cachée par le codage des objets : considérons une étiquette ℓ ; pour
la règle de sous-typage des enregistrements, si l’on “envoie” cette étiquette à deux enreg-
istrements de types S et T avec S ≤ T alors le type associé à ℓ dans S doit être un sous-type
de celui associé à ℓ dans T . Cela correspond exactement à notre règle de covariance, mais sa
forme est bien plus limitée parce qu’elle ne s’applique qu’aux types enregistrements (puisqu’il
s’agit d’un “envoi” d’étiquettes), et non aux produits cartesiens (i.e. dispatch multiple) ni
aux flèches.

Normalisation Forte

Le λ&-calcul n’est pas fortement normalisant. Cela provient du fait qu’on peut y typer
l’auto-application. Considérons le type suivant

{ { } → T }

où T est n’importe quel type. Ceci est le type d’une fonction surchargée qui accepte tout
argument ayant un type plus petit ou égal à {} (le type surchargé vide). Mais remarquez que
tout type surchargé est plus petit que {}, donc en particulier { { } → T } ≤ {}. Dès lors une
fonction de type { { } → T } accepte comme argument des termes du même type que le sien
et donc soi même ; par conséquent

λx{ { }→T }.x•x

a pour type { { } → T} → T . Il est donc facile de définir un terme sans forme normale, en
imitant les constructions classiques du λ-calcul ; soit

ωT = (ET &{ {}→T , { {}→T }→T } (λx{{}→T}.x•x))

CONTENTS 27

où ET est n’importe quel terme clos de type { { } → T} ; le terme ΩT ≡ ωT •ωT qui a type T
ne possède pas de forme normale. On peut également définir pour tout type T un opérateur
de point fixe YT : (T → T)→ T de la façon suivante

YT ≡ λfT→T .((ET&{{}→T,{{}→T}→T}λx{{}→T}.f(x•x))•(ET&{{}→T,{{}→T}→T}λx{{}→T}.f(x•x)))

La raison de ce phénomène doit être recherchée dans la définition particulière de la relation
de sous-typage. La circularité typique de l’auto-application dérive de la possibilité de pouvoir
associer deux types d’une structure syntaxique différente ; plus précisément, deux types ayant
des arbres syntaxiques de profondeur différente peuvent être en relation, comme c’est le cas
pour {} et {{} → T}. Il est donc possible qu’un type soit sous-type d’une de ses occurrences,
d’où l’auto-application8 .

Toutefois dans notre modélisation de la programmation objet cette forme de circularité
n’est jamais utilisée. Il peut donc être intéressant d’étudier des sous-systèmes de λ& qui
soient à la fois fortement normalisant et assez expressifs pour modéliser les langages orientés
objet. Dans ce but on démontre le théorème suivant :

Théorème 1 Soit λ&− n’importe quel sous-système de λ& fermé par réduction ; soit rank
une fonction associant des entiers aux types de λ&− telle que si T est une occurrence syntax-
ique de U alors rank(T) ≤ rank(U). Si dans λ&− pour toute application MTNU bien typée
rank(T) ≤ rank(U) alors λ&− est fortement normalisant.

Nous qualifions comme stratifiés les systèmes qui satisfont les hypothèses du théorème. Un
exemple de système stratifié est obtenu en émondant la relation de sous-typage définie sur les
types bien formés de λ& des couples formés par des types de profondeur différente (rank(T)
est dans ce cas la profondeur de l’arbre syntaxique de T).

Ces sous-systèmes sont utilisés pour l’étude de la sémantique.

Trois variations sur le thème

On peut à ce point étudier comment modifier, étendre ou reformuler λ& pour l’adapter à des
exigences spécifiques.

Première variante : λ&+

La première variante consiste à donner plus de liberté à λ& en introduisant certaines modi-
fications qui ont été suggérées en essayant de traduire des langages orientés objets dans λ&.

8Dans les enregistrements on compare aussi des types d’arbre syntaxique différents, mais les sous-arbres
de profondeurs differentes sont toujour séparés par des étiquettes différentes

28 CONTENTS

A B

?

@
@

@
@

@
@R	�

�
�

�
�

�

?
C D

Tout d’abord la condition (0.5) est trop restrictive pour
l’héritage multiple : considérons quatre classes A, B, C et D
telles que C et D soient toutes deux sous-types de A et B
(comme dans la figure ci-contre) ; soit m un message défini dans
les quatre classes, i.e. m: {A → ..., B → ..., C → ...,D → ...}.
Le domaine de m ne respecte pas la condition (0.5) parce que
A et B n’ont pas de plus petite borne inférieure. Cependant
il n’y aura pas d’ambigüıté dans le choix de la branche. Par
conséquent, (0.5) est trop restrictive pour modéliser l’héritage
multiple tel qu’il est utilisé dans la programmation objets.

La condition (0.5) a été introduite pour assurer l’existence d’un minimum pendant la sélec-
tion. Toutefois (0.5) est une condition suffisante mais pas nécessaire à l’existence d’un tel
minimum. Elle peut donc être améliorée. C’est pourquoi en λ&+ nous remplaçons (0.5) par :

∀Ui, Uj ∈ {Ui}i∈I . ∀U élément maximal de LB(Ui, Uj) ∃!h ∈ I. Uh = U (0.6)

où LB(S, T) est l’ensemble des bornes inférieures de S et T . Cette condition correspond à
la gestion de l’héritage multiple, par exemple d’Eiffel. Le théorème suivant démontre qu’il
s’agit d’une condition nécessaire et suffisante à l’existence du minimum :

Théorème 2 Soit (Y, 6) un ensemble partiellement ordonné et, X ⊆ Y . Définissons :
(1) ∀a, b ∈ X.∀c ∈ Y. (c élément maximal de LB(a, b)⇒ c ∈ X)
(2) ∀c ∈ Y. {x ∈ X|c 6 x} est soit vide soit possède un plus petit élément

alors (1) ⇐⇒ (2)

En outre, dans λ&+ on veut avoir la possibilité de remplacer une branche d’une fonction
surchargée. Plus exactement si N possède le type U → T et M est une fonction surchargée
possédant une branche pour le type U nous souhaitons qu’en écrivant (M&N) la branche
N remplace l’ancienne branche pour U (pourvu que le type obtenu soit bien formé). Il y a
plusieurs manières d’obtenir cela. La plus simple est de ne plus imposer dans

[{}Intro]
M :W1 ≤ {Ui → Ti}i≤(n−1) N :W2 ≤ Un → Tn

(M&{Ui→Ti}i≤nN): {Ui → Ti}i≤n

que {Ui → Ti}i≤(n−1) soit un type bien formé. De cette façon il devient possible de typer la
fonction suivante

(M {U1→T1,U2→T2,U3→T3} &{U2→T2,U3→T3,U1→T4} NU1→T4)

même si U1 ≤ U2, U3 (et donc {U2 → T2, U3 → T3} ne peut pas être bien formé). Nous avons
déjà vu qu’en λ& il est possible d’ajouter une nouvelle méthode à une classe donnée. Grâce
à cette petite modification il devient aussi possible de redéfinir la méthode d’une classe.

Enfin, en λ& on effectue la sélection de la branche seulement après que l’argument ait
atteint une forme normale fermée. En λ&+ nous voulons pouvoir effectuer la réduction plus
tôt, dès que l’on est sûr que toute évaluation ultérieure de l’argument ne changera pas le
résultat de la sélection. Dans ce but nous remplaçons dans λ&+ la réduction (β&) par la
réduction suivante

CONTENTS 29

β+
&) Soit Uj = min{Ui|U ≤ Ui}; si N :U est fermé et en forme normale ou {Ui|Ui ≤ Uj} =
{Uj} alors

((M1&
{Ui→Vi}i=1..nM2)•N) >

{
M1•N for j < n
M2 ·N for j = n

Autrement dit, dès que l’on a un terme de la forme (M1&M2)•N on contrôle s’il y a des
branches avec un domaine plus petit que celui de la branche sélectionnée. Si ce n’est pas
le cas alors la sélection ne peut plus changer et donc on peut effectuer la sélection, même
si N n’est pas clos ou en forme normale. Cette modification est intéressante surtout pour
l’optimisation des langages objets à la compilation. Une règle qui permet de résoudre la
sélection d’une méthode à la compilation est indispensable pour produire du code efficace.
En fait des études préliminaires sur des maquettes du compilateur pour Dylan ont montré
qu’en moyenne environ 30% du temps d’exécution d’un code non optimisé est utilisé pour la
sélection des méthodes. Résoudre la sélection à la compilation est donc une des nécessités
les plus pressantes pour réaliser un langage utilisant des fonctions génériques. Dans λ&+ on
peut donc utiliser la règle (β+

&) pour détecter pendant la compilation les envois de message
qui peuvent déjà être liés à leur méthode.

Pour λ&+ nous avons démontré les théorèmes suivants :

• Conservativité de la théorie de sous-typage : Si S et T sont deux types bien formés
dans λ& alors λ& ⊢ S ≤ T si et seulment si λ&+ ⊢ S ≤ T

• Subject Reduction Généralisée : Soit M :U . Si M >∗ N alors N :U ′, et U ′ ≤ U .
• Confluence : Des termes égaux possèdent un réductum commun.
• Normalisation forte : Les sous-systèmes stratifiés sont fortement normalisants.

Deuxième variante : λ&+coerce

La deuxième variante que nous étudions est l’extension de λ& par des coercitions explicites.
De manière informelle on peut définir une coercition explicite comme un terme qui change le
type de son argument. Par exemple le terme coerceT (M) change le type de M en T , tout en
en conservant les fonctionnalités. Cette construction est une extension cruciale dans λ& où
les types déterminent l’exécution : le fait de pouvoir changer les types implique un plus grand
contrôle sur l’exécution. En particulier il est possible de diriger la sélection sur une branche
donnée en appliquant une coercition explicite à l’argument d’une fonction surchargée. De
cette façon il devient donc possible de modéliser des commandes telles que as dans Dylan et
change-class dans CLOS, dont la fonction est de changer la classe d’un objet.

Plus formellement, l’extension par coercitions de λ& est obtenue en ajoutant parmi les
termes de λ& le terme suivant

coerceT (M)

parmi les règles de typage la règle suivante

[Coerce]
⊢M :S ≤ T

⊢ coerceT (M):T

et parmi les notions de réduction

30 CONTENTS

(coerce) coerceT (M) ◦N > M ◦N

Il est possible de démontrer que cette extension possède les propriétés suivantes : la conserva-
tivité par rapport à la théorie équationelle (ou de réduction) des termes ; la subject-reduction
généralisée ; la confluence ; la normalisation des sous-systèmes stratifiés.

Troisième variante :λ{}

Nous voulons définir un système pur de fonctions surchargées, où la lambda abstraction soit
obtenue comme cas particulier de fonction surchargée avec une seule branche. Il y a donc un
seul opérateur d’abstraction et un seul opérateur d’application. La réduction effectuera une
sélection et une substitution à la fois. Nous utilisons une discipline de sélection semblable à
(β+

&) de façon à ne forcer l’appel par valeur que si nécessaire (ainsi le λ-calcul simplement
typé est un sous-calcul de λ{}). Tout ceci peut être obtenu de la manière suivante :

T ::= A | {S1 → T1, · · · , Sn → Tn} n ≥ 1

M ::= x | λx(M1:S1 ⇒ T1, · · · ,Mn:Sn ⇒ Tn) | MM n ≥ 1

Sous-typage

(subtype)
∀i ∈ I,∃j ∈ J U ′′i ≤ U ′j et V ′j ≤ V ′′i
{U ′j → V ′j }j∈J ≤ {U

′′
i → V ′′i }i∈I

Types
Tout type atomique appartient à Types. Si pour tout i, j ∈ I

a. (Ui, Vi ∈ Types)
b. (Ui ≤ Uj ⇒ Vi ≤ Vj)
c. (Ui⇓Uj ⇒ il existe un seul h ∈ I tel que Uh = inf{Ui, Uj})

alors {Ui → Vi}i∈I ∈ Types

Typage

[Taut] Γ ⊢ x: Γ(x)

[Intro]
∀i ∈ I Γ, (x:Si) ⊢Mi:Ui ≤ Ti

Γ ⊢ λx(Mi : Si ⇒ Ti)i∈I : {Si → Ti}i∈I

[Elim]
Γ ⊢M : {Si → Ti}i∈I Γ ⊢ N :S

Γ ⊢MN :Tj
Sj = mini∈I{Si|S ≤ Si}

Réduction

ζ) Soit Sj = mini∈I{Si|U ≤ Si} et Γ ⊢ N :U ; si N est fermé et en forme normale ou
{Si|Si ≤ Sj} = {Sj} alors

λx(Mi : Si ⇒ Ui)i∈IN >Γ Mj[x: = N]

CONTENTS 31

Pour cette variante nous avons démontré la propriété de subject réduction généralisée et la
confluence.

L’intérêt de cette variante est principalement théorique. Toutefois elle n’est pas dépourvue
d’intérêt pratique, car elle constitue un premier noyau de calcul basé uniquement sur des
fonctions génériques (cf. Dylan).

Un méta-langage de λ&

Dans la section consacrée à λ& nous avons montré la façon intuitive d’utiliser ce calcul pour
modéliser la programmation orientée objets. Toutefois λ& n’est pas adéquat pour une étude
des propriétés des langages objets ; il ne possède pas assez de structure pour pouvoir y traduire
des “vrais” langages : il manque les commandes pour définir de nouveaux types atomiques,
pour travailler sur leur représentation et pour définir la relation de sous-typage ainsi qu’un vrai
concept d’objet. C’est pourquoi, nous définissons λ object, un langage minimal directement
dérivé de λ&, qui possède ces propriétés, et davantage. En tant que langage, λ object est
caractérisé par une sémantique opérationnelle à reduction : cette sémantique est définie pour
les termes non typés (dans le sens où nous définissons également la sémantique pour les
termes qui ne seront pas bien typés) ; ceci nous permet de définir formellement les erreurs de
type (en particulier nous distinguons parmi eux l’erreur “message not understood”). Nous
définissons ensuite un algorithme de typage et nous en démontrons la correction par rapport
à la sémantique opérationelle et à la définition d’erreur de type (dans le sens que l’exécution
de tout programme bien typé ne cause pas d’erreur de type).

L’un des choix critiques dans la définition de λ object est celui de la modélisation des
objets. Un objet dans λ object est un terme “taggué” (tagged term). On affecte le “tag” A
au terme M par la construction inA(M) ; l’intuition est que A est la classe de l’objet inA(M)
et M son état interne. Ainsi par exemple in2DPoint(〈x = 0; y = 0〉) est un objet de la classe
2DPoint dont les variables d’instance x et y ont la valeur 0. Les tags (i.e les classes) doivent
être déclarés en les associant au type de leur état interne (ceci sert pour le typage). Par
exemple, pour la classe 2DPoint ceci est obtenu par :

let 2DPoint hide 〈〈x : int, y : int〉〉 in . . .

Dans un certain sens une telle déclaration correspond à la définition dans ML d’un “datatype”
de la forme : datatype 2DPoint = in2DPoint of {x : int, y : int}

Plutôt que d’utiliser le filtrage comme dans ML nous utilisons, pour accéder à l’état
interne d’un objet, une fonction out qui composée avec in donne l’identité. Il faut aussi
déclarer un ordre sur les tags. Cet ordre, qui correspond à l’ordre de “sous-classe”, est à la
fois utilisé pour la résolution de la surcharge et pour le typage :

let ColorPoint ≤ 2DPoint, Color in . . .

Les fonctions surchargées ne peuvent avoir comme argument que des objets ou des produits
d’objets (dispatch multiple). La description des types, des expressions et des programmes du
langage est donnée par les productions suivantes, où A dénote un tag :

32 CONTENTS

T ::= A | T × T | T → T

| {(A1 × . . . ×Am1)→ T1, . . . , (A1 × . . . ×Amn)→ Tn} n,mi≥1

M ::= xT | λxT.M | M ·M | ε | M&TM | M•M

| <M ,M > | π1(M) | π2(M) | µxT .M

| coerceA(M) | superA(M) | inA(M) | outA(M)

P ::= M | let A ≤ A1, ... , An in P | let A hide T in P

Sémantique opérationnelle

Un autre aspect important de λ object est la définition des valeurs tagguées : une valeur
tagguée est tout terme qui, passé à une fonction surchargée, permet immédiatement la sélec-
tion de la branche. Une bonne définition des valeurs tagguées est très importante parce que,
couplée avec la règle (β+

&) (cf. page 28), elle est le meilleur moyen pour effectuer des opti-
misations à la compilation. Nous utilisons GD pour dénoter une valeur tagguée par le tag
D.9

GD: : = inD(M) | coerceD(M) | superD(M) | <GA1
1 , GA2

2 , . . . , GAn
n >

Avant de donner la sémantique opérationelle nous devons encore définir la notion de valeur
dans λ object, c’est-à-dire distinguer les termes qui peuvent être considerés comme des ré-
sultats. Nous utilisons la méta-variable G pour dénoter les valeurs

G ::= x | (λxT .M) | ε | (M1&
TM2) | <G1 , G2 > | coerceA(M) | superA(M) | inA(M)

La sémantique opérationnelle est donc définie par les règles suivantes (nous utilisons ◦ pour
dénoter soit · soit • et D pour le mini=1..n{Di|C ⊢ D ≤ Di}) :

Axiomes

(C , πi(<G1 , G2 >)) ⇒ (C , Gi) i=1,2

(C , outA1(inA2(M))) ⇒ (C , M)
(C , outA1(coerceA2(M))) ⇒ (C , outA1(M))
(C , outA1(superA2(M))) ⇒ (C , outA1(M))
(C , µx.M) ⇒ (C , M [x := µx.M])
(C , (λx.M) · N) ⇒ (C , M [x := N])

(C , (M1&
{D1→T1,...,Dn→Tn}M2)•G

D) ⇒ (C , M1•G
D) if Dn 6= D

(C , (M1&
{D1→T1,...,Dn→Tn}M2)•G

D) ⇒ (C , M2 ·G
D) if Dn = D and GD 6≡ super

D(M)

(C , (M1&
{D1→T1,...,Dn→Tn}M2)•G

D) ⇒ (C , M2 ·M) if Dn = D and GD ≡ super
D(M)

(C , let A ≤ A1 . . . An in P) ⇒ (C ∪ (A ≤ A1) ∪ . . . ∪ (A ≤ An) , P)
(C , let A hide T in P) ⇒ (C , P)

9Dans la dernière production D ≡ (A1 × . . . × An); donc un tag peut être aussi le produit de plusieurs
types atomiques. Nous utilisons le non terminal D pour les produits de types atomiques.

CONTENTS 33

Règles de contexte
(C , M)⇒ (C , M ′)

(C , <M ,N >)⇒ (C , <M ′ , N >)

(C , M)⇒ (C , M ′)

(C , <G ,M >)⇒ (C , <G ,M ′>)

(C , M)⇒ (C , M ′)

(C , πi(M))⇒ (C , πi(M
′))

(C , M)⇒ (C , M ′)

(C , outA(M))⇒ (C , outA(M ′))

(C , M)⇒ (C , M ′)

(C , M ◦N)⇒ (C , M ′ ◦N)

(C , M)⇒ (C , M ′)

(C , (N1&N2)•M)⇒ (C , (N1&N2)•M
′)

L’application ordinaire est implémentée par un appel-par-nom, tandis que l’application d’une
fonction surchargée est réalisée par un “appel-par-valeur-tagguée”.

Système de types

Nous sommes à present capables de donner la définition d’erreur de type. Un programme
produit une erreur de type s’il se réduit à une forme normale qui n’est pas une valeur. En
particulier si l’exécution est bloquée sur un terme de la forme ((M1&

TM2)•G
D) nous disons

que l’erreur produite est “message not understood”. Il faut noter que dans ce dernier cas la
réécriture a échoué parce que D (i.e. mini=1..n{Di|C ⊢ D ≤ Di}) n’est pas défini : ceci peut
dériver soit du fait que l’ensemble {Di|D ≤ Di , i = 1..n} est vide (ceci signifie que nous
avons envoyé un message au mauvais destinataire) soit du fait qu’il n’y a pas de plus petit
élément (ceci signifie que la condition sur l’héritage multiple n’a pas été respectée).

Il nous reste à définir un système de types qui assure qu’un programme bien typé ne
produit pas d’erreurs de type. Le système de type en question est très semblable à celui de
λ&+ (parce que nous voulons pouvoir modéliser l’héritage dans sa forme la plus générale et
l’extension/redéfinition de méthode). La différence la plus importante est qu’il doit prendre
en compte les déclarations pour les tags introduites par (let A ≤ . . . in) et (let A hide . . .
in). Ceci est fait par les règles suivantes :

[NewType]
C , S[A← T] ⊢ P :U

C,S ⊢ let A hide T in P :U

A 6∈ dom(S), T ∈C,S Types

and T not atomic

[Constraint]
C ∪ (A ≤ Ai)1=1..n, S ⊢ P :T

C, S ⊢ let A ≤ A1, ... , An in P :T

if C ⊢ S(A) ≤ S(Ai)

and A do not appear in C

[Coerce]
C,S ⊢M :B

C,S ⊢ coerceA(M):A
C ⊢ B ≤ A and A ∈C,S Types

[Super]
C,S ⊢M :B

C,S ⊢ superA(M):A
C ⊢ B ≤ A and A ∈C,S Types

[In]
C,S ⊢M :T

C, S ⊢ inA(M):A
C ⊢ T ≤ S(A) and A ∈C,S Types

[Out]
C,S ⊢M :B

C,S ⊢ outA(M):S(A)
C ⊢ B ≤ A and A ∈C,S Types

34 CONTENTS

On peut donc prouver que si un programme est bien typé alors il ne produit pas d’erreurs de
type. Le langage λ object ainsi défini peut alors être utilisé pour prouver des propriétés des
langages objets. Dans le chapitre de la thèse dédié à λ object nous définissons un langage
fonctionnel objets simple où l’on retrouve les constructions usuelles (class, super, self,
new, héritage multiple etc.) et d’autres moins usuelles (messages de première classe, exten-
sion/redéfinition de méthodes, multi-méthodes mutuellement récursives)10 ; nous définissons
aussi une discipline de types pour ce langage. Puis nous donnons une traduction de ce langage
dans λ object et en définissons ainsi la sémantique. Enfin nous démontrons que la traduction
d’un programme bien typé est un terme bien typé dans λ object et obtenons, de cette façon,
une preuve de correction de la discipline de types définie pour ce langage objets simple .

Pour terminer nous montrons comment il est possible, sous certaines hypothèses, de coder
λ object dans λ&+.

L’implémentation en Caml Light d’un interpreteur pour λ object est décrite en Ap-
pendix A.

Sémantique

La définition d’une sémantique pour λ& présente quatre problèmes principaux: pré-ordre,
exécution dépendant des types, liaison tardive, imprédicativité. Plus précisément :

• Pré-ordre : La relation de sous-typage dans λ& est un pré-ordre. En fait soit U ≤ V ,
alors par les règles de sous-typage de λ& on obtient que {U → T, V → T} ≤ {V → T}
et {V → T} ≤ {U → T, V → T}. Toutefois ces deux types sont complètement
interchangeables : on peut utiliser l’un ou l’autre dans un programme sans que rien ne
change. Nous voulons par conséquent qu’ils aient la même interprétation, et donc que
“≤” soit interprété par une relation d’ordre entre les types sémantiques.

• Exécution dépendant des types : les types des termes déterminent le résultat de l’exécution.
Par conséquent l’interprétation d’une fonction surchargée doit prendre en compte l’interprétation
du type de son argument.

• Liaison tardive : L’interprétation d’une application surchargée doit être déterminée
par le type de l’argument à l’exécution, lorsque cet argument aura atteint une forme
normale fermée.

• Imprédicativité : nous avons déjà montré dans la section sur la normalisation forte
que la relation de sous-typage ne respecte pas la taille des types ; c’est pourquoi il
est possible d’appliquer une fonction de type { {} → T } à elle même. Nous venons
de dire que l’interprétation d’une fonction doit prendre en compte l’interprétation du
type de son argument. Par conséquent l’interprétation du type { {} → T } fait appel à
l’interprétation du type lui même, d’où l’imprédicativité!

Pour traiter le problème du pré-ordre nous utilisons la construction syntaxique dite de “com-
plétion”. Un type surchargé {U → T} possède en effet un nombre (potentiellement infini)

10voir Appendix C.1

CONTENTS 35

de branches virtuelles, une pour chaque sous-type de U . La complétion d’un type surchargé
est son expansion par ces branches virtuelles. Donc par exemple la complétion de {U → T}
sera {U → T,U1 → T,U2 → T, . . . } où U1, U2, ... forment l’ensemble des sous-types de U .
Plus formellement, on change la notation des types surchargés de manière à pouvoir écrire
des types infinis. Nous écrivons ⇓ H, si l’ensemble de types H possède une borne inférieure.

Définition 1 Un type surchargé généralisé (t.s.g.) est un couple (K, out) où K est un en-
semble de types et out est une fonction de K vers Types telle que

1. si H ⊆ K et ⇓ H alors il existe V ∈ K tel que V ∈ inf H.11

2. out est monotone par rapport au pré-ordre de sous-typage.

Parfois on utilisera {U → out(U)}U∈K pour dénoter le t.s.g. (K, out)

Il faut noter que tout type surchargé est un t.s.g. mais pas nécessairement le contraire.
Nous pouvons maintenant définir la complétion. Nous complétons un t.s.g. en élargissant

son domaine par les sous-types des types dans le domaine et en étendant la fonction out au
domaine ainsi élargi. En d’autres termes, la complétion de (K, out) est le t.s.g. (K̂, ôut) où
K̂ = {U ′|∃U ∈K U ′ ≤ U} et ôut(U ′) = out(min{U ∈ K|U ′ ≤ U}).

L’interprétation d’un type surchargé sera l’interprétation de sa complétion, et ainsi nous
obtiendrons que deux types équivalents (c’est-à-dire tels que l’un soit plus petit que l’autre et
vice-versa) aient la même interprétation, puisqu’il est possible de prouver qu’ils ont la même
complétions.

La sémantique est donnée dans un modèle (D, ·) du λ-calcul sans type : les termes sont
interprétés par des (classes d’équivalence d’) éléments du modèle et les types par des rela-
tions partielles d’équivalence sur le modèle même. En outre, pour tenir compte du fait que
l’exécution dépend des types, nous codons l’ensemble des types syntaxiques, Types par un
sous-ensemble [Types]⊆ D du modèle12. Il y a donc une dualité dans l’interprétation syntax-
ique d’un type : type comme ensemble de valeurs qui est interprété par une relation partielle
d’équivalence, et type comme valeur déterminant l’exécution qui est interprété comme élé-
ment du modèle dans [Types]. La dépendance est alors obtenue en interprétant un type
surchargé par un produit indexé sur les codes des types syntaxiques. Plus précisément, si
l’on écrit Td pour le type syntaxique associé à l’élément d dans [Type], la sémantique d’un
type surchargé est donnée par

[[{U → out(U)}U∈K]] =
∏

n∈[K̂]

[[Tn → ôut(Tn)]]

où [K̂] = {d | Td ∈ K̂}. À ce point on cerne mieux d’où surgit le problème de l’imprédicativité :
considérons une fois de plus le type { {} → T } et soit d son codage dans [Types] ; son inter-
prétation sera un produit indexé sur les codes des sous-types de {}, i.e. sur les codes de tous
les types surchargés. Par conséquent, parmi les index du produit il y aura d lui même. Donc
l’interprétation du type ci-dessus, c’est-à-dire [[T

d
]] est donné en termes de [[T

d
]]→ [[T]]. Cette

11La plus grande borne inférieure dans le pré-ordre est une classe d’équivalence
12La seule restriction que l’on impose est que la topologie induite sur [Type] soit la topologie discrète, afin

que toute fonction dans [Types] → D puisse être étendue à une fonction continue dans D → D

36 CONTENTS

forme d’impédicativité est similaire à celle que l’on trouve dans le Système F : la sémantique
de ∀X.T est le produit indexé sur la sémantique de tous les types et, donc, sur ∀X.T lui
même. Dans les relations partielles d’équivalence, par exemple, le problème est résolu en
indexant le produit sur l’ensemble PER de toutes les relations partielles d’équivalence :

[[∀X.T]]E =
∏

C∈PER

[[T]]E[X:=C]

Cette définition est bien fondée car PER existe indépendamment des types qui y sont inter-
prétés. De façon semblable dans F≤ on interprète ∀X≤ S.T par le produit indexé sur les
sous-relations de l’interprétation de S :

[[∀X≤S.T]]E =
∏

C⊆[[S]]E

[[T]]E[X:=C]

Dans notre système nous ne sommes pas capables d’imiter ces constructions parce que nous
sommes forcés d’indexer les produits sur un “codage” des types, qui donc n’existe pas de
manière indépendante des types mêmes. Il nous est ainsi impossible de définir dans le modèle
un ordre des codes qui respecte l’ordre de sous-typage. Autrement dit, dans les modèles de
F≤ il est possible de définir un ordre ⊆ tel que si S ≤ T alors [[S]] ⊆ [[T]]. Ici nous ne sommes
pas capables de trouver dans le modèle un ordre 4 sur les éléments de D tel que si Tn ≤ Tm
alors n 4 m. Donc nous ne sommes pas capable de donner la sémantique du système complet.
C’est pourquoi, les définitions de cette section s’appliquent uniquement aux sous-systèmes
stratifiés, pour lesquels on ne rencontre pas ce problème d’imprédicativité.

Le fait que le calcul soit dépendant des types se manifeste dans la définition de la séman-
tique d’une fonction surchargée. Soit (M1&M2) de type {U → out(U)}U∈K ; son interpré-
tation doit être un élément d’un produit indexé sur le codage des types. Plus précisément
[[(M1&M2)]] est la fonction f qui pour tout code d d’un type dans K̂ et Uj = min{U ∈
K|Td ≤ U} est définie de la façon suivante :

f(d) =

{
[[M2]] si Uj sélectionne la deuxième branche
[[M1]](d) sinon

L’interprétation d’une fonction surchargée est un élément d’un produit indexé ; elle est donc
une fonction dans le modèle qui prend comme argument le code d’un type et restitue un
élément (une classe d’équivalence) dans le type sémantique approprié. Ainsi l’interprétation
de l’application d’une fonction surchargée est donnée par

[[M•N]] = ([[M]](d))[[N]] (0.7)

Avec la liaison tardive d doit être le codage du type de la forme normale fermée de N .
Or, il est impossible connâıtre ce type sans exécuter N et le contexte dans lequel cette
expression se trouve. D’autre part, il n’est pas possible d’effectuer cette exécution pour
donner l’interprétation car on perdrait la compositionalité de la définition. On pourrait
envisager d’utiliser à la place de d (le codage d’) une variable de type, mais ainsi on entrerait
dans le domaine d’un calcul du second ordre que nous ne mâıtrisons pas encore. Donc nous

CONTENTS 37

nous limitons au cas de liaison précoce. Dans ce but nous modifions la définition des termes
de λ& de la manière suivante :

M :: = xV | λxV.M |M ·M | coerceV (M) | ε |M&M |M•coerceV (M)

ainsi nous sommes sûrs que le type de l’argument d’une fonction surchargée ne pourra plus
changer pendant l’exécution, car il est contraint (coerced) à un type donné. Par conséquent
“d” dans (0.7) est le code associé au type de N .

Pour cette sémantique on peut démontrer les théorèmes suivants :

• Correction par rapport au sous-typage : Si U ≤ V est dérivable alors [[U]] ⊑ [[V]] (⊑
inclusion entre relations partielles d’équivalence comme ensembles de couples)

• Correction par rapport au typage : Si N :U est dérivable alors [[N]] ∈ [[U]]. (relation
comme ensemble de classes d’équivalence)

• Correction par rapport à la réduction : Si M >N alors [[M]] ⊇ [[N]]. (classe d’équivalence
comme ensemble d’éléments de D)

Second ordre

Dans la section précédente nous évoquions la possibilité d’étudier un formalisme du second
ordre afin de mieux cerner la signification mathématique de la liaison tardive. Une telle
étude couvrirait un thème qui, jusqu’à présent, a été négligé par la recherche, soit, l’étude du
polymorphisme dans un calcul où l’exécution dépendrait directement des types. Le Système
F de Girard [Gir72] est un calcul où l’on peut définir des fonctions qui prennent des types
comme argument ; néanmoins ces fonctions dépendent de leurs arguments d’une façon très
limitée : des types différents comme argument n’affectent que le type du résultat, pas sa
valeur. La contrepartie pratique de cette propriété est que les types peuvent être effacés
pour l’exécution, qui est ainsi effectuée sur les effacements (erasures) des termes. F≤ est une
extension conservative de F qui permet de plus de spécifier des bornes pour les paramètres
de type. Cependant il possède encore la même forme de dépendance des types que F , car
les types peuvent être effacés pour l’exécution. En revanche, nous somme intéressés en une
dépendance de types qui affecte l’exécution. Nous voulons pouvoir décrire des fonctions
qui exécutent (dispatch) des codes différents en fonction du type passé comme argument.
Cette recherche se situe donc dans un cadre plus général : elle vise la formalisation du
polymorphisme explicite dit “ad hoc” [Str67] ainsi que son intégration avec sa contrepartie :
le polymorphisme paramétrique.

Toutefois il y a d’autres motivations qui amènent à s’intéresser au second ordre, et dont la
retombée pratique immédiate est bien plus importante. Il s’agit de résoudre le problème qui
dans la recherche théorique sur les systèmes de types pour les langages à objets est dénommé
“le problème de perte d’information”. Ce problème a été présenté dans [Car88] sur une
observation de Antonio Albano et peut être illustré de la manière suivante. Considérons la
règle d’application du λ-calcul simplement typé avec sous-typage:

[→Elim≤]
M :T → U N :S ≤ T

MN :U

38 CONTENTS

et deux types S et T tels que S ≤ T ; par exemple soit S un type enregistrement comme
T mais avec des champs supplémentaires. Prenons la fonction d’identité pour T , λxT .x qui
possède donc le type T → T . Soit M un terme de type S. Par la règle ci-dessus (λxT .x)M
a le type T (plutôt que S). Nous avons ainsi perdu de l’information; dans l’exemple des
enregistrements on a perdu l’information liée aux champs supplémentaires de S car, après
avoir appliqué M à l’identité, il n’est plus possible d’avoir accès à ces champs.

La solution à ce problème consiste à passer à un formalisme du second ordre, et a été
originairement décrite dans [CW85]. L’idée en elle même est très simple : l’identité ci-dessus
n’est plus une fonction qui accepte tout argument de type plus petit ou égal à T et rend un
résultat de type T , mais elle devient une fonction qui accepte tout argument de type plus
petit ou égal à T et rend un résultat du même type que celui de l’argument. Autrement dit,
la fonction identité possède le type ∀X≤T.X → X. 13 On rencontre un problème analogue
dans λ&. Soit m un message qui modifie l’état interne des objets de la classe C1. Puisque
nous sommes dans un cadre fonctionnel la méthode dans C1 rend un nouvel objet de classe
C1. Par conséquent m: {..., C1 → C1, ...}. Soit C2 une sous-classe de C1 qui hérite la méthode
en question. Si l’on passe le message m à un objet de classe C2 la branche définie dans C1

va être sélectionnée. Mais cette branche possède le type C1 → C1, par conséquent le résultat
du passage du message aura le type C1 au lieu de C2.

Nous utilisons pour λ& la même solution que pour le problème de [Car88] et passons
à l’étude de formalismes du second ordre avec sous-typage. Plus particulièrement, notre
recherche se concentre sur F≤ qui est considéré comme la formalisation standard de la quan-
tification bornée. Nous agissons tout d’abord sur deux plans : nous essayons d’améliorer F≤
et, parallèlement, de l’étendre par la surcharge et la liaison tardive. Après avoir réuni ces
deux études, nous montrons comment le polymorphisme “ad hoc” explicite peut être utilisé
pour modéliser la programmation objets.

Vers une quantification bornée décidable

Les systèmes avec quantification bornée sont obtenus en enrichissant le Système F par une
relation de sous-typage et un type Top (le type plus grand que tous les types) et en spécifiant
une borne pour toute variable quantifiée. Les règles d’introduction et d’élimination des types
polymorphes sont étendues de manière à prendre en compte ces bornes.

La formulation standard de la quantification bornée, F≤, a été définie par Curien et
Ghelli [CG92]. Parmi les règles de sous-typage celle qui permet de comparer les types poly-
morphes possède la forme suivante :

(∀-orig)
C ⊢ T1 ≤ S1 C ∪ {X ≤ T1} ⊢ S2 ≤ T2

C ⊢ ∀(X≤S1)S2 ≤ ∀(X≤T1)T2
X 6∈ dom(C)

Cette règle peut être lue de la façon suivante. Un type T de la forme ∀(X≤T1)T2 décrit une
collection de termes polymorphes (fonctions qui prennent un type et rendent un terme) qui

13Ce genre de polymorphisme peut être soit de forme explicite (la quantification est linguistique : X est
substitué par le type explicitement passé à la fonction) soit de forme implicite (la quantification est méta-
linguistique : X est substitué par le type trouvé par unification par le système de typage).

CONTENTS 39

associent des sous-types de T1 à des termes dans T2. Si T1 est un sous type de S1, alors le
domaine de T est plus petit que celui de ∀(X≤S1)T2 ; ainsi ce dernier a une contrainte plus
faible et décrit une plus grande collection de termes polymorphes. En outre, si l’on considère
un type S = ∀(X≤S1)S2 tel que pour tout U qui soit un argument recevable par les fonctions
des deux collections (i.e. par celles avec la contrainte plus restrictive : U ≤ T1), la U -instance
de S2 est un sous-type de la U -instance de T2 alors T est “par points” une contrainte plus
faible que S et il décrit donc une plus grande collection de termes polymorphes.

Bien que sémantiquement très naturelle, cette règle est à l’origine de la perte de maintes
propriétés syntaxiques désirables. Tout d’abord elle cause l’indécidabilité de la relation de
sous-typage [Pie93, Ghe93a], ce qui entrâıne l’indécidabilité du contrôle des types. Mais pire
encore, F≤ ne possède pas de plus grande borne inférieure pour les ensembles bornés de
types, ce qui empêche certains raisonnements par induction ou, plus simplement, le typage
d’un “if then else” possédant deux branches dont les types soient incomparables (mais avec
un minorant commun).

Le cœur du problème réside dans la borne pour la variable X de S2 : cette borne est
S1 dans la conclusion de la règle, et devient T1 dans la prémisse droite. Ce “re-liage” des
variables, en lui même assez bizarre, invalide toute une classe de raisonnements par induc-
tion structurelle sur les types, où le cas pour une variable utilise normalement l’hypothèse
d’induction sur la borne.

C’est pourquoi plusieurs variantes de cette règle ont été proposé dans la littérature. La
règle originaire proposée par Cardelli et Wegner dans [CW85] pour leur calcul Fun (voir (∀-
Fun) Figure 0.1) évite ce reliage en limitant la comparaison à des types ayant la même borne ;

(∀-Fun)
C ∪ {X≤U} ⊢ S2 ≤ T2

C ⊢ ∀(X≤U)S2 ≤ ∀(X≤U)T2
(∀-local)

C ⊢ T1 ≤ S1 C ∪ {X≤S1} ⊢ S2 ≤ T2

C ⊢ ∀(X≤S1)S2 ≤ ∀(X≤T1)T2

Figure 0.1: Règles alternatives

quoique décidable cette restriction ne possède aucune motivation sémantique apparente et
elle empêche la modélisation des types partiellement abstraits (voir [CP94]).

Katiyar et Shankar [KS92] proposent une restriction dans laquelle les bornes ne peuvent
par contenir Top. De cette façon on obtient la décidabilité mais aux frais de l’expressivité du
calcul car les enregistrements (dont le codage dans F≤ utilise Top) ne peuvent plus être utilisés
comme bornes. Une autre variation, (∀-local), utilise la borne la plus grande pour comparer
les corps des quantifications (voir Figure 0.1). Mais Giorgio Ghelli a montré récemment
qu’elle est impraticable d’un point de vu algorithmique, tout en laissant ouvert le problème
de la décidabilité.

Nous proposons une alternative très simple : une règle de sous-typage pour la quantifica-
tion universelle

(∀-new)
C ⊢ T1 ≤ S1 C ∪ {X≤Top} ⊢ S2 ≤ T2

C ⊢ ∀(X≤S1)S2 ≤ ∀(X≤T1)T2
X 6∈ dom(C)

où les corps des quantifications doivent être reliés (S2≤ T2), mais sous aucune hypothèse

40 CONTENTS

(refl) C ⊢ T ≤ T (Top) C ⊢ T ≤ Top

(trans)
C ⊢ T1 ≤ T2 C ⊢ T2 ≤ T3

C ⊢ T1 ≤ T3
(→)

C ⊢ T1 ≤ S1 C ⊢ S2 ≤ T2

C ⊢ S1 → S2 ≤ T1 → T2

(taut) C ⊢ X ≤ C(X) (∀)
C ⊢ T1 ≤ S1 C ∪ {X≤Top} ⊢ S2 ≤ T2

C ⊢ ∀(X≤S1)S2 ≤ ∀(X≤T1)T2

Figure 0.2: Relation de sous-typage pour F⊤≤

préalable (X≤Top). Cette règle est d’un point de vu sémantique plus naturelle que les autres
variantes puisqu’elle concrétise une notion de sous-typage “par points” que l’on retrouve dans
d’autres travaux [Mit90b, BM92, Bru93, PT93] : elle affirme, tout simplement, que ∀F ≤ ∀G
(où F,G :Type→Type) si et seulement si dom(G) ⊆ dom(F) et F est “par points” plus
petit que G.

Évidement, cette règle est plus faible que (∀-orig). Le système obtenu de F≤ en remplaçant
(∀-orig) par (∀-new), et que nous appelons F⊤≤ (voir Figure 0.2), ne peut pas prouver une
un jugement tel que ⊢ ∀(X ≤ S1)X ≤ ∀(X ≤ S2)S2 qui est au contraire prouvable dans
F≤. Toutefois cette différence d’expressivité ne joue aucun rôle dans les cas d’application
pratique de la quantification bornée. En fait, nous avons testé cette règle avec le modèle
de programmation orientée objets présenté dans [PT93], qui utilise l’extension de F≤ par le
polymorphisme d’ordre supérieur du Système Fω [Gir72] : tout terme de ce modèle possède
dans F⊤≤ le même type que dans F≤. De même, Luca Cardelli nous a confirmé que tout

programme écrit pour son implémentation de F≤ [Car93], est aussi typable dans F⊤≤ . Une
autre application de la quantification bornée est donnée par la traduction due à Cardelli d’un
calcul d’enregistrements extensibles dans F≤ [Car92] : une fois de plus, F⊤≤ peut être utilisé
à la place de F≤.

F⊤≤ possède plusieurs propriétés syntaxiques qui font défaut à F≤. En premier lieu le
sous-typage est décidable. En fait il est possible de définir un algorithme de sous-typage qui
est valide (sound) et complet (complete) par rapport à F⊤≤ ; ceci est obtenu en démontrant

pour F⊤≤ les propriétés d’élimination de la réflexivité et de la transitivité, et la terminaison
de l’algorithme qui en dérive14.

La décidabilité du sous-typage est une propriété assez souhaitable. Cependant, d’un
point de vu pratique, son absence cause moins de troubles que la non existence du plus grand
minorant et du plus petit majorant. Giorgio Ghelli [Ghe90] a montré que F≤ présente une
telle carence. Par contre dans F⊤≤ toute paire de types possède un plus petit majorant et
tout paire de type avec un minorant commun possède un plus grand minorant.

La simplicité syntaxique accrue de la formalisation de F⊤≤ entrâıne une remarquable sim-
plification des preuves par rapport à F≤. Cette simplification, nous la rencontrons tant dans
les preuves de validité et complétude de l’algorithme de sous-typage qu’en étudiant la sé-
mantique de F⊤≤ . Pour donner une sémantique à F⊤≤ il est possible d’utiliser la technique

14Un récent résultat non encore publié de Giorgio Ghelli prouverait que cet algorithme peut être implémenté
de manière polynômiale.

CONTENTS 41

de [BTCGS91], et ainsi traduire F⊤≤ dans un calcul avec des coercitions explicites pour lequel
plusieurs modèles sont déjà définis. Grâce à l’existence des plus grandes bornes inférieures
et des plus petites bornes supérieures, il est possible d’utiliser cette même technique pour
donner une sémantique à l’extension de F⊤≤ qui comprend les types enregistrements, les types
récursifs et les types énumérés (variant types), technique qui, dans le cas de F≤, échoue.

Si nous étendons le langage des types de F≤ par les types récursifs (µX.T) et ajoutons
parmi les règles de sous-typage

(Unfold-l)
C ⊢ S[X := µX.S] ≤ T

C ⊢ µX.S ≤ T
(Unfold-r)

C ⊢ T ≤ S[X := µX.S]

C ⊢ T ≤ µX.S

la théorie de sous-typage ainsi obtenue n’est pas une extension conservative de la théorie pour
F≤. Autrement dit, il existe un jugement de sous-typage dans F≤ qui n’est pas prouvable avec
le système originel mais qui est prouvable par la théorie étendue [Ghe93b]. Donc l’algorithme
de contrôle des types obtenu en ajoutant à l’algorithme pour F≤ les deux règles ci-dessus,
n’est pas correct. Par contre si nous étendons F⊤≤ de la même manière —appellons ce système

F⊤µ≤ — nous obtenons une extension conservative de la théorie de sous-typage. Ceci découle

très simplement de la démonstration d’élimination de la transitivité pour F⊤µ≤ (propriété

qui n’est pas satisfaite dans l’extension de F≤).15 Par conséquent, nous pouvons étendre
l’algorithme de sous-typage pour F⊤≤ par les deux règles ci-dessus ; nous obtenons ainsi un

algorithme de sous-typage pour F⊤µ≤ qui est valide, complet et qui termine.
Comme nous l’avons montré, le passage de la règle (∀-orig) à la règle (∀-new) apporte

de nombreux bénéfices au système de sous-typage, qui dès lors satisfait plusieurs propriétés
souhaitables. Malheureusement, ce même passage a un effet néfaste sur la relation de typage.
En fait, comme Giorgio Ghelli l’a fait remarquer, F⊤≤ ne possède pas la propriété d’existence
d’un type minimal, dans le sens où l’ensemble des types prouvés par un terme donné peut
ne pas posséder de plus petit élément. Ceci est illustré par l’exemple suivant: considérons le
terme M ≡ ΛX≤ Y.λxX. x. En utilisant la règle de subsumption, il est possible de prouver
que ce terme est typé tant par le type ∀(X≤Y)X → X que par type ∀(X≤Y)X → Y . Ces
deux types sont tous les deux minimaux dans l’ensemble des types de M . En conséquence,
si dans l’algorithme de typage habituel pour F≤ nous utilisons l’algorithme de sous-typage
pour F⊤≤ , nous obtenons un algorithme de typage qui est valide pour F⊤≤ , mais qui n’est pas
complet. Par exemple, l’algorithme de typage déduira pour M ci-dessus le premier type mais
pas le second. Le problème de trouver un algorithme de typage complet dans ce cas demeure
ouvert, comme demeure ouvert le problème de la décidabilité de la relation de typage.

C’est l’interaction entre la règle de subsumption, et la règle (∀-new) qui est responsable de
la perte de cette propriété. En fait, en utilisant la subsumption nous pouvons faire remonter
dans la hiérarchie de sous-typage, le type du corps d’une Λ-abstraction, alors que la règle
(∀-new) empêche l’algorithme de sous-typage de faire la même chose. Toutefois, il faut noter
que les tests que nous avons effectués sur les interpréteurs existants de F≤, ont consisté à

15En fait, si T1 et T2 sont deux types de F≤, et si T1 ≤ T2 est faux dans F≤ mais est prouvable dans
l’extension par les types récursifs, alors il existe un type récursif T tel que T1 ≤ T ≤ T2 soit prouvable
dans l’extension. Ceci n’est pas possible dans F

⊤µ

≤ : si c’était le cas, par l’élimination de la transitivité on
obtiendrait une preuve de T1 ≤ T2 sans utiliser la transitivité. Mais la preuve ainsi obtenue serait aussi une
preuve de T1 ≤ T2 dans F⊤

≤ : ce qui est impossible.

42 CONTENTS

remplacer dans l’algorithme de sous-typage la règle (∀-orig) par la règle (∀-new), mais tout en
continuant à utiliser l’algorithme de typage traditionnel. Ainsi, aucune utilisation de la règle
de subsumption n’a été faite. On pourrait être tenté de continuer à adopter la philosophie
consistant à éliminer des jugements inutiles (sous tendant l’entière définition de F⊤≤) et,
donc, considérer comme relation de typage celle définie par la composition de l’algorithme de
typage de F≤, et la nouvelle relation de sous-typage. Cependant un autre problème surgit:
le système résultant ne satisfait pas la propriété de subject reduction. Considérons le terme
ΛX ≤ Y.λyY. (λxX. x)y. Le type déterminé pour ce terme par l’algorithme de typage est
∀(X≤ Y)Y → X. Le terme en question se réduit en un pas à ΛX≤ Y.λyY. y pour lequel
l’algorithme de typage rend ∀(X≤Y)Y → Y , qui est incomparable (pour la règle (∀-new))
avec le type précédent.

Maintenant, considérons ce même système dans lequel les réductions à l’intérieur des Λ-
abstractions ne sont pas utilisées; nous éliminons ainsi non seulement d’“inutiles” jugements
de typage et de sous-typage mais encore d’“inutiles” réductions. Pour un tel système, dont le
typage est décidable (évident, car tout terme bien type possède un seul type, celui déterminé
pas l’algorithme) et dont la relation de sous-typage possède toutes les bonnes propriétés
établies dans cette section, nous conjecturons la propriété de subject-reduction. Notons
que c’est ce système que nous avons implicitement testé en utilisant les implementations de
Cardelli et de Pierce et Turner de l’algorithme de typage de F≤ avec la relation de sous-typage
modifiée

Quantification bornée avec surcharge

Nous avons déjà montré qu’une méthode qui modifie l’état interne d’un objet de classe C1

m: {..., C1 → C1, ...}

possède le même problème de perte d’information que la fonction identité de type C1 → C1 :
dans les deux cas en passant un argument de type strictement plus petit que C1, on obtient
un résultat de type C1. La solution adoptée pour la fonction identité était de passer à un
formalisme du second ordre et d’utiliser ainsi le type ∀X≤C1.X → X. Comme nous l’avons
déjà anticipé, nous adoptons pour λ& la même solution. Donc l’idée est de définir un système
de types où le message m ci-dessus puisse avoir un type de la forme

m: {...,∀X≤C1.X → X, ...}

C’est pourquoi, nous définissons F&
≤ où cette dépendance des types est traitée de façon

explicite.
Dans un langage de programmation une fonction qui prend comme argument un type et

qui pour chaque type exécute un code différent, aurait très probablement la syntaxe suivante :

Fun(X:*) = if X≤T1 then exp 1 else

if X≤T2 then exp 2 else
...

if X≤Tn then exp n

CONTENTS 43

Cette fonction exécute l’expression exp1 si on lui passe un type plus petit ou égal à T1,
exp2 si le type passé est plus petit ou égal à T2 et ainsi de suite. S’il y a plus d’un candidat
possible on sélectionne parmi eux la branche avec la borne la plus petite.

Dans F&
≤ nous dénotons cette fonction par :

(ΛX≤T1.exp1 & ΛX≤T2.exp2 & . . . & ΛX≤Tn.expn)

Pour des raisons techniques nous quantifions un type surchargé à l’extérieure de ses paren-
thèses ; ainsi le type de la fonction ci-dessus sera :

∀X{T1.S1, T2.S2, . . . , Tn.Sn}

où expi:Si. Comme pour λ& nous avons deux conditions pour sélectionner les types bien
formés. La première est une condition de cohérence qui assure que le type diminue toujours,
même si au cours de l’exécution on change la branche sélectionnée. Ceci était donné dans
λ& par la condition de covariance (0.4). La condition correspondante dans le second ordre
impose pour un type surchargé ∀X{Ti.Si}i∈I que pour tout i, j ∈ I si C ⊢ Ti≤ Tj alors
C ∪{X≤Ti} ⊢ Si≤Sj. La deuxième condition doit assurer pour la sélection l’existence d’une
branche avec une borne minimum (entre les branches compatibles avec l’argument). Pour le
second ordre il ne suffit plus d’imposer que pour tout couple de bornes compatibles Ti et Tj
dans ∀X{Ti.Si}i∈I il existe une borne qui en est le plus grand majorant. Le problème est
que les bornes peuvent contenir des variables libres. Donc il faut contrôler les conflits pour
toute valeur admissible pour ces variables. Pour assurer l’existence de la branche sélectionnée
nous imposons deux restrictions : tout d’abord les bornes ne peuvent qu’être soit des types
atomiques (des noms de classe) soit des variables bornées par des types atomiques. Ceci nous
permet d’éviter tout problème dû à la contra-variance des types flèche. En outre, on demande
que les bornes d’un type surchargé satisfassent la condition dite de “∩-closure” (meet-closure)
qui est définie comme suit : soit A un type atomique ou une variable bornée par un type
atomique; dénotons par B(A) le type A lui-même dans le premier cas et la borne de la
variable A dans le second. La ∩-closure impose que pour tout Ai et Aj dans ∀X{Ai.Si}i∈I

si B(Ai)⇓B(Aj) alors il existe h dans I tel que Ah est la plus grande borne inférieure de Ai

et Aj. Si {Ai}i∈I satisfait cette condition (assez restrictive) alors pour tout type T et pour
toute substitution σ compatible avec les bornes des variables libres dans {Ai}i∈I l’ensemble
{σ(Ai) | T ≤ σ(Ai), i ∈ I} est soit vide soit possède un plus petit élément.

On définit donc le système de types de F&
≤ en ajoutant aux productions des types de F≤

la production suivante

T : : = ∀X{Ai.Ti}i∈I

en ajoutant aux règles de sous-typage de F≤ la règle suivante:

({ })
pour tout i ∈ I il existe j ∈ J t.q. C ⊢ A′

i≤Aj C ∪ {X≤A′
i} ⊢ Tj≤T ′

i

C ⊢ ∀X{Aj.Tj}j∈J≤∀X{A′
i.T

′
i}i∈I

X 6∈ dom(C)

Ensuite nous utilisons la relation de sous-typage ainsi définie pour sélectionner les types qui
sont bien formés, c’est-à-dire les (pré-)types qui satisfont la covariance, la ∩-closure et dont
les bornes ne prennent comme valeurs que des types atomiques.

44 CONTENTS

Nous démontrons pour ce système la cohérence du sous-typage, ainsi que les propriétés
d’élimination de la réflexivité et de la transitivité. De ce dernier résultat découle une présenta-
tion algorithmique de la relation de sous-typage. L’algorithme ainsi obtenus est une procédure
de semi-décision : F&

≤ , hérite de F≤ l’indécidabilité du sous-typage.

Les termes de F&
≤ sont obtenu en ajoutant aux productions des termes de F≤ les productions

suivantes :
a: : = ε | (a&Ia) | a[A]

où a[A] indique l’application d’une fonction surchargée (pour la différencier de l’application
d’une fonction polymorphe que nous notons par a(T)) et I un index de la forme [A1.T1 ‖
. . . ‖ An.Tn]. Les index sont utilisés pour la sélection et le typage. Les nouveaux termes
sont typés de la façon suivante :

[ε] C ⊢ ε:∀X{}

[{}Intro]
C ⊢ a:T1≤∀X{Ai.Ti}i≤n C ⊢ b:T2≤∀(X≤A)T

C ⊢ (a&[A1.T1‖...‖An.Tn‖A.T]b):∀X({Ai.Ti}i≤n ∪ {A.T})

[{}Elim]
C ⊢ a:T C ⊢ Aj = mini∈I{Ai|C ⊢ A≤Ai}

C ⊢ a[A]:Tj [X := A]
B(T)= ∀X{Ai.Ti}i∈I

Ces règles vont s’ajouter à celles du typage pour les termes de F≤. La cohérence du typage
dérive directement de la cohérence du sous-typage. Enfin nous augmentons les notions de
réduction de F≤ par la règle suivante :

(β{}) Si A,A1 . . . , An sont fermés alors

C ⊢ (a&[A1.T1‖...‖An.Tn]b)[A] >

{
b(A) si An = min1≤i≤n{Ai|C ⊢ A≤Ai}
a[A] sinon

La condition de fermeture des types utilisés pour la sélection correspond à l’utilisation de la
liaison tardive pour ce calcul. Le calcul ainsi défini satisfait les propriétés de subject-réduction
généralisée et de confluence. Nous conjecturons que F&

≤ est aussi fortement normalisant.

Nous avons vu qu’en remplaçant dans F≤ la règle de sous-typage pour la quantification
universelle par la règle (∀-new) nous obtenons un système de sous-typage décidable. Il est
donc légitime de se poser la question de savoir si en effectuant le même changement dans
F&
≤ on obtient un calcul qui à la fois possède un sous-typage décidable et soit assez expressif

pour modéliser la programmation orientée objets. La réponse est affirmative : en fait on
ne rencontre aucun problème particulier à reparcourir les preuves de F⊤≤ de terminaison du
sous-typage et d’élimination de la transitivité pour le système ainsi obtenu.

Il est intéressant de noter que la décidabilité est obtenue par la seule modification de la
règle (∀), tandis que la règle de sous-typage ({}) pour les types surchargés demeure inchangée.
En effet, on pourrait s’attendre à ce que la borne dans la prémisse de droite de la règle ({})

CONTENTS 45

doive être changée de A′i à Top. Ceci n’est pas nécessaire pour la décidabilité : en fait, les
bornes utilisées dans la quantification surchargée sont de loin moins générales que celles de la
quantification universelle, car dans ces dernières Top peut y apparâıtre, d’où l’indécidabilité
(dans un certain sens les types surchargés de ce système—que nous notons F&⊤

≤ —forment un
système qui satisfait la restriction de [KS92]).

Nous conjecturons que F⊤≤ hérite de toutes les bonnes propriétés de la relation de sous-

typage de F⊤≤ , en particulier l’existance d’une plus grand borne inférieure et d’une (unique)
plus petite borne supérieure. Ce qui est certain c’est que ce système possède toutes les
mauvaises propriétés de F⊤≤ , notamment il ne satisfait pas la proprieté d’existance d’un type
minimal et le système sans la règle de subsumption, ne satisfait pas la propriété de “subject-
reduction”. Cependant, si la conjecture posée à la fin de la section précédente est correcte elle
impliquera automatiquement la même propriété pour F&⊤

≤ , c’est-à-dire que le système, sans
la règle de subsumption et sans réductions impliquant des variables libres de type, satifera
non seulment la décidabilité mais encore la propriété de subject-reduction.

Surcharge de second ordre et programmation orientée objets

Nous allons maintenant montrer comment utiliser le formalismes du second ordre que nous
avons défini dans la séction précédente, pour la modélisation des langages objets. Tout
les examples de cette section sont typables tant dans F&

≤ que dans F&⊤
≤ (sans ou avec

subsumption).

Comme dans la section sur λ& nous utilisons des types atomiques pour les noms des
classes. À chaque type atomique est associé un type-représentation qui décrit les variables
d’instance de la classe. Une relation de sous-typage peut être définie sur ces types atomiques,
pourvu qu’elle respecte le sous-typage des types-représentation.

Une fois de plus, un message est un identificateur de fonction surchargée ; mais cette fois
la méthode à exécuter est choisie sur la base du type passé comme argument, qui sera la
classe de l’objet auquel le message est envoyé. Ainsi l’envoi du message mesg à un objet a
de classe A est modélisé par (mesg[A])a.

Une fois de plus nous considérons les types atomiques 3DPoint et 2DPoint avec 3DPoint
≤ 2DPoint (les types-représentation sont toujours les mêmes). Le message norme devient
donc

norme ≡ (ΛMytype≤2DPoint .λself Mytype.
√

self.x2 + self.y2

&ΛMytype≤3DPoint .λself Mytype.
√

self.x2 + self.y2 + self.z2

)

dont le type est

∀Mytype.{2DPoint.Mytype→ Real, 2DColorPoint.Mytype→ Real}

Nous avons utilisé la variable self pour dénoter, à l’intérieur d’une méthode, le destinataire
du message et, en conformité avec la notation de [Bru92], la variable Mytype pour dénoter le
type du destinataire. Il faut noter que contrairement à [Bru92] nous n’avons pas besoin de
récursion.

46 CONTENTS

Le message d’initialisation aura dans F&
≤ le type suivant :

initialise : ∀Mytype{2DPoint.Mytype→Mytype, 3DPoint.Mytype→Mytype}

qui est bien formé (il satisfait de manière triviale les conditions de bonne formation). Mais
même si nous avions défini initialise de façon qu’il aie le type

initialise : ∀Mytype{2DPoint.Mytype→ 2DPoint, 3DPoint.Mytype→Mytype}

nous aurions encore obtenu un type bien formé. En fait, la condition de covariance demande
que

{Mytype≤3DPoint} ⊢Mytype→Mytype ≤Mytype→ 2DPoint

ce qui est vrai dans ce cas. Plus généralement, si le message m a été défini dans les classes
Bi (pour i ∈ I) alors le type de m a la forme ∀Mytype{Bi.Mytype → Ti}i∈I . Si Bh≤ Bk

alors la méthode définie pour m dans la classe Bh a masqué (overridden) celle définie dans
Bk. Étant donné que Mytype est le même dans les deux branches (c’est ici que se justifie le
fait d’utiliser un unique quantificateur pour toutes les branches), la condition de covariance
se réduit à prouver que

{Mytype≤Bh} ⊢ Th ≤ Tk

et donc que la méthode masquante rend un type plus petit ou égal à celui de la méthode
masquée. L’exemple avec initialise montre pourquoi il est important de vérifier cette con-
dition sous l’hypothèse que Mytype soit plus petit que la borne la plus petite. Au contraire
si une méthode rend un résultat de type Mytype alors une méthode la masquant doit aussi
retourner un résultat de type Mytype (et pas le nom de la classe où la méthode a été définie
parce que par héritage ceci pourrait être un type plus grand que la valeur actuelle de Mytype).

L’intérêt du second ordre réside dans l’élimination du problème de perte d’information :
ceci avait lieu pour le message efface de la page 23. En fait si l’on envoyait ce message à
un objet de classe 3DPoint le résultat de l’envoi avait le type 2DPoint. Par contre dans le
second ordre la branche pour 2DPoint dans efface aura la définition suivante :

efface ≡ (ΛMytype≤2DPoint.λself MyType.〈self← x = 0〉 & . . .)

dont le type est

∀Mytype.{2DPoint.Mytype→ Mytype, . . . }

L’envoi du message efface à un objet b de type 3DPoint est traduit en (efface [3DPoint])(b).
Pour les règles [{}Elim] et [→Elim] cette expression possède le type 3DPoint ; nous n’avons
donc pas de perte d’information.

Comme pour λ& la redéfinition ou l’ajout d’une méthode correspondent à la concaténation
d’une nouvelle branche à une fonction surchargée. De même, les messages sont des valeurs de
première classe ; un exemple trivial d’utilisation de cette propriété est donné par la définition
d’une fonction qui envoie un message à self en commençant la recherche de la méthode de la
classe C (ceci ressemble à la fonction super) :

let super C = λm∀X{C.T}.m[C]self

Cette fonction accepte comme argument tout message pouvant être envoyé à un objet de

CONTENTS 47

classe C (l’expression est bien typée pourvu que Mytype≤ C). Il faut noter que la possibilité
d’appliquer les termes aux types, donne un plus grande contrôle sur le calcul, tout comme
l’introduction des coercitions explicites l’avait donné dans λ&.

Le calcul que nous venons de décrire est assez simple, surtout à cause des restrictions
sur les bornes d’une fonction surchargée. Toutefois il n’y a aucune difficulté à modifier la
définition de ∩-closure pour permettre comme bornes des produits cartésiens de classes (pour
modéliser le dispatch multiple) et des structures d’ordre autres que le demi-treillis (pour
modéliser l’héritage multiple dans toute sa généralité : voir la condition (0.6) page 28). Il est
intéressant toutefois de noter qu’en cas de dispatch multiple la condition de covariance a une
signification différente qu’en λ&. Nous rappelons qu’en λ& le message equal ne pouvait pas
être typé par {2DPoint→ 2DPoint→ Bool, 2DColorPoint→ 2DColorPoint→ Bool} car
ce dernier n’est pas un type bien formé. C’est pourquoi, dans λ& nous définissions

equal : {(2DPoint× 2DPoint)→ Bool, (2DColorPoint× 2DColorPoint)→ Bool}

Par contre, en passant au second ordre le type ∀X{2DPoint.X → X → Bool, 2DColorPoint.X →
X → Bool} est bien formé. Toutefois pour sélectionner la branche correcte il faut passer entre
les types des deux arguments celui qui est le plus grand. Ceci n’est pas ce qu’on voudrait : on
aimerait passer à la fonction les deux types des arguments et laisser au système la tâche de
sélectionner la branche correcte. Ceci peut être obtenu par des multi-méthodes, en définissant
equal de sorte qu’elle possède le type suivant :

∀X{2DPoint× 2DPoint.X → Bool, 2DColorPoint× 2DColorPoint.X → Bool}

F&
≤ ne capture pas la puissance de tous les langages orientés objets ; cependant il possède

certaines caractéristiques qui leur manquent. Donc on peut envisager d’enrichir les langages
existants par ces caractéristiques ; par exemple on pourrait définir un nouveau langage à
objets qui fournisse soit la paramétricité soit la surcharge, où les classes puissent être passées
comme argument aux fonctions ; ces fonctions pourraient alors exécuter des codes différents
selon la classe reçue comme argument. On peut imaginer plusieurs applications d’un tel
mécanisme : par exemple, imaginons de devoir écrire une routine générale d’installation pour
des logiciels qui travaillent sur des machines différentes. Imaginons de classifier les logiciels en
mathématiques et graphiques, et les machines en machines noir et blanc et machines couleur.
Très probablement cela correspondrait aux classes suivantes : GraphSW, MathSW≤ Software
et Color, B&W≤ Machine et la routine d’installation aura le type

install : ∀(M≤Machine)∀(S≤Software)(M × S)→ . . .

Le corps de cette routine inclura certaines parties communes à toutes les machines et à tous
les logiciels, et certaines parties spécialisées selon l’espèce des arguments. Cette spécialisation
sera obtenue en utilisant des fonctions de type :

∀X{Software ×Machine. ...,
GraphSW ×B&W. ...,
GraphSW ×Color. ...,
MathSW ×B&W. ...,
MathSW × Color. ...}

48 CONTENTS

Parmi les limites de modélisation du second ordre ou, plus précisément, de la ∩-closure il faut
citer l’impossibilité de modéliser les classes génériques du langage Eiffel [Mey88]. Une classe
est générique quand elle est paramétrée par une variable de type. Par exemple, si X est une
variable de type, alors nous aimerions pouvoir définir une classe Stack[X] avec deux méthodes
pop:X et push:X → (), et puis obtenir une pile d’entiers en instantiant X de la manière
suivante : new(Stack[Int]). Il ne semble pas être trop difficile d’affaiblir la définition
de ∩-closure pour permettre parmi les bornes des fonctions surchargées des constructeurs
monotones de types. Mais nous n’avons pas d’idée simple pour traiter les constructeurs non-
monotones. Toutfois ceci n’est pas une limite de l’approche, mais seulment de sa formalisation
actuelle.

Conclusion

Nous concluons cette présentation en situant notre travail dans un contexte plus général et
en suggérant les perspectives de notre recherche future.

Théorie de la Preuve

Au début de ce chapitre nous avons rappelé la classification introduite par [Str67], subdivisant
le polymorphisme entre “ad hoc” et paramétrique. Ce dernier est à son tour réparti en
polymorphisme (paramétrique) implicite, où la quantification des types est une opération
méta-linguistique qui exprime l’utilisation de schémas de types dans la théorie de la preuve
correspondante [Hin69, Mil78], et en polymorphisme (paramétrique) explicite où cette même
quantification est exprimée par un opérateur linguistique et où la multiplicité des instances
“prouvées” par un terme est linguistiquement exprimée par un unique type syntaxique [Gir72,
Rey83].

Nous introduisons pour le polymorphisme “ad hoc” la même classification, mais avec
un sens légèrement différent : nous définissons comme implicite le polymorphisme “ad hoc”
où la sélection de la branche est basée sur le type de l’argument ; nous définissons comme
explicite le polymorphisme “ad hoc” où la sélection de la branche est basée sur le type passé
en argument.

L’emploi de la même terminologie que pour le polymorphisme paramétrique est justifié
par le fait que le polymorphisme ad hoc implicite peut être caractérisé par une quantification
méta-linguistique sur les (sous-types des) “types d’entrée” d’une fonction surchargée, tandis
que dans le polymorphisme ad hoc explicite cette quantification est promue au niveau lin-
guistique. Ceci devient encore plus évident si l’on utilise la notation des types surchargés
généralisés introduite à la page 35 ; le type surchargé {Ui → out(Ui)}i∈I peut être considéré
comme une notation alternative du schéma de type suivant :

∀α ∈ {̂Ui}i∈I
.α→ ôut(α) (0.8)

Ainsi un terme de type {Ui → out(Ui)}i∈I est implicitement polymorphe dans le sens où il
possède plusieurs types obtenus en instanciant le schéma (0.8). Pour typer l’application d’une

fonction M : ∀α ∈ {̂Ui}i∈I
.α→ ôut(α) on utilisera une instance particulière de son schéma :

CONTENTS 49

[{}Elim]
M :U → ôut(U) N :U

M•N : ôut(U)

Il faut noter que la variable générique α peut varier sur l’ensemble des sous-types des types
d’entrée. Ceci se manifeste au niveau linguistique dans le traitement de la sémantique par la
notion de complétion : la quantification méta-linguistique est transformée en l’expansion de
ses instances, afin d’être interprétée comme un produit indexé sur les types.

Nous pouvons donc classifier les différents calculs sur la base de la présence et du type
éventuel des différentes formes de polymorphisme. Nous nous trouvons donc en présence de
neuf classes de langages, dont certaines (dénotées par (1) et (2)) sont vides :

polymorphisme
paramétrique ad hoc

λ-calc. simplement typé absent absent

λ&-calcul absent implicite

(1) absent explicite

ML implicite absent

ML+ fonctions génériques implicite implicite

(2) implicite explicite

Système F(≤) explicite absent

λ&+F(≤) explicite implicite

F&
≤ explicite explicite

Il faut noter que les deux formes de polymorphisme sont syntaxiquement distinguées car elles
sont implémentées par des termes différents; ainsi dans la table ci-dessus chaque colonne se
réfère à la caractéristique du calcul pur des termes correspondant (car dès que l’on introduit
le polymorphisme ad hoc, le système ne satisfait plus la paramétricité dans le sens de [MR91,
Rey83]).

Enfin, le lecteur ne devrait pas être étonné que la table ci-dessus mélange calculs avec et
sans sous-typage : en fait, tous les calculs que nous avons étudiés possèdent le sous-typage
(car cela implique un gain remarquable en puissance expressive). Toutefois cette classification
est également valable pour les langages sans sous-typage ; et pour adapter cette étude à ces
langages il suffit d’utiliser l’égalité syntaxique pour le sous-typage (i.e. S ≤ T⇔S ≡ T), avec
toutes les simplifications que cela entrâıne.

Programmation orientée objets

Nous avons déjà remarqué tout au long de cette présentation que notre modèle donne des
fondements à un style de programmation orientée objets différent de celui modélisé par les
enregistrements. C’est pourquoi ce modèle est capable de capturer aisément des mécanismes
différents et d’en suggérer d’autres totalement nouveaux.

Nous avons aussi montré que le fait d’étudier “le revers de la médaille” nous a permis
de mieux cerner le fonctionnement des modèles à enregistrements (tel est le cas pour la
covariance/contra-variance) ainsi que leurs limites.

50 CONTENTS

Nous voulons conclure ce point par quelques mots sur l’héritage, car dans cette thèse nous
avons limité notre étude uniquement à la forme d’héritage qui dérive de l’utilisation du sous-
typage. En effet, dans la programmation objets le sous-typage et l’héritage caractérisent deux
hiérarchies différentes, bien que très liées l’une à l’autre. Le sous-typage concerne l’exécution
des expressions, puisqu’il établit dans quel cas les expressions d’un type donné peuvent être
utilisées là où une expression d’un type différent est attendue. L’héritage se rapporte à la
définition des opérations pour les expressions d’un type donné car il établit dans quel cas les
expressions d’un type donné peuvent utiliser certaines opérations initialement définies pour
un type différent.

Selon cette définition le sous-typage implique l’héritage car si les expressions d’un type
donné peuvent se substituer à celles d’un autre type alors ils peuvent aussi utiliser toute
opération définie pour ce type. Toutefois la réciproque n’est pas vérifiée car dans certains cas
on peut avoir la réutilisation du code mais pas la substitutivité. Ce dernier point est illustré
simplement par la méthode qui effectue la copie du destinataire 16 :

class C

{...}

copy = self

[[copy: Mytype]]

Évidement le code de copy peut être utilisé par n’importe quelle classe, mais ceci n’implique
pas que toute classe puisse être un sous-type de C. Si l’on ne dispose que du sous-typage, et
que l’on souhaite définir une nouvelle classe C’ entièrement différente (pour l’état interne) de
C mais possédant une méthode copy, alors la seule solution possible est de redéfinir à nouveau
copy dans C’. Si, au contraire, l’on possède un mécanisme général d’héritage alors il devient
possible d’exprimer que C’ hérite (de tous les codes) des méthodes de C. Ceci peut s’écrire
de la façon suivante :

class C’ is ... inherits from C

{...}

:

:

où C’ hérite de C sans en être sous-type. Ceci peut intuitivement être modélisé dans F&
≤ en

admettant parmi les bornes d’une fonction surchargée les types union.
Par exemple la méthode copy ci-dessus pourrait être modélisée par l’expression suivante :

copy ≡ (ε&ΛMytype ≤ C ∪ C ′.λselfMytype.self) : ∀Mytype{C ∪ C ′.Mytype→ Mytype}

Le type union indique que la branche en question est partagée par C et C ′. Cette branche
sera sélectionnée chaque fois que, lors de l’application de copy à un type A, l’un de ces deux
types (C ou C ′), se trouvera être le plus petit des types supérieurs apparaissant dans une
borne.

Il est nécessaire donc de vérifier séparément la branche pour chaque type, i.e.

X≤C ⊢ a:T X≤C ′ ⊢ a:T

⊢ ΛX≤C ∪ C ′.a:∀(X≤C ∪ C ′)T

16Pour une explication precise de la notatio utilisée, voir le chapitre 1

CONTENTS 51

Ainsi, ∪ dénote un “ou-exclusif” plutôt que l’union. Il est important de noter que dans ce
cas l’héritage est un mécanisme spécifique à une opération dont le code doit être partagé ;
ceci n’implique pas le partage de toute opération définie pour le type concerné. Donc dans
notre formalisme nous pouvons introduire une nouvelle forme d’héritage, partiel, dont la
caractéristique est qu’un type hérite seulement de certaines opérations définies pour un autre
type. L’écriture

class C’ is . . . inherits from C

en haut indiquait que C’ héritait de toute opération définie pour C. Mais par héritage partiel
nous pouvons spécifier que C’ n’hérite de C que de la méthode copy (et de rien d’autre). Une
syntaxe possible pourrait être:

class C’ is ...

{...}

copy = inherited from C

[[.. .]]

Dans ce cas la définition de copy dans F&
≤ donnée ci-dessus est encore valable. Il faut

remarquer que cet héritage partiel est impossible dans les modèles par enregistrements où
toutes les méthodes d’une classe doivent obligatoirement être héritées.

Cette nouvelle vue de l’héritage nous suggère une autre généralisation de ce mécanisme.
Jusqu’à présent l’héritage a été restreint aux classes (i.e. aux types atomiques). Or, il n’y a
aucune raison apparente de ne limiter les unions qu’aux types atomiques. Par exemple en
F&
≤ nous pourrions envisager d’admettre des bornes formées par l’union de produits de types

atomiques, obtenant d’emblée l’héritage pour les multi-méthodes. Mais des unions de types
encore plus générales pourraient être étudiées.

Pour compléter cette étude on pourrait envisager d’introduire des types intersection à
l’intérieur des bornes. Ceci permettrait de définir de manière aisée une condition de ∩-closure
pour types d’ordre supérieur, ce qui nous permettrait de modéliser les classes génériques.

Au delà de la programmation objets

Dès le début nous avons affirmé que la combinaison de la surcharge et de la liaison tardive
permet un très haut niveau de programmation incrémentale et de réutilisation du code. Ces
caractéristiques ne sont pas, et ne doivent pas être, une exclusivité de la programmation
orientée objets. C’est pourquoi il devient très intéressant d’essayer de les exporter à d’autres
paradigmes, moyennant l’introduction de la surcharge et de la liaison tardive. Au moment
de la rédaction de cette thèse nous avons déjà commencé à appliquer ces mécanismes aux
langages des modules ; plus précisément nous sommes en train d’étudier une extension du
système de modules de SML par des foncteurs surchargés combinés avec la liaison tardive.
Toutefois il n’y a pas de limite apparente à l’application de ces techniques, et une extension
à d’autres paradigmes (systèmes concurrents ou programmation logique, par exemple) peut
également être envisagée.

52 CONTENTS

Introduction

a quien leyere: Si las paginas de este libro consienten algún

verso feliz, perdóneme el lector la descorteśıa de haberlo usurpado

yo, previamente. Nuestras nadas poco difieren; es trivial y fortuita

la circustancia de que seas tú el lector de estos ejercicios, y yo su

redactor

Jorge Luis Borges

Fervor de Buenos Aires (1923)

An important distinction has been extensively used in language theory for the last two
decades, between parametric (or universal) polymorphism and “ad hoc” polymorphism [Str67]
(see also [CW85]). Parametric polymorphism allows one to write a function whose code can
work on different types, while using “ad hoc” polymorphism it is possible to write a function
which executes different code for each type. Both the Proof Theory and the semantics of the
first kind of polymorphism have been widely investigated by many authors, on the grounds
of early work of Hindley, Girard, Milner and Reynolds, and developed into robust program-
ming practice. The second kind, usually known as “overloading”, has had little theoretical
attention, with the notable exception of [WB89], [MOM90] and [Rou90]; consequently, its
wide use has been little affected by any influence comparable to the one exerted by implicit
and explicit polymorphism in programming.

This is due, probably, to the fact that the traditional languages offer a very limited form of
overloading: in most of them only predefined functions (essentially arithmetic operators de-
fined on integers and reals and input/output operators) are overloaded, while in the relatively
few languages where the programmer can define overloaded functions their actual meaning
is always decided at compile time. This form of overloading can be easily understood as a
form of syntactic abbreviation which does not significantly affect the underlying language.

Indeed we understand that the real gain of power with overloading happens only when
one computes with types: to exploit the whole potentiality of overloading, types must be
computed during the execution of the program and the result of this computation must affect
the final “value” of the whole execution. Overloading resolution performed at compile time
does not operate any computation on the types; the selection of the code to execute is nearly
reduced to a macro expansion. It is true that in languages with a “classic” type discipline,
delaying to run time the choice of the code to execute would not have any effect, since types
do not change during the computation and thus the choice would be always the same; indeed,

53

54 CONTENTS

these languages lack any notion of computation on the types. However, there exists a wide
class of programming languages in which types evolve during the computation of a program.
These are the languages that use subtyping hierarchies: in this case, types change during the
computation, notably they decrease. In this sense types are computed during the execution of
the program, and the computation does not correspond to the calculation of a distinguished
term17, but it is intrinsic to the stepwise reduction of the program. Nevertheless we can use
it to affect the final value of the execution of the program, by performing the selection of the
code of an overloaded function on the types at a given moment of the execution.

Thus in the languages that use a subtyping relation one can differentiate at least two
distinct disciplines for the selection of the code:

1. The selection is based on the least type information: the types of the arguments at
compile time are used. We call this discipline early binding.

2. The selection is based on the maximal type information: the type of the normal forms
of the arguments are used. We call this discipline late binding.

As we said before, the introduction of overloading with early binding does not affect sig-
nificantly the underlying language. Though, the ability to define new when combined with
subtyping and with late binding, highly increase the possibilities of a language, since it essen-
tially allows a high level of code reusability and an incremental style of programming. The
intuitive idea is that one can apply an overloaded function to the formal parameters of an
outer (standard) function and leave to the system the task of deciding which code to apply,
according to the type of the actual parameters of the outer function. This must be performed
at run time, more precisely at least after the substitution of the formal parameters by the
actual ones. Without late binding, it would be necessary to define also the outer function as
an overloaded one, and its body should have been duplicated in every branch18, while by late
binding it is shared. For example, suppose we have three different types A, B and C with
B,C ≤ A, and an overloaded function f , composed of three different codes fA, fB and fC ,
one for each type. Then imagine we define a function g in whose body f is applied to the
formal parameter x of type A; using the contexts of λ-calculus (i.e. λ-terms with a “hole”)
this corresponds to the following definition

g = λx:A.C[f(x)] (0.9)

where C[] denotes a context. If early binding is used then, since x:A, the code of f for A is
always executed; that is, the function (0.9) is equivalent to

λx:A.C[fA(x)]

But by subtyping g accepts also arguments of type B or C; with early binding, the only way
to use the code of f defined for the type of the actual parameter of g, would be to define g
as an overloaded function of three branches:

gA = λx.C[fA(x)]
gB = λx.C[fB(x)]
gC = λx.C[fC(x)]

(0.10)

17...at least in most languages
18We call a branch every distinct piece of code composing an overloaded function.

CONTENTS 55

If late binding is used then the code of f is chosen only when the formal parameter x has
been substituted by the actual parameter. Thus with late binding the definition of g in (0.9)
is equivalent to the definition in (0.10). In other terms, by late binding the function g in
(0.9) is implicitly an overloaded function with three branches; thanks to late binding these
virtual branches share the code C[] (or, if you prefer, the virtual branches for B and C reuse
the code C[] defined for A).

In this thesis we begin a theoretical analysis, and thus a “uniform and general” one, of this
richer kind of overloading. However we do not present a general treatment for overloaded
functions, but we develop to a great extent a purely functional approach focussed on the
study of some features of object-orientedness, namely message-passing and subtyping, in the
setting of a truly type dependent calculus. However the interest of this study does not stop
with object-oriented languages. Overloading with late binding can be integrated into different
formalisms in order to enrich them with the properties of code reusing that characterize it
(at the moment of the editing of this thesis we are studying its integration in the module
system of SML, in database programming languages and in ML). Also it turns out that
the peculiar “type dependency” of overloading, and its blend with subtyping possesses a
remarkable theoretical interest.

Indeed, “type dependency” (the fact that terms and values may depend on types) and
the role played by the distinction between run-time and compile-time types are the peculiar
properties of the various calculi of this thesis. The multifarious (higher order) calculi, such
as Girard’s System F and its extensions, allow abstraction w.r.t. type variables and the
application of terms to types; but the “value” of this application does not truly depend on
the argument type, and more generally the semantics of an expression does not depend on
the types which appear in it. Indeed, this “parametricity” or “type-erasure” property plays
a crucial role in the basic proof-theoretic property of these calculi: the normalization (cut-
elimination) theorem. In the semantic interpretations, this essential type independence of
computations is understood by the fact that the meaning of polymorphic functions is given
by essentially constant functions (we will say more about this in the introduction of chapter 9
and in the conclusion of this thesis. See also [Lon93]).

On the other hand, it is clear that overloaded functions express computations which
truly depend on types, as different branches of code (i.e. possibly unrelated terms) may be
applied on the basis of input types. Thus we are in presence of a new kind of polymorphism:
parametricity characterizes the code that works on many different types; overloading the
specialization with a different code for each different type. This novelty is clearly felt when
one tries to study the semantics: existing models no longer work and the special mélange of
overloading, late binding and subtyping poses new mathematical challenges (see chapter 6).

However the main motivation of this thesis comes from considering overloading as a way
to interpret message-passing in object-oriented programming. Let us be more specific. In
object-oriented languages the computation evolves on objects. Objects are programming

56 CONTENTS

object

internal state

message 1 method 1
...

...
message n method n

message i

class name 1 method 1
...

...
class name n method n

Figure a. Figure b.

Objects as records. Messages as overloaded functions.

items grouped in classes and possessing an internal state that may be accessed and modified
by sending messages to the object. When an object receives a message it invokes the method
(i.e. the code) associated with that message. The association between methods and messages
is described by the class the object belongs to.

There are two possible ways to see message-passing: the first approach consists in consid-
ering objects as arrays that associate a method with each message. Therefore when a message
m is passed to an object obj then the method associated with m in the object obj is looked
for. In this approach, an object has the form shown in Figure a. This first point of view has
been extensively studied and corresponds to the “objects as records” analogy [Car88]; there
objects are records whose labels are the messages and whose fields contain the associated
methods. Thus message passing corresponds to the field selection.

The second approach to message-passing is to consider messages as identifiers of special
functions. In the context of typed languages, if one assumes that the type of an object is (the
name of) its class then, as shown in Figure b, messages are identifiers of overloaded functions:
depending on the class (or more generally, the type) of the object the message is passed to, a
different method is chosen. In this way, in a sense, we reverse the previous situation: instead
of passing messages to objects we now pass objects to messages.

At first sight this different approach seems to have some advantages w.r.t. the “objects as
records” paradigm, at least in a proof-theoretical study of the typed case. This happens for
multi-methods and multiple dispatch, or for the logical independence of the persistent data
as in the database programming languages19 . Furthermore it clarifies the role of covariance
and contravariance in the subtyping rules for the methods.

On the other hand, other problems arise when overloaded functions are used to define
methods: especially to model the dynamic definition of new classes and to obtain a high
level of encapsulation; this last point for example renders this formalism inadequate to model
objects in wide-area distributed systems, since there objects are required to encapsulate the
operations that can affect them (for obvious reasons of efficiency and security).

A closer look to the model based on overloading and late binding persuades us that it
accounts for a style of object-oriented programming that is rather different from the one
modeled so far by records. The problem is that the term “object-oriented” groups so many
different techniques under the same hat. Indeed under this adjective cohabit many different

19In the sense that it is possible to add new methods for the objects of a certain class without perturbating
the definition of their type, and thus the well-typing of the applications written for the old schema.

CONTENTS 57

programming styles whose affinity is stated by the terms “object”, “message passing”and
“inheritance”. We feel that pushing the similarity further including other magic words like
“encapsulation” or “modularity” would exclude significant classes of languages (e.g. CLOS
for the modularity, Simula for the encapsulation); we believe that such additional words
partition the set of object-oriented languages into the different styles that compose it.

The type-theoretic research so far focused on the partition characterized by the keywords
“method encapsulation” and modeled by records: since 1984, when Luca Cardelli initiated
the typed foundation of object-oriented programming, all the theoretic studies started from
the assumption that the methods of an object are “encapsulated” inside it. This excluded
some features like “multi-methods”, “multiple dispatching” present in some object-oriented
languages but which did not fit the model. The efforts of modifying the existing models to
include these and other features led to uneasy extensions of the record based models.

In the beginning of our research we believed that the existing models were not powerful
enough to express these features. Thus we started to seek a brand new model. Starting
from some ideas of [Ghe91] we laid the basis of this model by the definition of the λ&-
calculus [CGL92b]. But by a closer look to the mechanisms that we featured we realized that
we had modeled a programming style completely different to the one modeled by records.
The model of records was not deficient, but orthogonal to the one we had proposed: distinct
models for distinct features.

The “new” style of object-oriented programming we had modeled corresponded to the
one based on the generic functions. It is an interesting fact that starting from a purely
theoretical approach we arrived to a programming model which already existed. Actually we
soon realized that to the relation

record ↔ object
field ↔ method
label ↔ message

of the “object as records” approach corresponded the relation

overloaded function ↔ generic function
branch ↔ method

of our approach. In both cases in the passage one gained a typing discipline (and a provably
correct one!).

As in the case of records the gains of having defined a typed model did not stop there:
the study of the model suggested to us the introduction of new features in the object-oriented
languages (e.g. first class messages), and the generalization or redefinition of the existing ones
(e.g. the explicit coercions).

This thesis is a comprehensive study of overloading with late binding under the peculiar
perspective of the definition of this new model, and the exposition of the practical impact
that this model has in the definition of object-oriented languages and their type disciplines.

The thesis is composed by two main parts: in the first part we focus on overloading whose
type dependence is implicit in the sense that the selection of the branch is based on the type
of the argument of the overloaded function. The second part is devoted to the study of the

58 CONTENTS

1

4

2
5

3

8

7

11

9

6

10

I want the semantics

Sim
ple

typing is not very interesting

I’m pragmatic

no SN

decidability is not important

no
variation

I jump to the conclu
sio

n

sem
antics?

no
thanks!

no
applied

stuff

WOW

Figure 0.3: Paths of reading

explicit type dependence of the overloading in the sense that the selection of the branch is
based on the type that is the argument of the overloaded function.

Thus we start in chapter 1 by presenting the basic ideas of object-oriented programming.
This is done by giving an informal presentation of a toy object-oriented language and of its
type discipline. We use this toy language also to gradually introduce the basic ideas of our
model; thus it offers only a partial view of object-oriented programming. In chapter 2, we
define the λ& calculus, an extension of the simply typed λ-calculus to model overloaded func-
tions with late binding; we prove that it enjoys the properties of Church-Rosser and subject
reduction, and we start to outline how it can be used to model object-oriented languages. In
chapter 3 we study the termination of λ&; we show first that λ& is not terminating and that
is possible to define fixpoint operators for every type; then we describe some variants that
we prove strongly normalizing and that are used in the chapter on the semantics. Chapter 4
is devoted to the study of three variation of λ&: in the first we generalize some mechanisms
of λ&, in the second we add to it explicit coercions and in the last one we develop a proof
theoretic study on the unification of the lambda-functions and overloaded functions. λ&
is a kernel calculus and it does not possess the mechanisms to interpret an object-oriented
language. Thus in chapter 5 we derive from λ& a language called λ object, into which we
are able to translate our toy object-oriented language; the chapter starts by the formal def-
inition of the toy language and of its type system, followed by the definition of λ object;
finally the translation of the the toy language into λ object and proof of the correctness of
its type discipline are given. We end the first part of the thesis by tackling the problem
of giving a mathematical semantics for λ& (chapter 6). We do not give the semantics to
the whole calculus but we set the basis for it; indeed we only show how to give meaning to
overloading with early binding in strongly normalizing systems. This study however opens
interesting problems that pose new mathematical challenges as we describe in the conclusion
of the chapter.

We begin the second part of the thesis by describing the motivation of passing to a
second order formalism (chapter 7). We then deal with the problem of defining a second

CONTENTS 59

order formalism by following two parallel directions.
In one direction we improve the existing second order formalisms that use subtyping, by

defining a new subtyping discipline for universally quantified types (chapter 8); the resulting
system enjoys many properties (foremost decidability) the existing formalisms do not. In
the other direction we add overloading and late binding to existing second order formalisms
that use subtyping (chapter 9) and we prove that the obtained calculus enjoys the properties
of Church Rosser and subject reduction. Finally in chapter 10 we show the impact of the
second order discipline on the modeling of the object-oriented languages, and we outline the
modifications that one has to apport to the toy language of chapter 1 to take into account
the new features of the second order. The thesis is ended by some appendixes where, among
the other, we describe the implementation of an interpreter of λ object.

This thesis is meant to have a basic conceptual unity: all the examples we use are defined
in the first chapter and it is often the case that a chapter refers to the techniques and to
the results of some previous chapters. Thus this thesis does not easily fit a non sequential
reading. Especially for the chapters on the semantics and of the second part of the thesis,
the reader not interested in the whole thesis is invited to refer to the corresponding papers;
the same applies to the reader interested only in λ&. However all the single articles do not
offer the global view of the model and of its underlying intuition that we hope to have given
by this thesis. Yet, some topics (the whole chapter 4 and parts of the chapters 1, 2, 3, 5 and
10) are not covered by any publication.

The effort of writing a complete study had a nasty effect on the dimension of the work:
we are conscious that a three hundred pages long thesis formed by interconnected chapters
does not consent an easy reading. For this reason we propose to the unfortunate reader to
follow some alternative paths of reading which are described by the automaton of Figure 0.1:
initial states (double circled) is where you can begin your reading; then follow any ascending
path of states (unlabeled transitions denote the full reading); final states are where you can
stop. All the states are final ... it depends on your perseverance: have a nice reading.

20

20In this way you’ll never finish to read such a fat book! [“Q65]

60 CONTENTS

Background and notation

Term rewriting systems

• Given a (denumerable) set F = ∪n≥0Fn of function symbols and a (denumerable) set of
variable symbols X , the set of terms T (F ,X) over F and X is the smallest set containing
X such that F (M1, . . . ,Mn) is in T (F ,X) whenever F ∈ Fn and Mi ∈ T (F ,X) for
i = 1..n.

• A binary relation R on T (F ,X) is:

reflexive
def
⇐⇒ (M,M) ∈ R

transitive
def
⇐⇒ (M,M ′) ∈ R, (M ′,M ′′) ∈ R⇒ (M,M ′′) ∈ R

compatible
def
⇐⇒ (M,M ′) ∈ R⇒ (F (. . . M . . .), F (. . . M ′ . . .)) ∈ R

for all M,M ′,M ′′ ∈ T (F ,X) and F ∈ F

• A reduction relation on T (F ,X) is a binary relation on T (F ,X) which is compatible,
reflexive and transitive.

• A notion of reduction on T (F ,X) is just a binary relation R on T (F ,X).

• Let R be a notion of reduction on T (F ,X). Then R induces the the following binary
relations:

1. The compatible closure of R, denoted by >R, and inductively defined as follows:

(M,N) ∈ R⇒M >R N

M >R N ⇒ F (. . . M . . .) >R F (. . . N . . .).

2. The reflexive closure of >R, denoted by >=
R, and defined as follows:

M >R N ⇒M >=
R N

M >=
R M

3. The transitive closure of >R, denoted by >+
R, and defined as follows:

M >R N ⇒M >+
R N

M1 >=
R M2 , M2 >+

R M3 ⇒M1 >+
R M3

4. The reflexive and transitive closure of >R, denoted by >∗R, and defined as the
reflexive closure of >+

R

5. The equivalence relation generated by >∗R, denoted by =R and inductively defined
as follows:

61

62 CONTENTS

M >∗R N ⇒M =R N

M =R N ⇒ N =R M

Note that >∗R is a reduction on T (F ,X).

• An R-redex is a term M such that (M,N) ∈ R for some N . In this case N is called an
R-contractum of M .

• A term M is an R−normal form if none of its subterms is a R-redex.

• A term N is an R−normal form of M if it is an R−normal form and M =R N .

• A reduction relation >∗R is weakly normalizing if every term has an R-normal form

• A reduction relation >∗R is strongly normalizing if there exists no

infinite sequence of terms M1,M2 . . . such that Mi > Mi+1

• A notion of reduction R satisfies the diamond property if for all M,M1,M2 M >R M1

and M >R M2 implies that there exists M3 such that M1 >R M3 and M >R M3.

• A notion of reduction R is locally confluent if for all M,M1,M2 M >RM1 and M >RM2

implies that there exists M3 such that M1 >∗R M3 and M >∗R M3.

• A notion of reduction R is confluent if for all M,M1,M2 M >∗R M1 and M >∗R M2

implies that there exists M3 such that M1 >∗R M3 and M >∗R M3 (i.e. >∗R satisfies the
diamond property).

• A notion of reduction R is Church-Rosser if for all M,N M =R N implies that there
exists P such that M >∗R P and N >∗R P .

Theorem 1 A notion of reduction R is Church-Rosser if and only if it is confluent.

Logic

• Given a language L and a notion of derivability ⊢ on L, a theory T is a collection of
sentences in L, with the property T ⊢ ϕ⇒ ϕ ∈ T (a theory is closed under derivability)

• A set Σ such that T = {ϕ|Σ ⊢ ϕ} is called an axiom set of the theory T . The elements
of Σ are called axioms.

• Let T and T ′ be theories in the languages L and L′.

1. T ′ is an extension of T if T ⊆ T ′

2. T ′ is a conservative extension of T if T ′ ∩ L = T (i.e. all theorems of T ′ in the
language L are already theorems of T).

Part I

Simple typing

63

Chapter 1

Object-oriented programming

1.1 A kernel functional object-oriented language

In this section we briefly discuss (a certain kind of) object-oriented programming by gradually
introducing a toy functional object-oriented language. For the functional core of this language
we use the syntax of an explicitly typed version of ML. The syntax of the object-oriented com-
ponents is inspired by Objective C (see [PW92] and [NeX91]) since it fits well our approach,
and is general enough to represent a wide class of object-oriented languages. This does not
aim to be a comprehensive presentation of object-oriented features. Far from that, it tends to
present some kernel features of object-oriented programming from our particular perspective,
which is the one we acquired in defining and developing the λ&-calculus, the basic calculus
of this thesis. As we said in the preface, this identifies a certain class of object-oriented
languages, whose best representative is perhaps CLOS, and that has been disregarded by
the current type theoretic research. Therefore some features peculiar to object-oriented lan-
guages of a different class are voluntarly omitted. We will stress the differences between them
in section 2.6.1 and in chapter 11. In this chapter we just give an informal presentation of
the language. The formal presentation is given in chapter 5

1.1.1 Objects

Object-oriented programs are built around objects. An object is a programming unit that
associates data with the operations that can use or affect these data. These operations are
called methods; the data they affect are the instance variables of the object. In short objects
are programming units formed by a data structure and a group of procedures that affect it.

Example 1.1.1 We want to define an object for two-dimensional points (2DPoint). A
2DPoint object represents a point of the cartesian plane: it contains instance variables that
define the position of the object; it can apply methods that return the norm of the point,
that erase its x-coordinate or that move the position of the point. Methods may require
additional parameters, as in the case of the method that moves the point, which must be told
how to move it. 2

The instance variables of an object are private to the object itself; they can be accessed only
through the methods of the object. Moreover an object sees only the methods that were

65

66 CHAPTER 1. OBJECT-ORIENTED PROGRAMMING

designed for it; it cannot mistakenly perform methods that were designed for other objects.
Thus object-oriented programming is characterized by a structured programming style where
each single subproblem is solved by an object.

1.1.2 Messages

The only thing that an object is able to do is to respond to messages. A message is simply
the name of a method that was designed for that object. In our syntax message-expressions
are enclosed in square brackets:

[receiver message]

The receiver is an object (or more generally an expression returning an object); when it
receives a message, the run-time system selects among the methods defined for that object
the one whose name corresponds to the passed message; the existence of such a method is
statically checked (i.e. it is verified at compile time) by a type checking algorithm.1 .

Example 1.1.2 [continued] Suppose we have a 2DPoint object called myPoint. We want to
tell it to execute the method, named norm, that returns the norm of the object. This can be
done by sending the message norm to myPoint:

[myPoint norm]

This expression can be used to define a function isOrigin that checks whether a given
2DPoint coincides with the origin of the cartesian plane or not (it just verifies whether the
norm of the point is equal to zero); we can then apply this function to myPoint:

let isOrigin = fn(p:2DPoint) => ([p norm] == 0)

in isOrigin(myPoint)

As we said before some methods may require additional parameters; in the case of the method
that moves a 2DPoint, it requires the dx and dy of the displacement:

[myPoint move](3,5)

From the viewpoint of types, message-expressions can return either a basic value (such as in
the case of norm) or a function (as in this case): in the example above the expression [myPoint

move] returns a function whose type is Real × Real → 2DPoint: it accepts a pair of reals
and returns the object in a different position (i.e. it modifies the instance variables). 2

1.1.3 Methods and functions

At first sight methods seem to play the role of functions and message passing the one of
functional call. Though the fact that a method belongs to a specific object (more precisely to
a specific class of objects) implies that message passing is a mechanism different from the usual
function call (i.e. the β-reduction). We stress in this section the two main characteristics
that distinguish methods from functions.

Overloading

Two objects can respond differently to the same message. For instance suppose we have a
Chessman object. The effect of sending to it the message move (supposing that a method

1The leitmotiv of this thesis is to give the theoretical basis for the definition of such an algorithm.

1.1. A KERNEL FUNCTIONAL OBJECT-ORIENTED LANGUAGE 67

with that name has been defined for Chessman) would be different from the one of sending
move to myPoint, in the sense that a different code would be executed. Though the same
message behaves uniformly on objects of the same kind: the message move has the same effect
on myPoint as on every other 2DPoint object2. Thus a message may behave in a different
way on values of different types. Note that this kind of polymorphism is quite different from
the one that characterizes, say, the function head in ML, which works on lists of any type:
in the case of head the behavior of the function on values of different types is essentially the
same, in the sense that always the same code is executed. On the contrary in the case of
methods, to different types of the input may correspond completely different codes (as for the
case of 2DPoint and Chessman). This behavior is known as overloading since one overloads
the same operator (in this case move) by different operations; the actual operation depends
on the type of the operands. Thus messages are identifiers of overloaded functions and in
message passing the receiver is the argument of an overloaded function, i.e. the one on whose
type the selection of the code to be executed is based. Each method constitutes a branch of
the overloaded function denoted by the message it is associated to.

Late Binding

The second crucial distinction between function calls and message passing is that a function
and its arguments are bound together in the compiled code while a method and the receiving
object are united only at run-time, i.e. during the computation. This tool, called late binding,
is one of the most powerful characteristics of object-oriented programming and, in our case,
has to do with the combination between overloading and subtyping: indeed we define on types
a partial order which concerns the utilization of values: a value of a certain type can be used
wherever a value of a supertype is required. In this case the exact type of the receiver cannot
be decided at compile time since it may change (notably decrease) during computation.

For example consider again the function isOrigin. We can apply it to any object whose
type is 2DPoint but also to any object whose type is a subtype of 2DPoint; for example a
cartesian point with some additional features as, say, a color. Thus when compiling [p norm]

we cannot link at compile time the message norm to the method defined for 2DPoint objects:
even if the formal parameter p has type 2DPoint we may discover, after having performed
the substitution of the application, that p actually refers to a, say, 2DColorPoint object and
thus the method for these objects must be chosen. In other words if the compile time type of
p is used for the branch selection (early binding) the function isOrigin is always executed by
using the norm code for 2DPoint. Using late binding, each time the whole function is applied,
the code for norm is chosen only when the p parameter has been bound and evaluated, on
the basis of the run time type of p, i.e. according to whether p is bound to a 2DPoint or a
2DColorPoint.

Therefore in our model overloading with late binding is the basic mechanism.

Excursus (late vs. dynamic binding) Overloaded operators can be associated with
a specific operation using either “early binding” or “late binding”. As we already

2This is not always true in object-oriented programming, and it is one of the main features the distinguish
our approach from the record-based one. See section 2.6.1

68 CHAPTER 1. OBJECT-ORIENTED PROGRAMMING

said in the introduction of the thesis, this distinction applies to languages where the
type which is associated at compile time with an expression can be different (less
informative) from the type of the corresponding value, at run time. The example
above with 2DPoint and 2DColorPoint should be clarifying enough. Note though
that what here we call late binding, in object-oriented languages is usually referred
as dynamic binding (see for example [Mey88, NeX91]). Late and dynamic binding
(or “dynamic scoping”) are yet two distinct notions. Early vs. late binding has
to do with overloading resolution, while static vs. dynamic binding means that a
name is connected to its meaning using a static or a dynamic scope. However
this mismatch is only apparent, and it is due to the change of perspective between
our approach and the one of the languages cited above: in [Mey88] and [NeX91],
for example, the suggested understanding is that a message identifies a method,
and the method (i.e. the meaning of the message) is dynamically connected to the
message; in our approach a message identifies an overloaded function (thus a set
of methods) and it will always identify this function (thus it is statically bounded)
but the selection of the branch is performed by late binding.

The situation is actually more complex. As a matter of fact, messages obey
an intermediate scoping rule: they have a “dynamically extensible” meaning. If
the type 2DPoint is defined with the method norm, then the meaning of the norm

method is fixed for any object of type 2DPoint, like what happens with static
binding. However, if later a new type 3DPoint is added to the system, the set of
possible meanings for the norm message is dynamically extended by the method for
3DPoint and the function isOrigin in the previous example will use the correct
method for 3DPoint, even if 3DPoint did not exist when the function was defined.
This combination of late binding and dynamic extensibility is one of the keys
of the high reusability of object-oriented languages. Essentially, these languages
allow one to extend an application by simply adding a subclass of an existing class,
while in traditional languages one usually also needs modifying the old code, which
is a costlier operation.

The use of overloading with late-binding automatically introduces a further distinction be-
tween message passing and ordinary functions. As a matter of fact, overloading with late-
binding requires a restriction in the evaluation technique of arguments: while ordinary func-
tion application can be dealt with by either call-by-value or call-by-name, overloaded appli-
cation with late binding can be evaluated only when the run time type of the argument is
known, i.e. when the argument is fully evaluated (closed and in normal form). In view of
our analogy “messages as overloaded functions” this corresponds to say that message passing
(i.e. overloaded application) acts by call-by-value or, more generally, only closed and normal
terms respond to messages.

1.1.4 Classes

An object-oriented program consists of a bunch of objects that interact by message passing.
A program simulating a chess game would be probably built around thirty-two Chessman

1.1. A KERNEL FUNCTIONAL OBJECT-ORIENTED LANGUAGE 69

objects and two Player objects. Of course you must not repeat the definition of the methods
for every object; it is possible to describe all the objects of a certain type by just one definition;
this description is given by a class. Thus a class fixes the prototype for the objects of the
same type: it declares the instance variables (with their initial values) that form the data
structure of every object of that class, and defines the methods that all the objects of the
class can use. The name of the class is used for the type of its objects. The name of a class
will be considered as an “atomic type” of our type system. Besides the name, the instance
variables and the methods, a class also defines an interface. The interface is the description of
the type of the methods3. Class definition is the main task in object-oriented programming.

In Objective C the declaration of the instance variables is done by a record type whose
labels are the instance variables; for our prototypical language we have chosen to give to
instance variables also an initial value, thus we add to the record type of the class definitions
in Objective C also a record value defining the initial values. A record value is an expression
of the form {x1=exp1;... ;xn=expn}; if T is a type and e an expression then e : T means
“e has type T”. A record type is denoted by 〈〈x1 : T1; ... ;xn : Tn〉〉. We use {x1 : T1=exp1;
... ;xn : Tn=expn} as an abbreviation for {x1=exp1;... ;xn=expn}: 〈〈x1 : T1; ... ;xn : Tn〉〉. The
value of an instance variable x is referred, in the body of a method, by self.x. The instance
variables of an object are “modified” by an operation update which returns a new object of
the same type. Interfaces are enclosed in [[...]].

Example 1.1.3 The class that describes the 2DPoint objects is defined as follows:

class 2DPoint

{

x:Int = 0;

y:Int = 0

}

norm = sqrt(self.x^2 + self.y^2);

erase = (update{x = 0});

move = fn(dx:Int,dy:Int) => (update{x=self.x+dx; y=self.y+dy})

[[

norm: Real;

erase: 2DPoint;

move: (Int x Int) -> 2DPoint

]]

2

After that a new class has been defined, one can use the command new to create objects that
match the characteristics of the class. Such objects are called instances of the class. For
example the expression

new(2DPoint)

returns a 2DPoint object whose internal state is the one defined in the class (i.e. x = 0 and y =
0). Since the name of a class is used for the type of its instances then new(2DPoint):2DPoint.

3The interface should typically be written in a separate file if we are interested in modular programming
allowing separate compilation.

70 CHAPTER 1. OBJECT-ORIENTED PROGRAMMING

A program in our prototypical language is a sequence of declarations of classes followed by
an expression (the so-called body of the program) where objects of these classes are created
and interact by exchanging messages.

1.1.5 Inheritance

In this section we describe two of the most delicate and powerful mechanisms of object-
oriented programming: inheritance and subtyping.

It is often the case that, in an expanding environment, we need to define some new objects
which are a refinement or a specialization of existing ones. Consider again the example of
chess: all the Chessman objects possess the same methods to return the position of the piece
and to capture a chessman; but some parts of each object must be specialized according
to the particular chessman the object represents: we have to implement the method which
moves a chessman in a different way for each chessman. Also instance variables may need to
be specialized: castling is allowed only if King and Rook have not moved from their original
positions, therefore these two chessmen need a further instance variable which records if the
object is still unmoved. The naive solution to all these problems of specialization would be to
define a different class for each different chessman; but in this way methods that are the same
for all chessmen would be duplicated in every class, with the usual problems of consistency
and redundancy of duplicated code. The alternative is to use the mechanism of inheritance
which permits to reuse the code written for a class in the definition of an other. For example
it is possible to start by defining a class Chessman where we describe the instance variables
and the methods common to all chessmen. Then we specialize this class defining a subclass
for every kind of chessman: the definition of a subclass specifies the name of the new class
(i.e. King, Queen, Bishop, etc ...), of its direct ancestor (i.e. Chessman), the declaration of
all instance variables (which must contain at least all instance variables of the superclass and
with the same type)4 and the definitions only of those methods that are specific to the class.
The methods that are defined in the superclass (i.e. Chessman) are visible to the objects of
all subclasses. And we say that a class inherits the methods of its superclasses. In other
terms, an object has access not only to the methods defined for its class but also to the
methods for its superclass, and for its superclass’s superclass, all the way back to the root of
the hierarchy. However there is an exception, quite useful, to this mechanism: when a class
is defined as subclass of another, it can define a new method with the same name of another
already defined in the hierarchy; in this case we say that this method overrides the old one:
thanks to late binding, the objects of this class and of their subclasses will always use this
new definition instead of the old one. Note though that the old definition is not erased, as it
will be still used by the objects belonging to the classes up in the hierarchy. Thus inheritance
is the mechanism that permits us to define a new class as a refinement of an old one: it
establishes when the objects of a given class can use the operations originally defined for the
objects of a different class. The refinement consists in the addition of new instance variables

4In running object-oriented languages it is not required to repeat all the instance variables, but it suffices
to declare the instance variables that must be added in the specialization. It is possible to do so also in our
language, but this would much complicate the definitions for the type-checker; thus we prefer to ease the
presentation of the type-checker since this is the main concern of our work. We leave the motivated reader to
do the easy (but twisted) modifications to obtain the wanted system.

1.1. A KERNEL FUNCTIONAL OBJECT-ORIENTED LANGUAGE 71

or new methods or in the redefinition of existing methods.

Subtyping instead is a mechanism that permits us to use an object of some class where
an object of a different class is required. For example suppose we have a function that works
on the objects of class Chessman. Since the methods defined for Chessman are also defined
for, say, Bishop, then, intuitively, this function should be able to work also with objects of
the latter class. In general it is very likely that a function defined for Chessman will be fed
by objects belonging to a subclass of Chessman. Then we have to prevent the type checker
from signaling this situation as an error. To this end we define a partial order on types called
the subtyping relation. Intuitively one type S is smaller than another T if every value of S
can be safely used wherever a value of T is needed. Thus in the example above it suffices to
declare that Bishop is a subtype of Chessman.

Recapitulating, inheritance is the mechanism that allows one to reuse code written for
other classes: it mainly concerns the definition of the objects. Subtyping is the mechanism
that allows one to use one object instead of one of another class: it mainly concerns the
computation of the objects. We thus have two hierarchies, one induced by inheritance the
other corresponding to the subtyping relation. The terms subclass and superclass are used to
refer to the former, and subtype and supertype to refer to the latter.

In object-oriented languages inheritance is defined only on classes, i.e. on atomic types
(see section 11.2.1 on how to overcome this limitation); on these types the subtyping relation
implies the inheritance relation, for if the objects of a certain class can substitute those of
another class then they can also use all the operations defined for the objects of that class.
In other terms if a class is a subtype of another then it is also a subclass of it. But while
the inheritance relation is defined only for classes, subtyping can be extended also to higher
types (see sections 1.2.2 and 5.1.2). Thus these hierarchies are completely distinct, even if
they are so tightly related on classes.

Of course not every class can be a subclass of another, since every method is defined for
object possessing certain characteristics. Thus refinement must satisfy some conditions.

In this thesis we focus only on the form of inheritance that one has by subtyping. We will
define type systems that will not check the conditions for full inheritance in class definitions;
they will check only the more restrictive conditions for subtyping. We will always have in-
heritance associated to subtyping. Thus also in the toy language that we are presenting it is
not possible to have “pure” inheritance (i.e. code reuse without the substitutivity given by
subtyping). In view of this, in the rest of the thesis we will confound the terms “inheritance”
and “subtyping” for atomic types, since under the assumption above they coincide.

This does not imply that we consider pure inheritance as uninteresting; indeed it has an
undeniable practical utility. Though, subtyping appears as a more fundamental issue: once
it is understood, it is then not too hard to tackle the modeling of pure inheritance. We
informally do it in the conclusion of this thesis, in section 11.2.1, where we also define two
new forms of inheritance such as partial inheritance and inheritance for higher types.

72 CHAPTER 1. OBJECT-ORIENTED PROGRAMMING

Example 1.1.4 We can refine the class 2DPoint of Example 1.1.3 by adding an instance
variable for the color, a new method isWhite and by overriding the method move. The class
we obtain, which we call 2DColorPoint, is defined in the following way:

class 2DColorPoint is 2DPoint

{

x:Int = 0;

y:Int = 0;

c:String = "black"

}

isWhite = (self.c == "white")

move = fn(dx:Int,dy:Int) =>

(update{x=self.x+dx; y=self.y+dy; c="white"})

[[

isWhite: Bool

move: (Int x Int) -> 2DColorPoint

]]

The methods norm and erase are inherited from 2DPoint; thus for example the expression
[new(2DColorPoint) norm] returns 0. The method move is redefined (overridden) so that
if a colored point is moved, its color is set to white. As we said above, inheritance is always
associated to subtyping; thus the keyword is in the definition above says that 2DColorPoint
inherits from 2DPoint and that it is a subtype of it (denoted 2DColorPoint ≤ 2DPoint).
This implies that one can use a 2DColorPoint object wherever a 2DPoint is required. 2

We said that to substitute values of some type by those of another some requirements must
be satisfied. If the type at issue is a class then the following condition on instance variables
must be fulfilled:

The set of the instance variables of a class must contain those of all its superclasses.
Moreover these variables must appear always with the same type

Besides, the refinement must also satisfy the condition of covariance:

A method that overrides an old one given in a supertype must specialize it, in the
sense that the type returned by the overriding method must be a subtype of the
type returned by the overridden one.

We will say more on these two conditions in the section devoted to type checking.

1.1.6 Multiple inheritance

It is sometimes very useful to define a class as the refinement of two or more classes. In fact,
apart from implementation matters, there is no reason for a class to have just one supertype.
Thus in the class definitions one may specify more than one ancestor. Obviously the set of
instance variables of the new class must contain the union of the instance variables of all
supertypes, and the new class inherits all the methods of its superclasses.

1.1. A KERNEL FUNCTIONAL OBJECT-ORIENTED LANGUAGE 73

Example 1.1.5 The 2DColorPoint could be also defined by multiple refinement in the fol-
lowing way:

class Color

{

c:String = "black"

}

isWhite = (self.c == "white")

[[

isWhite: Bool

]]

class 2DColorPoint is 2DPoint, Color

{

x:Int = 0;

y:Int = 0;

c:String = "black"

}

move = fn(dx:Int,dy:Int) =>

(update{x=self.x+dx; y=self.y+dy; c="white"})

[[

move: (Int x Int) -> 2DColorPoint

]]

The class 2DColorPoint inherits the methods norm, erase from 2DPoint, isWhite from
Color and overrides the definition of move given in 2DPoint. 2

Since a class may have many incomparable supertypes, we no longer have a hierarchy but
rather a dag (this is sometimes called a heterarchy: see [App92]).

Suppose we define a new class C by multiple inheritance from two unrelated classes A
and B, and that both A and B have defined (or inherited) a method for a message m. Then
comes the problem to decide which method to execute when m is sent to an instance of the
new class C. In object-oriented languages two different solutions have been adopted: the
first consists in establishing a search order on the supertypes (as it is done for example in
CLOS [DG87] where this order is called class precedence list). In the example above we can
choose the order in which supertypes appear in the definition so that a method not defined in
the 2DColorPoint class would be first searched in the hierarchy of 2DPoint and then in the
one of Color; thus if 2DPoint and Color had defined a method for the same message mesg

then the one defined in 2DPoint would be executed. The other solution is to impose that
methods common to more then one ancestor must be explicitly redefined (as it is required
in Eiffel [Mey88]). In this case the redefinition of the method for mesg would have to appear
in the definition of 2DColorPoint. In our system we have chosen the second solution which
is less syntax dependent and mathematically cleaner. Thus we have condition of multiple
inheritance:

74 CHAPTER 1. OBJECT-ORIENTED PROGRAMMING

When a class is defined by multiple refinement, the methods that are in common
to more than one unrelated supertype must be explicitly redefined

Note however that this applies only to unrelated supertypes: if we have defined a class as a
refinement of two classes A and B, and A is a subtype of B, then all the methods of B are
in common with A but they need not to be redefined since the system will always choose the
more recently defined, i.e. those of A (even if this probably is a programming error).

1.1.7 Extending classes

Refinement is not the only way to specialize classes. It would be very annoying if every
time we have to add a method to a class we were obliged to define a new class: the existing
objects of the old class could not use the new method. The same is true also in the case
that a method of a class must be redefined: overriding would not suffice. For this reason
some object-oriented languages offer the capability to add new methods to existing classes
or to redefine the old ones (this capability is very important in persistent systems). In our
prototypical language this can be done by the following expression:

extend classname

methodDefinitions

interface

in expr

the newly defined methods are available in the expression expr. Remark that by this construc-
tion we do not define a new class but only new methods; in other terms we do not modify the
existing types but only (the environment of) the expressions. This is possible in our system
since the type of an object is not bound to the procedures that can work on it (and for this
reason it differs from abstract data types and the “objects as records” approach). Finally,
the extension of a class affects all its subtypes, in the sense that when you extend a class
with a method then that method is available to the objects of every subtype of that class.
Besides the advantages cited above this mechanism can benefit also the development process
in some ways:

1. It simplifies the management of large classes when they are defined by more than one
developer.

2. It enables to configure a class differently for different applications and in the same
applications for different expressions as well.

3. It helps in the tuning up and debugging of existing programs: sometimes it is necessary
to modify existing methods slightly in order to obtain the required performances from
the new ones.

Addition and redefinition of methods are implemented by some object-oriented languages
(e.g. Objective-C [PW92], CLOS [DG87] and Dylan [App92]). Anyway it must be clear that
these features constitute a trade-off between encapsulation and flexibility, and thus should
be coupled with some further mechanism of protection. For example Dylan has a function
freeze-methodswhich prevents certain methods associated to a message from being replaced
or removed.

1.1. A KERNEL FUNCTIONAL OBJECT-ORIENTED LANGUAGE 75

1.1.8 Super, self and the use of coercions

Very often a method needs to refer to the object that performs it. Suppose for example
we wish to extend the definition of 2DPoint by a method reposition which must send the
message move to the object that actually called it. Then we have an expression of the form

extend 2DPoint

reposition = ... [??? move] ...

[[...]]

in ...

But we do not know which receiver is to use in the expression above. Note that in this
case it is not the same to substitute the message expression by the definition of the method
move as defined in 2DPoint: reposition is inherited by 2DColorPoint; thus if the method
reposition is performed by an instance of 2DColorPoint we want the definition of move
in 2DColorPoint to be used; this is automatically obtained by late binding, once we know
what to put in the place of the question marks; but it would not work if we directly used the
definition of the method.

The solution is to put in the place of the question marks the reserved keyword self. This
keyword refers to the receiver of the message that called the method. This object is often
referred as the current object and its class as the current class. Remark that the current class
is not always the class where the method has been defined, but it may also be a subclass of
its (when the method is an inherited method). Thus in the definition of reposition we use
[self move]; if we send the message reposition to myPoint then the definition of move
in 2DPoint is used. If the receiver is instead a 2DColorPoint then the overriding definition
for move is called. To put it in other terms, recall that the message move is an identifier of
overloaded function and the receiver is the argument of this function; thus in the definition
of a method (a branch) we use the keyword self to denote its (hidden) argument, i.e. the
one the selection is based on. This explains why to access to an instance variable x we use
the notation self.x: the hidden argument of the method is thought to be the record value
of the instance variables.

Anyway, it may be the case that one wants always to use the definition of move given in
2DPoint. Again the substitution of the code of the method is not a good solution since we
know that by extend this code may be changed or updated. In object-oriented languages
there is a way to refer to the overridden code of a method. This is usually done by a construct
called super: in object-oriented programming languages when one sends a message to super,
the effect is the same as sending it to self but with the difference that the selection is
performed as if the receiver were an instance of a super-class. Here we generalize this usual
meaning of super in two ways: the selection does not assume that the receiver is self,
but takes as receiver the parameter of super; and super does not necessary appears in the
receiver position, but it is a first-class value (i.e. it can appear in any context its type allows
to). Finally, since we use multiple inheritance without class precedence lists, we are obliged to
specify in the expression the supertype from which to start the search of the method5. Thus
the general syntax of super is super[A](exp). When a message is sent to this expression

5For instance, this is what is done in Fibonacci [ABGO93], developed at the University of Pisa

76 CHAPTER 1. OBJECT-ORIENTED PROGRAMMING

then exp is considered the receiver but the search of the method is started from the class A
(which then must be a supertype of the class of exp).

In the previous example, to specify that the method selected for move must be the one
which would be selected for a receiver of class 2DPoint one writes:

extend 2DPoint

reposition = ... [(super[2DPoint](self)) move] ...

[[...]]

in ...

Very close to the use of super is the use of coercions. By a coercion one changes the class
of an object by a supertype. The difference between them is that super changes the class of
an object only in the first message passing, while coerce changes it for the whole life of the
object. The syntax is the same as that of super: thus we write coerce[A](exp) to change
to A the type of the expression exp. A short example can clarify the behavior of super and
coerce: suppose to have these three classes

• a class A in which we define a method m1

• a class B subtype of A in which we define a method m2 whose body contains the
expression [self m1]

• a class C subtype of B in which we override both m1 and m2.

Let M be an object of type C. Consider now these two expressions [super[B](M) m2] and
[coerce[B](M) m2]. In both cases the method selected is the one defined in B. But in the
body of m2 the meaning of self is , in the former case, M while in the latter it is coerce[B](M):
therefore the method used for [self m1] will be the one defined in C when using super and
the one in A with coerce. To sum up, coerce changes the class of its argument and super

changes the rule of selection of the method in message passing (it is a coercion that is used
only once and then disappears) 6.

1.1.9 Multiple dispatch

We have seen that when a message is passed the method executed is chosen according to
the class of the receiver. Sometimes it is useful to base the choice of the method also on
the class of the parameters of the method and not only on the receiver. For example recall
the definition of 2DPoint and 2DColorPoint given in section 1.1. The objects of the former
class respond to the messages move and norm while the objects of the latter accept also the
message isWhite. Suppose that we want to extend the class 2DPoint by a method compare

which takes a point as parameter and if this point is a 2DPoint then it checks the equality of
the norms while if the point is a 2DColorPoint it checks whether the passed point is white
or not. The choice of a method based on the classes of possible parameters is called multiple
dispatch and the method at issue is usually referred as a multi-method (see e.g. [Kee89]). In
our toy language this can be obtained by the following expression:

6It is interesting that with our generalization of super it is possible to predetermine the life of a coercion:
for example super[A](super[A](M)) coerces M to A only for the first two message passing.

1.1. A KERNEL FUNCTIONAL OBJECT-ORIENTED LANGUAGE 77

extend 2DPoint

compare = & fn(p:2DPoint) => [self norm] == [p norm]

& fn(p:2DColorPoint) => [p isWhite];

[[compare:#{2DPoint -> Bool; 2DColorPoint ->Bool}]]

in ...

Each possible choiche is introduced by the symbol &. Note that the type of a multi-method
appears in the interface as the set of the types of the possible choices (the reason of # is
explained in the next section).

The number of parameters on which the dispatch is performed may be different in every
branch. For this reason, when a message denoting a multi-method is sent, we must single
out those parameters the dispatching is performed on. This is done by including them inside
the brackets of the message-passing, after the message. Thus the general syntax of message
passing gets: [receiver message parameter, ... , parameter]. For example [myPoint compare

myPoint] will dispatch on the first branch of the method. For example, consider a class C
with the following interface: [[msg:#{Int -> (Int -> Bool), Int x Int -> Bool}]];
then msg is a message that when it is sent to an integer it returns a function from integers
to booleans, when it is sent to a pair of integers it returns a boolean. Thus if M is of class
C then the expression [M msg 3] 4 selects the first branch while [M msg 3,4] selects
the second one. We have to impose a restriction in our system: super cannot work with
multiple dispatching. When super selects a multi-method, it works as coerce7

1.1.10 Messages as first-class values: adding overloading

We said from the very beginning that messages are identifiers of overloaded functions. But
up to now we have no tool to work directly with overloaded functions: overloaded functions
can be defined only through class definitions and cannot be passed as a parameter to a
function. Thus the next step is to introduce explicit definitions for overloaded functions and
to render them (and thus messages) first-class values. The gain is evident: for example we
can have functions accepting or calculating messages (indeed overloaded functions) and to
write message passings of the form [receiver f(x)].

We already possess all the syntax we need: We already have the syntax for overloaded
application which is [exp0 exp exp1, . . . , expn] where exp is the overloaded function and
exp0, exp1, . . . , expn are the arguments. We already have the syntax for the definition of an
overloaded function: note that a multi-method is an overloaded function (quite special indeed,
as we will see in the section for type checking), since the branch is selected according to the
type(s) of the argument(s). Therefore we build an overloaded function by concatenating
the various branches by &: if f is a normal function then (&f) is the overloaded function
with just one branch, i.e. f itself; and if g is an overloaded function then (g&f) is the
overloaded function g where we have added the branch f . However we want to impose the
same restrictions as in the multi-methods, i.e. we impose that a branch is a term of the form
fn(x1:T1, . . . , xn:Tn)=>v that is the branch is already in normal form (this is suggested by

7This restriction is due to the definition of the language we translate this toy language in. Indeed, we could
define the target language so that super worked also with multiple dispatch, but it would greatly complicate
its operational semantics

78 CHAPTER 1. OBJECT-ORIENTED PROGRAMMING

common sense); and we require that the Ti’s are atomic types (this is strongly recommended
by the implementation: if we select a branch only on atomic types then the selection is simply
implemented by the check of a tag; if higher types were involved then type checking should
be executed at each overloaded application: see section 5.2).

The type of an overloaded function is the set of the types of its branches.
Note that the use of the same syntax for message passing and overloaded application, while

providing a conceptual uniformity, has a major drawback: when the overloaded function bases
the selection on more than one argument then the arguments have to be “split” around the
overloaded function as in the case of multiple dispatching. And while before it had a sense to
isolate a particular argument, since it was the receiver in whose class the multi-method had
been defined (or inherited), in this case it is misleading. Note however that in case of binary
infix overloaded operators this turns out to be very interesting: for example an overloaded
plus working both on integers and reals can be defined in the following way:

let plus = (& (fn(x:Real,y:Real) => x real_plus y)

& (fn(x:Int,y:Int) => x int_plus y))

which has type {Real×Real → Real, Int× Int→ Int}. Thus the sum of two numbers using
plus is written [x plus y]. But, apart from these special cases, it remains a problem and
it may suggest us to consider a different syntax for message passing where the message is the
left argument, as done in CLOS and Dylan.

Finally note that the use of # in the interfaces is necessary to distinguish multi-methods
from methods returning an overloaded function. Use the same interface as in the section
before but without the “#” i.e. [[msg:{Int -> (Int -> Bool), Int x Int -> Bool}]];
then msg is now a ordinary method returning an overloaded function; thus now the expression
[3 [M msg]] 4 selects the first branch while [(3,4)[M msg]] selects the second
one (once more the notation is misleading).

1.2 Type checking

In this section we informally describe the type system of our toy language. We give the
general rules, with their intuitive explanation.

1.2.1 The types

The types that can be found in a program of our toy-language are the following:

• Built-in atomic types (as Int, Bool etc) and class-names which are user-defined atomic
types.

• Product types (T1 × T2), for pairs

• Arrow types T1 → T2, for ordinary functions

• Sets of arrow types {A1 → T1, . . . , An → Tn} called overloaded types and used for over-
loaded functions. We call A1 . . . An and T1 . . . Tn input and output types respectively.
In an overloaded type there cannot be two different arrow types with the same input
type (input type uniqueness).

1.2. TYPE CHECKING 79

1.2.2 Intuitive typing rules

We describe here only the rules for the object-oriented part of the language, since the typing
of the functional part is quite standard.

Rules for Terms

1. The type of an object is (the name of) its class.

2. The type of a coercion is the class specified in it, provided that it is a supertype of the
type of the argument.

3. The type of a super is the class specified in it, provided that it is a subtype of the type
of the argument

4. The type of self is the name of the class whose definition self appears in.

5. The type of an overloaded function is the set of the types of its branches

6. The type of an overloaded application is the output type of the branch whose input
type “best approximates” the type of the argument. This branch is selected among all
the branches whose input type is a supertype of the type of the argument and it is the
one with the least input type.

These are all the typing rules we need to type the object-oriented part of the toy language,
since we said that messages are nothing but overloaded functions and message passing reduces
to overloading application. However to fully understand message passing we must specify
which overloaded function a message denotes. Consider again message passing: we said that
the receiver is the argument of the overloaded function the selection is based on. Suppose
that you are defining a class C and remember that inside the body of a method, the receiver
is denoted by self. Then there are two cases:

1. The method msg=exp is not a multi-method and returns (according to the interface) the
type T. This corresponds to add to the overloaded function denoted by msg the branch
fn(self:C).exp whose type is C → T .

2. We have the multi-method

msg = & fn(x1:A1,...,xi:Ai) => expr1
...

& fn(y1:B1,...,yj:Bj) => exprn

which returns the type #{(A1×. . .× Ai) → T1,. . . ,(B1×. . .× Bj) → Tn}. This cor-
responds to add to the overloaded function denoted by msg the n branches fn(self:C,

x1:A1, . . . ,xi:Ai) => expr1 . . . fn(self:C, y1:B1, . . . , yj :Bi) => exprn of types
(C ×A1 × . . . ×Ai) → T1, . . . ,(C ×B1 × . . .× Bj) → Tn

80 CHAPTER 1. OBJECT-ORIENTED PROGRAMMING

In conclusion a message denotes an overloaded function that possess one branch for every
class in which a method has been defined for it and one for every branch of a multi-method
associated to it. Message passing is typed as the overloaded application. The selection of the
branch corresponds to the search of the least supertype of the class of the receiver (a class is
a supertype of itself) in which a method has been defined for the message (this is the usual
method look-up mechanism of Smalltalk [GR83]).

Rules for Subtyping
The rule to use the subtyping relation is very simple:

It is safe to use a term of a certain type wherever one of greater type is expected

Thus a type safe computation must always preserve or decrease the type of a term. For
example suppose to have an application, say, f(e) and that the system performs a call-by-
value reducing e to e′; if the type of e′ were not smaller than the type of e then f(e′) might
be not type safe.

The subtyping relation is predefined by the system on the built-in atomic types; the
programmer defines it on the atomic types (i.e. the classes) he introduces, by means of the
construct is. Therefore the system and the programmer completely define the subtyping
relation on atomic types, but what about higher types? Once defined on atomic types this
relation is automatically extended to higher types according to some rules which fit very well
the intuition under the types. These rules are obtained by answering the question: “when
can an expression of this type be used in the place of an expression of that other type?”. A
first partial answer is that an expression can be substituted by another only if their types
have the same form: for example a function can only be used in the place of another function
(i.e. arrow types can be compared only with other arrow types), a pair instead of another
pair and so on. Thus, for each type there is a different rule that answers the question:

1. A pair can be used instead of another if and only if each of its component can be
so. Thus the subtyping relation is extended to product types by the componentwise
ordering

2. A function returning a certain type can be used instead of one returning a greater since
it causes no harm to substitute a result of a certain type by one of a smaller type.
Furthermore a function accepting arguments of a given type, works also for arguments
of smaller type and thus it can substitute it.

3. An overloaded function can substitute another overloaded function if and only if for
every branch of the latter there is at least one in the former that can substitute it.

Rules for Refinement
We already pointed out the three conditions that a class defined by refinement must under-
take. Let us reformulate them in term of overloading:

1. state coherence: An instance variable of a class must appear in all subtypes of that class
and with always the same type

2. covariance: In an overloaded type, if an input type is a subtype of another input type
then their corresponding output types must be in the same relation

1.2. TYPE CHECKING 81

3. multiple inheritance: In an overloaded type if two unrelated input types have a common
subtype then for every maximal type of the set of their subtypes there must be one
branch whose input type is that maximal type.

The reasons for these restrictions are very simple:

An inherited method can be used on the instance variables of a new class only if they
contain those of the class in which the method has been defined; furthermore the “ inherited”
instance variables must always have the same type: at first sight one would say that these
instance variables could be typed also by a subtype of the type they had in the super-class
(this is what for example happens in O2 [BDe92]); though, this type discipline would not be
type safe. Let us show it by an example: suppose that in a given class C there is an instance
variable x of type Real, and a method whose body is (update{x=3.7}); now define a subclass
C ′ of C which redefined the type of x to int (note that Int < Real) and inherits the method
from C; when the message corresponding to the method is sent to an instance of C ′ then the
value 3.7, which is not integer, is assigned to x, even if x must contain an integer.

The covariance condition is introduced in order to assure that types always decrease
during the computation. Indeed note that since the selection of the branch is based (by
late binding) on the type a term possesses during computation and since types change at
runtime, then the selected branch also changes with them. In other words, in an overloaded
function the branch which would be chosen at compile time may be different from the one
effectively chosen in the computation. We already met this phenomenon when explaining the
late binding with the example of isOrigin; recall that the body of isOrigin was of the form

fn(p:2DPoint) => .. [p norm] ..

Since p has type 2DPoint the method selected at compile time would be the one for 2DPoint.
But by late binding, if isOrigin is applied to a 2DColPoint then the code for this last class
is chosen at run time.

Therefore the types of different branches cannot be totally unrelated if we want the
property of the decrease of type to hold: in the example above, type decreases if and only
if the method associated to norm in 2DColPoint returns a type smaller than or equal to the
one returned by the method in 2DPoint. And this is guaranteed by the covariance condition.

The inheritance condition, as formulated in the previous section, said that methods in
common to more than one unrelated ancestor must be redefined to disambiguate the selection.
To see that this is equivalent to the rule we have written above note that the definition of
a class by refinement of some other classes exactly corresponds to define a common subtype
of these classes, which is also maximal since it is not possible in the language to construct a
type greater than another that has already been defined (we can add new types only as leaves
of the dag of the type hierarchy). If two unrelated ancestors respond to a same message then
they both appear as input type in the type of this message, and, thus, the condition says
that a new branch (method) must be defined for the new maximal subtype. The requirement
of uniqueness of input types, assures that there will be no ambiguity in the selection of the
branch 8.

8Roughly speaking this means that we cannot have declared two classes with the same name. Indeed
this uniqueness is only a necessary condition since there might still be two classes with the same name but

82 CHAPTER 1. OBJECT-ORIENTED PROGRAMMING

Finally note that it is useful to have the possibility of defining both multi-methods and
methods returning an overloaded type: adding branches whose type has the form, say, A→
{B → T} is different from adding branches whose form is (A × B) → T : the conditions for
inheritance might be satisfied in one case and not in the other. This will be shown by an
example in section 2.6.2.

responding to disjoint sets of messages. Therefore this situation has to be detected and rejected during the
type-checking

Chapter 2

The λ&-calculus

La nature est un temple où de vivants piliers

Laissent parfois sortir de confuses paroles;

L’homme y passe à travers des forets de symboles

Qui l’observent avec des regards familiers

Charles Baudelaire

Les Fleurs du Mal (1861)

In the previous chapter we have tried to convey the intuition that the basic mechanisms of
(one peculiar style of) object-oriented programming are overloading and late binding. In
this chapter we define an extension of the simply typed lambda calculus to model these
mechanisms. We call this calculus λ&.

We first show the underlying intuition of the calculus, then we give its formal presentation
and we prove that it enjoys some relevant properties. We end this chapter by hinting the
connections between this calculus and the object-oriented language presented in the previous
section. This chapter is based on a joint work with Giorgio Ghelli and Giuseppe Longo.

2.1 Informal presentation

An overloaded function is constituted by a set of ordinary functions (i.e. lambda-abstractions),
each one forming a different branch. To glue together these functions in an overloaded one
we have chosen the symbol &; thus we have added to the simply typed lambda calculus the
term

(M&N)

which intuitively denotes an overloaded function of two branches, M and N , that will be
selected according to the type of the argument. We must distinguish ordinary application
from the application of an overloaded function since, as we tried to explain in section 1.1.3,
they constitute different mechanisms. Thus we use “•” to denote the overloaded application
and “·” for the usual one. Overloaded functions are built as it is customary with lists, by
starting with an empty overloaded function that we denote by ε, and by concatenating new

83

84 CHAPTER 2. THE λ&-CALCULUS

branches by means of &. Thus in the term above M is an overloaded function while N is a
regular function, which we call a “branch” of the resulting overloaded function. Therefore an
overloaded function with n branches M1,M2, . . . Mn can be written as

((. . . ((ε&M1)&M2) . . .)&Mn)

The type of an overloaded function is the ordered set of the types of its branches.1 Thus if
Mi:Ui → Vi then the overloaded function above has type

{U1 → V1, U2 → V2, . . . , Un → Vn}

and if we pass to this function an argument N of type Uj then the selected branch will be
Mj . That is:

(ε&M1& . . . &Mn)•N >∗Mj · N (2.1)

We have also a subtyping relation on types. Its intuitive meaning is that U ≤ V if and only
if any expression of U can be safely used in the place of an expression of V . An overloaded
function can be used in the place of another when for each branch of the latter there is
one branch in the former that can substitute it; thus, an overloaded type U is smaller than
another overloaded type V if and only if for any arrow type in V there is at least one smaller
arrow type in U .

Due to subtyping, the type of N in the expression above may not match any of the Ui
but it may be a subtype of some of them. In this case we choose the branch whose Ui “best
approximates” the type, say, U of N ; i.e. we select the branch z s.t. Uz = min{Ui|U ≤ Ui}.

2.1.1 Subtyping, run-time types and late binding

It is important to notice that, because of subtyping, in this system types evolve during
computation. This reflects the fact that, in languages with subtypes, the run-time types of
the values of an expression are not necessarily equal to its compile-time type, but are always
subtypes of that compile-time type. In the same way, in this system, the types of all the
reducts of an expression are always smaller than or equal to the type of the expression itself.

The meaning of terms like “run-time type” and “compile-time type” is reasonably clear in
the context of a traditional, eagerly evaluated programming language: in that case, a single
term, such as an occurrence of a formal parameter x of a function, is “evaluated” many times,
once each time the function is called. Each time x is bound to a value, the run-time type of
that value becomes the “run-time type” of x, while in the source code that occurrence of x
has a unique compile-time type, the one written by the programmer. However, the “compile-
time type” of a term and the “run-time types” of its values are not unrelated: the property
holds that all the run-time types of the values will be subtypes of the unique compile-time
type of the term.

This distinction may not be intuitive in the context of a rewriting system, such as λ-
calculus, where a more formal definition is needed. To follow the different “evaluations” of
an occurrence of a term, we may use the notion of residual of an occurrence of a term (see

1This is just a first approximation; see later for the exact meaning of overloaded types.

2.1. INFORMAL PRESENTATION 85

[Bar84] where this definition is used only when the term is a redex). Intuitively, a residual
is what the term has become after a reduction. As happens in traditional languages, in a
rewriting system an occurrence of a term has many different residuals with possibly many
different types, which are only guaranteed to be subtypes of the original one.

We will adopt the following definition: when a term is closed and normal, we then say
that it is “a value”,2 and we mean by this that it cannot evolve anymore (since it is invariant
by substitution and reduction). We similarly say that its type is “a run-time type”, which
means that no more information can be specified about the type of that term. The type of
a value which is the residual of a given term is a run-time type for that term.

Thus the relation between a compile-time type and a run-time type is the same as the
relation between a term and a value: a value for a term is any closed normal form obtained
by performing reductions and substitutions over that term; a run-time type for that term is
the type of any of its values. Note that an open term is bound, during a computation, to
many different values, and so it gets many different run-time types. Note also that we did
not formally define the notion of “evolution of a term”, thought it would be possible. We are
now just trying to convey the intuition behind the idea of run-time types, while the formal
definition of the reduction rules is given in the next section.

Now that we have outlined the notion of run-time type, we can also define late binding
in λ&: overloading is implemented by late binding when the selection of the branch is based
the run-time types. This can be obtained by requiring that a reduction as (2.1) can be
performed only if N is a closed normal form, and that the chosen branch depends on the
type of the reduced term. This is late-binding since the branch choice cannot be performed
before evaluating the argument, and this choice does not depend on the compile-time type of
the expression which generated the value, but on the run-time type of the value itself.

Although the selection of the branches of overloaded functions is based on the run-time
types, the static typing of a term must be enough to assure that the computation will be
type-error free. This can be obtained by guaranteeing that types can only decrease during
computation (so that the run-time type of any residual of a term is always a subtype of its
compile-time type) and thus that well-typed terms rewrite to well-typed terms (see theo-
rem 2.3.2). To guarantee it a “consistency” condition must be imposed on overloaded types.
In short, an overloaded type {Ui → Vi}i∈I is well-formed if and only if for all i, j ∈ I it
satisfies the following conditions:

Ui ≤ Uj ⇒ Vi ≤ Vj (2.2)

Ui ⇓ Uj ⇒ there exists a unique z∈I such that Uz = inf{Ui, Uj} (2.3)

where Ui ⇓ Uj means that Ui and Uj are downward compatible, i.e. they have a common
lower bound.

Condition (2.2) is a consistency condition, which assures that during computation the
type of a term may only decrease. In a sense, this takes care of the common need for some
sort of covariance of the arrow in the practice of programming. More specifically if we have
a two-branched overloaded function M of type {U1 → V1, U2 → V2} with U2 < U1 and we
pass it a term N which at compile-time has type U1 then the compile-time type of M•N will

2For example λx.λy.x and λx.λy.y are the only two values of type Bool≡α → α → α.

86 CHAPTER 2. THE λ&-CALCULUS

be V1; but if the normal form of N has type U2 then the run-time type of M•N will be V2

and therefore V2 < V1 must hold. The second condition concerns the selection of the correct
branch: we said before that if we apply an overloaded function of type {Ui → Vi}i∈I to a term
of type U then the selected branch has type Uj → Vj such that Uj = mini∈I{Ui|U ≤ Ui};
condition (2.3) assures the existence and uniqueness of this branch.3

It is not very surprising that these conditions strongly resemble the rules of covariance
and multiple inheritance we met in section 1.2.2 when dealing with the types system of the
toy language.

2.2 The syntax of the λ&-calculus

In this section we define the extension of the typed lambda calculus we study in the rest of
the paper. We use the following conventions: A,B denote Atomic Types, S, T, U, V,W . . .
denote (Pre)Types, M,N,P,Q, denote Terms, H, I, J,K denote sets of indexes and h, i, j, k, n
indexes. We first define a set of Pretypes and then from them we select those that satisfy the
conditions (2.2) and (2.3) and that constitute the types.

PreTypes V :: = A | V → V | {V ′1 → V ′′1 , . . . , V ′n → V ′′n }

For technical reasons we consider overloaded types as lists, i.e. possessing an order; the list
may also be empty: in this case the type is denoted by {}.

2.2.1 Subtyping rules.

We define a subtyping relation on the set of Pretypes. This relation is used to define the
types. The idea is that one may start from a partial order which is predefined on atomic
(pre)types and extend it to a preorder on all Pretypes: the relation is obtained by adding the
rules of transitive and reflexive closure to the following ones4 :

U2 ≤ U1 V1 ≤ V2

U1 → V1 ≤ U2 → V2

for all i ∈ I, there exists j ∈ J such that U ′′i ≤ U ′j and V ′j ≤ V ′′i
{U ′j → V ′j }j∈J ≤ {U

′′
i → V ′′i }i∈I

Intuitively, if we consider two overloaded types U and V as sets of functional types then the
last rule states that U ≤ V if and only if for every type in V there is some type in U smaller
than it. In contrast to the usual partial order on record types, the cardinalities of I and J
are unrelated.

Note that ≤ is just a preorder, and not a partial order, for U ≤ V and V ≤ U do not
imply U = V . For example take S′ ≤ S, then S → T ≤ S′ → T , and thus {S → T} ⋚

3By the way note how these conditions are very related to the regularity condition discussed in [GM89], in
the quite different framework of order-sorted algebras and order-sorted rewriting systems

4Strictly speaking we should define Σ ⊢ S ≤ T where Σ parameterizes the definition and describes the
subtyping relation on atomic types; i.e. it is the axiom set of the theory of subtyping

2.2. THE SYNTAX OF THE λ&-CALCULUS 87

{S → T, S′ → T}. Given a preorder on a set it is possible to define the following equivalence
relation: U ∼ V if and only if U ≤ V and V ≤ U (this is a congruence w.r.t. the type
constructors). And the preorder induces an order on the set of equivalence classes.

In the rest of this chapter we will informally suppose to work on an order, indeed to work
on Types/ ∼, in order to gain in clarity in the exposition. We will point out by a footnote
all the places where having a preorder instead of an order makes a difference.

We formally deal with the partial order in chapter 6 devoted to the semantics of λ&,
where we interpret this partial order by an order in the model (see in particular section 6.2).

In our presentation of the subtype rules we implicitly defined a transitivity rule. We can
easily prove that this rule is not really needed.

Theorem 2.2.1 (Transitivity Elimination) ⊢ T ≤ U if and only if ⊢- T ≤ U where ⊢- is
defined by the rules of ⊢ minus transitivity.

Proof. Observe that if ⊢- T ≤ U then either T and U are both atomic types, or they are
both arrow types or they are both overloaded types. We first prove that ⊢- T ≤ U and
⊢- U ≤ V implies ⊢- T ≤ V by induction on the size of T,U, V . If they are all atomic types
the thesis is immediate. If T = {T ′i → T ′′i }i∈I , U = {U ′j → U ′′j }j∈J and V = {V ′l → V ′′l }l∈L,
then for all l ∈ L exists j ∈ J such that ⊢- U ′j → U ′′j ≤ V ′l → V ′′l and for all j ∈ J exists
i ∈ I such that ⊢- T ′i → T ′′i ≤ U ′j → U ′′j . By induction, for all l ∈ L exists i ∈ I such that
⊢- T ′i → T ′′i ≤ V ′l → V ′′l , hence ⊢- {T ′i → T ′′i }i∈I ≤ {V

′
l → V ′′l }l∈L, q.e.d.. The arrow case is

similar and simpler. Now the theorem follows by induction on the proof of ⊢ T ≤ U and by
cases on the last applied rule, where the only interesting case is transitivity. 2

The interest of this theorem is that it proves that the subtyping rules given above (plus reflex-
ivity on atomic types) describe a deterministic algorithm. This means that the decidability
of ≤ on the atomic types implies its decidability on all pretypes and, thus on Types too.

2.2.2 Types

Our system is an extended strongly typed λ-calculus. Arrow types and overloaded types are
defined inductively from atomic types. As mentioned in the introduction, the overloaded
types have a good formation rule that allows a consistent application of the reduction rules.

1. A ∈ Types
2. if V1, V2 ∈ Types then V1 → V2 ∈ Types
3. if for all i, j ∈ I

(a) (Ui, Vi ∈ Types) and
(b) (Ui ≤ Uj ⇒ Vi ≤ Vj) and
(c) (Ui ⇓ Uj ⇒ there exist a unique h ∈ I such that Uh = inf{Ui, Uj})

5.

then {Ui → Vi}i∈I ∈ Types

5This notation is not very precise; since ≤ is just a preorder. A set generally has many equivalent g.l.b.’s;
we should then write Uh ∈ inf{Ui, Uj} or [Uh]∼ = inf{Ui, Uj}

88 CHAPTER 2. THE λ&-CALCULUS

In a system with subtyping, if f :U → V , this means that when f is applied to a term a with
a run-time type U ′ ≤ U , the run-time type of the result will be a type V ′ ≤ V . Intuitively,
an overloaded type {Ui → Vi}i∈I is inhabited by functions, made out of different pieces of
code, such that when they are applied to a term whose run-time type U ′ is the subtype of
some Ui, the run-time type of the result will be a subtype V ′ of the corresponding Vi. This
is assured by condition (b) above.

To ensure the existence of an inf for any pair of downward compatible types, we require
that ≤ yields a “partial lattice” on Atomic Types. In accordance with the rules given in the
previous section, the whole Types inherits this structure.6 In object-oriented languages this
is not always the case. We can distinguish object-oriented languages where Atomic Types
have a tree structure (the so called “single inheritance”) and object-oriented languages where
Atomic Types have a free order relation and where additional structure is used to solve the
problems caused by compatible types without an inf. The same kind of technique can be used
to extend our approach to this situation (we will do it in section 4.1.1), since the partial lattice
property is not essential, but is useful for getting a simple branch selection rule, as described
in the section on reduction and a simpler formulation of some technical definitions we will
use in giving the semantics (cfs. 6.2). Likewise, while condition (b) above is an essential
feature of our approach, condition (c) is linked to the branch selection rule, and could easily
be modified (see [Cas93b, Ghe91]). In particular we will propose in section 4.1 a weakening
of condition (c) to deal with the so-called “multiple-inheritance” without a class-precedence
list.

Furthermore, we suppose that the subtyping relation is decidable on atomic types, which
implies that it is decidable on Types as well. Note that this poses no problem in the current
(simple) approach, as we have fixed atomic types; more work would be needed in order to
allow the programmer to define its own base types.

Henceforth we only deal with Types and completely forget PreTypes; thus we will
intend that all the pretypes which appear in the rest of the paper satisfy the conditions
above.

2.2.3 Terms

Roughly speaking, terms correspond to terms of the classical lambda calculus plus operations
to build and apply overloaded functions. Overloaded functions are built as customary with
lists, by starting from an empty overloaded function and adding branches with the & operator.
We distinguish the usual application M ·M of lambda-calculus from the application of an
overloaded function M•M since they constitute two completely different mechanisms: indeed
a notion of variable substitution is associated with the former, while in the latter there is the
notion of selection of a branch. This is also stressed by the proof-theoretical viewpoint where
these constructors correspond to two different elimination rules. Finally, a further difference,
specified in the reduction rules, is that overloaded application is associated with call by value,
which is not needed by the ordinary application. For the same reason we must distinguish
between the type U → V and the overloaded function type with just one branch {U → V }.7

6More precisely, since ≤ is not an order, it is Types modulo ∼ which inherits the partial lattice structure.
7In section 4.3 we define a calculus in which these two types will coincide

2.2. THE SYNTAX OF THE λ&-CALCULUS 89

However, in some cases it will be useful to have only one notation to deal with both kinds
of application; for this aim the simple juxtaposition will be used.

Variables are indexed by their type, to avoid the use of type environments in the type-
checking rules.

Terms M :: = xV | c | λxV.M |M ·M | ε |M&VM |M•M

The type which indexes the & is a technical trick to allow the reduction inside overloaded
function, as explained later on (see page 93). c represents generic constants while ε is a
distinct constant for the empty overloaded function.

Hereafter we may omit the type indexing of &, when it will be clear from the context,
and the ε at the beginning of &-terms, in the examples.

2.2.4 Type checking

We define here the typing relation “:”, a proper subset of Terms×Types. Therefore, as
already pointed out, in the rules below we omit the condition V ∈ Types. This means
that, all the PreTypes that appear in the following rules are to be considered as well-formed
types. Anyway we observe that an algorithm implementing the following type-checking rules
should check that the types appearing in the conclusions of the rules [Taut], [→ Intro] and
[{}Intro] are well-formed.

We use the notation ⊢ M :V ≤ U as a shorthand for the conjunction “⊢ M :V and
V ≤ U”.

[Taut] ⊢ xV :V

[→ Intro]
⊢M :V

⊢ λxU.M :U → V

[→ Elim(≤)]
⊢M :U → V ⊢ N :W ≤ U

⊢M ·N :V

[Tautε] ⊢ ε: {}

[{}Intro]
⊢M :W1 ≤ {Ui → Vi}i≤(n−1) ⊢ N :W2 ≤ Un → Vn

⊢ (M&{Ui→Vi}i≤nN): {Ui → Vi}i≤n

[{}Elim]
⊢M : {Ui → Vi}i∈I ⊢ N :U Uj = mini∈I{Ui|U ≤ Ui}

⊢M•N :Vj

In the last rule the premise on Uj as well as the type constraints are indeed meta-premises,
i.e. they are conditions to the application of the rules but they do not belong to the tree-
structure of the deduction. The empty term ε and the empty type {} are used to start the
formation of overloaded terms and types. We read M&N&P as (M&N)&P .

90 CHAPTER 2. THE λ&-CALCULUS

As the careful reader will have noted, we do not use the subsumption rule (see below) in
type-checking. We utilized a slightly different type discipline, where the use of subsumption
is distributed where needed. The resulting system is equivalent, in the sense explained below,
to the subsumption discipline, but every term possesses a unique type, which simplifies the
definition of the operational semantics and some proofs.

Consider the functional core of our system, i.e. only the first three typing rules at the
beginning of this section and let denote this system by ⊢≤. The subsumption system (denoted
by ⊢sub) is obtained from this one by replacing ⊢ N :W ≤ U with ⊢ N :U in [→ Elim(≤)] and
by adding the subsumption rule:

[→Elim]
⊢sub M :U → V ⊢sub N :U

⊢sub MN :V
[Subsumption]

⊢sub M :U U ≤ V

⊢sub M :V

Now, we can prove the following theorem.

Theorem 2.2.2 ⊢≤ M :V if and only if V = min{U | ⊢sub M :U} (which implies that the set
{U | ⊢sub M :U} is not empty).

Proof. (⇒) By induction on the proof of ⊢≤ M :V and by cases on the last applied rule.
(⇐) By induction on the smallest proof that ⊢sub M :V and by cases on the last applied

rule. 2

Corollary 2.2.3 Every well-typed λ&-term possesses a unique type

In conclusion, the theorem states that ⊢≤ is equivalent to ⊢sub in the sense that it always
returns the smallest (i.e. most precise) type returned by the subsumption system. This
theorem suggests that it is possible to define a subsumption based version ⊢sub for the full
system too. We must add subsumption, substitute all judgements ⊢ N : T ≤ U in the rules
with ⊢ N : U and finally, in the [{}Elim] rule, substitute ⊢ N : U with “U is the minimum
type such that ⊢sub N : U”.

We can then extend theorem 2.2.2 to our entire calculus.

Theorem 2.2.4 (Subsumption Elimination) For the whole λ&, ⊢ M :V if and only if
V = min{U | ⊢sub M :U}

Since we have chosen the subsumption-free presentation, every term possesses a unique
type, because there is a unique derivation for the type of a term.

Note that the lack of type variables makes the proof of subsumption elimination and
transitivity elimination much easier for this calculus than for F≤ (see [CG92]).

Finally observe that even if ≤ is just a preorder it makes perfect sense w.r.t. type-checking.
Suppose that M : {Ui → Vi}i∈J ≤ {U

′
i → V ′i }i∈I . The intended meaning of this subtyping

relation is that M can be fed with any input N which would be acceptable for a term M ′

in {U ′i → V ′i }i∈I , and that the output can be used in any context where M ′•N would be
accepted. Indeed, let N :U ′i and C[] be a context where a value of type V ′i can be put. Then,
for some j ∈ J , Uj → Vj ≤ U ′i → V ′i , so that U ′i ≤ Uj and Vj ≤ V ′i , hence the application
M•N type-checks and can be used in the context C[M•N]. Our “≤” is the least (or less fine)
preorder that one can define with this property.

2.2. THE SYNTAX OF THE λ&-CALCULUS 91

The fact that two types may be equivalent even if different simply means that, from the
type-checker’s point of view, they are completely interchangeable: one or the other makes
no difference (if we used subsumption the two types would denote the same set of terms).
Though, we do not study here (as it could be done) the set of types modulo the equivalence
relation since we are developing the syntax of the system, and syntactically these types are
different. If you prefer, we placed ourselves in the place of the average programmer on the
street who, we believe, would not like to work with a system that equates two types with a
different number of branches, nor he would want that the system returned a type different
from the one he expected, just because it is the canonical representative of the equivalence
class that types that term (take U ≤ V and imagine that the system would respond to
the programmer that (M &{U→T,V→T}N) has type {V → T}). This “problem” will be
tackled when dealing with the semantics where one wants equivalent types to have the same
interpretation (see section 6.2).

2.2.5 Reduction Rules

In order to simplify the definition of the system, we consider the types of overloaded functions
as ordered sets, where the order corresponds, more or less, to the order in which branches
are added when an overloaded function is built. However the reader may note that this order
is completely irrelevant in subtyping and typing rules, with the only exception of [{}Intro],
where we want to be able to distinguish the only arrow type associated with the right hand
side of the & from the set of the other ones. But for that it would suffice to consider only the
indexes ordered (this will be better understood in chapter 9). Exactly the same information
is all that is needed by the reduction rules.

As we mentioned before, the run-time types are used during computation to perform
branch selection. Thus, we have to define what the run-time type of a term is. We propose
here a simple solution: the deduction system that infers the run-time type of a term is the
same as the one used for type-checking. What distinguishes run-time types and compile-time
types is thus the time when the deduction is made. In fact, during the computation the type
of a term may change since reduction and substitution may decrease the type of a term (as
shown in Theorems 2.3.1 and 2.3.2).

We say that the type of a term is its run-time type when that term is a “value”,
i.e. when it is normal and closed; a run-time type of a residual of a term is
also a run-time type of the term. We allow a reduction of the application of an
overloaded function only when the argument is a value, i.e. when it is typed by a
run-time type.

This is a crucial point. If we allowed selecting the branch of an overloaded function on the
basis of the type of an argument whose type could still be decreased (by reduction or by
substitution) then the selection would give different results depending on the time when it is
applied, and the system would be no longer confluent. However this discipline can be weaken
as we show in section 4.1.3.

As a matter of fact, this call-by-value constraint is not a limitation if our aim is to model
object-oriented languages. In these languages message passing evaluation always requires

92 CHAPTER 2. THE λ&-CALCULUS

that the receiving object has been fully evaluated.8

We start by defining, in a standard way, substitutions on the terms of our system:

Definition 2.2.5 (Substitution) We define the term M [xT := N] by induction on the
structure of M :

1. xT [xT :=N] ≡ N
2. yS[xT :=N] ≡ yS if yS 6≡ xT

3. ε[xT :=N] ≡ ε
4. (λyS .P)[xT :=N] ≡ (λyS .(P [xT :=N])) where y is not free in N
5. (P&VQ)[xT :=N] ≡ ((P [xT :=N])&V(Q[xT :=N]))
6. (PQ)[xT :=N] ≡ (P [xT :=N])(Q[xT :=N])

2

Of course, this definition only makes sense when the type of N is a subtype of T . Note
that in 5, even if the types of the subterms change, the type of the whole term is always
the same, since it is frozen in the index of the &; thus the selection of the branch does not
depend on the degree of reduction of the &-term. This is a decisive point in our approach,
which makes the system type-safe though reductions within an overloaded term are allowed.

We define the one-step reduction relation > which is a proper subset of Terms × Terms.
We denote by >∗ its reflexive and transitive closure, under the usual conditions (in β) to
avoid free variables being captured:

β) (λxS .M)N > M [xS :=N]

β&) If N :U is closed and in normal form and Uj = min{Ui|U ≤ Ui} then

((M1&
{Ui→Vi}i=1..nM2)•N) >

{
M1•N for j < n
M2 ·N for j = n

context) If M1 > M2 then

(M1 ·N) > (M2 ·N) (2.4)

(N ·M1) > (N ·M2) (2.5)

(M1•N) > (M2•N) (2.6)

(N•M1) > (N•M2) (2.7)

(λxU .M1) > (λxU .M2) (2.8)

(M1&N) > (M2&N) (2.9)

(N&M1) > (N&M2) (2.10)

8This happens not only for the essential reason we pointed out (the run-time type is generally only known
for fully evaluated terms) but also since object oriented languages heavily rely on state and state-updating
operations, and programs using updates are much more readable if eagerly evaluated.

2.2. THE SYNTAX OF THE λ&-CALCULUS 93

The intuitive operational meaning of (β&) is easily understood when looking at the simple
case, i.e. when there are as many branches as arrows in the overloaded type. In this case,
under the assumptions in the rule:

(ε&M1& . . . &Mn)•N >∗Mj ·N

However, in general, the number of branches of the overloaded function may be different from
the number of arrows in the overloaded types, both since an overloaded function could begin
with an application or with a variable, accounting for an initial segment of the overloaded
type (they are just required to possess an overloaded type), and because of the subtyping
relation used in the rule of [{}Intro].

If we allowed (β&) reductions with open or non normal arguments the system would not
be confluent, since the type of an open or non normal argument can be different in different
phases of the computation. For example, consider a term

(λxV .((P&{V→V,U→U}M)•xV)) · (NU)

with U ≤ V (we superscript terms with their types, like in NU , to increase readability of
examples). If the inner β& reduction were performed with the x argument (which is not
closed), the first branch P would be chosen, while if the outer β reduction is performed first
then the term becomes:

(P&{V→V,U→U}M)•NU

and the second branch M is (correctly) chosen. In short, the argument of an overloaded
application must be closed and normal to perform the evaluation, since this is the only case
where its type cannot decrease anymore, and describes the value as accurately as possible.

Complementary to the idea of freezing the argument of an overloaded application to its
normal form, is the use of the type which indexes the &’s to freeze the type of &-terms. We
outline two short examples to show the problems that arise with reduction and substitution
inside &-terms without this index.

We suppose that U ′ ≤ U and V ′ ≤ V ; consider the term

F1 ≡ (ε&MU→V &((λxU
′→V ′

.x) ·NU→V ′
))

in which we have not specified any index; this can be intuitively typed as follows:

F1: {U → V,U ′ → V ′}

Though, if we reduce the right branch, without freezing the index, we are no longer able to
recover a type for the contractum, namely for (ε&MU→V &NU→V ′

) since both terms possess
the same input type. Consider next the term

F2 ≡ λyU
′→V ′

.(ε&(λxU .MV)&(yU
′→V ′

))

again we can intuitively type it as follows.

F2: (U
′ → V ′)→ {U → V,U ′ → V ′}

but if we apply F2 to NU→V ′
and β-reduce, then we are in the same case as above.

Note, finally, that our calculus is truly type-dependent (that is, the type erasure of a term
is not enough to forecast its evolution or meaning) for two different reasons:

94 CHAPTER 2. THE λ&-CALCULUS

• β& reduction depends on the type of the argument

• β& reduction depends on the index T of the & in the overloaded term

More specifically, if {Ui → Vi}i=1..n is the index of &, β& reduction depends on the list
[Ui]i=1..n of the input types of the overloaded function. For example, if U ′ ≤ U , both terms

(ε&MU→V &{U→V,U
′→V }M ′U→V)

and

(ε&MU→V &{U
′→V,U→V }M ′U→V)

are well-typed, but they behave differently if applied to a normal closed term NU .

Note that we are here in a different and more flexible situation than in object-oriented
languages, since in those languages every branch of an overloaded function (every method)
must be understood as a λ-abstraction (when viewing methods as global, overloaded functions
in our sense.) In this language, on the other hand, any expression with a functional type
(in particular an application) can be concatenated by using &. Thus, when following the
object-oriented style, the left hand side U of the type U → V of an expression λxU .M does
not change when reductions and substitutions are performed inside λxU .M . In our approach,
when reducing inside an &, one may obtain a smaller type for the reductum, in particular
a larger U in a type U → V . To allow this possibility of “inside” reductions and preserve
determinism, we label the &’s with types .

2.3 The Generalized Subject Reduction Theorem

The Subject Reduction Theorem in classical λ-calculus proves that the type of a term does
not change when the term is reduced. In this section, we generalize this theorem for our
calculus, since we prove that if a term is typable in our system, then it can only be reduced
to typable terms and that these terms have a type smaller than or equal to the type of the
redex.

In order to enhance readability, in this and in the following section, we will often omit
the turn-style symbol.

Lemma 2.3.1 (Substitution Lemma) Let M :U, N :T ′ and T ′ ≤ T .

Then M [xT :=N]:U ′, where U ′ ≤ U .

Proof. By induction on the structure of M .

M≡ε straightforward

M≡x straightforward

M≡y 6≡ x straightforward

M≡λxV.M ′ straightforward

2.3. THE GENERALIZED SUBJECT REDUCTION THEOREM 95

M≡λyV.M ′ Then U = V →W and M ′:W .

By induction hypothesis M ′[x := N]:W ′ ≤ W , therefore M [x := N]≡ λyV.M ′[x :=
N]:V →W ′ ≤ V →W

M≡(M1&
TM2) Then M [x := N]≡ (M1[x := N]&TM2[x := N]); by induction hypothesis and

the rule [{}Intro] M [x := N] is well-typed and its type is the same of the one of M
that is T .

M≡M1 ·M2 where M1:V → U and M2:W ≤ V . By induction hypothesis:

M1[x :=N]:V ′ → U ′ with V ≤ V ′ and U ′ ≤ U

M2[x :=N]:W ′ with W ′ ≤W

Since W ′ ≤ W ≤ V ≤ V ′ we can apply the rule [→Elim(≤)] and thus M [x := N]≡
(M1[x :=N]) · (M2[x :=N]):U ′ ≤ U

M≡M1•M2 where M1: {Vi →Wi}i∈I and M2:V .

Let Vh = mini∈I{Vi|V ≤ Vi}. Thus U = Wh.

By induction hypothesis:

M1[x :=N]: {V ′j → W ′
j}j∈J with {V ′j → W ′

j}j∈J ≤ {Vi →Wi}i∈I

M2[x :=N]:V ′ with V ′ ≤ V

Let V ′k = minj∈J{V
′
j |V

′ ≤ V ′j }. Thus M [x :=N]:W ′
k. Therefore we have to prove that

W ′
k ≤Wh

As {V ′j → W ′
j}j∈J ≤ {Vi → Wi}i∈I then for all i ∈ I there exists j ∈ J such that

V ′j → W ′
j ≤ Vi → Wi. Given i = h we chose an h̃ ∈ J which satisfies this condition:

that is,

V ′
h̃
→W ′

h̃
≤ Vh → Wh (2.11)

We now have the following inequalities:

V ≤ Vh (2.12)

by the definition of Vh, as Vh = mini∈I{Vi|V ≤ Vi};

Vh ≤ V ′
h̃

(2.13)

which follows from (2.11);

V ′ ≤ V ′
h̃

(2.14)

which follows from (2.12), (2.13) and V ′ ≤ V ;

W ′
h̃
≤Wh (2.15)

which follows from (2.11).

V ′k ≤ V ′
h̃

(2.16)

96 CHAPTER 2. THE λ&-CALCULUS

which follows from (2.14), as V ′
h̃

belongs to a set with V ′k as least element. Finally,

W ′
k ≤W ′

h̃
(2.17)

follows from (2.16) and from the covariance rule on {V ′j →W ′
j}j∈J

Thus, by (2.15) and (2.17), W ′
k ≤Wh

2

Theorem 2.3.2 (Generalized Subject Reduction) Let M :U . If M >∗ N then N :U ′,
where U ′ ≤ U .

Proof. It suffices to prove the theorem for >; the thesis follows from a simple induction on
the number of steps of the reduction. Thus, we proceed by induction on the structure of M :

M≡x x is in normal form and the thesis is straightforwardly satisfied.

M≡ε as in the previous case.

M≡λxV.P . The only case of reduction is that P >P ′ and N≡λxV.P ′; but from the induction
hypothesis it follows that N is well-typed and the type of the codomain of N will be
less than or equal to the one of M ; since the domains are the same, the thesis thus
holds.

M≡(M1&
TM2). Just note that whenever M is reduced it is still well-typed (apply the in-

duction hypothesis) and its type doesn’t change.

M≡M1 ·M2 where M1:V → U and M2:W ≤ V . We have three subcases:

1. M1 > M ′
1 , then by induction hypothesis M ′

1:V
′ → U ′ with V ≤ V ′ and U ′ ≤ U .

Since W ≤ V ≤ V ′, then by rule [→Elim(≤)] we obtain M ′
1M2:U

′ ≤ U .

2. M2 > M ′
2 , then by induction hypothesis M ′

2:W
′ with W ′ ≤ W . Again, W ′ ≤

W ≤ V and, thus, by [→Elim(≤)] we obtain M1M
′
2:U .

3. M1≡λxV.M3 and M >M3[x :=M2] , with M3:U . Thus, by Lemma 2.3.1, M3[x :=
M2]:U

′ with U ′ ≤ U .

M≡M1•M2 where M1: {Vi →Wi}i∈I and M2:V .

Let Vh = mini∈I{Vi|V ≤ Vi}. Thus U = Wh. Again we have three subcases:

1. M1 > M ′
1 then by induction M ′

1: {V
′
j → W ′

j}j∈J with {V ′j → W ′
j}j∈J ≤ {Vi →

Wi}i∈I . Let V ′k = minj∈J{V
′
j |V ≤ V ′j }. Thus M ′

1•M2:W
′
k. Therefore we have to

prove that W ′
k ≤Wh

Since {V ′j → W ′
j}j∈J ≤ {Vi → Wi}i∈I , then for all i ∈ I there exists j ∈ J such

that V ′j → W ′
j ≤ Vi → Wi. For i = h we choose a certain h̃ ∈ J which satisfies

this condition. That is:

V ′
h̃
→W ′

h̃
≤ Vh → Wh (2.18)

2.4. CHURCH-ROSSER 97

We now have the following inequalities:

V ≤ Vh (2.19)

by hypothesis, since Vh = mini∈I{Vi|V ≤ Vi};

Vh ≤ V ′
h̃

(2.20)

follows from (2.18);

V ≤ V ′
h̃

(2.21)

follows from (2.19) and (2.20);

W ′
h̃
≤Wh (2.22)

follows from (2.18);

V ′k ≤ V ′
h̃

(2.23)

by (2.21), since V ′
h̃

belongs to a set with V ′k as least element;

W ′
k ≤W ′

h̃
(2.24)

follows from (2.23) and the covariance rule on {V ′j →W ′
j}j∈J

Finally, by (2.22) and (2.24), one has that W ′
k ≤Wh

2. M2 >M ′
2 then by induction hypothesis M ′

2:V
′ with V ′ ≤ V . Let Vk = mini∈I{Vi|V

′ ≤
Vi}. Thus M1•M

′
2:Wk. Since V ′ ≤ V ≤ Vh then Vk ≤ Vh; thus, by the covariance

rule in {Vi →Wi}i∈I , we obtain Wk ≤Wh.

3. M1≡(N1&N2) and M2 is normal. Then we have two cases, that is M > (N1•M2)
(case h < n) or M > (N2 · M2) (case h = n). In both cases, by [{}Elim] or
[→Elim(≤)], according to the case, it is easy to show that the terms have type
smaller than or equal to Wh.

2

2.4 Church-Rosser

In this section we prove that this system is Church-Rosser (CR). The proof is a simple
application of a lemma due to Hindley [Hin64] and Rosen [Ros73]:

Lemma 2.4.1 (Hindley-Rosen) Let R1,R2 be two notions of reduction. If R1, R2 are CR
and >∗R1

commutes with >∗R2
then R1 ∪R2 is CR.

Set now R1 ≡ β& and R2 ≡ β; if we prove that these notions of reduction satisfy the
hypotheses of the lemma above, we thus obtain CR for our system. It is easy to prove that
β and β& are CR: indeed, the first one is a well known result while for the other just note
that β& satisfies the diamond property.

Thus it remains to prove that the two notions of reduction commute, for which we need
two technical lemmas.

98 CHAPTER 2. THE λ&-CALCULUS

Lemma 2.4.2 If N >∗β&
N ′ then M [x := N] >∗β&

M [x := N ′]

Proof. The proof is done by induction on the structure of M and consists in a simple diagram
chase

M LHS RHS comment

ε ε ε OK
x N N ′ OK
y y y OK

PQ P []Q[] P [′]Q[′] use the induction hypothesis
λy.P λy.P [] λy.P [′] use the induction hypothesis

(P&Q) (P []&Q[]) (P [′]&Q[′]) use the induction hypothesis

2

Lemma 2.4.3 If M >β&
M ′ then M [x := N] >β&

M ′[x := N]

Proof. We proceed by induction on the structure of M > M ′ (we omit the subscript in >β&

since there is no ambiguity here); we have the following cases:

Case 1 λy.P > λy.P ′ the thesis follows from the induction hypothesis on P > P ′.

Case 2 PQ > P ′Q the thesis follows from the induction hypothesis on P > P ′. The same
for QP > QP ′, P&Q > P ′&Q and Q&P > Q&P ′.

Case 3 (P1&P2)Q > PiQ then

M [x := N] ≡ (P1[x := N]&P2[x := N])Q[x := N]

≡ (P1[x := N]&P2[x := N])Q since Q is closed

Since substitutions do not change the type in (P1&P2) (just recall that the type is fixed
on the & and does not change during computation) then the selected branch will be
the same for both (P1&P2)Q and (P1[x := N]&P2[x := N])Q, thus:

> Pi[x := N]Q

≡ Pi[x := N]Q[x := N] since Q is closed

≡ M ′[x := N]

2

The next lemma shows that reductions are not context-sensitive: given a context C[],
i.e. a lambda term with a hole, a reduction inside the hole is not affected by the context.
This lemma will allow us to reduce the number of the cases in the next theorem:

Lemma 2.4.4 Let R denote either β or β&; then for all contexts C[] if M >∗R N then
C[M] >∗R C[N]

Proof. The proof is a simple induction on the context C[] 2

2.5. BASIC ENCODINGS 99

Theorem 2.4.5 (Weak commutativity) If M >β N1 and M >β&
N2 then there exists N3

such that N1 >∗β&
N3 and N2 >∗β N3

Proof. We proceed by induction on the structure of M . Since M is not in normal form,
then M 6≡ x and M 6≡ ε. In every induction step we will omit the (sub)cases which are a
straightforward consequence of lemma 2.4.4:

1. M≡λx.P . This case follows from lemma 2.4.4 and induction.
2. M ≡ (M1&M2) then the only subcase which is not resolved by straightforward use

of lemma 2.4.4 is N1≡ (M1&M ′
2) and N2≡ (M ′

1&M2) or symmetrically. But then
N3≡(M ′

1&M ′
2).

3. M≡M1•M2

Subcase 1: N1≡M1•M
′
2 and N2≡M ′

1•M2 or symmetrically. Thus N3≡M ′
1•M

′
2

The remaining cases are when M1≡(P&Q) and M2 is closed and in normal form. Then
we can have:
Subcase 2: N1≡(P ′&Q)M2 and N2≡PM2 but then N3≡P ′M2

Subcase 3: N1≡(P&Q′)M2 and N2≡QM2 but then N3≡Q′M2

Subcase 4: N1≡(P&Q′)M2 and N2≡PM2 but then N3≡N2

Subcase 5: N1≡(P ′&Q)M2 and N2≡QM2 but then N3≡N2

Note that in the last four cases we have used the property that the type of an &-term
doesn’t change when we reduce inside it and therefore the selected branch will be the
same for the same argument.

4. M≡M1 ·M2 then as in the previous case we have:
Subcase 1: N1≡M1M

′
2 and N2≡M ′

1M2 or symmetrically. Thus N3≡M ′
1M
′
2

The other cases are when M1 is of the form λx.P . Then we can have:
Subcase 2: N1 ≡ P [x := M2] and N2 ≡ (λx.P)M ′

2 But N1 >∗β&
P [x := M ′

2] (by
lemma 2.4.2) and N2 >β P [x := M ′

2]. Thus N3≡P [x := M ′
2].

Subcase 3: N1≡P [x := M2] and N2≡ (λx.P ′)M2 But N1 >∗β&
P ′[x := M2] (by lemma

2.4.3) and N2 >β P ′[x := M2]. Thus N3≡P ′[x := M2]

2

Corollary 2.4.6 >∗β&
commutes with >∗β

Proof. By lemma 3.3.6 in [Bar84]. 2

Finally, by applying the Hindley-Rosen lemma, we obtain that the calculus is CR.

2.5 Basic encodings

In this calculus it is possible to encode powerful type constructors such as surjective pairings
and various calculi of record values.

Definition 2.5.1 A type T is isolated if for every type S, S ≤ T or T ≤ S implies S = T 2

100 CHAPTER 2. THE λ&-CALCULUS

2.5.1 Surjective pairings

Surjective pairings (SP) can be encoded in λ& by defining two isolated atomic types P1 and
P2 together with two constants π1 : P1 and π2 : P2.

(T1 × T2) ≡ {P1 → T1, P2 → T2}

πi(M) ≡ M•πi
<M1 ,M2 > ≡ (ε&λxP1.M1&λxP2.M2) (for xPi 6∈ FV (Mi))

It is easy to verify that the subtyping rule for ×

S1 ≤ T1 S2 ≤ T2

S1 × S2 ≤ T1 × T2

is the special case of the subtyping rule for overloaded types and the particular encoding9.
Similarly, one also obtains the typing and reduction rules for SP.

2.5.2 Simple records

In various approaches to object-oriented programming records play an important role. In
particular, current functional treatments of object-oriented features formalize objects directly
as records (see section 2.6.1). In λ&, records can be encoded in a straightforward way.

Let L1, L2, . . . be an infinite list of atomic types. Assume that they are isolated, and
introduce for each Li a constant ℓi:Li. It is now possible to encode record types, record
values and record selection, respectively, as follows:

〈〈ℓ1:V1; . . . ; ℓn:Vn〉〉 ≡ {L1 → V1, . . . , Ln → Vn}

〈ℓ1 = M1; . . . ; ℓn = Mn〉 ≡ (ε & λxL1 .M1 & . . . & λxLn .Mn) (xLi 6∈ FV (Mi))
M.ℓ ≡ M•ℓ

Since L1 . . . Ln are isolated, then the subtyping rule for records is a special case of the rule
for overloaded types:

V1 ≤ U1 . . . Vk ≤ Uk
〈〈ℓ1:V1; . . . ; ℓk:Vk; . . . ; ℓk+j:Vk+j〉〉 ≤ 〈〈ℓ1:U1; . . . ; ℓk:Uk〉〉

Similarly the type-checking rules special cases for [{}Intro] and [{}Elim]

[〈〈〉〉Intro]
⊢M1:V1 . . . ⊢Mn:Vn

⊢ 〈ℓ1 = M1; . . . ; ℓn = Mn〉: 〈〈ℓ1:V1; . . . ; ℓn:Vn〉〉

[〈〈〉〉Elim]
⊢M : 〈〈ℓ1:V1; . . . ; ℓn:Vn〉〉

⊢M.ℓi:Vi
9Being the special case of a rule is stronger than being a derived rule. The former signifies that the

encodings of two types are in subtyping relation if and only if the types are in subtyping relation; the latter
means implies only the “if” part (e.g. if we encode tuples by {P1 → T1 . . . Pn → Tn} then the subtyping rule
is only a derived rule since the encoding of, say, T1 × T2 × T3 is a subtype of the encoding of T1 × T2)

2.5. BASIC ENCODINGS 101

Finally, the rewriting rules (ρ) and (r-ctx) below are the special cases of (β&) and (context)
respectively.

ρ) 〈ℓ1 = M1; . . . ; ℓn = Mn〉.ℓi > Mi (0 ≤ i ≤ n)

r-ctx) If M > M ′ then M.ℓ > M ′.ℓ and 〈. . . ℓ = M . . .〉 > 〈. . . ℓ = M ′ . . .〉

2.5.3 Updatable records

There are various definitions for updatable records in the literature. We will meet some of
them in this thesis.

The updatable records defined in [Wan87] are constructed starting from an empty record
value, denoted by 〈 〉, and by two elementary operations:

- Overwriting 〈r ← ℓi = M〉; if ℓi is not present in r, then it adds a field of label ℓi and
value M to the record r; otherwise replaces the value of the field with label ℓi by the
value M .

- Extraction r.ℓi; extracts the value corresponding to the label ℓi, provided that a field
having that label is present.

The record types are encoded in the same way as for simple records. To encode record values
it is very useful to introduce the following meta-notations

Notation 2.5.2 Let T≡{Si → Ti}i∈I be an overloaded type. We denote by T r Sj the type
T≡{Si → Ti}i∈Ir{j} if Sj ∈ {Si}i∈I the type T itself, otherwise. We denote by T ∪ {S → T}
the appending of the branch S → T to the list of branches of T .

Thus for example {S1 → T1}∪{S2 → T} = {S1 → T, S2 → T}; also {S1 → T, S2 → T}rS1 =
{S2 → T} and {S1 → T, S2 → T} r S = {S1 → T, S2 → T} (for S 6= S1, S2). Note that
even if T is a well-formed type T r S may be not well-formed since S might be necessary to
assure that T satisfies the condition of multiple inheritance. Though when we restrain our
attention to overloaded types whose input types form a set of isolated types this problem
does not persist since the condition is always trivially satisfied10. Therefore we know that
applying the meta-notation r to an overloaded type that encodes a record type always yields
a well-formed type. Finally note that if T r S is a well-formed type then T ≤ T r S.

〈 〉 = ε
r.ℓi = r•ℓi

〈r ← ℓi = M〉 = (r &IλxLi .M) where I ≡ (S rLi)∪{Li → T}
if r:S and M :T

The idea is that when we overwrite in a record a field already present, we erase in the index
its old reference, say L → T1 (we can do it since T ≤ T r L), and we append to the index
the new one L→ T2. In this case T2 does not have to be related to T1.

10In section 4.1.1 we modify the typing rules of λ& in order to apply this technique also to non isolated
types

102 CHAPTER 2. THE λ&-CALCULUS

Note that both the conditions in Overwriting and Extraction are enforced statically by
the encoding: for example if Mi:Ti then the record

〈 〈 〈〉 ← ℓ = M1〉 ← ℓ = M2〉

is encoded by
(ε &{L→T1}λxL.M1 &{L→T2}λxL.M2)

This term has the expected type:

[{}Intro]
⊢ (ε &{L→T1}λxL.M1): {L→ T1}≤{} ⊢ λxL.M2: {L→ T2}

⊢ ((ε &{L→T1}λxL.M1) &{L→T2}λxL.M2): {L→ T2}(≡ 〈〈ℓ:T2〉〉)

Note the use of the index to hide the old branches.
Even if we mimic the calculus on the values of [Wan87], we have not the same power

for the types: indeed these encodings lack all the powerful polymorphism of Wand’s records.
In particular we have not a unique operation “←” of updating that applies to every record
type, but a class of different updating operators one for each record type. The operation ←
is strictly tied to the type of the record it updates, since the index used to encode it fixes the
type once forever. Consider for example a variable x: 〈〈ℓ:S〉〉. If M :T then 〈x ← ℓ = M〉 is
the term (x&{L→T}λy.M). Consider a term r: 〈〈ℓ:S, ℓ′:S′〉〉 and the substitution (〈x ← ℓ =
M〉)[x: = r]; this yields (r&{L→T}λy.M). But note that the record we obtained has type
〈〈ℓ:T 〉〉 rather than 〈〈ℓ:T, ℓ′:S′〉〉. This is so because that particular updating where designed
for the type 〈〈ℓ:S〉〉. Indeed this is an important lack in view of the modeling of the code
reuse of inheritance; this problem has been the motivation of the works of Wand [Wan87,
Wan88, Wan91], Rémy [Rém89, Rém90], Cardelli and Mitchell [CM91].

However at this stage, we do not tackle this problem since it can be framed into the more
general problem of loss of information [Car88], which is the subject of the second part of this
thesis.

2.6 λ& and object-oriented programming

In this section we investigate more in detail the relation between λ& and object-oriented
programming. From the previous chapter it should be clear that we represent class-names
as types, and methods as overloaded functions that, depending on the type (class-name) of
their argument (the object the message is sent to), execute a certain code.

There are many techniques to represent the internal state of objects in this overloading-
based approach to object-oriented programming. Since this is not the main concern at this
point of the thesis (we will broadly discuss it in section 5.2), we follow a rather primitive
technique: we suppose that a program (λ&-term) may be preceded by a declaration of class
types: a class type is an atomic type, which is associated with a unique representation type,
which is a record type. Two class types are in subtyping relation if this relation has been
explicitly declared and it is feasible, in the sense that the respective representation types are
in subtyping relation too. In other words class types play the role of the atomic types from
which we start up, but in addition we can select fields from a value in a class type as if it
belonged to its representation record type, and we have an operation classType to transform

2.6. λ& AND OBJECT-ORIENTED PROGRAMMING 103

a record value r:R into a class type value rclassType of type classType, provided that the
representation type of classType is R. We use italics to distinguish class types from the usual
types, and

.
= to declare a class type and to give it a name; we will use ≡ to associate a name

with a value (e.g. with a function). We use the examples of chapter 1 pages 69 and 72, which
we adapt to the purposes of this section.

We first declare the following class types:

2DPoint
.
= 〈〈x : Int; y : Int〉〉

2DColorPoint
.
= 〈〈x : Int; y : Int; c : String〉〉

and impose that on the types 2DColorPoint and 2DPoint we have the following relation
2DColorPoint ≤ 2DPoint (which is feasible since it respects the ordering of the record types
these class types are associated with); note that this corresponds to having used in exam-
ple 1.1.4 the keyword is in the definition of the class 2DColorPoint. The method norm will
be implemented by an overloaded function with just one branch:

norm ≡ (ε & λself 2DPoint.
√

self.x2 + self.y2)

whose type is {2DPoint→ Real}.

This function accepts also arguments of type 2DColorPoint, since 2DColorPoint≤2DPoint.
Let us now carry on with our example and have a look at what the restrictions in the forma-
tion of the types (section 2.2.2) become in this context.

The first condition, i.e. covariance inside overloaded types, expresses the fact that a
version of a method which receives a more informative input returns a more informative
output. Suppose that we have redefined in 2DColorPoint the method erase so that it also
sets to white the color field. Then erase is the following overloaded function:

erase ≡ (λself 2DPoint.〈x = 0; y = self.y〉2DPoint

& λself 2DColorPoint.〈x = 0; y = self.y; c = “white”〉2DColorPoint

)

whose type is {2DPoint→ 2DPoint , 2DColorPoint → 2DColorPoint}. Here covariance arises
quite naturally. In object-oriented jargon, covariance says that an overriding method must
return a type smaller than the one returned by the overridden one.

As for the second restriction it simply says that in case of multiple inheritance the methods
which appear in different ancestors not related by ≤, must be explicitly redefined. For
example take the alternative definition of the class for colored points given in the example 1.1.5
page 73:

Color
.
= 〈〈c : String〉〉

2DColorPoint
.
= 〈〈x : Int; y : Int; c : String〉〉

then the ordering on the newly defined atomic types is extended in the following (feasible)
way: 2DColorPoint≤Color and 2DColorPoint≤2DPoint.

Now suppose that in the definition of the class Color we have defined a method for erase,
too. Then the following definition for erase would not be legal, as the formation rule 3.c in
Section 2.2.2 is violated:

104 CHAPTER 2. THE λ&-CALCULUS

erase ≡ (λself 2DPoint.〈x = 0; y = self.y〉2DPoint

& λself Color.〈c = “white”〉Color

)

In object-oriented terms, this happens since 2DColorPoint, as a subtype of both 2DPoint
and Color, inherits the erase method from both classes. Since there is no reason to choose
one of the two methods and no general way of defining a notion of “merging” for inherited
methods, we ask that this multiply inherited method is explicitly redefined for 2DColorPoint.

In our approach, a correct definition of the erase method would be:

erase ≡ (λself 2DPoint.〈x = 0; y = self.y〉2DPoint

& λself Color.〈c = “white”〉Color

& λself 2DColorPoint.〈x = 0; y = self.y; c = “white”〉2DColorPoint

)

which has type:
{ 2DPoint→ 2DPoint,

Color→ Color,
2DColorPoint → 2DColorPoint }

Before showing how inheritance, multi-methods and multiple dispatching are modeled in λ&,
we want to recall the model based on the “objects as records” analogy, in order to start the
comparison between this model and the one we are studying in this thesis.

2.6.1 The “objects as records” analogy

One of the earliest and most clear functional approaches to objects has been suggested in
[Car88] and developed by several authors. The basic idea of that paper was inspired by
the implementation of Simula where objects are essentially records with possibly functional
components; these functional fields represent the methods of the object and message passing
corresponds to the selection of those fields; the remaining fields are to form the “internal”
(quotation marks are mandatory) state of the object. In short, this modeling is built around
the so-called “object as record analogy” and the main concepts surveyed in chapter 1 are
given a precise formal status as follows:

Objects ⇒ Record values
Classes ⇒ Record generators
Methods ⇒ Record fields
Messages ⇒ Record Labels
Message Passing ⇒ Field Selection
Inheritance ⇒ Record extension

To this end Cardelli [Car88] defined λ≤, an extension of simple typed lambda calculus by
record, variant and recursive types and recursive terms; to type check terms he introduced the
subsumption rule (see section 2.2.4). He then proved that the system so obtained prevented
from run-time errors: well-typed terms rewrote only into well-typed terms. Furthermore

2.6. λ& AND OBJECT-ORIENTED PROGRAMMING 105

well-typing was statically decidable, i.e. there existed a type-checking algorithm that as-
sured, at compile time, the absence of type errors during the execution. Record types were
needed for objects, recursive types for methods that modify the internal state (e.g. erase in
example 1.1.3) and recursive terms for self.

Consider our key example. In the record-based model a possible formalization of the
classes 2DPoint and 2DColorPoint would be the following one:

2DPoint ≡ 〈〈norm : Real; erase: 2DPoint;move: (Int × Int)→ 2DPoint〉〉

2DColorPoint ≡
〈〈norm : Real; erase: 2DColorPoint;move: (Int×Int)→ 2DColorPoint; isWhite:Bool〉〉

Note that these types have recursive definitions. To integrate the property of encapsulation
of the internal state a first solution is to code instance variables as local variables. For ex-
ample in [CCH+89] the command new becomes a function that takes as argument the initial
values of the instance variables and returns a record of methods; so that new(2DPoint) is
implemented by the following function

Y(λself.
λ(x, y).
〈norm = sqrt(x2 + y2);
erase = self (0, y);
move = λ(p, q).self (x + p, y + q)
〉)

to which we pass the initial state of the object (Y is a fix-point operator).
Another solution that is often present in the literature is to consider classes as a sort of

abstract data types and then, following the results in [MP85], to model it by an existential
type: the variable existentially quantified represents the (hidden) type of the instance vari-
ables. This idea is at the base of the approaches in [Cas90b, Cas90a], [Bru92] and [PT93]
although they are very different one from the other.

Inheritance in the “objects as record” analogy

Inheritance is the ability to define the state, interface and methods of a class “by difference”
with respect to another class; inheritance on methods is the most important one. In the record
based model, inheritance is realized using the record concatenation operation to add to the
record of the methods of a superclass the new methods defined in the subclass. However,
the recursive nature of the hidden self parameter forces one to distinguish between the
“generator” associated with a class definition, which is essentially a version of the methods
where self is a visible parameter, from the finished method set, obtained by a fix point
operation which transforms self into a recursive pointer to the object which the methods
belong to. This operation is called “generator wrapping”. In the example above the
generator of the class 2DPoint is

G2DPoint = λ(x,y).
〈norm = sqrt(x2 + y2);
erase = self (0, y);

106 CHAPTER 2. THE λ&-CALCULUS

move = λ(p, q).self (x + p, y + q)
〉

and the wrapping corresponds to Y(λself.G2DPoint). Inheritance may be defined by record
concatenation over generators.11

To be able to reuse a generator, the type of self parameter must not be fixed: it must be
a type variable that will assume as value the type for which the generator is reused. A first
approach is to consider the type of self as a parameter itself; let us call it Mytype (this is
the name used in [Bru92]). In this case, if this “recursive type” appears in the result type of
some method, then, when a generator is wrapped, the same operation must be performed on
the type, to bind Mytype to the type of the class under definition, hence we need a fix point
operator at the type level too. If, furthermore, there is some binary method12, then Mytype
must be linked to the type of the class under definition on the left hand side of arrows too.

But, if a generator G has such a binary method, and a generator G′ is obtained by
extending G, then the type obtained by wrapping G′ is not a subtype of the one obtained
by wrapping G, as explained in more detail in the next section. Hence, subtyping cannot
be used to write functions operating on objects corresponding to both G and G′, but F-
bounded polymorphism must be introduced. F-bounded polymorphism is essentially a way
of quantifying over all types obtained by wrapping an extension of a generator F . Thus it
permits to define functions that accept as argument values of all the types that may have
inherited from a certain type 13. For an account of this approach see for example [CCH+89,
CHC90, Mit90a, Bru91].

The feeling is that in the approach outlined above, recursion is too heavily used. An
approach close to the previous one but that avoids the use of recursive types has been recently
proposed in [PT93]. The idea is to separate the state of an object from its methods and then
encapsulate the whole object by existentially quantifying over the type of the state. The type
of a method that works on the internal state does not need to refer to the type of the whole
object (as in the previous approach) but only to its state part; therefore recursive types are no
longer needed. The type of the state is referred by a type variable since it is the abstract type
of the existential quantification. The whole existential type is passed to the generator as in
the previous case but without any use of recursive types. Finally, the behavior of F-bounded
polymorphism is obtained by a clever use of higher order quantification.

Inheritance in λ&

Our approach to method inheritance is even simpler since we also separate the state from the
methods14. In our system, every subtype of a type inherits all the methods of its supertypes,

11We must remark that the generator based approach may account for the special identifier super used in
object-oriented languages to refer to a method as it is implemented in a superclass, while we do not have this
possibility in λ&.

12A method is binary when it has a parameter whose type is the type of the receiver (of the message
associated to that method). For some examples see section 2.6.2

13Recall that subtyping is sufficient but not necessary for inheritance. The F-bounded quantification is an
example of inheritance not obtained from subtyping: see also [Bru91]

14Of course we pay this simplicity; for example by a minor encapsulation of the state (it is possible to add
new methods that read and write it), and the absence of encapsulation of the methods (methods are no longer

2.6. λ& AND OBJECT-ORIENTED PROGRAMMING 107

since every overloaded function may be applied to every subtype of the types which the
function has been explicitly written for. Moreover, the behavior of an inherited method M
appearing as a branch of an overloaded function (i.e. a message) N can be overridden (i.e.
defined in a way which is specific for a subtype T) by defining a branch for T inside the
overloaded function N . Finally, new methods may be defined for a subtype by defining new
overloaded functions. By this we can say that, in our system, inheritance is given by subtyping
plus the branch selection rule. This can be better seen by an example: suppose to have a
message for which a method has been defined in the classes U1 . . . Un; thus this message
denotes an overloaded function of type {Ui → Ti}i=1..n for some Ti’s. When this overloaded
function is applied to an argument of type U (i.e. the message is sent to an object of class U),
the selected branch is the one defined for the class mini=1..n{Ui|U ≤ Ui}. If this minimum is
exactly U , this means that the receiver uses the method that has been defined in its class;
otherwise, i.e. if this minimum is strictly greater, then the receiver uses the method that its
class, U , has inherited from this minimum (a superclass); in other terms, the code written
for the class which resulted to be the minimum, is reused by the objects of the class U .

2.6.2 Binary methods and multiple dispatch

Let us go back to the formalization of object-oriented programming by λ&: we tackle the
problem of modeling binary methods. We introduce this problem by showing what happens
in the “objects as records” analogy: if we add a method equal to 2DPoint and 2DColorPoint
then, in the notation typical of formalisms built around this analogy, we obtain the following
recursive record types (we forget the other methods):

2DEPoint ≡ 〈〈x : Int; y : Int; equal : 2DEPoint→ Bool〉〉

2DColEPoint ≡ 〈〈x : Int; y : Int; c : String; equal : 2DColEPoint→ Bool〉〉.

The two types are not comparable because of the contravariance of the arrow type in
equal : since one would expect 2DEPoint to be larger, as a record, than 2DColEPoint,
the type at the left of the outer arrow in 2DEPoint should be larger, which is impossible by
contravariance.15 Note that this should not be considered a flaw in the system but a desirable
property, since a subtyping relation between the two types, in the record based approach,
could cause a run-time type error: for example define

f ≡ λp2DEPoint.λq2DEPoint.(q.equal)(p)
a ≡ 〈x = 3; y = 5; equal = λp2DEPoint.(p.x = 3) AND (p.y = 5)〉
b ≡ 〈x = 5; y = 6; c = ‘white‘; equal = λp2DColEPoint.(p.c = ‘white‘)〉

If 2DColEPoint ≤ 2DEPoint then fab would be well-typed; but the reader can easily verify
that this would generate a type-error, since the function would try to select the field c in a.

Hence, there is an apparent incompatibility between the covariant nature of most binary
operations and the contravariant subtyping rule of arrow types.

encapsulated inside the object; this is a fundamental drawback in wide-area distributed systems where you
want objects to navigate carrying their operation with them).

15Recursive types should be considered as denotations for their infinite expansion, and an infinite type is a
subtype of another one when all the finite approximations of the first one are subtypes of the corresponding
finite approximation of the second one; see [AC90].

108 CHAPTER 2. THE λ&-CALCULUS

Our system is essentially more flexible, in this case. Indeed if we set 2DColorPoint≤2DPoint
then an equality function, with type:

equal: {2DPoint→ (2DPoint→ Bool), 2DColorPoint→ (2DColorPoint → Bool)}

would not be well-typed in our system either, since 2DColorPoint ≤ 2DPoint while 2DPoint
→ Bool ≤ 2DColorPoint → Bool. This expresses the fact that a comparison function cannot
be chosen only on the basis of the type of the first argument. In our system, on the other hand,
we can write an equality function where the code is chosen on the basis of both arguments

equal ≡ (λ(p, q)2DPoint×2DPoint.(p.x = q.x) AND (p.y = q.y)
& λ(p, q)2DColorPoint×2DColorPoint.(p.x = q.x) AND (p.y = q.y) AND (p.c = q.c)

)

the function above has type:

{(2DPoint × 2DPoint)→ Bool , (2DColorPoint × 2DColorPoint)→ Bool}

which is well-formed16.

Thus part of the expressive power of our system derives from the ability to choose one
implementation on the basis of the types of many arguments. This ability makes it even
possible to decide explicitly how to implement “mixed binary operations”. For example,
besides implementing “pure” equality between 2DPoints and between 2DColorPoints, we
can also decide how we should compare a 2DPoint and a 2DColorPoint, as below17 :

equal ≡ (λ(p, q)2DPoint×2DPoint. ...
& λ(p, q)2DColorPoint×2DColorPoint. ...
& λ(p, q)2DPoint×2DColorPoint.q.c = “white′′

& λ(p, q)2DColorPoint×2DPoint.(p.x = q.x) AND (p.y = q.y) AND (p.c = “white′′)
)

The ability to choose a method on the basis of several object parameters is called, in object-
oriented jargon, multiple dispatch.

2.6.3 Covariance vs. contravariance

In the presence of a subtyping relation, the covariance versus contravariance of the arrow
type, w.r.t. the left argument (domain), is a delicate and classical debate. Semantically
(categorically) oriented people have no doubt: the hom-functor is contravariant in the first
argument. Moreover, this nicely fits with typed models constructed over type-free universes,
where types are subsets or subrelations of the type-free structure, and type-free terms model
runtime computations. Also the common sense of type-checking forces contravariance: we
consider one type a subtype of another if and only if all expressions of the former type can be

16This is not surprising as, even if the types of the two versions of equal are componentwise isomorphic,
in general isomorphisms of types do not preserve subtyping. This is true also for the simply typed lambda
calculus: if A < B then A × A → A ≤ A × B → A but A → A → A 6≤ A → B → A

17Match the definition of equal with the method for compare in section 1.1.9

2.6. λ& AND OBJECT-ORIENTED PROGRAMMING 109

used in the place of expressions of the latter; then a function g : T → U may be substituted
by a function f only if the domain of f is greater than T . However, practitioners often have
a different attitude. In OOP, in particular, the “overriding” of a method by one, say, with
a smaller domain (input type) leads to a smaller codomain (output type), in the spirit of a
“preservation of information”. Indeed, in our approach, we show that both viewpoints are
correct, when adopted in the “right” context.

In fact, our general arrow types (the types of ordinary functions) are contravariant in
the first argument, as required by common sense and mathematical meaning. However, the
families of arrow types which are glued together in overloaded types form covariant collections,
by our conditions on the formation of these types (see 2.2.2). Besides the justification of
this at the end of section 2.1.1, consider the practice of overriding as shown in chapter 1,
section 1.1.5. The implementation of a method in a superclass is substituted by a more specific
implementation in a subclass; or, more precisely, overriding methods must return smaller or
equal types than the overridden one. For example, the “+” operation, on different types,
may be given by two different implementations: one implementation of type Int× Int→ Int,
the other of type Real × Real → Real. In our approach, we can glue these implementations
together into one global method, precisely because their types satisfy the required covariance
condition. We broadly discuss this issue in section 11.2.

2.6.4 Abstract classes

We now briefly discuss the mechanism of abstract classes18 which have been omitted in the
toy language of chapter 1. An abstract class is a class that can be used only as the base for
the definition of some other classes. If a class is abstract it cannot be used as argument of
new; thus an abstract class has no instance. A class is abstract if it associates to one of its
message a virtual method (deferred method in Eiffel terminology). A method is virtual when
it does not implement any operation but it defers its definition to the subclasses. Take again
the example of chess in section 1.1.5: in that example we had defined a fake class Chessman,
which were the superclass of all the classes that implemented the chessmen, i.e. King, Queen,
Bishop and so on. The reason of its definition was twofold: on one hand it allowed to
share the code of the methods whose implementation was the same for all the chessmen (as
for example the methods position or capture); on the other hand it permitted to write
functions working on all chessmen: just define a function of the form

fn(x : Chessman) => ... (2.25)

and by subtyping it will accept as argument any object instance of the classes King, Queen,
etc. In that same example we also said that a method for a message like move for which it
is not possible to give a general implementation, would have been defined in each subclass.
Note then that

1. In the program, instances of the class Chessman will never be used: all the objects will
be an instance of some subclass of Chessman (you never play with generic chessmen but
with two kings, two queens, four bishops...).

18Abstract class is the name used in C++ [Str84, ES90] and in Dylan [App92] to denote this mechanism;
in Eiffel [Mey88] the name used is deferred class

110 CHAPTER 2. THE λ&-CALCULUS

2. Every object of a subclass of Chessmen can respond to the message move.

From this one deduces that all the objects that will be passed to a function like (2.25) will
be able to respond to the message move. Nevertheless it is not possible in the body of (2.25)
to send move to x. This because there is not syntactical construction asserting that the two
properties above are satisfied.

This can be obtained by declaring in the definition of Chessman that the implementation
of move is virtual, and thus it is deferred to the subclasses. A possible syntax is

class Chessman

{

color: String;

x: Int;

y: Int;

:

}

position = (self.x, self.y)

move = virtual

:

[[

position = Int x Int

move = Int x Int -> Chessman

:

]]

This implies that Chessman is an abstract class and thus it will have no instances, and that
all the objects instance of a subclass of Chessman will be able to respond to the message move
(if a subclass of Chessman does not define a method for move then it will be abstract, too).

In λ& an abstract class C is simply an atomic type for which the function C (see page 102)
is not defined. In this way it is not possible to create objects of class C. A message like move

which possesses a virtual branch is an overloaded function in which we can put as a virtual
branch any expression of the right type: we know that this branch will be never selected. For
example we can add to λ& a constant virtual which has every type and define move in the
following way

(ε
& λselfChessman.virtual
& λselfKing.λ(x, y)Int×Int. IF abs(x− self.x) ≤ 1 AND abs(y − self.y) ≤ 1 THEN . . .

...
)

Note that the virtual branch will be never selected: it cannot be selected for an object of
class Chessman because there exists no such an object (Chessman is virtual); it cannot be
selected for an object of a C subclass of Chessman because if such an object exists then C is
not virtual and thus a non virtual method for move has been defined for C.

In some languages a further distinction is introduced between abstract and partially ab-
stract classes: a class is (totally) abstract when all its methods (defined or inherited) are

2.6. λ& AND OBJECT-ORIENTED PROGRAMMING 111

virtual. A class is partially abstract if some of its methods are virtual but not all of them.
Thus abstract classes are used just to correlate various classes in order to define functions
that accept objects of all these classes, while a partially abstract class is needed as soon
as these classes have also to share some code. For example Chessman above is a partially
abstract class since it has a virtual method move and a non virtual method position whose
code is thus shared by all the subclasses of Chessman.

This distinction is introduced in the formalisms that use the objects as records analogy
where inheritance is obtained by extension of the generators (see section 2.6.1). In these
formalisms it is very easy to have totally abstract classes: they correspond to record types
for which no generator has been defined. But it is not completely clear how to model partially
abstract classes: indeed to implement these classes one would have to define generators with
undefined fields, and to assure that these generators will never be wrapped , since a partially
abstract class cannot have any instance. Note that on the contrary in our model abstract and
partially abstract classes are dealt with in the same (natural) way: a class C is abstract if
in all the overloaded functions possessing a branch selected by the input type C that branch
is virtual; it is partially abstract if there exist two overloaded functions possessing a branch
selected by the input type C such that in one the branch is virtual and in the other not.

112 CHAPTER 2. THE λ&-CALCULUS

Chapter 3

Strong Normalization

Interestingly, according to modern astronomers, space is finite.

This is a very comforting thought — particularly for people who

can never remember where they have left things.

Woody Allen

Side-effects. (1981)

In this chapter we study the normalization properties of λ&. We show that the λ&-calculus
is not strongly normalizing and that it is possible to define in it a fix-point combinator
of type (T → T) → T for every well formed type T . This expressiveness derives from the
definition of the subtyping relation for overloaded types. We give a sufficient condition to have
strong normalization, and we define two expressive systems that satisfy it. These systems
are important since they will be used in chapter 6 to study the mathematical meaning of
overloading and because they are expressive enough to model object-oriented programming.
This chapter is based on a joint work with Giorgio Ghelli and Giuseppe Longo.

3.1 The full calculus is not normalizing

The λ& calculus is not normalizing. Let T be any type; consider the following term, where
∅ is used instead of {} to reduce the parenthesis nesting level, and where ET stands for any
closed term of type {∅ → T}, e.g. ET ≡ (ε &{∅→T} λx∅.M) with M of type T :

ωT = (ET &{∅→T,{∅→T}→T} (λx{∅→T}.x•x)):WT

WT = {∅ → T, {∅ → T} → T}

ωT is a λ& version of the untyped λ-term ω ≡ λx.xx, coerced to a type WT such that it is
possible to apply ωT to itself. ωT is well typed; in particular, x•x is well typed and has type
T as proved below:

[{}Elim]
⊢ x: {∅ → T} ⊢ x: {∅ → T} ∅ = minU∈{∅}{U |{∅ → T} ≤ U}

⊢ x•x:T

113

114 CHAPTER 3. STRONG NORMALIZATION

The term ωT has the peculiar characteristic that its self application is well-typed and it does
not possess a normal form. Define ΩT ≡ ωT •ωT . Let first show that ΩT has type T :

[{}Elim]

⊢ ωT :WT ⊢ ωT :WT

{∅ → T} = minU∈{∅,{∅→T}}{U |{∅ → T, {∅ → T} → T} ≤ U}

⊢ ωT •ωT :T

Now we can show that ΩT is not strongly normalizing as it reduces to itself:

ΩT ≡ ωT •ωT >β&
(λx{∅→∅}.x•x) · ωT >β ωT •ωT ≡ ΩT

More than that, ΩT has no normal form, since the one used above is the only possible
reduction strategy (there may be some reductions in ET but they cannot affect the outer
reduction).

3.2 Fixed point combinators

The presence of fixed point combinators in a calculus is very important since it allows recursive
definitions of functions. In this section we show that there are infinitely many fixed point
combinators in λ&.

Definition 3.2.1 [Bar84] A fixed point combinator is a combinator1 M such that for all
terms N MN = N(MN) 2

In lambda calculus the classical fixed point combinator is Curry’s paradoxical combinator
Y ≡ λf.(λx.f(xx))(λx.f(xx)). We can follow the technique used for the definition of ωT to
define the typed term equivalent to Y:

YT ≡ λfT→T .((ET&{∅→T,{∅→T}→T}λx{∅→T}.f(x•x))•(ET&{∅→T,{∅→T}→T}λx{∅→T}.f(x•x)))

First of all note that YT : (T → T) → T . Indeed by the same derivations as above we prove
that (x•x):T and thus f(x•x):T . Then we also have that YT is a fixed point combinator:
indeed let F be a term of type T → T , and define H ≡ (ET&{∅→T,{∅→T}→T}λx{∅→T}.F (x•x)).
Then

YTF > H•H >∗ F (H•H) < F (YTF)

Note also that

ΩT ≡ ωT •ωT = YT (λxT .x)

as it happens in classical lambda-calculus.

1A combinator is a closed term not containing constants. Here we make an exception to it defining a
combinator as a closed term not containing constants other than ε, since every closed term with an overloaded
type must contain it.

3.3. THE REASONS FOR NON NORMALIZATION 115

We can carry on with this technique to mimic the Turing’s fixed point combinator ΘT

for every T [Tur37]. Recall that the Turing’s fixed point combinator has the following char-
acteristic:

ΘF >∗ F (ΘF)

which is not true for Y.

Define S ≡ (T → T)→ T . Then

AT ≡ (ES&
{∅→S,{∅→S}→S}λx{∅→S}.λyT→T .y((x•x)y)

has type {∅ → S, {∅ → S} → S}. Finally define ΘT ≡ AT •AT : S. Then for F :T → T we
obtain

ΘTF ≡ (A•A)F >∗ F ((A•A)F) ≡ F (ΘTF)

Again ΘT is well typed: indeed (x•x) has type S, i.e. (T → T) → T ; since y:T → T then
y((x•x)y):T . And thus ΘT has type S, i.e. (T → T)→ T as expected. This combiantor will
be used in section 5.4

3.3 The reasons for non normalization

Simply typed lambda calculus prevents looping, essentially, by imposing a stratification be-
tween a function of type T → U and its argument, whose type T is “simpler” than the whole
type T → U ; the same thing happens, in a subtler way, with system F.

When we add subtyping, the type T ′ of the argument of a function with type T → U is
just a subtype of T , and may be, syntactically, much bigger than the whole T → U : consider
the case when T ′ is a record type with more fields that T . However, the rank of T ′ is still
strictly smaller than that of T → U , where the rank of an arrow type is at least the rank of
its domain part plus one (for a correct definition see below; however as a first approximation
define the rank of a type as the depth of its syntax tree). This happens, in short, since in
λ≤ and in F≤ two types can be related by subtyping only when they have the same rank (or
one of the two is atomic). Hence, λ≤ and F≤ are strongly normalizing [Ghe90].

λ& typing does not prevent looping, essentially, since it allows one to compare types with
a different rank. In our example, we pass a parameter of type {∅ → T, {∅ → T} → T} (rank
2) to a function with domain type {∅ → ∅} (rank 1), and in the x•x case we pass a parameter
of type {∅ → ∅} (rank 1) to a function with domain type {} (rank 0). Hence, λ& typing does
not prevent looping since it does not stratify functions w.r.t. their arguments.

However, when λ& is used to model object-oriented programming, it is always used in
a stratified way. It is then interesting to define a stratified subsystem of λ& which is both
strongly normalizing and expressive enough to model object-oriented programming. To this
aim, we will prove the following theorem.

Theorem 3.3.1 Let λ&- be any subsystem of λ& closed by reduction and let rank be any
function associating integers with λ&- types. Assume also that, if T (syntactically) occurs
in U , then rank(T) ≤ rank(U). If in λ&-, for any well typed application MTNU one has
rank(U) < rank(T), then λ&- is Strongly Normalizing.

116 CHAPTER 3. STRONG NORMALIZATION

Example 3.3.2 We may obtain a system similar to λ& and with the properties of λ&-

in 3.3.1 either by restricting the set of types, or by imposing a stricter subtyping relation.
We propose here two significant examples based on these restrictions: (λ&-

T) and (λ&-
≤),

respectively. In either case, the rank function is defined as follows:

rank ({}) = 0
rank (A) = 0
rank (T → U) = max{rank (T) + 1, rank (U)}
rank ({Ti → Ui}i∈I) = maxi∈I{rank (Ti → Ui)}

Note however that other definitions of rank are possible.
The idea is that, by restricting the set of types or the subtyping relation as described

below, the types of a function and of its arguments are “stratified”, namely the rank of the
functional type is strictly greater than the rank of the input type, as required by theorem 3.3.1.

• λ&-
≤ is defined by substituting ≤ in all λ& rules with a stricter subtyping relation ≤-

defined by adding to any subtyping rule which proves T ≤ U the further condition
rank(T) ≤ rank (U). In any well typed λ&-

≤ application M{Ti→Ui}i∈I •NT ′
, the rank of

T ′ is then smaller than the rank of some Ti, hence is strictly smaller than the rank of
{Ti → Ui}i∈I ; similarly for functional application. The subject reduction proof for λ&
works for λ&-

≤ too, thanks to the transitivity of the ≤- relation.2

• λ&-
T is defined by imposing, on overloaded types {Ti → Ui}i∈I , the restriction that the

ranks of all the branch types Ti → Ui are equal, and by stipulating that {} is not a
supertype of any non-empty overloaded type (see the previous footnote). Then we can
prove inductively that, whenever T ≤ U , then rank (T) = rank (U), and that λ&-

T is a
subsystem of λ&-

≤. To prove the closure under reduction (i.e., that λ&-
T terms reduce

to λ&-
T terms), observe first that a λ& term is also a λ&-

T term if and only if all the
overloaded types appearing in the indexes of variables and of &’s are λ&-

T overloaded
types (this is easily shown by induction on typing rules). The closure by reduction
follows immediately, since variables and &’s indexes are never created by a reduction
step.

Note that λ&-
T is already expressive enough to model object-oriented programming, where

all methods always have the same rank (rank 1), and that λ&-
≤ is even more expressive than

λ&-
T.
Note also that λ&-

≤ is a subsystem of λ& if and only if the restriction is imposed on the
the subtyping relation on the types (and not just on the pretypes); thus for example one has
to use ≤ in the definition of well formed types and ≤− in the type checking rules. In the
same way λ&-

T is a subsystem of λ& if and only if the restriction is imposed on the well
formed overloaded types (not just on pretypes). Indeed if we restrict the subtyping relation
on pretypes or we exclude some pretypes it happens that two types that possessed a common

2Note that, in this system, {} is not a supertype of any non-empty overloaded type; this is not a problem,
since the empty overloaded type is only used to type ε, which is only used to start overloaded function
construction. However, we may alternatively define a family of empty types {}i∈ω, each being the maximum
overloaded type of the corresponding rank, and a correspondent family of empty functions εi∈ω.

3.4. TYPED-INDUCTIVE PROPERTIES 117

lower bound in the full system may no longer possess it in the restriction. Therefore the
condition (c) may be more easily satisfied and types that were not well formed may now
satisfy all the conditions of good formation. We would have then more types and, thus, more
terms. 2

Theorem 3.3.1 and the examples show that there exist subsystems of λ& which are strongly
normalizing and expressive enough for our purposes. However we preferred to adopt the whole
λ& as our target system, since it is easier to establish results such as Subject Reduction and
Confluence on the wider system and apply them in subsystems rather than trying to extend
restricted versions to more general cases.

In the following subsections we prove Theorem 3.3.1.

3.4 Typed-inductive properties

As is well known, strong normalization cannot be proved by induction on terms, since β
reduction potentially increases the size of the reduced term. For this reason we introduce,
along the lines of [Mit86], a different notion of induction on typed terms, called typed induc-
tion, proving that every typed-inductive property is satisfied by any typed λ&- term. This
notion is defined to conform the reduction, so that some reduction related properties, such
as strong normalization or confluence, can be easily proved to be typed-inductive. Theorem
3.4.7, which proves that every typed-inductive property is satisfied by any typed λ&- term, is
the kernel of our proof and is related to the normalization proofs due to Tait, Girard, Mitchell
and others. We had to avoid, though, the notions of saturated set and of logical relation,
which do not seem to generalize easily to our setting. In this section we define a notion of
“typed-inductive property” for λ&- terms and show that every typed-inductive property is
satisfied by any (well-typed) λ&- term. Although many of the results and definitions in this
section hold or make sense for λ& too, the reader should remember that all the terms, types
and judgments in this section refer to a λ&- system satisfying the conditions of Theorem 3.3.1.

Notation 3.4.1 M ◦N will denote M ·N if M :T → U and M•N if M : {Mi → Ni}i=1...n.

Notation 3.4.2 ~M denotes a list [Mi]i=1,...,n of terms, possibly empty, and N · ~M means

N ·M1 ◦ . . . ◦Mn; the same for N• ~M ; if ~M is empty, N ◦ ~M is just N .

“ ~M is well typed” means “each Mi in ~M is well typed”; similarly for other predicates on
terms.

Definition 3.4.3 Let {ST}T be a family of sets of λ&- terms, indexed over λ&- types, such
that:

M∈ST⇒ ⊢M :T.

S is typed-inductive if it satisfies the following conditions3 (where M∈S if means “M∈S if
M is well typed”):

3We use S for {ST}T . Furthermore, since any term M has a unique type T , we will write without ambiguity
M∈S to mean M∈ST .

118 CHAPTER 3. STRONG NORMALIZATION

(x/c) ∀x, ~N∈S . x ◦ ~N ∈ S if

and similarly for constants and for ε.

(&1) ∀M1∈S ,M2∈S , N∈S , ~N∈S .
M1•N ◦ ~N ∈ S if ∧ M2 ·N ◦ ~N ∈ S if ⇒ (M1&M2)•N ◦ ~N ∈ S if

(λ1) ∀M∈S , N∈S , ~N∈S . M [x :=N] ◦ ~N ∈ S if ⇒ (λx:T.M) ·N ◦ ~N ∈ S if

(&2) ∀M1∈S ,M2∈S . M1&M2 ∈ S
if

(λ2) ∀M∈S . λxT .M ∈ S if

The S if notation means that all the “∈S” predicates in the above implications must be
satisfied only by typed preterms. This is difficult only in case &1: depending on whether
M1• . . . is well-typed, M2 · . . . is well-typed or both are well-typed, the first, the second or
both are required to be in S ; indeed we want to take into account all the branches that could
be selected not only the one that will be actually executed. For this reason we used in &1 a
“∧” rather than a “∨”.

We aim to prove, by induction on terms, that every well-typed λ&- term N belongs to S .
The conditions on typed induction allow an inductive proof of this fact for terms like λxT .M
and M&N , but we have no direct proof that (M∈S∧N∈S)⇒(M ◦ N∈S). For this reason
we derive from S a stronger predicate S∗ which allows term induction through application.
We will then prove that S∗ is not actually stronger than S , since for any typed-inductive
property S :

M∈S∗T⇔M∈ST⇔ ⊢M :T.

The definition of S∗ is the only part of the proof where we need the stratification by the rank
function.

Notation 3.4.4 ([̂Ti]i∈I) For any list of types [Ti]i∈I , T ′∈[̂Ti]i∈I if and only if ∃i∈I.T ′≤Ti.

Note that if ⊢M : {Ti → Ui}i∈I and ⊢ N :T ′ then M•N is well typed if and only if T ′∈[̂Ti]i∈I .

Definition 3.4.5 For any typed-inductive property {ST}T its application closure on λ&-

terms {S∗T }T is defined, by lexicographic induction on the rank and then on the size of T,
as follows:

(atomic) M∈S∗A⇔M∈SA

(→) M∈S∗T→U ⇔ M∈ST→U ∧ ∀T ′≤T.∀N∈S∗T
′
. M ·N∈S∗U

({}) M∈S∗{Ti→Ui}i=1 ...n

⇔ M∈S{Ti→Ui}i=1 ...n ∧ ∀T ′∈[̂Ti]i=1...n.∀N∈S
∗T ′

.∃i∈[1..n].M•N∈S∗Ui

In short:
M∈S∗⇔M∈S∧∀N∈S∗.M ◦N∈S∗if

In the definition of S∗, we say that M belongs to S∗ by taking for granted the definition
of S∗ over the types of the N ’s such that M ◦ N is well typed and over the type of M ◦ N
itself. This is consistent with the inductive hypothesis since:

3.4. TYPED-INDUCTIVE PROPERTIES 119

1. The rank of the type of N is strictly smaller than the rank of the type of M in view of
the conditions in Theorem 3.3.1.

2. Since the type U of M ◦N strictly occurs in the type W of M , then the rank of U is not
greater than the rank of W (by the conditions in Theorem 3.3.1). Hence the definition
is well formed either by induction on the rank or, if the ranks of U and W are equal,
by secondary induction on the size.

The next lemma shows, informally, that in the condition M∈S∗⇔∀N∈S∗.M ◦N∈S∗if we
can trade an ∗ for an ~, since ∀N∈S∗.M ◦N∈S∗if⇔∀ ~N∈S∗.M ◦ ~N∈S if .

Lemma 3.4.6 M∈S∗⇔M is well typed ∧∀ ~N∈S∗.M ◦ ~N∈S if

Proof.

(⇒) “M is well typed” is immediate since M∈S∗T ⇒ M∈ST ⇒ ⊢M :T .

∀ ~N∈S∗.M ◦ ~N∈S if is proved by proving the stronger property ∀ ~N∈S∗.M ◦ ~N∈S∗if by
induction on the length of ~N . If ~N is empty, the thesis is immediate. If ~N = N1 ∪ ~N ′

then M ◦N1∈S
∗if by definition of S∗, and (M ◦N1) ◦ ~N ′∈S∗if by induction.

(⇐) By definition, M∈S∗⇔M∈S∧∀N∈S∗.M ◦N∈S∗if . ∀ ~N∈S∗.M• ~N∈S if implies imme-
diately M∈S : just take an empty ~N . M ◦N∈S∗if is proved by induction on the type
of M .

(atomic) ⊢M :A: M ◦N is never well typed; M∈SA is enough to conclude M∈S∗A.

({}) ⊢M : {}: as above.

(→) ⊢ M :T → U : we have to prove that ∀N∈S∗T
′
, T ′≤ T.M · N∈S∗U . By

hypothesis:

∀ ~N∈S∗.M ·N ◦ ~N∈S if

applying induction to M · N , whose type U is smaller than the one of
T → U , we have that M ·N∈S∗U .

({Ti → Ui}) ⊢M : {Ti → Ui}i=1...n+1: as in the previous case.

2

Theorem 3.4.7 If S is typed-inductive, then every term ⊢ N :T is in S∗T .

Proof. We prove the following stronger property: if N is well-typed and σ≡ [~x
~T := ~N] is a

well-typed S∗-substitution (i.e. for i∈[1..n]. Ni∈S
∗T ′

i and T ′i ≤Ti), then Nσ∈S∗; ~x
~T is called

the domain of σ≡ [~x
~T := ~N], and is denoted as dom(σ).

It is proved by induction on the size of N . In any induction step, we prove ∀σ.Nσ∈S∗, sup-
posing that, for any N ′ smaller than N , ∀σ′.N ′σ′∈S∗ (which implies N ′σ′∈S and N ′∈S).

(c) cσ≡c. We apply lemma 3.4.6, and prove that ∀ ~N∈S∗.c◦ ~N∈S if . Since ~N∈S∗⇒ ~N∈S
then c ◦ ~N∈S if follows immediately from property (c) of S .

120 CHAPTER 3. STRONG NORMALIZATION

(x) If x∈dom(σ) then xσ∈S∗ since σ is an S∗-substitution. Otherwise, reason as in
case (c).

(M1&M2) By applying lemma 3.4.6 we prove that ∀σ.∀ ~N∈S∗.(M1&M2)σ ◦ ~N∈S if .

We have two cases. If ~N is not empty then ~N≡N1 ∪ ~N ′. For any σ, M1σ•N1 ◦
~N ′∈S if and M2σ·N1◦ ~N ′∈S if by induction (M1 and M2 are smaller than M1&M2).
Then (M1&M2)σ•N1 ◦ ~N ′∈S if by property (&1) of S .

If ~N is empty then (M1&M2)σ∈S follows, by property (&2) of S , from the induc-
tive hypothesis M1σ∈S and M2σ∈S .

(λxT .M) We will prove that ∀σ.∀ ~N∈S∗. (λxT .M)σ ◦ ~N∈S if , supposing, w.l.o.g., that x is
not in dom(σ).

We have two cases. If ~N is not empty and (λxT .M)σ ◦ ~N is well typed then
~N≡N1 ∪ ~N ′ and the type of N1 is a subtype of T . Then for any S∗-substitution
σ, σ[xT := N1] is a well-typed S∗-substitution, since N1∈S

∗ by hypothesis, and
then M(σ[x :=N1]) ◦ ~N ′∈S if by induction, which implies (Mσ)[x :=N1] ◦ ~N ′∈S if .
Then (λxT .Mσ) ·N1 ◦ ~N ′≡(λxT .M)σ ◦ ~N∈S if by property (λ1) of S .

If ~N is empty, (λxT .M)σ∈S follows, by property (λ2), from the inductive hypoth-
esis Mσ∈S .

(M ◦N) By induction Mσ∈S∗ and Nσ∈S∗; then (M ◦N)σ∈S∗ by definition of S∗.

This property implies the theorem since, as can be argued by case (x) of this proof, the
identity substitution is a well-typed S∗-substitution. 2

Corollary 3.4.8 If S is a typed-inductive property, every well-typed term satisfies S and its
application closure and viceversa:

M∈S∗T ⇔ M∈ST ⇔ ⊢M :T

Proof.
M∈S∗T ⇒ M∈ST by definition of S∗.
M∈ST ⇒ ⊢M :T by definition of typed induction.
⊢M :T ⇒ M∈S∗T by theorem 3.4.7.

2

3.5 Strong Normalization is typed-inductive

In this section we prove the strong normalization of λ&- by proving that strong normalization
is a typed-inductive property of λ&- terms.

Consider the following term rewriting system unconditional-β& ∪β, which differs from
β&∪β since unconditional-β& reduction steps are allowed even if N is not normal or not
closed and the selected branch can be any of those whose input type is compatible with the
type of the argument:

β) (λxS .M)N > M [xS :=N]

3.5. STRONG NORMALIZATION IS TYPED-INDUCTIVE 121

uncond.-β&) If N :U ≤ Uj then

((M1&
{Ui→Vi}i=1..nM2)•N) >

{
M1•N for j < n
M2 ·N for j = n

Instead of proving Strong Normalization for λ&- reduction, we prove Strong Normaliza-
tion for unconditional-β&∪β. Since any β&∪β reduction is also an unconditional-β&∪β
reduction, Strong Normalization of the unconditional system implies Strong Normalization
for the original one. Note that the proof of subject reduction is valid also when using the
uncond.-β& reduction (the proof results even simpler), but that even if the β& conditions
are not necessary to obtain strong termination or subject reduction, they are still needed to
obtain confluence. We prove the strong normalization for this general case since it will be
used in section 4.2 to prove the strong normalization for the calculus with explicit coercions.

Notation 3.5.1 If M is strongly normalizing, ν(M) is the length of the longest reduction
chain starting from M . ν(~M) is equal to ν(M1) + . . . + ν(Mn).

Theorem 3.5.2 SNT , the property of being strongly normalizing terms of type T (according
to the unconditional relation) is typed-inductive.

Proof.

(x/c) ∀ ~N∈SN . xU ◦ ~N∈SN if

By induction on ν(~N): if x ◦ ~N > P then P = x ◦ N ′1 ◦ . . . ◦ N ′n where just one of
the primed terms is a one-step reduct of the corresponding non-primed one, while the
other ones are equal. So P∈SN by induction on ν(~N).

(&1) ∀M1∈SN ,M2∈SN , N∈SN , ~N∈SN .
M1•N ◦ ~N ∈ SN if ∧ M2 ·N ◦ ~N ∈ SN if ⇒ (M1&M2)•N ◦ ~N ∈ SN if

By induction on ν(M1) + ν(M2) + ν(N) + ν(~N).

If (M1&M2)•N ◦ ~N > P then we have the following cases:

(β&1) P = M1•N ◦ ~N : since P is well-typed by subject-reduction, then P∈SN by
hypothesis.

(β&2) P = M2 ·N ◦ ~N : as above.

(congr.) P = (M ′
1&M ′

2)•N
′ ◦ ~N ′: P∈SN by induction on ν.

So (M1&M2)•N ◦ ~N∈SN since it one-step reduces only to strongly normalizing terms.

(λ1) ∀M∈SN , N∈SN , ~N∈SN . M [x :=N] ◦ ~N ∈ SN ⇒ (λxT .M) ·N ◦ ~N ∈ SN if

By induction on ν(M) + ν(N) + ν(~N). If (λxT .M) ·N ◦ ~N > P we have the following
cases:

(β) P = M [x :=N] ◦ ~N : P∈SN by hypothesis.

122 CHAPTER 3. STRONG NORMALIZATION

(congr.) P = (λxT .M ′) · N ′ ◦ ~N ′ where just one of the primed terms is a one-step
reduct of the corresponding one, while the other ones are equal: P∈SN by
induction on ν.

(&2) ∀M1∈SN ,M2∈SN . M1&M2 ∈ SN
if

By induction on ν(M1) + ν(M2). If M1&M2 > P then P≡M ′
1&M ′

2 where one of the
primed terms is a one-step reduct of the corresponding one, while the other one is
equal; then P∈SN by induction.

(λ2) ∀M∈SN . ⊢ λxT .M :T → U ⇒λxT .M ∈ SN

If λxT .M > λxT .M ′ then, since ν(M ′) < ν(M), λxT .M ′∈SN by induction on ν(M).
So λxT .M∈SN .

2

The last proof can be easily extended to show that the reduction system remains strongly
normalizing if we add the following extensionality rules:

(η) λxT .M · x > M if x is not free in M

(η&) M&(λxT .M•x) > M if x is not free in M

Theorem 3.3.1 is now a corollary of Theorem 3.5.2 and of Corollary 3.4.8.

Chapter 4

Three variations on the theme

I have called this principle, by which each slight variation, if useful,

is preserved, by the term of Natural Selection

Charles Darwin

The Origin of Species (1859)

In this chapter we present three different systems directly issued from λ&

1. A modification of λ& with less contrived restrictions on the formation of types and
terms, and on the application of the reduction rules.

2. The extension of λ& by the addition of explicit coercions.

3. A calculus in which regular functions and overloaded ones are introduced by the same
abstraction operator, which therefore unifies them.

The first two systems are introduced mainly by pragmatical reasons, since they will be exten-
sively used when translating object-oriented languages into the formal system (see chapter 5).
The last calculus has mainly a theoretical interest and is somewhat detached from the leit-
motiv of the thesis, i.e. the typing of object-oriented languages.

The three modifications are independent one from each other, thus can be introduced
separately.

4.1 More freedom to the system: λ&+

We present in this thesis a unique variant of λ&, but a very appealing one. We will introduce
three modifications in the definition of λ&: the first two were suggested when trying to
translate object-oriented languages into λ& [Cas93b] (see also chapter 5) and thus they have
a very pragmatical reason. The last one has been introduced to give full generality to the
implementation of late binding, during the study of a formalism in which a unique abstraction
could be used both for overloaded and normal functions; thus it is originally motivated by

123

124 CHAPTER 4. THREE VARIATIONS ON THE THEME

theoretical reasons; however, it is extremely important for code optimization during the
compilation of the programs; it also serves as an introduction to the calculus in 4.3.

4.1.1 Modifying the good formation of types

Up to now we said that an overloaded type {Ui → Ti}i∈I is well-formed if the set of its input
types {Ui}i∈I satisfies the “multiple inheritance” condition (see section 2.2.2:

(c) ∀Ui, Uj ∈ {Ui}i∈I .U ⇓ V ⇒ ∃!h ∈ I . Uh = inf{Ui, Uj}

This restriction is too strong to model an object-oriented language in which the methods that
are in common to more than one direct ancestor must be redefined. Consider the following
example: take two unrelated classes A and B whose objects can respond to the same message
m. Suppose you define a new class C by multiple inheritance from A and B: the method for
m must be redefined for C, and the domains of the type of m becomes as in Figure 1. Then
define a new class D by multiple inheritance from A and B where you redefine the method
for m. Then the domains of the type of m get as in Figure 2. Note that there may not be
any ambiguity in the selection of the branch, though this set of input types does not respect
the condition (c) since there exists no inf for A and B.

A B A B

?	�
�

�
�

�
�

?

@
@

@
@

@
@R	�

�
�

�
�

�

?
C C D

Fig. 1 Fig. 2

Indeed the condition of having semi-lattices is very comfortable to work with, especially when
dealing with the semantics of the system (see chapter 6). Though it happens to be too strict
for the practice of multiple inheritance: as shown by the example above, the user-defined
hierarchy may not be a semilattice but just an order.

Thus the first modification we apport is to weaken the (c) restriction in order to capture
the general behavior of multiple inheritance. Given two types U, V denote by LB(U, V)
the set of common lower bounds of U and V . Then replace in the definition of type good
formation the condition (c) by the following one:

(c+) ∀Ui, Uj ∈ {Ui}i∈I . ∀U maximal element of LB(Ui, Uj) ∃!h ∈ I. Uh = U 1

This condition corresponds to the requirement of redefining the methods in common to some
direct ancestors of a class defined by multiple inheritance: when a class is defined by multiple
inheritance from, say, two others then it becomes not the inf of the two classes in the subtyping

1Once more this definition is not precise since ≤ is not a p.o.: indeed we have not to consider the maximal
elements of LB(U, V) but rather the equivalences classes of maximal elements: thus the right formulation is:
for every U maximal in LB(Ui, Uj) there exists a unique h ∈ I s.t. Uh ∈ [U]∼

4.1. MORE FREEDOM TO THE SYSTEM: λ&+ 125

hierarchy (this is true only for the first common descendent) but rather a maximal element
of the set of the subclasses of these two classes; this because the practice of object-oriented
programming does not allow to declare a class greater than another: only refinement is
allowed. Thus the freshly defined class will always be a maximal element since no other class
can be inserted between it and and its ancestors. Therefore condition (c+) exactly requires
the redefinition of methods common to direct ancestors and ... nothing more.

Recall that we introduced the condition (c) in order to assure the existence of the min-
imum in the selection of the branch. The condition (c+) is weaker than (c) though it still
assures the existence of the minimum in the selection of the branch. Actually the following
theorem prove that (c+) is the weakest condition to assure it:

Theorem 4.1.1 Let (Y, 6) be a partially ordered set, X ⊆ Y . Define:
(1) ∀a, b ∈ X.∀c ∈ Y. (c maximal in LB(a, b)⇒ c ∈ X)
(2) ∀c ∈ Y. {x ∈ X|c 6 x} either is empty or it has a least element

then (1) ⇐⇒ (2)

Proof.
Sufficiency (⇒). Suppose that S = {x ∈ X|c 6 x} is not empty, and by contradiction that
there exist two distinct minimal elements of S, say, a and b. From the hypothesis it follows
that there is no maximal element of LB(a, b) greater than or equal to c otherwise it would be
contained in X and thus in S contradicting the minimality of a and b. Contradiction since
c ∈ LB(a, b).

Necessity (⇐) Let c be a maximal element of LB(a, b) with a, b ∈ X. Then {x ∈ X|c 6 x}
is not empty since it contains at least a and b. By hypothesis minx∈X{x|c 6 x} exists
and belongs both to X and to LB(a, b). By definition one has c 6 minx∈X{x|c 6 x}; by
the maximality of c in LB(a, b) one also has minx∈X{x|c 6 x} 6 c. By antisymmetry
c = minx∈X{x|c 6 x} ∈ X. 2

If you take Y equal to Types, “6” equal to “≤” and X equal to the domain of an overloaded
type, then you obtain the desired result2, i.e. that in a well-typed overloaded application
there always exists a least compatible branch to select if and only if the input types of the
overloaded function satisfy the condition (c+).

4.1.2 Modifying the formation of the terms

The second modification that we want to make to λ& is to allow the replacement of a branch
in an overloaded function. This is an operation that is allowed in some object-oriented
languages, where it corresponds to the redefinition of a certain method (see section 1.1.7).

In our calculus what we would like to obtain is that when we append to an overloaded
function of type {Ui → Vi}i∈I a branch of type U → V if U ∈ {Ui}i∈I then the new branch

2For 6 preorder modify the theorem in the following way:

Theorem 4.1.2 Let (Y,6) be a preordered set, X ⊆ Y . Define:

(1) ∀a, b ∈ X.∀c ∈ Y. ([c]∼ maximal in LB(a, b) ⇒ ∃! d ∈ [c]∼.d ∈ X)
(2) ∀c ∈ Y. {a ∈ X|c 6 a} either is empty of it a a least element

then (1) ⇐⇒ (2)

The proof of theorem 4.1.1 can be easily adapted to this

126 CHAPTER 4. THREE VARIATIONS ON THE THEME

replaces the old one whose input type was U . We already showed how to do it in section 2.5.3
to encode updatable records. However that technique does not work in general but only for
overloaded types with isolated input types. For the general case it can be obtained by a slight
modification of the [{}Intro] rule. To make it more readable it is useful to introduce the
following meta-notation

Notation 4.1.3
{U1 → V1, . . . , Un → Vn} ⊕ U → V =

=

{
{U1 → V1, . . . , Ui−1 → Vi−1, Ui+1 → Vi+1, . . . Un → Vn, U → V } if U = Ui
{U1 → V1, . . . , . . . Un → Vn, U → V } otherwise

Roughly speaking the meta-notation “⊕” denotes the append of a new arrow type to an
overloaded type and eventually remove from it an existing arrow type with the same input
type3 (note that by the uniqueness of the input types there may be at most one such a
branch). The new formulation of the [{}Intro] rule is

[{}Intro+]
⊢M :W1 ≤ {Ui → Vi}i∈I ⊢ N :W2 ≤ U → V

⊢ (M&{Ui→Vi}i∈I⊕(U→V)N): {Ui → Vi}i∈I ⊕ (U → V)

If M does not contain any branch with input type U then this rule behaves as the old rule.
Otherwise the old branch remains there but will be never selected again; note that in that
case, contrary to what happens in the old rule, the overloaded type at the premises and the
one at the conclusion have the same cardinality.

Note that this effect can be obtained also with the old rule

[{}Intro]
⊢M :W1 ≤ {Ui → Vi}i≤(n−1) ⊢ N :W2 ≤ Un → Vn

⊢ (M&{Ui→Vi}i≤nN): {Ui → Vi}i≤n

if we don’t require {Ui → Vi}i≤(n−1) to be a type but just a pretype.

Finally and most important, remark that neither of these modifications affect any of the
results of λ&. It is indeed easy to verify that the very same proofs of the theorems of subject-
reduction, Church-Rosser and strong normalization for λ& hold also if we replace [{}Intro]
by [{}Intro+].

4.1.3 Modifying the notion of reduction

In subsection 4.1.1 we defined the weakest condition that assured the existence of a least
branch for the selection. We would like to do the same with late binding and find out the
weakest condition that assures the correct implementation of late binding. Unfortunately one
cannot do it: we recall that with late binding we refer to the mechanism of selection of the
branch according to the most precise type of the argument. Thus, to put it in another way,
we would like to execute the branch with the least input type compatible with (i.e. greater
than) the run-time type of the argument. Now a reduction rule such as

3{Ui → Vi}i∈I ⊕ (U → V) corresponds to ({Ui → Vi}i∈I \ U) ∪ {U → V } of section 2.5.3

4.1. MORE FREEDOM TO THE SYSTEM: λ&+ 127

β&) ((M1&
{Ui→Vi}i=1..nM2)•N >

{
M1•N for j < n
M2 ·N for j = n

Uj least type compatible
with the run-time type of N

is surely intractable if not even undecidable. In general it will be necessary at least to
compute a good deal of the program this redex appears in, in order to discover the right
Uj . In λ& we adopted the simplest solution choosing to allow the reduction only after that
this computation had taken place, when the argument had reached its run-time type. This
solution was inspired by what happens in object-oriented programming in which a message is
bound to a method only when the receiver of the message is a fully evaluated object. Though
there are some reasonable improvements. For example one can always safely perform the
reduction when the involved overloaded function has only one branch, or when the type of
the argument is a leaf of the type hierarchy and thus cannot decrease any further.

We think that a good trade-off between the tractability of the reduction and its generality
is to allow reductions also when we are sure that however the computation evolves the selected
branch is always the same. This is precisely stated by the following notion of reduction which
in λ&+replaces (β&):

β+
&) Let Uj = min{Ui|U ≤ Ui}; if N :U is closed and in normal form or {Ui|Ui ≤ Uj} = {Uj}

then

((M1&
{Ui→Vi}i=1..nM2)•N) >

{
M1•N for j < n
M2 ·N for j = n

In other terms when we select one branch we check whether there are other branches with a
smaller input type. If not, we know that the selected branch can no longer change, and thus
we can reduce.

This variant is interesting from a proof theoretical point of view since, as we will show in
section 4.3, it permits us to consider lambda abstractions as the special case of overloaded
functions with just one branch. However it has not only a theoretical interest. At run-time
this rule would never be used; indeed one does not want to early select or partially evaluate
methods but rather to apply them to concrete objects. On the contrary at compile time
a rule that permits the early resolution of the dispatching is essential for the production
of efficient object code. A preliminary study on early implementations of Dylan showed
that on non optimized code about 30% of the time of computation is spent to perform
the method dispatching (source: Dylan group, Eastern Research and Technology, personal
communication). It is then clear that a mechanism which permits us to solve the dispatching
(branch selection) at compile time is one of the main tasks in designing a compiler producing
code comparable for speed to the code produced by a C++ compiler. (β+

&) goes in that
direction. We think that this rule and a definition of values that captures most of the
terms whose type can no longer decrease (see the “tagged values” of next chapter) are the
basic mechanisms that allow a significative amount of resolution at compile time of method
dispatching and, thus, the production of efficient object code.

In conclusion the λ&+-calculus is obtained from λ& by replacing (c), [{}Intro] and (β&)
by (c+), [{}Intro+] and (β+

&) respectively. We now pass to study the properties of λ&+.

128 CHAPTER 4. THREE VARIATIONS ON THE THEME

4.1.4 Conservativity

The first observation is that λ&+ is a conservative extension of λ& w.r.t. the subtyping
relation. Strictly speaking, let Types and Types+ denote the set of well-formed types of λ&
and λ&+ respectively; let L ≡ Types×Types and L+ ≡ Types+×Types+, and denote by
T and T + the the subtyping relations (as set of pairs) of λ& and λ&+, obtained from a same
axiom set for subtyping relation on atomic types. Then we have to show that T +∩L = T . In
other words, we have to prove that two types in Types are in the subtyping relation of λ&
if and only if they are in subtyping relation of λ&+. This is a consequence of the following
theorem:

Theorem 4.1.4 (transitivity elimination) If λ&+⊢ S ≤ T then there exists a derivation
of this judgement that do not use the transitivity rule.

Proof. The proof of the theorem for λ& (theorem 2.2.1) works also in this case. 2

Corollary 4.1.5 (conservativity) If S, T ∈ Types then

λ& ⊢ S ≤ T ⇐⇒ λ&+ ⊢ S ≤ T

Proof. A trivial induction on the subtyping rules (without transitivity of course). In other
terms if the theorem would not hold, this could only happen if and only if we had used the
transitivity rule on three types U≤V≤W with U and W types of λ& and V type of λ&+but
not of λ&. The transitivity elimination ensures that this is not possible. 2

Observe that if one just replaces (c) by (c+) the proofs of subject reduction, Church-
Rosser, and strong normalization for λ& are still valid: indeed in these proofs there is no
assumption on the good formation of types; only the existence of a least feasible input type
in the overloaded application must be assured. Thus theorem 4.1.1 assures the validity of all
these results.

We already said that these same proofs work also with [{}Intro+]. Therefore to prove
these theorems for the whole λ&+ it just suffices to show how to modify the proofs written
for λ& to take into account (β+

&). This is the subject of the next three subsections.

4.1.5 Subject Reduction

Lemma 4.1.6 (Substitution Lemma) Let M :U, N :T ′ and T ′ ≤ T . Then M [xT :=N]:U ′,
where U ′ ≤ U .

Proof. The same as lemma 2.3.1. 2

Theorem 4.1.7 (Generalized Subject Reduction) Let M :U . If M >∗ N then N :U ′,
where U ′ ≤ U .

Proof. In the case M ≡ (N1&N2)•M2 of theorem 2.3.2 the argument M2 may not be in
normal form. The rest of the proof is unchanged 2

4.1. MORE FREEDOM TO THE SYSTEM: λ&+ 129

4.1.6 Church-Rosser

Lemma 4.1.8 If N >∗
β+
&

N ′ and N :T ′≤T then M [xT := N] >∗
β+
&

M [xT := N ′]

Proof. The same as lemma 2.4.2 2

Lemma 4.1.9 If M >β+
&

M ′ and N :T ′≤T then M [xT := N] >β+
&

M ′[xT := N]

Proof. We have to add the following case to the proof of lemma 2.4.3

Case 4 (P1&
SP2)Q > PjQ where Q is not closed and in normal form. Then

M [x := N] ≡ (P1[x := N]&P2[x := N])Q[x := N]

Let U be the type of Q, {Ui}i∈I be the set of input types of S and Uj = mini∈I{Ui | U ≤
Ui}. Since Q is not closed and in normal form then by the definition of (β+

&) we have
that {Ui | Ui ≤ Uj} = {Uj}. By lemma 4.1.6 one has Q[x := N]:U ′ ≤ U . This implies
that mini∈I{Ui | U

′ ≤ Ui} ≤ mini∈I{Ui | U ≤ Ui}. But since {Ui | Ui ≤ Uj} = {Uj}
then mini∈I{Ui | U ′ ≤ Ui} = Uj. Whereas substitutions do not change the type of
(P1&

SP2) (recall that it is fixed by the index), the selected branch will be the same for
both (P1&P2)Q and (P1[x := N]&P2[x := N])Q, thus:

M [x := N] > Pj [x := N](Q[x := N))

≡ M ′[x := N]

2

Theorem 4.1.10 (Weak commutativity) If M >β N1 and M >
β+
&

N2 then there exists

N3 such that N1 >∗
β+
&

N3 and N2 >∗β N3

Proof. As the proof of theorem 2.4.5. The only modifications are to be done in case 3 which,
since M2 may be not closed and in normal form, needs two more subcases:
Subcase 6: N1≡(P&SQ)M ′

2 and N2≡P •M2 Thus M2 is not in normal form. By the definition
of (β+

&) then the input type of the selected branch is a minimal element of the set of input
types of S. By the subject reduction theorem 4.1.7, the type of M ′

2 is smaller than or equal
to the type of M2. Thus, by the minimality, the selected branch we be the same both for
(P&SQ)M2 and for (P&SQ)M ′

2. Therefore N3≡PM ′
2.

Subcase 7: N1≡(P ′&SQ)M ′
2 and N2≡QM2: as the case above. 2

4.1.7 Strong Normalization

Finally it is very easy to check that all the results stated in the chapter 3 on strong normaliza-
tion hold for λ&+, too. Indeed, as we already said, the definition of good type formation and
the rule [{}Intro+] do not play any role in the proof of strong normalization. Furthermore
the proof of strong normalization in section 3.5 is done for the notion of reduction uncond-β&

which is weaker than (β+
&). Therefore that proof implies the strong normalization of the

restrictions of λ&+.

130 CHAPTER 4. THREE VARIATIONS ON THE THEME

4.2 Adding explicit coercions

One of the most interesting extensions of λ& (or of λ&+: see the remark 4.2.4) is the one
obtained by adding explicit coercions. An explicit coercion informally is a term that changes
the type of its argument into a super-type. For example, the term coerceT (M) behaves in
the same way as the term M but with type T . The precise meaning of “behaving in the same
way” is given by the following notion of reduction4:

(coerce) coerceT (M) ◦N > M ◦N

In order to preserve the subject reduction property we must require T to be a supertype of
the type of M . More formally we add to the λ&-terms the following term

coerceT (M)

we add to the typing rules the following rule

[Coerce]
⊢M :S ≤ T

⊢ coerceT (M):T

and we add (coerce) to the notions of reduction.
The interest of this extension is that in λ& the computation depends directly on types.

Since the coercions affect the types then they also affect the computation. More precisely
it is possible to drive the selection in an overloaded application on a particular branch by
applying a coercion to the argument. This is for example what we will do later in the thesis
to deal with the “early binding” (see section 6.3). In object-oriented programming coercions
corresponds to the constructs that change the class of an object: For example in Dylan the
command as < C > M corresponds to our coerceC(M); though in Dylan this operation is
not type safe because it does not require C to be a supertype of the class of M . Of similar
behavior is change-class in CLOS. There however the operation is type safe since when one
changes the class of an object M to the class C, the instance variables specified in C that
are not in M are initialized in the coerced term (as a limit if all the instance variables of M
are different from those specified in C then change-class corresponds to the creation of a
new instance).

Note that a coerced term keeps all its functionalities, since the coercion disappears as
soon as we have to “use” the term (i.e. to apply it). Instead the coercion is maintained as
long as the term is an argument of a function, since in that case it is its type that matters.

The rule (coerce) is the simplest rule we have add to the system to have expressive
coercions. Others rules could be added for example

coerceT (coerceV (M)) > coerceT (M)

A different set of rules, stemming from the semantics of the coercions are proposed in [BL90].
However all of them would not bring any interesting modification to the system so we prefer
to limit our study to this minimal extension.

4As usual we use ◦ to denote either · or •. Strictly speaking (coerce) is the union of two different notions
of reduction, one for functional application and the other for the overloaded one.

4.2. ADDING EXPLICIT COERCIONS 131

This extension does not introduce any modification at the level of types; therefore the
property of transitivity elimination still holds. Another thing that is of immediate verification
is that this is a conservative extension of the theory of the terms of λ&. Indeed it is trivial
to check that if M and N are two terms without coercions then λ& ⊢M > N if and only if
λ& + coerce ⊢M > N . Let us verify also the other properties.

4.2.1 Subject Reduction

It is very easy to prove the subject reduction theorem for this extension: it suffice to apport
some slight modifications to the proof in section 2.3. More precisely:

Lemma 4.2.1 (Substitution Lemma) Let M :U, N :T ′ and T ′ ≤ T . Then M [xT : = N]:U ′,
where U ′ ≤ U .

Proof. The proof is much the same as the one of lemma 2.3.1. The case for M≡coerceU (M ′)
is solved by a straightforward use of the induction hypothesis. 2

Theorem 4.2.2 (Generalized Subject Reduction) Let M :U . If M >∗ N then N :U ′,
where U ′ ≤ U .

Proof. Use the proof of theorem 2.3.2: in the cases M≡M1 ·M2 and M≡M1•M2 add the
subcase M1≡ coerceS(M ′

1) (for a suitable S) and M > M ′
1 ◦M2. These are solved in the

same way as the respective first subcases. 2

4.2.2 Church Rosser

To prove that λ&+coerce is CR we use once more the Hindley-Rosen lemma. In section 2.4
we proved that β ∪ β& is CR. It is very easy to check that (coerce) satisfies the diamond
property. Therefore it just remains to prove that β ∪ β& and (coerce) commute, and apply
once more the Hindley-Rosen lemma to obtain CR for the whole extension.

Lemma 4.2.3 If M >coerce M ′ then M [x := N] >coerce M ′[x := N]

Proof. As in 2.4.3; just add to the table the case for the coercion. 2

Lemma 4.2.4 For all contexts C[] if M >∗coerce N then C[M] >∗coerce C[N]

Proof. As in 2.4.4: replace the case 3 by the one dealing with >coerce whose proof is straight-
forward 2

Theorem 4.2.5 (Weak commutativity) If M >coerceN1 and M >β∪β&
N2 then there ex-

ists N3 such that N1 >∗β∪β&
N3 and N2 >∗coerce N3

132 CHAPTER 4. THREE VARIATIONS ON THE THEME

Proof. Once more the proof is the same as the corresponding one of theorem 2.4.5. We have
only to add the subcase M≡coerceT (P) ◦N whenever M is an application. Its solution is
given by the following diagram chase:

coerceT (P) ◦N

������
>β∪β& �����

?

>coerce

HHHHH >β∪β&HHHHHj
coerceT (P ′) ◦N P ◦N coerceT (P) ◦N ′

@
@

@
>coerce @

@
@R 	�

�
�>β∪β&

�
�

� @
@

@
>β∪β&

@
@

@R 	�
�

� >coerce

�
�

�

P ′ ◦N P ◦N ′

2

As usual CR follows from the Hindley-Rosen lemma.

4.2.3 Strong Normalization

To prove the strong normalization of λ&-with coercions we associate a well-founded complex-
ity measure to each term and we show that each notion of reduction strictly decreases this
measure. To define this measure we define a translation from λ&-+coercions to λ&- with
unconditional-β& (see section 3.5). This translation simply erases all the explicit coercions
from a term.

Definition 4.2.6
[[ε]] = ε
[[x]] = x
[[λxT .M]] = λxT .[[M]]
[[M&TN]] = [[M]]&T [[N]]
[[M ◦N]] = [[M]] ◦ [[N]]
[[coerceT (M)]] = [[M]]

2

Given a term M of λ&-+coercions its complexity measure is given by the lexicographical
order of (N , C) where C is the number of coercions appearing in M and N is the sum of
lengths of all the reductions starting from [[M]] (note that this is a finite number: λ&-with
uncond-β& is strongly normalizing; thus this is the sum of the lengths of the paths of a finitely
branching, bounded tree, which is finite by the König’s Lemma). It is very easy to verify
that the rule (coerce) decreases this measure since it decreases the C component leaving N
unchanged. To prove that also β and β& decrease this measure is a little more difficult.

Lemma 4.2.7 M :T ⇒ [[M]]:T ′ ≤ T

Proof. A trivial induction on M . 2

4.2. ADDING EXPLICIT COERCIONS 133

Lemma 4.2.8 M >β&
N ⇒ [[M]] >β&

[[N]]

Proof. When M is the redex then the result follows from the definition of uncond− β& and
the lemma above. In all the other cases is follows by induction on M . 2

The lemma above proves that β& strictly decreases the N component. The same can be done
for β:

Lemma 4.2.9 [[M]][x := [[N]]] = [[M [x := N]]]

Proof. A straightforward induction on M 2

Lemma 4.2.10 M >β N ⇒ [[M]] >β [[N]]

Proof. When M is the redex then the result follows from lemma 4.2.9. In all the other cases
is follows by induction on M . 2

4.2.4 More on updatable records

With the introduction of explicit coercions we are now able to encode the record values
defined by Cardelli and Mitchell [CM91]5 . Their records are constructed starting from an
empty record value (denoted by 〈 〉, as usual) by three elementary operations:

- Extension 〈r|ℓi = M〉; adds a field of label ℓi and a value M to a record r provided that
a field of label ℓi is not already present.

- Extraction r.ℓi; extracts the value corresponding the label ℓi provided that a field having
that label is present.

- Restriction r\ℓi; removes the field of label ℓi, if any, from the record r.

The encoding is defined as follows:

〈 〉 ≡ ε
〈r|ℓi = M〉 ≡ (r&λxLi.M) where x 6∈ FV (M)
r.ℓi ≡ r•ℓi
r\ℓ ≡ coerce{Lj→Vj}j∈J rL(r) where r: {Lj → Vj}j∈J

Where r is defined as in definition 2.5.2
As usual both conditions in Extension and Extraction are statically enforced in the en-

coding. And the remark done in section 2.5.3 on the polymorphism of the encoding is (un-
fortunately) valid also in this case.

The extension of λ& with explicit coercions will be widely used in the rest of this part of the
thesis. See for example chapters 6 and 5.

Remark The whole section 4.2 can be paraphrased, to define the extension of λ&+ by
explicit coercions, instead of λ&. Just replace the references to the proofs of λ& by the
corresponding ones of the section of λ&+.

5We are not able to encode record types defined in the cited paper since we have no (linguistic) operation
on types.

134 CHAPTER 4. THREE VARIATIONS ON THE THEME

4.3 Unifying overloading and λ-abstraction: λ{}

In this section we define a minimal system implementing overloading with late binding.
The goal is to use as few operators as possible. Therefore we renounce having “extensible”
overloaded functions (i.e. functions to which one can add new branches by the & operator).
Terms are are built from variables by an operator of abstraction and one of application.
Types are built from a set of basic types by the constructor for overloaded types. The key
idea is to consider standard functions (λ-abstractions) as overloaded functions with just one
branch. We use a rule similar to β+

& in order not to have to use call-by-value when there is a
unique branch (i.e. when we perform β-reductions).

T ::= A | {S1 → T1, · · · , Sn → Tn} n ≥ 1

M ::= x | λx(M1:S1 ⇒ T1, · · · ,Mn:Sn ⇒ Tn) | MM n ≥ 1

Since there is only one type constructor, there is also only one subtyping rule:

(subtype)
∀i ∈ I,∃j ∈ J U ′′i ≤ U ′j and V ′j ≤ V ′′i
{U ′j → V ′j }j∈J ≤ {U

′′
i → V ′′i }i∈I

Types

As usual we have the rules of type good formation: every atomic type belongs to Types and
if for all i, j ∈ I

a. (Ui, Vi ∈ Types)

b. (Ui ≤ Uj ⇒ Vi ≤ Vj)

c. (Ui⇓Uj ⇒ there is a unique h ∈ I such that Uh = inf{Ui, Uj})
then {Ui → Vi}i∈I ∈ Types6

Note that variables are no longer indexed by their type. This because in the term λx(M1:S1 ⇒
T1, · · · ,Mn:Sn ⇒ Tn) the variable x should be indexed in each branch by a different type (i.e.
the corresponding Si). Thus we prefer to avoid indexing and introduce in the typing rules
type contexts (denoted by Γ). We suppose to work modulo α-conversion so that the order in
Γ is not significant:

Type-checking

[Taut] Γ ⊢ x: Γ(x)

[Intro]
∀i ∈ I Γ, (x:Si) ⊢Mi:Ui ≤ Ti

Γ ⊢ λx(Mi : Si ⇒ Ti)i∈I : {Si → Ti}i∈I

6The restriction c+ works as well

4.3. UNIFYING OVERLOADING AND λ-ABSTRACTION: λ{} 135

[Elim]
Γ ⊢M : {Si → Ti}i∈I Γ ⊢ N :S

Γ ⊢MN :Tj
Sj = mini∈I{Si|S ≤ Si}

Reduction

The selection of the branch of an overloaded function needs the type of its argument. Since
this argument may be an open term (and variables are no longer indexed by their type) re-
duction will depend on a typing context Γ. Thus we define a family of reductions, subscripted
by typing contexts >Γ ⊆ Terms × Terms, such that if M >Γ N then FV (M) ⊆ dom(Γ).
(Avoid confusion between this notation and >R where R is a notion of reduction)

We have the following notion of reduction:

ζ) Let Sj = mini∈I{Si|U ≤ Si} and Γ ⊢ N :U ; if N is closed and in normal form or
{Si|Si ≤ Sj} = {Sj} then

λx(Mi : Si ⇒ Ui)i∈IN >Γ Mj[x: = N]

Then there are the rules for the context closure: the change of the context must be taken
into account when reducing inside λ-abstractions:

M >Γ M ′

MN >Γ M ′N

N >Γ N ′

MN >Γ MN ′

Mi >Γ,(x:Si) M ′
i

λx(· · ·Mi:Si ⇒ Ti · · ·) >Γ λx(· · ·M ′
i :Si ⇒ Ti · · ·)

Note that if M >Γ N then FV (N) ⊆ FV (M) thus the transitivity closure of >Γ is well-
defined.

4.3.1 Subject Reduction

To prove that λ{} satisfies the subject reduction property, we define a translation [[]]Γ from
λ{} to λ&+ with the following properties:

1. Γ ⊢M :T ⇔ ⊢ [[M]]Γ:T

2. M >Γ N ⇒ [[M]]Γ >∗ [[N]]Γ

It is then clear that the subject reduction of λ{} follows by the subject reduction of λ&+.

Define an arbitrary total order � on Types with the following property: if S ≤ T then
S � T .7 Given an overloaded type {Si → Ti}i=i..n we denote by σ the permutation that
orders the Si’s according to �. Thus Si ≤ Sj implies σ(i) ≤ σ(j). This permutation is used
to translate λ{} into λ&+.

[[x]]Γ = xΓ(x)

[[MN]]Γ = [[M]]Γ•[[N]]Γ
[[λx(Mi : Si ⇒ Ui)i=1..n]]Γ = (· · · (ε &{Sσ(1)→Tσ(1)}λxSσ(1) .[[Mσ(1)]]Γ,(x:Sσ(1)))

· · ·&{Sσ(i)→Tσ(i)}i=1..nλxSσ(n) .[[Mσ(n)]]Γ,(x:Sσ(n)))

7Remember that ≤ is just a preorder. Therefore strictly speaking � is defined on Types/∼ where S ∼ T

iff S ≤ T ≤ S. This however does not affect the substance of what follows

136 CHAPTER 4. THREE VARIATIONS ON THE THEME

Lemma 4.3.1 Γ ⊢M :T ⇔⊢ [[M]]Γ:T

Proof. By a straightforward induction on the structure of M . Just remark in the case of
M≡λx(Mi : Si ⇒ Ui)i=1..n that by the definition of σ every subterm of the translation has a
well-formed type. 2

Lemma 4.3.2 [[M]]Γ,(x:T)[x
T := [[N]]Γ] = [[M [x: = N]]]Γ

Proof. A straightforward induction on the structure of M 2

Theorem 4.3.3 If Γ ⊢M :T and M >Γ N then [[M]]Γ >∗ [[N]]Γ

Proof. We first prove the case for M ≡ λx(Mi:Si ⇒ Ui)i=1..nP and N ≡ Mj[x: = P]. By
induction on the number n of branches of M :

n = 1 [[M]]Γ ≡ (ε&λxS1 .[[M1]]Γ,(x:S1))•[[P]]Γ
>
β+
&

(λxS1 .[[M1]]Γ,(x:S1)) · [[P]]Γ

>β [[M1]]Γ,(x:S1)[x
S1 : = [[P]]Γ]

= [[M1[x: = P]]]Γ by lemma 4.3.2
≡ [[N]]Γ

n > 1 Then there are two possible subcases:
1. j = σ(n). By lemma 4.3.1 the last branch is selected thus
[[M]]Γ >

β+
&

(λxSσ(n) .[[Mσ(n)]]Γ,(x:Sσ(n))) · [[P]]Γ which is proved as in the previous case.

2. j 6= σ(n). Again by lemma 4.3.1 the first branch is selected thus
[[M]]Γ >β+

&
(ε& · · ·&λxSσ(n−1) .[[Mσ(n−1)]]Γ,(x:Sσ(n−1)))•[[P]]Γ

= [[λx(Mi : Si ⇒ Ui)i∈[1..n]\{σ(n)}P]]Γ by the definition of σ
>∗ [[Mj [x: = P]]]Γ by induction hypothesis

The proof of the theorem is then easily obtained by induction on the structure of M , per-
forming a case analysis on the definition of >. 2

Corollary 4.3.4 (subject reduction) If Γ ⊢M :T and M >∗Γ N then Γ ⊢ N :S≤T

Proof. We prove the theorem for one step reductions. The result follows by induction on the
number of steps. If Γ ⊢M :T then by lemma 4.3.1 ⊢ [[M]]Γ:T ; by lemma 4.3.3 [[M]]Γ >∗ [[N]]Γ;
from the subject reduction theorem for λ&+ we obtain ⊢ [[N]]Γ:S≤ T ; thus applying once
more lemma 4.3.1 we obtain the result. 2

4.3.2 Church-Rosser

In this section we provide a proof that for all Γ the relation is >Γ is Church-Rosser. We
follow a technique due to W. Tait and P. Martin-Löf (see [Bar84]).

Lemma 4.3.5 If a binary relation satisfies the diamond property, so it does its transitive
closure

Proof. See Lemma 3.2.2 of [Bar84]. 2

4.3. UNIFYING OVERLOADING AND λ-ABSTRACTION: λ{} 137

We now define a relation ◮Γ that satisfies the diamond property and whose transitive closure
is >∗Γ. Then it follows by lemma 4.3.5 that >∗Γ satisfies the diamond property, i.e. >Γ is
CR.

Definition 4.3.6 [parallel reduction]

1. M ◮ΓM
2. ∀i ∈ I Mi ◮Γ,(x:Si)M

′
i ⇒ λx(Mi:Si ⇒ Ti)i∈I ◮Γλx(M ′

i :Si ⇒ Ti)i∈I
3. M ◮ΓM ′ N ◮ΓN ′ ⇒ MN ◮ΓM ′N ′

4. N ◮ΓN ′ ∀i ∈ I Mi ◮Γ,(x:Si)M
′
i ⇒ (λx(Mi:Si ⇒ Ti)i∈I)N ◮ΓM ′

j[x: = N ′] (*)

(*) if N ′ is closed and in normal form or {Si|Si ≤ Sj} = {Sj}, where Γ ⊢ N ′: U and Sj = min{Si|U ≤ Si}. 2

Lemma 4.3.7 For all Γ, >∗Γ is the transitive closure of ◮Γ

Proof. Note that >=
Γ ⊆ ◮Γ ⊆ >∗Γ. Since >∗Γ is the transitive closure of >=

Γ, so it is of
◮Γ. 2

Lemma 4.3.8 If M ◮Γ,(x:T)M
′, N ◮ΓN ′ and Γ ⊢ N :S≤T then M [x: = N] ◮ΓM ′[x: = N ′]

Proof. For notational convenience set Γ̄ ≡ Γ, (x:T). The result follows by induction on the
definition of M ◮Γ̄M ′:

Case 1 M ′ ≡ M . Then we have to show that M [x: = N] ◮ΓM [x: = N ′]. This follows by
induction on the structure of M , as shown in the following table:

M LHS RHS comment

ε ε ε OK
x N N ′ OK
y y y OK

PQ P []Q[] P [′]Q[′] use the induction hyp.
λy.(Pi:Si ⇒ Ti) λy.(Pi[]:Si ⇒ Ti) λy.(Pi[

′]:Si ⇒ Ti) use the induction hyp.

Case 2 M ≡ λy(Pi:Si ⇒ Ti)i∈I ◮Γ̄λy(P ′i :Si ⇒ Ti)i∈I ≡ M ′ By induction hypothesis one
has ∀i ∈ I Pi[x: = N] ◮Γ,(y:Si)P

′
i [x: = N ′], whence

λy(Pi[x: = N]:Si ⇒ Ti)i∈I ◮Γλy(P ′i [x: = N ′]:Si ⇒ Ti)i∈I

Case 3 M≡PQ ◮Γ̄P ′Q′≡M ′; as in the case above, the result follows from a straightforward
use of the induction hypothesis.

Case 4 M≡ (λy(Pi:Si ⇒ Ti)i∈I)Q ◮Γ̄P ′j [y: = Q′]≡M ′ where Q ◮Γ̄Q′, ∀i ∈ I Pi ◮Γ̄,(y:Si)
P ′i ,

Γ̄ ⊢ Q′:U and Sj = mini∈I{Si|U ≤ Si}. Without loss of generality we can suppose that
y 6∈ FV (N) (and thus y 6∈ FV (N ′)). There are two subcases:

1. Q′ is closed and in normal form:

M [x: = N] = (λy(Pi[x: = N]:Si ⇒ Ti)i∈I)(Q[x: = N])

138 CHAPTER 4. THREE VARIATIONS ON THE THEME

By induction hypothesis Pi[x: = N] ◮Γ,(y:Si)P
′
i [x: = N ′] and Q[x: = N] ◮ΓQ′[x: =

N ′]. Since Q′ is closed then Q′[x := N ′] ≡ Q′, thus the j-th branch will be again
selected:

◮Γ P ′j [x: = N ′][y: = Q′[x: = N ′]]

◮Γ P ′j [y: = Q′][x: = N ′] y 6∈ FV (N ′)

= M ′[x: = N ′]

2. {Si|Si ≤ Sj} = {Sj}. Observe that ◮Γ ⊆ >∗Γ (see lemma 4.3.7); then the
subject reduction for >∗Γ (corollary 4.3.4) implies the subject reduction for ◮Γ.
Let Γ̄ ⊢ Q′:U and consider the term

λx(Q′:T ⇒ U)N

It is easy to verify that this term is well-typed and Γ ⊢ λx(Q′:T ⇒ U)N : U . Note
also that λx(Q′:T ⇒ U)N ◮ΓQ′[x: = N ′]. Thus by the subject reduction theorem
for ◮Γ we deduce that Γ ⊢ Q′[x: = N ′]:U ′≤U . Then we have:

M [x: = N] = (λy(Pi[x: = N]:Si ⇒ Ti)i∈I)(Q[x: = N])

By induction hypothesis Pi[x: = N] ◮Γ,(y:Si)P
′
i [x: = N ′] and Q[x: = N] ◮ΓQ′[x: =

N ′]. Furthermore Γ̄ ⊢ Q′[x: = N ′]:U ′≤U≤Sj. By hypothesis {Si|Si ≤ Sj} = {Sj}
thus the j-th branch is again selected:

◮Γ P ′j [x: = N ′][y: = Q′[x: = N ′]]

◮Γ P ′j [y: = Q′][x: = N ′] y 6∈ FV (N ′)

= M ′[x: = N ′]

2

Lemma 4.3.9 ◮Γ satisfies the diamond property

Proof. We write “ M,N ◮ΓP ” for “ M ◮ΓP and N ◮ΓP ” and “ M ◮ΓP,Q ” for “ M ◮ΓP
and M ◮ΓQ ”.

By induction on the definition of M ◮ΓM ′ we show that for all M ◮ΓM ′′ there exists M ′′′

such that M ′,M ′′ ◮ΓM ′′′.

The only interesting case is when M ≡ (λy(Pi:Si ⇒ Ti)i∈I)Q, M ′≡ P ′j [y: = Q′] and
M ′′ ≡ (λy(P ′′i :Si ⇒ Ti)i∈I)Q

′′ where Q ◮ΓQ′, Q′′ and ∀i ∈ I Pi ◮Γ,(y:Si)P
′
i , P

′′
i and Γ ⊢ Q′:U

and Sj = mini∈I{Si|U ≤ Si}:
8

By induction hypothesis for all i ∈ I there exist P ′′′i and Q′′′ such that P ′i , P
′′
i ◮Γ,(y:Si)P

′′′
i

and Q′, Q′′ ◮ΓQ′′′. By lemma 4.3.8 one has P ′j[y: = Q′] ◮ΓP ′′′j [y: = Q′′′]. To obtain the
result it just remains to prove that (λy(P ′′i :Si ⇒ Ti)i∈I)Q

′′ ◮ΓP ′′′j [y: = Q′′′]. This is
obtained by showing that mini∈I{Si|U ≤ Si} = mini∈I{Si|U

′ ≤ Si} where Γ ⊢ Q′′′:U ′.
There are two subcases:

1. Q′ is closed and in normal form: but then Q′′′ ≡ Q′ therefore U ′ ≡ U .

8Sorry for all those “and” but commas were too confusing

4.4. REFERENCE TO OTHER WORK 139

2. {Si|Si ≤ Sj} = {Sj}. By the subject reduction for ◮Γ (see the proof of lemma 4.3.8)
one has that U ′ ≤ U this implies that Sj ∈ {Si|U

′ ≤ Si, i ∈ I}. From {Si|Si ≤
Sj} = {Sj} it follows that Sj = mini∈I{Si|U

′ ≤ Si}.

All the other cases are either trivial (case M ≡ M ′) or they follow from a straightforward
use of the induction hypothesis. 2

Corollary 4.3.10 For every Γ, ◮Γ is CR

Proof. It follows from lemmas 4.3.5, 4.3.7 and 4.3.9 2

We want to end this section, by remarking that λ{} is not completely deprived of interest
for the modeling of object-oriented programming. Indeed it constitutes a first step toward the
definition of a pure calculus of methods and generic functions (i.e. of branches and overloaded
functions); and it is important to stress that this is exactly the way Dylan works.

4.4 Reference to other work

At the end of this chapter devoted to the variations of λ& we have to cite two modifications
proposed by Hideki Tsuiki [Tsu94] that he calls λ&C and λ&C∗. These calculi are essentially
λ&+coerce but in which the standard definition of substitution is modified so that a variable
is always substituted by a term of the same type; this is obtained by explicitly coercing the
type of the argument of the substitution to the type of the variable; thus the β-reduction
becomes:

(βC) (λxT .M)N > M [xT : = coerceT (N)]

The two subcalculi then differ for the implicit meaning of the overloaded types, which corre-
sponds to different reduction rules for the coercions in the application.

The main motivation of these modifications is to define calculi that strictly satisfy the
subject reduction property, that is in which the reductions preserve the type of a term (and
do not reduce it as for λ&). Of course in this way there is no possible late binding since types
do not evolve during computation. Though in the section dedicated to the future work Tsuiki
makes an interesting proposition to use a peculiar form of implicit bounded polymorphism
to mimic late binding, and that surely deserves much attention.

140 CHAPTER 4. THREE VARIATIONS ON THE THEME

Chapter 5

A meta-language from λ&

In chapter 2 we have introduced the λ&-calculus and we have showed how this calculus could
be intuitively used to model some features of object-oriented programming.

However, λ& is not adequate to a formal study of the properties of real object-oriented
languages, and it was not meant for this: it is a calculus not a meta-language; thus, even if it
possesses the key mechanisms to model object-oriented features, it cannot be used to “reason
about” (i.e. to prove properties of) an object-oriented language.

For these reasons in this chapter we define a meta-language (i.e. a language to reason
about —object-oriented— languages)1 that we call λ object. This language is still based on
the key mechanisms of λ& (essentially, overloading with late binding) but it is enriched by
some features (like commands to define new types, to work on their representations, to handle
the subtyping hierarchy, to change the type of a term or to modify a discipline of dispatching
etc.) that are necessary to reproduce the constructs of a programming language and which
λ& lacks.

However this passage is not smooth since the meta-language has to be formed by very few
constructs (in order to keep to a reasonable size the proofs of the properties of the studied
languages) and it must be proved that it meets the subject reduction property.

We also show how to use λ object to prove properties of an object-oriented language. For
this purpose we give the formal definition of the toy object-oriented language and of the type
checking algorithm we informally described in chapter 1 and we translate the programs of
the toy object-oriented language into this meta-language. We prove that every well typed
program of the former is translated into a well typed program of the latter; since this last
one enjoys the subject reduction property, the reduction of the translated program does not
go wrong on a type error; in particular this proves the correction of the type-checker for the
toy-language.

Consequently, the chapter is organized as follows: section 5.1 gives the formal description
of the toy-language and of its type discipline. We do not give any reduction rule since the
formal operational behavior of the language is given by the translation that follows. In
section 5.2 we describe λ object: we give its operational semantics, a type-checker and we
prove for it the subject-reduction theorem. In section 5.3 (technically, the most difficult
one) we define the translation and we prove the correction of the type discipline for the toy

1In this case the prefix “meta” is used w.r.t. the object-oriented languages

141

142 CHAPTER 5. A META-LANGUAGE FROM λ&

language. The reader can find in Appendix A the implementation in Caml Light of an
interpreter for λ object as well as some examples of its use.

5.1 The formal presentation of the toy language

In this section we give the formal presentation of the toy language and of its type discipline.
We restrict our analysis to the main constructions of the language, omitting what is not
strictly necessary to the comprehension of the object-oriented part like conditionals, natural
numbers and their operations, and so on.

The formal description is given, as usual, in BNF. We use courier font for terminal
symbols and italics for non terminals; parenthesis and brackets that are metasymbols of BNF
are written in italics, too. Thus confusion must be avoided between ()[] which belong to
the syntax and ()[] which belong to the BNF notation. We have the following nonterminal
symbols :

Non Terminal Meaning

classname names for classes
x variables
method
message
r record expressions
exp expressions
instanceVariables
p programs
interface
A atomic types
D input types
R record types
T raw types
V interface types

The first two nonterminals denote strings of characters. For the others we give the formal
grammars.

This section is organized in two main subsections: one describes the terms (expressions
and programs) of the language; the other describes the types of the language and the type-
checker which is formally defined by means of syntax-driven rules.

5.1.1 The terms of the language

In chapter 1 we have presented the constructs that form our kernel language. Roughly
speaking these constructs can be divided in two groups: those which introduce new types
(this group contains only the class definitions) and those which can be evaluated and return a
value (all the others). In programs we keep separated the elements of these groups: a program
of the toy language is formed by a suite of class definitions followed by an expression where

5.1. THE FORMAL PRESENTATION OF THE TOY LANGUAGE 143

these definitions are used and no other class definition appears. This separation is necessary
to have static type-checking: if we allowed a class definition inside, say, a function then
the type hierarchy would vary according to whether this function is called or not; thus also
the typing of expressions would vary; for example an overloaded function which satisfied
the multiple inheritance condition might no longer satisfy it because a new class has been
dynamically created. Since the execution of a function is undecidable, dynamic type checking
would be necessary. 2

Thus we impose that all types and the subtyping relation are known before any step of
calculation. Programs are formed by an expression (a term that does not contain class defini-
tions) preceded by (possibly zero) class definitions. Among them the type-checker statically
picks up those which are well-typed.

Expressions and Programs

We start by defining record expressions. Record expressions possess a peculiar relevance in our
system, where they are used to represent the internal state (the instance variables) of objects.

r :: = {ℓ1=exp1; . . . ; ℓn=expn}

We next give the productions for expressions exp and programs p which are defined in terms
of the non-terminals method , instanceVariables and interface:

exp ::= x

| fn(x1 : T1, . . . , xn : Tn) => exp

| exp1(exp2)

| (exp, . . . , exp)

| fst(exp) | snd(exp)

| let x:T = exp in exp

| extend classname

(message = method;)+

interface

in exp

| new(classname)

| self

| (self.ℓ)

| (update r)

| super[A](exp)

| coerce[A](exp)

2Further study is required to find a trade off between static type checking and dynamic definition of classes

144 CHAPTER 5. A META-LANGUAGE FROM λ&

| & fn(x1:A1, . . . , xn1 : An1) => exp1

& fn(x1:A1, . . . , xn2 : An2) => exp2

...

& fn(x1 : A1,. . . ,xnm : Anm) => expm (m≥1)

| [exp0exp exp1 . . . expn] (n≥0)

p ::= exp

| class classname [is classname (, classname)∗]

instanceVariables

(message = method;)∗

interface

in p

method ::= exp

message ::= x

interface ::= [[message : V ; . . . ;message : V]]

instanceV ariables ::= {ℓ1 : T1=exp1; . . . ; ℓn : Tn=expn}

The use of these constructs has already been explained. Just note, en passant, that the dot
selection and record updating are allowed only on self. In this way we have the encapsulation
of the internal state: instance variables are implemented by a record value, each variable being
a label of the record. Thus objects behave at type level as record values, but the selection
and the updating of a field is allowed only when the object is denoted by self, i.e. when the
object is processed inside one of its methods. Note also that the non-terminals method and
message are not strictly necessary since they are special cases of terms and variables (the
type checking algorithm will require them to be respectively functions and variables with an
overloaded type) but they make the rules more readable. Finally note that the branches of
the overloaded functions are in a functional form (a branch cannot be, say, an application).

5.1.2 The types of the language

The types of a language are usually defined starting from a set of atomic types and applying
type constructors (such as list, →, ...). A programming language always possesses some
built-in atomic types (typically Int, Bool, String, etc...) on which some basic operations are

5.1. THE FORMAL PRESENTATION OF THE TOY LANGUAGE 145

defined. Many languages, besides these basic types, offer the ability to the programmer to
define its own atomic types. Object-oriented languages do it by means of class definitions;
nay, this mechanism is the corner-stone of this programming style. As a matter of fact,
class definitions are richer and more complex than the simple definition of an atomic type.
Roughly speaking a class definition is composed by three distinct definitions: the definition
of a new atomic type (the class-name), the definition of some operations for that atomic type
(the methods), the definition of a partial order on the atomic types (subtyping relation) or,
better, the definition of the type constraints for the newly introduced atomic type.

In brief, when a programmer defines a new class he declares by it a new atomic type, that
is the class-name of that class definition. Besides the atomic types defined by the programmer,
there are also some predefined atomic types. Usually also this built-in types are considered
class-names: just consider them as predefined classes whose methods are the predefined
operations (this is for example what is done in Smalltalk [GR83] and in Dylan [App92]).

Thus, without loss of generality, we can take as atomic types for our language only class-
names. From these atomic types, by applying some type constructors, we build the whole
set of types. We also define the interface types which are the types possibly preceded by the
symbol # to pinpoint multi-methods.

Raw Types

R ::= 〈〈ℓ1 : T1; . . . ; ℓn : Tn〉〉 (record types)

A ::= classname (atomic types)

T ::= A (raw types)
| T → T
| (T × . . .× T)
| {(A1 × . . . ×Am1)→ T1, . . . , (A

′
1 × . . . ×A′mn

)→ Tn} (mi≥1)

V ::= T | #{(A1 × . . .×Am1)→ T1, . . . , (A
′
1 × . . .×A′mn

)→ Tn} (interface types)

We use the metavariables T, U and W to range over raw types A to range over atomic
types and D to range over atomic types or products of atomic types (i.e. the domains of the
branches of an overloaded function). In the following if T denotes the type {Ui → Ti}i=1..n−1,
the meta-notation T ∪ {Un → Tn} denotes the type {Ui → Ti}i=1..n if Un → Tn is different
from all the arrow types in T , and it denotes T itself otherwise. In other terms ∪ denotes
the usual set-theoretic union.

Subtyping

We give the formal rules that extend a subtyping relation defined on atomic types, to higher
types. Since this extension depends on the specific constraints defined on the atomic types,
we use in the rules a type constraint system which records these constraints:

Definition 5.1.1 A type constraint system (tcs) C is inductively defined by:

1. Ø is a type constraint system

146 CHAPTER 5. A META-LANGUAGE FROM λ&

2. If C is a type constraint system and A1, A2 are atomic types then C ∪ (A1 ≤ A2) is a
type constraint system.

2

Next we give the definition of the rules informally described in section 1.2.2.

C ∪ (A1 ≤ A2) ⊢ A1 ≤ A2

C ⊢ T2 ≤ T1 C ⊢ U1 ≤ U2

C ⊢ T1 → U1 ≤ T2 → U2

C ⊢ U1 ≤ T1 . . . C ⊢ Un ≤ Tn
C ⊢ (U1 × ...× Un) ≤ (T1 × ...× Tn)

for all i ∈ I, there exists j ∈ J such that C ⊢ D′′i ≤ D′j and C ⊢ U ′j ≤ U ′′i
C ⊢ {D′j → U ′j}j∈J ≤ {D

′′
i → U ′′i }i∈I

C ⊢ U1 ≤ T1 . . . C ⊢ Uk ≤ Tk
C ⊢ 〈〈ℓ1:U1; . . . ; ℓk:Uk; . . . ; ℓk+j:Uk+j〉〉 ≤ 〈〈ℓ1:T1; . . . ; ℓk:Tk〉〉

The (pre)order for all types is given by the reflexive transitive closure of the rules above (as
usual transitivity can be eliminted at higher types: transitivity is required just on the atomic
types).

Finally we end this section by two definitions that are not strictly necessary, but which
result very useful, when checking the state coherence condition and the updating, making
the corresponding type-checking rules more readable. We define ≤strict as:

C ⊢ 〈〈ℓ1:T1; . . . ; ℓk:Tk; . . . ; ℓk+j:Tk+j〉〉 ≤strict 〈〈ℓ1:T1; . . . ; ℓk:Tk〉〉

In words, strict subtyping on records corresponds to field extension. Then we define the
notation ⋐ (which used in the updating) as follows:

C ⊢ U1 ≤ T1 . . . C ⊢ Uk ≤ Tk
C ⊢ 〈〈ℓ1:U1; . . . ; ℓk:Uk〉〉 ⋐ 〈〈ℓ1:T1; . . . ; ℓk:Tk; . . . ; ℓk+j:Tk+j〉〉

Two types are equivalent if they are syntactically equivalent modulo the order of the arrow
types in overloaded types.

Well-formed types

We select among the raw types those that satisfy the conditions of covariance and multi-
ple inheritance of section 1.2.2 and we call them well-formed types; the condition of state
coherence concerns the definition of a class and will be checked directly on terms.

We denote the set of well-formed types by Types. Since the membership to Types
depends on the definition of the subtyping relation on the atomic types, we index the symbol
of membership by a type constraint system.

5.1. THE FORMAL PRESENTATION OF THE TOY LANGUAGE 147

Notation 5.1.2 Let S ⊆ Types. we denote by LBC(S) the set {T ∈C Types | ∀T ′∈S C ⊢
T ≤ T ′} of lower bounds of S with respect to the subtyping relation defined by C.2

Definition 5.1.3 [well-formed types]

1. A ∈C Types for each A atomic
2. if T1, T2 ∈C Types then T1 → T2 ∈C Types and T1 × T2 ∈C Types
3. if for all i, j ∈ I

(a) Di, Ti ∈C Types
(b) if C ⊢ Di ≤ Dj then C ⊢ Ti ≤ Tj
(c) for all maximal type D in LBC({Di,Dj}) there exists h∈I such that Dh = D
(d) if i 6= j then Di 6= Dj

then {Di → Ti}i∈I ∈C Types

2

By analogy we will denote by AtomicTypes the set of atomic types (the names of all classes)
and by RecordTypes the set of the record types whose fields are associated to well-formed
types.

Type checking rules

In this subsection we give the definition of the type checker. This is done by defining a
typing rule for each construct described in the formal grammars above. We use a type
environment Γ to record the type of the identifiers (parameters of functions and self) and
a state environment S to record the type of the internal states of the classes defined up to
that point; the domain of S (i.e. the values for which S is defined) is thus the set of all the
names of the classes that have been defined.

More formally we define the relation C;S; Γ ⊢ p:T , where C is a type constraint system,
p a program, T a well-formed type and Γ and S are partial functions between the following
sets:

Γ: (V ars ∪ {self})→ Types
S:AtomicTypes→ RecordTypes

The function Γ records the types of the various identifiers: V ars are the identifiers for
expressions and self is the identifier for the current object. The function S records the type
of the internal state of the previously defined classes; since Γ(self) is the class-name of the
current object (i.e. the current class) then S(Γ(self)) is the type of the internal state of the
current object. Let X be any of these two functions; then we denote by dom(X) the domain
of X and by X[x ← T] the function that for an argument a returns T if a≡ x and X(a)
otherwise; X[xi ← Ti]i=1...n is a shorthand for X[x1 ← T1]...[xn ← Tn].

In order to simplify the treatment we suppose to have translated all the expressions of
the form fn(x1:T1,...,xn:Tn) => v into an equivalent unary function fn(x:T1× ...× Tn)
=> v[xi :=fst sndi−1(x)] and all the declaration of instance variables {ℓ1 : T1=v1; . . . ; ℓn :
Tn=vn} into {ℓ1=v1; . . . ; ℓn=vn}: 〈〈ℓ1 : T1; . . . ; ℓn : Tn〉〉. The definition of the relation is
inductively given by cases on the program p. Each rule is followed by an explanation, when
it deserves one. We start with p formed by just an expression.

148 CHAPTER 5. A META-LANGUAGE FROM λ&

[Taut] C;S; Γ ⊢ x : Γ(x) x ∈ (Vars ∪{self})

[Funct]
C;S; Γ[x← T] ⊢ exp:U

C;S; Γ ⊢ fn(x:T) => exp : T → U
T ∈CTypes

[Appl]
C;S; Γ ⊢ exp1:T → U C;S; Γ ⊢ exp2:W

C;S; Γ ⊢ exp1(exp2) : U
C ⊢W ≤ T

[Prod]
C;S; Γ ⊢ exp1:T1 . . . C;S; Γ ⊢ expn:Tn

C;S; Γ ⊢ (exp1, . . . ,expn): (T1 × . . . × Tn)

[Record]
C;S; Γ ⊢ exp1:T1 . . . C;S; Γ ⊢ expn:Tn

C;S; Γ ⊢ {ℓ1 = exp1; . . . ;ℓn = expn} : 〈〈ℓ1 : T1; . . . ; ℓn : Tn〉〉

[Let]
C;S; Γ ⊢ exp′:W C;S; Γ[x← T] ⊢ exp:U

C;S; Γ ⊢ let x : T = exp′ in exp : U
C ⊢W ≤ T

These were the rules of the functional core and deserve very few explanations: just note that
in the rule [Appl] a function accepts as argument every expression whose type is smaller than
or equal to its domain. The rules for the object-oriented constructs are more interesting:

[New] C;S; Γ ⊢ new(A):A A ∈ dom(S)

The type of a new object is the name of its class. Of course this class must have been
previously defined, and thus we check that A ∈ dom(S).

[Read] C;S; Γ ⊢ self.ℓ:T S(Γ(self)) = 〈〈...ℓ: T...〉〉

The expression self.ℓ reads the value of an instance variable of an object and thus it must
be contained inside the body of a method. Then Γ(self) is the type (i.e., the class-name) of
the current object and S(Γ(self)) is the record type of its internal state.

[Write]
C;S; Γ ⊢ r:R

C;S; Γ ⊢ (update r) : Γ(self)
C ⊢ R ⋐ S(Γ(self))

As in the previous rule this expression must be contained in a method. When by (update r)
we update some instance variables, we have to check that the fields specified belong to the
instance variables of the current class (R ⋐ S(Γ(self))); note that we need to specify only
the instance variables we want to modify. In that case we return a value whose type is the
current class (which is recorded in Γ(self)).

[OvAbst]
C;S; Γ ⊢ exp1:T1 . . . C;S; Γ ⊢ expn:Tn

C;S; Γ ⊢ &exp1& . . . & expn:{T1, ... ,Tn}
{T1, ... ,Tn}∈CTypes

5.1. THE FORMAL PRESENTATION OF THE TOY LANGUAGE 149

The type of an overloaded function is the set of the types of its branches; by the production
for overloaded function, the Ti’s are arrow types. Also one has to check that the obtained
type is well-formed.

[OvAppl]
C;S; Γ ⊢ exp: {Di → Ti}i∈I C;S; Γ ⊢ expj:Aj (j=0..n)

C;S; Γ ⊢ [exp0 exp exp1, . . . , expn]:Th

if Dh = mini∈I{Di | C ⊢ A0 ×A1 × . . . ×An ≤ Di}.

When we pass a message or, more generally, we perform an overloaded application we look at
the type of the function, exp, and we select the branch whose input type best approximates
the type of the argument. The argument is (exp0,expr1,. . . ,exprn) and the selected branch
is the branch h such that Dh = mini∈I{Di | C ⊢ A0 ×A1 × . . . ×An ≤ Di}. Note that if the
set {Di | C ⊢ A0 ×A1 × . . . ×An ≤ Di, i ∈ I} is not empty the the min exists thanks to the
condition of multiple inheritance in the type of exp. If it is empty then the expression is not
well-typed.

[Coerce]
C;S; Γ ⊢ exp:A

C;S; Γ ⊢ coerce[A′](exp):A′
C ⊢ A ≤ A′

The construct coerce[A′](exp) says to consider exp (whose type is A) as if it were of type
A’. This is a type safe operation if and only if A≤A’.

[Super]
C;S; Γ ⊢ exp:A

C;S; Γ ⊢ super[A′](exp):A′
C ⊢ A ≤ A′

At type level super and coerce have exactly the same behavior.

Finally we have a special rule for multi-methods

[Multi]
C;S; Γ ⊢ exp1:T1 . . . C;S; Γ ⊢ expn:Tn

C;S; Γ ⊢ &exp1& . . . & expn:#{T1, ... ,Tn}
{T1, ... ,Tn}∈CTypes

Note that this rule and [OvAbst] assign two different types to the same expression &exp1&. . . &
expn; however this ambiguity is solved by the use of # in the interfaces: If that expression is
to be used as an overloaded function (and thus it is applied to an argument) then it must
be typed by [OvAbst]. Instead [Multi] is used just for typing multi-methods; then the
desappears thanks to the definition of “;” (see the rule [Class]) since the branches are
“distributed” on the more general type of the message (which has no #).

Now we show how to type class definitions; this is by far the hardest case. We want to type
the program

class A is A1,...,An r:R m1=exp1;...;mk=expk [[m1 : V1,...,mk : Vk]] in p

Unfortunately the definition of a class on one line loses the clarity due to the vertical for-
matting: the class A is a subtype of A1, . . . An; it defines k new methods m1 . . . mk of type
V1 . . . Vk; these methods add to those that A inherits from its supertypes; its instance vari-
ables are defined by the record type R with initial values given by r. The whole program is
well-typed if:

150 CHAPTER 5. A META-LANGUAGE FROM λ&

1. The definitions in the class are well-typed
2. The program p with the new definitions introduced by the class is well-typed.

Thus the steps to achieve are:

[1.1] Check whether a class with the same name has not already been defined, i.e. A 6∈
dom(S).

[1.2] Check whether the initial values are well-typed, i.e. r : R
[1.3] Check whether the state coherence condition is satisfied, i.e. R ≤strict S(A1) . . . R ≤strict

S(An)
[1.4] Record the new type constraints by C ∪ (A ≤ A1) ∪ . . . ∪ (A ≤ An) and record the

internal state of A by S[A← R].
[1.5] Update the type of the messages by adding the new branches defined in the class. We

have to distinguish the case of a simple method from that of multi-method. For every
message mi in the interface such that Vi is a raw type we must update its current
type Γ(mi) in the following way: Γ(mi) := Γ(mi) ∪ {A → Vi} (where we use the
convention that Γ(mi) = Ø if mi 6∈dom(Γ)). If the type of a message in the interface
is preceded by a #, then the associated method is a multi-method; recall that the type
of its argument is the cartesian product of the type of the current class with the types
the dispatch is performed on (see section 1.2.2 and the rule [OvAppl]). Thus for
example if in the interface mi:#{D → U,D′ → T} then we have the following updating:
Γ(mi) := Γ(mi) ∪ {(A×D)→ U, (A×D′)→ T}. More generally we define

{A ; V } =

{
{(A ×Di)→ Ui}i∈I if V≡#{Di → Ui}i∈I
{A→ V } otherwise

thus the updating of Γ becomes: Γ(mi) := Γ(mi)∪{A ; Ti}, where the same convention
as before applies.
Also check if this yields well-formed overloaded types; this corresponds to verifying that
the message redefined satisfies the conditions of covariance, multiple inheritance and
input type uniqueness.

[1.6] Check whether the types given in the interface correspond to those of the methods3, i.e.
expi : Vi. This check must be performed in an environment where the current class is
A (and thus self:A) and messages have the updated types of step [1.5] since methods
can call one each other (they are mutually recursive).

[2.] Type-check the program p considering the newly introduced definitions, i.e. the type
constraints and the internal state of step [1.4] and the new types for messages in step
[1.5].

We next give the precise rule that includes all of these steps. In order to shorten the definition
we use the following abbreviations:

- S′ ≡ S[A← R]; the function S where to the class A is associated the type of its internal
state R.

3Subtyping would have sufficed in that case

5.1. THE FORMAL PRESENTATION OF THE TOY LANGUAGE 151

- C ′ ≡ C ∪ (
⋃
i=1..nA ≤ Ai); the set C extended by the type constraints generated by the

definition,
- I ≡ [[m1 : V1,...,mk : Vk]]; the interface of the class
- Γ′ ≡ Γ[mi ← Γ(mi) ∪ {A ; Vi}]i=1..k; the environment Γ where the (overloaded) type

of the messages is updated with the type of the new methods (branches) added by the
class-definition

Then the rule [Class] is

C;S; Γ ⊢ r:R C ′;S′; Γ′[self← A] ⊢ expj:Vj (j=1..k) C ′;S′; Γ′ ⊢ p : T

C;S; Γ ⊢ class A is A1,...,An r:R m1=exp1;...;mk=expk I in p : T

if A 6∈ dom(S), for i = 1..n C ⊢ R ≤strict S(Ai) and for i = 1..k Γ(mi) ∪ {A ; Vi} ∈C′ Types

Let us examine the single parts of this rule more in details: first we assure that a class with
this name does not already exist (A 6∈ dom(S)) [1.1], we check the type of the initial values
of the instance variables (C;S; Γ ⊢ r:R) [1.2] and we verifythat the type of the internal
state of the class is compatible with (i.e. it is an extension of) the states of its ancestors
(C ⊢ R ≤strict S(Ai) for i = 1..n 4) [1.3] (see page 81 for the motivations). Then we check that
the defined messages possess well-formed overloaded types (Γ(mi)∪{A ; Vi} ∈C′ Types), i.e.
that they satisfy the conditions of covariance, multiple subtyping and input type uniqueness
[1.5]; we also check that the methods have the type declared in the interface (⊢ expj : Vj)
[1.6], and this check is performed in an environment where we have recorded in C ′ the newly
introduced type constraints, in S′ the type of the internal state of the current object [1.4]
and in Γ′ also the types of the new methods for a possible mutual recursion. Finally we type
the rest of the program where the class is declared. In order to implement the protection
mechanisms we restore in the environment the old values for self [2.].

We left for last the rule for [Extend] as, even if it type-checks a single expression, it is a
special case of the rule [Class] where there are no type constraints and no instance variables
to check; we have just to check that the class in the extend expression has been already
defined (i.e. A ∈ dom(S)) :

[Extend]
C;S; Γ′[self← A] ⊢ expj : Vj (j=1..k) C;S; Γ′ ⊢ exp : T

C;S; Γ ⊢ extend A m1=exp1;...;mk=expk [[m1:V1,...,mk:Vk]] in exp:T

A ∈ dom(S) and for i = 1..k Γ(mi) ∪ {A ; Vi} ∈C Types

Note finally that because of the definition of ∪ and the condition of input type uniqueness,
if mi has already been defined for the class A then Γ(mi)∪ {A ; Vi} ∈ Types if and only if
{A ; Vi} ∈ Γ(mi). In other terms if we redefine a method the new definition has to possess
the same type as the old one. It is possible to use the technique of section 4.1.2 and weaken
this condition so that to allow the new method to have any type which replacing the old one
yields to a well-formed overloaded type; but we prefer this stricter type discipline since, in
our opinion, redefinition should not completely upset the previous definition.

4the ancestor must have been already declared, otherwise S is not defined

152 CHAPTER 5. A META-LANGUAGE FROM λ&

5.2 λ object

In this section we define the meta-language λ object. We pass from a calculus, which possesses
an equational presentation, to a language, which thus is associated to a reduction strategy and
a set of values. It is as if we had the λ-calculus and we wanted to define the SECD machine.
The analogy is quite suggestive since, as in the case of the SECD machine, we do not want an
exact correspondence with the λ-calculus (e.g. as the one between the SECD machine and the
λV : see [Plo75]); rather we aim to define a language that implements the “general” behavior
of the λ&-calculus, and that constitutes a meta-language for object-oriented languages. A
meta-language is conceived to “speak about”, to describe a language. Thus it must possess
the syntactic structures to reproduce the constructs of that language, structures that are not
generally present in a calculus. To this end we provide λ object with constructs to define
new atomic types, to define a subtyping hierarchy on them, to work on the implementation
of a value of atomic type, to define recursive terms, to change the type of a term and to deal
with super. We give an operational semantics for the untyped terms, we define a notion of
run-time type error and a type-checking algorithm. Finally we prove the subject reduction
theorem (thus the correctness of the type-checker) which plays a key role, being λ object
intended for typed object-oriented languages.

The main decision in the definition of λ object is how to represent objects. This decision
will drive the rest of the definition of the language. Running languages usually implement
objects by records formed by three kinds of fields: fields containing the values of the instance
variables, fields used by the system (for example for garbage collection) and a special field
containing a reference to the class of the object. Quoting from the book of Meyer about the
implementation of Eiffel:

“Apart from their normal fields, representing class attributes [instance variables],
objects must be equipped with some supplementary information. In particular,
every object must carry its dynamic type, which is needed for the implementation
of the dynamic binding. Some further fields are needed by the garbage collector.

Note that this self-referent aspect of objects (every object includes information
about its own type) is not just one possible implementation technique; it is
necessary in any implementation of object-oriented concepts if dynamic binding
is to work properly. This idea is reminiscent of tagged architectures in hard-
ware.”[pag. 336]

Obviously in this theoretical account we are not interested in the fields for the system, hence
an object in λ object will be formed only by the values of its instance variables (the so-called
internal state) and by a tag indicating the class of the object. The tag of an object must
uniquely determine the type of the object, for in our approach the selection of a method is
based on the type of the object. There are two reasonable ways to do it, and in both of them
the name of the class is considered an atomic type:

(a) An object is a record whose fields are the instance variables plus a special empty field
whose type is the name of the class

(b) An object is a record whose fields are the instance variables and which is given a tag, say
A, by applying it to a special constructor inA. In other terms, intag is the constructor

5.2. λ OBJECT 153

for the values of (atomic) type tag whose internal representation is given by the record
of the instance variables.

For instance, consider the class 2DPoint of example 1.1.3. A new instance of this class would
be implemented according to (a) as

〈is a = ∗;x = 0; y = 0〉 : 〈〈is a: 2DPoint;x: Int; y: Int〉〉

(where ∗ is a value possessing every type) and according to (b) as

in2DPoint(〈x = 0; y = 0〉) : 2DPoint

Let us compare the two approaches. The former possesses the advantage that it can be
completely encoded in λ& since records can be encoded by overloaded functions. The latter
instead needs the introduction in the language of what in ML are called constructor functions:
in standard ML the definition of 2DPoint would correspond to:

datatype 2DPoint = in2DPoint of {x : int, y : int}

Consider now subtyping. Suppose that you have to encode two classes whose names are
A and B in the case (a) the encoding of their objects will have type 〈〈is a:A; x1:T1; . . . ;
xn:Tn〉〉 and 〈〈is a:B; y1:U1; . . . ; ym:Um〉〉 respectively. Now if 〈〈is a:A; x1:T1; . . . ; xn:Tn〉〉 ≤
〈〈is a:B; y1:U1; . . . ; ym:Um〉〉 this automatically implies that the condition for refinement on
the instance variables is respected (i.e. 〈〈x1:T1; . . . ; xn:Tn〉〉 ≤ 〈〈y1:U1; . . . ; ym:Um〉〉). In
the case (b) instead if one set A ≤ B then it has to check separately that the condition is
respected; in other terms inA: 〈〈x1:T1; . . . ; xn:Tn〉〉 → A and inB : 〈〈y1:U1; . . . ; ym:Um〉〉 → B
are well-typed only if 〈〈x1:T1; . . . ; xn:Tn〉〉 ≤ 〈〈y1:U1; . . . ; ym:Um〉〉.

For λ object we choose to use the solution (b) for, even if it needs the introduction of new
operations and new typing rules, it has the advantage that, as in our toy language, the type
of an object is its class. Thus types will be conserved during the translation from the toy
language to λ object. Furthermore the operational semantics of λ object will be simplified.
Henceforth we will not distinguish among the terms “tag”, “atomic type” and “class-name”
since in λ object they coincide.

To resume, in λ object objects are “tagged terms” of the form inA(M) where A is the tag
and M represents the internal state. When we have an overloaded application M•N we first
reduce M to a term (M1&M2) and N to a tagged term, and then we perform the branch
selection according to the obtained tag, that is the name of the class of the object. The
selected method must be able to access the instance variables of the object, i.e. to get inside
the in construct. To this purpose we use a function denoted out that composed with in gives
the identity.

Pretypes

We use A and B (possibly subscripted) to denote atomic types.

T :: = A | T × T | T → T | {(A1 × . . . ×Am1)→ T1, . . . , (B1 × . . . ×Bmn)→ Tn} n,mi≥1

154 CHAPTER 5. A META-LANGUAGE FROM λ&

Terms

Here we define the raw terms of the language, i.e. terms that have not been type checked yet.
Terms are composed by an expression preceded by a (possibly empty) suite of declarations.
We use the metavariable M to range over expressions and P to range over terms:

M ::= xT | λxT.M | M ·M | ε | M&TM | M•M

| <M ,M > | π1(M) | π2(M) | µxT .M

| coerceA(M) | superA(M) | inA(M) | outA(M)

P ::= M | let A ≤ A1, ... , An in P | let A hide T in P

Declarations cope with atomic types: they can be used to define the subtyping relation on
atomic types and to declare a new atomic type by associating to it a representation type (i.e.
the type of the internal state). More precisely the declaration let A hide T in P declares the
atomic type A and associates it to the type T used for its representation. This declaration
defines two constructors inA:T → A and outA:A → T which form a retraction pair from T
to A.

Tagged values

We have to be a little more precise about tagged values: a tagged value is everything an
overloaded function can perform its selection on. Thus it can be an object of the form
inA(M) but also the coercion of an object, the super of an object and, since we have multiple
dispatch, a tuple of objects. Thus a tag is either an atomic type or a product of atomic types.
We use the metavariable D to range over tags; tagged values are ranged over by GD where
D is the tag.

GD: : = inD(M) | coerceD(M) | superD(M) | <GA1
1 , GA2

2 , . . . , GAn
n >

In the last case of the production above D is (A1 × . . . ×An)

Operational Semantics

We define the values of λ object, i.e. those terms which are considered as results; values are
ranged over by G.

G ::= x | (λxT .M) | ε | (M1&
TM2) | <G1 , G2 > | coerceA(M) | superA(M) | inA(M)

The operational semantics for λ object is given by the reduction ⇒; this reduction in-
cludes a type constraint system5 C that is built along the reduction by the declarations
(let A ≤ A1 . . . An in P) and that is used in the rule(s) for the selection of the branch. In
the following, we use ◦ to denote either · or • and D to denote the mini=1..n{Di|C ⊢ D ≤ Di}

5At this stage it would be more correct to call it a “tag constraint system”

5.2. λ OBJECT 155

Axioms
(C , πi(<G1 , G2 >)) ⇒ (C , Gi) i=1,2

(C , outA1(inA2(M))) ⇒ (C , M)
(C , outA1(coerceA2(M))) ⇒ (C , outA1(M))
(C , outA1(superA2(M))) ⇒ (C , outA1(M))
(C , µx.M) ⇒ (C , M [x := µx.M])
(C , (λx.M) · N) ⇒ (C , M [x := N])

(C , (M1&
{D1→T1,...,Dn→Tn}M2)•G

D) ⇒ (C , M1•G
D) if Dn 6= D

(C , (M1&
{D1→T1,...,Dn→Tn}M2)•G

D) ⇒ (C , M2 ·G
D) if Dn = D and GD 6≡ super

D(M)

(C , (M1&
{D1→T1,...,Dn→Tn}M2)•G

D) ⇒ (C , M2 ·M) if Dn = D and GD ≡ super
D(M)

(C , let A ≤ A1 . . . An in P) ⇒ (C ∪ (A ≤ A1) ∪ . . . ∪ (A ≤ An) , P)
(C , let A hide T in P) ⇒ (C , P)

Context Rules

(C , M)⇒ (C , M ′)

(C , <M ,N >)⇒ (C , <M ′ , N >)

(C , M)⇒ (C , M ′)

(C , <G ,M >)⇒ (C , <G ,M ′>)

(C , M)⇒ (C , M ′)

(C , πi(M))⇒ (C , πi(M
′))

(C , M)⇒ (C , M ′)

(C , outA(M))⇒ (C , outA(M ′))

(C , M)⇒ (C , M ′)

(C , M ◦N)⇒ (C , M ′ ◦N)

(C , M)⇒ (C , M ′)

(C , (N1&N2)•M)⇒ (C , (N1&N2)•M
′)

The semantics for pairs is the standard one. Three axioms and a rule describe the behavior of
out and give it access to the internal state of an object. Functional application is implemented
by call-by-name; anyway, this is not a necessary condition and the call-by-value would fit as
well.

The three axioms and two rules for overloaded functions deserve more attention: in an
overloaded application we first reduce the function (the term on the left) to an &-term and
then its argument to a tagged value; then the reduction is performed according to the index
of the &-term. In a sense, we perform a “call-by-tagged-value” (but for well-typed programs
this notion coincides with the usual call-by-value: see corollary 5.2.5). It is worth noting
that this selection does not use types: no type checking is performed, only a match of tags
and some constraints is done; indeed, we still do not have any “type” here, but some tags
indexing the terms. Note the difference when the tagged value is a super: in that case the
argument of the super is passed to the selected branch instead of the whole tagged value.

Finally, the declaration (let A ≤ A1 . . . An in P) modifies the type constraints in which
to evaluate the body P , while (let A hide T in P) serves only to the type checker, and
thus, operationally, is simply discarded.

Programs and type errors

The operational semantics above is given for untyped terms. Now we define which terms are
the programs of λ object and when a reduction ends by a type error.

156 CHAPTER 5. A META-LANGUAGE FROM λ&

Definition 5.2.1 A program in λ object is a closed term P different from ε. 2

We use the notation P ⇒ P ′ to say that (C,P)⇒ (C ′, P ′) for some C and C ′ and we denote
by

∗
⇒ the reflexive and transitive closure of ⇒. Given a term M , we say that it is in normal

form iff it does not exist N such that M ⇒ N . Let P be a closed term in normal form. If P
is not a value then it is always possible to use the context rules of the operational semantics
to decompose P to find the least subterm which is not a value and where the reduction is
stuck. Let call this subterm the critical subterm of P . For example consider the following
term:

((M1&M2) • ((superA(M)) · (N))) · (M ′)

This term is in normal form. Indeed, since it is an application we first try to reduce ((M1&M2)
• ((superA(M)) · (N))); then for the sixth context rule we try to reduce (superA(M)) · (N);
again for the fifth context rule we try to reduce (superA(M)); but it is a value different from a
λ-abstraction and we are stuck. Thus, in this case, the critical subterm is (superA(M)) ·(N).
Note that the critical subterm (of a closed normal non-value term) always exists and is unique,
since it is found by an algorithm which is deterministic (since the operational semantics is
deterministic) and terminating (since the size of the term at issue always decreases).

Definition 5.2.2 [type-error] Let P be a program. If P
∗
⇒P ′, P ′ is in normal form and it is

not a value then we say that P produces a type error. Furthermore if the critical subterm of
P ′ is of the form ((M1&

TM2)•G
D) then we say that P produces an “undefined method” type

error. 2

The “undefined method” error is raised when we try to reduce an overloaded application of a
&-term to a tagged value, and D (i.e. mini=1..n{Di|C ⊢ D ≤ Di}) is not defined. This means
that it is not possible to select a branch for the object passed to the function. This can be
due either because the set {Di|D ≤ Di , i = 1..n} is empty or because it has no minimum.
In object-oriented terms the former case means that a wrong message has been sent to the
object and in the latter that the conditions on multiple inheritance have not been respected.

5.2.1 The type system

We have defined programs and how to compute them; then we have singled out those com-
putation that produce a “type error”. Now we have to justify the use of the adjective type
in front of the word “error”. To this purpose we define a type system for the raw terms, so
that the well-typed programs will not produce these errors. The complete definitions of this
section are summarized in appendix B.

Types

As in the case of λ&-calculus and of our toy language we first define an order on the pretypes
and then we select among them those that satisfy the conditions for covariance, multiple
inheritance and input type uniqueness. The subtyping relation on pretypes and the good
formation for types are exactly the same as those defined for our toy language in section 1.2
and by the definition 5.1.3, with the only modification that the set of atomic types is relative
to a program and it is formed by all the pretypes that have been declared by a let . . . hide
definition

5.2. λ OBJECT 157

Definition 5.2.3

1. A ∈C,S Types for each A ∈ dom(S)
2. if T1, T2 ∈C,S Types then T1 → T2 ∈C,S Types and T1 × T2 ∈C,S Types
3. if for all i, j ∈ I

(a) (Di, Ti ∈C,S Types)
(b) if C ⊢ Di ≤ Dj then C ⊢ Ti ≤ Tj)
(c) for each maximal type D in LBC({Di,Dj}) there exists h∈I such that Dh = D
(d) if i 6= j then Di 6= Dj

then {Di → Ti}i∈I ∈C,S Types

2

Type checking rules

The type checking rules are parametric in a type constraint system C and a function S from
atomic types to types. These are used respectively to store the type constraints and the
implementation types defined in the declarations; this is performed by the following rules

[NewType]
C , S[A← T] ⊢ P :U

C,S ⊢ let A hide T in P :U

A 6∈ dom(S), T ∈C,S Types and T not atomic

[Constraint]
C ∪ (A ≤ Ai)1=1..n, S ⊢ P :T

C, S ⊢ let A ≤ A1, ... , An in P :T

if C ⊢ S(A) ≤ S(Ai) and A do not appear in C

In the [NewType] rule we require that the representation type of a class is not another class;
this is very reasonable, for the new atomic type would be completely equivalent to the one
of its representation, but it would require a further in and out to access the internal state.
In the last rule we require that A does not appear in any type constraint. In this way the
ordering on atomic types is defined stepwise in the top-down sense. In this way the subtyping
relation forms a dag. 6 In this case we do not require a partial lattice for atomic types as
for λ&: in section 4.1.1 we showed that this would be too strong a condition for multiple
inheritance; thus we allow every order.

Once more, even if we have an order on atomic types, what we obtain at higher types is
only a preorder: indeed consider two atomic types A and B with B ≤ A. Then {A→ A} ≤
{A → A,A → B} ≤ {A → A}; thus antisymmetry does not hold; however we do not need
to redefine the various notions of inf , min etc as we did in the footnotes of chapters 2 and 4
since these notions are used only in the selection of the branch which is performed on tags;
and tags form an order (antisymmetry holds).

We want to interpret the construct extend; in λ& we can only add a new branch to an
overloaded function but we cannot replace an existing branch by another with the same

6Equivalently we could have defined C so that to satisfy this property.

158 CHAPTER 5. A META-LANGUAGE FROM λ&

input type. However in section 4.1.2 we showed how modify λ& to obtain it. Therefore we
adopt the same discipline for λ object : the rules [Taut], [→ Intro], [→ Elim(≤)], [Tautε],
[{}Elim] for λ object are the same as in λ& (with the obvious modifications to consider C
and S). The only rule we have to change is [{}Intro] that we replace by [{}Intro+] of
section 4.1.2

[{}Intro+]
C,S ⊢M :W1 ≤ {Ui → Vi}i∈I C,S ⊢ N :W2 ≤ U → V

C, S ⊢ (M&{Ui→Vi}i∈I⊕(U→V)N): {Ui → Vi}i∈I ⊕ (U → V)
{Ui → Vi}i∈I ⊕ (U → V) ∈C,S Types

The rules for the expressions that do not belong to the syntax of λ& are:

[Coerce]
C,S ⊢M :B

C,S ⊢ coerceA(M):A
C ⊢ B ≤ A and A ∈C,S Types

[Super]
C,S ⊢M :B

C,S ⊢ superA(M):A
C ⊢ B ≤ A and A ∈C,S Types

[In]
C,S ⊢M :T

C, S ⊢ inA(M):A
C ⊢ T ≤ S(A) and A ∈C,S Types

[Out]
C,S ⊢M :B

C,S ⊢ outA(M):S(A)
C ⊢ B ≤ A and A ∈C,S Types

Note that an atomic type A can be used in an expression like coerceA, superA and so on,
only if A ∈C,S Types, i.e. it has been previously defined by a let hide declaration.

5.2.2 Some results

Proposition 5.2.4 Let M :T ; if M is closed and in normal form then M is a value.

Proof. The proof is obtained by induction on M . 2

A consequence of this proposition is the following corollary which justifies the rules for the
overloaded application in the operational semantics:

Corollary 5.2.5 If a program is in normal form and it is typed by a (possibly unary) product
of atomic types, then it is a tagged value.

Recall that it is not possible to reduce inside a λ-abstraction. Therefore if in the evaluation
of a program we reduce a term of the form M•N , then in particular N must be closed. To
perform the selection of a branch (the β&-reduction) N must also be a value; thus, by the
corollary above it must be a tagged value. Therefore in a well-typed program overloaded ap-
plication is implemented by the usual call-by-value, since the only values allowed as arguments
by the type checker are tagged values.

Lemma 5.2.6 (substitution lemma) Let C,S ⊢ M :T , C,S ⊢ N :T ′ and C ⊢ T ′ ≤ T ; then
C,S ⊢M [xT := N]:U ′, where C ⊢ U ′ ≤ U

5.2. λ OBJECT 159

Proof. By induction on M . The only difficult case is M≡M1•M2, whose proof follows the
pattern of the corresponding case in the next theorem. 2

Theorem 5.2.7 (Subject Reduction) Let C,S ⊢ P :T ; if (C,P)
∗
⇒(C ′, P ′) then C ′, S ⊢

P ′:T ′ and C ′ ⊢ T ′ ≤ T .

Proof. The proof is a generalization of the one for the λ&-calculus in chapter 2. It consists in
an induction on P where we use the substitution lemma above. It suffices to prove the theorem
for⇒; the thesis follows by a simple induction on the number of steps of the reduction. Thus,
we proceed by induction on the structure of P . When P is a value then the thesis is trivially
satisfied. When P is of the form (let ... in P ′) or of the form πi(M), then the proof is a
straightforward use of the induction hypothesis. The remaining cases are (in the rest of the
proof we omit C and S since they do not change):

P≡outA(M) . Where M :A′ ≤ A. The only case of reduction is that M ⇒ M ′ and P ′≡
outA(M ′); but from the induction hypothesis it follows that M ′:B ≤ A′ ≤ A; thus also
P ′ is well-typed and possess the same type as P .

P≡M1 ·M2 where M1:U → T and M2:W ≤ U . We have two subcases:

1. M1 ⇒ M ′
1 , then by induction hypothesis M ′

1:U
′ → T ′ with U ≤ U ′ and T ′ ≤ T .

Since W ≤ U ≤ U ′, then by rule [→Elim(≤)] we obtain M ′
1M2:T

′ ≤ T

2. M1 ≡ λxU.M3 and M ⇒ M3[x := M2] , with M3:T . Thus, by Lemma 5.2.6,
M3[x :=M2]:T

′ with T ′ ≤ T .

P≡M1•M2 where M1: {Di → Ui}i∈I and M2:D.

Let Dh = mini∈I{Di|D ≤ Di}. Thus T = Uh. We have three subcases:

1. M1 ⇒ M ′
1 then by induction M ′

1: {D
′
j → U ′j}j∈J with {D′j → U ′j}j∈J ≤ {Di →

Ui}i∈I Let D′k = minj∈J{D
′
j |D ≤ D′j}. Thus M ′

1•M2:U
′
k. Therefore we have to

prove that U ′k ≤ Uh

Since {D′j → U ′j}j∈J ≤ {Di → Ui}i∈I , then for all i ∈ I there exists j ∈ J such

that D′j → U ′j ≤ Di → Ui. For i = h we chose a certain h̃ ∈ J which satisfies this
condition that is:

D′
h̃
→ U ′

h̃
≤ Dh → Uh (5.1)

We now have the following inequalities:

D ≤ Dh (5.2)

by hypothesis, since Dh = mini∈I{Di|D ≤ Di};

Dh ≤ D′
h̃

(5.3)

follows from (5.1);

D ≤ D′
h̃

(5.4)

160 CHAPTER 5. A META-LANGUAGE FROM λ&

follows from (5.2) and (5.3);
U ′
h̃
≤ Uh (5.5)

follows from (5.1);
D′k ≤ D′

h̃
(5.6)

by (5.4), since D′
h̃

belongs to a set with D′k as least element;

U ′k ≤ U ′
h̃

(5.7)

follows from (5.6) and the covariance rule on {D′j → U ′j}j∈J
Finally, by (5.5) and (5.7), one has that U ′k ≤ Uh

2. M2 ⇒M ′
2 then by induction hypothesis M ′

2:D
′ with D′ ≤ D. Let Dk = mini∈I{Di|D

′ ≤
Di}. Thus M1•M

′
2:Uk. Since D′ ≤ D ≤ Dh then Dk ≤ Dh; thus, by the covariance

rule in {Di → Ui}i∈I , we obtain Uk ≤ Uh.

3. M1≡ (N1&N2) and M2 is a tagged value. Then we have three cases, that is
M ⇒ (N1•M2) (case Dh 6= Dn) or M ⇒ (N2 · M2) (case Dh = Dn and M2

different form super) or M ⇒ (N2 ·M3) (case Dh = Dn and M3≡ superD(M2)).
According to the case it easy to use [{}Elim] or [→Elim(≤)] or [→Elim(≤)] and
[Super] to show that the terms have type Uh or smaller.

2

Proposition 5.2.8 If P ⇒ P ′ and P is closed then also P ′ is closed

Proof. A simple induction on the rules of the operational semantics. 2

Corollary 5.2.9 Let P be a well-typed program. If P
∗
⇒P ′ and P ′ is in normal form then P ′

is a value

Proof. By theorem 5.2.7 P ′ is well-typed and by proposition 5.2.8 it is closed. The thesis
follows from proposition 5.2.4. 2

This corollary states that well-typed programs reduce to values, and thus do not produce
type errors.

5.3 Translation

As we already said, we do not give a direct semantics to the toy language. Instead we translate
its programs into λ object.

The key theorem of this section states that a well typed program is translated in a well
typed term of λ object ; this result validates the algorithm of type-checking we have given for
the toy object-oriented language in section 5.1.2, since it assures that type errors can never
occur during the computation of well typed programs.

We split the definition of the interpreter in three parts: we first translate programs where
methods are neither mutually recursive nor multi-methods; then by slight modifications we
introduce also multi-methods and finally, in the third subsection, recursion too.

5.3. TRANSLATION 161

5.3.1 Simple methods without recursion

We first give the intuitive translation of the object-oriented commands of the language:

• A message is an identifier of an overloaded function; thus it is translated in a variable
possessing a (raw) overloaded type; i.e. [[m]] = m{Ai→Ti}i∈I where {Ai|i ∈ I} is the set
of the classes where the message m has been defined, and the Ti’s are the corresponding
types appearing in the interfaces.

• Message passing is the application of an overloaded function; i.e. [[[exp0 exp exp1, . . . ,
expn]]] = [[exp]]•[[(exp0, exp1, . . . , expn)]]

• In the definition of a method, self represents the receiver of the message which in-
voked the method. Thus we translate a method msg=exp into λselfA.[[exp]], where A is
the current class. This will form a branch of the overloaded function denoted by the
(translation of the) message msg.

• new(A) defines a value of type A. More exactly it defines inA(r) where r is the record
value containing the initial values of the instance variables of the class A.

• update unpacks self in its representation (record) type, modifies its value (i.e. the
internal state) and packs it again in its original type. Thus for example [[(update
{x = 3})]] = inA(〈outA(selfA)← x = 3〉); again A is the current class.

• super[A](exp) and coerce[A](exp) are respectively translated into superA([[exp]])
and coerceA([[exp]]).

• The operation extend corresponds to adding a branch to an overloaded function. It
has the following intuitive interpretation
[[extend A m = exp [[. . .]] in exp′]] = (let m = (m&λselfA.[[exp]]) in [[exp′]]).

• Finally we have the most complex construct: the class definition. By a class definition
one defines a new atomic type, a set of type constraints on this atomic type and some
branches of overloaded function. The intuitive interpretation of, say, (class A is

A1,A2 {x:Int=3} m = exp [[m : T]] in p) is:

let A hide 〈〈x : Int〉〉 in

let A ≤ A1, A2 in

let m = (m&λselfA.[[exp]]) in [[p]]

Of course the initial value 3 of x must be recorded during the translation so that this
value could be used in the translation of new(A).

Unfortunately the formal interpretation is not so smooth. Most problems derive from the
fact that in λ object the variables are typed. So when we translate a set of methods into
an overloaded function, we have to concatenate branches so that the resulting term has the
required overloaded type.

162 CHAPTER 5. A META-LANGUAGE FROM λ&

Formally let L be the set of the programs of the toy-language; we define the translation
from L to Terms (the set of the raw terms of λ object) using three functions. The first is
the function which describes the translation itself:

ℑ[[]] : L → Envs→ InitState→ AtomicTypes→ Terms

Where:

Envs = V ars→ RawTypes This parameter records the type of
the identifiers. It is ranged over by
the metavariable Γ.

InitState = ClassNames→ RecordV alues This parameter stores the initial
value of the instance variables of
each class: it is used in the inter-
pretation of new. It is ranged over
by the metavariable I.

AtomicTypes This parameter is the current class
which is used in the translation of a
method.

Therefore ℑ[[p]]Γ I A is the term of λ object that translates the program p.
The definition of ℑ is given in term of two auxiliary functionsM and T : M[[p]](m) returns

the (overloaded) term associated to the message m by the definitions in p; T [[p]](m) returns
the (raw) type that indexes the variable (translation of) m. Of course, if p is well typed we
expect that M[[p]](m):T [[p]](m).

It is necessary to introduce these auxiliary functions in order to overcome one of the
major drawbacks of λ&. Suppose we have three classes A,B and C with C defined by
multiple inheritance from A and B (C ≤ A,B). Suppose also that A and B can respond
to the same message m; then by the condition of multiple inheritance one has also to define
a branch for m with input type C. In object oriented languages, as in our toy language,
the logical order is to define first the branches for A and B and then at the moment of the
definition of C to append the new branch for C. Thus the definition of m would be of the
form

m ≡ (ε &{A→T1}λselfA.M1 &{A→T1,B→T2}λselfB.M2 &{A→T1,B→T2,C→T3}λselfC .M3) (5.8)

This is very reasonable but unfortunately the term above is not well typed, since the second
index {A → T1, B → T2} is not a well formed type. In λ& the branch written to solve the
ambiguity of multiple inheritance must always precede at least one of the branches of its
direct ancestors. In the case above for example the following definition is well typed

m ≡ (ε &{A→T1}λselfA.M1 &{A→T1,C→T3}λselfC .M3 &{A→T1,C→T3,B→T2}λselfB .M2)

This problem can be framed in the more general problem of the definition of dynamic types.
λ& completely lacks the notion of time, or better the order of the definition of types. Atomic
types are given all at once, and there is no perception of the temporal dependence of type

5.3. TRANSLATION 163

definitions. Thus dynamic types cannot be modeled, and for this reason in our toy language
all the class definitions have to precede the expression to execute. Actually we are working
on the definition of a type system in which the types use time stamps, so that the definition
of m as in (5.8) is well typed. The idea is that an expression with type {A → T1, B → T2}
has a well-formed type if all its sub-expressions use types that are older than the definition
of C.

However for the moment we do not have time stamps; thus to translate our toy language
we have to use the functions M and T that pre-scan the program to translate, and build
the messages in the reverse way, from the latest method defined to the first one. Thus to
translate a program we are obliged to scan it twice: once to construct methods by reading
the definition in the reverse way, the other to translate the whole program.

Since the functionM[[]] uses in its definition the function ℑ[[]], it needs the same param-
eters of ℑ in order to pass them to it; for T [[]] no parameter is needed. Therefore we have
these formal definitions

Definition 5.3.1
T [[]] : L → V ars→ Types

1. T [[class B is A1,... ,Ap r : R m1=exp1 . . .mn=expn[[m1:T1 . . .mn : Tn]] in p]](m) =

=

{
T [[p]](mj)⊕ {B → Tj} for m = mj

T [[p]](m) else

2. T [[]] is the function which returns {} in all the other cases.

2

Definition 5.3.2

M[[]] : L → Envs→ InitState→ AtomicTypes→ V ars→ Terms

1. M[[class B is A1,... ,Aq r:R m1=exp1 . . .mn=expn[[m1:T1 . . .mn : Tn]] in p]]Γ I A(m) =

=

{
((M[[p]]Γ′ I A(mj))&

T [[p]](mj)⊕{B→Tj}λselfB.ℑ[[expj]]Γ[self←B] I[B←r]B) for m = mj

M[[p]]Γ I A(m) else

2. M[[]] is the function which returns ε in all the other cases.

Where Γ′ = Γ[mi ← Γ(mi)⊕ {B → Ti}]i=1..n. 2

Note that in ℑ[[expj]]Γ I[B←r]B we have used Γ instead of Γ′ since we stated that the methods
are not mutually recursive.

Definition 5.3.3 [Translation]

1. [[x]]Γ I A = xΓ(x)

2. [[exp1(exp2)]]Γ I A = [[exp1]]Γ I A[[exp2]]Γ I A
3. [[fn(x:T) => exp]]Γ I A = λxT.ℑ[[exp]]Γ[x←T] I A

4. [[let x:T = exp1 in exp2]]Γ I A = (λxT.ℑ[[exp2]]Γ[x←T] I A)([[exp1]]Γ I A)
5. [[(exp1,...,expn)]]Γ I A =< [[exp1]]Γ I A, ..., [[expn]]Γ I A >
6. [[fst(exp)]]Γ I A = π1([[exp]]Γ I A)

164 CHAPTER 5. A META-LANGUAGE FROM λ&

7. [[snd(exp)]]Γ I A = π2([[exp]]Γ I A)
8. [[new(B)]]Γ I A = inB(I(B))
9. [[[exp0 exp exp1, . . . , expn]]]Γ I A = [[exp]]Γ I A•[[(exp0,exp1,. . . ,expn)]]Γ I A

10. [[super[B](exp)]]Γ I A = superB([[exp]]Γ I A)
11. [[coerce[B](exp)]]Γ I A = coerceB([[exp]]Γ I A)
12. [[self]]Γ I A = selfA

13. [[self.ℓ]]Γ I A = (outA(self A)).ℓ
14. [[(update r)]]Γ I A = inA(〈outA(self A)← ℓ1 = [[exp1]]Γ I A...← ℓn = [[expn]]Γ I A〉)

where r ≡ {ℓ1 = exp1; ... ; ℓn = expn}
15. ℑ[[extend B m1=exp1...;mn=expn [[m1:T1;...;mn:Tn]] in exp]]Γ I A =

(λm
Γ(m1)⊕{B→T1}
1 ...λm

Γ(mn)⊕{B→Tn}
n .ℑ[[exp]]Γ′ I A)

(m
Γ(m1)
1 &Γ(m1)⊕{B→T1}λselfB .ℑ[[exp1]]Γ I B) · · · (m

Γ(mn)
n &Γ(mn)⊕{B→Tn}λselfB.ℑ[[expn]]Γ I B)

In the last rule Γ′ = Γ[mi ← Γ(mi)⊕ {B → Ti}]. 2

It still remains to give the semantics of programs.
Let p the program class B is A1,... ,Aq r:R m1=exp1 . . .mn=expn[[m1:T1 . . .mn : Tn]]
in p′ then
ℑ[[p]]Γ I A =

let B hide R in
let B ≤ A1...Aq in

ℑ[[p′]]Γ I[B←r]A[m
(T [[p]](mi))
i :=M[[p]]Γ I A(mi)]i=1..n

5.3.2 With multi-methods

Let us now add multi-methods. Intuitively we have to change only three things:

• The type of a message must take into account also the multi-methods, thus [[m]] =
m{Ai;Ti}i∈I—note the use of ; in the place of →—where again {Ai|i ∈ I} is the set
of the classes where the message m has been defined, and the Ti’s are the corresponding
types appearing in the interfaces.

• The method msg=exp is translated as before into λselfA.[[exp]], if it is a normal method
(A is the current class). If it is a multi-method then exp must be of the form &. . . &. . . .
For example exp may be:

mesg = & fn(x1:C1; x2:C2) => exp1

& fn(y1:C1; y2:C3) => exp2

& fn(z:C2) => exp3

Then, using some pattern matching in the lambda calculus, the multi-method is trans-
lated into

let mesg = (mesg

&λ(selfA, xC1
1 , xC2

2).[[exp1]]

&λ(selfA, yC1
1 , yC3

2).[[exp2]]

&λ(selfA, zC2).[[exp3]]
)

5.3. TRANSLATION 165

• In the translation of extend we have to translate the multi-methods in the same way
as above.

From a formal point of view this comes to modify the definitions of the previous section in
this way:

Definition 5.3.4
T [[]] : L → V ars→ Types

1. T [[class B is A1,... ,Aq r : R m1=exp1 . . .mn=expn[[m1:V1 . . .mn : Vn]] in p]](m) =

=

{
T [[p]](mj)⊕ {B ; Vj} for m = mj

T [[p]](m) else

2. T [[]] is the function which returns {} in all the other cases.

2

The definition of M[[.]] : L → Envs → InitState→ AtomicTypes → V ars→ Terms gets
quite harder:

Definition 5.3.5

• M[[class B is A1,. . . ,Aq r:R m1=exp1 . . .mn=expn[[m1:V1 . . .mn:Vn]] in p]]Γ I A(m) =

1. If m≡mj for some j ∈ [1..n] and Vj is a raw type, then the definition is as before

((M[[p]]Γ′ I A(mj))&
T [[p]](mj)⊕{B→Vj}λselfB.ℑ[[expj]]Γ[self←B] I[B←r]B)

2. If m≡mj for some j ∈ [1..n] and Vj ≡ #{Di → Ti}i=1..h, then we are in the case
of multi-method and expj must be of the following form:

& fn(x1:D1) => expj1
...

& fn(xh:Dh) => expjh
then M is defined in the following way:
(· · · ((M[[p]]Γ′ I A(mj)

&T [[p]](mj)⊕{B×Dσ(1)→Tσ(1)}λ(selfB , x
Dσ(1)

σ(1)).ℑ[[expjσ(1)
]]Γ[self←B] I[B←r]B)

...
&(T [[p]](mj)⊕...⊕{B×Dσ(h−1)→Tσ(h−1)})⊕{B×Dσ(h)→Tσ(h)}

λ(selfB, x
Dσ(h)

σ(h)).ℑ[[expjσ(h)
]]Γ[self←B] I[B←r]B)

Where Γ′ = Γ[mi ← Γ(mi)⊕ {B ; Ti}]i=1..n and σ is the permutation described
in section 4.3.1.

3. Else the definition ofM isM[[p]]Γ I A(m)

• M[[.]] is the function which returns ε in all the other cases.

2

Finally we have to modify the definition of ℑ for extend. We do not write it here since
the modifications follow the pattern of those we have done in the definition above. This
definition, however can be found in the case 14 of appendix D.

166 CHAPTER 5. A META-LANGUAGE FROM λ&

5.3.3 With recursive methods

We now give the translation in the case that methods can be defined mutually recursively.
The only thing we have to change is the interpretation of the methods, and then apply it
both to the translation of the class definition and the one of extend. Intuitively without
multi-methods if we have:

extend B with

m1 = exp1

m2 = exp2
...

mn = expn
[[. . .]] in exp

this is translated into
let (m1,m2, . . . ,mn) = µ(m1,m2, . . . ,mn).

((m1&λselfB.[[exp1]]) , (m2&λselfB.[[exp2]]) , . . . , (mn&λselfB.[[expn]]))
in [[exp]]

Of course we have to put the right types to the variables and the ampersands, and to deal
with multi-methods. Thus we have to change the definition of M in the following way:

Definition 5.3.6 Let p′ denote the program class B is A1,... ,Aq r:R m1=exp1 . . .mn=expn[[
m1:V1 . . .mn : Vn]] in p; then

• M[[p′]]Γ I A(m) =

{
πj(M) for m = mj

M[[p]]Γ I A(m) else

Where Γ′ = Γ[mi ← Γ(mi)⊕ {B → Ti}]i=1..n and M has the following definition:

M ≡ µ(m
T [[p′]](m1)

1 , . . . ,mT [[p′]](mn)
n).(M1, . . . ,Mn)

where

1. If Vj is a raw type then

Mj ≡ ((M[[p]]Γ′ I A(mj))&
T [[p]](mj)⊕{B;Vj}λselfB.ℑ[[expj]]Γ′[self←B] I[B←r]B)

2. If j ∈ [1..n] and Vj ≡ #{Di → Ti}i=1..h, then expj must be of the following form:
& fn(x1:D1) => expj1

...
& fn(xh:Dh) => expjh

then Mj is defined in the following way:
(· · · ((M[[p]]Γ′ I A(mj)

&T [[p]](mj)⊕{B×Dσ(1)→Tσ(1)}λ(selfB , x
Dσ(1)

σ(1)).ℑ[[expjσ(1)
]]Γ′[self←B] I[B←r]B)

...
&(T [[p]](mj)⊕...⊕{B×Dσ(h−1)→Tσ(h−1)})⊕{B×Dσ(h)→Tσ(h)}

λ(selfB, x
Dσ(h)

σ(h)).ℑ[[expjσ(h)
]]Γ′[self←B] I[B←r]B)

where σ has the usual property.

5.4. λ OBJECT AND λ& 167

• M[[.]] is the function which returns ε in all the other cases.

2

Finally we have to make the same modifications in the interpretation of extend.

5.3.4 Correctness of the type-checking

We next prove that every well typed program of the toy-language is translated in a well typed
term of λ object . The semantics of the toy-language is given in terms of the translation
we have just defined; also the notion of type error for the toy language comes from this
translation: a program is type safe when its translation, if it stops, stops on a value7. Thus
by the results of section 5.2.2 the translation of a well typed program is type safe, which
means that the type checker for λ object is correct.

Indeed we prove something stronger than the well typing of a term obtained by translating
a well typed program: we prove that the translated program possesses the same type as its
translation; note indeed that the types of the toy language are the same as those of λ object.

Since the definition of ℑ[[.]] is mutually recursive with M[[.]] then the theorem must be
proved mutually recursively with a theorem on M[[.]]. Thus the main theorem will be split
in two propositions. But first we some auxiliary notation:

Notation 5.3.7 We denote by Cp the set of type constraints declared in p, that is Cp = Ø if
p is an expression and C(classA isA1...An ... in p′) = (A ≤ A1)∪ ... ∪ (A ≤ An)∪Cp′ . We denote
by Sp the stores of the internal states defined in p: again Sp = Ø if p is an expression and
S(classA is...r:R...inp′) = [A← R] · Sp′ (here · denotes simple juxtaposition)

Theorem 5.3.8 For every type constraint C, type environment Γ; for every I ∈ InitState
and S : ClassNames→RecordTypes such that I(A):S(A) (for every A atomic); if

C;S; Γ ⊢ p:T

then

1. for all m ∈ V ars C ∪ Cp;S · Sp ⊢ M[[p]]Γ I Γ(self)(m):T [[p]](m)
2. C;S ⊢ ℑ[[p]]Γ I Γ(self):T

Proof. See appendix D 2

5.4 λ object and λ&

In this last section of the chapter we show the exact correspondence between λ object and
λ& by presenting how the former can be encoded in one of the variants of λ& presented
in chapter 4. We are not able to translate the whole λ object; we have to restrain our
attention to those programs that do not contain super. This was quite predictable since the
introduction of super had required the modification of the rule β&.

7We tried to give an informal justification of this. More formally we should define type errors in the toy
language and show that a type error in λ object implies a type error in the toy language

168 CHAPTER 5. A META-LANGUAGE FROM λ&

The target language of this encoding will be λ&++coerce. First of all we recall the
encoding of surjective pairings given in section 2.5.1: we distinguish two isolated types P1

and P2 together with two constants π1 : P1 and π2 : P2 that we use to define the following
encoding:

(T1 × T2) ≡ {P1 → T1, P2 → T2}

πi(M) ≡ M•πi
<M1 ,M2 > ≡ (ε&λxP1.M1&λxP2.M2) (for xPi 6∈ FV (Mi))

We recall that the the rules of subtyping, typing and reduction are the special cases of the
rules of λ& (and thus of λ&++coerce) for the encoding.

5.4.1 The encoding of the types

We start by codifying the types of λ object. Recall that in λ object every atomic type is
associated to a type used for its representation. This association is always relative to a
program in which it is described. Thus given a well-typed program P we define

1. The set of atomic types defined in the program P :

AP =





A ∪ AP ′ if P ≡ let A hide T in P ′

AP ′ if P ≡ let A ≤ A1, . . . , An in P ′

Ø otherwise

2. The set of type constraints generated in the program P :

CP =





(A≤A1) ∪ . . . ∪ (A≤An) ∪ CP ′ if P ≡ let A ≤ A1, . . . , An in P ′

CP ′ if P ≡ let A hide T in P ′

Ø otherwise

3. The function that for every atomic type A in AP returns the representation type asso-
ciated in P .

SP =





SP ′ [A← T] if P ≡ let A hide T in P ′

SP ′ if P ≡ let A ≤ A1, . . . , An in P ′

Ø otherwise

Then the translation of the types of λ object relative to a program P is defined in the following
way8

Definition 5.4.1 For every well-typed program P , we translate a type T ∈CP ,SP
Types

into the set of λ&-pretypes generated from the po-set of atomic types (AP ,≤) where ≤ is the
transitive and reflexive closure of CP . The translation is defined by induction on the structure
of T :

8As a matter of facts there cannot be in λ object only user defined atomic types; there must be at least
one predefined atomic type * together with a constant ? : * to start the definitions (see the implementation of
λ object in appendix A). This does not change the essence of what follows. Just imagine that also λ&+contains
* and ? and that they are translated by the identity.

5.4. λ OBJECT AND λ& 169

[[A]] = A× [[SP (A)]]
[[A1 ×A2]] = [[A1]]× [[A2]]
[[S → T]] = [[S]]→ [[T]]
[[{Si → Ti}i∈I]] = {[[Si]]→ [[Ti]]}i∈I

2

The definition above is well defined. To prove it associate to every T ∈CP ,SP
Types the

weight w(T) defined as follows

w(A) = n if A has been the n-th atomic type defined in the program P .
w(S → T) = w(S × T) = max{w(S), w(T)}
w({Si → Ti}i∈I) = maxi∈I{w(Si), w(Ti)}

Then it is easy to verify that, thanks to rules for typing and type good formation of λ object,
the translation of a type is always given in terms of the translations of types with a minor
weight or with the same weight but a less deep syntax tree (remember that the translation
is given w.r.t. a well-typed program P , and thus the definitions let ... hide ... cannot be
circular)

The weight above is also used to prove the following proposition

Proposition 5.4.2 CP ⊢ S ≤ T ⇔ [[S]] ≤ [[T]]

Proof. Let d(T) denote the depth of the syntax tree of T and associate to every subtyping
judgement S ≤ T the pair (w(S) + w(T), d(S) + d(T)). Then the result follows from a
straightforward induction on the lexicographical order of the pairs. The only non trivial case
is when S ≤ T is A1 ≤ A2:
(⇐) If A1 ≤ A2 in λ&+ then this must have been obtained by transitivity and reflexivity
from CP . Thus CP ⊢ A1 ≤ A2

(⇒) Viceversa if CP ⊢ A1 ≤ A2 then

[[A1]] ≤ [[A2]] ⇔ A1 × [[SP (A1)]] ≤ A2 × [[SP (A2)]]
⇔ A1 ≤ A2 ∧ [[SP (A1)]] ≤ [[SP (A2)]]

The first factor follows from CP ⊢ A1 ≤ A2 and definition 5.4.1. The second follows from the
induction hypothesis since the left component of the associated pair strictly decreases. 2

This proposition has the following important corollary

Corollary 5.4.3 Uj = mini∈I{Ui|U ≤ Ui} ⇔ [[Uj]] = mini∈I{[[Ui]]|[[U]] ≤ [[Ui]]}

We can now define precisely the target calculus of the translation that we call TARGETP

Definition 5.4.4 The target calculus TARGETP of the translation relative to a well-typed
program P has as raw terms the set of the λ&++coerce terms constructed from a denumerable
set of variables the constants to encode pairings and a constant cA of each A ∈ AP . Its set
of types is formed by AP plus the pretypes that are in the image of the translation of
definition 5.4.1 plus the types to encode pairings and to type fixpoint combinators. The
subtyping relation is the one generated from (AP ,≤) on the pretypes. The typing rules are
those of λ&++coerce. 2

170 CHAPTER 5. A META-LANGUAGE FROM λ&

Thus TARGETP is λ&++coerce but without some types. In particular A× [[T]] belongs to
the types of TARGETP if and only if let A hide T appears in P .

This is precisely stated by the following theorem

Theorem 5.4.5 The translation of a well-formed type of λ object satisfy the condition of
type formation of λ&+(+coerce)

Proof. The result follows nearly immediately from definition 5.4.4 and from proposition 5.4.2.
Just note that the types added for fixpoint combinators do not interfere with the condition
(c+) of page 124 2

Note that the statement of the theorem would not hold if we had not restricted the types of
TARGETP . This because A1 = A2 ⊓A3 does not imply SP (A1) = SP (A2) ⊓ SP (A3).

5.4.2 The encoding of the terms

We can now give the translation for the terms

Definition 5.4.6 We give the translation relative to a well-typed program P , of a term of
λ object that does not contains super.
[[xT]] = x[[T]]

[[inA(M)]] = coerce[[A]]((cA , [[M]])) cA is the constant of type A

[[outA(M)]] = π2([[M]])

[[coerceA(M)]] = coerce[[A]]([[M]])

[[λxT .M]] = λx[[T]].[[M]]

[[(M&TN)]] = ([[M]]&[[T]][[N]])
[[M ◦N]] = [[M]] ◦ [[N]]
[[<M ,N >]] = < [[M]] , [[N]]>
[[πi(M)]] = π′i([[M]]) i = 1, 2

[[µxT .M]] = Θ[[T]](λx[[T]].[[M]])

[[let . . . in P ′]] = [[P ′]]
where Θ is defined as in section 3.2 2

Strictly speaking we should have constructed SP along the translation in the following way:
[[let A hide T in P ′]]S = [[P ′]]S[A←T]; however, in the rest of this section, the declarations
play a secondary role thus we prefer to deal with them more informally; consequently in the
following we omit all the type constraint systems, understanding that they are all relative
to the type system of a given program. Note also that we have distinguished two different
pairings: one denoted by (,) with projections πi, the other < , > with projections π′i.
The former is used to codify objects, the latter to encode the pairings of λ object. We
differentiated them so that they cannot interfere one with the other.

Theorem 5.4.7 If M :T then there exists T ′ such that [[M]]: [[T ′]] ≤ [[T]]

Proof. The proof consists in a straightforward induction on the structure of the program and
uses proposition 5.4.2. Just note that [[M]]: [[T]] does not hold because of the definition of
[[outA(M)]] 2

5.4. λ OBJECT AND λ& 171

To conclude the section we have to prove the correctness of our translation, i.e. that if a
program of λ object reduces to a value then its translation reduces to the translation of the
value. To prove this theorem we need two technical lemmas. Let us denote by N↓ the normal
form of N .

Lemma 5.4.8 Let N be a tagged value. If N :D then [[N]] has a normal form and [[N]]↓: [[D]]

Proof. A trivial induction on the structure of tagged terms. Note how the coercion in the
translation of inA blocks the type. 2

Lemma 5.4.9 (substitution) [[M [xT : = N]]] = [[M]][x[[T]]: = [[N]]]

Proof. A straightforward induction on M . Just note that Θ is a closed term. 2

Theorem 5.4.10 If M ⇒ N then [[M]] >+
β∪β&∪(coerce) [[N]]

Proof. By induction on the definition of⇒. It suffices to prove the theorem for the axioms of
λ object. The result then follows by a straightforward use of the induction hypothesis. We
have six cases (the axioms for the declarations are trivially solved and we do not consider the
axioms for super).

1. πi(<G1 , G2 >) ⇒ Gi straightforward

2. outA1(inA2(M)) ⇒ M

[[outA1(inA2(M))]] = π2([[in
A2(M)]])

= π2(coerce[[A2]]((cA2 , [[M]]))

≡ (coerce[[A2]]((cA2 , [[M]])))•π2

>(coerce) π2((cA2 , [[M]]))
>+
β&∪β

[[M]]

3. outA1(coerceA2(M)) ⇒ outA1(M)

[[outA1(coerceA2(M))]] = π2([[coerceA2(M)]])

= π2(coerce[[A2]]([[M]]))
>(coerce) π2([[M]])
= [[outA1(M)]]

4. µxT .M ⇒ M [xT := µxT .M]

[[µxT .M]] = Θ[[T]](λx[[T]].[[M]])

>∗ (λx[[T]].[[M]])(Θ[[T]](λx[[T]].[[M]]))

>β [[M]][x[[T]]: = [[µxT .M]]]
= [[M [xT := µxT .M]]] by lemma 5.4.9

172 CHAPTER 5. A META-LANGUAGE FROM λ&

5. (λxT .M) · N ⇒ M [xT := N]

[[(λxT .M) · N]] = (λx[[T]].[[M]])[[N]]

>β [[M]][x[[T]]: = [[N]]]
= [[M [xT : = N]]] by lemma 5.4.9

6. (M1&
TM2)•G

D ⇒ Mi ◦GD immediate from corollary 5.4.3 and lemma 5.4.8

2

Chapter 6

Semantics

6.1 Introduction

The role of λ-calculus as core functional language is due to its nature as “pure” theory of
functions: just application, MN , and functional abstraction, λx.M , define it. In spite of the
“minimality” of these notions, full computational expressiveness is reached, in the type-free
case. In the typed case, expressiveness is replaced by the safety of type-checking. Yet, the
powerful feature of implicit and explicit polymorphism may be added. With polymorphism,
one may have type variables, which apparently behave like term variables: they are meant
to vary over the intended domain of types, they can be the argument of an application and
one may λ-abstract w.r.t. them. These functions depending on type variables, though, have
a very limited behavior. A clear understanding of this is provided by a simple remark in
[Gir72], where second order λ-calculus was first proposed: no term taking types as inputs
can “discriminate” between different types. More precisely, if one extends System F by a
term M such that, given different input types U and V , returns 0 when applied to input
type V and 1 to U , then normalization is lost. Second order terms, then, are “essentially”
constant, or “parametric”. Indeed, the notion of parametricity has been the object of a deep
investigation, since [Rey84] (see also [ACC93] and [LMS93] for recent investigations).

In chapter 2 with the definition of λ&, we have used the functional expressiveness of
the typed λ-calculus and extended it by overloading and subtyping, in order to account for
some features of object-oriented programming. In that chapter we laid the syntactic basis
for a study of a form of dependency of the computation “on the type of the inputs” (in
the second part of this thesis we we will focus on a dependency of the computation “on the
types in input”). In this chapter, we investigate an elementary approach to its mathematical
meaning. A more general (categorical) understanding of what we mean by “dependency on
the type of the inputs” should be a matter of further investigation, possibly on the grounds of
the concrete construction below. Indeed, our model provides an understanding of a slightly
modified version of the system in chapter 2, as we focus on “early binding” (see the discussion
below) and on the normalizing systems defined in chapter 3.

This chapter, which is a joint work with Giorgio Ghelli and Giuseppe Longo, is organized
as follows: in section 6.2 we develop some general syntactic tools, instrumental to our semantic
approach which can be applied to any of the systems presented in this part of the thesis.

173

174 CHAPTER 6. SEMANTICS

Section 6.3, introduces the variant with “early binding”. Section 6.4 presents the model.

6.2 The completion of overloaded types

This section presents some general, syntactic properties of (overloaded) types, which may be
viewed as some sort of “preprocessing” on the syntactic structures and which provide by this
an interface towards our semantic constructions.

We have already stressed that subtyping in our system is transitive but is not antisym-
metric (it is only a preorder relation).

However, since we want to interpret “≤” by an order relation among semantic types, in
this section we look for a mechanism to get rid of irrelevant differences between equivalent
types.

Definition 6.2.1 Given types U and V , set U ∼ V if U ≤ V and V ≤ U . 2

Remark If {U → V } ∼ {U → V,U ′ → V ′} then U ′ ≤ U and V ′ ∼ V . Indeed, one must
have U → V ≤ U ′ → V ′, so that U ′ ≤ U and V ≤ V ′, while V ′ ≤ V follows from U ′ ≤ U by
covariance. This gives the intuitive meaning of the equivalence: a type U ′ → V ′ can be freely
added or removed from an overloaded type if there is another type U → V which “subsumes”
it, i.e. which is able to produce the same output type on a wider input type (V ∼ V ′ but
U ≥ U ′).

We now extend the usual definitions of g.l.b., l.u.b., etc., to a preorder relation. For any
partial preorder ≤ defined on a set Y and for any X ⊆ Y define

min X =def {U ∈X|∀V ∈X.U ≤ V }

max X =def {U ∈X|∀V ∈X.V ≤ U}

inf X =def max{U ∈Y |∀V ∈X.U ≤ V }

supX =def min{U ∈Y |∀V ∈X.V ≤ U}

Note that the four functions above denote a subset of Y , which in the first two cases, if not
empty, is an element of X/ ∼, and in the last two cases an element of Y/ ∼.

Our next step is the definition of the “completion” of overloaded types; intuitively, the
completion of an overloaded type is formed by adding all the “subsumed types” (in the sense
of the previous remark), so that two equivalent overloaded types should be transformed, by
completion, in essentially the same completed type. For this purpose and for the purpose of
their semantics, we now adopt a different notation for overloaded types. Write ⇓ H, if the
collection H of types has a lower bound.

Definition 6.2.2 [g.o.t.] A general overloaded type (g.o.t.) is a pair (K, out) where K is a
set of types and out is a function from K to Type such that:

1. if H ⊆ K and ⇓ H then there exists V ∈ K such that V ∈ inf H.
2. out is monotone w.r.t. the subtype preorder.

Sometimes we will use {U → out(U)}U∈K to denote the g.o.t. (K, out). 2

6.2. THE COMPLETION OF OVERLOADED TYPES 175

Notice that V at the point 1 of the definition is not required to be unique, and also that K
is not required to be finite. Thus a g.o.t. is not a type. But any overloaded type can be seen
as a g.o.t. (K, out), with a finite K.

The preorder on g.o.t.’s is the one defined by applying to g.o.t.’s the rules given for λ&
in section 2.2.1.

We are now ready to define the notion of completion. We complete a g.o.t. (K, out) by
enlarging its domain to its downward closure and by extending the “out” map to the enlarged
domain. The extended map ôut is defined over a type U ′, essentially, by setting

ôut(U ′) = out(min{U ∈ K|U ′ ≤ U}).

But recall that min denotes a set of types; thus we have to choose one of them. To this aim,
we suppose that a choice function choose is defined which chooses a type out of a non-empty
set of equivalent types. Then, the extended map can be defined as:

ôut(U ′) = out(choose(min{U ∈ K|U ′ ≤ U})).

For brevity, we will denote the functional composition of choose and min as a min:

a min(X) =def choose(min(X))

Remark Even if ≤ is a preorder on Types, in the rule [{ }Elim] there is not ambiguity
in the selection of the minimum. Indeed, by the definition of good formation of (overloaded)
types we required the property

(c) (Ui⇓Uj ⇒ ∃!h ∈ I Uh ∈ inf{Ui, Uj})

Thus the rule picks up the unique Uj with the required property. For the same reason, when
the g.o.t. which is the argument of completion (see below) is actually a type, the argument
of the choose function is just a singleton.

Definition 6.2.3 [completion] Let {U → out(U)}U∈K be a g.o.t.. Its completion {U →
ôut(U)}

U∈K̂
is the g.o.t. given by: K̂ = {U ′|∃U ∈K U ′ ≤ U} and ôut(U ′) = out(a min{U ∈

K|U ′ ≤ U}). 2

Fact 6.2.4 The completion of a g.o.t. {U → out(U)}U∈K is a well-defined g.o.t..

Proof. Recall first that Type is a partial lattice: this gives 1 in 6.2.2. As for 2 (ôut
monotonicity), let U ′ ≤ V ′ be two types such that out is defined on both of them. Both
U ′′ = a min{U ∈K|U ≥ U ′} and V ′′ = a min{U ∈K|U ≥ V ′} are well-defined by 1; more-
over, V ′′ ∈ K, V ′′ ≥ V ′ and V ′ ≥ U ′ imply that V ′′ ∈ {U ∈ K|U ≥ U ′}, and then that
U ′′ ≤ V ′′, so that ôut(U ′) = out(U ′′) ≤ out(V ′′) = ôut(V ′). 2

Fact 6.2.5 In the completion of a g.o.t. {U → out(U)}U∈K , if U ∈K, then ôut(U) ∼ out(U),
since a min{V ∈K|U ≤ V } ∼ U and out is monotone.

Clearly, the completion is an idempotent operation (modulo equivalence). Note also that,
even for a singleton K = {U}, K̂ may be infinite (e.g. U equal to the type of ε i.e. { }).

176 CHAPTER 6. SEMANTICS

Fact 6.2.6 By completion, one obtains an equivalent g.o.t., that is:

{U → out(U)}U∈K ∼ {U → ôut(U)}
U∈K̂

Proof. “≥”: we have to prove that

∀U ∈K.∃U ′∈K̂.U → out(U) ≥ U ′ → ôut(U ′).

Take U ′ = U . By fact 6.2.5, since U ∈ K, ôut(U) ∼ out(U), hence U → out(U) ∼ U →
ôut(U).

“≤”: conversely, we have to prove that

∀U ′∈K̂.∃U ∈K.U → out(U) ≤ U ′ → ôut(U ′).

For U ′ ∈ K̂, ∃U ∈K.U ′ ≤ U ; thus, let Z = a min{V ∈K|V ≥ U ′}, one has Z → out(Z) ≤
U ′ → ôut(U ′), since by definition of completion ôut(U ′) = out(Z). 2

The idea is to interpret overloaded types by using their completions, in the model. How-
ever, as some preliminary facts may be stated at the syntactic level, we preferred to define
syntactic completions and work out their properties. The theorem 6.2.7 below, is the most
important one, since it guarantees the monotonicity of completion. Note that subtyping be-
tween overloaded types is contravariant w.r.t. the collections K̂ and Ĥ. The reader familiar
with the semantics of records as indexed products (see [BL90]) may observe analogy with
that contravariant understanding of records. This it is not surprising since we showed in
section 2.5 that record types may be coded as particular overloaded types.

Theorem 6.2.7 Let (K, out) and (H, out′) be g.o.t.. Then

{U → out′(U)}U∈H ≤ {U → out(U)}U∈K ⇔ K̂ ⊆ Ĥ and ∀U ∈K̂. U → ôut′(U) ≤ U → ôut(U)

Proof. (⇒) As for K̂ ⊆ Ĥ, just observe that, ∀U ∈K̂, ∃U ′∈K,U ≤ U ′; hence ∃V ∈H.U ′ ≤ V ,
by the assumption, and, thus, U ∈ Ĥ. Let now U ∈ K̂. There exists then V ∈K such that
U ≤ V : take V = a min{W ∈K|U ≤W}. As V ∈K, by the assumption one has:

∃U ′∈H.V ≤ U ′ and out′(U ′) ≤ out(V) (6.1)

Now,
ôut(U) = out(a min{W ∈K|U ≤W}) = out(V) (6.2)

Thus:
ôut′(U) ≤ ôut′(U ′) since U ≤ V ≤ U ′ and U,U ′∈Ĥ

∼ out′(U ′) by fact 6.2.5, since U ′ ∈ H
≤ out(V) by (6.1)

= ôut(U) by (6.2)

In conclusion, ∀U ∈K̂.U → ôut′(U) ≤ U → ôut(U).
(⇐) We have to prove that ∀U ∈K.∃V ∈H.V ≥ U and out′(V) ≤ out(U). Let U ∈K. By

hypothesis, U ∈Ĥ. Hence, V = a min{Z∈H|U ≤ Z} is well-defined. Thus:

out′(V) = ôut′(U) by definition

≤ ôut(U) hypothesis
∼ out(U) by fact 6.2.5, since U ∈K

2

6.3. EARLY BINDING 177

Corollary 6.2.8 Let (K, out) and (H, out′) be g.o.t.; then:

{U → out′(U)}U∈H ∼ {U → out(U)}U∈K ⇔ K̂ = Ĥ and ∀U ∈K̂.ôut′(U) ∼ ôut(U)

In conclusion, completions are not exactly canonical representatives of equivalence classes,
but at least they push the differences between two overloaded types one level inside the types.
In this way in the interpretation of types we will be able to get rid of the differences between
equivalent types by iterating completion at all the levels inside the type structure. The
fact that a type is equivalent to its completion makes it clear that an overloaded type, seen
modulo ∼, does not describe the structure of the corresponding functions (e.g. how many
different branches they have) but just which are the contexts where they can be inserted.
Hence we understand overloaded types as “type-checkers”, used to check the “dimension” of
programs, similarly as in Physics where, by a “dimensional analysis”, one checks that in an
equation, say, a force faces a force etc.. This will be the crucial semantic difference between
arrow types and overloaded types, since arrow types will keep their usual, more restrictive,
meaning as “collection of functions or morphisms identified by the input and output types”
(see section 6.4.2 for further discussions).

6.3 Early Binding

Object-oriented languages are characterized by an interplay of many features. We have se-
lected three of them—overloading, late binding and subtyping—that, in our opinion, suffice
to model the relevant features of a class-based object-oriented language. Not that these
features are exclusive to this approach: overloading existed long before object-oriented lan-
guages (FORTRAN already used it) while subtyping, even if it was first suggest by object-
oriented paradigms, has been included in other different paradigms (e.g. EQLOG [GM85],
LIFE [AKP91] or Quest [CL91a]). But their combination is peculiar to object-oriented pro-
gramming. And exactly the interplay of all these features makes the object-oriented approach
so useful in the large-scale software production.

At semantic level, our system presents four main technical challenges. The first is the
true dependence of overloaded functions from types. The second is the fact that subtyping is
not an order relation. The third is that subtyping even if it respects the structure of types it
does not respect their “size” (we will say more about it below). The fourth is the distinction
between run-time types and compile-time types. In this chapter we just concentrate on the
first two aspects, which already requires some technical efforts, while we will avoid the third
problem by considering only the normalizing systems of chapter 3 and we will avoid the
fourth one by taking into consideration only a subsystem where the type of the arguments
of overloaded functions is “frozen”, i.e. is the same at compile time and at run time. This is
just a first step in the direction of defining a semantics for the full system.

The resulting system is someway intermediate between late binding and early binding
overloading. It features early binding, since for any application of an overloaded function the
type which will be used to perform branch selection is already known at compile time, as
happens for example with arithmetic operators in imperative languages. It has still a form
of late binding since, as overloaded functions are first class values which can be the result
of expression evaluation, it is not possible to get rid of branch selection at run time. For

178 CHAPTER 6. SEMANTICS

example if in the body of a function which has a formal parameter x of type {Ui → Ti}, this
parameter is applied to an argument of type U , then we know that the branch selection will
be based on U ; though this branch selection cannot be statically performed since the function
associated with x is unknown at compile time.

If overloaded functions were not first class (i.e. if no variable were allowed to possess
an overloaded type) this restricted calculus would correspond to the “classical” (i.e. with
early binding) implementation of overloading in imperative languages: the standard example
is the operator + which is defined both on reals and integers, though a different code is
used according to the type of the argument1. What happens in these languages is that a
preprocessor scans at compile time the text of a program looking for all occurrences of + and
it substitutes them by a call to the appropriate code, depending on whether they are applied
to reals or integers2. As far as we know, all languages that use in an explicit way overloading
(and not implicitly as it is done in object-oriented programming via the method definitions)
base the selection of the code on the type possessed by the arguments at compile time.

We obtain this “half-way-early-binding” restriction of our system simply by adding ex-
plicit coercions and imposing that every argument of an overloaded function is coerced. We
recall that a coercion coerceV is just a function which, informally, does nothing, but which
cannot be reduced, so that the type of all the residuals of a term coerceV (M) is always V
(see section 4.2). Thus to model overloading with early binding we require that, for each
overloaded application, a coercion freezes the type of the argument up to branch selection.
We change the system in the following way: Pretypes, Types and rules are as before. Terms
are now:

M :: = xV | λxV.M |M ·M | coerceV (M) | ε |M&M |M•coerceV (M)

We add to the rules of type-checking the one for coercions:

[Coercion]
M :U ≤ V

coerceV (M):V

We define the reduction on the coercion as in section 4.2

(coerce) coerceV (M) ◦N > M ◦N

where ◦ denotes either · or •. This is the minimal extension of the system. This rule is needed
since otherwise coercions could prevent some β or β& reductions. This rule does not interfere
with our use of coercions, since it only allows us to reduce the left hand side, but not the
right hand side, of an application.

1This example is sometimes misleading because of the fact that the codes for the two branches must give
the same results when applied to integers (integer numbers being a subset of real numbers); this extra property
is proper to coherent overloading, but in general the branches do not need to be related on the values they
return

2The same is true for paradigms which have a cleverer use of overloading: for example, when the programmer
can define his or her own overloaded operators. This is possible in Haskell; in this language the implementation
of overloading is based on strong theoretical grounds as shown in [WB89]; in that paper it is also shown how
the selection in overloading can be solved at compile time by the use of a preprocessor

6.4. SEMANTICS 179

Finally we consider only stratified systems, i.e. those system in which the typing or sub-
typing relations are defined so to satisfy the hypothesis of theorem 3.3.1. The necessity of
restricting our attention to the strongly normalizing systems defined in section 3.3 comes
from the fact that the subtyping relation for the full λ&-calculus does not respect the size
of the types, since a type maybe a subtype of a strict occurrence of itself: for example,
{ {} → T } ≤ {} and {} is a strict occurrence of { {} → T }. The consequence of this fact
is that it is impossible to give a definition of the semantics by induction on the structure of
types, since to give the semantics to an overloaded type we need to know the semantics of
the subtypes of its input types and thus, in the case above, of the type itself (in particular
definition 6.4.12 would not be well-defined for the full λ&). We are in presence of a new form
of impredicativity. This does not happen in the strongly normalizing systems, where it is
possible to define a well-founded order that respects both the subtyping relation and the size
of the types.

We are now able to give the denotational semantics of any of these systems that we
generally denote by λ&-early.

6.4 Semantics

6.4.1 PER as a model

In this section we give the basic structural ideas which will allow us to interpret the syntax
of λ&-early. Namely, we state which geometric or algebraic structures may interpret arrow
and overloaded types; terms will be their elements and will be interpreted in full details in
section 6.4.3.

A general model theory of λ&-early may be worth pursuing as an interesting development
on the grounds of the concrete model below. Indeed, by some general categorical tools, one
may even avoid to start with a model of type-free lambda calculus, but this may require
some technicalities from Category Theory (see [AL91]). Thus we use here a model (D, ·) of
type-free lambda calculus and a fundamental type structure out of it. We survey first the
basic ideas for the construction. Later we specialize the general construction by starting out
with a specific type-free model which will yield a semantics for our typed calculus.

PER out of (D, ·)

Let (D, ·) be an applicative structure, which yields a model of type-free lambda calculus (see
[Bar84]).

Example 6.4.1 Let Pω be the powerset of the natural numbers, ω. Pω may be turned into
an applicative structure (Pω, ·), indeed a model of type-free λ-calculus, by setting:

a · b = {k|∃eh ⊆ b,≺h, k≻∈ a}

where a and b are elements of Pω, {ei}i∈ω is an enumeration of finite sets of numbers and
≺ , ≻ is a bijective coding of ω × ω into ω (see [Sco76] and also [Lon83] for a general
set-theoretic construction). 2

180 CHAPTER 6. SEMANTICS

We first define the category of types as Partial Equivalence Relations out of (D, ·). When A
is a symmetric and transitive relation on D, we set, for n,m ∈ D:

nAm
def
⇔ n is related to m by A

dom(A)
def
= {n|nAn}

⌈n⌉A
def
= {m|mAn} (the equivalence class of n with respect to A)

Q(A)
def
= {⌈n⌉A|n ∈ dom(A)} (the quotient set of A).

Clearly, if A is a symmetric and transitive relation on D then A is an equivalence relation on
dom(A), as a subset of D. (Note that, even if we will use n,m for arbitrary elements of D,
when D is Pω each element n in D is actually a set of numbers).

Definition 6.4.2 The category PER (of Partial Equivalence Relations) is defined as:
• objects: A ∈ PER iff A is a symmetric and transitive relation on D
• morphisms: f ∈ PER[A,B] iff f : Q(A) → Q(B) and ∃n ∈ D.∀a ∈ dom(A).f(⌈a⌉A) =
⌈n · a⌉B 2

Note that the morphisms in PER are computable, w.r.t. (D, ·), in the sense that any n ∈ D
such that ∀a ∈ dom(A).f(⌈a⌉A) = ⌈n · a⌉B computes or realizes f : Q(A) → Q(B) in the
definition (notation: n|⊢A→Bf). Thus PER is a category where the identity map, in each
type, is computed by (at least) the interpretation of the term λx.x, i.e. the identity function
on D.

Theorem 6.4.3 PER is a CCC.

Proof.(Hint, the proof is in several papers since [Sco76]; in particular, in [AL91]). The
exponent object A→ B is defined by

∀m,n. m(A→ B)n ⇔ ∀p, q(pAq ⇒ (m · p)B(n · q))

Products are defined by taking a coding of pairs of D into D, as given for example by the
fact that D is a model of type free lambda-calculus. 2

To clarify the construction, let us look in more detail at the exponent objects in PER.
Take say A → B, that is, the representative of PER[A,B]. Then by definition each map
f ∈ PER[A,B] is uniquely associated with the equivalence class of its realizers, ⌈n⌉A→B ∈
A → B in the sense above. It should be clear that the notion of realizer, or “type-free
computation” computing the typed function, is made possible by the underlying type-free
universe, (D, ·). As we will discuss later, this gives mathematical meaning to the intended
type-free computations of a typed program after compilation. In this context, it is common
to identify, by an abuse of language, each typed function with the equivalence class of its
realizers. Of course, the semantic “→” gives meaning to arrow types.

Definition 6.4.4 The semantics of arrow types is given by [[U → V]] = [[U]]→ [[V]] 2

6.4. SEMANTICS 181

Subtyping

Before going into the semantics of the other types, we briefly introduce the meaning of
“subtypes”, in view of the relevance this notion has in our language. The semantics of
subtypes over PER is given in terms of “subrelations”, (see [BL90]).

Definition 6.4.5 [subtypes] Let A,B ∈ PER. Define: A ≤ B iff ∀n,m.(nAm⇒ nBm) 2

The intuition for this approach to subtyping is better understood when looking at “arrow
types”.

Proposition 6.4.6 Let A,A′, B,B′ ∈ PER be such that A′ ≤ A and B ≤ B′. Then A →
B ≤ A′ → B′. In particular, for n ∈ dom(A→ B), one has ⌈n⌉A→B ⊆ ⌈n⌉A′→B′

Proof.

n(A→ B)m ⇔ ∀p, q.(pAq⇒n · pBm · q)

⇒ ∀p, q.(pA′q⇒n · pB′m · q) as pA′q⇒pAq⇒n · pBm · q⇒n · pB′m · q

⇔ n(A′ → B′)m

The rest is obvious. 2

The proposition gives the antimonotonicity of → in its first argument, as formalized in the
rules and required by subtyping. Moreover, and more related to the specific nature of this
interpretation of →, this gives a nice interplay between the extensional meaning of programs
and the intensional nature of the underlying structure, namely between functions and the
set of indexes that compute them. Indeed, typed programs are interpreted as extensional
functions in their types, as we identify each morphism in PER with the equivalence class
of its realizers. That is, in the notation of the proposition, let ⌈n⌉A→B ∈ A → B represent
f ∈ PER[A,B] in the exponent object A → B. Note then that the intended meaning of
subtyping is that one should be able to run any program in A→ B on terms of type A′ also, as
A′ is included in A. When n|⊢A→Bf , this is exactly what ⌈n⌉A→B ⊆ ⌈n⌉A′→B′ expresses: any
computation which realizes f in the underlying type-free universe actually computes f viewed
in A′ → B′ also. Of course, there may be more programs for f in A′ → B′, in particular if A′

is strictly smaller than A. This elegant interplay between the extensional collapse, which is
the key step in the hereditary construction of the types as partial equivalence relations, and
the intensional nature of computations is a fundamental feature of these realizability models.
Clearly “≤” is a partial order which turns the objects of PER into an algebraic complete
lattice. The crucial point here is that “≤” defines a refinement relation which goes exactly
in the sense we want in order to interpret subtypes. Namely if A ≤ B then the equivalence
class of A are included in those of B or A is finer than B.

Note finally that, given n ∈ dom(A) and A ≤ B, we may view the passage from ⌈n⌉A to
⌈n⌉B as an obvious coercion.

Definition 6.4.7 [semantic coercions] Let A,B ∈ PER with A ≤ B . Define cAB ∈
PER[A,B] by ∀n ∈ dom(A) cAB(⌈n⌉A) = ⌈n⌉B 2

182 CHAPTER 6. SEMANTICS

Remark By the previous definition, for any a∈Q(A), cAB(a) ⊇ a

Syntactic coercions are denoted by coerceV where V is the type the argument is coerced
to; the type-checker guarantees that this type is greater than the type of the argument of
coerceV . Also in the semantics we need to know the type of the argument since the semantic
coercions are “typed functions”, from a p.e.r. to another: thus, we have denoted semantic
coercions between p.e.r.’s A and B by cAB ; the double indexation and the different font
distinguish a semantic coercion from the syntactic symbol. Also, for the sake of conciseness
if U and V are syntactic types, we denote by cUV the semantic coercion c[[U]][[V]]

Note that semantic coercions do not do any work as type-free computations but, indeed,
change the “type” of the argument, i.e. its equivalence class and the equivalence relation
where it lives . Thus they are realized by the indexes of the type free identity map, among
others, and they are meaningful maps in the typed structure.

Since terms will be interpreted as equivalence classes in (the meaning as p.e.r.’s of) their
types, we need to explain what the application of an equivalence class to another equivalence
class may mean, as, so far, we only understand the application “·” between elements of the
underlying type-free structure (D, ·).

Definition 6.4.8 [Application] Let A,A′ and B be p.e.r.’s, with A′ ≤ A. Define then, for
n(A→ B)n and mA′m, ⌈n⌉A→B · ⌈m⌉A′ = ⌈n ·m⌉B . 2

Note that this is well defined, since mA′m′ implies mAm′ and, thus, n · mBn′ · m′, when
n(A → B)n′. This is clearly crucial for the interpretation of our “arrow elimination rule”.
We end this section on subtyping by two technical lemmas that will be heavily used in the
next sections.

Lemma 6.4.9 (Monotonicity of application) Let a, b, a′, b′ be equivalence classes such
that the applications a · b and a′ · b′ are well defined (i.e. a ∈ Q(A1 → A2) and b ∈ Q(B) with
B ≤ A1, and similarly for a′ and b′). If a ⊆ a′ and b ⊆ b′ then a · b ⊆ a′ · b′

Proof. n ∈ a · b ⇔ ∃p∈a, q∈b. n = p · q ⇒ p∈a′, q∈b′ ⇒ n = p · q∈a′ · b′ 2

Lemma 6.4.10 (Irrelevance of coercions) Let A,A′ and B be p.e.r.’s, with A′ ≤ A. As-
sume that n(A→ B)n and mA′m. Then
⌈n⌉A→B ·cA′A(⌈m⌉A′) = ⌈n⌉A→B ·⌈m⌉A = ⌈n·m⌉B = ⌈n⌉A→B ·⌈m⌉A′ = cA→BA′→B(⌈n⌉A→B)·
⌈m⌉A′ .

Proof. Immediate 2

6.4.2 Overloaded types as Products

The intuitive semantics of overloaded types is quite different from the meaning of arrow types.
The essential difference is that types directly affect the computation: the output value of a
β& reduction explicitly depends on the type of the (M1&M2) term, and on the type of the
argument N .3

3The fact that terms depend on types should not be confused with the different situation of “dependent
types” where types depend on terms, e.g. in the Calculus of Construction [CH88]

6.4. SEMANTICS 183

A second difference has to do with the ability to accept as parameters values of any type
which is a subtype of the input types explicitly specified. This fact is managed implicitly in
arrow types. For example, let M :U → V , then M will be interpreted as a function from the
meaning of U to the meaning of V , as sets (or objects in a category of sets) and U → V will
be interpreted as the collection of such functions. Robust structural properties of the model
we propose will allow a function in U → V to be applied to elements of a subtype of U , as
if they were in U . This kind of interpretation is not possible with overloaded types, at least
since the set of acceptable input types has not, generally, a maximum.

Thus two crucial properties need to be described explicitly in the semantics of overloaded
terms. First, output values depend on types; second, as a type may have infinitely many sub-
types and the choice of the branch depends on “≤”, overloaded semantic functions explicitly
depend on infinitely many types. By this, we will consider overloaded functions as, essentially,
functions which take two parameters, one type and one value, and give a result whose type
depend on the first parameter. Hence overloaded functions of, say, a type {U → V,U ′ → V }
will be elements of the indexed product (see later)

∏

W≤U,U ′

(W → V).

In other words, the interpretation of U → V will be given by the usual set of functions
from the interpretation of U to the interpretation of V (in a suitable categorical environment),
while the meaning of {U → V,U ′ → V } will directly take care of the possibility of applying
overloaded functions to all the subtypes of the argument types.

The fact that the index in the product ranges over all subtypes of U,U ′, not just over
{U,U ′}, solves a third problem of overloaded types: the fact that subtyping is just a preorder,
while its semantics interpretation is an order relation. By exploiting the notion of completion
defined in section 6.2, we will be able to interpret all equivalent types as the same object.

We are now ready to be formal.
In set theory, given a set A and a function G : A→ Set (Set is the category of sets and

set-theoretical maps), one defines the indexed product:
⊗

a∈A

G(a) = {f | f : A→ ∪a∈AG(a) and ∀a ∈ A. f(a) ∈ G(a)}

If A happens to be a subset of an applicative structure (D, ·) and G : A → PER, then the
resulting product may be viewed as a p.e.r. on D, as follows.

Definition 6.4.11 Let A ⊆ D and G : A→ PER. Define the p.e.r.
∏
a∈A G(a) by

n(
∏

a∈A

G(a))m ⇔ ∀a ∈ A. n · aG(a)m · a

2

Remark [Empty product] Notice that, by the definition above, for any G:

∏

a∈Ø

G(a) = D ×D

184 CHAPTER 6. SEMANTICS

Clearly,
∏
a∈A G(a) is a well defined p.e.r. and may be viewed as a collection of computable

functions, relative to D: any element in dom(
∏
a∈A G(a)) computes a function in

⊗
a∈A G(a),

and when n
∏
a∈A G(a)m, then n and m compute the same function. That is, by the usual

abuse of language, we may identify functions and equivalence classes and write:

f ∈
∏

a∈A

G(a) iff f ∈
⊗

a∈A

G(a) and ∃n∈D.∀a∈A.f(a) = ⌈n · a⌉G(a). (6.3)

We then say that n realizes f .

Our aim is to give meaning to functions “computing with types”. The idea is to consider
the type symbols as a particular subset of D and use some strong topological properties of
a particular model (D, ·), namely of (Pω, ·) in 6.4.1, to interpret these peculiar functions.
Thus, from now on, we specialize (D, ·) to (Pω, ·). Recall that Pω may be given a topological
structure, the Scott topology, by taking as a basis the empty set plus the sets {a ∈ Pω | en ⊆
a}, where {en}n∈ω is an enumeration of the finite subsets of Pω.

Assume then that each type symbol U is associated, in an injective fashion, with an
element n in D, the semantic code of U in D. Call [Type]⊆ D the collection of semantic
codes of types. The choice of the set of codes is irrelevant, provided that

• it is in a bijection with Type;

• the induced topology on [Type] is the discrete topology.

These assumptions may be easily satisfied, in view of the cardinality and the topological
structure of the model D we chose. For example, enumerate the set of type symbols and fix
[Type] to be the collection of singletons {{i}|i ∈ ω} of Pω (Type is countable as each type
has a finite representation). We then write Tn for the type-symbol associated with code n4

and, given K ⊆ Type, we set [K] = {n|Tn ∈ K}.
We can now interpret as a p.e.r. any product indexed over a subset [K] of [Type]. Indeed,

this will be the semantic tool required to understand the formalization of overloading we
proposed: in λ&, the value of terms or procedures may depend on types. This is the actual
meaning of overloaded terms: they apply a procedure, out of a finite set of possible ones,
according to the type of the argument. As terms will be functions in the intended types
(or equivalence classes of their realizers), our choice functions will go from codes of types to
(equivalence classes in) the semantic types.

Remark The reader may observe that there is an implicit higher order construction in this:
terms may depend on types. However:

• in view of the countable (indeed finite) branching of overloaded terms and types, we do
not need higher order models to interpret this dependency;

• note though that the intended meaning of an overloaded term is a function which
depends on a possibly infinite set of input types, as it accepts terms in any subtype of
the Ui types in the {Ui → Vi} types. Whence the use of g.o.t.’s and completions.

4Remember that, despite the letter n, n is a singleton, not just an integer.

6.4. SEMANTICS 185

• known higher order systems (System F, Calculus of Constructions...) would not ex-
press our “true” type dependency, where different types of the argument may lead to
essentially different computations. This was mentioned in the introduction and it is
understood in the PER model of these calculi by a deep fact: the product indexed
over (uncountable) collections of types is isomorphic to an intersection (see [LM91]). A
recent syntactic understanding of this phenomenon may be found in [LMS93].

Remark Overloaded functions are similar, in a sense, to records; in the first case the basic
operation is selection of a function depending on a type, while in the second case it is selection
of a field depending on a label. Consequently, subtyping is strictly related too: theorem 6.2.7
shows that, working with the completion of types, subtyping is the same in the two cases.
However we cannot get rid of overloaded types in λ&-early by encoding them as product
types, using the technique developed in [CL91a] for record types, since the completion of an
overloaded type is an infinite structure, and also since we want to lay foundations which can
be used to study the whole late binding version of λ&.

Now we are ready to define the semantics of overloaded types as products. In view of the fact
that we want to interpret subtyping, which is a preorder, by an order relation in the model,
we will use the completion to get rid of “irrelevant differences” between overloaded types.

Definition 6.4.12 The semantics of overloaded types is given by

[[{U → out(U)}U∈K]] =
∏

n∈[K̂]

[[Tn → ôut(Tn)]]

where [K̂] =
{
n

∣∣∣Tn ∈ K̂
}

2

This definition is well founded since we consider only the stratified system (and thus we can
use the function rank to define a weight for each syntactic type and prove that the semantics
of an overloaded type is given in terms of the semantic of types of smaller weight), and it has
a well defined meaning over PER, by definition 6.4.11, where A = [K̂] and G: [K̂] → PER
is given by G(n) = [[Tn → ôut(Tn)]]. It clearly extends to g.o.t.’s, as we only need that K
is countable, here. Now we are finally in the position to check that the preorder on types is
interpreted as the partial order “≤” on PER.

Theorem 6.4.13 If U ≤ V is derivable, then [[U]] ≤ [[V]] in PER.

Proof. The proof goes by induction on the structure of types, the only critical case concerns
the overloaded types and will be an easy consequence of theorem 6.2.7.

atomic types

by definition

arrow types

by proposition 6.4.6

186 CHAPTER 6. SEMANTICS

overloaded types

Let (K, out) and (H, out′) be g.o.t.. Assume that {U → out′(U)}U∈H ≤ {U →
out(U)}U∈K . We need to show that

∏
i∈[Ĥ]

[[Ti → ôut′(Ti)]] ≤
∏
i∈[K̂]

[[Ti → ôut(Ti)]]

in PER.

By 6.2.7, [K̂] ⊆ [Ĥ] and ∀i∈ [K̂].Ti → ôut′(Ti) ≤ Ti → ôut(Ti). Hence:

m
∏
i∈[Ĥ]

[[Ti → ôut′(Ti)]]n ⇔ ∀i∈ [Ĥ].m[[Ti → ôut′(Ti)]]n by definition

⇒ ∀i∈ [K̂].m[[Ti → ôut(Ti)]]n by 6.2.7

⇒ m
∏
i∈[K̂]

[[Ti → ôut(Ti)]]n

2

6.4.3 The semantics of terms

We can now give meaning to terms of the λ&-early, with the use of coercions introduced in
the previous section. In the following we index a term by a type as a shorthand to indicate
that the term possesses that type.

Recall that give a per A we denote by Q(A) the set of its equivalence classes. An envi-
ronment e for typed variables is a map e:V ar →

⋃
A∈PER Q(A) such that e(xU) ∈ Q([[U]]).

Thus each typed variable is interpreted as an equivalence class in its semantic type. This will
be now extended to the interpretation of terms by an inductive definition, as usual. Since we
make a large use of the quotient sets we prefer to introduce the following notation

Notation 6.4.14 Let A be a per on D and a ⊆ D. We write a ∈∈ A if a ∈ Q(A).

Thus for an environment e we have that e(xU) ∈∈ [[U]]
In spite of the heavy notation, required by the blend of subtyping and overloading, the

intuition in the next definition should be clear. The crucial point 6 gives meaning to an
overloaded term by a function which lives in an indexed product (as it will be shown formally
below): the product is indexed over (indexes for) types and the output of the function is the
(meaning of the) term or computation that one has to apply. Of course, this is presented
inductively. Some coercions are required as M1 and M2 may live in smaller types than the
ones in &{Vi→Wi}i≤n . Then, in point 7, this term is actually applied to the term argument of
the overloaded term.

Definition 6.4.15 [semantics of terms] Let e:V ar −→
⋃
A∈PERQ(A) be an environment.

Set then:

1. [[ε]]e = D, the only equivalence class in the p.e.r. D ×D (see remark 6.4.2)

2. [[xU]]e = e(xU)

3. [[λxU .MV]]e = ⌈n⌉[[U→V]] where n is a realizer of f such that ∀u ∈∈ [[U]] . f(u) =

[[MV]]e[x:=u]

4. [[MU→VNW]]e = [[MU→V]]e[[N
W]]e

6.4. SEMANTICS 187

5. [[coerceV (MU)]]e = cUV ([[MU]]e) (the semantic coercion)

6. Let (M1&
{Vi→Wi}i≤nM2): {U → out(U)}U∈{Vi}i≤n

with M1:T1 ≤ {Vi → Wi}i<n and
M2:T2 ≤ Vn →Wn.

Set then [[M1&M2]]e = f such that, given j ∈ [̂{Vi}i≤n] and Z = min 5{U ∈ {Vi}i≤n|Tj ≤
U}, one has

f(j) =

{
c
T2(Tj→ôut(Tj))

([[M2]]e) if Z = Vn

(cT1({Vi→Wi}i<n)[[M1]]e)(j) else

7. [[M{U→out(U)}U∈K •coerceV (NW)]]e = [[M{U→out(U)}U∈K]]e(i)[[coerceV (NW)]]e where Ti =
V .

2

Remark Notice that this semantics does not interpret reduction as equality. Indeed:

[[(λxV .QU)PW]]e = [[λxV .QU]]e[[P
W]]e

= ⌈n⌉[[V→U]][[P
W]]e with n as in point 3 of definition 6.4.15

= ⌈n⌉[[V→U]](cWV [[PW]]e) by 6.4.10

= [[QU]]e[x:=cWV [[PW]]e] by point 3 of definition 6.4.15

In general, [[Q]]e[x:=cWV [[PW]]e] is different from [[Q[x: = PW]]]e. For example, if Q = x, the two

expressions evaluate to cWV [[PW]]e and to [[PW]]e respectively. This will be more generally
understood in 6.4.18.

The soundness of this definition is split into two theorems and is proved right below. We
recall first, in a lemma, that Pω is an “injective” topological space.

Lemma 6.4.16 (injectivity) Let Y be a topological space and X ⊆ Y , a subspace with
the induced topology. Then any continuous h : X → Pω can be extended to a continuous
~ : Y → Pω. Indeed, ~ is given by ~(y) = ⊔{⊓ {h(x)|x ∈ X ∩ U}| y ∈ U}. (The proof is
easy; see [Sco76] for this and more properties of Pω).

Theorem 6.4.17 (soundness w.r.t. type-checking) If N :U then, for any environment
e, [[N]]e is well defined and [[N]]e ∈∈ [[U]].

Proof. The proof goes by induction on the structure of N :

1. If N ≡ xU , then e(xU) ∈ [[U]] by definition.

2. If N ≡ ε, since [[ε]] = D, then [[ε]] ∈∈ [[{}]] ≡ D ×D (see 6.4.2).

3. If N ≡ λxU .MV , consider [[λxU .MV]]e = f such that ∀u ∈∈ [[U]].f(u) = [[MV]]e[u:=x].
We need to show that f lives in the right type and it is realized, or, equivalently, that
f , as a set of realizers, is in (the quotient set of) [[U → V]]. This is a consequence of
the proof that PER is a CCC, as lambda abstraction is the currying operation (see for
instance [AL91]).

5We should write a min{. . .}, but note that in this case the set min{. . .} is a singleton.

188 CHAPTER 6. SEMANTICS

4. If N ≡ MU→V PW , where W ≤ U . By induction [[MU→V]]e ∈∈ [[U → V]] and [[PW]]e ∈∈
[[W]] ≤ [[U]]. Then the result follows by 6.4.8.

5. Assume that N ≡ (M1&
{Vi→Wi}i≤nM2): {U → out(U)}U∈{Vi}i≤n

with M1:T1 ≤ {Vi →
Wi}i<n and M2:T2 ≤ Vn → Wn. Set [[M1&M2]]e = f as in the definition 6.4.15. We
prove this case by induction on n; in each case we have to prove that f lives in the
set-theoretic indexed product

⊗
j∈[̂{Vi}i≤n]

[[Tj → ôut(Tj)]] and that it is realized.

(n = 1) . In this case {Vi}i≤n = {V1} By definition 6.4.15 we have that ∀j∈ [{̂V1}].f(j) =
cT2(Tj→W1)([[M2]]e) as there is only one branch to choose. By induction [[M2]]e ∈
∈ [[T2]] and, since Tj ≤ V1, the coercion application makes sense. The result lives

in the correct type since, for each j ∈ [{̂V1}], f(j) = cT2(Tj→W1)([[M2]]e) ∈ [[Tj →

ôut(Tj)]] and, thus, the whole f lives in the correct set-theoretic indexed product.
To conclude the proof we have to show that f is realizable.

Intuitively, f can be realized by an index for a constant function, since for any
input type f executes always the same code M2; this code is coerced to different
types Tj → ôut(Tj), but, thanks to the interpretation of subtyping, any realizer
for this code in the minimum type T2 lives in the domain of any of its supertypes
Tj → ôut(Tj).

Formally, consider first a map f ′: [{̂V1}]→ Pω which chooses, for each j ∈ [{̂V1}],
always the same element n of the equivalence class [[M2]]e ∈ [[T2]]. Then f ′ is
computed by any index of the chosen constant function. These indexes realize f :
since f ′(j) lives in [[MT

2]]e, then

⌈f ′(j)⌉
[[Tj→ôut(Tj)]]

= c
T,Tj→ôut(Tj)

[[MT
2]]e = f(j).

Note that, though f is realized by an index of a constant function, f itself is not
constant.

(n > 1) . In this case, we have that M1:T1 ≤ {Vi →Wi}i<n≡{U → out(U)}U∈{Vi}i<n
.

By induction hypothesis, [[M1]]e ∈∈ [[T1]] and thus cT1({Vi→Wi}i<n)([[M1]]e) ∈∈ [[{Vi →

Wi}i<n]]. In particular, let g be the map such that for each j ∈ [̂{Vi}i<n].g(j) =
cT1({Vi→Wi}i<n)([[M1]]e)(j). Then, by the induction, g is in

∏
j∈[̂{Vi}i<n]

[[Tj →

ôut(Tj)]]. Consider now f defined as in 6.4.15 point 6 from (M1&
{Vi→Wi}i≤nM2),

that is, f(j) = c
T2(Tj→ôut(Tj))

([[M2]]e) or f(j) = g(j) according to whether Z =

min{U ∈ {Vi}i≤n|Tj ≤ U} is equal to Vn or to some Vm for m < n. Note that f is

well defined, as, for each j ∈ [̂{Vi}i≤n] there exists (and it is unique) the least Vz
such that Tj ≤ Vz, by the definition of well-formed overloaded types. By this, f is
in (the quotient set of)

⊗
j∈[̂{Vi}i≤n]

[[Tj → ôut(Tj)]].

To prove that f is realizable, consider the map f ′ which chooses for each j ∈

[̂{Vi}i≤n] an element f ′(j) of the equivalence class f(j). Clearly, f ′ is (well defined

and) continuous, since [̂{Vi}i≤n] ⊆ Pω is endowed with the discrete topology.
Then its continuous extension f ′:Pω → Pω, given as in the lemma, is computed

6.4. SEMANTICS 189

by some n ∈ Pω, i.e. f ′(p) = n · p, see [Sco76]. In conclusion,

∃n∈Pω. ∀j∈ [̂{Vi}i≤n]. f(j) = ⌈f ′(j)⌉
[[Tj→ôut(Tj)]]

= ⌈n · j⌉
[[Tj→ôut(Tj)]]

and thus f ∈
∏
j∈[̂{Vi}i≤n]

[[Tj → ôut(Tj)]]. (Equivalently, one could extend by

continuity g, defined as above, to f , by the same “injectivity” argument; this
argument is needed, anyway, as an extension by a constant value, does not need
to be continuous, in general. We preferred to define a new realizer and use the
inductive hypothesis just to check the semantic types).

6. If N≡M{U→out(U)}U∈K •coerceV (PW): out(Z) where Z = min{U ∈K|V ≤ U} , then

[[N]] = [[M{U→out(U)}U∈K]]e(j)cWV ([[PW]]) for Tj = V.

By the previous point, [[M{U→out(U)}U∈K]]e(j) ∈∈ [[Tj → ôut(Tj)]]≡ [[V → out(Z)]], hence

[[N]]e ∈∈ [[out(Z)]]

2

We observed that reductions are not interpreted as equalities in the model. Indeed they yield
set theoretic inclusions.

Lemma 6.4.18 (substitution) [[Q[x: = P]]]e ⊆ [[Q]]e[x:=p] where p = cT ′T [[P]]e, x:T , P :T ′ ≤
T

Proof. The proof goes by induction on the structure of the terms:

1. Q≡y 6= x or Q≡ε: trivial

2. Q≡x

[[x[x: = P]]]e = [[P]]e ∈∈ [[T ′]] is contained in [[x]]e[x:=p] = p = cT ′T [[P]]e ∈∈ [[T]], by the
definition of semantic coercions.

3. Q≡λyU .M

As usual we identify a function with the set of its realizers, in the intended type. Thus

[[λyU .M [x: = P]]]e = f such that ∀u ∈∈ [[U]].f(u) = [[M [x: = P]]]e[y:=u]

while

[[λyU .M]]e[x:=p] = f ′ such that ∀u ∈∈ [[U]].f ′(u) = [[M]]e[x:=p;y:=u] ⊇ [[M [x: = P]]]e[y:=u]

(the inclusion holds by induction hypothesis), thus each realizer for f is also a realizer
for f ′, that is

[[λyU .M [x: = P]]]e ⊆ [[λyU .M]]e[x:=p]

190 CHAPTER 6. SEMANTICS

4. Q≡M ·N

the proof goes by the usual induction. Just recall 6.4.10 and the monotonicity of
application (Lemma 6.4.9).

5. Q≡M•coerceV (N)

[[M•coerceV (N)]]e[x:=p] =

= [[M]]e[x:=p](j)([[coerceV (N)]]e[x:=p]) for Tj=V

⊇ [[M [x: = P]]]e(j)([[coerceV (N)[x: = P]]]e) by ind. and the monotonicity of appl. in Pω

= [[(M [x: = P])•(coerceV (N)[x: = P])]]e

= [[(M•coerceV (N))[x: = P]]]e

6. Q≡M1&M2: {Vi → Wi}i≤n. Let Z = min{U ∈ {Vi}i≤n|Tj ≤ U} then

[[M1&M2]]e[x:=p] = f such that f(j) =

{
c
T2(Tj→ôut(Tj))

([[M2]]e[x:=p]) if Z = Vn

(cT1({Vi→Wi}i<n)[[M1]]e[x:=p])(j) else

[[(M1&M2)[x: = P]]]e = f ′ s.t. f ′(j) =

{
c
T2(Tj→ôut(Tj))

([[M2[x: = P]]]e) if Z = Vn

(cT1({Vi→Wi}i<n)[[M1[x: = P]]]e)(j) else

Note that in both cases we get the same Z, since it depends only on the index of the &.
Then the result follows by the same reasoning as in (3.). More precisely, since in this
case [[Q[x: = P]]]e and [[Q]]e[x:=p] have the same type, from [[Q[x: = P]]]e ⊆ [[Q]]e[x:=p] we
can deduce [[Q[x: = P]]]e = [[Q]]e[x:=p].

2

The immediate consequence of the work done so far is the construction of a simple model
of “reduction” and not, as customary in denotational semantics, of “conversion”. This is
precisely stated by the following theorem.

Theorem 6.4.19 (soundness wrt reductions) If M is well typed and M >N then [[M]]e ⊇
[[N]]e

Proof. The proof goes by induction on the definition of >. The critical cases are:

1. M≡(λxU .P)QW and N≡P [x: = Q] with (λxU .P):U → V and Q:W≤U

[[(λxU .P)Q]]e = [[(λxU .P)]]e[[Q]]e
= [[(λxU .P)]]ecWU ([[Q]]e) by 6.4.10
= [[P]]e[x:=q] where q = cWU([[Q]]e)

⊇ [[P [x: = Q]]]e by the substitution lemma
= [[N]]e

6.5. SUMMARY OF THE SEMANTICS 191

2. M≡ (M1&M2)•P with (M1&
{Vi→Wi}i≤nM2): {U → out(U)}U∈{Vi}i≤n

, M1:T1 ≤ {Vi →

Wi}i<n, M2:T2 ≤ Vn → Wn and P ≡ coerceTj (P ′):Tj for some P ′ ∈Terms and
Tj ∈Types. Thus, N≡MhP for h = 1 or h = 2. More precisely, for Z = min{U ∈
{Vi}i≤n|Tj ≤ U},

N ≡

{
M2 · P if Z = Vn
M1•P else

Compute then

[[(M1&M2)•P
Tj]]e = [[(M1&M2)]]e(j)[[P]]e

=

{
c
T2(Tj→ôut(Tj))

([[M2]]e)[[P]]e if Z = Vn

(cT1({Vi→Wi}i<n)[[M1]]e)(j)[[P]]e else

In the first case,

[[M]]e = c
T2(Tj→ôut(Tj))

([[M2]]e)[[P]]e

⊇ ([[M2]]e)[[P]]e by monotonicity and by a ⊆ cUV (a)
= [[N]]e

Otherwise

[[M]]e = (cT1({Vi→Wi}i<n)[[M1]]e)(j)[[P]]e
⊇ [[M1]]e(j)[[P]]e by monotonicity and by a ⊆ cUV (a)
= [[M1•P]]e
= [[N]]e

2

Remark Clearly, theorem 6.4.19 specializes to the implicative fragment of our calculus,
which is simply typed λ-calculus with subtyping. Thus, by a simple observation of the
properties of PER, we spotted a mathematical model of the reduction predicate “ >” between
terms of λ-calculi, instead of conversion “=”. The non-syntactic models so far constructed
could only give mathematical meaning to the theory of “=” between λ-terms and β-reduction
was interpreted as the “=”.

It is important to notice, however, that the decrease of the size of the equivalence class
which is the interpretation of a term is not directly related to the reduction process, but to
the fact that types decrease during computation. In fact, if you consider the two terms M
and coerceV (M) and apply the same reduction steps to both of them, while the semantics
of M can decrease, any time its type changes, the semantics of coerceV (M) remain fixed,
even if the same reduction steps are executed.

6.5 Summary of the semantics

As already mentioned in the introduction of this chapter, there is a general understanding
that polymorphism, as intended in λ-calculus, is not compatible with “procedures depending

192 CHAPTER 6. SEMANTICS

on input types”. As pointed out in [Gir72], one cannot extend second order λ-calculus with
a term giving different output terms according to different input types. Indeed, in [LMS93],
it is shown that terms depending on types use types as “generic”, i.e. the value on just
one type determines the value everywhere. This is why, in order to express an explicit
type dependency, it was not sufficient to extend simply typed λ-calculus by type variables,
and we proposed an entirely new feature, based on “finite branching of terms”, in order to
formalize the dependency we wanted. Moreover, the use of late binding and subtyping added
expressiveness to the system. Indeed, as we said in the introduction of this chapter, the
expressive power of the syntax poses four problems: pre-order, type-dependent computation,
late binding, impredicativity. We have handled the first two and circumvented the others.
More in detail:

1. The use of a pre-order between types is handled, at a syntactic level in section 6.2,
by the notion of completion. But then our finite branching immediately becomes an
infinite one: this is indeed what is actually meant in the syntax, by the rules, as we
allow terms to work also on inputs inhabiting types smaller than the intended one.
Thus, the intended function depending on the type of the input, may depend on an
infinity of input types, implicitly. This must be made explicit in the semantics.

2. Type dependent computations are handled by considering types as “coded” in the
semantics and using their indexes also as meaning in the model. Note that this mathe-
matical meaning of types corresponds to the practice of type-dependent computations.
In programming, when and if computing depends on types, this is possible as types,
after all, are just “code” (in OOP it corresponds to consider classes as tags as we saw in
chapter 5); thus they are handled like any countable (and enumerated) data type. This
is impossible in sound mathematical models which respect the logical “second order”
convention. Indeed, in this case, types must be (arbitrary) subsets of the (infinite)
sets interpreting terms. Observe also that the implicit polymorphism of our approach
shows up in the semantics by the interpretation of overloaded functions as elements of
an infinite indexed product.

3. We were not able to deal with late binding: suppose that you want to interpret the
overloaded application M•N where N is not in normal form; the semantics will be of
the form (([[M]])[[T]])[[N]], where T is the syntactic type on which the selection of the
branch is performed. With early binding we know that T is the type of N , but what
should we use with late binding? T must be the run-time type of N but we cannot
know it yet. The solution probably consists in giving the semantics of a term as the
pair (computation, runtime type) of the term. Thus the computation part of [[M•N]]
would be something of the form

(ΛX.(fst[[M]])[[X]]) (snd[[N]]) (fst[[N]])

As we see we are passing to a formalism where type dependency is explicit and we think
that a better understanding, already at syntactic level, of this explicit type dependency
would greatly help us in the study of the mathematical meaning of λ&. This indeed was
(chronologically) the first motivation that led us to study the second order formalisms
we present in the next part of the thesis.

6.5. SUMMARY OF THE SEMANTICS 193

4. We were not able to deal with the new form of impredicativity introduced by the
definition of subtyping for the overloaded types. We already showed the problem in
the introduction of this chapter: the meaning of { {} → T } is the product indexed on
the subtypes of {} and thus on { {} → T } itself. The problem is similar to the one of
System F : the semantics of ∀X.T is the indexed product on the semantics of all types
and thus of ∀X.T itself. In PER, for example, the problem is solved (but it took nearly
two decades to clarify its categorical meaning) by indexing not on the interpretations
of the types, but on all per’s:

[[∀X.T]]E =
∏

C∈PER

[[T]]E[X:=C]

Thus the definition above is well given since the per’s exists independently from the
types they interpret (see [LM91]). The same happens with F≤ (section 7.1.3): the
meaning of ∀X≤S.T is the indexed product on all the sub-per’s of the meaning of S
(see [CL91a]):

[[∀X≤S.T]]E =
∏

C⊆[[S]]E

[[T]]E[X:=C]

Here we are not able to mimic this understanding of the intended circularity because
we are forced to index our product on singletons as “codes” for types. Thus we are
not able to define in the model a sound order on singleton that respects the subtyping
relation of the corresponding types. In other terms in the models of F≤ one is able to
define an order ⊆ on PERs, such that if S ≤ T then [[S]] ⊆ [[T]]. But here we could not
find in the model an order relation 4 on singletons (or more general on sets) such that
if Tn ≤ Tm then {n} 4 {m}.

In his PhD. Thesis [Tsu92] Hideki Tsuiki introduces a calculus similar to λ& but which
models just the coherent overloading. This kind of overloading has the restriction that
the definition of branches with related input types must be related. For example,
define a overloaded function with two branches (M1 & M2) with M1: Int → T and
M2:Real → T , since Int ≤ Real “coherent overloading” requires that for all N : Int
M1N = M2N (this is for example what happens with the successor function). If
this condition is not satisfied then the computation ends with an error (note that this
error cannot be statically detected since M1N = M2N is undecidable, see more on it in
section 11.2). Also in his work Tsuiki meets the problem of impredicativity we explained
above (see also section 5.2.4 of [Tsu92]), but he can give a mathematical meaning to it
thanks the strong relation of the various branches. For that he exploits some tools also
used in constructing a domain theoretic model of the higher order λ-calculus. Thus, as
also he says, his “merge” function is closer to a parametric polymorphic function than
to an overloaded one, and the impredicativity due to subtyping is still an open problem
for general type dependent computations.

We believe that the same could be done with λ&; indeed at the very beginning of this
semantic study Pino Rosolini suggested us a model to interpret λ& with restriction
to coherent overloading; though we preferred to follow the solution of early binding in
view of the undecidable nature of the restriction.

194 CHAPTER 6. SEMANTICS

Part II

Second order

195

Chapter 7

Introduction to part II

This second part of the thesis is completely dedicated to polymorphic systems.

Polymorphism in programming has been introduced for a variety of reasons and greatly
contributed to a modular, flexible style of programming. Its relevance has been stressed also
by the increase of reliability of polymorphic programs, in view of its connections to static
type checking. Here we stress the further motivations which derived from the use of the
“object as record” analogy and that are originated by the problem of “loss of information”,
explained below.

Also in our case the main motivation to the introduction of polymorphism is originated by
this problem. However there are also other reasons that induced us to study the integration
of bounded parametric and “ad hoc” polymorphism: one of this motivation is the semantic
understanding of the mechanism of late binding, and has been illustrated in the conclusion
of last chapter; other proof theoretic motivations will be illustrated in chapter 9.

In this thesis we limit our study to second order type systems in which the polymorphism
is explicit, i.e. where terms can be applied to types. The study of the implicit counterpart is
under way.

We initially proceed in our study of the second order by following two parallel directions:

1. We try to ameliorate the existing type systems that use bounded quantification, by
defining a variant enjoying many properties (foremost the decidability of the subtyping
relation) that actual type systems do not. This is the topic of chapter 8

2. We define a calculus for explicit “ad hoc” polymorphism. Namely a calculus in which
overloaded functions are applied to types and the selection is based on the type at the
argument (rather than on the type of the argument). This is the topic of chapter 9.

After having merged the results of the two studies in a single calculus, we show how the
second order overloading can be used to model object-oriented programming (chapter 10).

197

198 CHAPTER 7. INTRODUCTION TO PART II

7.1 The loss of information in the record-based models: a
short history

The problem of “loss of information”, has been defined by Luca Cardelli in [Car88], where
he also forecasted the solution by polymorphic types. Let show it by an example.

Consider the identity function I〈〈ℓ:Int〉〉 of type 〈〈ℓ: Int〉〉 → 〈〈ℓ: Int〉〉. In the syntax of typed
lambda terms this corresponds to:

I〈〈ℓ:Int〉〉 ≡ λx〈〈ℓ:Int〉〉.x

Take now M ≡ 〈ℓ = 1;m = true〉 which has type 〈〈ℓ: Int;m:Bool〉〉. By subsumption
M : 〈〈ℓ: Int〉〉, thus I〈〈ℓ:Int〉〉 can be applied to it (equivalently use [→Elim(≤)]). This gives
(I〈〈ℓ:Int〉〉(M)): 〈〈ℓ: Int〉〉 and therefore (I〈〈ℓ:Int〉〉(M)).m returns a type error. In other words, we
have lost the information bound to the label “m” of M simply by applying it to the identity
function.

The point is that the type of the result of a function is fixed before the function is applied;
thus it cannot depend on the type of the input, as one would want. The solution is given
by the use of type variables in its two main forms: type assignment (implicit polymorphism)
and higher order type checking (explicit polymorphism).

7.1.1 Implicit Polymorphism

The idea is that terms possesses type schemata that may be consistently instantiated, in
the usual sense of Logic [Mil78, Hin69]. For example, the identity λx.x has type schema
∀α.α → α, i.e. it has all the types obtained as instances of α → α. The main features of
this approach are widely discussed in the literature. The basic idea is that programs are
type-free entities, which are assigned a type at compile time. In our example, there is no loss
of information, as one may instantiate α → α by the intended type of the input obtaining
the same type as output.

Observe though that in our case there are some complications. Generic type variables
may have to satisfy some further constraints as for

M ≡ λx.((λy.x)((x.ℓ) + 3))

In this example, M β-reduces to λx.x. However, the use of field selection in (x.ℓ), impose
that M may only accept parameters possessing at least a field “ℓ” (of type Int since it is
added to 3). Thus M is assigned the type schema ∀α.α → α with α ≤ 〈〈ℓ: Int〉〉 (which can
be noted by ∀α ≤ 〈〈ℓ: Int〉〉.α→ α).

After the introduction of polymorphism the need was felt to add the definitions of oper-
ations on records which were more expressive then the ones in [CW85, Car88]. The problem
was that, at that stage, only the functions that read a record could profit from polymorphism;
functions modifying a field of a record did not take advantage from the use of type variables.

Along this line, powerful calculi of records (as the one given in [CM91]) or very expressing
encodings (like the ones in [CL91a] or in [Car92]) have been defined. However, these calculi
did not permit one to infer the principal type scheme of a type-free term. In the context of
a type-assignment algorithm other calculi were developed by adding functional constants to
the functional core of ML and using Kinds in the algorithm [Rém89, Wan91].

7.1. THE LOSS OF INFORMATION IN THE RECORD-BASED MODELS: A SHORT HISTORY199

7.1.2 Explicit Polymorphism

The other idea is based on a higher order understanding of the approach above, as poly-
morphism is explicit rather than implicit . In other words, type variables, instead of being
implicitly quantified (by an external, metalinguistic universal quantifier), are explicitly quan-
tified by a linguistic, second order quantifier, as in second order λ-calculus of Girard and
Reynolds [Gir72, Rey74]; moreover bounds can be imposed on the quantified type variables
obtaining in this way the so-called Bounded Quantification.

The approach of bounded quantification, which originated in [CW85] by the definition
of the language Fun, explicitly blends polymorphism and subtyping by allowing bounds (in-
clusion) over quantification. That is, the syntax is given by adding to the second order
lambda-calculus constraints (bounds) on the lambda-abstracted type variables. In short,
terms and types are defined as follows:

a ::= x | (λxT .a) | a(a)
| top | ΛX≤T.a | a(T)

T ::= X | Top | T → T | ∀(X≤T)T

The second order λ-calculus is then the particular case where the type which bounds the
type-variables is always equal to Top.

In this context, the function I〈〈ℓ:Int〉〉 in the previous section is written as1 ΛX≤〈〈ℓ: Int〉〉.λxX .x
and it has type ∀(X≤〈〈ℓ: Int〉〉)X → X. Then we may apply I〈〈ℓ:Int〉〉 to M by first applying
it to the actual type of M :

I〈〈ℓ:Int〉〉(〈〈ℓ: Int;m:Bool〉〉)(M)

The result has type 〈〈ℓ: Int;m:Bool〉〉 and there is no loss of information. The different
expressiveness of Bounded Quantification w.r.t. implicit polymorphism may be understood
by the following example: in ML+records (see [Rém89]) there is no way to assign a type to
the function

λf.f(〈ℓ = 3; ℓ′ = true〉) + f(〈ℓ = 5; ℓ′ = 6〉)

This is due to non genericity of λ-bound variables. In the apprach with Bounded Quantifi-
cation the term above may be seen as the erasure of the (well-typed) term

λf∀(X≤〈〈ℓ:Int〉〉)X→Int.

f(〈〈ℓ: Int; ℓ′:Bool〉〉)(〈ℓ = 3; ℓ′ = true〉) + f(〈〈ℓ: Int; ℓ′: Int〉〉)(〈ℓ = 3; ℓ′ = 6〉)

This expressiveness is paid by the loss of an algorithm of type assignment. It may be fair
to say, however, that, in large scale programming—where object-oriented languages play
their best role—type inference is not a primary objective. Indeed, if types are not directly
specified by the programmer they soon get unmanageable. Thus, while a small amount of
type inference is desirable in an object-oriented language, a large use of type inference could
result harmful. assignment doesn’t seem to fit to large-scale programming (types soon get
unmanageable if not) where object-oriented languages play their best role.

1Records can be encoded

200 CHAPTER 7. INTRODUCTION TO PART II

A final remark: note that we now use lowercase letters (a, b . . .) to range over terms. This
is the usual convention in the second order explicit polymorphism. Thus, in the rest of this
thesis, we abandon uppercase letters M , N , . . . , to adopt the standard convention.

7.1.3 F≤

Fun was further developed in many works (a non exhaustive list includes [CCH+89, Ghe90,
CHC90, CL91a, CMMS91, BTCGS91, Bru92, KS92, PT93]) and, in particular that of Curien
and Ghelli [CG92] where they give the standard definition of bounded quantification called
F≤ (“F-sub”). This calculus is the starting point of the work in this second part of the thesis.
Thus let us describe it more in detail.

The terms and the types of F≤ are those defined for Fun in the previous section. The
subtyping and typing rules are given below:

(refl) C ⊢ T≤T

(trans)
C ⊢ T1 ≤ T2 C ⊢ T2 ≤ T3

C ⊢ T1 ≤ T3

(taut) C ⊢ X≤C(X)

(Top) C ⊢ T≤Top

(→)
C ⊢ T1≤S1 C ⊢ S2≤T2

C ⊢ S1 → S2≤T1 → T2

(∀)
C ⊢ T1≤S1 C ∪ {X≤T1} ⊢ S2≤T2

C ⊢ ∀(X≤S1)S2 ≤ ∀(X≤T1)T2

[Vars] C ⊢ xT :T

[→Intro]
C ⊢ a:T ′

C ⊢ (λxT .a):T → T ′

[→Elim]
C ⊢ a:S → T C ⊢ b:S

C ⊢ a(b):T

[Top] C ⊢ top:Top

[∀Intro]
C ∪ {X≤T} ⊢ a:T ′

C ⊢ ΛX≤T.a:∀(X≤T)T ′

7.1. THE LOSS OF INFORMATION IN THE RECORD-BASED MODELS: A SHORT HISTORY201

[∀Elim]
C ⊢ a:∀(X≤S)T C ⊢ S′≤S

C ⊢ a(S′):T [X := S′]

[Subsumption]
C ⊢ a:T ′ C ⊢ T ′ ≤ T

C ⊢ a:T

The typing rules are quite standard; note the use of subsumption. Among the subtyping rules
note the rule (∀); the meaning of this rule and the consequences of using it will be broadly
discussed in the next chapter, and constitute the starting point of the definition of F⊤≤ .

202 CHAPTER 7. INTRODUCTION TO PART II

Chapter 8

A roadmap to decidable bounded
quantification

It is an important and popular fact that things are not always what

they seem. For instance, on the planet Earth, man had always as-

sumed that he was more intelligent than dolphins because he had

achieved so much —the wheel, New York, wars and so on— while

all the dolphins had ever done was muck about in the water having

a good time. But conversely, the dolphins had always believed that

they were far more intelligent than man—for precisely the same

reasons.

Douglas Adams

The hitchhiker’s guide to the galaxy

Extensions of System F with bounded quantification form the basis of much recent research
on the foundations of programming languages. But the standard formulation of bounded
quantification, F≤, is difficult to work with and lacks some important syntactic properties,
such as decidability. More tractable variants have been studied, but those proposed to date
either exclude significant classes of useful programs or lack a compelling semantic intuition.

We propose in this chapter a simple variant of F≤ that ameliorates these difficulties. It
has a simple semantic interpretation, enjoys a number of important properties that fail in
F≤, and includes all of the programming examples for which F≤ has been used in practice.

This chapter is a joint work with Benjamin Pierce, [CP94].

8.1 Introduction

In the previous chapter we gave the subtyping rules of F≤, defined by Curien and Ghelli
in [CG92]. The definition of its subtype relation includes the following rule for comparing
polymorphic types:

203

204 CHAPTER 8. A ROADMAP TO DECIDABLE BOUNDED QUANTIFICATION

(∀-orig)
C ⊢ T1≤S1 C ∪ {X≤T1} ⊢ S2≤T2

C ⊢ ∀(X≤S1)S2≤∀(X≤T1)T2
X 6∈ dom(C)

(we added the suffix -orig to distinguish it from the other rules we describe in the following)
Intuitively, a type T of the form ∀(X≤ T1)T2 describes a collection of polymorphic values
(functions from types to values) each mapping subtypes of T1 to instances of T2. If T1 is
a subtype of S1, then the domain of T is smaller than that of ∀(X≤ S1)T2, so this type
has a weaker constraint and therefore it describes a larger collection of polymorphic values.
Moreover, if given the type ∀(X≤S1)S2 for each type U that is an acceptable argument to the
functions in both collections (i.e., one that satisfies the more stringent requirement U≤T1),
the U -instance of S2 is a subtype of the U -instance of T2, then T is a “pointwise weaker”
constraint and again describes a larger collection of polymorphic values. In other terms the
two functions are pointwise compared only on their common domain.

Though it is semantically quite natural, this rule is responsible for the loss of numerous
desirable syntactic properties. To begin with, the subtype relation of F≤ is undecidable [Pie93,
Ghe93b], which implies the undecidability of the typechecking problem even for explicitly
typed terms. Moreover, F≤ lacks greatest lower bounds for compatible (i.e. lower-bounded)
sets of types [Ghe90], which blocks certain useful forms of argument by induction on the
subtype relation. The most natural extension of F≤ with bounded existential types [GP93]
even fails to possess a minimal type for every typeable term! In all these cases, it is the
quantifier subtyping rule that appears to be the principal culprit. Thus, it is reasonable to
look for variants of this rule with better properties.

The crux of the problem is that the upper bound of the bound variable X in S2 changes
from S1 in the rule’s conclusion to T1 in the right-hand premise. This “re-bounding” of
variables is syntactically rather bizarre; in particular, it invalidates a whole class of arguments
based on structural induction on types, where the case for a type variable normally requires
applying the induction hypothesis to its upper bound.

The weaker “equal-bounds subtyping rule” from Cardelli and Wegner’s original Fun cal-
culus [CW85]

(∀-Fun)
C ∪ {X≤U} ⊢ S2≤T2

C ⊢ ∀(X≤U)S2 ≤ ∀(X≤U)T2
X 6∈ dom(C)

avoids this confusion and yields a system in which the subtyping problem can easily be shown
to be decidable, at the cost of introducing an ugly syntactic restriction —that the bounds of
the two types must be identical— with no natural semantic motivation.

Other variants of (∀-orig) have been described in the literature. Katiyar and Shankar [KS92]
propose a restriction in which the bounds on polymorphic types may not contain Top. In this
way they obtain a decidable subtype relation, but at significant expense in expressiveness:
indeed in system with bounded quantification record types are encoded by tuples ending by
Top (see [CL91a, Car92]); therefore in this variation it is not possible to quantify over record
types, and thus it is not very interesting for object-oriented programming.

8.1. INTRODUCTION 205

Another obvious variation uses the bound S1 of the smaller type in place of T1 in the right-
hand premise:

(∀-local)
C ⊢ T1≤S1 C ∪ {X≤S1} ⊢ S2≤T2

C ⊢ ∀(X≤S1)S2 ≤ ∀(X≤T1)T2
X 6∈ dom(C)

But Giorgio Ghelli has pointed out [Ghe93c] that this variant is algorithmically impractical,
although the problem of its decidability remains open.

Our aim here is to propose a simple and appealing alternative and study the properties
of the resulting system. We use the quantifier subtyping rule

(∀-new)
C ⊢ T1≤S1 C ∪ {X≤Top} ⊢ S2≤T2

C ⊢ ∀(X≤S1)S2≤∀(X≤T1)T2
X 6∈ dom(C)

in which the right-hand premise requires that the bodies be (covariantly) related under no
assumption about the bound variable. This essentially amounts to considering the subtyping
relation relative to an unchanging context, since the type variables added to the context
always have trivial bounds; the only type variables with interesting bounds will be those
already present in the environment at the point where a subtyping check is required. (These
are introduced, as usual, by the quantifier introduction rule).

Clearly, the proposed rule is strictly weaker than (∀-orig). The system with (∀-new) in
place of (∀-orig) (we call it F⊤≤ and give its full definition in in Section 8.2) cannot be used
to prove Fsub-inequalities like

⊢ ∀(X≤T)X ≤ ∀(X≤T)T

However, as we show in Section 8.3, this difference in power does not matter in any of
the situations where bounded quantification has been used. Moreover, the rule (∀-new) is
arguably more natural than the other variants we have mentioned, since it embodies a notion
of pointwise subtyping already familiar from the treatment of other type constructors [Mit90b,
BM92, Bru93, PT93]: it simply says that ∀F ≤ ∀G (with F,G :Type→Type) iff dom(G) ⊆
dom(F) and F is pointwise smaller than G.

Most importantly, F⊤≤ enjoys many of the syntactic properties missing from F≤. First
and foremost, its subtyping problem is decidable, as we show in Section 8.4; moreover, the
system has least upper bounds for all pairs of types and, for all lower-bounded pairs, greatest
lower bounds.

The easier syntactic formulation leads to a significant simplification of the proofs for this
system. The deep motivation of this simplification resides in the decidability of subtyping;
we have then a measure that decreases with the (backward) application of the subtyping
rules. This allows us to perform proofs by induction on the depth of the derivations. For
example, Curien and Ghelli prove the admissibility of the rule of transitivity [CG92] using a
rewiting technique similar to Gentzen’s cut-elimination theorem (we will use this technique
for transitivity elimination in chapter 9 section 9.2.2), whereas here a simple induction on
the proofs suffices. In the same way, we obtain a simpler proof of coherence of the semantic
framework for bounded quantification proposed by Breazu-Tannen, Coquand, Gunter, and
Scedrov [BTCGS91], which we sketch in Section 8.5; indeed, the existence of meets and joins

206 CHAPTER 8. A ROADMAP TO DECIDABLE BOUNDED QUANTIFICATION

in our subtype relation permits us to prove the coherence for a somewhat stronger system
including variant types.

One of the principal benefits of the simpler formulation of bounded quantification is
the ease with which its basic properties may be extended to richer systems. We illustrate
this observation in Section 8.6, which shows that a simple kind of recursive types form a
conservative extension of F⊤≤ (another property that fails in F≤ [Ghe93b]).

Section 8.8 offers some concluding remarks and directions for further research.

8.2 Syntax

We begin by defining the syntax of F⊤≤ . We work modulo α-conversion for type variables,
with the convention that bound variables are silently α-converted as necessary so that type
constraint systems and types appearing in instances of the rules are well formed. (Equiva-
lently, we follow deBruijn [dB72] in regarding the connection between occurrences of variables
and their binders as part of the syntax of the calculus, considering “poorly scoped” terms
as not even parseable). It is easy to check that, for example, the rules below preserve the
well-formedness of judgments, i.e. the judgments in the premises are well-formed if and only
if the one in the conclusion is.

Type constraint systems are different from those of definition 5.1.1, since now they are
used to store the bounds of the free type variables (not the type hierarchy on the atomic
types). Thus

Definition 8.2.1 Ø is a tcs with dom(Ø)=Ø. If C is a tcs, X 6∈ dom(C), and for every
Y ∈ FV (T), Y ∈ dom(C), then C ∪{X≤T} is a tcs and dom(C ∪{X≤T}) = dom(C)∪{X}.
2

where FV (T) denotes the set of free type variables of the type T . We write C(X) for the
upper bound assigned to X by C. (In every situation where we use this notation, it will be
clear that C includes a binding for X). The types of F⊤≤ are defined by the following abstract
grammar:

T ::= X | Top | T → T | ∀(X≤T)T

The syntax of F≤ terms has been described in section 7.1.2 and it is summarized with the
typing rules in Appendix E. Since the change in our definition of the subtype relation does
not affect the treatment of terms, we will focus only on types and subtyping.

We use ≡ to denote syntactic identity.

There are two kinds of judgments: the subtyping relation (C ⊢ T≤ T ′) and the typing
relation (C ⊢ a:T). A type T is well-formed in the tcs C if FV (T) ⊆ dom(C). A judgment
C ⊢ ∆ is said to be well-formed iff, every type T appearing in ∆ is well-formed in C. In the
rest of the chapter we consider only well-formed judgments.

The F⊤≤ subtype relation is the least three-place relation closed under the following rules:

(refl) C ⊢ T≤T

8.3. EXPRESSIVENESS 207

(trans)
C ⊢ T1 ≤ T2 C ⊢ T2 ≤ T3

C ⊢ T1 ≤ T3

(taut) C ⊢ X ≤ C(X)

(Top) C ⊢ T ≤ Top

(→)
C ⊢ T1≤S1 C ⊢ S2≤T2

C ⊢ S1 → S2 ≤ T1 → T2

(∀)
C ⊢ T1≤S1 C ∪ {X≤Top} ⊢ S2≤T2

C ⊢ ∀(X≤S1)S2 ≤ ∀(X≤T1)T2
X 6∈ dom(C)

(When no ambiguity can arise, we denote the rule (∀-new) simply by (∀)).

8.3 Expressiveness

There are some values of S and T for which C ⊢ S ≤ T is provable in F≤ but not in F⊤≤ . But
the examples are designed specifically to illustrate pathologies in F≤. Are there any useful
examples that lie between F≤ and F⊤≤ ? We believe not.

For example, one of the areas where bounded quantification has been most intensively
applied is in the study of static type systems for object-oriented languages. One recent study
by Pierce and Turner [PT93] presents a statically typed model of the core of Smalltalk using
an extension of F≤ with the higher-order polymorphism of Girard’s System Fω [Gir72]. All
of the terms in this model have exactly the same types in F⊤≤ as in F≤.

Luca Cardelli [personal communication, 1993] confirms that all the programs that have
been written for his implementation of F≤ [Car93] also typecheck in F⊤≤ ; the only difference in
the behaviour of the two systems has been detected with Ghelli’s examples of nontermination
of the standard procedure [Ghe93a]: F≤ loops for ever, while F⊤≤ stops with the right answer.

Another fairly complex application of bounded quantification is Cardelli’s translation of
a calculus of extensible record operations into pure F≤ [Car92]. Again, since each of the row
variables in the high-level calculus is translated into a row of type variables bounded by Top,
F⊤≤ should work just as well.

The difference in expressive power between F≤ and F⊤≤ can be understood by observing
the behavior of the “standard” algorithms for checking the subtype relation. (For F≤, the
standard algorithm [CG92] is a semi-decision procedure; the algorithm for F⊤≤ presented in
Section 8.4.1 below is a decision procedure). The two algorithms are identical at all points,
except for the cases for comparing two quantified types, which are just the rules (∀-orig) and
(∀-new), respectively. In both cases, the left-hand premise is the same; the only difference lies
in the recursive call corresponding to the right-hand premise, which extends the environment
with a nontrivial bound for the new variable in the case of F≤ and, for F⊤≤ , with a trivial
bound. If the F≤ algorithm later encounters this variable on the left-hand side of the ≤, it has

208 CHAPTER 8. A ROADMAP TO DECIDABLE BOUNDED QUANTIFICATION

two choices: either it can check that the expression on the right of the ≤ is the same variable
and immediately succeed, or it can promote the variable on the left to its upper bound from
the tcs and try to show that this bound is less than the right hand side. The F⊤≤ algorithm
has only one choice: if the expression on the right of the ≤ is not the same variable (or Top),
it must fail.

F⊤≤ types strictly fewer terms than F≤. On the other hand, F⊤≤ and Cardelli and Wegner’s
original Fun are not strictly comparable. The assertion

⊢ ∀(X≤S)X ≤ ∀(X≤S)S

is true in Fun and false in F⊤≤ , while

⊢ ∀(X≤Top)X ≤ ∀(X≤S)X

is true in F⊤≤ and false in Fun. But in practical situations, this difference does not appear
very important. It is principally the more natural semantic intuition of [∀-new] that leads us
to prefer it over [∀-Fun]. There is one intriguing difference, however, which may turn out to
have practical consequences. Consider the standard enconding of existential quantifier:

∃(X≤S)T = ∀Y.(∀(X≤S) T → Y)→ Y

This encoding in F⊤≤ gives rise to the following derived subtyping rule for existential types:

(∃-new)
C ⊢ S1≤T1 C ∪ {X≤Top} ⊢ S2≤T2

C ⊢ ∃(X≤S1)S2≤∃(X≤T1)T2

In Fun, on the other hand, this encoding leads to a derived rule in which S1 and T1 are
required to be the same.

(∃-Fun)
C ∪ {X≤U} ⊢ S2≤T2

C ⊢ ∃(X≤U)S2≤∃(X≤U)T2

It is not too difficult to imagine an application where the former rule would be preferable:
intuitively, it corresponds to the observation that one package implementing an abstract data
type may be more refined than another either when the first provides more (or more refined)
operations than the second, or when the first publically reveals more of the structure of its
hidden witness type. This may also have an impact on the use of F≤’s polymorphism as
the basis for a language of modules, where the types exported by a module are modeled
as existentially quantified type variables: different bounds on the variables correspond to
different views of the same module.

8.4 Basic Properties

In this section we explore the fundamental properties of F⊤≤ . We show the decidability of the
subtyping relation, the existence of a least upper bound (lub) for every finite set of types and
a greatest lower bound (glb) for every finite and downward-bounded set of types.

8.4. BASIC PROPERTIES 209

8.4.1 Subtyping algorithm

It is easy to adapt Curien and Ghelli’s algorithm [CG92] to F⊤≤ . Only the rule (Alg∀) is
different: here it is identical to (∀-new), whereas in the algorithm for F≤ it coincides with
(∀-orig). We use ⊢A to denote the algorithmic system.

(AlgRefl) C ⊢A X≤X

(AlgTrans)
C ⊢A C(X) ≤ T

C ⊢A X ≤ T

(AlgTop) C ⊢A T≤Top

(Alg→)
C ⊢A T1≤S1 C ⊢A S2≤T2

C ⊢A S1 → S2≤T1 → T2

(Alg∀)
C ⊢A T1≤S1 C ∪ {X≤Top} ⊢A S2≤T2

C ⊢A ∀(X≤S1)S2 ≤ ∀(X≤T1)T2
X 6∈ dom(C)

Note that the algorithm defined by these rules is deterministic, since the form of the input
unequivocally determines the rule that must be used — not true in the original system because
of (refl) and (trans) — and all the parameters of any recursive calls — not true in ⊢ because
of (trans).

Soundness and completeness

We now show that every judgment provable in the algorithmic system, ⊢A, is also provable
in the original system, ⊢ (soundness of the algorithm) and that every relation provable by ⊢
is provable also by ⊢A (completeness of the algorithm). Finally, we show that the algorithm
actually constitutes a decision procedure — that it halts on every input.

Lemma 8.4.1 Let C ⊢A S ≤ T . Then:

1. If S = Top, then T = Top.
2. If S is a variable X, then either T = X or T = Top, or else C ⊢A C(X) ≤ T .
3. If S = S1 → S2, then either T = Top or else T = T1 → T2 with C ⊢A T1 ≤ S1 and

C ⊢A S2 ≤ T2.
4. If S = ∀(X≤S1)S2, then either T = Top or else T = ∀(X≤T1)T2 with C ⊢A T1 ≤ S1

and C ∪ {X≤Top} ⊢A S2 ≤ T2.

Proof. By inspection. 2

To prove the completeness of the algorithm we need two simple lemmas, which show that the
relation defined by ⊢A is reflexive (lemma 8.4.2) and transitive (lemma 8.4.3); in other words
the two rules that belong to the definition of ⊢ and not ⊢A are derived rules in ⊢A.

210 CHAPTER 8. A ROADMAP TO DECIDABLE BOUNDED QUANTIFICATION

Lemma 8.4.2 For each tcs C and type T (well-formed in C), the judgment C ⊢A T ≤ T is
provable.

Proof. By induction on the structure of T .

T≡X immediate from (AlgRefl).

T≡Top immediate from (AlgTop).

T≡S1 → S2 then by the induction hypothesis C ⊢A S1 ≤ S1 and C ⊢A S2 ≤ S2. The result
follows by (Alg→).

T≡∀(X≤S1)S2 then by the induction hypothesis C ⊢A S1 ≤ S1 and C∪{X≤Top} ⊢A S2 ≤ S2.
The result follows by (Alg∀).

2

Lemma 8.4.3 For each tcs C and well-formed types T1, T2, and T3, if C ⊢A T1 ≤ T2 and
C ⊢A T2 ≤ T3, then C ⊢A T1 ≤ T3.

Proof. If T3≡Top, then the result follows from (AlgTop). Thus we can restrict our attention
to those cases in which T3 6≡Top; note that by lemma 8.4.1 T2 must also be different from
Top.

Let di denote the depth of the proof of C ⊢A Ti≤Ti+1 for i = 1, 2. We proceed by induction
on (d1 + d2), with a case analysis on the last rule of the proof of C ⊢A T1≤T2

(AlgRefl) C ⊢A T1≡T2 ≤ T3 is satisfied by hypothesis. (Note that this case forms the base
of the induction where (d1 + d2) = 2, i.e. when T1≡T2≡T3≡X).

(AlgTrans) T1≡X. By applying the induction hypothesis to the second premise, we obtain
that C ⊢A C(X)≤T3; the result follows by (AlgTrans).

(AlgTop) Cannot occur, since we assumed T2 6≡ Top.

(Alg→) T1 ≡ S1 → S′1 and T2 ≡ S2 → S′2, and, since T3 6≡Top, by lemma 8.4.1 T3 ≡ S3 →
S′3. Furthermore because of the (Alg→) rule C ⊢A S3 ≤ S2 and C ⊢A S2 ≤ S1; then by
the induction hypothesis, C ⊢A S3≤S1 and similarly for S′1, S

′
2, S
′
3 and C ⊢A S′1≤S′3; by

(Alg→) we obtain the result.

(Alg∀) Similarly, we have by assumption that T1 ≡ ∀(X≤ S1)S
′
1 and T2 ≡ ∀(X≤ S2)S

′
2,

and, since T3 6≡Top by lemma 8.4.1 T3 ≡ ∀(X≤ S3)S
′
3. By the induction hypothesis,

C ⊢A S3≤S1 and C ∪ {X≤Top} ⊢A S′1≤S′3; the result follows by (Alg∀).

Note that this case causes significant difficulty in the proofs of Curien and Ghelli [CG92]
(see also section 9.2.2) and Breazu-Tannen et al. [BTCGS91].

2

Soundness is also proved by induction on the derivations.

8.4. BASIC PROPERTIES 211

Theorem 8.4.4 (Soundness and completeness) For each tcs C and well-formed types
S1 and S2,

C ⊢A S1 ≤ S2 ⇐⇒ C ⊢ S1 ≤ S2

Proof. We start by proving soundness (⇒) by induction on the depth of the proof of C ⊢A
S1≤ S2. At each stage of the induction, we proceed by cases on the final rule used in the
proof. The cases for (AlgRefl) and (AlgTop) are immediate; (Alg→) and (Alg∀) follow by
straightforward use of the induction hypothesis. For (AlgTrans), we have S1≡X. By the
induction hypothesis, C ⊢ C(X)≤S2; by (taut) C ⊢ X≤C(X) thus by (trans) we obtain the
result.

Completeness (⇐) follows from lemmas 8.4.2 and 8.4.3. 2

This establishes that the two systems ⊢ and ⊢A are equivalent and we can eliminate the A
indexing the turnstyle symbol. In particular this implies that the lemma 8.4.1 is also valid
for ⊢.

Note that in a proof of subtyping we are now allowed to mix rules of the two systems
since, by induction, for every subproof there exists one equivalent proof formed only by rules
of a same system. Thus in the proofs of the theorems that follow we will freely use rules from
both systems. In particular we will refer to algorithmic or full transitivity, according to our
needs.

Termination

We first define a weight on a type T with respect to a tcs C (with T well-formed in C):

T(Top)C = 1

T(X)C = T(C(X))C + 1

T(S1 → S2)C = T(S1)C + T(S2)C

T(∀(X≤S1)S2)C = T(S1)C + T(S2)C∪{X≤S1}

In the final case, the variable X is added to the tcs with the bound S1 instead of Top so
that it will have the same bound on the left as on the right. This will be used in the proof
of lemma 8.4.5 to define an ordering that depends on the bounds of a variable. Katiyar and
Shankar [KS92] give a similar proof of termination for their variant of F≤.

Lemma 8.4.5 For each type T well-formed in a tcs C, the weight T(T)C is finite and positive.

Proof. First, it is obvious that the weight T(T)C is always positive. Now, we give a well-
founded rank for T(T)C (i.e. we define a weight for the definition of the weight) and we show
that it decreases at each stage in the definition of T . To define the rank of T(T)C consider
all the variables that appear in T and C (no matter whether they appear free or bounded,
only in a quantifier or in a bound). Since T is well-formed in C, every variable is associated
to a unique bound (either in C or in T); furthermore it is also possible to totally order these
variables in a way that if Xi is used in the bound of Xj then Xi precedes Xj (since T is
well-formed in C, loops are not possible). If there is more than one order satisfying this

212 CHAPTER 8. A ROADMAP TO DECIDABLE BOUNDED QUANTIFICATION

condition then choose one arbitrarily. Define the depth of each variable as the number of
variables that precede it in this order. Then the rank of T(T)C is the lexicographical size of
the pair (D,L), where D is the maximum depth of any of the variables that appear in T , and
L is the textual length of T . This rank is well-founded (the least element is (0, 1)). It easy
to see that for the subproblem on the right-hand side of T(S1 → S2)C and T(∀(X≤S1)S2)C ,
the component D either is the same or it decreases, while the L component always strictly
decreases; for the case T(X)C , the component D strictly decreases. 2

The weight for types is extended to a weight for type judgments in the obvious way:

J(C ⊢ S1 ≤ S2) = T(S1)C + T(S2)C .

Now we can show the termination of the algorithm.

Lemma 8.4.6 For all types S and T well-formed in C, T(T)C∪{X≤Top}≤ T(T)C∪{X≤S}

Proof. By the previous lemma we are now allowed to prove this lemma by induction on
T(T)C∪{X≤Top} + T(T)C∪{X≤S}. The proof is straightforward. 2

Theorem 8.4.7 At every step of the subtyping algorithm, the weight of each of the premises
is strictly smaller than the weight of the conclusion.

Proof. The verification is easy in most cases. The only non-trivial case is (Alg∀), which is
proved by the following inequalities:

J(C ∪ {X≤Top} ⊢ S2≤T2) = T(S2)C∪{X≤Top} + T(T2)C∪{X≤Top}

≤ T(S2)C∪{X≤S1} + T(T2)C∪{X≤T1} by lemma 8.4.6

< T(S1)C + T(T1)C + T(S2)C∪{X≤S1} + T(T2)C∪{X≤T1}

= T(∀(X≤S1)S2)C + T(∀(X≤T1)T2)C

= J(C ⊢ ∀(X≤S1)S2 ≤ ∀(X≤T1)T2)

2

Corollary 8.4.8 The algorithm terminates.

8.4.2 Meets and joins

Decidability of subtyping is clearly a desirable property, but in practice the undecidability of
F≤ has been much less problematic than the nonexistence of least upper bounds and greatest
lower bounds in the subtype relation. Ghelli [Ghe90] observed that, in F≤, the types

S ≡ ∀(Z≤X → Y) X → Y T ≡ ∀(Z≤X ′ → Y ′) X ′ → Y ′

in the tcs
C ≡ {X≤Top, Y≤Top, X ′≤X, Y ′≤Y }

have two lower bounds (namely U ≡ ∀(Z≤X ′ → Y) X → Y ′ and V ≡ ∀(Z≤X ′ → Y) Z) but
that there is no greatest lower bound of S and T , since U and V have no common supertype

8.4. BASIC PROPERTIES 213

that is also a subtype of S and T . From this, it is easy to show that F≤ also lacks lubs. For
example, S → Top and T → Top have no lub.

Here, by contrast, a simple induction on the weight defined in the previous section shows
that every pair of types in F⊤≤ does possess a least upper bound, and that a pair of types
with any lower bound at all possesses a greatest lower bound.

Theorem 8.4.9 Let S and T be well-formed types in a tcs C.

(a) There is some U such that C ⊢ S, T ≤ U and such that C ⊢ U≤ U ′ whenever C ⊢
S, T ≤ U ′.

(b) If there is any V such that C ⊢ V ≤ S, T , then there is some L such that C ⊢ L ≤ S, T
and such that C ⊢ L′≤L whenever C ⊢ L′ ≤ S, T .

Proof. In this proof we consider derivations in ⊢A.
We prove both cases simultaneously by induction on T(S)C + T(T)C . First, note that the

theorem is immediate when one of the two types is Top: the lub is Top and the glb is the
other type; this also provides the base case of the induction, i.e. when (T(S)C + T(T)C = 2).
Also trivial is the case when S≡ T . Thus, we may assume that T and S are two distinct
types both different from Top, and consider the remaining cases:

1. Both S and T are variables. For part (a) we have two cases: either the two variables
are related, and in that case the greater of them is the lub; or the two variables are
unrelated and we can apply the induction hypothesis to C(S) and C(T), obtaining
that there exists a type U which is their lub. It is easy then to show that by the rule
(AlgTrans) their lub is also the lub of S and T : indeed every upper bound of C(S) is
an upper bound of S too. And every proper upper bound of S is an upper bound for
C(S) (the same for T). Thus the set of proper upper bounds of S coincides with the
set of upper bounds for C(S); the same holds for T , too. Since the two variables are
unrelated the set of their common upper bounds coincide with the set of their common
proper upper bounds which is equal to the set of the common upper bounds of C(S)
and C(T).

For part (b), simply note that by lemma 8.4.1 if S and T have a common lower bound
Z then it is a variable. If a variable is provably smaller than another variable then
the proof consists only of rules (AlgTrans) (this can be obtained by a trivial induction
on the depth of the derivation); consider the proofs of C ⊢ Z ≤ S, T . Since they
both start from Z and always use the same rule (AlgTrans) (which is deterministic)
then the shorther proof must appear as a subproof of the longest one; thus using the
full transitivity either C ⊢ S≤ T or C ⊢ T≤ S hold. Thus the lesser of them is the
sought-after glb.

2. Both S and T are arrow types. Thus let S ≡ S1 → S2 and T ≡ T1 → T2.

case (a) If S1 and T1 have a common lower bound then by induction hypothesis there
exists S1⊓T1 glb of S1 and T1 w.r.t. C. Then it is trivial to show that the lub of S, T is
S1 ⊓T1 → S2 ⊔T2 where S2 ⊔T2 is the lub of S2, T2 w.r.t. C (which exists by induction
hypothesis). If S1, T1 have no common lower bound then it is clear that the glb of T, S
is Top.

214 CHAPTER 8. A ROADMAP TO DECIDABLE BOUNDED QUANTIFICATION

case (b) Suppose that there exists V satisfying the hypothesis of the lemma. Then by
lemma 8.4.1 V ≡ V1 → V2 or V is a variable. If V ≡ V1 → V2 then C ⊢ V2 ≤ S2, T2;
thus by induction hypothesis there exists S2 ⊓ T2 glb of S2, T2 w.r.t. C. As in the case
(a) it is then easy to show that S1 ⊔ T1 → S2 ⊓ T2 is the glb of T, S where S1 ⊔ T1 is
the lub of S2, T2 w.r.t. C which exists by induction hypothesis.

If V is a variable then consider the following definition of B(T)C :
1. B(T)C= T if T is not a type variable.
2. B(T)C=B(C(T))C else.

Of course C ⊢ V ≤ B(V)C and by induction on the depth of this proof it is possible
to prove that C ⊢ B(V)C≤S, T . By lemma 8.4.1 B(V)C ≡ V1 → V2. Thus it suffice to
apply the induction hypothesis as we have done above to obtain the result.

3. Both S and T are universally quantified types. This case is solved as the case above.
Though, since this is the case in which the induction hypothesis does not work with
F≤, we show it more in detail; let us examine the critical passage for example for the
part (b) of the statement when V is not a variable: let S≡∀(X≤S1)S2, T≡∀(X≤T1)T2

and V≡∀(X≤V1)V2. Then by the rule (∀) we have that

C ⊢ S1, T1 ≤ V1

C ∪ {X≤Top} ⊢ V2 ≤ S2, T2

By the definition of T we can apply the induction hypothesis on both the judgments
obtaining that exists L1, L2 such that:

C ⊢ S1, T1 ≤ L1

C ∪ {X≤Top} ⊢ L2 ≤ S2, T2

and that C ⊢W1 ≤ L1,C ∪ {X≤Top} ⊢W2 ≤ L2 whenever

C ⊢ S1, T1 ≤W1

C ∪ {X≤Top} ⊢W2 ≤ S2, T2

It is then clear that ∀(X≤L1)L2 is the sought glb.

4. One of the two types, say S is a type variable and the other not. Then for part (a)
you can apply the induction hypothesis to C(S) and T . For part (b) you have that
C ⊢ S ≤ T must hold (same observation as in case 1).

2

8.5 Semantics

Up to now we have dealt only with types and subtyping. In this section we introduce terms
and three new type constructors. We provide a sound semantics for the obtained language
and a coherence result for the corresponding proof system. This section is largely based
on [BTCGS91], where the reader can find a more detailed presentation of the technique we
use here. In the cited paper a semantics for F≤ plus record and recursive types is given by
translating the system into an extension of System F for which sound semantic interpretations
are already defined. The soundness of the method is given by a coherence result. The same

8.5. SEMANTICS 215

proof fails if variant types are also added to the system (this is essentially due to the absence
of meets and joins in F≤). Our system behaves better since the technique of [BTCGS91]
works for our system even if we extend it by variant types, as we show in this section.

Therefore we enrich our set of types by record types (〈〈ℓ1:T1, . . . , ℓp:Tp〉〉), variant types
([ℓ1:T1, ..., ℓp:Tp]) and recursive types (µX.T). We extend the subtyping relation by adding
just the following rules.

(recd)
C ⊢ S1 ≤ T1 . . . C ⊢ Sp ≤ Tp

C ⊢ 〈〈ℓ1:S1, ..., ℓp:Sp, ..., ℓq:Sq〉〉 ≤ 〈〈ℓ1:T1, . . . , ℓp:Tp〉〉

(vart)
C ⊢ S1 ≤ T1 . . . C ⊢ Sp ≤ Tp

C ⊢ [ℓ1:S1, . . . , ℓp:Sp] ≤ [ℓ1:T1, . . . , ℓp:Tp, . . . , ℓq:Tq]
Note that we do a very naive treatment of recursive types since only reflexivity can be used to
subtype them and no bound is imposed on the variable of the recursion (for a wider treatment
of the combination of recursion and subtyping see [Ama91]). For that reason all the results
of the previous section can be easily extended to this system.

The raw terms of the language are described by the following productions:

a ::= xT | (λxT .a) | a(a)
| ΛX≤T.a | a(T) | top
| 〈ℓ1 = a1, . . . , ℓn = an〉 | a.ℓ
| [ℓ1:T1, . . . , ℓi = a, . . . , ℓn:Tn]
| case a of ℓ1 ⇒ a1, . . . , ℓn ⇒ an
| introµX.T (a) | elim(a)

The typing rules for this language are exactly the same as those of F≤ (see Appendix E).
plus the rules for the new terms:

[〈〈〉〉Intro]
C ⊢ a1:T1 . . . C ⊢ ap:Tp

C ⊢ 〈ℓ1 = a1, . . . , ℓp = ap〉: 〈〈ℓ1:T1, . . . , ℓp:Tp〉〉

[〈〈〉〉Elim]
C ⊢ a: 〈〈ℓ1:T1, . . . , ℓp:Tp〉〉

C ⊢ a.ℓi:Ti

[[]Intro]
C ⊢ a:Ti

C ⊢ [ℓ1:T1, . . . , ℓi = ai, . . . ℓp:Tp]: [ℓ1:T1, . . . , ℓi:Ti, . . . , ℓp:Tp]

[[]Elim]
C ⊢ b: [ℓ1:T1, . . . , ℓp:Tp] C ⊢ a1:T1 → T . . . C ⊢ ap:Tp → T

C ⊢ case b of ℓ1 ⇒ a1, . . . , ℓp ⇒ ap:T

[µIntro]
C ⊢ a:T [X := µX.T]

C ⊢ introµX.T (a):µX.T

[µElim]
C ⊢ a:µX.T

C ⊢ elim(a): [X := µX.T]
To give a semantics to this language we consider a language TARGET for which many
semantic interpretations already exist. We translate the derivations of judgments of our
language into derivations of judgments of TARGET. Then we give the semantics via this
translation, i.e. the semantics for a typing judgment in our source language is the semantics

216 CHAPTER 8. A ROADMAP TO DECIDABLE BOUNDED QUANTIFICATION

of its translation. But this leads to a problem of coherence since in our source language for
one typing judgment there may correspond different derivations and thus different transla-
tions. Thus we end this section by a theorem proving that the typing judgments obtained
as translations of different derivations for a same judgment are provably equal in TARGET
and thus they have the same semantic interpretation. In this way we obtain the coherence of
our semantic interpretation.

8.5.1 The language TARGET

The target language, whose complete definition can be found in appendix B of [BTCGS91],
is an extension of Girard’s System F [Gir72] by recursive types, variants and records, and
coercion spaces. Coercion spaces will be used to interpret subtyping judgments (for the reader
acquaitened with the models of System F, coercion spaces are interpreted as strict maps in
the model of dI-domains and as linear maps in the coherent spaces).

Types

C ::= T ◦→ T coercion spaces

T ::= X
| T → T
| C → C
| C → T
| ∀X.T
| 〈〈ℓ1:T1, . . . , ℓn:Tn〉〉
| [ℓ1:T1, . . . , ℓn:Tn]
| µX.T

The key idea of the translation is to consider the rule of subsumption as the use of an implicit
coercion, and the translation makes this coercion explicit. The translation of a term ΛX≤T.a
takes as parameters both a type X and a coercion function from X to T ; this coercion will be
explicitly used in the translation of a to replace the implicit use of subsumption in a. More
precisely we give a translation ∗ that translates the type ∀(X≤S)T into ∀X.(X ◦→ S∗)→ T ∗

and translates a term a:T into a term a∗:T ∗.

Raw Terms

a ::= x | (λxT .a) | a(a)
| ΛX.a | a(T)
| 〈ℓ1 = a1, . . . , ℓn = an〉 | a.ℓ
| [ℓ1:T1, . . . , ℓi = a, . . . , ℓn:Tn]
| case a of ℓ1 ⇒ a1, . . . , ℓn ⇒ an
| introµX.T (a) | elim(a)

Just note that the variables are no longer indexed by their types.

8.5. SEMANTICS 217

Coercion combinators

A subtyping judgment S ≤ T will be translated as a coercion function in (S∗ ◦→ T ∗). We
follow the technique of [BTCGS91] and we introduce a set of constants ιS,T that transform
a coercion into a function (in order to apply it) and another family of constants (coercion
combinators) that we use to translate subtyping judgments; we use 1 to denote the empty
record type 〈〈 〉〉:

ιS,T : (S ◦→ T)→ (S → T)

top[T]:T ◦→ 1
refl[T]:T ◦→ T
trans[S, T, U]: (S ◦→ T)→ (T ◦→ U)→ (S ◦→ U)
arrow[S, T, U, V]: (S ◦→ T)→ (U ◦→ V)→ ((T → U) ◦→ (S → V))
forall[S, T, U, V]: (S ◦→ T)→ (∀X((X ◦→ 1)→ (U ◦→ V))

→ ∀X((X ◦→ T)→ U) ◦→ ∀X((X ◦→ S)→ V)
recd[S1, . . . , Sq, T1, . . . Tp]: (S1 ◦→ T1)→ . . . → (Sp ◦→ Tp)

→ (〈〈ℓ1:S1, . . . , ℓp:Sp, . . . , ℓq:Sq〉〉 ◦→ 〈〈ℓ1:T1, . . . , ℓp:Tp〉〉)
vart[S1, . . . , Sp, T1, . . . Tq]: (S1 ◦→ T1)→ . . . → (Sp ◦→ Tp)

→ ([ℓ1:S1, . . . , ℓp:Sp] ◦→ [ℓ1:T1, . . . , ℓp:Tp, . . . , ℓq:Tq])

For example arrow[S, T, U, V] is the coercion combinator that takes two coercions from S to T
and from U to V and returns the corresponding coercion from T → U to S → V . The precise
behavior of each combinator is univoquely determined by ι, i.e. by its transformation into
a function (in the following we omit the types in the combinators when they follow clearly
from the context. We use “;” to denote the composition):

ι(top) = λxT .〈 〉
ι(refl) = λxT .x
ι(trans(a)(b)) = ι(a); ι(b) where a:R ◦→ S, b:S ◦→ T
ι(arrow(a)(b)) = λzT→U .(ι(a)); z; ι(b) where a:S ◦→ T, b:U ◦→ V

ι(forall(a)(b)) = λz∀X(X ◦→T)→U .ΛX.λxX ◦→S.ι(b(X)(top[X]))(z(X)(trans(x)(a))
where a:S ◦→ T, b:∀X.(X ◦→ 1)→ (U ◦→ V)

ι(recd(a1) · · · (ap)) = λz〈〈ℓ1:S1,...,ℓp:Sp,...,ℓq:Sq〉〉.〈〈ℓ1 = ι(a1)(z.ℓ1), . . . , ℓp = ι(ap)(z.ℓp)〉〉
where a1:S1 ◦→ T1, . . . , ap:Sp ◦→ Tp

ι(vart(a1) · · · (ap)) = λz[ℓ1:S1,...,ℓp:Sp].case z of ℓ1 ⇒ ι(a1); injℓ1 , . . . , ℓp = ι(ap); injℓp
where a1:S1 ◦→ T1, . . . , ap:Sp ◦→ Tp and
injℓi = λxTi [ℓ1:T1, . . . , ℓi = a, . . . , ℓq:Tq]

The translation of forall in [BTCGS91] was not linear since the parameter x in the body of
the function appeared twice. For F⊤≤ instead the translation of forall is a linear function: x
appears exactly once in the body of the function. This fits very well with the semantics of
the target language in the models based on stable maps, where ◦→ denotes the linear maps.

218 CHAPTER 8. A ROADMAP TO DECIDABLE BOUNDED QUANTIFICATION

Equational Theory

As we said the interpretation via ι of the coercions as functions must uniquely determine the
corresponding coercion. This is obtained by the following equality rule in TARGET:

〈ι-INJ〉
ι(a) = ι(b)

a = b
A presentation of the whole equational theory of TARGET is given by this rule plus the
classical set of rules of F of records, variant and recursive types (〈β〉, 〈β2〉, 〈η〉, 〈η2〉, 〈ξ〉, 〈ξ2〉,
〈βrecd〉, 〈ηrecd〉, 〈βµ〉, 〈ηµ〉), plus a special rule for variant types to handle coercion terms:

〈CRN〉 ι(P)(case a of ℓ1 ⇒ a1, ..., ℓn ⇒ an) = (case a of ℓ1 ⇒ a1; ι(P), ..., ℓn ⇒ an; ι(P))

The precise definition of all the rules can be found in the Appendix B of [BTCGS91]. See
this same paper for the motivations of the introduction of the rule 〈CRN〉.

8.5.2 Translation

We are now ready to give the formal translation for the derivations of our source language.
We start with the translation of the types and the tcs’s:

X∗ = X
Top∗ = 1
(S → T)∗ = S∗ → T ∗

(∀(X≤S)T)∗ = ∀X.((X ◦→ S∗)→ T ∗)
〈〈ℓ1:T1, . . . , ℓn:Tn〉〉

∗ = 〈〈ℓ1:T
∗
1 , . . . , ℓn:T

∗
n〉〉

([ℓ1:T1, . . . , ℓn:Tn])
∗ = [ℓ1:T

∗
1 , . . . , ℓn:T

∗
n]

(µX.T)∗ = µX.T ∗

Ø∗ = Ø
(C ∪ {X≤T})∗ = C∗ ∪X ∪ {x:X ◦→ T ∗}

Note that in the target language we also declare in the context the free type variables (. . . ∪
X ∪ . . .).

Then it follows the translation of the subtyping rules:

(refl)∗ C∗ ⊢ refl:T ∗ ◦→ T ∗

(trans)∗
C∗ ⊢ a : T ∗1 ◦→ T ∗2 C∗ ⊢ b : T ∗2 ◦→ T ∗3

C∗ ⊢ trans(a)(b) : T ∗1 ◦→ T ∗3

(taut)∗ C∗ ∪X ∪ {x: {X} ◦→ C(X)∗} ⊢ x:X ◦→ C(X)∗

(Top) C ⊢ top[T ∗]:T ∗ ◦→ 1

(→)∗
C∗ ⊢ a:T ∗1 ◦→ S∗1 C∗ ⊢ b:S∗2 ◦→ T ∗2

C∗ ⊢ arrow(a)(b): (S∗1 → S∗2) ◦→ (T ∗1 → T ∗2)

8.5. SEMANTICS 219

(∀)∗
C∗ ⊢ a:T ∗1 ◦→ S∗1 C∗ ∪ {X} ∪ {x:X ◦→ 1} ⊢ b:S∗2 ◦→ T ∗2

C∗ ⊢ forall(a)(ΛX.λxX ◦→1.b):∀X((X ◦→ S∗1)→ S∗2) ◦→ ∀X((X ◦→ T ∗1)→ T ∗2)

(recd)∗
C∗ ⊢ a1:S

∗
1 ◦→ T ∗1 . . . C∗ ⊢ ap:S

∗
p ◦→ T ∗p

C∗ ⊢ recd(a1) · · · (ap): 〈〈ℓ1:S∗1 , . . . , ℓp:S∗p , . . . , ℓq:S
∗
q 〉〉 ◦→ 〈〈ℓ1:T ∗1 , . . . , ℓp:T ∗p 〉〉

(vart)∗
C∗ ⊢ a1:S

∗
1 ◦→ T ∗1 . . . C∗ ⊢ p:S∗p ◦→ T ∗p

C∗ ⊢ vart(a1) · · · (ap): [ℓ1:S∗1 , . . . , ℓp:S∗p] ◦→ [ℓ1:T ∗1 , . . . , ℓp:T ∗p , . . . , ℓq:T ∗q]

Most of the typing rules are translated in a trivial way. We write here just three of them to
give an example. The complete translation can be found in the appendix F

[∀Intro]∗
C∗ ∪X ∪ {x:X ◦→ T ∗} ⊢ a:T ′∗

C∗ ⊢ ΛXλxX ◦→T ∗ .a:∀X(X ◦→ T ∗)→ T ′∗

[∀Elim]∗
C∗ ⊢ a:∀X(X ◦→ S∗)→ T ∗ C∗ ⊢ b:S′∗ ◦→ S∗

C∗ ⊢ a(S′∗)(b):T ∗[X := S′∗]

[Subsumption]∗
C∗ ⊢ a:T ′∗ C∗ ⊢ b:T ′∗ ◦→ T ∗

C∗ ⊢ ι(b)(a):T ∗

Theorem 8.5.1 (Coherence [BTCGS91]) If ∆1,∆2 are two derivations of our source
language yielding the same typing judgment then their translations yield provably equal terms
in TARGET

Proof. The proof is much the same as the one in [BTCGS91] although it simplifies it a little
bit. It is not surprising that the main differences lie in the proof of the coherence of the
translation of the subtyping derivation, since it is where the systems differ. Thus the reader
can just follow the proof in section 5 of the cited paper, here we point out the differences
(lemmas typeset in SmallCaps refer to those in [BTCGS91]):

• in Lemma 6 use the equality
forall(a)(ΛX.λxX ◦→1.b)⊙ forall(c)(ΛX.λyX ◦→1.d) = forall(c⊙ a)(ΛX.λyX ◦→1.(b[x := y]⊙
d)
to prove the equality of the translations when the derivation ends by a (∀) rule.

• Erase Lemma 7.

• Use the same proof for Lemma 8 (of course you no longer need to use Lemma 7).

• Extend the proof of lemma 8.4.9 of the previous section to take into account the new
type constructors (it essentially amounts to add two cases that can be solved by a
straightforward use of the induction hypothesis induction: the weight for a record/variant
being the sum of the weights of its components): this corresponds to Lemma 11
of [BTCGS91] (and it is where that proof failed for F≤).

220 CHAPTER 8. A ROADMAP TO DECIDABLE BOUNDED QUANTIFICATION

• The proof of Lemma 12 is nearly the same: just replace in the case [∀Elim] (in the paper
[B-SPEC]) every occurrence of a≤ si and a≤ r in the tcs’s by a≤Top (in [BTCGS91]
type variables are denoted by a ... sigh!) and use the (FORALL) version of the lemma;
the sublemma requires a slight modification but on the other hand the proof is simpler
since you no longer need to use Lemmas 6 and 7 in the proof of this case.

• Theorem 13 is unchanged

2

For a review of the models of TARGET see section 6 of [BTCGS91].

8.6 Conservativity of Recursive Types

In section 8.5 we have seen a very naive use of recursive types: the only rule to subtype
recursive types was reflexivity. Here we study a deeper use of recursion. We add to the
subtyping rules of section 8.2 the following rules

(Unfold-l)
C ⊢ S[X := µX.S] ≤ T

C ⊢ µX.S ≤ T

(Unfold-r)
C ⊢ T ≤ S[X := µX.S]

C ⊢ T ≤ µX.S

Let us denote the new system by F⊤µ≤ and the corresponding judgments by ⊢µ. In [Ghe93b]
it is shown that adding these two rules to F≤ leads to a non-conservative extension of F≤
w.r.t. the theory of subtyping, in the sense that there is a subtyping judgment in F≤ which
is not provable in the original system but which is provable with the extended system. In
that same paper a characterization is given for the pairs of types for which the conservativity
does not hold.

Here we can show that F⊤µ≤ is a conservative extension of F⊤≤ ; unfortunately we cannot
use the nice characterization of [Ghe93b] for the non-conservative judgments since the set of
non-provable judgments in our system is strictly larger than the one in F≤, and thus there
might be a judgment that makes the conservativity fail in F⊤≤ , but that is provable in F≤
(whence it would not be taken into account by the characterization above). Therefore we
prove conservativity directly, by showing that if a judgment not containing recursive types
is provable in F⊤µ≤ then it is provable in F⊤≤ . More exactly we prove that if C ⊢µ S ≤ T is
provable and C,S, T do not contain recursive types then C ⊢ S ≤ T is provable, too. This
can be obtained very straightforwardly by replacing in ⊢µ the full transitivity by a transitivity
on the variables. Thus replace the rule (trans) by the rule

(AlgTrans)
C ⊢ C(X) ≤ T

C ⊢ X ≤ T
We denote the corresponding proof system by ⊢µA.

Let us see more precisely the types we take into account; they are those of F⊤≤ plus the
recursive types:

T ::= X | T → T | ∀(X≤S)T | µX.T

8.6. CONSERVATIVITY OF RECURSIVE TYPES 221

As in [Ghe93b] we forbid recursive types whose body is either Y , Top or µX.T ; this will
simplify the proofs without changing the expressivity of the system: indeed the first two
bodies can be forbidden since µX.Y (Y 6≡ X), and µX.Top denote just Y and Top, µX.X is
meaningless (this is the only real restriction), while µX.µY.T can be forbidden since it has
the same unfolding as µX.T [Y := X]. From a formal point of view we had to distinguish
syntactically the variable for recursion from those for universal quantification, since the former
has only to appear in a tcs C while the latter must also be associated with a bound in C,
but it is not essential to the purpose of this section.

Lemma 8.6.1 If there is a proof of C ⊢µA S ≤ T and no recursive type appears in the
judgment then no unfold rule appears in the proof.

Proof. A trivial induction on the depth of the proof of C ⊢µA S ≤ T . 2

In order to shorten the statement of the lemma that follows we introduce the notion “having
the same shape”.

Definition 8.6.2 Two types have the same shape if they are both type variables, or both
Top, or both arrow types, or both parametric types quantified over the same type variable,
or both recursive types quantified over the same type variable. 2

Now we can to prove a lemma which roughly corresponds to the lemma 8.4.1 of section 8.4:

Lemma 8.6.3 Let C ⊢µA T1 ≤ T2. Then

1. If T1 is not a variable then one of these cases holds:
- T2 is Top
- T2 has the same shape as T1

- T1≡µX.T and T2 has the same shape as T
- T2≡µX.T and T1 has the same shape as T

2. If T2 is not Top then one of these cases holds:
- T1 is a variable
- T1 has the same shape as T2

- T2≡µX.T and T1 has the same shape as T
- T1≡µX.T and T2 has the same shape as T

Proof. By induction on the depth of the proof of C ⊢µA T1 ≤ T2. We perform a case analysis
on the last rule of the proof: when the last rule is (refl), (→) or (∀) then result follows since
T1 and T2 have the same shape. When the last rule is (Top) or (VarTrans) both the points
of the lemma are satisfied, too. Suppose that the last rule is (unfold-l): then T1≡µX.T and
C ⊢µA T [X := T1] ≤ T2. By construction T can be neither a variable nor a recursive type.
Thus by induction hypothesis on the point 1. there remain three subcases:

a T2≡Top and the result is immediate.
b T [X := T1] has the same shape as T2. But since T is not a variable this implies that

also T has the same shape as T2 which gives the result.
c T2 is a recursive type, but then it has the same shape as T1.

222 CHAPTER 8. A ROADMAP TO DECIDABLE BOUNDED QUANTIFICATION

The case for (unfold-r) is similar: use the hypothesis that T cannot be Top. 2

Finally we have the lemma on the transitivity elimination:

Lemma 8.6.4 For each tcs C and types T1, T2, and T3 well-formed in C, if C ⊢µA T1≤ T2

and C ⊢µA T2≤T3 then C ⊢µA T1≤T3.

Proof. The proof is very similar to the one of lemma 8.4.3. Again we prove the lemma by
induction on the sum of the depths di of the proofs of C ⊢µA Ti≤Ti+1 (i = 1, 2), only for the
cases in which T2 and T3 are different from Top. Moreover we can also suppose that the last
rule of C ⊢µA T2≤T3 is different from (refl), since in that case the result trivially holds. Let
us perform a case analysis on the last rule of the proof of C ⊢µA T1≤T2:

(refl) the result then gets C ⊢µA T1≡ T2 ≤ T3 satisfied by hypothesis. Note that this case
solves the base of the induction for which (d1 + d2) = 2, i.e. when T1≡T2≡T3.

(VarTrans) thus T1≡ X. By induction hypothesis we obtain that C ⊢µA C(X)≤ T3; by
applying (VarTrans) we obtain the result.

(Top) not possible for T2 6≡ Top.

(→) then T1 ≡ T ′1 → T ′′1 , T2 ≡ T ′2 → T ′′2 . There are two subcases and both of them are
proved by applying the induction hypothesis on C ⊢µA T ′3≤ T ′1 and C ⊢µA T ′′1 ≤ T ′′3 .
Indeed, since T3 6≡Top then by lemma 8.6.3 there are two possible cases:
1. T3 ≡ T ′3 → T ′′3 .
2. T3 ≡ µX.T ′ → T ′′. Then set T ′3≡T ′[X := T3] and T ′′3≡T ′′[X := T3]
in both cases the thesis is obtained by applying the induction hypothesis and (→) or
(unfold-r). we obtain the result.

(∀) as the case before.

(unfold-l) This case is very easy since T2 is on the right-hand side also in the premise of
the rule. Thus the proof is a trivial application of the induction hypothesis.

(unfold-r) In this case we have that T2≡µX.T . Then there are two possible cases:

1. The last rule of C ⊢µA T2≤T3 is (unfold-l). But then we can apply the induction
hypothesis on C ⊢µA T1≤T [X := T2] and C ⊢µA T [X := T2]≤T3.

2. The last rule of C ⊢µA T2≤T3 is (unfold-r) but then T3≡µY.T ′. Thus we can apply
the induction hypothesis to C ⊢µA T1≤T2 and C ⊢µA T2≤T ′[Y := T3]. By applying
once more (unfold-r) we obtain the result.

2

Corollary 8.6.5 If C ⊢µ S≤T is provable then C ⊢µA S≤T is also provable.

Proof. By induction on the depth of the proof of C ⊢µ S≤T . Apply lemma 8.6.4 when the
last rule is (trans). 2

8.7. THE TYPING RELATION 223

8.7 The typing relation

As we have shown, the passage from the rule (∀-orig) to the rule (∀-new) brings many benefits
to the subtyping system, which then enjoys many desirable properties. Unfortunately, that
same passage has a nasty effect on the typing relation. Let us define the typing relation for F⊤≤
by using exactly the same rules of F≤, as they are summarized in section 7.1.3. The difference
between the two systems would only be in the subtyping relations used by the subsumption
rule. But, Giorgio Ghelli has remarked that, then, F⊤≤ does not enjoy the minimal typing
property; in the sense that the set of all types proved by a given term may not have a least
element [Giorgio Ghelli, personal communication, 1994]. This can be shown by the following
example due to Ghelli. Consider the term a ≡ ΛX≤ Y.λxX .x. By subsumption, one can
prove that it is typed both by ∀(X≤Y)X → X and ∀(X≤Y)X → Y . Yet, these two types
are both minimal w.r.t. the set of the types of a. The consequence of this fact is that the
“standard” typing algorithm for F⊤≤ is correct but not complete. Take the standard typing
algorithm for F≤, which is described in appendix E.3. Use the algorithm of section 8.4.1 to
check the subtyping judgements appearing in the typing rules. Then, the resulting typing
algorithm is correct but not complete, since, for example, it will deduce for a above the first
type, but not the second one. The problem of finding a complete typing algorithm in this
case remains an open problem, as well as the problem of decidability of the typing relation.

The culprit of the loss of this property is the interaction between the subsumption rule
and the (∀-new) rule. Indeed, by subsumption, one is allowed to “raise” the type of the body
of a Λ-abstraction, while the rule (∀-new) prevents the typing algorithm from doing the same.
But note that the tests we performed on the existing interpreters for F≤ consisted of replacing
in the subtyping algorithm the original rule (∀-orig) by (∀-new), but continuing to use the
usual typing algorithm. Thus, no use of subsumption was done there. Therefore, one could
continue like this, justified by a philosophy of cutting off useless judgments (which underlies
the whole definition of F⊤≤), and consider as the typing relation the one defined by the typing
algorithm for F≤ and the new subtyping relation (thus, take the rules of appendix E.3 as the
typing rules for F⊤≤). However, another problem comes up, that is, the resulting system does

not satisfy the subject reduction property. Consider the term ΛX≤ Y.λyY .(λxX .x)y. The
typing algorithm returns for this term, the type ∀(X≤Y)Y → X. This term reduces in one
step to ΛX≤ Y.λyY .y which has type ∀(X≤ Y)Y → Y , incomparable (by the (∀-new) rule)
with the previous type (this example is due to Benjamin Pierce).

Now, take this same system (i.e. the F⊤≤ -subtyping rules plus the typing rules in the
appendix E.3), but do not allow reductions inside Λ-abstractions (or reductions involving
free type variables); thus, remove not only some “useless” (typing and subtyping) judgments
but also some “useless” reductions. Then, for this system, which possesses a decidable typing
relation (obvious since every well-typed term has just one type: the one returned by the
algorithm) and a subtyping relation with all the nice properties shown in this chapter, we
conjecture the subject-reduction property. And note that this system is the one that we
implicitly tested by using the typing algorithm of the F≤ implementations of Cardelli and of
Pierce and Turner, with the modified subtyping relation.

224 CHAPTER 8. A ROADMAP TO DECIDABLE BOUNDED QUANTIFICATION

8.8 Conclusions

We have presented in this chapter a new formulation of bounded quantification, enjoying
many properties that the “canonical” formulation, F≤, lacks. This system also has a large
tolerance for extensions, as we showed in the case of recursive types and for the semantics.
This make us believe that it also retain conservativity if we use with recursive types the
subtyping relation of Amadio and Cardelli [AC90] (in this case however we lose the nice
property of having at premises of a rule essentially the same tcs’s of the conclusion; thus
transitivity elimination becomes again an hard problem that probably requires the same
technique as in [CG92]).

It is actually under work the proof that the extension of this system by the intersection
types enjoys the property of existence of glbs for downward bounded pairs of types, and
lubs. And of course we are working for proving that the system without subsumption and
reductions involving free type variables satisfies the subject-reduction property.

Finally, we believe that there exists a polynomial subtyping algorithm for F⊤≤ , for it does
not seem very difficult to adapt the polynomial algorithm recently discovered by Giorgio
Ghelli for Fun, to the (sub)typing discipline of F⊤≤ .

Chapter 9

Bounded quantification with
overloading

System F is a language that permits us to write functions that take types as inputs; however
these functions depend on their input in a very strict way: different input types affect just
the type of the result, not its value. The practical counterpart of this observation is given by
the fact that types are thrown away during the computation which is then performed on the
erasures of the terms. F≤, that we have studied in the previous chapters, is a conservative
extension of F , which allows us to specify bounds on the types that can be passed to a
function; the type-checker uses this further information to type the body of the function.
Though the functions of F≤ still have the same kind of dependence as in System F, since types
again disappear during the computation. Here we want to extend F≤ by a type dependency
also affecting the computation. We want to have functions that dispatch on different codes
according to the type passed as argument. As a side effect, types will no longer be erasable
at runtime.

This research fits into a larger framework: In language theory, polymorphism has two
orthogonal classifications: “parametric vs. ad hoc” (see [Str67]) and “explicit vs. implicit”.
Parametric polymorphism, i.e. the capability of performing the same code on different types,
has been widely studied, both in the explicit form (where types participate directly in the
syntax; e.g. System F) and in the implicit one (where types participate via the terms they
type; e.g. ML). “Ad hoc” polymorphism, i.e. the capability of performing a different code for
each different type, has not received the same attention. In chapter 2, with the definition of
the λ&-calculus, we started a theoretical analysis of simply typed “ad hoc” polymorphism.
In this chapter we tackle the second order explicit counterpart, by defining F&

≤ a calculus
with subtyping, which integrates parametric and “ad hoc” explicit polymorphism.

9.1 The loss of information in the overloading-based model

This extension has not a mere logical interest but it is strongly motivated by the modeling of
object-oriented languages and the definition of a type discipline to strongly type them. A first
motivation of this study was given in section 6.5, as an important step toward the definition
of a mathematical meaning of the λ&-calculus. But the main interest of this extension in the

225

226 CHAPTER 9. BOUNDED QUANTIFICATION WITH OVERLOADING

framework of this thesis is that it solves a problem of loss of information analogous to the
one we described in section 7.1 for the record-based models.

Let us try to be more specific. Suppose we have a message m′ which modifies the internal
state of a class C1. Since we are in a functional approach the method in C1 returns a new
object of class C1. Thus m′: {..., C1 → C1, ...}. Let C2 be a subclass of C1 from which it
inherits the method at issue. If we pass the message m′ to an object of C2 then the branch
defined in C1 is selected. Since this branch has type C1 → C1, the result of message passing
has type C1, rather than C2 as would be natural. Note that we already met this problem at
the very beginning of the thesis. In example 1.1.3, page 69, we defined in the class 2DPoint

a method for the message erase. Then in example 1.1.4 we defined a subclass 2DColPoint

which inherited erase from 2DPoint. Thus in, λ&, erase would have been implemented by
an overloaded function of just one branch, i.e. erase : {2DPoint → 2DPoint}. Passing an
object of class 2DColPoint to erase would give an object of type 2DPoint . And in fact the
type system define in section 5.1.2, would have assigned to the term [new(2DColPoint)

erase] the type 2DPoint.1

As you can see, this problem is very close to the one that Cardelli [Car88] pointed out for
the record-based model. In our case the problem is less important than in Cardelli’s calculus:
indeed, in the case above we could imagine to add to m′ a fake branch C2 → C2 which would
be used only during the phase of type-checking and then it would be discarded2 (this has been
done in [Cas92]). However this solution is interesting only in practical cases, where there is
a finite number of classes; otherwise an infinite branching would be required. Although this
solution works whenever the set of classes has a well-founded ordering (as it is always the
case in practice) it becomes unmanageable when one starts to distinguish subtyping from
subclassing (as done in [CHC90]) and it gives no suggestion on how to define polymorphic
type inference: it is just a patchwork. In conclusion we need a new brand type system to
account for this problem.

As we already said, the solution adopted for the record-based model was to pass to a
second order formalism.

Here we adopt the same solution w.r.t. the λ&-calculus. The rough idea is to have a type
system to type the previous m′ in the following way:

m′: {...,∀X≤C1.X → X, ...}

For this reason in this chapter we define F&
≤ where this type dependency is dealt with in an

explicit way3.

1This is the reason why it was not very important to be able to define in λ& a polymorphic operation to
update record values (see section 2.5.3): the eventual polymorphism would have been hidden by this problem
of loss of information. In this chapter, on the contrary it will be very important to have such an operation,
and the encodings of F≤ defined in [Car92] will do the work.

2Note that such a solution cannot be used also for the record-based model. We cannot replace the function,
say, λx:C1.x by λx:C2.x since the latter would no longer accept inputs of type C1.

3The other solution is to deal with it in an implicit way by introducing type schemas à la ML, with bounds
on the generic variables. Its study is presently under way on the base of the results of this chapter.

9.1. THE LOSS OF INFORMATION IN THE OVERLOADING-BASED MODEL 227

9.1.1 Type dependency

In a programming language a function which performs a dispatch on a type passed as argu-
ment would probably be written as:

Fun(X:*) => if X<T1 then exp1 else if X<T2 then exp2 ... else if X<Tn then exp n

This function executes exp1 if we pass a type less than or equal to T1, exp2 if it is less than or
equal to T2 and so on. If there is more than one candidate we select among them the branch
with the least bound. In F&

≤ this function is denoted by:

(ΛX≤T1.exp1 & ΛX≤T2.exp2 & . . . & ΛX≤Tn.expn)

and its type is ∀X{T1.S1, T2.S2, . . . , Tn.Sn} (where expi:Si). However this type is a rough
approximation yet. Indeed, to obtain a coherent and expressive system, we need strong
restrictions on the Ti’s and the Si’s.

First of all note that the selected branch may change during the computation. For example
take a function f of type ∀X{T1.S1, T2.S2} with T2 ≤ T1. Consider now the expression
(ΛY≤T1.f [Y]) . Since Y≤T1 we guess that the selected branch will be the one associated to T1

and thus the type of this expression will be ∀(X≤T1)S1 (more exactly ∀(Y≤T1)S1[X: = Y]).
But if we pass to the function above the type T2 then, being Y bound to T2, the selected
branch will be the second one and the result will have type S2. System F and F≤ satisfy the
subject reduction property, i.e. types are preserved under reductions. If we want reductions
to preserve the type also in the new system we must require S2 to be the same type as
S1. Though, this happens to be too strong a condition to model object-oriented languages
(see the examples in section 10.1). Thus we adopt a less restrictive discipline, according
to which types are allowed to decrease during computation. Thus in the example above it
must be possible to deduce X≤ T2 ⊢ S2≤ S1. Summing up, the first restriction we impose
on an overloaded type ∀X{Ti.Si} is that if ⊢ Ti≤ Tj then X≤ Ti ⊢ Si≤ Sj (we call it the
covariance condition, since it corresponds to the homonymous condition of λ&). Note the
use of sequents: the premise records the subtyping relation on the type variables; we already
met this in the previous chapter, where the premise were called type constraint system: see
the definition 8.2.1.

By definition 8.2.1, for a given tcs C and a type variable X ∈ dom(C) there always exists
a least non variable type T greater than X. We denote it by B(X)C (the B stands for bound).
More precisely we have the following definition.

Definition 9.1.1 Let C be a tcs and T a (raw) type such that FV (T) ⊆ dom(C) then
1. B(T)C= T if T is not a type variable.
2. B(T)C=B(C(T))C otherwise. 2

In the rest of the chapter we omit the subscript C in B(T)C when it is clear from the context.

We limit our study to the case where the bounds of an overloaded function range over
basic types (e.g. Bool, Int, Real ...). Indeed, the use of arrow types in the bounds poses many
non-trivial problems, due to the contravariance of the left argument in the subtyping relation.

228 CHAPTER 9. BOUNDED QUANTIFICATION WITH OVERLOADING

range of X

B

AB(X)

C

T
T
T
T
T
T
T
T
TT

T
T
T
T
T
T
T
T
T
T T

T
T

T
T

T
T

T
T

TT
��

•

•

• •
�

�
�

�
�

�
�

�
�

�

Therefore the second restriction we impose is that
∀X{Ti.Si}i∈I is well-formed only if for every i∈I, B(Ti)
is a basic type2. Thus every bound Ti must be an atomic
type, i.e. either a basic type or a type variable. When
the bound is a type variable, say X, the basic type B(X)
plays an important role, since the set of its subtypes (de-
noted by P(B(X))) is the range of X. When we apply
a type to an overloaded function, a selection rule picks
the branch to execute. As we already said, this rule se-
lects the branches with a bound provably larger than or
equal to the type passed as argument, and among them
it chooses the one with the least bound. Some conditions
are required to assure that this minimum exists.

In λ&-calculus this was assured by requiring that the bounds had to form a partial downward
semi-lattice.4 But there we had only closed types. Now with type variables this restriction
no longer suffices: consider the example of the figure above; it is clear that X and A have no
common lower bound. Nevertheless if we give to X the value B, it can come into conflict with
A since they have a common lower bound C. Thus if a variable X appears in an overloaded
type as a bound then conflicts must be checked taking into account every type in P(B(X)).
To this purpose we require that every set of bounds satisfies the property of ∩-closure, defined
as follows:

Definition 9.1.2 Let C be a type constraint system. Given a set of atomic types {Ai}i∈I
we write C ⊢ {Ai}i∈I∩-closed if and only if for all i, j ∈ I if B(Ai)C⇓B(Aj)C then there exists
h ∈ I such that C ⊢ Ah = Ai ∩Aj . 2

where C ⊢ Ah = Ai ∩Aj means that from C it is provable that Ah is the g.l.b. of Ai and Aj,
and B1 ⇓ B2 that B1 and B2 have a common lower bound.

Note that ∩-closure is quite a draconian restriction. Indeed ∩−closed sets of bounds
have a very precise form (see proposition 9.2.5): they are partial downward semi-lattices, i.e.
formed by disjoint unions of downward semi-lattices. These semi-lattices are divided in two
parts: the upper part is a semi-lattice formed only by basic types; the lower part is formed
by a chain of type variables starting from the least element of a semi-lattice of basic types.
Any of these two parts may be missing. A pictorial representation of the situation is the
following one:

2The major drawback of this restriction is that we cannot obtain the quantification of system F as a special
case of the overloaded one and thus we will be obliged to add it explicitly: cf. section 10.2.

4A set S is a partial downward semi-lattice if and only if for all a, b ∈ S if a ⇓ b then a ∩ b ∈ S. Where, as
usual, a ⇓ b means that a and b have a common lower bound (in S) and a ∩ b denotes their greatest common
lower bound.

9.2. TYPE SYSTEM 229

• • • • • •
I@

@ �
��

�
�� I@

@
I@

@ �
��

• • • • •
6I@

@ �
�� YHHHH ����*

• •
6 6

◦
6 ◦

6◦ • Basic types (forming semilattices)
6 ◦ ◦ Type variables (forming chains)

◦

9.2 Type system

In this section we describe the type system. We first define the raw types. Among them we
select the types, i.e. those raw types that do not contain overloaded types not satisfying the
three rules we hinted in the introduction. In other terms ∀X{Ai.Ti}i∈I must:
1. have bounds ranging over basic types, i.e. for each i∈I B(Ai) must be a basic type.
2. have a ∩-closed set of bounds.
3. satisfy covariance, i.e. if Ai ≤ Aj then X≤Ai ⊢ Ti≤Tj

We assume that we have a predefined ordering on basic types which must form a partial
lattice. This partial order is extended to higher types by a set of subtyping rules that are
mutually recursive with those selecting the types.

Raw Types

A ::= X | B (atomic types [B basic types])

T ::= A | Top (raw F&
≤ types)

| T → T
| ∀(X≤T)T
| ∀X{A1.T1, . . . , An.Tn} (also denoted by ∀X{Ai.Ti}i=1..n)

Judgments
We have three kinds of judgment: for type good-formation (C ⊢ T type), for the subtyping
relation (C ⊢ T≤ T ′) and for the typing relation (C ⊢ a:T). We call the first two kinds
of judgments type judgments. Along the chapter we also use some informal judgements: for
example “C ⊢ T = mini∈I{Ti}” stands for “T ∈ {Ti}i∈I and for all i∈I C ⊢ T ≤ Ti”.

Types
(Basictype) C ⊢ B type

(Toptype) C ⊢ Top type

230 CHAPTER 9. BOUNDED QUANTIFICATION WITH OVERLOADING

(Varstype)
C ⊢ T type

C ∪ {X≤T} ⊢ X type
X 6∈ dom(C)

(→type)
C ⊢ T type C ⊢ T ′ type

C ⊢ T → T ′ type

(∀type)
C ∪ {X≤T} ⊢ T ′ type C ⊢ T type

C ⊢ ∀(X≤T)T ′ type
X 6∈ dom(C)

({ }type)

C ⊢ Ai type
C ⊢ {Ai}i=1..n ∩-closed

C ∪ {X≤Ai} ⊢ Ti type

if C ⊢ Ai ≤ Aj then C ∪ {X≤Ai} ⊢ Ti≤Tj
C ⊢ ∀X{A1.T1, . . . , An.Tn} type

X 6∈ dom(C)

B(Ai)C basic type (i = 1..n)

for i, j ∈ [1..n]

Subtyping

(refl)
C ⊢ T type

C ⊢ T≤T

(trans)
C ⊢ T1 ≤ T2 C ⊢ T2 ≤ T3

C ⊢ T1 ≤ T3

(taut)
C ⊢ T type

C ∪ {X≤T} ⊢ X≤T
X 6∈ dom(C)

(Top)
C ⊢ T type

C ⊢ T≤Top

(→)
C ⊢ T ′1≤T1 C ⊢ T2≤T ′2

C ⊢ T1 → T2≤T ′1 → T ′2

(∀)
C ⊢ T ′1≤T1 C ∪ {X≤T ′1} ⊢ T2≤T ′2 C ⊢ ∀(X≤T1)T2 type

C ⊢ ∀(X≤T1)T2≤∀(X≤T ′1)T
′
2

X 6∈ dom(C)

({ })

C ⊢ ∀X{Aj .Tj}j∈J type C ⊢ ∀X{A′i.T
′
i}i∈I type

for all i ∈ I exists j ∈ J s.t.C ⊢ A′i≤Aj C ∪ {X≤A′i} ⊢ Tj≤T ′i
C ⊢ ∀X{Aj .Tj}j∈J≤∀X{A′i.T

′
i}i∈I

X 6∈ dom(C)

9.2.1 Some useful results

Theorem 9.2.1 If C ⊢ T≤T ′ then C ⊢ T type and C ⊢ T ′ type

Proof. By induction on the depth of the proof of C ⊢ T≤T ′. 2

9.2. TYPE SYSTEM 231

Let us recast the terminology we introduced in the previous chapter: we say that two types
have the same shape if they are both constant types or both type variables, or both Top, or
both arrow types, or they are both overloaded or both parametric types quantified over the
same variable.

The following result on the form of the judgements will be used frequently in the rest of
the chapter

Proposition 9.2.2 Let C ⊢ T1 ≤ T2. Then

1. If T1 is not a variable then T2 either is Top or it has the same shape as T1

2. If T2 is not Top then T1 either is a variable or it has the same shape as T2

Proof. By induction on the depth of the proof of C ⊢ T1 ≤ T2, performing a case analysis on
the last applied rule of the proof. 2

Another useful fact that will be extensively used in the proofs of this chapter is the following
one:

Proposition 9.2.3 If C ⊢ T1 ≤ T2 then C ⊢ B(T1)C ≤ B(T2)C

Proof. By induction on the number of steps to calculate B(T1)C . If T1 is not a type variable
then, by proposition 9.2.2, T2 cannot be a variable, therefore, by the definition of B(), the
result coincides with the hypothesis. If T1 is a variable then to prove C ⊢ T1 ≤ T2 either we
used only (refl) or we have used at least once (taut). In the first case the result is obvious;
in the second case we obtain that C ⊢ C(X) ≤ T2 and the result follows from the induction
hypothesis. 2

Lemma 9.2.4 If C ⊢ X ≤ Y then B(X)C = B(Y)C

Proof. An easy induction on the number of steps of the definition of B(X)C . 2

The following proposition describes the form of the ∩-closed set of types:

Proposition 9.2.5 If C ⊢ {Ai}i∈I∩-closed then for any pair of elements Ai and Aj such
that B(Ai)C ⇓ B(Aj)C one of this cases must hold:

1. B(Ai)C and B(Aj)C are unrelated (w.r.t. the subtyping relation), Ai and Aj are both
basic types and their g.l.b. is in {Ai}i∈I

2. B(Ai)C ≤ B(Aj)C and both Ai and Aj are basic types (or the reverse).
3. B(Ai)C ≤ B(Aj)C , Ai is a variable and Aj is a basic type.
4. B(Ai)C ≤ B(Aj)C , Ai and Aj are both variables and C ⊢ Ai ≤ Aj (or the reverse).

Proof. Let us examine all the possible cases:

1. Ai and Aj are both basic types. Then all the possible cases are covered by the first two
points of the proposition.

232 CHAPTER 9. BOUNDED QUANTIFICATION WITH OVERLOADING

2. Ai is a variable and Aj is a basic type5 . Then we want to prove that B(Ai)C ≤ Aj.
Consider Ah = Ai ∩ Aj . Since C ⊢ Ah≤Ai the by proposition 9.2.2 Ah is a variable
too. By lemma 9.2.4 B(Ah)C = B(Ai)C . Since C ⊢ Ah≤Aj then by proposition 9.2.3
we obtain the result.

3. Ai and Aj are both variables. Consider Ah = Ai ∩Aj. By proposition 9.2.2 Ah is also
a variable and by lemma 9.2.4 B(Ah)C = B(Ai)C = B(Aj)C . Thus both Ai and Aj

appear in the chain from Ah to B(Ah)C . Therefore either C ⊢ Ai≤Aj or C ⊢ Aj≤Ai

holds, according the order they appear in the chain.

2

9.2.2 Transitivity elimination

The rules of subtyping given above do not describe a deterministic algorithm: a subtyping
judgment does not uniquely determine either the rule to prove it or the parameters that such
a rule must have. In particular non-determinism is introduced by the rules (refl) and (trans):

Consider the judgment C ⊢ T ≤ T ; if T is not a variable nor Top then the judgment
can be proved by at least two different derivations, one consisting just of the rule (refl) the
other obtained by first applying the structural rule for T (e.g. (→) if T is an arrow type)
and successively the rule (refl) to the components of T . This kind of non-determinism can be
easily solved by choosing either to use (refl) as soon as possible or to use it as late as possible
(i.e. only on atomic types). We choose this second solution thus we substitute the rule (refl)
above by the following one:

(refl)
C ⊢ A type

C ⊢ A≤A
It is then very simple to prove that this new system is sound and complete w.r.t. the previous
one: soundness is obvious and completeness is given by the following lemma:

Lemma 9.2.6 For each C and T such that C ⊢ T type the judgment C ⊢ T≤T is provable
using reflexivity only on atomic types.

Proof. A straightforward induction on the structure of T 2

Also the rule (trans) produces a non-determinism similar to the one of (refl): we have always
the choice to apply transitivity or to push it to the subcomponents. But, besides that, (trans)
introduces a deeper form of non-determinism quite harder to eliminate in this case. Indeed,
the (trans) rule does not respect the so-called “sub-formula property”, according to which
all the types appearing at the premises of a rule must appear in its consequence, too. When
proving T1≤T3 by transitivity, a new level of non-determinism is introduced by the choice of
the intermediate type T2 such that T1≤T2 and T2≤T3.

The reader will have recognized in it a cut elimination problem. Indeed, transitivity
elimination in subtyping systems corresponds to cut elimination in Gentzen’s sequent calculus
for the first order logic. Both of them lead to a coherence result of the corresponding proof
system, by returning a canonical derivation for each provable judgment. The resemblance

5Without loss of generality, we can consider for this case and for the case 4 that B(Ai)C ≤ B(Aj)C holds.
Thus in this proof and in those that follow we will skip the reverse case.

9.2. TYPE SYSTEM 233

is even stronger since we can use the Gentzen’s technique for cut elimination to prove also
transitivity elimination6. Namely, we define a weakly normalizing rewriting system on the
derivations of subtyping judgments. This system will push the transitivity rules towards the
leaves of the derivation; whenever it has to choose between pushing transitivity up into a
left or a right subderivation it (arbitrarily) chooses the one on the right. The derivations in
normal form will have all the (trans) rules applied to a leaf of the derivation tree.

Since it is difficult to work directly with derivations, we use the Curry-Horward isomor-
phism [How80] to define a set a terms to uniquely codify subtyping derivations. We follow
for their definition [CG92], where these terms are called coercion expressions.

The syntax of the coercion expressions is:

c : : = KB1B2 | IdA | XT | TopT | c→ c′ | ∀(X≤c)c′ | c c′ | ∀φTX{c1.c
′
1, . . . , cn.c

′
n}

where φ denotes a total function between two sets of indexes φ : I → J .

We next show how to use coerce expressions to codify derivations. In the rules that follow
we do not consider the judgements of type formation (C ⊢ T type) and we concentrate only
on the subtyping judgements. Considering them would greatly complicate the exposition,
without bringing any benefit: firstly the rules defining type formation describe a deterministic
algorithm, and thus they do not pose any coherence problem; secondly, all the proofs in the
rest of this section will work on a given type and on its syntactical sub-formulas; if we suppose
by hypothesis that the type is well-formed then the proofs will be valid also when restricted
to well-formed types (sub-formulae of well-formed types are well-formed types).

Thus the derivations we codify involve only subtyping judgements and work under the
hypothesis that all the types appearing in them are well-formed. We also use (refl) defined
only for atomic types.

(basic) C ⊢ KB1B2 :B1 ≤ B2 for all basic types B1, B2 s.t. B1≤B2

(refl) C ⊢ IdA:A≤A

(trans)
C ⊢ c:T1 ≤ T2 C ⊢ c′:T2 ≤ T3

C ⊢ c′ c:T1 ≤ T3

(taut) C ∪ {X≤T} ⊢ XT :X≤T

(Top) C ⊢ TopT :T≤Top

(→)
C ⊢ c1:T

′
1≤T1 C ⊢ c2:T2≤T ′2

C ⊢ c1 → c2:T1 → T2≤T ′1 → T ′2

6It would be more correct to say that we must use this technique: indeed the smooth technique used in the
previous chapter for transitivity elimination (cf section 8.4.1) does not work here, even if the resulting system
will be the same in both cases. See also section 9.5.1

234 CHAPTER 9. BOUNDED QUANTIFICATION WITH OVERLOADING

(∀)
C ⊢ c1:T

′
1≤T1 C ∪ {X≤T ′1} ⊢ c2:T2≤T ′2

C ⊢ ∀(X≤c1)c2:∀(X≤T1)T2≤∀(X≤T ′1)T
′
2

({ })
∀i ∈ I C ⊢ ci:A

′
i≤Aφ(i) C ∪ {X≤A′i} ⊢ c′i:Tφ(i)≤T ′i

C ⊢ ∀φ∀X{Aj.Tj}
X.{ci.c′i}i∈I :∀X{Aj .Tj}j∈J≤∀X{A′i.T

′
i}i∈I

φ: I → J total

Note that the term associated to transitivity is the composition of the terms associated to
the sub-derivations.

The last rule shows the use of the function φ: during the subtyping of two overloaded
types, φ associates each branch of the greater overloaded type with the branch in the smaller
type to which it has been compared in the proof of subtyping. Note that this information
would not suffice to uniquely determine the derivation codified by a given coercion expression;
in case of overloaded types we need also to know the type on the left-hand side of the relation,
which is recorded in the lower index of ∀.

Proposition 9.2.7 There is a 1-1 correspondence between well-typed coerce expressions and
subtyping derivations.

Proof. A simple induction on the rules7. 2

The rewriting system

We now define a rewriting system on the derivations of subtyping judgements. In view of the
proposition 9.2.7, it is equivalent to define it directly on the coerce expressions. We borrow
the rewriting system from [CG92], to which we add the rules ({}’) and ({}”) to deal with
overloaded types. In the rules that follow we suppose that C ⊢ c:S≤T and C ⊢ ci:Ai ≤ A′φ(i):

(Assoc) (c d) e ; c (d e)
(→′) (c→ d) (c′ → d′) ; (c′ c)→ (d d′)
(→′′) (c→ d) ((c′ → d′) e) ; ((c′ c)→ (d d′)) e
(∀′) (∀(X≤c)d) (∀(X≤c′)d′) ; ∀(X≤c′ c)(d d′[XT : = cXS])
(∀′′) (∀(X≤c)d) ((∀(X≤c′)d′) e) ; (∀(X≤c′ c)(d d′[XT : = cXS])) e

({}′) (∀φTX{ci.di}i∈I) (∀ψT ′X{c′j .d
′
j}j∈J) ; ∀ψ◦φT ′ X{c′φ(i) ci.di (d

′
φ(i)[XA′

φ(i)
:= XAi

]}i∈I

({}′′) (∀φTX{ci.di}i∈I) ((∀ψT ′X{c′j .d
′
j}j∈J) e) ; (∀ψ◦φT ′ X{c′φ(i) ci.di (d

′
φ(i)[XA′

φ(i)
:= XAi

]}i∈I) e

A simple analysis of the rules shows that the normal forms of this rewriting system are
subterms of (c → d) e1 . . . en or of (∀(X≤ c)d) e1 . . . en or of (∀φTX{ci.di}) e1 . . . en where
c, ci, d, di are in normal form and e1, . . . , en are either Xt or TopT or KBB′ (composition is
left associative). These normal forms correspond to derivations in which every left premise
of a (trans) rule is a leaf. Thus the rewriting system pushes the transitivity up to the leaves.
It remains to prove two facts:

7Actually this theorem is true modulo weakenings of the tcs

9.2. TYPE SYSTEM 235

1. The rewriting system is sound, i.e. it rewrites a valid derivation for a certain judgment
into another valid derivation for the same judgment. By the Curry-Howard isomorphism
it is equivalent to prove the subject reduction theorem for the calculus of the coercion
expressions; namely we have to show that a well-typed coerce expression rewrites only
to well-typed coerce expressions of the same type.

2. The rewriting system is weakly normalizing. In this case there exists a reduction strat-
egy which transforms every derivation into another that proves the same judgment and
is in normal form (i.e. with the (trans) rules at the right places).

Soundness of the rewriting system

The proof of the soundness of the rewriting system is very similar to the corresponding one
in [CG92]. We first have to prove the following lemmas:

Lemma 9.2.8 (weakening) If C ⊢ c:∆ is provable and C ∪ {X≤ T} is a tcs then also
C ∪ {X≤T} ⊢ c:∆ is provable.

Proof. By a simple induction on the proof of C ⊢ c:∆ 2

Lemma 9.2.9 (substitution) If C ∪ {X≤T} ⊢ c:U ≤ V and C ∪ {X≤S} ⊢ d:X ≤ T are
provable then C ∪ {X≤S} ⊢ c[XT : = d]:U ≤ V is provable too.

Proof. By induction on the structure of c. We only detail the proof when c is a variable; all
the other cases are either trivial (KBB′ ,TopT and IdA) or they are solved by a straightforward

use of the induction hypothesis (→, ∀, ∀φT).
There are two subcases:
1. c≡XT . The result gets C ∪ {X≤S} ⊢ d:X ≤ T which is satisfied by hypothesis.
2. c≡YV . The hypothesis gets C ∪ {X≤T} ⊢ YV :Y ≤ V . Therefore C ⊢ YV :Y ≤ V . By a
weakening (lemma 9.2.8) we obtain the result C ∪ {X≤S} ⊢ YV :Y ≤ V . 2

Now we are able to prove the soundness of the rewriting system

Theorem 9.2.10 If c
∗
; d and C ⊢ c:∆ then C ⊢ d:∆

Proof. It suffices to prove the theorem for one step of rewriting: the result is then obtain by
induction on the number of steps. First of all, observe that if in a derivation we replace a
sub-derivation by another one proving the same judgment then the new derivation is correct:
only the final judgment matters. This simple observation handles all the cases where c ; d
is not an instance of one of the previous rewriting rules, but it is obtained by rewriting a
strict occurrence of c (alternatively this can be proved by induction on the structure of c
and a case analysis on all the possible rewriting rules). Thus it remains to prove that the
rewriting rules preserve correctness. We give the proof only for ({}’) since it is the most
representative and all the other cases are obtained by simplifying or slightly modifying this
case; however, apart from the proof for ({}”) which is very similar to the one we give here
(but typographically even more awkward), all the remaining cases are included in the proof
of section 5.2 in [CG92]. For typographical reasons we omit from the proof some obvious
indexing, and inessential tcs’s. By hypothesis we have:

236 CHAPTER 9. BOUNDED QUANTIFICATION WITH OVERLOADING

∀j∈J

\ /

\ Π1
j /

\ /

⊢ c′j:A
2
j≤A1

ψ(j)

\ /

\ Π2
j /

\ /

X≤A2
j ⊢ d′j :T

1
ψ(j)≤T 2

j

⊢ ∀ψT ′X{c′j .d
′
j}:∀X{A

1
h.T

1
h}≤∀X{A

2
j .T

2
j }

∀i∈I

\ /

\ Π3
i /

\ /

⊢ ci:A
3
i≤A2

φ(i)

\ /

\ Π4
i /

\ /

X≤A3
i ⊢ di:T

2
φ(i)≤T 3

i

⊢ ∀φTX{ci.di}:∀X{A
2
j .T

2
j }≤∀X{A

3
i .T

3
i }

⊢ (∀φTX{ci.di}i∈I) (∀ψT ′X{c′j .d
′
j}j∈J):∀X{A

1
h.T

1
h}h∈H ≤ ∀X{A

3
i .T

3
i }i∈I

where T ≡ ∀X{A2
j .T

2
j }j∈J and T ′ ≡ ∀X{A1

h.T
1
h}h∈H . The rule ({}’) transforms it in the

following way:

∀i ∈ I

\ /

\ Σi /

\ /

⊢ c′φ(i) ci:A
3
i ≤ A1

ψ(φ(i))

\ /

\ Σ′i /

\ /

X≤A3
i ⊢ di (d

′
φ(i)[XA2

φ(i)
: = ci XA3

i
]):T 1

ψ(φ(i))≤T 3
i

⊢ ∀ψ◦φT ′ X{c′φ(i) ci.di (d
′
φ(i)[XA2

φ(i)
: = ci XA3

i
])}i∈I : ∀X{A1

h.T
1
h}h∈H ≤ ∀X{A

3
i .T

3
i }i∈I

where for all i ∈ I the proof Σi is:

\ /

\ Π3
i /

\ /

⊢ ci:A
3
i≤A2

φ(i)

\ /

\Π1
φ(i)/

\ /

⊢ c′φ(i):A
2
φ(i)≤A1

ψ(φ(i))

⊢ c′φ(i) ci:A
3
i ≤ A1

ψ(φ(i))

and the proof Σ′i is:

\ /

\Π2
φ(i)/

\ /

X≤A2
φ(i) ⊢ d′φ(i):T

1
ψ(φ(i))≤T 2

φ(i)

X≤A3
i ⊢ XA3

i
:X≤A3

i

\ /

\(Π3
i)
∗/

\ /

X≤A3
i ⊢ ci:A

3
i≤A2

φ(i)

X≤A3
i ⊢ ci XA3

i
:X≤A2

φ(i)
. .

X≤A3
i ⊢ d′φ(i)[XA2

φ(i)
: = ci XA3

i
]:T 1

ψ(φ(i))≤T 2
φ(i)

\ /

\ Π4
i /

\ /

X≤A3
i ⊢ di:T

2
φ(i)≤T 3

i

X≤A3
i ⊢ di (d

′
φ(i)[XA2

φ(i)
: = ciXA3

i
]):T 1

ψ(φ(i))≤T 3
i

In the last derivation the dotted line is proved by lemma 9.2.9 and (Π3
i)
∗ is obtained from Π3

i

by a weakening. In conclusion the rule ({}’) preserves the correctness of the derivations. 2

9.2. TYPE SYSTEM 237

Weak normalization

The task of proving that the rewriting system is weakly normalizing is very simple since most
of the work has already been done in [CG92]: define

size(A) = size(Top)
def
= 1

size(S → T) = size(∀(X≤S)T)
def
= size(S) + size(T)

size(∀X{Ai.Ti}i∈I)
def
=

∑

i∈I

(size(Ai) + size(Ti))

Let m and m′ be two multisets of natural numbers; define

m < m′
def
⇐⇒ ∀n′ ∈ m′∃n ∈ m n < n′

Definition 9.2.11 ([CG92]) Define the intermediate type of a coerce composition d e, where
e:S≤T and d:T≤U , as the type T . Then the complexity measure of a coerce expression c is
the multiset of the sizes of the intermediate types of all the redexes of c, modulo (Assoc). 2

Theorem 9.2.12 Every innermost strategy for ; strictly decreases the complexity measure
and thus terminates.

Proof. The proof is strictly the same as the one of section 5.3.3 in [CG92] modulo some slight
modifications for the cases involving overloaded types. 2

9.2.3 Subtyping algorithm and coherence of the system

Consider the following rewriting rules

(idl) IdT c ; c
(idr) c IdS ; c
(bas′) KBC KAB ; KAC

(bas′′) KBC (KAB c) ; KAC c
(top) TopT c ; TopS
(varTop) XTop ; TopX

These rules perform some cleaning of the derivations, basically by erasing useless coercions.

This set of rules clearly constitutes a strongly normalizing rewriting system (use as metrics
for the coercion expressions the lexicographical order of the pairs formed by the number of
compositions in the expression and by the number of variables occurring in it). Furthermore
no rule increases the complexity measure given in the previous section for weak normalization,
and they are all sound. Therefore we can safely add these rules to the previous rewriting
system: all the results of the previous section still hold. In the rest of this section we will
always consider the rewriting system formed by the old rules and those introduced above.

238 CHAPTER 9. BOUNDED QUANTIFICATION WITH OVERLOADING

The shape of the normal forms

It is very important to analyze the shape of the normal forms of the composed rewriting
system. We have the following theorem:

Proposition 9.2.13 Every well-typed coerce expression in normal form has the form c0 c1 ... cn
with n ≥ 0, where c0 can be any coerce expression different from a composition (of other coerce
expressions) whose subformulae are in normal form, and c1 . . . cn are variables.

Proof. This proposition can be easily proved by induction on n. For n = 0 the result is
obvious. The inductive case (n > 0) is proved by a case analysis on the shape of c0, by using
proposition 9.2.2 and the reduction rules. First of all note that because of the rewriting rules
(top) and (idl) c0 can be neither TopT nor IdA:

c0≡XT . Consider c1. It cannot be a composition because of (Assoc). By proposition 9.2.2
it can be nothing but a variable: indeed we have that c1:S ≤ X thus S must be a type
variable, say, Y and therefore c1 ≡ YX . The result follows by induction hypothesis.

c0≡KB1B2 . Consider c1: it cannot be a composition because of (Assoc); it cannot be a basic
type because of (bas′) if n = 1, because of (bas′′) if n > 1; it cannot be TopT or c→ c′

or ∀(X≤c)c′ or ∀φTX{c1.c
′
1, . . . , cn.c

′
n} because of proposition 9.2.2. Thus it can be but

a variable. The result follows by induction hypothesis.

c0≡c→ c′ . Consider c1: it cannot be a composition because of (Assoc); it cannot be a
d→ d′ because of (→′) if n = 1, because of (→′′) if n > 1; it cannot be TopT or c→ c′

or ∀(X≤c)c′ or ∀φTX{c1.c
′
1, . . . , cn.c

′
n} because of proposition 9.2.2. Thus it can be but

a variable. The result follows by induction hypothesis.

All the other cases are solved as the last two cases. 2

This theorem has two important consequences: the coherence of the proof system for the
subtyping relation and the definition of a subtyping algorithm.

Coherence

Lemma 9.2.14 For every provable subtyping judgment there exists only one coerce expres-
sion in normal form proving it.

Proof. We follow the pattern of the proof of the corresponding proposition in [CG92]. Let
c be a well-typed coercion expression in normal form. From propositions 9.2.13 and 9.2.2 it
follows almost immediately that we have only these possible cases:

1. if c:A ≤ A then c ≡ IdA
2. if c:X ≤ Y then c is a composition of variables, which is determined in an unique way

by the tcs.
3. if c:B1 ≤ B2 then c ≡ KB1B2

4. if c:S → S′≤T → T ′ then c is a → coercion.
5. if c:∀(X≤S1)S2≤∀(X≤T1)T2 then c is a ∀ coercion.

9.2. TYPE SYSTEM 239

6. if c:∀X{Aj .Tj}j∈J≤∀X{A
′
i.T
′
i}i∈I then c is a ∀φT coercion.

7. if c:X ≤ B then c is a composition of variables, which is determined in an unique way
by the tcs, composed with a coercion of case 3 if B(X) 6= B

8. if c:X≤T → T ′ then c is a composition of variables, which is determined in an unique
way by the tcs, composed with a coercion of case 4 if B(X) 6= T → T ′

9. if c:X≤ ∀(X≤ T1)T2 then c is a composition of variables, which is determined in an
unique way by the tcs, composed with a coercion of case 5 if B(X) 6= ∀(X≤T1)T2

10. if c:X≤∀X{A′i.T
′
i}i∈I then c is a composition of variables, which is determined in an

unique way by the tcs, composed with a coercion of case 6 if B(X) 6= ∀X{A′i.T
′
i}i∈I

11. if c:T ≤ Top then c is TopT

After this simple observation then the result can be proved by induction on the structure of
c. 2

Theorem 9.2.15 (coherence) Let Π1 and Π2 be two proofs of the same judgment C ⊢ ∆.
If c1 and c2 are the corresponding coerce expressions then c1 and c2 are equal modulo the
rewriting system.

Proof. By the weak normalization there exist two coercion expressions in normal form d1 and
d2 such that c1

∗
; d1 and c2

∗
; d2. By the soundness of the rewriting system (theorem 9.2.10)

it follows that C ⊢ d1:∆ and C ⊢ d2:∆. But then by lemma 9.2.14 we have that d1≡d2 (note
that this constitutes also a proof that ; is Church-Rosser.) 2

Subtyping algorithm

Consider once more the normal forms of proposition 9.2.13. These correspond to derivations
in which every application of a (trans) rule has as left premise an application of the rule
(taut). From this observation one directly derives the definition of the the following subtyping
algorithm:

(AlgRefl) C ⊢A X≤X

(AlgTrans)
C ⊢A C(X) ≤ T

C ⊢A X ≤ T

(AlgTop) C ⊢A T≤Top

(Alg→)
C ⊢A T ′1≤T1 C ⊢A T2≤T ′2

C ⊢A T1 → T2≤T ′1 → T ′2

(Alg∀)
C ⊢A T ′1≤T1 C ∪ {X≤T ′1} ⊢A T2≤T ′2

C ⊢A ∀(X≤T1)T2 ≤ ∀(X≤T ′1)T
′
2

X 6∈ dom(C)

(Alg{ })
for all i ∈ I exists j ∈ J s.t.C ⊢ A′i≤Aj C ∪ {X≤A′i} ⊢ Tj≤T ′i

C ⊢ ∀X{Aj .Tj}j∈J≤∀X{A′i.T
′
i}i∈I

X 6∈ dom(C)

240 CHAPTER 9. BOUNDED QUANTIFICATION WITH OVERLOADING

This set of rules denotes a deterministic algorithm since the form of the input —the judgment
one has to prove— unequivocally determines the rule that must be used and all the parameters
of any recursive calls

This algorithm is sound and complete w.r.t. our first system. This means that the sets
of provable judgements of the two systems are the same. This is stated by the following
theorem:

Theorem 9.2.16 C ⊢A ∆⇐⇒ C ⊢ ∆

Proof. Soundness (⇒) is easily proved by induction on the depth of the derivation of C ⊢A ∆.
Completeness (⇐) stems directly from the work of this section: take any proof of C ⊢ ∆,
apply to it the complete rewriting system with an innermost strategy; replace in the obtained
normal form all the sequences of (taut) (trans) rules by an (AlgTrans) rule; add the index A
to every turnstile and you have obtained a proof for C ⊢A ∆. 2

9.3 Terms

In this section we describe the terms of the language. We start by the definition of the
raw terms, among which we distinguish the terms, i.e. those raw terms that possess a type.
Roughly speaking, (raw) terms are divided in three classes: terms of the simply typed λ-
calculus, terms for parametric polymorphism and terms for overloading. Overloaded functions
are built in a list fashion, starting by an empty overloaded function ε and concatenating new
branches by &. The &’s are indexed by a list of types which is used to type the term and to
perform the selection of the branch.

Indexes

I: : = [A1.T1 ‖ . . . ‖ An.Tn]

Raw Terms

a ::= xT | (λxT .a) | a(a) simply typed λ-calc

| top | ΛX≤T.a | a(T) F≤
| ε | (a&Ia) | a[A] overloading

We required that the bounds of an overloaded function range over constant types. Therefore
the argument of an overloaded function can be restricted to be an atomic type (a[A]) since a
term of the form, say, a[S → T] would be surely rejected by the type checker.

Terms
We use two meta notations: a[x := b], a[X := S], T [X := S] for substitutions and ∪ for
set-theoretic union. Also we use C ⊢ a:S≤T to denote that C ⊢ a:S and C ⊢ S≤T . Type
substitutions are performed on indexes, too. Terms are selected by the rules below; since term
variables are indexed by their type, the rules do not need assumptions of the form (x:T):

9.3. TERMS 241

[Vars] C ⊢ xT :T C ⊢ T type

[→Intro]
C ⊢ a:T ′

C ⊢ (λxT .a):T → T ′
C ⊢ T type

[→Elim]
C ⊢ a:T ′ C ⊢ b:S′≤S

C ⊢ a(b):T
B(T ′)C= S → T

[Top] C ⊢ top:Top

[∀Intro]
C ∪ {X≤T} ⊢ a:T ′

C ⊢ ΛX≤T.a:∀(X≤T)T ′
C ⊢ T type

[∀Elim]
C ⊢ a:T ′ C ⊢ S′≤S

C ⊢ a(S′):T [X := S′]
B(T ′)C= ∀(X≤S)T

[ε] C ⊢ ε:∀X{}

[{}Intro]
C ⊢ a:T1≤∀X{Ai.Ti}i≤n C ⊢ b:T2≤∀(X≤A)T

C ⊢ (a&[A1.T1‖...‖An.Tn‖A.T]b):∀X({Ai.Ti}i≤n ∪ {A.T})

C ⊢ ∀X({Ai.Ti}i≤n ∪ {A.T }) type

[{}Elim]
C ⊢ a:T C ⊢ Aj = mini∈I{Ai|C ⊢ A≤Ai}

C ⊢ a[A]:Tj [X := A]
B(T)C= ∀X{Ai.Ti}i∈I

Note the form of the premises in the rule [{}Intro]; we cannot require that the components
of an & must have the same type as the one specified in the index: since it is possible to
reduce inside an & then the types of the components may decrease (see the subject reduction
theorem 9.4.8) and cannot be fixed (the index does not change with the reduction).

A first non trivial result for this system is given by the following theorem.

Theorem 9.3.1 If C ⊢ a:T then C ⊢ T type

Proof. The proof is an easy induction on the depth of the proof of C ⊢ a:T by performing
a case analysis on the last applied rule. The cases for [∀Elim] and [{}Elim] are solved by
using the lemma 9.4.5. 2

As the careful reader will have noticed, we do not use subsumption in the type checking;
since the selection of a branch is done according to the type of the argument we want, to
avoid ambiguities, to ensure that every well-typed term has a unique type. This is stated by
the following theorem:

Theorem 9.3.2 If C ⊢ a:T1 and C ⊢ a:T2 then T1 ≡ T2

242 CHAPTER 9. BOUNDED QUANTIFICATION WITH OVERLOADING

Proof. An easy induction on the sum of the depths of the derivation of C ⊢ a:T1 and
C ⊢ a:T2, by performing a case analysis on the structure of a 2

Thanks to the theorem 9.2.15 we can associate to every provable judgment a canonical deriva-
tion.

Theorem 9.3.3 Let Π1 and Π2 be two derivations for the same judgment C ⊢ a:T . Let (Πi)
∗

(i = 1, 2) denote the derivation Πi in which every (sub-)derivation of a subtyping judgment
has been replaced by its canonical form. Then Π1 ≡ Π2.

Proof. By induction on the structure of a (which uniquely determines the typing rule to
apply). 2

By combining the result of this two theorems we obtain that every well-typed term has a
canonical derivation for its type.

Thus one would expect that it is possible to define a type-checking algorithm for the raw
terms. This is the cases, indeed: if in the system above you replace every subtyping judgment
C ⊢ S≤T by C ⊢A S≤T you have a type-checking algorithm that can be easily proved sound
and complete w.r.t. the original system.

9.4 Reduction

In this section we give the equational theory of the terms of F&
≤ . We present it under the

form of reduction rules. We suppose to work modulo α-conversion for term variables; note
that no clash is possible for type variables because of the definition of tcs.

Notions of reduction

(β) C ⊢ (λxT .a)(b) > a[xT := b]

(β∀) C ⊢ (ΛX≤T.a)(T ′) > a[X := T ′]

(β{}) If A,A1 . . . , An are closed then

C ⊢ (a&[A1.T1‖...‖An.Tn]b)[A] >

{
b(A) if An = min1≤i≤n{Ai|C ⊢ A≤Ai}
a[A] else

Note that the selection of the branch is made on the index. Therefore while overloaded types
are equal modulo reordering of their components, in indexes the order is meaningful since to
a different ordering may correspond a different selection.

Besides these rules there are the usual rules for the context; among these the only one
that deserves a note is the rule for Λ, for it changes the tcs of the reduction:

C ∪ {X≤T} ⊢ a > a′

C ⊢ (ΛX≤T.a) > (ΛX≤T.a′)

For what it concerns the rules note that in β{} we require that the types involved in the
selection of a branch are closed. In this way we always select the most precise branch (i.e.
the one with the smallest possible bound). This corresponds to the implementation of the
late binding.

9.4. REDUCTION 243

9.4.1 The encoding of records

In this section we show how to encode in F&
≤ updatable records. Records will be used in

section 10.1. We start with a variation of the records of Wand that we have encoded in
section 2.5.3: the records we consider here are constructed starting from an empty record
value, denoted by 〈 〉, and by two elementary operations:

- Consistent Overwriting 〈r ← ℓi = a〉; if ℓi is not present in r, then it adds a field of
label ℓi and value a to the record r; otherwise replaces the value of the field with label
ℓi by the value a, provided that a has the same type as the type of the value it replaces.

- Extraction r.ℓi; extracts the value corresponding to the label ℓi, provided that a field
having that label is present.

The difference with the original calculus of Wand is in the operation of overwriting where
there is a restriction which requires the preservation of the type of a field being updated.
This operation is called consistent updating in [Car92]. We encode these records as follows:

Definition 9.4.1 Let L1, L2, . . . be an infinite list of basic types. Assume that they are
isolated (i.e., for every type T , if Li ≤ T or T ≤ Li, then Li = T). Then set

〈〈ℓ1 : T1, ... , ℓn : Tn〉〉 = ∀X{L1.T1, ... , Ln.Tn} X 6∈ ∪i=1..nFV (Ti)

〈 〉 ≡ ε
r.ℓi ≡ r[Li]

〈r ← ℓi = a〉 ≡ (r &IΛX≤Li.a)

where
I ≡ [L1.T1‖...‖Ln.Tn‖Li.Ti] if
r :∀X{L1.T1, ... , Ln.Tn}

2

Both the conditions in Overwriting and Extraction are enforced statically by the encoding:
for example if ai:Ti then the record

〈 〈 〈〉 ← ℓ = a1〉 ← ℓ = a2〉 (9.1)

is encoded by
(ε &[L.T1]ΛX≤L.a1 &[L.T1‖L.T2]ΛX≤L.a2)

of type ∀X{L.T1, L.T2}. But then by covariance one has T1 ⋚ T2

Once more, the rules to subtype simple record types and to type record values are obtained
as the special case of the encoding, i.e. when the input types are isolated. For example, it is
easy to check that if Li’s are isolated then ∀X{Li.Ti}i∈I ≤ ∀X{Li.T

′
i}i∈J if and only if J ⊆ I

and ∀i∈J Ti ≤ T ′i .
To encode the original records of [Wan87] we have to proceed as in section 2.5.3 and

introduce the following meta-notation

Notation 9.4.2 Given an overloaded type T ≡ ∀X{Ai.Ti}i∈I we denote by T r Aj the type
∀X{Ai.Ti}i∈Ir{j} if Aj ∈ {Ai}i∈I , and the type T itself, otherwise

244 CHAPTER 9. BOUNDED QUANTIFICATION WITH OVERLOADING

For example ∀X{A1.T,A2.T}rA1 = ∀X{A2.T} and ∀X{A1.T,A2.T}rA = ∀X{A1.T,A2.T}.
As in section 2.5.3, if T is a well-formed type T rA may be not well formed since A might be
necessary to assure the ∩-closure of T . Though when we restrain our attention to overloaded
types whose bounds form a set of isolated types this problem does not persist since ∩-closure
is always trivially satisfied. Therefore we know that applying the metanotation r to an
overloaded type encoding a record type we will always obtain a well formed type. Finally
note that if T r A is a well formed type then T ≤ T r A.

To encode the full calculus of [Wan87] it suffices to modify the definition of 〈r ← ℓi = a〉
in the following way:

〈r ← ℓi = a〉 = (r &IΛX≤Li.a)

where
I≡ [L1.T1‖...‖Ln.Tn‖Li.Ti] if r :T and
T r Li = ∀X{L1.T1, ... , Ln.Tn}

Therefore the record in (9.1) is now encoded by:

(ε &[L.T1]ΛX≤L.a1 &[L.T2]ΛX≤L.a2)

of type ∀X{L.T2}.
Unfortunately, as in the case of λ&, the use of the indexes in the encoding precludes the

polymorphism of the updating operation. In this framework this for example implies that we
cannot have an operation of updating that returns a record whose type is a type variable,
since we do not have variable indexes (just indexes containing variables). This could be an
important lack: in object-oriented programming one wants that the following method

init x = (ε&ΛMytype≤〈〈x : Int〉〉.λselfMytype.〈self ← x = 0〉)

has type
∀Mytype{〈〈x : Int〉〉.Mytype→Mytype}

while with the encodings above it has type

∀Mytype{〈〈x : Int〉〉.Mytype→ 〈〈x : Int〉〉}

Fortunately F&
≤ includes F≤, thus we can use the encodings defined for this last one to

obtain records types with the wanted properties. In particular we can use the encoding of
extensible records defined in [Car92]. The calculus of record values encoded in that paper is
less powerful than the records encoded above: for example it is not possible to add a field
to a record that is not known to possess it. However it offers more polymorphism since the
encoding of init x would have the desired type.

In conclusion F&
≤ offers a rather wide choice of record calculi, surely enough to cope with

the modeling of object-oriented programming.

9.4.2 Generalized Subject Reduction

In this section we prove that the type-checking system of F&
≤ well behaves w.r.t. the reduction

rules. More precisely we prove that every (well-typed) term rewrites to another (well-typed)
term, whose type is smaller than or equal to the type of the former. The proof of subject

9.4. REDUCTION 245

reduction is very technical and complex. The crux of the problem is to prove that the property
of ∩-closure is conserved under reductions, more precisely under (feasible) substitutions. For
this reason we suggest the reader to skip at first reading the proofs of the three lemmas that
follows.

We need first some notation:

Notation 9.4.3 Let C∪{X≤T} be a tcs. Define (C∪{X≤T})[Y : = S] as (C[Y : = S]∪{X≤
T [Y : = S]}) and Ø[X: = S] as Ø. Let C ⊢ ∆ be a type judgment. Then C ⊢ ∆[X: = S] is
defined as C ⊢ T [X: = S] type if ∆≡T type, as C ⊢ T1[X: = S] ≤ T2[X: = S] if ∆≡T1≤T2.

The proof of subject reduction requires an assumption and three technical lemmas:

Assumption 9.4.4 Recall that the proof of C ⊢ {Ai}i=1..n∩-closed is indeed an appropriate
set of proofs with final judgments of the form C ⊢ Ah≤ Ak proving the meet closure of
{Ai}i=1..n. In particular we suppose that this set contains at least one proof of C ⊢ Ai≤Aj

for every i, j in [1..n] for which such a proof exists.

Lemma 9.4.5 (main lemma) If C ∪ {X≤S} ⊢ ∆ is a provable type judgment, X 6∈FV (S′)
and C[X: = S′] ⊢ S′≤S is also provable, then C[X: = S′] ⊢ ∆[X: = S′] is provable, too.

Before proving the lemma, we want clarify a point: indeed the reader may wonder why in
this lemma, as well as in lemma 9.4.7, we used the tcs C[X: = S′] rather than C (note that
X 6∈ dom(C)). Actually if you replace C[X: = S′] by C the theorem can no longer be proved,
since at some points it is not possible to use the induction hypothesis (more precisely when
you introduce a new variable in the tcs). The intuitive reason is that even if C ∪{X≤S} and
C[X: = S′] are well-formed tcs’s this does not imply the good formation of C. For example
take S′≡ S≡ B and C ≡ {Y ≤ X}: C is not well-formed but C[X: = S′] ≡ Y ≤ B and
C ∪ {X≤S} ≡ {Y ≤ X} ∪ {X ≤ B} are well-formed.8 We can now prove the lemma.

Proof. By induction on the depth of the proof of C ∪ {X≤S} ⊢ ∆. For depth=1 there are
only two possible cases: ∆≡ B type or ∆≡ Top type. In both cases the result is trivially
satisfied. For depth>1 we perform a case analysis on the last rule of the proof:

(refl) a straightforward use of the induction hypothesis

(trans) a straightforward use of the induction hypothesis

(taut) suppose that ∆ ≡ Y≤T then there are two possible subcases:

1. Y 6≡ X: a straightforward use of the induction hypothesis
2. Y ≡ X: then the hypothesis gets C ∪ {X≤S} ⊢ X≤ S; since X 6∈ FV (S) the

result reduces to C[X: = S′] ⊢ S′≤S which holds by hypothesis

(top) a straightforward use of the induction hypothesis

(→) a straightforward use of the induction hypothesis

8The order in tcs is not important

246 CHAPTER 9. BOUNDED QUANTIFICATION WITH OVERLOADING

(∀) suppose that ∆ ≡ ∀(Y≤T1)T2 ≤ ∀(Y≤T ′1)T
′
2. Recall that C[X: = S′] ⊢ S′≤S. Thus by

theorem 9.2.1 C[X: = S′] ⊢ S′ type and therefore FV (S′) ⊆ dom(C[X: = S′]). By
hypothesis we have that both C ∪ {Y ≤ T ′1} ∪ {X ≤ S} and C[X: = S′] are tcs’s.
Since X 6∈FV (S′) then FV (T ′1[X: = S′]) = (FV (T ′1) ∪FV (S′))\{X}; thus also C[X: =
S′] ∪ {Y ≤ T ′1[X: = S′]} is a tcs. Once this remark done, then the result follows by a
straightforward use of the induction hypothesis.

({}) As the previous case.

(Vartype) suppose that ∆ ≡ Y type. Then there are two possible subcases:

1. Y 6≡ X: a straightforward use of the induction hypothesis
2. Y ≡ X: then the result reduces to C[X: = S′] ⊢ S′ type which follows from

C[X: = S′] ⊢ S′≤S and theorem 9.2.1

(→type) a straightforward use of the induction hypothesis

(∀type) After having done the same remark as in the case (∀) the thesis follows from a
straightforward use of the induction hypothesis.

({}type) This is the hard case. The pattern of the proof of this case is essentially the same
as that of the case (∀). The hard task is to prove that C ∪ {X≤S} ⊢ {Ai}i=1..n∩-closed,
C[X: = S′] ⊢ S′≤S and the induction hypothesis imply C[X: = S′] ⊢ {Ai[X: = S′]}i=1..n∩-
closed. This is equivalent to prove that whenever

B(Ai[X: = S′])C[X:=S′] ⇓ B(Aj[X: = S′])C[X:=S′] (9.2)

then there exists h ∈ [1..n] such that

C[X: = S′] ⊢ Ah[X: = S′] = Ai[X: = S′] ∩Aj [X: = S′]

Suppose that (9.2) holds, and examine all the possible cases for Ai and Aj :

i. (Ai and Aj basic). Then Ai[X: = S′] = Ai = B(Ai[X: = S′])C[X:=S′] = B(Ai)C∪{X≤S}
and the same for j. From the meet-closure of {Ai}i=1..n follows that there exists a
basic type Ah = Ah[X: = S′] = Ai∩Aj = Ai[X: = S′]∩Aj[X: = S′] independently
from the tcs we are taking into account.

ii. (Ai≡Aj≡X) trivial

iii. (Ai≡X and Aj 6≡ X). Then the hypothesis gets

B(S′)C[X:=S′] ⇓ B(Aj)C[X:=S′] (9.3)

We proof the result by showing that S′ ∩Aj is always either S′ or Aj.
From C[X: = S′] ⊢ S′≤S and proposition 9.2.3 we deduce that B(S′)C[X:=S′] ≤
B(S)C[X:=S′] and then from (9.3) follows that

B(S)C[X:=S′] ⇓ B(Aj)C[X:=S′] (9.4)

9.4. REDUCTION 247

Now, first of all note that by definition of B one has B(X)C∪{X≤S}=B(S)C∪{X≤S}.
Then observe that B(S)C∪{X≤S} = B(S)C[X:=S′]: this is obvious if S is a basic type;
when S is a variable this follows from the fact that the substitution [X: = S′] does
not affect the definition of B(S). Indeed if

C[X: = S′] ≡ C ′ ∪ {S≤X1} ∪ {X1≤X2} ∪ . . . ∪ {Xn≤B(S)} (n ≥ 0)

then X 6≡ Xi for all i ∈ [1..n] otherwise C ∪ {X≤S} would not be a tcs.
Thus from B(X)C∪{X≤S}=B(S)C∪{X≤S} and B(S)C∪{X≤S} = B(S)C[X:=S′] we deduce

B(X)C∪{X≤S} = B(S)C[X:=S′] (9.5)

Now there are two possible subcases:

a. Aj is a basic type: then B(Aj)C∪{X≤S} = Aj = B(Aj)C[X:=S′] and thus (9.4)
gets

B(X)C∪{X≤S} ⇓ B(Aj)C∪{X≤S}

but since C ∪ {X≤S} ⊢ {Ai}i=1..n∩-closed (and X ∈ {Ai}i=1..n) we have that
C ∪ {X≤S} ⊢ X≤Aj (by proposition 9.2.5 the variable must be smaller than
the basic type) and therefore B(S)C[X:=S′] =B(X)C∪{X≤S} ≤ B(Aj)C∪{X≤S} =
Aj.
Thus C[X: = S′] ⊢ S′≤S≤B(S)C[X:=S′]≤ Aj whence we can conclude that

C[X: = S′] ⊢ S′ = S′ ∩Aj (9.6)

b. Aj is a variable: then we have that

C[X: = S′] ≡ C ′′ ∪ {Aj≤X1} ∪ {X1≤X2} ∪ . . . ∪ {Xn≤B(Aj)} (n ≥ 0)

If S′ ≡ Xi for some i ∈ [1..n] then C[X: = S′] ⊢ Aj ≤ S′ and therefore

C[X: = S′] ⊢ Aj = S′ ∩Aj (9.7)

Otherwise if S′ 6≡ Xi for all i ∈ [1..n] then the substitution [X: = S′] does not
affect the definition of B(Aj) and thus

B(Aj)C∪{X≤S} = B(Aj)C[X:=S′]

Thus once more (9.4) and (9.5) yield
B(X)C∪{X≤S} ⇓ B(Aj)C∪{X≤S}

Recall that both X and Aj are variables contained in {Ai}i=1..n and that C ∪
{X≤S} ⊢ {Ai}i=1..n∩-closed. Thus by proposition 9.2.5 either C ∪ {X≤S} ⊢ X ≤
Aj or C ∪ {X≤S} ⊢ Aj ≤ X must hold. Whichever judgment holds, we sup-
posed in the assumption 9.4.4 that its proof is contained in the proof of meet
closure of {Ai}i=1..n; thus we can apply the induction hypothesis obtaining
either (9.6) or (9.7), respectively.

248 CHAPTER 9. BOUNDED QUANTIFICATION WITH OVERLOADING

iv. (Aj and Aj are both different from X and at least one of them is a vari-
able) Thus Ai[X: = S′] = Ai and Aj [X: = S′] = Aj and the hypothesis becomes

B(Ai)C[X:=S′] ⇓ B(Aj)C[X:=S′]

Let us open a short parenthesis: suppose to have a type variable Y 6≡ X with
Y ∈ dom(C) and consider B(Y)C∪{X≤S}. Then if

C ∪ {X≤S} ≡ C ′ ∪ {Y≤X1} ∪ {X1≤X2} ∪ . . . ∪ {Xn≤B(Y)C∪{X≤S}} (n ≥ 0)

there are two possible cases

(1) X ≡ Xh for some h ∈ [1..n] and in this case note that
B(Y)C[X:=S′] = B(S′)C[X:=S′]

(2) X 6≡ Xh for all h ∈ [1..n] and in this case
B(Y)C[X:=S′] = B(Y)C∪{X≤S}

After this short remark we can now consider the various cases for Ai and Aj

a. Ai is a variable in the situation like Y in (1) and Aj is a basic type. But then
by the point (1) the hypothesis becomes

B(S′)C[X:=S′] ⇓ B(Aj)C[X:=S′]

which has already been solved in (iii).
b. Ai is a variable in a situation like Y in (2) and Aj is a basic type. By the

meet-closure of {Ai}i=1..n and by the point (2) we deduce that
B(Ai)C[X:=S′] = B(Ai)C∪{X≤S} ≤ Aj = B(Aj)C∪{X≤S}

and thus C[X: = S′] ⊢ Ai ≤ Aj

c. Ai is a variable in the situation like in (1) and Aj is a variable in the situation
like in (2); but then we are in a case similar to the one of (a.)

d. Ai and Aj are both variables in the situation like in (1). Then B(Ai)C[X:=S′]

= B(S′)C[X:=S′] = B(Aj)C[X:=S′]. Thus either C[X: = S′] ⊢ Ai ≤ Aj or
C[X: = S′] ⊢ Aj ≤ Ai holds.

e. Ai and Aj are both variables in the situation like in (2). Thus B(Ai)C∪{X≤S}
⇓ B(Aj)C∪{X≤S} and by the meet-closure either C ∪ {X≤S} ⊢ Ai ≤ Aj or
C ∪ {X≤ S} ⊢ Aj ≤ Ai holds. But since they are variables like in (2) this
come to say that either C[X: = S′] ⊢ Ai ≤ Aj or C[X: = S′] ⊢ Aj ≤ Ai holds.

2

Lemma 9.4.6 (term substitution) If C ⊢ b:T ′ ≤ T and C ⊢ a:S then C ⊢ a[xT : = b] :
S′≤S.

Proof. By induction on the structure of a:

a≡y if y ≡ x then S≡T and S′≡T ′; else if y 6≡ x the result trivially holds.

a≡ε trivial

a≡Top trivial

9.4. REDUCTION 249

a≡λyS1 .a′ if y≡x then the result trivially holds; otherwise S ≡ S1 → S2 and C ⊢ a′:S2. By
induction hypothesis C ⊢ a′[xT : = b] : S′2≤S thus

C ⊢ a[xT : = b] ≡ λyS1 .a′[xT : = b] : S1 → S′2 ≤ S1 → S2

a≡(a1&
Ia2) just note that by induction hypothesis (a1[x

T : = b]&Ia2[x
T : = b]) is well-typed,

and that its type is S.

a≡ΛX≤S1.a
′ then C ∪ {X≤ S1} ⊢ a′:S2 with S ≡ ∀(X≤S1)S2. By induction hypothesis

C ∪ {X≤S1} ⊢ a′[xT : = b] : S′2 ≤ S2. Thus

C ⊢ a[xT : = b] ≡ ΛX≤S1.a
′[xT : = b] : ∀(X≤S1)S

′
2 ≤ ∀(X≤S1)S2

a≡a1(a2) then C ⊢ a1:S3, B(S3)C = S1 → S and C ⊢ a2:S2≤S1. By induction hypothesis
C ⊢ a1[x

T : = b] : U3≤ S3 and C ⊢ a2[x
T : = b] : U2≤ S2≤ S1. By proposition 9.2.3

C ⊢ B(U3)C ≤ B(S3)C . Since B(U3)C is not a type variable then by proposition 9.2.2
it is of the form U1 → U with C ⊢ S1≤U1 and C ⊢ U≤S. Thus we have:
- C ⊢ a1[x

T : = b] : U3

- C ⊢ a3[x
T : = b] : U2≤U1

- B(U3)C = U1 → U
Then by [→Elim(≤)] we obtain

C ⊢ a[xT : = b] ≡ a1[x
T : = b](a2[x

T : = b]) : U≤S

a≡a′(U) then C ⊢ a′:S3, B(S3)C = ∀(X≤S1)S2, C ⊢ U≤S1 and S ≡ S2[X: = U]. Note that
X 6∈ dom(C) and thus X 6∈ FV (U). By induction hypothesis C ⊢ a′[xT : = b] : U3≤S3

and by proposition 9.2.3 C ⊢ B(U3)C ≤ B(S3)C . Since B(U3)C is not a type variable
then by proposition 9.2.2 it is of the form ∀(X≤S′1)S

′
2.

Since C ∪ {X≤S1} ⊢ S′2 ≤ S2, C ⊢ U≤S1≤S′1 and X 6∈ FV (U) we can apply the main
lemma and obtain

C[X := U] ⊢ S′2[X := U] ≤ S2[X := U]

But X 6∈ dom(C) thus C[X := U] = C, from which it follows

C ⊢ a[xT : = b] : S′2[X := U] ≤ S2[X := U]

a≡a′[A] then C ⊢ a′:S3, B(S3)C = ∀X{Ai.Ti}i∈I and S ≡ Th[X: = A] where C ⊢ Ah =
mini∈I{Ai |C ⊢ A≤Ai}.
By induction hypothesis C ⊢ a′[xT : = b] : U3 ≤ S3 and by proposition 9.2.3 C ⊢
B(U3)C ≤ B(S3)C . Since B(U3)C is not a type variable then it is of the form ∀X{A′j .T

′
j}j∈J .

Thus by the subtyping rule ({}) there exists h̃ ∈ J such that C ⊢ A ≤ Ah ≤ A′
h̃
. There-

fore the set {A′j |C ⊢ A ≤ A′j , j ∈ J} is not empty, and by the meet-closure of {A′j}j∈J

it has also a minimum. Call this minimum A′k. Then C ⊢ a′[xT : = b] : T ′k[X: = A].
Since S≡Th[X: = A] we have to prove that

C ⊢ T ′k[X: = A] ≤ Th[X: = A]

Take again the previous h̃; by the rule ({}) we have

C ⊢ ∀(X≤A′
h̃
)T ′
h̃
≤ ∀(X≤Ah)Th (9.8)

250 CHAPTER 9. BOUNDED QUANTIFICATION WITH OVERLOADING

By the definition of Ah:

C ⊢ A ≤ Ah (9.9)

From (9.8):

C ⊢ Ah ≤ A′
h̃

From (trans):

C ⊢ A ≤ A′
h̃

(9.10)

From (9.8):

C ∪ {X ≤ Ah} ⊢ T ′
h̃
≤ Th (9.11)

From the definition of A′k and from (9.10) we obtain

C ⊢ A′k ≤ A′
h̃

and from this and the rule ({}type) applied to ∀X{A′j .T
′
j}j∈J it follows

C ∪ {X ≤ Ah} ⊢ T ′k ≤ T ′
h̃

(9.12)

From X 6∈ dom(C) and from (9.9) we deduce that X 6∈ FV (A); by (9.9) and by the
choice of k we respectively have that C ⊢ A ≤ Ah and C ⊢ A ≤ A′k; thus we can apply
the main lemma to (9.11) and (9.12) to obtain:

C[X: = A] ⊢ T ′
h̃
[X: = A] ≤ Th[X: = A]

C[X: = A] ⊢ T ′k[X: = A] ≤ T ′
h̃
[X: = A]

But X 6∈ dom(C), thus the judgements above get

C ⊢ T ′
h̃
[X: = A] ≤ Th[X: = A]

C ⊢ T ′k[X: = A] ≤ T ′
h̃
[X: = A]

Finally by (trans) we obtain the result:

C ⊢ T ′k[X: = A] ≤ Th[X: = A]

2

Lemma 9.4.7 (type substitution) If C ∪ {X≤S} ⊢ a:T , C[X: = S′] ⊢ S′≤ S and X 6∈
FV (S′) then C[X: = S′] ⊢ a[X: = S′]:T ′ ≤ T [X: = S′]

Proof. By induction on the structure of a:

a≡xT then T ′ ≡ T [X: = S′].

a≡ε trivial

a≡Top trivial

a≡λxT1 .a′ where T≡T1 → T2 and C ∪ {X≤S} ⊢ a′:T2. Thus by induction hypothesis we de-
duce that C[X: = S′] ⊢ a′[X: = S′] : T ′2≤T2[X: = S′]. Therefore C[X: = S′] ⊢ a[X: = S′] =
λxT1[X:=S′].a′[X: = S′] : T1[X: = S′]→ T ′2≤T [X: = S′].

9.4. REDUCTION 251

a≡ΛY≤T1.a
′ First of all note that Y 6≡ X, since by hypothesis C ∪ {X≤S} ⊢ ΛY≤T1.a

′:T
and we have made the assumption of having all the type variables different in a tcs.
Thus C ∪ {X≤S} ∪ {Y≤T1} ⊢ a′:T2 and T ≡ ∀(Y≤T1)T2. Note that C[X: = S′] and
C ∪ {X≤S} are tcs’s, and also that FV (S′) ⊆ C[X: = S′] (since C[X: = S′] ⊢ S′≤S).
Thus we can conclude that also C[X: = S′]∪{Y≤T1[X: = S′]} is a tcs, being dom(C) =
dom(C[X: = S′]) and FV (T1[X: = S′]) = (FV (T1) ∪ FV (S′))\{X} (the latter because
X 6∈ FV (S)). Then by a weakening we can prove that (C ∪{Y≤T1})[X: = S′] ⊢ S′≤S.
By induction hypothesis thus we have C[X: = S′]∪{Y≤T1[X: = S′]} ⊢ a′[X: = S′]:T ′2 ≤
T2[X: = S′]. Thus by [∀Intro] and (∀) we have that

C[X: = S′] ⊢ ΛY≤T1[X: = S′].a′[X: = S′]:∀(Y≤T1[X: = S′])T ′2 ≤ T [X: = S′]

a≡(a1&
[A1.T1‖...‖An.Tn]a2) Thus T ≡ ∀Y {A1.T1, . . . , An.Tn}, C ∪ {X≤S} ⊢ a1 : S1≤∀Y {Ai.Ti}i=1..n−1

and C ∪ {X≤S} ⊢ a2:S2≤∀(Y≤An)Tn. Since C ∪ {X≤S} ⊢ S′≤S we can apply the
main lemma (9.4.5) to the two judgements above obtaining respectively

C[X: = S′] ⊢ S1[X: = S′]≤∀Y {Ai[X: = S′].Ti[X: = S′]}i=1..n−1

C[X: = S′] ⊢ S2[X: = S′]≤∀(Y≤An[X: = S′])(Tn[X: = S′])

Furthermore by induction hypothesis

C[X: = S′] ⊢ ai[X: = S′] : S′i ≤ Si[X: = S′] i = 1, 2

Recall that by definition

a[X: = S′] = (a1[X: = S′]&[A1[X:=S′].T1[X:=S′]‖...‖An[X:=S′].Tn[X:=S′]]a2[X: = S′])

Therefore using transitivity and the rule [{}Intro] we can conclude that

C[X: = S′] ⊢ a[X: = S′] : ∀Y {Ai[X: = S′].Ti[X: = S′]}i=1..n = T [X: = S′]

a≡a1(a2) Let C ∪ {X≤S} ⊢ a1:W , C ∪ {X≤S} ⊢ a2:U
′≤U and B(W)C∪{X≤S} = U → T .

By induction hypothesis we have:

C[X: = S′] ⊢ a1[X: = S′] : W ′ ≤W [X: = S′]

C[X: = S′] ⊢ a2[X: = S′] : U ′′ ≤ U ′[X: = S′]

Applying the main lemma (9.4.5) to C ∪ {X≤S} ⊢ U ′≤U and (trans) we obtain

C[X: = S′] ⊢ U ′′ ≤ U [X: = S′]

By proposition 9.2.3

C[X: = S′] ⊢ B(W ′)C[X:=S′] ≤ B(W [X: = S′])C[X:=S′] (9.13)

Set W ≡W [X: = S′]. We want to prove that

C[X: = S′] ⊢ B(W)C[X:=S′] ≤ B(W)C∪{X≤S}[X: = S′] (9.14)

If W is not a variable this follows from (refl). Otherwise let

C ∪ {X≤S} ≡ C ′ ∪ {W≤X1} ∪ {X1≤X2} ∪ . . . ∪ {Xn≤B(W)C∪{X≤S}} (n ≥ 0)

There are two subcases:

252 CHAPTER 9. BOUNDED QUANTIFICATION WITH OVERLOADING

1. X 6≡ Xi for all i ∈ [1..n]; then B(W)C∪{X≤S} = B(W)C[X:=S′]

2. X ≡ Xi for some i ∈ [1..n]; then
B(W)C[X:=S′] = B(S′)C[X:=S′]

B(W)C∪{X≤S} = B(S)C∪{X≤S}

Now it is easy to check that B(S′)C[X:=S′] = B(S′)C∪{X≤S} (otherwise C[X: =
S′] and C ∪ {X ≤ S} could not both satisfy the conditions of tcs). Thus by
proposition 9.2.3 we obtain

C ∪ {X≤S} ⊢ B(W)C[X:=S′] = B(S′)C[X:=S′] = B(S′)C∪{X≤S} ≤ B(S)C∪{X≤S} =

B(W)C∪{X≤S}

Thus in both cases we have that

C ∪ {X≤S} ⊢ B(W)C[X:=S′] ≤ B(W)C∪{X≤S}

We can then apply the main lemma and obtain

C[X: = S′] ⊢ B(W)C[X:=S′][X: = S′] ≤ B(W)C∪{X≤S}[X: = S′]

By hypothesis X 6∈ FV (S′); this implies that X 6∈ FV (C[X: = S′]) and thus
B(W)C[X:=S′] [X: = S′] = B(W)C[X:=S′]. Therefore to conclude the proof of (9.14) it
just remains to prove the following equation:

C[X: = S′] ⊢ B(W)C∪{X≤S}[X: = S′] ≤ B(W)C∪{X≤S}[X: = S′] (9.15)

This is obvious if W is not a variable (since X 6∈ FV (S′) then the substitution [X: = S′]
is idempotent) or if it is a variable different from X (then W = W). If W≡X then just
note that (9.15) gets

C[X: = S′] ⊢ B(S′)C∪{X≤S}[X: = S′] ≤ B(X)C∪{X≤S}[X: = S′]

by observing that B(X)C∪{X≤S} = B(S)C∪{X≤S} this judgments becomes:

C[X: = S′] ⊢ B(S′)C∪{X≤S}[X: = S′] ≤ B(S)C∪{X≤S}[X: = S′] (9.16)

To prove it first apply proposition 9.2.3 to the hypothesis C[X: = S′] ⊢ S′≤S and obtain

C[X: = S′] ⊢ B(S′)C[X:=S′] ≤ B(S)C[X:=S′] (9.17)

Assume now that we have proved that B(S′)C[X:=S′] = B(S′)C∪{X≤S}[X: = S′] and
B(S)C[X:=S′] = B(S)C∪{X≤S}[X: = S′]. In this case (9.17) implies (9.16). So let us
prove the assumption: we start with S′. When S′ is not a type variable then the result
follows from the definition of B and the fact that X 6∈ FV (S′). If S′ is a type variable
then

C[X: = S′] ≡ C ′ ∪ {S′≤X1} ∪ . . . ∪ {Xn≤B(S′)C[X:=S′]}

Since C ∪ {X≤S} is a tcs then X 6≡ Xi for all i ∈ [1..n]. By this

C ∪ {X≤S} ≡ C ′′ ∪ {S′≤X1} ∪ . . . ∪ {Xn≤T ′′} ∪ {X≤S}

Note that T ′′ cannot be a type variable: it cannot be X otherwise B(S′)C[X:=S′] = S′

(a loop in a tcs); it cannot be another variable otherwise C[X: = S′](Xn) would be a

9.4. REDUCTION 253

variable, too. Therefore T ′′ is not a type variable which implies that T ′′ = B(S′)C∪{X≤S}
and thus B(S′)C[X:=S′] = B(S′)C∪{X≤S}[X: = S′]. A similar proof holds for S, too.

This ends the proof of (9.14)

From (9.13) and (9.14) we obtain:

C[X: = S′] ⊢ B(W ′)C[X:=S′] ≤ U [X: = S′]→ T [X: = S′]

Since B(W ′)C[X:=S′] is not a variable then it must be of the form U ′′′ → T ′ with
C[X: = S′] ⊢ U [X: = S′] ≤ U ′′′ and C[X: = S′] ⊢ T ′ ≤ T [X: = S′].
Summing up we have:
- C[X: = S′] ⊢ a1[X: = S′] : W ′

- C[X: = S′] ⊢ a2[X: = S′] : U ′′≤U ′′′

- B(W ′)C[X:=S′] = U ′′′ → T ′

Then by[→Elim(≤)] we obtain

C[X: = S′] ⊢ a[X: = S′] ≡ a1[X: = S′](a2[X: = S′]) : T ′ ≤ T [X: = S′]

a≡a′(U) Let C ∪ {X≤S} ⊢ a′ : W , C ∪ {X≤S} ⊢ U ≤ U ′, B(W)C∪{X≤S} = ∀(Y ≤ U ′)U ′′

and T ≡ U ′′[Y : = U]. First of all note that Y 6∈ dom(C) ∪ {X}; then by induction
hypothesis

C[X: = S′] ⊢ a′[X: = S′] : W ′ ≤W [X: = S′]

By the main lemma we have that

C[X: = S′] ⊢ U [X: = S′] ≤ U ′[X: = S′] (9.18)

Proceeding exactly as in the previous case we can prove that

C[X: = S′] ⊢ B(W ′)C[X:=S′] ≤ B(W)C∪{X≤S}[X: = S′]

Since B(W ′)C[X:=S′] is not a variable then it is of the form ∀(Y≤V ′)V ′′ with

C[X: = S′] ⊢ U ′[X: = S′] ≤ V ′

C[X: = S′] ∪ {Y≤U ′[X: = S′]} ⊢ V ′′ ≤ U ′′[X: = S′] (9.19)

Thus we have:
- C[X: = S′] ⊢ a′[X: = S′] : W ′

- C[X: = S′] ⊢ U ′[X: = S′] ≤ V ′

- B(W ′)C[X:=S′] = ∀(Y≤V ′)V ′′

Therefore by [∀Elim] we obtain:

C[X: = S′] ⊢ a[X: = S′] = a′[X: = S′](U [X: = S′]) : V ′′[Y : = U [X: = S′]]

Now from the hypothesis C[X: = S′] ⊢ S′≤S and from Y 6∈ dom(C) we deduce that
Y 6∈ FV (S′); from C ∪ {X≤S} ⊢ U ≤ U ′ and Y 6∈ (dom(C) ∪ {X}) we deduce that
Y 6∈ FV (U). Thanks to this and to (9.18) we can apply the main lemma to (9.19) and
obtain

C[X: = S′][[Y : = U [X: = S′]] ⊢ V ′′[Y : = U [X: = S′]] ≤ U ′′[X: = S′][Y : = U [X: = S′]]
(9.20)

254 CHAPTER 9. BOUNDED QUANTIFICATION WITH OVERLOADING

Since Y 6∈ FV (S′) then

([X: = S′][Y : = U [X: = S′]]) = ([Y : = U][X: = S′])

and then (9.20) rewrites to

C[Y : = U][X: = S′] ⊢ V ′′[Y : = U [X: = S′]] ≤ U ′′[Y : = U][X: = S′] = T [X: = S′]

and since Y 6∈ dom(C) it becomes

C[X: = S′] ⊢ V ′′[Y : = U [X: = S′]] ≤ T [X: = S′]

i.e. the result.

a≡a′[A] Let C ∪ {X≤S} ⊢ a′:W , C ∪ {X≤S} ⊢ Ah = mini∈I{Ai |C ∪ {X≤S} ⊢ A≤Ai},
B(W)C∪{X≤S} = ∀Y {Ai.Ti}i∈I and T ≡ Th[Y : = A]. Again Y 6∈ dom(C) ∪ {X}. By
induction hypothesis

C[X: = S′] ⊢ a′[X: = S′] : W ′ ≤W [X: = S′]

Applying the main lemma we also obtain that

C[X: = S′] ⊢ mini∈I{Ai[X: = S′] |C[X: = S′] ⊢ A[X: = S′]≤Ai[X: = S′]} ≤
Ah[X: = S′]

Proceeding as in the two previous cases we have that

C[X: = S′] ⊢ B(W ′)C[X:=S′] = ∀Y {A′j .T
′
j}j∈J ≤ ∀Y {Ai[X: = S′].Ti[X: = S′]}i∈I (9.21)

By the rule ({}) for each i ∈ I there exists j ∈ J such that C[X: = S′] ⊢ Ai[X: = S′] ≤
A′j. Thus by the main lemma we have that {A′j |C[X: = S′] ⊢ A[X: = S′] ≤ A′j , j ∈ J}
is not empty, and by the meet-closure of {A′j}j∈J it has also a minimum. Therefore if

C[X: = S′] ⊢ A′k = minj∈J{A
′
j |C[X: = S′] ⊢ A[X: = S′] ≤ A′j}

then C[X: = S′] ⊢ a[X: = S′] : T ′k[Y : = A[X: = S′]]. Consider now (9.21); by the rule
({}) one has that there exists h̃ ∈ J such that

C[X: = S′] ⊢ ∀(Y≤A′
h̃
)T ′
h̃
≤ ∀(Y≤Ah[X: = S′])(Th[X: = S′]) (9.22)

Since C ∪ {X≤S} ⊢ A ≤ Ah then by the main lemma

C[X: = S′] ⊢ A[X: = S′] ≤ Ah[X: = S′] (9.23)

From (9.22):

C[X: = S′] ⊢ Ah[X: = S′] ≤ A′
h̃

From (trans):
C[X: = S′] ⊢ A[X: = S′] ≤ A′

h̃
(9.24)

From (9.22):
C[X: = S′] ∪ {Y ≤ Ah[X: = S′]} ⊢ T ′

h̃
≤ Th[X: = S′] (9.25)

From the definition of A′k and from (9.24) we obtain

C[X: = S′] ⊢ A′k ≤ A′
h̃

9.4. REDUCTION 255

and from this and the rule ({}type) applied to ∀Y {A′j .T
′
j}j∈J it follows that

C[X: = S′] ∪ {Y ≤ A′k} ⊢ T ′k ≤ T ′
h̃

(9.26)

From (9.23) and Y 6∈ dom(C) (and thus Y 6∈ dom(C[X: = S′])) follows that Y 6∈
FV (A[X: = S′]); by (9.23) and by the choice of k we respectively have that C[X: = S′] ⊢
A[X: = S′] ≤ Ah[X: = S′] and C[X: = S′] ⊢ A[X: = S′] ≤ A′k; thus we can apply the
main lemma to (9.25) and (9.26) to obtain:

C[X: = S′][Y : = A[X: = S′]] ⊢ T ′
h̃
[Y : = A[X: = S′]] ≤ Th[X: = S′][Y : = A[X: = S′]]

C[X: = S′][Y : = A[X: = S′]] ⊢ T ′k[Y : = A[X: = S′]] ≤ T ′
h̃
[Y : = A[X: = S′]]

But Y 6∈ dom(C), thus Y 6∈ dom(C[X: = S′]) and whence, by the definition of tcs,
Y 6∈ FV (C[X: = S′]). Then the judgements above get

C[X: = S′] ⊢ T ′
h̃
[Y : = A[X: = S′]] ≤ Th[X: = S′][Y : = A[X: = S′]]

C[X: = S′] ⊢ T ′k[Y : = A[X: = S′]] ≤ T ′
h̃
[Y : = A[X: = S′]]

By (trans):

C[X: = S′] ⊢ T ′k[Y : = A[X: = S′]] ≤ Th[X: = S′][Y : = A[X: = S′]]

From C[X: = S′] ⊢ S′≤S and Y 6∈ dom(C[X: = S′]) follows that Y 6∈ FV (S′). Thus
the last judgement becomes:

C[X: = S′] ⊢ T ′k[Y : = A[X: = S′]] ≤ Th[Y : = A][X: = S′] = T [X: = S′]

2

Lemmas 9.4.5 and 9.4.7 constituted the hard part of the proof. It is then rather straightfor-
ward to prove the theorem of generalized subject reduction by using the same technique used
for λ&.

Theorem 9.4.8 (generalized subject reduction) If C ⊢ a:T and C ⊢ a > b then C ⊢
b:T ′ and C ⊢ T ′≤T

Proof. The proof is by induction on the depth of the proof of C ⊢ a >b. Instead of presenting
the proof for the base case (the rules (β), (β∀) and (β{})) and for the inductive case (the
context rules), we think that it is more intelligible if we do a case analysis on the structure
of a:

a≡xT trivial.

a≡ε trivial

a≡Top trivial

a≡λxT1 .a′ , C ⊢ a′ > b′ and b ≡ λxT1.b′. This case is solved by a straightforward use of the
induction hypothesis.

a≡ΛX≤T1.a
′ C ∪ {X≤T1} ⊢ a′ > b′ and b ≡ ΛX≤T1.b

′. This case is solved by a straight-
forward use of the induction hypothesis.

256 CHAPTER 9. BOUNDED QUANTIFICATION WITH OVERLOADING

a≡(a1&
Ia2) just note that whichever reduction is performed the reductum is well-typed and

the type does not change

a≡a1(a2) where C ⊢ a1:W , C ⊢ a2:S
′≤ S and B(W)C = S → T . Then there are three

possible subcases:

1. a1 ≡ λxS .a3 and b ≡ a3[x
S : = a2]. this case follows from lemma 9.4.6

2. C ⊢ a1 > a′1. Then by induction hypothesis we have C ⊢ a′1 : T ′′≤ W . By
proposition 9.2.3 C ⊢ B(T ′′)C ≤ B(W)C . Since B(T ′′)C is a not a type variable
then it is of the form S′′ → T ′ with C ⊢ S′≤ S≤ S′′ and C ⊢ T ′≤ T . Thus b is
well-typed and with type T ′≤T .

3. C ⊢ a2 > a′2. Then by induction hypothesis we have C ⊢ a′2 : S′′ ≤ S′ ≤ S. Thus
C ⊢ b:T

a≡a′(S) where C ⊢ a′:W , C ⊢ S ≤ S′, B(W)C = ∀(X≤S′)S′′ and T ≡ S′′[X: = S]. Since
B(W)C = ∀(X≤S′)S′′, then

C ⊢ ∀(X≤S′)S′′ type

this holds only if

C ∪ {X≤S′} ⊢ S′′ type

from which we deduce that X 6∈ dom(C). From this and from C ⊢ S≤S′ we deduce
that X 6∈ FV (S).
Now there are two possible subcases:

1. a′ ≡ ΛX≤S′.a′′ and b ≡ a′′[X: = S]. But since C ⊢ S ≤ S′ and X 6∈ FV (S) we
can apply lemma 9.4.7. The result follows from X 6∈ dom(C).

2. C ⊢ a′ > b′. thus by induction hypothesis and by proposition 9.2.3 we obtain
C ⊢ b′ : T ′′≤W and C ⊢ B(T ′′)C ≤ B(W)C . Since B(T ′′)C is not a type variable
then it is of the form ∀(X≤U ′)U ′′ with C ⊢ S≤S′≤U ′ and C∪{X≤S′} ⊢ U ′′≤S′′.
Thus b is well-typed and C ⊢ b : U ′′[X: = S]. The result follows from the main
lemma applied to C ⊢ U ′′≤S′′ and the fact that X 6∈ dom(C)

a≡a′[A] where C ⊢ a′:W and B(W)C = ∀X{Ai.Ti}i∈I . As in the case before it is possible
to prove that X 6∈ dom(C) and that X 6∈ FV (A). Let Ah = mini∈I{Ai |C ⊢ A≤Ai}.
Then T ≡ Th[X: = A]. Again we have two subcases:

1. a′≡(a1&
[A1.T1‖...‖An.Tn]a2) and A,A1, . . . , An are closed and a β{}-reduction is per-

formed. Then either b ≡ a1[A] (case Ah 6= An) or b ≡ a2(A) (case Ah = An). In
both cases, by [{}Elim] or by [∀Elim] according to the case, it is easy to prove
that the terms have type T ′ ≤ Th[X := A]: just use the induction hypothesis and
then apply the main lemma.

2. C ⊢ a′ >a′′. Then by induction hypothesis C ⊢ a′′:W ′≤W and by proposition 9.2.3
C ⊢ B(W ′)C≤B(W)C . Since B(W ′)C is not a type variable ∀X{A′j .T

′
j}j∈J . Thus

by the subtyping rule ({}) there exists h̃ ∈ J such that C ⊢ A ≤ Ah ≤ A′
h̃
.

Therefore the set {A′j |C ⊢ A ≤ A′j , j ∈ J} is not empty, and by the meet-closure

9.4. REDUCTION 257

of {A′j}j∈J it has also a minimum. Call this minimum A′k. Then C ⊢ b : T ′k[X: = A].
Since S≡Th[X: = A] we have to prove that

C ⊢ T ′k[X: = A] ≤ Th[X: = A]

Take again the previous h̃; by the rule ({}) we have

C ⊢ ∀(X≤A′
h̃
)T ′
h̃
≤ ∀(X≤Ah)Th (9.27)

By the definition of Ah:

C ⊢ A ≤ Ah (9.28)

From (9.27):
C ⊢ Ah ≤ A′

h̃

From (trans):

C ⊢ A ≤ A′
h̃

(9.29)

From (9.27):

C ∪ {X ≤ Ah} ⊢ T ′
h̃
≤ Th (9.30)

From the definition of A′k and from (9.29) we obtain
C ⊢ A′k ≤ A′

h̃

and from this and the rule ({}type) applied to ∀X{A′j .T
′
j}j∈J it follows

C ∪ {X ≤ Ah} ⊢ T ′k ≤ T ′
h̃

(9.31)

By (9.28) and by the choice of k we respectively have that C ⊢ A ≤ Ah and
C ⊢ A ≤ A′k; thus we can apply the main lemma to (9.30) and (9.31) to obtain:

C[X: = A] ⊢ T ′
h̃
[X: = A] ≤ Th[X: = A]

C[X: = A] ⊢ T ′k[X: = A] ≤ T ′
h̃
[X: = A]

But X 6∈ dom(C), thus the judgements above get
C ⊢ T ′

h̃
[X: = A] ≤ Th[X: = A]

C ⊢ T ′k[X: = A] ≤ T ′
h̃
[X: = A]

Finally by (trans) we obtain the result:
C ⊢ T ′k[X: = A] ≤ Th[X: = A]

2

9.4.3 Church-Rosser

In section 9.2.3 we proved the syntactic coherence of the proof system of F&
≤ . In this section

we prove the syntactic coherence of the reduction system of F&
≤ .

In the reductions that follow we omit, without loss of generality, all the tcs9. As in
section 2.4 we use the Hindley-Rosen lemma:

9The only place where this ommission really matters is in the lemma 9.4.12 whose complete statement
should be If C ∪ {X≤S} ⊢ a >β{}

a′ then C ⊢ a[X: = T] >∗
β{}

a′[X: = T].

258 CHAPTER 9. BOUNDED QUANTIFICATION WITH OVERLOADING

Lemma 9.4.9 (Hindley-Rosen) Let R1,R2 be two notions of reduction. If R1, R2 are CR
and >∗R1

commutes with >∗R2
then R1 ∪R2 is CR.

Set now R1 ≡ β{} and R2 ≡ β ∪ β∀; if we prove that these notions of reduction satisfy the
hypotheses of the lemma above then we proved CR. It is easy to prove that β ∪ β∀ is CR:
indeed in [Ghe90] it is proved that β ∪ β∀ is terminating; by a simple check of the conflicts
it is possible to prove that it is also locally confluent; since it has no critical pair then by
the Knuth-Bendix lemma ([KB70]) it is locally confluent; finally by applying the Newman’s
Lemma ([New42]) we obtain CR.

Lemma 9.4.10 β{} is CR.

Proof. By lemma 3.2.2 of [Bar84] it suffices to prove that the reflexive closure of >β{} (denoted

by >=
β{}

) satisfies the diamond property. Thus by induction on a >=
β{}

a1 we show that for all

a >=
β{}

a2 there exists a common >=
β{}

reduct a3 of a1 and a2. We can assume that a1 6≡ a,

a2 6≡ a and a1 6≡ a2, otherwise the proof is trivial. Let examine all the possible cases:

1. (b1&b2)[A] >=
β{}

b1[A]. If a2 ≡ (b1&b′2)[A] then a3 ≡ a1; else a2 ≡ (b′1&b2)[A] then

a3 ≡ b′1[A].
2. (b1&b2)[A] >=

β{}
b2(A). If a2 ≡ (b′1&b2)[A] then a3 ≡ a1; else a2 ≡ (b1&b′2)[A] then

a3 ≡ b′2(A).
3. b1(b2) >=

β{}
b′1(b2). If a2 ≡ b1(b

′
2) then a3 ≡ b′1(b

′
2); else a2 ≡ b′′1(b2): then by induction

hypothesis there exists b3 common >=
β{}

reduct of b′1 and b′′1; thus a3 ≡ b3(b2)

4. b1(b2) >=
β{}

b1(b
′
2) as the case before.

5. (b1&b2)[A] >=
β{}

(b′1&b2) as the case before.

6. (b1&b2)[A] >=
β{}

(b1&b′2) as the case before.

7. λxT .a >=
β{}

λxT .a′. Then a2 ≡ λx.a′′ and by induction hypothesis there exists b3 common

>=
β{}

reduct of a′ and a′′. Thus a3 ≡ λxT .b3.

8. ΛX≤T.a >=
β{}

ΛX≤T.a′. as the case before (apart from the changement of tcs in the

induction hypothesis).
9. a(T) >=

β{}
a′(T) as the case before.

10. a[A] >=
β{}

a′[A] as the case before.

2

To prove that the two notions of reduction commute we need three technical lemmas:

Lemma 9.4.11 If a >β{} a′ then a[x: = b] >∗β{} a′[x: = b]

Lemma 9.4.12 If a >β{} a′ then a[X: = T] >∗β{} a′[X: = T]

Lemma 9.4.13 If b >β{} b′ then a[x: = b] >∗β{} a[x: = b′]

These lemmas can be proved by a straightforward use of induction (on a >β{} a′ for the first
two and on a for the third). Just for the proof of the second, note that in β{} A,A1, . . . , An

are required to be closed. We can now prove that the two notions of reduction commute.

9.4. REDUCTION 259

Lemma 9.4.14 If a >β∪β∀ a1 and a >β{} a2 then there exists a3 such that a1 >∗β{} a3 and

a2 >β∪β∀ a3. Pictorially:

a
>β∪β∀

> a1

∨

>β{}

∨

>∗β{}

a2
>β∪β∀

> a3

(Where full arrows are used for the hypotheses and dashed arrows for the theses.)

Proof. A proof of this lemma can be given by a simple diagram chase. Let C[] be a context
(in the sense of [Bar84])10. Then we have the following cases:

C[(λx.a)b]

������
>β{} �����

?

>β

HHHHH >β{}HHHHHj
C[(λx.a′)b] C[a[x: = b]] C[(λx.a)b′]

@
@

@
>β @

@
@R 	�

�
�

lemma 9.4.11

>∗β{}

�
�

� @
@

@
>∗β{}

lemma 9.4.13

@
@

@R 	�
�

� >β
�

�
�

C[a′[x: = b]] C[a[x: = b′]]

C[(ΛX≤S.a)(T)]

	�
�

�
>β{} �

�
� @

@
@ >β∀

@
@

@R
C[(ΛX≤S.a′)(T)] C[a[X: = T]]

@
@

@
>β∀ @

@
@R 	�

�
�

lemma 9.4.12

>∗β{}

�
�

�

C[a′[X: = T]]

10Avoid confusion between a context, denoted by C[] and a type constraint system, denoted by C.

260 CHAPTER 9. BOUNDED QUANTIFICATION WITH OVERLOADING

C[(a1&
Ia2)[A]]

)��������>β∪β∀ ��������

	�
�

� >β{}

�
�

� @
@

@
>β{} @

@
@R

PPPPPPPP >β∪β∀PPPPPPPPq
C[(a1&

Ia′2)[A]]
>β{}

- C[a1[A]] C[a2[A]] �
>β{}

C[(a′1&
Ia2)[A]]

Q
Q

Q
Q

>β{}
Q

Q
Q

Qs

PPPPPPPP >β∪β∀PPPPPPPPq)��������>β∪β∀ ��������

+�
�

�
� >β{}

�
�

�
�

C[a′2[A]] C[a′1[A]]

2

Corollary 9.4.15 >∗β{} commutes with >∗β∪β∀

Proof. By lemma 3.3.6 in [Bar84]. 2

In conclusion all the hypotheses of lemma 9.4.9 are satisfied, and we can conclude that F&
≤

is CR.

9.5 Decidable subtyping

It is obvious that the undecidability of F≤ is inherited by F&
≤ . In chapter 8 we have shown

how to recover many of the syntactical properties that F≤ lacks, foremost decidability of the
subtyping relation: just replace the incriminated (∀) rule by the following one

(∀-new)
C ⊢ T ′1≤T1 C ∪ {X≤Top} ⊢ T2≤T ′2

C ⊢ ∀(X≤T1)T2 ≤ ∀(X≤T ′1)T
′
2

X 6∈ dom(C)

Thus one may wonder whether by doing the same modification in F&
≤ one obtains decidability.

That is indeed the case, as we show in this section. We denote the resulting system by F&⊤
≤ .

As we already did when dealing with the transitivity elimination of F&
≤ (see section 9.2.2),

we concentrate our attention on the subtyping rules, forgetting those of type good formation;
thus, once more, we suppose that all the types that appear below are well-formed.

9.5.1 Subtyping algorithm

The first thing that one has to do is to define a subtyping algorithm which is sound and
complete with respect to the subtyping system. This is obtained by replacing the (Alg∀) rule
in the algorithm of section 9.2.3 by the new rule (Alg∀-new):

(AlgRefl) C ⊢A X≤X

9.5. DECIDABLE SUBTYPING 261

(AlgTrans)
C ⊢A C(X) ≤ T

C ⊢A X ≤ T

(AlgTop) C ⊢A T≤Top

(Alg→)
C ⊢A T ′1≤T1 C ⊢A T2≤T ′2

C ⊢A T1 → T2≤T ′1 → T ′2

(Alg∀-new)
C ⊢A T ′1≤T1 C ∪ {X≤Top} ⊢A T2≤T ′2

C ⊢A ∀(X≤T1)T2 ≤ ∀(X≤T ′1)T
′
2

X 6∈ dom(C)

(Alg{})
for all i ∈ I exists j ∈ J s.t.C ⊢ A′i≤Aj C ∪ {X≤A′i} ⊢ Tj≤T ′i

C ⊢ ∀X{Aj .Tj}j∈J≤∀X{A′i.T
′
i}i∈I

X 6∈ dom(C)

Note that we have not changed the rule (Alg{}); one might expect that also the bound in
C ∪ {X≤A′i} ⊢ Tj≤ T ′i should be changed from A′i to Top. This is not necessary to obtain
decidability: indeed the bounds used in the overloaded quantification are far less general than
those used in standard quantification, since the former can range only over constant types
while the latter can range over all types, whence the undecidability (in a sense the overloaded
types of F&⊤

≤ constitute a system that satisfies the restriction of [KS92], since Top cannot
appear as a bound of an overloaded type). Thus we leave (Alg{}) as it is; in section 10.1
we will show how to use its full expressiveness, by defining some methods that would not be
typed if (Alg{}) used the bound Top in comparing the types of different branches (see the
definition of move at page 269). This however has a minor drawback, since once more we
are not allowed to use the simple technique of chapter 8 to prove transitivity elimination and
thus the completeness of the algorithm. We are obliged to use the technique of [CG92] and
prove again all the theorems of sections 9.2.2 and 9.2.3 from scratch.

We will not rewrite them here since actually very few modifications to the proofs in
section 9.2.2 suffice to do the work. The main modification is in the rewriting system of
section 9.2.2 where you have to substitute the rules

(∀′) (∀(X≤c)d) (∀(X≤c′)d′) ; ∀(X≤c′ c)(d d′[XT : = cXS])
(∀′′) (∀(X≤c)d) ((∀(X≤c′)d′) e) ; (∀(X≤c′ c)(d d′[XT : = cXS])) e

by the following ones

(∀′) (∀(X≤c)d) (∀(X≤c′)d′) ; ∀(X≤c′ c)(d d′)
(∀′′) (∀(X≤c)d) ((∀(X≤c′)d′) e) ; (∀(X≤c′ c)(d d′)) e

Of course, now (∀(X≤c)d) codifies the new (∀) rule:

(∀-new)
C ⊢ c1:T

′
1≤T1 C ∪ {X≤Top} ⊢ c2:T2≤T ′2

C ⊢ ∀(X≤c1)c2:∀(X≤T1)T2≤∀(X≤T ′1)T
′
2

The reader can now move across the proofs of section 9.2.2 and check the obvious modifica-
tions; the proofs of section 9.2.3 are essentially unchanged.

262 CHAPTER 9. BOUNDED QUANTIFICATION WITH OVERLOADING

9.5.2 Termination

We now prove that this algorithm terminates.

Definition 9.5.1 Let C be a tcs and T a type such that FV (T) ⊆ dom(C) then define

L(T)C =

{
0 if T is not a type variable
L(C(T))C + 1 otherwise

(L stays for “length”) 2

Notation 9.5.2 Let C be a tcs; we denote by Ĉ a type variable Y ∈ dom(C) such that

L(Y)C = max
X∈dom(C)

{L(X)C}

If there is more than one such a variable then choose any of them (e.g. use the textual order)

We can now define a weight T for a type T with respect to a tcs C (such that T is well-formed
in C):

T(B)C
def
= 1

T(Top)C
def
= 1

T(X)C
def
= T(C(X))C + 1

T(S1 → S2)C
def
= T(S1)C + T(S2)C

T(∀(X≤S1)S2)C
def
= T(S1)C + T(S2)C∪{X≤S1}

T(∀X{Ai.Ti}i∈I)C
def
= max

i∈I
{T(Ai)C ,T(Ti)C∪{X≤Ĉ}}+ 1

Lemma 9.5.3 For each type T well-formed in a tcs C, the weight T(T)C is finite and positive.

Proof. First, it is obvious that the weight T(T)C is always positive. Now to prove that it is
also finite, we give a well-founded rank for T(T)C (i.e. we define a weight for the definition
of the weight) and we show that it decreases at each stage in the definition of T . To define
the rank of T(T)C consider all the variables that appear in T and C (no matter whether they
appear free or bounded, only in a quantifier or in a bound). Since T is well-formed in C, every
variable is associated to a unique bound (either in C or in T) apart those appearing in T as
a quantification of an overloaded type; to these variables associate as bound Ĉ. Furthermore
it is also possible to totally order these variables in a way that if Xi is defined in the bound
of Xj then Xi precedes Xj (C is a tcs so it is C ∪ {X≤ Ĉ} —with X 6∈ dom(C)—, T is
well-formed in C, thus loops are not possible). If there is more than one order satisfying
this condition then choose one arbitrarily. Define the depth of each variable as the number
of variables that precede it in this order. Then the rank of T(T)C is the lexicographical size
of the pair (D,L), where D is the maximum depth of any of the variables that appear in T ,
and L is the textual length of T . This rank is well-founded (the least element is (0, 1)). Take
now the definition of T : it easy to see that for the subproblems on the right-hand side of
T(S1 → S2)C , T(∀(X≤S1)S2)C and T(∀X{Ai.Ti}i∈I)C , the component D either is the same
or it decreases, while the L component always strictly decreases; for the case T(X)C , the
component D strictly decreases. 2

9.5. DECIDABLE SUBTYPING 263

The weight of the types is extended to a weight for type judgments in the obvious way:

J(C ⊢ S1 ≤ S2) = T(S1)C + T(S2)C .

Now we can show the termination of the algorithm.

Lemma 9.5.4 Given a tcs C and a type variable X, for all types T1, T2 such that FV (Ti) ⊆
dom(C) (i = 1, 2) T(T1)C∪{X≤Top} ≤ T(T1)C∪{X≤T2}.

Proof. A simple induction on the definition of T(T1) (note that one of the consequences of
lemma 9.5.3 is that it is possible to use induction on T). 2

Lemma 9.5.5 Given a tcs C, a type variable X 6∈ dom(C), two atomic types A and A′ such
that B(A)C and B(A′)C are constant types, if L(A)C ≤ L(A′)C then:
(a) T(A)C ≤ T(A

′)C
(b) for every type T such that FV (T) ⊆ dom(C) ∪ {X}, T(T)C∪{X≤A} ≤ T(T)C∪{X≤A′}

Proof. there are three possible cases:

1. Both A and A′ are constant types: (a) is trivial; (b) follows by a straightforward
induction on T(T)C∪{X≤A} + T(T)C∪{X≤A′}, performing a case analysis on T .

2. A is a constant type and A′ is a type variable: as the previous case

3. Both A and A′ are type variables: we prove (a) by induction on L(A)C + L(A′)C .
The base case is when L(A)C = L(A′)C = 1. In that case it is easy to check that
T(A)C = T(A′)C = 2. When that sum is strictly larger than 2 then by definition of T

T(A)C ≤ T(A
′)C ⇐⇒ T(C(A))C ≤ T(C(A′))C

By definition of L, L(A)C ≤ L(A′)C implies L(C(A))C ≤ L(C(A′))C ; therefore we can
apply the induction hypothesis to obtain the result.

Once more, (b) follows by a straightforward induction on T(T)C∪{X≤A} + T(T)C∪{X≤A′},
performing a case analysis on T : use the case (a) of this lemma when T ≡ X.

2

Theorem 9.5.6 At every step of the subtyping algorithm, the weight of each of the premises
is strictly smaller than the weight of the conclusion.

Proof. The verification is easy in most cases. The only non-trivial cases are (Alg∀) and
(Alg{}). The first case is proved by the following inequations:

J(C ∪ {X≤Top} ⊢ S2≤T2) = T(S2)C∪{X≤Top} + T(T2)C∪{X≤Top}

≤ T(S2)C∪{X≤S1} + T(T2)C∪{X≤T1} by lemma 9.5.4

< T(S1)C + T(T1)C + T(S2)C∪{X≤S1} + T(T2)C∪{X≤T1}

= T(∀(X≤S1)S2)C + T(∀(X≤T1)T2)C

= J(C ⊢ ∀(X≤S1)S2 ≤ ∀(X≤T1)T2)

264 CHAPTER 9. BOUNDED QUANTIFICATION WITH OVERLOADING

For (Alg{}) the proof is given by these inequations:

J(C ∪ {X≤A′i} ⊢ Tj≤T ′i) = T(Tj)C∪{X≤A′
i}

+ T(T ′i)C∪{X≤A′
i}

≤ T(Tj)C∪{X≤Ĉ} + T(T ′i)C∪{X≤Ĉ} by lemma 9.5.5

≤ max
j∈J
{T(Aj)C ,T(Tj)C∪{X≤Ĉ}}+ max

i∈I
{T(A′i)C ,T(T ′i)C∪{X≤Ĉ}}

< J(C ⊢ ∀X{Aj .Tj}j∈J≤∀X{A
′
i.T
′
i}i∈I)

2

Corollary 9.5.7 The algorithm terminates

9.5.3 Terms and reduction

Up to now we dealt with the types of F&⊤
≤ . To end with it, it still remains to describe

its terms and reduction rules. The task is easy for the raw terms and the reduction rules,
which are exactly the same as those for F&

≤ . More difficult is instead the case for the typing

rules; we have two different choices: either we use the same typing rules as for F&
≤ and we

do not allow reductions involving free type variables, or we add to these rules the rule of
subsumption (see page 90) and we leave the reduction unchanged. As for the case of F⊤≤ , in
the first case we are not able to prove the subject-reduction property, while in the second the
minimal typing property does not hold.

Note that in both cases there will be less well-typed terms than in F&
≤ , since the subtyping

relation of F&⊤
≤ (with or without subsumption) is strictly contained in that of F&

≤ : therefore

there will be less well-formed types (some types well-formed in F&
≤ may not satisfy the

covariance rule) and some functional applications may no longer result well-typed.

Remark On the contrary of what happened in chapter 3, the contraction of the subtyping
relation (on pretypes) does not imply the expansion of the set of well-formed types: there, you
could have some pretypes that in one case do not satisfy the multiple inheritance condition,
and in the other they do; here a type satisfies ∩-closure in one system if and only if it
satisfies it in the other, since ∩-closure involves only (types bounded by) basic types, while
the subtyping relations differs only on universally quantified types. A similar argument holds
for the domains when checking the covariance rule. Thus F&⊤

≤ is a subcalculus of F&
≤ .

Since subject-reduction is very important from both a theoretical and a practical point of
view, we prefer to use the subsumption rule to define the type system of F&⊤

≤ ; in this case
the property of subject-reduction still holds. It just requires some work to adapt to the
subcalculus the proof of subject reduction of section 9.4.2: essentially you have to modify
the various cases of a≡ a′(T) to take into account the new subtyping rule (∀-new), and use
the subsumption rule in the cases a≡ΛX ≤ S1.a

′ to show that the type is preserved; in the
case of lemma 9.4.7 the proof results even simplified. The proof of Church-Rosser for F&⊤

≤

is then a consequence of its subject reduction property, and of the fact that F&
≤ is CR:

given a term M of F&⊤
≤ , if M >∗ N1 and M >∗ N2 then there exists N3 in F&

≤ such that
N1 >∗ N3 and N2 >∗ N3. But, since the notion of reduction is the same in both calculi, the
subject reduction theorem for F&⊤

≤ guarantees that N3 is a term of F&⊤
≤ , too. On the line of

9.5. DECIDABLE SUBTYPING 265

chapter 8, we conjecture that every pair of types in F&⊤
≤ has a least upper bound, and that,

if they have a common lower bound, then they also have a greatest lower bound (not true
for F&

≤).

Of course, we would choose not to use the subsumption as soon as we proved that F&⊤
≤ with-

out subsumption and reductions involving free type variables satisfies the subject-reduction
property, since, in this system, the decidability of the subtyping relation implies the decid-
ability of the typing relation. We are comforted in this choice by the fact that the tests we
did to check the expressiveness of F⊤≤ (see section 8.3) have been performed by modifying the
subtyping algorithm for F≤, i.e. by using a system that does not use the subsumption rule.

Clearly with F&⊤
≤ we lose in expressive power w.r.t. F&

≤ since the terms (and the reductions)

of F&⊤
≤ are strictly contained in those of F&

≤ . Thus some terms are lost; but, again, are those
terms really interesting? We cannot answer to this question as we did in chapter 8, where we
tried to type-check existing libraries of F≤ programs, using the F⊤≤ subtyping relation: there

is no library for F&
≤ since we have just defined it. However, we think that, for object-oriented

programming, F&⊤
≤ is a good calculus to start from. We will give an idea of this in the next

section, where we show how to use second order overloading to model object-oriented fea-
tures; all the examples we will show are typable in F&⊤

≤ without subsumption; of course they

are typable in F&
≤ , and in F⊤≤ with subsumption, too.

266 CHAPTER 9. BOUNDED QUANTIFICATION WITH OVERLOADING

Chapter 10

Second order overloading and
object-oriented programming

In this chapter we mimic, for our second order system, what we have done in section 2.6 for
the λ&-calculus. We show how object-oriented programming can be modeled by using second
order overloading. All the examples of this chapter are typable both in F&

≤ and F&⊤
≤ (with

or without subsumption).

10.1 Object-oriented programming

Informally, from the point of view of our toy object-oriented language the gain of considering
a second order system is that we can use in the class interfaces the reserved keyword Mytype

which denotes the type of the receiver of a message. Note that by inheritance the type of
the receiver of a message can be smaller than the class(-name) for which the method has
been defined (Mytype is the keyword used in [Bru92]; examples of other keywords are “like
current” [Mey88] and myclass [CCHO89]). To show the use of this keyword we slightly
modify the definitions of the classes 2DPoint and 2DColorPoint of examples 1.1.3 and 1.1.4
(pages 69 and 72)

class 2DPoint

{

x:Int = 0;

y:Int = 0

}

norm = sqrt(self.x^2 + self.y^2);

erase = (update{x = 0});

move = fn(dx:Int,dy:Int) => (update{x=self.x+dx; y=self.y+dy})

[[

norm: Real;

erase: Mytype;

move: (Int x Int) -> 2DPoint

]]

267

268CHAPTER 10. SECOND ORDER OVERLOADING AND OBJECT-ORIENTED PROGRAMMING

class 2DColorPoint is 2DPoint

{

x:Int = 0;

y:Int = 0;

c:String = "black"

}

isWhite = (self.c == "white")

move = fn(dx:Int,dy:Int) =>

(update{x=self.x+dx; y=self.y+dy; c="white"})

[[

isWhite: Bool

move: (Int x Int) -> Mytype

]]

Remark that we have modified only the interfaces, using in two places the keyword Mytype.
Recall that at the beginning of chapter 9 we had remarked that in our original toy language
the type system would have assigned to the term [new(2DColorPoint) erase] the type
2DPoint. Now, the keyword Mytype in the interface says that the type returned by the passage
of erase is the same as the type of the receiver. In the case of [new(2DColorPoint) erase],
therefore, the type inferred is 2DColPoint. Note also that, in the interface of 2DColorPoint,
the message move returns Mytype instead of 2DPoint. The other way round is not allowed,
i.e. it is not possible to replace Mytype by a class-name. For example the following definition

extend 2DColorPoint

erase = new(2DColorPoint)

[[erase: 2DColorPoint]]

would not be well-typed since the method erase in 2DPoint returned Mytype. Indeed,
Mytype in the interface of 2DPoint might assume any type smaller than 2DPoint and thus,
in particular, also a type smaller than 2DColorPoint. In that case, covariance would not be
respected1.

Let see how this behavior is formalized in F&
≤ .

As usual we use the name of a class to type the objects of that class, and a message
is (an identifier of) an overloaded function whose branches are the methods associated to
that message. The method to be executed is selected according to the type (the class-name)
passed as argument (and not the type of the argument) which will be the class of the object
the message is sent to. Thus the sending of a message mesg to an object a of class A is here
modeled by (mesg [A])a.

Class-names are basic types that we associate to a representation type. We use the same
conventions as in section 2.6, thus there is an operation classType to transform a record value
r:R into a class type value rclassType of type classType, provided that the representation type
of classType is R.

1Of course in the previous example it would have been more reasonable that move in 2DPoint returned
(Int x Int) -> Mytype rather than (Int x Int) -> 2DPoint.

10.1. OBJECT-ORIENTED PROGRAMMING 269

Again we declare

2DPoint
.
= 〈〈x : Int; y : Int〉〉

2DColorPoint
.
= 〈〈x : Int; y : Int; c : String〉〉

and impose that on the types 2DColorPoint and 2DPoint we have the following relation
2DColorPoint ≤ 2DPoint

The message norm is translated into

norm ≡ (ε & ΛMytype≤2DPoint .λself Mytype.
√

self.x2 + self.y2)

whose type is ∀Mytype.{2DPoint.Mytype→ Real}
We have used the variable self to denote the receiver of the message and, following the
notation of [Bru92], the type variable Mytype to denote the type of the receiver. Note
however that we do not need, as in [Bru92], recursion for these features since they are just
parameters of the message.

The meaning of the covariance condition of section 9.2 in this framework can be shown
by the translation of the message move

move ≡ (ΛMytype≤2DPoint.λself Mytype.
λ(dx, dy)Int×Int.〈self← x = self.x + dx, y = self.y + dy〉2DPoint

&ΛMytype≤2DColorPoint.λself Mytype.
λ(dx, dy)Int×Int〈self← x = self.x + dx, y = self.y + dy, c = “white′′〉Mytype

)

which has type

∀Mytype.{2DPoint.Mytype→ (Int× Int)→ 2DPoint,
2DColorPoint.Mytype→ (Int× Int)→ Mytype}

Since 2DColorPoint ≤ 2DPoint we check that the covariance condition is satisfied:

{Mytype≤2DColorPoint} ⊢ Mytype→ (Int× Int)→ Mytype ≤ Mytype→ (Int× Int)→ 2DPoint

In general if a method has been defined for the message m in the classes Bi for i ∈ I then
its type is of the form ∀Mytype.{Bi.Mytype→ Ti}i∈I . If Bh≤Bk that means that the method
defined for m in the class Bh overrides the one defined in Bk. Since Mytype is the same in
both branches then the covariance condition reduces to prove that

{Mytype≤Bh} ⊢ Th≤Tk (10.1)

Thus as for the case of simple typing the covariance condition requires that an overriding
method returns a type smaller than or equal to the type returned by the overridden one.
Note that if a method returns a result of type Mytype then a method that overrides it has to
return Mytype too and it is not allowed to return, say, the class-name of the class in which
the method is being defined (since, by inheritance, this could be a type larger then the actual
value of Mytype), as we anticipated for the toy language.

For the problem of loss of information note that erase is translated into

270CHAPTER 10. SECOND ORDER OVERLOADING AND OBJECT-ORIENTED PROGRAMMING

erase ≡ (ΛMytype≤2DPoint.λself MyType.〈self← x = 0, y = 0〉Mytype)

which has type:

∀Mytype.{2DPoint.Mytype→ Mytype}

If an object b of type 2DColorPoint receives the message erase then this is translated into
erase[2DColorPoint](b); but since erase[2DColorPoint](b) : 2DColorPoint the loss of infor-
mation is avoided.

In this framework bounds are always basic types (more precisely class-names); thus the
∩-closure reduces to impose that if a message has type ∀X.{Bi.Ti}i∈I and there exists h, k ∈ I
such that Bh and Bk have a common subclass then there must be a method defined for the
message, in the class that is the g.l.b. of Bh and Bk. In other terms, we obtain the same
condition of multiple inheritance as in chapter 2. To pass to real object-oriented languages
the condition of meet-closure should be weakened in a way similar to the one of section 4.1.1,
i.e. we have to consider maximal elements of the set of lower bounds rather than the glb.

10.1.1 Extending classes

As in λ object method addition or redefinition are implemented by branch concatenation.
Thus for example the expression

extend 2DPoint

isOrigin = (self.x == 0) and (self.y == 0)

[[isOrigin : Bool]]

is implemented in F&
≤ by

let isOrigin = (isOrigin & ΛMytype≤2DPoint.λselfMytype.(self.x = 0) AND (self.y = 0))

10.1.2 First class messages, super and coerce

Clearly also in F&
≤ messages are first class. This is not the same for super and coerce:

On one hand in F⊤≤ we have a full control on the types the selection of a branch is based
on, since overloaded functions take as argument directly types. A trivial example is the
implementation of a super-like function: suppose that in the definition of a method you want
to send a message to self but that the method selected must be the one defined for the objects
of a certain class C. This can be obtained by the following function:

let super[C] = λm∀X{C.T}.m[C]self

This function takes a message m accepting objects of class C and send it to self but selecting
the method defined for the object of class C (of course this function is well typed if Mytype ≤
C).

On the other hand one does not have direct constructs that can be applied to an object
to change its type, but types have to be changed directly in the code. Thus it is not evident
how to translate for example coerceA(a).

10.1. OBJECT-ORIENTED PROGRAMMING 271

10.1.3 Typing rules for the toy language

Let see how this interpretation of the constructs is reflected in the type discipline for our toy
language. We do not give here, as we did for λ object, a formal translation of the language
into F&

≤ and a proof of the correctness of the type discipline: we just follow the intuition

suggested by F&
≤ , keeping the presentation very informal.

We just consider a restricted version of the toy language, without multiple dispatching
(which is dealt with in the next section) and in which messages (overloaded functions) are
not first class (thus they cannot be neither the argument nor the result of a function). We
give this restriction in order to maintain to a minimum the modifications we have to make
to the type system. We will say more about it below.

We modify the language by adding the following productions

Terms v ::= new(Mytype)

Raw Types T ::= Mytype

We do not detail the modifications to make to the definitions of the types and of the terms
in order to exclude first class messages. They are very simple and the reader can easily find
them out.

Recall that a method M defined in the class A is translated into

ΛMytype ≤ A.λselfMytype.M (10.2)

Thus we have to modify the rule of type-checking in order to take into account the new type
of self; we split the rule [Taut] (see section 5.1.2) in two rules

[TautVar] C;S; Γ ⊢ x : Γ(x) for x ∈ V ars

[TautSelf] C;S; Γ ⊢ self : Mytype

As before Γ(self) records the current class (see the rule [Class] below).

Then we must modify the rule [Write] since now the update of the internal state returns a
value of type Mytype.

[Write]
C;S; Γ ⊢ r:R

C;S; Γ ⊢ (update r): Mytype
if C ⊢ R ⋐ S(Γ(self))

We must also extend the rule [New] in order to include the case new(Mytype):Mytype.

Consider again the translation of a method given by the equation (10.2): the body M of the
method is evaluated in a tcs in which Mytype is smaller than or equal to the current class.
That is in the typing of a method we have to record that Mytype ≤ Γ(self). This constraint
is for example used to type the expressions [v message] and super[A](v) when v:Mytype.
This corresponds to transforming the rule [Class] into the following one

C;S; Γ ⊢ r:R C ′ ∪ {Mytype≤Γ(self)};S′; Γ′[self← A] ⊢ expj:Vj (j=1..m) C ′;S′; Γ′ ⊢ p : T

C;S; Γ ⊢ class A is A1,...,An r:R m1=exp1;...;mm=expm I in p : T

if A 6∈ dom(S), for i = 1..n C ⊢ R ≤strict S(Ai) and for i = 1..m Γ(mi)∪{A ; Vi} ∈C′ Types
Where C ′, S′ and Γ′ are defined as at page 150. The same modifications are required for the
rule [Extend].

Finally during the message passing we have to substitute Mytype, by the type of the receiver

272CHAPTER 10. SECOND ORDER OVERLOADING AND OBJECT-ORIENTED PROGRAMMING

[OvAppl]
C;S; Γ ⊢ exp1: {Ai → Ti}i∈I C;S; Γ ⊢ exp2:A

C;S; Γ ⊢ [exp2 exp1]:Th[Mytype: = A]
Ah = mini∈I{Ai | C ⊢ A ≤ Ai}

Note that since overloaded functions are not first class then we are sure that the type Th
does not contains overloaded types. This avoids possible name-clashes in the substitution
[Mytype: = A]. However there is no conceptual difficulty in allowing also first class overloaded
functions, but it would require us to change our notation for overloaded types, since each
overloaded type should bear a type variable along with it. Thus for example we should
redefine the definition of ∪ for the rule [Class]

∀X{A1 → T1, ..., An → Tn} ∪ {A→ T} = ∀X{A1 → T1, ..., An → Tn, A→ T [Mytype: = X]}

and the application rule would then become

[OvAppl]
C;S; Γ ⊢ exp1:∀X{Ai → Ti}i∈I C;S; Γ ⊢ exp2:A

C;S; Γ ⊢ [exp2 exp1]:Th[X: = A]
Ah = mini∈I{Ai | C ⊢ A ≤ Ai}

We end this section by the good formation of the types. First of all note that if a term of the
toy language has type

{A1 → T1, . . . , An → Tn}

this corresponds in F&
≤ to the type

∀Mytype{A1.Mytype→ T1, . . . , An.Mytype→ Tn}

Then recall the judgment (10.1) at page 269: the covariance condition must be verified under
the hypothesis that Mytype is smaller than the least bound.

Thus one has to modify the condition (b) in the definition 5.1.3 of type good formation
in the following way

(b) if C ⊢ Di ≤ Dj then C ∪ {Mytype ≤ Di} ⊢ Ti ≤ Tj
And that is all. As we have seen the introduction of polymorphism requires very few modifi-
cations, which are very sensitive once we have fixed our intuition thanks to the formal model
suggested by F&

≤ .

10.1.4 Multiple dispatch

In this chapter we have studied a very kernel calculus. A simple extension of this calculus
suffices to model multiple dispatch. The simplest extension of F&

≤ to obtain it consists in
allowing as bounds of an overloaded function products of basic types. Thus we redefine
atomic types in the following way

A ::= X | B | B × . . . ×B (atomic types [B basic types])

we modify the condition in the rule of good formation for overloaded types as follows:

10.1. OBJECT-ORIENTED PROGRAMMING 273

({ }type)

C ⊢ Ai type
C ⊢ {Ai}i=1..n ∩-closed

C ∪ {X≤Ai} ⊢ Ti type

if C ⊢ Ai ≤ Aj then C ∪ {X≤Ai} ⊢ Ti≤Tj
C ⊢ ∀X{A1.T1, . . . , An.Tn} type

X 6∈ dom(C)

B(Ai)C basic type
or Ai = B1 × ...×Bm

for i, j ∈ [1..n]

and of course we add tuples to terms:

a ::=< a, . . . , a >

There are other more general extensions: for example we can change the condition in the
good formation of overloaded types into “B(Ai)C basic type or product of atomic basic types”
allowing as bounds variables ranging on the product of basic types; or we can allow as bounds
products formed by type variables and basic types.

However the extension above largely suffices to model multi-methods, and furthermore it
is very easy to check that it enjoys all the properties we have already proved for F&

≤ (and

F&
≤) as as the generalized subject reduction or (CR): just run through the proofs by taking

into account that now proposition 9.2.5 has the following fourth case:

4. Ai and Aj are both products of basic types and their g.l.b. is in {Ai}i∈I

One example of use of multiple dispatch is the method equal : you want to extend the class
2DPoint with a method that compares two points and to redefine it for 2DColorPoint ;
furthermore you want that in comparing a 2DPoint with a 2DColorPoint the method for
2DPoint is used. In λ& we had that a function equal of type {2DPoint → 2DPoint →
Bool, 2DColorPoint → 2DColorPoint → Bool} would not have a well-formed type since
covariance is not respected. So in λ& we defined

equal : {(2DPoint× 2DPoint)→ Bool, (2DColorPoint× 2DColorPoint)→ Bool}

obtaining in this way multiple dispatching. When applied to 2DPoint and a 2DColorPoint
or viceversa it executes the first branch.

In F&
≤ the difference is subtler: indeed ∀X{2DPoint.X → X → Bool, 2DColorPoint.X →

X → Bool} is well formed. However to select the right branch you have to pass to a function
of this type the greater of the types of the two actual parameters. This is not what one would
like to have: one would like to pass to the function both the types of the arguments and leave
to the system the task to select the right branch. This can be done by using multi-methods
and defining equal with the following type:

∀X{2DPoint× 2DPoint.X → Bool, 2DColorPoint× 2DColorPoint.X → Bool}

A possible implementation of equal is then

equal≡(ΛX ≤ 2DPoint×2DPoint.
λpX .(π1(p).x = π2(p).x) ∧ (π1(p).y = π2(p).y)

& ΛX ≤ 2DColorPoint× 2DColorPoint.
λpX .(π1(p).x = π2(p).x) ∧ (π1(p).y = π2(p).y) ∧ (π1(p).c = π2(p).c)

)

274CHAPTER 10. SECOND ORDER OVERLOADING AND OBJECT-ORIENTED PROGRAMMING

10.1.5 Advanced features

F&
≤ is not the mere formal version of an object-oriented language. For many aspects it is less

powerful than object-oriented languages, but it possesses some features that existing object-
oriented languages have not. Thus one can imagine enriching an object-oriented language
by these features suggested by the model; for example one could design new object-oriented
languages that handle parametricity and overloading, in which classes (class-names) could
be passed as arguments to functions; these functions would also be able to dispatch to dif-
ferent codes according to class-name received as argument. It is possible to imagine many
applications of this blend of parametric polymorphism and explicit overloading; for example
suppose that you have to write a general installation routine for software products, working
on various machines. Suppose that you distinguish your software products between graphic
software and mathematical software, and the machines between b/w and color machines.
Then you would probably have the following classes: GraphSW, MathSW≤ Software and
Color, B&W≤ Machine and your general installation routine would have type

install : ∀(M≤Machine)∀(S≤Software)(M × S)→ . . .

The body of this routine would include some parts common to all kinds of machines and
software, and then some parts specialized according to the kinds of the parameters. This
specialization could be obtained by using functions of type:

∀X{Software×Machine. ...,
GraphSW ×B&W. ...,
GraphSW ×Color. ...,
MathSW ×B&W. ...,
MathSW × Color. ...}

10.2 Future work

In this and in the previous chapter we defined and studied F&
≤ and a variant with decidable

subtyping, and we sketched how they can be used to model object-oriented features. We
showed that they account for many features of object-oriented programming and that they
also suggest new features to add to the existing paradigms. However there are some features
that are not easily handled (e.g. the keyword super ; see for this purpose [Cas93b]).

The major restriction is that meet-closure allows overloading only on atomic types. In the
last section we showed how to weaken this condition to model multiple dispatching; though
also this definition prevents us to model the generic classes of Eiffel [Mey88]. A generic class
is a class parameterized by a type variable. For example if X is a type variable, one would like
to define a class Stack[X] with methods pop:X and push:X → (), and then obtain a stack
of integers by instantiating the type variable X in the following way: new(Stack[Int]). We
believe that it is not difficult to further weaken meet-closure to allow among the bounds of
an overloaded function, monotonic type constructors. But we are at a loss to see how to
allow non monotonic type constructors. In the same way it should be possible to extend
meet-closure to closed types and to add recursive types to implement recursive objects (even
if we think that recursive types are not strictly indispensable in this model).

10.2. FUTURE WORK 275

Meet closure constitutes an even more serious limitation from a proof-theoretical point of
view. It would be very interesting to let bounds range over all the types; this would require a
suitable definition of ∩-closure assuring consistency also for higher order bounds. Note that
the proof theory would be greatly complicated since a new level of impredicativity would be
added. However this would correspond to a major increase of the expressive power. In that
case, indeed, by a slight weakening of the β{} rule, it would be possible to obtain parametric
functions as a special case of overloaded functions with only one branch.

For what it concerns the decidable variant, there is the open problem whether the system
without subsumption satisfies the weak subject reduction property. Only in that case one
would have the formal proof that the subtyping algorithm is reliable.

Despite these problems F&
≤ is a important step forward. It gives us the basic type checking

rules to deal with the problem of the loss of information. At the moment of the writing of this
thesis we are studying the integration of generic functions (i.e. overloaded functions with late
binding) into the core of ML [MH88], in order to add object-oriented features to the languages
of this family. Also we think that F&

≤ already suffices to type languages like Dylan. Also
underway is the definition of an object-oriented database programming language, whose type
system is based on F&

≤ .

276CHAPTER 10. SECOND ORDER OVERLOADING AND OBJECT-ORIENTED PROGRAMMING

Chapter 11

Conclusion

...‘Forse tu non pensavi ch’io loico fossi’!

Dante Alighieri

Inferno; xxvii,122-123

To conclude this thesis we place our work in a more general setting, comparing it with related
work and drawing some directions for future research.

11.1 Proof Theory

In [Str67] Strachey classified the polymorphism into parametric and “ad hoc”. In this thesis
we mainly concentrated on the “ad hoc” polymorphism; this study leads to a classification
of “ad hoc” polymorphism similar to the one defined for the parametric polymorphism: in-
deed for the parametric polymorphism one introduces the further distinction between implicit
(parametric) polymorphism where the quantification on the types is an external metalinguis-
tic operation that accounts for the use of proposition schemas in the corresponding proof
theory [Hin69, Mil78], and explicit (parametric) polymorphism where the same quantifica-
tion becomes a linguistic operation and the multiplicity of instances of the schema proved by
a term is linguistically expressed by a unique syntactic type [Gir72, Rey83].

We introduce in the “ad hoc” polymorphism the same classification but with a slightly
different meaning: we say that the “ad hoc” polymorphism is implicit when the selection of
the branch is based on the type of the argument; we say that the ad hoc polymorphism is
explicit when the selection of the branch is based on the type at the argument

The use of the same words as for the parametric polymorphism is justified by the fact that
the implicit “ad hoc” polymorphism consists in a metalinguistic quantification that ranges
on the subtypes of the “input types” of the overloaded function, while in the explicit ad hoc
polymorphism this quantification is promoted to the linguistic level. To push the resemblance
even further we can consider the overloaded type {Ui → Ti}i∈I of λ& as a different notation
for the following type schema

∀α.α→ {Ui.Ti}i∈I (11.1)

277

278 CHAPTER 11. CONCLUSION

where, of course, the ∀ is a metalinguistic operator1. The meaning of this notation is that α
is a generic variable that can range over (the subtypes of) the various Ui. According to the
value α assumes, the corresponding Ti is returned. Maybe this notation is still a little obscure;
it may help the reader to use instead of the notation of the schema (11.1) the following one.

∀α ∈ {̂Ui}i∈I
.α→ ôut(α) (11.2)

where {Ui → Ti}i∈I ≡ (K, out) and {̂Ui}i∈I
and ôut are defined as in section 6.2.

Thus a λ&-term of type {Ui → Ti}i∈I is indeed a term whose set of types is formed by all
the instances of the schema (11.1). And at the moment of application a particular instance
of that schema is used

[{}Elim]
M :U → {Ui.Ti}i∈I N :U

M•N :Tj
Uj = mini∈I{Ui|U ≤ Ui}

Note that the domain of the overloaded function is the same as the type of its argument and
that by the side condition of the rule the range of the metavariable α is indeed the set of the
subtypes of the input types.

This is made explicit in the semantics by the definition of completion: there the met-
alinguistic quantification ranging over the set of the subtypes of the input types is expanded
into its instances, to be then interpreted by a product indexed on the set of the codes of the
types in its range. And indeed if we use the notation of (11.2) the rule of elimination for the
overloaded functions becomes precisely the usual [→Elim]2

[{}Elim]
M :U → ôut(U) N :U

M•N : ôut(U)
(M :∀α ∈ {̂Ui}

i∈I
.α → ôut(α))

We can thus introduce a classification of the various calculi on the base of whether they
have implicit, explicit or no “ad hoc” polymorphism, and implicit, explicit or no parametric
polymorphism. This classification introduces nine classes of languages some of which (denoted
by (1) and (2)) are empty yet as shown by the table below

polymorphism
parametric ad hoc

simply typed λ-calc. none none

λ&-calculus none implicit

(1) none explicit

ML implicit none

ML+ generic functions implicit implicit

(2) implicit explicit

System F(≤) explicit none

λ&+F(≤) explicit implicit

F&
≤ explicit explicit

1The Ti’s cannot contain α; otherwise we enter in the field of implicit parametric polymorphism
2One can equivalently use [→Elim≤] and make α to range over {Ui}i∈I instead of {̂Ui}

i∈I

11.2. OBJECT-ORIENTED PROGRAMMING 279

Note that in every calculus the two kinds of polymorphism are syntactically distinguished,
for they are implemented by different terms. Thus in the table above each column refers
to the characteristic of the corresponding pure calculus of terms (since as soon as we intro-
duce ad hoc polymorphism the system does no longer satisfy parametricity, in the sense of
Reynolds [Rey83, MR91]).

It should not surprise the reader the fact that the table above mixes calculi with and
without a subtyping relation: indeed all the calculi we have studied here use a subtyping
relation, since this implies a great increase in the expressive power. Though, this study and
this classification are valid also for languages without subtyping; to reshape them without
subtyping, it just suffices to use syntactic equality for the subtyping relation (S ≤ T⇔S ≡ T):
of course this introduces many possible simplifications in the definitions of the calculi.

We comment more in detail the various entries of this table. In this thesis we studied
first of all λ& which has implicit ad hoc polymorphism and no parametric polymorphism.
We also studied F&

≤ , which integrates the explicit forms of the two kind of polymorphism.

Very interesting, and presently under investigation, is the extension of ML by generic
functions and which we classed as characterized by the two implicit forms of polymorphism.
In this thesis we partially met it: indeed the type system of the toy language with Mytype is
an half way implicit-implicit polymorphism: it uses the implicit ad hoc polymorphism (there
is no type variable in the language) and a restricted form of implicit parametric polymorphism
(implicit parametric polymorphism is used to type the branches of an overloaded function
but not to type the λ-abstractions3). This combination of polymorphism, or even better this
half-way, seems the right mechanism to use to type object-oriented languages. We already
used it for our toy language and we are planning to use it again to define a type system for
the language Dylan [App92], or more generally for strongly-typed object-oriented database
programming languages.

We have not studied in this thesis a calculus with explicit parametric and implicit ad
hoc polymorphism, but it can be easily obtained by adding System F to λ& (or vice-versa
adding &-terms to F). Finally there are two empty classes of languages denoted in the table
by (1) and (2). However it is not very hard to imagine how a language of these classes can
be defined: for (1) just take the BNF definition of the terms of F&

≤ at page 240 and erase
the productions of the second line. At type level this correspond to erase the parametric
quantification which implies for ∀X{Ai → Ti} that the variable X cannot appear free in
the Ti’s (as a matter of fact it cannot appear free anywhere). To obtain a language for the
class (2) just take the language of the class (1) above and add implicit polymorphism on the
λ-terms. The problem with these last three languages is that they do not seem to have any
practical motivation or justification.

11.2 Object-oriented programming

In 1984 Cardelli defined the so called “objects as records” analogy (see [Car88]). According
to it an object can be modeled by a record whose fields contain the methods defined for that
object. Message passing is then reduced to field selection. On the base of that intuition

3This corresponds to have in the type schema (11.1) above some free occurrences of α in the Ti’s, which
are obtained by using the ML typing technique in the typing of the branches.

280 CHAPTER 11. CONCLUSION

a lot of work has been done and new areas of research opened (see [CW85, CL91a, CG92,
CMMS91, CM91, Rém89, BL90, Wan91, CCH+89, CP89]). This work has culminated in the
proposal of some powerful models such as those in [PT93] and [Bru92].

In this thesis we took a different attitude, taking as basic construction overloading with
late binding rather than record types. The resulting model is rather different from the record
based ones: it is completely orthogonal to the two models above even if somewhat closer to
the one of [PT93], where the internal state of an object is neatly separated from its methods.

Bruce’s work strongly relies on the use of recursion both in types (to define methods that
return a value of the same type of the object the method belongs to) and in terms (to define
the self-reference in a method to its own object and its superobjects). The internal state
encapsulation is implemented by an existential quantification on the instance variables that
are then passed as an argument to the methods. If a method “modifies” the internal state,
then it returns a new object of the same type of the object it belongs to, whence the use of
recursive types.

In [PT93], Pierce and Turner further stress the role of encapsulation by giving a different
encoding of object-oriented programming: again they existentially quantify the internal state
but the methods which modify the internal state return a new state rather than a new object.
This state is then packed into an object externally to the method definition. In this way they
avoid the use of recursive types and give a very neat and simple model of object-oriented
programming.

Both approaches accent the encapsulation offered by object-oriented programming in
virtue of the tight relation between an object and its methods. In the overloading approach
we focus more on the flexibility made available by the run-time dispatching of methods and,
as we said, we obtain a model orthogonal to the record-based one. This orthogonality is
shown by the fact that some mechanisms of OOP are easily accounted for in one model and
nearly impossible in the other and vice versa. Such a difference of behavior leads to the
conclusion that the two models yield two different styles of object-oriented programming.
Surely, object-oriented paradigms based on the generic functions (such as CLOS) fit very
well the overloading model. But also, in the record model everything seems to be delegated
to objects while in overloading the leading role is played by the classes. Thus it seems that
the overloading-based model is closer to class-based languages (like Smalltalk: [GR83]) where
methods are defined for classes and a modification on a class is reflected to existing objects.
And on the contrary the record-based model looks closer to delegation-based languages (like
the first version of Modula-3: [CDG+89]), where methods are peculiar to an object and may
differ in objects of the same class and where classes are not strictly necessary and play the
role of object generators.

Even if overloading draws an orthogonal model with respect to the record-based one, its
study is very useful also to understand the “object as record analogy” (at least we found it
very useful). For example one of the most important contributions of the model is to clarify
the roles of covariance and contravariance: contravariance is the right rule when you want
to substitute a function of a given type by another one of a different type; covariance is
the right rule when you want to specialize a branch of an overloaded function by one with
a smaller input type. It is important to notice that, in this case, the new branch does not
substitute the old branch but rather it masks it to the objects of some given classes. Indeed

11.2. OBJECT-ORIENTED PROGRAMMING 281

our formalization shows that the issue of “contravariance vs. covariance” was a false problem
caused by the confusion of two mechanisms that have very few in common : substitutivety
and overriding. The substitutivety establishes when an expression of a given type S can
be use in the place of an expression of a different type T . This information is used by the
application: let f be a function of type T → U , we want to singularize a category of types
whose values can be passed as arguments to f ; it must be noted that these arguments will
substitute in the body of the function, the formal parameter of type T . To this end we define
a subtyping relation such that f accepts every argument of type S smaller than T . Therefore
the category at issue is the set of the subtypes of T . When T is T1 → T2 then it may happen
that in the body of f the formal parameter is applied to an expression of type T1; hence we
deduce two facts: the actual parameter must be a function too (thus if S ≤ T1 → T2 then
S has the shape S1 → S2), and furthermore it must be a function to which we can pass an
argument of type T1 (thus T1 ≤ S1, yes! . . . contravariance). It is clear that if one is not
interested in passing functions as arguments then there is no reason to define the subtyping
relation also for the arrows (this is the reason why O2 [BDe92] works very well even without
contravariance). Overriding is a totally different feature: we have an identifier m (in the
circumstances, a message) which identifies, say, two functions f : A → C and g : B → D
with A and B incomparable; this identifier can be applied to an expression e; the meaning
of this application is the passage of e to f if e has a type smaller than A (in the sense of the
substitutivety explained above), to g if it has type smaller than B. Suppose now that B ≤ A;
the application in this case is solved by selecting f if the type of e is included between A and
B, g if the type is smaller than or equal to B; but there is a further problem: the types may
decrease during the computation; thus it may happen that the type checker see e of type
A and infers that m applied to e has type C (f is selected); but if during the computation
the type of e decreases to B, the application has type D; thus D must be a type that can
substitute C (in the sense of the substitutivety above), i.e. D ≤ C. You can call it covariance,
if you like, but it must be clear that it is not a subtyping rule: g does not substitute f since
g will be never applied to arguments of type A; g and f are independent functions which
perform two precise and different tasks: f handle the arguments of m whose type is included
between A and B, g those arguments whose type is smaller than or equal to B. In this case
we are not defining the substitutivety, but we are giving a formation rule for sets of functions
in order to assure the type consistency of the computation.

But maybe all these arguments are still too abstract for the object-oriented practitioners.
Thus let us write it in “plain” object-oriented terms: a message may have some parameters;
the type (class) of each parameter may or may not be taken into account to select the right
method; if a method for that message is overridden then the parameters that are taken into
account for the selection must be covariantly overridden (i.e. the corresponding parameters
in the overriding method must have a lesser type) and those which are not taken into account
for the selection must be contravariantly overridden (i.e. the corresponding parameters in the
overriding method must have a greater type). In the record-based models no argument is
taken into account to select the method: the method is uniquely determined by the record
you apply the dot selection to. Thus in these models you can have only contravariance (yes,
we the type theorists, we were sure about it, but ...).

To be more precise, the record-based model does possess a very limited form of covariance

282 CHAPTER 11. CONCLUSION

but it is hidden by the encoding of the objects: consider a label ℓ; by the subtyping rule for
record types, if you “send” this label to two records of type S and T with S ≤ T then the
result returned by the record of type S must have a type smaller than or equal to the type of
the one returned by T . This exactly corresponds to the covariance rule, but its form is much
more limited because it applies but to the record types (since we “send” a label), and not to
products (i.e. multiple dispatch) nor to arrows.

Among the works that closely resemble the one contained in this thesis we have to recall
the already cited thesis of Hideki Tsuiki [Tsu92], in which overloading and late binding are
used to model object-oriented languages. Though, the basic mechanism of the various calculi
there, is a parallel reduction: the argument of an overloaded function is applied in parallel to
all the branches that have a compatible input type. This requires the further condition that
the result of all these branches must be the same. Thus what it is modeled is just coherent
overloading and it is not enough to model full object-oriented programming4.

Finally very recently (when the draft version of this thesis was already written) we dis-
covered O2 [BDe92]. O2 is an object-oriented data model for databases. The bases of this
model are set in [ABW+92], where the basic mechanisms are individuated in overloading
and late binding. The model is typed, and it resembles the one of λ& (the data description
language is quite similar to our toy language). However we guess that its conception was not
type-theoretically driven. Indeed its type systems (see [KLR92]) has some flaws (structural
subtyping is used for comparing instance variable which yields some possible run-time type
errors in case of methods updating the internal states: cf page 81 of this thesis), only the
objects are first class values and it suffers with the problem of loss of information.

11.2.1 Inheritance

With respect to the formalism based on records the overloading-based model lacks some
features. For example this thesis does not account for pure inheritance without subtyping.
Let us recall the problem we already introduced in section 1.1.5. In object-oriented languages
there are two distinct hierarchies on types called subtyping and inheritance. Subtyping
concerns the computation on the values and establish when the values of a given type can
be used where values of another type are required. Inheritance concerns the definition of the
operations for the values of a certain type and establish when the values of a given type can
use some operations originally defined for another type.

According to this definition subtyping implies inheritance, since when the values of a
certain type can substitute those of another type then they can also use some (indeed all)
operations defined for that type. Though the reverse implication does not hold, since in some
cases you can have code reuse but not substitutivity. One example of this is the method
copy: suppose we have defined the following class

class C

{...}

copy = self

[[copy: Mytype]]

4This correspond to requiring that an overriding method and the overridden one return the same result for
equal arguments.

11.2. OBJECT-ORIENTED PROGRAMMING 283

Clearly the code of copy can be reused by every class, but this does not imply that every
class can be a subtype of C. If you have just subtyping and you want to define a new class C’
completely different from C but with a copy method you have to redefine a method for copy
in C’. With inheritance instead one can specify that C’ inherits the (code of the) methods of
C; a possible syntax is

class C’ is ... inherits from C

{...}

:

:

This can be probably obtained in F&
≤ by allowing union types to appear as bounds of

overloaded types. For example the method copy above could be modeled by

copy ≡ (ε&ΛMytype ≤ C ∪ C ′.λselfMytype.self) : ∀Mytype{C ∪ C ′.Mytype→ Mytype}

The type above indicates that the branch is shared between C and C ′. This branch will be
selected whenever one of these two types is the selected input type. Thus the branch must
be tested separately for each type, i.e.

X≤C ⊢ a:T X≤C ′ ⊢ a:T

⊢ ΛX≤C ∪ C ′.a:∀(X≤C ∪ C ′)T

Therefore the ∪ represents more an exclusive or than an union. Note that inheritance here is
a mechanism local to the particular operation whose code must be shared; this does not imply
the sharing for all the operations defined on the concerned types. Thus in our formalism we
can introduce a new and partial form of inheritance according to which a type inherits only
some operations of another type. For example one may want that C’ inherits from C only
the method copy. In our toy language this could be expressed by the following syntax

class C’ is ...

{...}

copy = inherited from C

[[...]]

In this case the implementation of copy in F&
≤ persists unchanged; note that such an oper-

ation would be impossible in the record based model where all the methods of a class must
be inherited5.

This new view of the inheritance mechanism suggests another possible improvement w.r.t.
the record-based model. In section 1.1.5 we said that in object-oriented programming inheri-
tance is a relation defined only on classes (i.e. atomic types). Now, there is no apparent reason
to restrict unions in the bounds only to atomic types. For example in F&

≤ we could also allow
bounds formed by unions of products of atomic types, obtaining in this way inheritance also
for multi-methods. But even more general unions are worth to be studied.

In conclusion we think that the extension by union types in the bounds may be worth
to be studied in view of the connection shown above with the mechanism of inheritance.
However this study was not among the objectives of this thesis for mainly two reasons:

5At least it would be impossible in an incremental way: we would surely loose the late binding

284 CHAPTER 11. CONCLUSION

1. Covariance, and thus multiple dispatching already solves many cases that in the record
based approach requires the use of pure inheritance

2. We strongly suspect that for this model a clever compiler and type checker could check
inheritance as well (adding some fake branches implemented by code sharing), without
using union types or other fancy type disciplines.

11.2.2 Higher-order bounds

We already explained in the conclusion of chapter 10 (see section 10.2) that another lack of
F&
≤ was the impossibility of model generic classes. These on the contrary are very naturally

handled in the record based formalisms. Though this lack is not peculiar to model of over-
loading but it is due only to the fact that we were not able to deal with overloaded functions
whose bounds range over any type. We want to tackle this problem in the immediate future,
trying to introduce intersection types to define a ∩-closure property for general types.

11.2.3 Beyond object-oriented programming

Since the very beginning of this thesis we affirmed that the combination of overloading and
late binding permits a high degree of incremental programming and of code reuse. Such
characteristics are not and must not be exclusive to object-oriented programming. Thus it is
very interesting to try to export them to other paradigms by the integration of overloading
and late binding. At the moment of the writing of this thesis we have already begun to
apply these mechanism to the languages of modules; in particular the study of the module
system of SML with overloaded functors that use late binding is under way. However it seems
that there is no limit to their application and thus we plan to extend these techniques to
completely different paradigms such as concurrent systems or logic programming.

twenty-five twenty-zzzz.. ..six!..

Part III

Appendixes

285

Appendix A

Implementation of λ object

In this appendix we present an interpreter of λ object written in Caml Light 0.5. The text
of the program has been formatted by the program tgrind running under UNIX and the
macro package tgrindmac.tex a patched by the author. Part of the code of the interpreter
has been produced in the context of a project developed under the author’s direction by
Jean-Christophe Filliatre and François Pottier at the Ecole Normale Supérieure.

The structure of the program is quite classical:

Lexer

Tokens

?

Parser

Syntax
Tree

?

Type-checker
Evaluator

Syntax
Tree

?

Pretty Printer

The input is passed to a lexer, which generates a list of tokens. This is processed by the
parser which returns the syntax tree corresponding to the term. The syntax tree is first
type checked and then evaluated by the evaluator which applies the rules of the operational
semantics. The result is the syntax tree of the term obtained after the rewriting. The syntax
trees of the type and of the term are finally passed to a pretty printer which prints them in
a readable form. The pretty printer is also used by the other parts of the program to print
errors.

287

288 APPENDIX A. IMPLEMENTATION OF λ OBJECT

A.1 The language

The language implemented is λ object without product types, to which we have added:

1. natural numbers (1, 2, 3... of type int) with the operators succ (successor), pred

(predecessor) and eqz (zero equality).

2. booleans (true and false of type) with the polymorphic operator ite (of type schema
∀α.(bool×α× α)→ α)

3. A special value ? of type *

4. A substitution operation denoted by [] (the expression [x:T = M] N is a different
syntax for let x:T = M in N

Lambda abstractions are denoted by \, the fixpoint operator by fix and the empty over-
loaded function ε by @. We make no syntactic distinction between usual application and
overloaded one. Every program must end by a semi-colon. The parser is described by the
rules in figure A.1 where identifiers are denoted by the non terminal x. From the productions
one can deduce the rules for associativity and precedence: application is left associative, ar-
rows and & are right associative, application has the highest precedence, then follow in the
order λ-abstractions and &-abstractions. For example the following expression:

@ &{int->int} \x:int.x&{int->int, (int->int->int)->int}\x:int->int->int.x 3 5

is parsed as:

((ε &{int→int}λxint.x)&{int→int,(int→(int→int))→int}(λxint→(int→int).((x)3)5))

The module lambdaobject.zo exports the following functions:

ParseString : string -> terme

ParseFile : string -> terme

TypeString : string -> unit

TypeFile : string -> unit

CalcString : string -> unit

CalcFile : string -> unit

InternalCalcString : string -> unit

InternalCalcFile : string -> unit

These functions return respectively the syntax tree, the type, the type and the result of a
program which can be contained either in a string or in a file (InternalCalc evaluates also
inside λ-terms and &-terms).

We show its use by a short terminal session: first we open the module lambdaobject.zo

#load_object "lambdaobject";;

- : unit = ()

##open "lambdaobject";;

We then perform some simple commands (in Caml Light the reverse slash in strings
must be written \\)

A.1. THE LANGUAGE 289

Non Terminal Name used in the program

A ::= * | int | bool | x

T ::= {L}W | A W | (T)W Pretype

W ::= -> T | emptyword rest

L ::= x -> T L | , x -> T L | emptyword ListTypes

E ::= FR’ | [x:T = E] Expression

R’ ::= &{L} FR’ | emptyword rest

F ::= SR” Factor

R” ::= SR” | emptyword restTwo

S ::= ? | succ | pred | eqz SmallExpression
| x | @ | \x:T.F | fix x:T.F
| true | false | ite(E,E,E)

| coerce[A](E) | super[A](E)

| in[A](E) | out[A](E)

| (E) | 1 | 2 | 3 | . . .

P ::= let x X | E ; Program

X ::= < A,. . . , A in P suite
| hide T in P

Figure A.1: Parsing rules

290 APPENDIX A. IMPLEMENTATION OF λ OBJECT

#ParseString "\\x:int.x;";;

- : terme = Expression (Lambda ("x", Int, Var "x"))

#CalcString "(\\x:int->int. x 5)pred;";;

- : int

4

- : unit = ()

#CalcString "(\\x:int->bool.true)5;";;

Erreur : [type-checker] Impossible d’appliquer (int -> bool) -> bool a int

dans (\x:(int -> bool).true) 5

- : unit = ()

For more complex expressions it is more convenient to use a file. Suppose that the file
example contains the following program:

let X hide * in

let Y hide * in

let Z hide * in

let TwoPoint hide {X->int, Y->int} in

let ThrPoint hide {X->int, Y->int , Z->int} in

let ThrPoint < TwoPoint in

[plus: int -> int -> int =

(fix p: int -> int -> int . \x:int. \y:int. ite(eqz x, y, succ(p (pred x) y)))]

[mult: int -> int -> int =

(fix m: int -> int -> int . \x:int.\y:int. ite(eqz x, 0 , plus y (m (pred x) y)))]

[square: int -> int = \x:int. mult x x]

[getx: X = in[X](?)]

[gety: Y = in[Y](?)]

[getz: Z = in[Z](?)]

[norm: {TwoPoint -> int , ThrPoint -> int}=

(@ &{TwoPoint -> int}

\self:TwoPoint.plus (square ((out[TwoPoint](self))(getx)))

(square ((out[TwoPoint](self))(gety)))

&{TwoPoint -> int , ThrPoint -> int}

\self:ThrPoint. plus(square ((out[ThrPoint](self))(getx)))

(plus(square ((out[ThrPoint](self))(gety)))

(square ((out[ThrPoint](self))(getz)))))]

[sameclass: TwoPoint -> TwoPoint -> bool =

\p: TwoPoint. \q: TwoPoint .

(@&{TwoPoint -> bool}

\p:TwoPoint.(@ &{TwoPoint ->bool}\q:TwoPoint.true

&{TwoPoint ->bool,ThrPoint ->bool}\q:ThrPoint.false)q

&{TwoPoint -> bool, ThrPoint -> bool}

\p:ThrPoint.(@ &{TwoPoint ->bool}\q:TwoPoint.false

&{TwoPoint ->bool,ThrPoint ->bool}\q:ThrPoint.true)q)p]

A.2. THE MODULE 291

[newTwoPoint:int -> int -> TwoPoint =

\x:int. \y: int.

in[TwoPoint](@&{X-> int}\l:X.x

&{X -> int,Y-> int}\l:Y.y)]

[newThrPoint:int -> int -> int -> ThrPoint =

\x:int. \y: int. \z:int.

in[ThrPoint](@&{X-> int}\l:X.x

&{X -> int,Y-> int}\l:Y.y

&{X -> int,Y -> int,Z-> int}\l:Z.z)]

[p:ThrPoint = (newThrPoint 3 5 2)]

[q:TwoPoint = (newTwoPoint 5 2)]

ite(sameclass p q , 0, plus (norm (coerce[TwoPoint](p))) (norm p));

In this program we have defined the class TwoPoint with instances variables x,y of type
int and its subclass ThrPoint with instance variables x,y,z of type int. For these classes we
have defined the method norm. We have also a function sameclass:TwoPoint -> TwoPoint

-> bool which checks whether its arguments have the same class.

We then define two objects

[p:TwoPoint = (newThrPoint 3 5 2)]

[q:TwoPoint = (newTwoPoint 5 2)]

Note that even if p is declared to be an object of class TwoPoint it indeed contains an ob-
ject of class ThrPoint. This is recognized by the function sameclass thanks to late binding;
indeed ite(sameclass p q , 0, plus (norm (coerce[TwoPoint](p))) (norm p)) exe-
cutes the “else” branch:

#CalcFile "file.3";;

- : int

72

- : unit = ()

A.2 The module

Here it follows the commented (in french) listing of the module lambdaobject.ml and of its
interface labdaobject.mli. The sources of the module, of its interface and the file example

can be retrieved by anonymous ftp from

theory.stanford.edu:/pub/castagna/LAMBDAOBJ/

The source and the documentation of Caml Light can be retrieved by anonymous ftp from

ftp.inria.fr:/INRIA/Projects/cristal/caml-light/

292 APPENDIX A. IMPLEMENTATION OF λ OBJECT(� �)(� �)(� LEXER �)(� �)(� �)type token = LAMBDA j FIX j COLON j DOT j AMPERSEND j EPSILONj LPAR j RPAR j IN j OUT j COERCE j SUPER j LETj SMALLER j HIDE j EQUAL j IDENT of string j ARROWj LBRACK j RBRACK j COMMA j INT j VAL of int j SUCCj PRED j EQZ j BOOL j TRUE j FALSE j ITE j SEMICj STAR j QUEST j LBR j RBR;;(� Elimine les espaces et les retours chariot �)let rec spaces = function[< '` ` j `nt` j `nn`; spaces >] �> ()j [< >] �> ();;let int of digit =function `0`..`9` as c �> (int of char c)�(int of char `0`)j �> failwith "Not a Digit";;let rec integer n = function[< ' `0`..`9` as c; (integer (10�n+int of digit c)) r>] �> rj [<>] �> VAL n;;(� Reconnait les identi�cateurs et les mots reserves �)let ident buf = make string 20 ` `;;let rec ident len = function[< '(`a`..`z` j `A`..`Z`) as c;(if len >= 20 then ident lenelse (set nth char ident buf len c; ident (succ len))) s >] �> sj [< >] �> (match sub string ident buf 0 len with"in" �> INj "out" �> OUTj "coerce" �> COERCEj "super" �> SUPERj "fix" �> FIXj "let" �> LETj "hide" �> HIDEj "bool" �> BOOLj "int" �> INTj "ite" �> ITEj "true" �> TRUEj "false" �> FALSEj "succ" �> SUCCj "pred" �> PREDj "eqz" �> EQZj s �> IDENT s);;

A.2. THE MODULE 293(� Analyseur lexical �)let rec lexer str = spaces str;match str with[< '` `j`nt`j`nn`; spaces >] �> [< lexer str>]j [< '`(`; spaces >] �> [< 'LPAR; lexer str >] (� Reconnaissance des divers tokens �)j [< '`)`; spaces >] �> [< 'RPAR; lexer str >]j [< '`[`; spaces >] �> [< 'LBR; lexer str >]j [< '`]`; spaces >] �> [< 'RBR; lexer str >]j [< '`nn`; spaces >] �> [< 'LAMBDA; lexer str >]j [< '`.`; spaces >] �> [< 'DOT; lexer str >]j [<'`�`; '`>`; spaces >] �> [< 'ARROW; lexer str >]j [< '`>; spaces >] �> [< 'QUEST; lexer str >]j [< '`�`; spaces >] �> [< 'STAR; lexer str >]j [< '`=`; spaces >] �> [< 'EQUAL; lexer str >]j [< '`&`; spaces >] �> [< 'AMPERSEND; lexer str >]j [< '`@`; spaces >] �> [< 'EPSILON; lexer str >]j [< '`<`; spaces >] �> [< 'SMALLER; lexer str >]j [< '`f`; spaces >] �> [< 'LBRACK; lexer str >]j [< '`g`; spaces >] �> [< 'RBRACK; lexer str >]j [< '`,`; spaces >] �> [< 'COMMA; lexer str >]j [< '`:`; spaces >] �> [< 'COLON; lexer str >]j [<' `0`..`9` as c; (integer (int of digit c)) tok; spaces >]�> [<'tok; lexer str >]j [< '(`a`..`z` j `A`..`Z`) as c; (set nth char ident buf 0 c; ident 1) tok; spaces >]�> [< 'tok; lexer str >]j [< '`;` >] �> [< 'SEMIC >]j [< 't >] �> failwith ("Erreur lexicale : le caractere "^(make string 1 t)^" est illegal.")j [< >] �> failwith "Point-virgule attendu.";;(� �)(� �)(� PARSER �)(� �)(� �)typepretype = Bool j Star j Int j Atom of atomictypej Arrow of pretype�pretypej Method of (atomictype�pretype) listandatomictype == string;;typeexpression = Var of stringj Questj Const of boolj Val of intj Succj Predj Eqz

294 APPENDIX A. IMPLEMENTATION OF λ OBJECTj Lambda of string�pretype�expressionj Fix of string�pretype�expressionj Ite of expression�expression�expressionj App of expression�expressionj Epsilonj Ampersend of expression�((atomictype�pretype) list)�expressionj Coerce of atomictype�expressionj Super of atomictype�expressionj In of atomictype�expressionj Out of atomictype�expressionandterme = Expression of expressionj Subtyping of atomictype�(atomictype list)�termej Declaration of atomictype�pretype�terme;;(� Quelques sous�fonctions destinees a attraper les exceptions �)let rec printToken n s = if n = 0 then "" else let char = (match s with[< 'LAMBDA >] �> "\\"j [< 'COLON >] �> ":"j [< 'DOT >] �> "."j [< 'AMPERSEND >] �> "&"j [< 'EPSILON >] �> "@"j [< 'LPAR >] �> "(" (� Imprime n tokens du stream s �)j [< 'RPAR >] �> ") "j [< 'IN >] �> "in "j [< 'OUT >] �> "out "j [< 'COERCE >] �> "coerce "j [< 'SUPER >] �> "super "j [< 'LET >] �> "let "j [< 'EQUAL >] �> "= "j [< 'FIX >] �> "fix "j [< 'SMALLER >] �> "< "j [< 'HIDE >] �> "hide "j [< 'IDENT a >] �> a^" "j [< 'ARROW >] �> "-> "j [< 'LBRACK >] �> "{"j [< 'RBRACK >] �> "} "j [< 'COMMA >] �> ", "j [< 'BOOL >] �> "bool "j [< 'INT >] �> "int "j [< 'SEMIC>] �> ";"j [< 'STAR >] �> "* "j [< 'QUEST >] �> "? "j [< 'PRED >] �> "pred "j [< 'SUCC >] �> "succ "j [< 'EQZ >] �> "eqz "j [< 'TRUE >] �> "true "j [< 'FALSE >] �> "false "j [< 'ITE >] �> "ite"j [< >] �> "") in if char = "" then "" else char^(printToken (n�1) s);;let aulieu s = " au lieu de '" ^ (printToken 8 s) ^ "...'.";;

A.2. THE MODULE 295(� Veri�e la presence d'un IDENT dans s �)let ifIDENT s = match s with[< 'IDENT A >] �> Aj [< >] �> failwith ("Identificateur attendu"^(aulieu s));;(� Veri�e la presence du token t �)let ifToken t s =let error debut t =failwith ((match t withIN �> "in"j LBRACK �> "{"j LBR �> "["j COLON �> ":"j SEMIC �> ";"j EQUAL �> "="j DOT �> "."j COMMA �> ","j RPAR �> ")"j ARROW �> "->"j RBRACK �> "}"j RBR �> "]"j �> failwith "Impossible!")^" attendu"^(aulieu [< debut; s >]))in match s with[< 'u >] �> if u = t then () else error [< 'u >] tj [< >] �> error [< >] t;;(� Reconnaissace des types �)exception InvalidPretype;;let rec parseListeTypes s = match s with[< 'IDENT nom; (ifToken ARROW) ; parsePretype t; parseListeTypes l >]�> (nom, t)::lj [< 'COMMA; ifIDENT nom; (ifToken ARROW) ; parsePretype t; parseListeTypes l >]�> (nom, t)::lj [< '(STAR j BOOL j INT) ;(ifToken ARROW) ; parsePretype t; parseListeTypes l >]�> failwith "Le dispatching n'est pas permis sur les types predefinis"j [< >] �> []andrest t1 = function[< 'ARROW; parsePretype t2 >] �> Arrow (t1, t2)j [< >] �> t1andparsePretype s = match s with[< 'LBRACK; parseListeTypes l; (ifToken RBRACK) ; (rest (Method l)) t >] �> tj [< 'STAR; (rest Star) t >] �> tj [< 'BOOL; (rest Bool) t >] �> tj [< 'INT; (rest Int) t >] �> tj [< 'IDENT atomtyp; (rest (Atom atomtyp)) t >] �> tj [< 'LPAR; parsePretype t; (ifToken RPAR) ; (rest t) u >] �> uj [< >] �> raise InvalidPretype;;

296 APPENDIX A. IMPLEMENTATION OF λ OBJECT(� Les fonctions �nd� rattrapent les exceptions generees par les fonctions ci�dessus �)let �ndListeTypes s = try parseListeTypes swith InvalidPretype �> failwith ("Pretype attendu"^(aulieu s));;let �ndpretype s = try parsePretype swith InvalidPretype �> failwith ("Pretype attendu"^(aulieu s));;(� Suit le parser pour les expressions. Il comprend plusieurs sous�fonctions :� parseProgram est charge d'evaluer un terme. Si il trouve "let A ...", il distingue (grace a lasous�fonction suite) les constructions "let A hide ..." et "let A < A1, ... An in ...". Si leterme ne commence pas par "let", il s'agit d'une expression.� parseSmallExpression evalue une expression simple (i.e. qui soit d'un seul morceau, donc n'etantpas formee d'une application ou d'un ampersend. La fonction rest relie les expressions calculeespar parseSmallExpression pour former les applications et les ampersends. Elle realise un parenthesageimplicite a gauche : "f x y" est interprete comme "(f x) y".E �> F R' ExpressionR' �> &f g F R' j emptyword restF �> S R" FactorR" �> S R" j emptyword restTwoS �> (E) j nx:T.F j SmallExpression �)let isempty s = try (end of stream s); true with Parse failure �> false;;(� Analyse une clause "let a < b, c, ... " �)let renvoieListeAtomes s =let rec itere = function[< 'IDENT nom; itere l >] �> (nom::l)j [< 'COMMA; ifIDENT nom; itere l >] �> (nom::l)j [< >] �> []in let l = itere sin if l = [] then failwith ("Type atomique attendu"^(aulieu s)) else l;;let rec parseProgram s =let suite A = function[< 'SMALLER; renvoieListeAtomes l; (ifToken IN) ; parseProgram p >] �> Subtyping (A, l, p)j [< 'HIDE; �ndpretype T; (ifToken IN) ; parseProgram p >] �> Declaration (A, T, p)j [< >] �> failwith ("'<' ou 'HIDE' attendu"^(aulieu s))in match s with[< 'LET; ifIDENT A; (suite A) s >] �> sj [< parseExpression M; (ifToken SEMIC) >] �> Expression Mand parseExpression s =let rec rest e1 s = match s with[< 'AMPERSEND; (ifToken LBRACK) ; �ndListeTypes l;(ifToken RBRACK) ; parseFactor e2; (rest (Ampersend (e1, l, e2))) u >] �> uj [< >] �> e1in match s with[< 'LBR; ifIDENT x; (ifToken COLON) ; �ndpretype T; (ifToken EQUAL) ; parseExpression M; (ifToken RBR) ; parseExpression N >] �> App(Lambda(x, T, N), M)j [< parseFactor e0; (rest e0) u >] �> uj [< >] �> failwith ("Expression attendue"^(aulieu s))

A.2. THE MODULE 297and parseFactor s =let rec restTwo e1 s = match s with[< parseSmallExpression e2; (restTwo (App(e1, e2))) u >] �> uj [< >] �> e1in match s with [< parseSmallExpression e0; (restTwo e0) u >] �> uj [< >] �> failwith ("Expression attendue"^(aulieu s))and parseSmallExpression s = match s with[< 'QUEST >] �> Questj [< 'TRUE >] �> Const truej [< 'FALSE >] �> Const falsej [< 'SUCC >] �> Succj [< 'PRED >] �> Predj [< 'EQZ >] �> Eqzj [< 'VAL n >] �> Val nj [< 'IDENT x >] �> Var xj [< 'LAMBDA; ifIDENT x; (ifToken COLON) ; �ndpretype T; (ifToken DOT) ; parseFactor M >]�> Lambda (x, T, M)j [< 'FIX; ifIDENT x; (ifToken COLON) ; �ndpretype T; (ifToken DOT) ; parseExpression M >]�> Fix (x, T, M)j [< 'ITE; (ifToken LPAR) ; parseExpression e1; (ifToken COMMA) ; parseExpression e2; (ifToken COMMA) ; parseExpression e3; (ifToken RPAR) >] �> Ite(e1,e2,e3)j [< 'EPSILON >] �> Epsilonj [< 'COERCE; (ifToken LBR) ; ifIDENT A; (ifToken RBR) ;(ifToken LPAR) ; parseExpression M ; (ifToken RPAR) >] �> Coerce (A, M)j [< 'SUPER; (ifToken LBR) ; ifIDENT A; (ifToken RBR) ;(ifToken LPAR) ; parseExpression M ; (ifToken RPAR) >] �> Super (A, M)j [< 'IN; (ifToken LBR) ; ifIDENT A; (ifToken RBR) ;(ifToken LPAR) ; parseExpression M ; (ifToken RPAR) >] �> In (A, M)j [< 'OUT; (ifToken LBR) ; ifIDENT A; (ifToken RBR) ;(ifToken LPAR) ; parseExpression M ; (ifToken RPAR) >] �> Out (A, M)j [< 'LPAR; parseExpression M; (ifToken RPAR) >] �> Mj [< '(COLON j DOT j LET j SMALLER j HIDE j ARROW jLBRACK j RBRACK j BOOL j EQUAL j STAR) as bidule >]�> failwith ("'" ^ (printToken 8 [< 'bidule; s >]) ^ "...' n'est pas une expression!");;(� �)(� �)(� PRETTY PRINTER �)(� �)(� �)(� La fonction imprime renvoie une chaine representant un pretype �)let rec imprime = functionBool �> "bool"j Star �> "*"j Int �> "int"j Atom a �> aj Arrow (t, u) �> "("^(imprime t)^" -> "^(imprime u)^")"j Method l �> "{"^(imprimeListe l)^"}"and imprimeListe = function(a, t)::l �> (imprime (Arrow(Atom a, t)))^(if l = [] then "" else ", "^(imprimeListe l))j [] �> "";;

298 APPENDIX A. IMPLEMENTATION OF λ OBJECTlet rec exprToString = functionVar x �> xj Val n �> (string of int n)j Const t �> if t then "true" else "false"j Eqz �> "eqz"j Pred �> "pred"j Succ �> "succ"j Quest �> "?"j Fix (s, t, e) �> "fix "^s^":"^(imprime t)^"."^(exprToString e)j Lambda (s, t, e) �> "\\"^s^":"^(imprime t)^"."^(exprToString e)j App (e, f) �> "("^(exprToString e)^") "^(exprToString f)j Epsilon �> "@"j Ampersend (e, l, f) �> "("^(exprToString e)^" &{"^(imprimeListe l)^"} "^(exprToString f)^")"j Coerce (A, e) �> "coerce["^A^"]("^(exprToString e)^")"j Super (A, e) �> "super["^A^"]("^(exprToString e)^")"j In (A, e) �> "in["^A^"]("^(exprToString e)^")"j Out (A, e) �> "out["^A^"]("^(exprToString e)^")"j Ite (e1,e2,e3) �> "ite("^(exprToString e1)^","^(exprToString e2)^","^(exprToString e3)^")";;let prettyprint s = print string ((exprToString s)^"\n");;(� �)(� �)(� TYPE CHECKER �)(� �)(� �)(� Renvoie la classe d'un objet a�n de pouvoir appliquer une fonction surchargee �)let getTag = functionIn (a,) �> aj Coerce (a,) �> aj Super (a,) �> aj �> failwith "Ceci n'est pas un objet.";;(� La fonction smaller compare deux types atomiques. Elle tire ses renseignements de la structure hier(hierarchie), qui est de type (atomictype�(atomictype list)) list : a chaque type atomique elle associela liste de ceux qui sont plus grands que lui.�)let smaller hier A B = (A = B) or (mem B (try assoc A hier with Not found �> []));;(� La fonction �ndMin extrait d'une liste de types atomiques le type le moins general qui soit plusgeneral que D. En fait ici liste est une (atomictype�pretype) list, mais on oublie le pretype qui nenous sert a rien. La fonction �ndGreater ne conserve dans la liste que les types plus generaux que D.La fonction search en extrait le minimum. Une exception est produite si celui�ci n'existe pas. �)let rec �ndMin hier liste D =let rec �ndGreater = functionA::l �> (if (smaller hier D A) then [A] else [])@(�ndGreater l)j [] �> []

A.2. THE MODULE 299and search curMin = functionA::l �> if (smaller hier A curMin) then search A lelse search curMin lj [] �> curMininmatch �ndGreater (map (fun (a, t) �> a) liste) withA::l �> search A lj [] �> failwith ("Cette methode ne peut s'appliquer au type "^D^".");;(� Suivent quelques fonctions auxiliaires ... �)(� Renvoie le dernier element d'une liste �)let dernier l = match (rev l) with a::l �> a j [] �> failwith "Liste vide!";;(� Equivalent de la fonction mem de caml : prend une liste de couples et indique siA apparait en tant que premier element de l'un de ces couples �)let rec customMem A = functionB::l �> if (fst B = A) then true else (customMem A l)j [] �> false;;(� Prend une liste de types et veri�e que chacun de ces types apparait dans decl �)let rec megaMem decl = functionA::l �> (customMem A decl) & (megaMem decl l)j [] �> true;;(� La fonction moinsGeneral compare deux pretypes �)let rec existe hier decl
eche = function(a, t)::l �> (moinsGeneral hier decl (Arrow(Atom a, t),
eche)) or (existe hier decl
eche l)j [] �> falseand moinsGeneral hier decl = function(Bool, Bool) �> truej (Star, Star) �> truej (Int, Int) �> truej (Atom a, Atom b) �> smaller hier a bj (Arrow(t1, t2), Arrow(u1, u2))�> (moinsGeneral hier decl (t2, u2)) & (moinsGeneral hier decl (u1, t1))j (Method l, Method m)�> it list (fun x y �> x & y) true (map (fun (a, t) �> existe hier decl (Arrow(Atom a, t)) l) m)j �> false;;(� wellformed controle les conditions de bonne formation des types �)let rec wellformed hier decl =let atomictypes = (map (fun(a, t) �> a) decl) (�ensemble des types atomiques�)in functionBool �> truej Star �> truej Int �> truej Atom a �> truej Arrow(t1,t2) �> (wellformed hier decl t1) & (wellformed hier decl t2)j Method l �> let domain de l = (map (fun(a,t) �> a) l)in (covariance l) & (multinheritance domain de l domain de l)

300 APPENDIX A. IMPLEMENTATION OF λ OBJECT(� il controle la condition de covariance �)where rec covariance = function(a,t):: l1 �> (check a t l1) & (covariance l1)j [] �> trueand check a t = function(b,s)::l2 �> (if (smaller hier a b) then moinsGeneral hier decl (t,s)else if (smaller hier b a) then moinsGeneral hier decl (s,t)else true) & (check a t l2)j [] �> true(� il controle l'heritage multiple pour tout couple du domain �)and multinheritance domain = functiona::l �> (apply domain a l) & (multinheritance domain l)j [] �> true(� il controle l'heritage multiple pour tout couple (a, reste du domain) �)and apply domain a = functionb::l �> let LBab = lowerbounds a b atomictypesin ((list length LBab)=0 or (contains domain (maximalElements LBab)))& (apply domain a l)j [] �> trueand lowerbounds a b = functionc::l �> (if (smaller hier c a) & (smaller hier c b) then [c] else [])@(lowerbounds a b l)j [] �> [](� il donne la liste des elements maximaux �)and maximalElements liste =let rec isMaximal a = functionb::l �> ((b=a) or not(smaller hier a b)) & (isMaximal a l)j [] �> trueand explore l1 = functiona::l2 �> (if (isMaximal a l1) then [a] else [])@(explore l1 l2)j [] �> []in explore liste liste(� il dit si la liste l1 contient la liste l2 �)and contains l1 = functiona::l2 �> (if (mem a l1) then true else false) & (contains l1 l2)j [] �> true ;;

A.2. THE MODULE 301(� typexpression renvoie le type d'une expression. Genere une erreur en cas d'incompatibilites �)let rec typexpression hier decl env = functionVal n �> Intj Const x �> Boolj Quest �> Starj Epsilon �> Method []j Eqz �> Arrow(Int, Bool)j Pred �> Arrow(Int, Int)j Succ �> Arrow(Int, Int)j Var x �> (try assoc x env with Not found�> failwith ("[type-checker] Pretype absent de l'environnement: variable \""^(x)^"\" non liee"))j Fix (s, t, f)�> if wellformed hier decl t then(if moinsGeneral hier decl ((typexpression hier decl ((s, t)::env) f), t) then telse failwith ("[type-checker] Le type "^(imprime t)^" de la variable de recursion n'est pas "^" compatible avec la definition"))else (failwith ("[type-checker] Le pretype "^(imprime t)^" n'est pas bien forme"))j Lambda (s, t, f) �> if wellformed hier decl t then Arrow(t, typexpression hier decl ((s, t)::env) f)else (failwith ("[type-checker] Le pretype "^(imprime t)^" n'est pas bien forme"))j App (f, g) �> let v = typexpression hier decl env gin (match (typexpression hier decl env f) withArrow(t, u) �> if moinsGeneral hier decl (v, t) then uelse failwith ("[type-checker] Impossible d'appliquer "^(imprime t)^" -> "^(imprime u)^" a "^(imprime v)^" dans "^(exprToString(App (f, g))))j Method l �> (match v withAtom A �> assoc (�ndMin hier l A) lj �> failwith ("[type-checker] Methode appliquee au pretype "^(imprime v)^"!"))j as t �> failwith ("[type-checker] Le type "^(imprime t)^" est utilise comme type fonctionnel!"))j Ampersend (f, l, g)�> if wellformed hier decl (Method l) then(match (rev l) with(a,t)::l' �>if (moinsGeneral hier decl (typexpression hier decl env f , Method l')) &(moinsGeneral hier decl (typexpression hier decl env g , Arrow(Atom a, t)))then Method lelse failwith("[type-checker] Index incompatible: ...&"^(imprime(Method l)))j [] �> failwith "[type-checker] Index vide?!?!")else failwith ("[type-checker] Le pretype "^(imprime (Method l))^" n'est pas bien forme")j Coerce (a, f) �> let b = typexpression hier decl env f inif moinsGeneral hier decl (b , Atom a) then (Atom a)else failwith ("[type-checker] Coercion impossible:"^(imprime (Atom a))^" n'est pas plus grand que "^(imprime b))

302 APPENDIX A. IMPLEMENTATION OF λ OBJECTj Super (a, f) �> let b = typexpression hier decl env f inif moinsGeneral hier decl (b , Atom a) then (Atom a)else failwith ("[type-checker] Super impossible:"^(imprime (Atom a))^" n'est pas plus grand que "^(imprime b))j In (a, f) �> let t = typexpression hier decl env f inlet b = (try assoc a decl with Not found�> failwith ("[type-checker] Le type objet "^a^" n'est pas defini!"))in if moinsGeneral hier decl (t, b)then Atom aelse failwith ("[type-checker] `in` impossible: le type representaton de "^(imprime (Atom a))^" n'est pas plus grand que "^(imprime t))j Out (a, f) �> let b = typexpression hier decl env f inif moinsGeneral hier decl (b , Atom a)then (try assoc a decl with Not found�> failwith ("[type-checker] Le type objet "^a^" n'est pas defini!"))else failwith ("[type-checker] Out impossible:"^(imprime (Atom a))^" n'est pas plus grand que "^(imprime b))j Ite (e1,e2,e3) �> if (typexpression hier decl env e1) = Bool thenlet t2 = (typexpression hier decl env e2)and t3 = (typexpression hier decl env e3) inif moinsGeneral hier decl (t2, t3) then t3 elseif moinsGeneral hier decl (t3, t2) then t2 elsefailwith("[type-checker] Types incompatibles "^"dans ite dans l'expression "^(exprToString(Ite (e1,e2,e3))))else failwith("[type-checker] le premier argument "^"de ite n'est pas bool dans l'expression "^(exprToString (Ite(e1,e2,e3))));;(� Mise a jour de la hierarchie des types lors d'une declaration "let A < A1, ... An". Il faut non seulementnoter que A < A1 ... An mais aussi en deduire les nouvelles relations qui en decoulent par transitivite.Deux types de cas se presentent :� si on declare a < b alors qu'on avait deja b < c, on doit noter a < c. C'est ce dont se charge updateDown� si on declare b < c alors qu'on avait deja a < b, on doit noter a < c. C'est ce dont se charge updateUp.La fonction updateHier, apres avoir veri�e l'existence des types speci�es, met a jour la hierarchie destypes en appelant ces deux sous�fonctions.�)let updateDown hier A B =let greaterthanB = try assoc B hier with Not found �> []in if customMem A hierthen map (fun ((x, m) as elem) �> if x = A then (x, B::greaterthanB@m) else elem) hierelse (A, B::greaterthanB)::hier;;let rec updateUp A l = function(x, listex)::suite �> (x, listex@(if mem A listex then l else []))::(updateUp A l suite)j [] �> [];;

A.2. THE MODULE 303let updateHier decl hier A l =if not (customMem A hier) then (� ici on controle si A a deja ete' declare' comme soustype �)if (customMem A decl) & (megaMem decl l) then (� ici on controle si tous les types ont ete declares �)if it list (fun x y �> x & y) true (� controle des types representation �)(map (fun B �> moinsGeneral hier decl (assoc A decl, assoc B decl)) l)thenlet rec parcoursl h = functionB::l �> parcoursl (updateDown h A B) lj [] �> hin updateUp A l (parcoursl hier l)else failwith "Sous-typage incompatible avec l'ordre sur les pretypes."else failwith ("Type objet non declare: let "^A^" < ...")else failwith("Sous-typage pour "^A^" deja declare");;(�pour faire marcher seulment le type�checker�)let rec typeterme hier decl = functionExpression e �> typexpression hier decl [] ej Declaration (atomtyp, pretyp, term)�> if customMem atomtyp declthen failwith ("Le type "^atomtyp^" est deja declare")else typeterme hier ((atomtyp, pretyp)::decl) termj Subtyping (atomtyp, l, term) �> typeterme (updateHier decl hier atomtyp l) decl term;;(� �)(� �)(� EVALUATEUR �)(� �)(� �)(� L'evaluateur proprement dit se compose de deux sous�fonction recursives : evalterme et evalexpr,chargees d'evaluer respectivement termes et expressions. Elles prennent deux parametres : la hierarchiedes types atomiques (de type (atomictype�(atomictype list)) list), et la liste des declarations de typesatomiques (atomictype�pretype list). �)let eval = evalterme [] []where rec evalterme hier decl = functionExpression e �> (evalexpr hier decl e)j Declaration (atomtyp, pretyp, term)�> if customMem atomtyp decl then failwith ("Le type "^atomtyp^" est deja declare")else evalterme hier ((atomtyp, pretyp)::decl) termj Subtyping (atomtyp, l, term) �> evalterme (updateHier decl hier atomtyp l) decl term

304 APPENDIX A. IMPLEMENTATION OF λ OBJECT(� pour e�ecter le type�checking nous on fait preceder l'interpretation de une expression par(typexpression hier decl [] M)de facon que si le terme n'est pas bien type' la fonction typexpression souleve une failure �)and evalexpr hier decl M =(match M withEpsilon �> Epsilonj Var x �> failwith ("La variable "^x^" n'est pas definie.")j Val n �> Val nj Succ �> Succj Pred �> Predj Eqz �> Eqzj Quest �> Questj Const x �> Const xj Ite (e1, e2, e3) �> let b = (evalexpr hier decl e1) in (match b withConst true �> (evalexpr hier decl e2)j Const false �> (evalexpr hier decl e3)j �> failwith "Type checker bug??")j Lambda x �> Lambda xj Fix(x, t, f) �> evalexpr hier decl (remplace x (Fix(x, t, f)) f)j Ampersend x �> Ampersend xj Coerce (a, x) �> let x1 = (evalexpr hier decl x) in Coerce (a, x1)j Super (a, x) �> let x1 = (evalexpr hier decl x) in Super (a, x1)j In (a, x) �> In (a , x)j Out (A, e) �> let e1 = evalexpr hier decl ein (match e1 withIn (, expr) �> (evalexpr hier decl expr)j Coerce (, expr) �> (evalexpr hier decl (Out (A, expr)))j �> failwith ("J'attandais un tagged value et j'ai trouve' "^(exprToString e1)))j App (e, f) �> let e1 = evalexpr hier decl eand f1 = evalexpr hier decl fin (match e1 withEqz �> (match f1 withVal 0 �> Const truej Val n �> Const falsej �> failwith "eqz: Type checker bug??")j Pred �> (match f1 withVal 0 �> Val 0j Val n �> Val (n�1)j �> failwith " pred: Type checker bug??")j Succ �> (match f1 withVal n �> Val (n+1)j as y �> failwith "succ: Type checker bug??")j Lambda (x, t, M) �> evalexpr hier decl (remplace x f1 M)j Ampersend (M1, l, M2)�> let D' = �ndMin hier l (getTag f1)and Dn = fst (dernier l)in (match f1 withSuper (a, N) �> evalexpr hier decl(if D' = Dn then App(M2, N) else App(M1, f1))j �> evalexpr hier decl (App ((if D' = Dn then M2 else M1), f1)))j �> failwith "Valeur non fonctionnelle utilisee comme fonction!"))

A.2. THE MODULE 305(� La fonction remplace prend en argument une expression et y remplace toutes les occurences dela variable x par l'expression e �)and remplace x e = functionVar y �> if y = x then e else Var yj Lambda (s, t, f) �> Lambda (s, t, if s = x then f else (remplace x e f))j Fix (s, t, f) �> Fix (s, t, if s = x then f else (remplace x e f))j App (f, g) �> App (remplace x e f, remplace x e g)j Ampersend (f, l, g) �> Ampersend (remplace x e f, l, remplace x e g)j Coerce (a, f) �> Coerce (a, remplace x e f)j Super (a, f) �> Super (a, remplace x e f)j In (a, f) �> In (a, remplace x e f)j Out (a, f) �> Out (a, remplace x e f)j Ite (e1,e2,e3) �> Ite (remplace x e e1, remplace x e e2, remplace x e e3)j as y �> y;;(� pour evaluer a l'interieur des lambda et des In on a besoin d'une fonction remplace plus so�stiqueparce qu'il doit eviter la capture des varibles libres, et donc e�ectuer des alfa-conversions �)let internaleval = evalterme [] []where rec evalterme hier decl = functionExpression e �> ((typexpression hier decl [] e); internalevalexpr hier decl e)j Declaration (atomtyp, pretyp, term)�> if customMem atomtyp decl then failwith ("Le type "^atomtyp^" est deja declare")else evalterme hier ((atomtyp, pretyp)::decl) termj Subtyping (atomtyp, l, term) �> evalterme (updateHier decl hier atomtyp l) decl termand internalevalexpr hier decl = functionEpsilon �> Epsilonj Var x �> Var xj Val n �> Val nj Succ �> Succj Pred �> Predj Eqz �> Eqzj Quest �> Questj Const x �> Const xj Fix(x, t, f) �> remplace x (Fix(x, t, f)) fj Lambda (x, t, M) �> Lambda (x , t, (internalevalexpr hier decl M))j Ampersend x �> Ampersend xj Coerce (a, x) �> let x1 = (internalevalexpr hier decl x) in Coerce (a, x1)j Super (a, x) �> let x1 = (internalevalexpr hier decl x) in Super (a, x1)j In (a, x) �> In (a , internalevalexpr hier decl x)j Ite (e1, e2, e3)�> let b = (internalevalexpr hier decl e1)in (match b withConst true �> (internalevalexpr hier decl e2)j Const false �> (internalevalexpr hier decl e3)j �> Ite (b,(internalevalexpr hier decl e2),(internalevalexpr hier decl e2)))

306 APPENDIX A. IMPLEMENTATION OF λ OBJECTj Out (A, e) �> let e1 = internalevalexpr hier decl ein (match e1 withIn (, expr) �> (internalevalexpr hier decl expr)j Coerce (, expr) �> (internalevalexpr hier decl (Out (A, expr)))j �> Out (A,e1))j App (e, f) �> let e1 = internalevalexpr hier decl eand f1 = internalevalexpr hier decl fin (match e1 withEqz �> (match f1 withVal 0 �> Const truej Val n �> Const falsej �> App (e1,f1))j Pred �> (match f1 withVal 0 �> Val 0j Val n �> Val (n�1)j �> App (e1,f1))j Succ �> (match f1 withVal n �> Val (n+1)j �> App (e1,f1))j Lambda (x, t, M) �> internalevalexpr hier decl (remplace x f1 M)j Ampersend (M1, l, M2) �>let D' = �ndMin hier l (getTag f1)and Dn = fst (dernier l)in (match f1 withSuper (a, N) �> internalevalexpr hier decl(if D' = Dn then App(M2, N) else App(M1, f1))j �> internalevalexpr hier decl (App ((if D' = Dn then M2 else M1), f1)))j �> App (e1,f1))and union = function(l, []) �> lj ([], l) �> lj (x::l1, l) �> if (mem x l) then union(l1,l) else union(l1,x::l)and di� = function([], x) �> []j (y::l, x) �> if (x=y) then l else (y::(di�(l,x)))and FV = functionVar x �> [x]j Ite (e1, e2, e3) �> union(FV(e1), union(FV(e2),FV(e3)))j Fix (x, t, e) �> di�(FV(e), x)j Lambda (x, t, e) �> di�(FV(e), x)j Ampersend (e1, l, e2) �> union(FV(e1),FV(e2))j Coerce (a, e) �> FV(e)j Super (a, e) �> FV(e)j In (a, e) �> FV(e)j Out (A, e) �> FV(e)j App (e1, e2) �> union(FV(e1),FV(e2))j �> []

A.2. THE MODULE 307and remplace x e = functionVar y �> if y = x then e else Var yj Fix (y, t, f) �> if y = x then Fix (y, t, f)else if not(mem x (FV(f))) then Fix (y, t, remplace x e f)else remplace x e (Fix(y^"a", t, remplace y (Var(y^"a")) f))j Lambda (y, t, f) �> if y = x then Lambda (y, t, f)else if not(mem x (FV(f))) then Lambda (y, t, remplace x e f)else remplace x e (Lambda(y^"a", t, remplace y (Var(y^"a")) f))j App (f, g) �> App (remplace x e f, remplace x e g)j Ampersend (f, l, g) �> Ampersend (remplace x e f, l, remplace x e g)j Coerce (a, f) �> Coerce (a, remplace x e f)j Super (a, f) �> Super (a, remplace x e f)j In (a, f) �> In (a, remplace x e f)j Out (a, f) �> Out (a, remplace x e f)j Ite (e1,e2,e3) �> Ite (remplace x e e1, remplace x e e2, remplace x e e3)j as y �> y;;(� Les fonctions exportees�)let ParseString x = parseProgram (lexer(stream of string x));;let ParseFile x = (parseProgram(lexer (stream of string x)));;let CalcString x = try let syntaxtree = (parseProgram(lexer (stream of string x)))in print string ("- : "^imprime(typeterme [] [] syntaxtree)^"\n");prettyprint(eval (syntaxtree))with Failure s �> print string ("Erreur : "^s^"\n");;let TypeString x = try print string (imprime(typeterme [] [] (parseProgram(lexer (stream of string x)))))with Failure s �> print string ("Erreur : "^s^"\n");;let TypeFile x =try print string (imprime(typeterme [] [] (parseProgram(lexer (stream of channel (open in x))))))with Failure s �> print string ("Erreur : "^s^"\n");;let CalcFile x = try let syntaxtree = (parseProgram(lexer (stream of channel (open in x))))in print string ("- : "^imprime(typeterme [] [] syntaxtree)^"\n");prettyprint(eval (syntaxtree))with Failure s �> print string ("Erreur : "^s^"\n");;let InternalCalcString x = try let syntaxtree = (parseProgram(lexer (stream of string x)))in print string ("- : "^imprime(typeterme [] [] syntaxtree)^"\n");prettyprint(internaleval (syntaxtree))with Failure s �> print string ("Erreur : "^s^"\n");;let InternalCalcFile x = try let syntaxtree = (parseProgram(lexer (stream of channel (open in x))))in print string ("- : "^imprime(typeterme [] [] syntaxtree)^"\n");prettyprint(internaleval (syntaxtree))with Failure s �> print string ("Erreur : "^s^"\n");;

308 APPENDIX A. IMPLEMENTATION OF λ OBJECT(� �)(� �)(� le �cher lambdaobject.mli �)(� �)(� �)typepretype = Bool j Star j Int j Atom of atomictypej Arrow of pretype�pretypej Method of (atomictype�pretype) listandatomictype == string;;typeexpression = Var of stringj Questj Const of boolj Val of intj Succj Predj Eqzj Lambda of string�pretype�expressionj Fix of string�pretype�expressionj Ite of expression�expression�expressionj App of expression�expressionj Epsilonj Ampersend of expression�((atomictype�pretype) list)�expressionj Coerce of atomictype�expressionj Super of atomictype�expressionj In of atomictype�expressionj Out of atomictype�expressionandterme = Expression of expressionj Subtyping of atomictype�(atomictype list)�termej Declaration of atomictype�pretype�terme;;value ParseString : string �> terme ;;value ParseFile : string �> terme ;;value TypeString : string �> unit ;;value TypeFile : string �> unit ;;value CalcString : string �> unit ;;value CalcFile : string �> unit ;;value InternalCalcString : string �> unit ;;value InternalCalcFile : string �> unit ;;

Appendix B

Type system of λ object

B.1 Types

1. A ∈C,S Types for each A ∈ dom(S)
2. if T1, T2 ∈C,S Types then T1 → T2 ∈C,S Types and T1 × T2 ∈C,S Types
3. if for all i, j ∈ I

(a) (Di, Ti ∈C,S Types)
(b) if C ⊢ Di ≤ Dj then C ⊢ Ti ≤ Tj)
(c) for all maximal type D in LBC({Di,Dj}) there exists h∈I such that Dh = D
(d) if i 6= j then Di 6= Dj

then {Di → Ti}i∈I ∈C,S Types

B.2 Typing rules

[NewType]
C , S[A← T] ⊢ P :U

C,S ⊢ let A hide T in P :U

A 6∈ dom(S), T ∈C,STypes and T not atomic

[Constraint]
C ∪ (A ≤ Ai), S ⊢ P :T

C, S ⊢ let A ≤ A1, ... , An in P :T

if C ⊢ S(A) ≤ S(Ai) and A do not appear in C

[Taut] C,S ⊢ xT :T

[→ Intro]
C,S ⊢M :T ′

λxT.M :T → T ′
T ∈C,S Types

[→ Elim(≤)]
C,S ⊢M :U → T N :W

C,S ⊢M N :T
C ⊢W ≤ U

309

310 APPENDIX B. TYPE SYSTEM OF λ OBJECT

[Tautε] C,S ⊢ ε: {}

[{}Intro+]
C,S ⊢M :W1 ≤ {Ui → Vi}i∈I C,S ⊢ N :W2 ≤ U → V

C, S ⊢ (M&{Ui→Vi}i∈I⊕(U→V)N): {Ui → Vi}i∈I ⊕ (U → V)
{Ui → Vi}i∈I ⊕ (U → V) ∈C,S Types

The rules for the expressions that do not belong to the syntax of λ& are:

[{}Elim]
C,S ⊢M : {Ui → Ti}i∈I C,S ⊢ N :U

C,S ⊢M•N :Tj
Uj=mini∈I{Ui|C ⊢ U≤Ui}

[Pair]
C,S ⊢M :T1 C,S ⊢ N :T2

C,S ⊢ <M ,N >:T1 × T2

[Proj]
C,S ⊢M :T1 × T2

C,S ⊢ πi(M):Ti
for i = 1, 2

[Coerce]
C,S ⊢M :B

C,S ⊢ coerceA(M):A
C ⊢ B ≤ A and A ∈C,S Types

[Super]
C,S ⊢M :B

C,S ⊢ superA(M):A
C ⊢ B ≤ A and A ∈C,S Types

[In]
C,S ⊢M :T

C, S ⊢ inA(M):A
C ⊢ T ≤ S(A) and A ∈C,S Types

[Out]
C,S ⊢M :B

C,S ⊢ outA(M):S(A)
C ⊢ B ≤ A and A ∈C,S Types

[Fix]
C,S ⊢M :T

µxT.M :T
T ∈C,S Types

Appendix C

Specification of the toy language

C.1 Terms

r ::= {ℓ1=exp1; . . . ; ℓn=expn}

exp ::= x

| fn(x1 : T1, ..., xn : Tn) => exp

| exp1(exp2)

| (exp, . . . , exp)

| fst(exp) | snd(exp)

| let x:T = exp in exp

| extend classname

(message = method;)+

interface

in exp

| new(classname)

| self

| (self.ℓ)

| (update r)

| super[A](exp)

| coerce[A](exp)

| & fn(x1:A1, ..., xn1 : An1) => exp1

& fn(x1:A1, ..., xn2 : An2) => exp2

...

& fn(x1 : A1,...,xnm : Anm) => expm (m≥1)

| [exp0exp exp1 . . . expn] (n≥0)

311

312 APPENDIX C. SPECIFICATION OF THE TOY LANGUAGE

p ::= exp

| class classname [is classname (, classname)∗]

instanceVariables

(message = method;)∗

interface

in p

method ::= exp

message ::= x

interface ::= [[message : V ; ...;message : V]]

instanceV ariables ::= {ℓ1 : T1=exp1; . . . ; ℓn : Tn=expn}

C.2 Subtyping

C ∪ (A1 ≤ A2) ⊢ A1 ≤ A2

C ⊢ T2 ≤ T1 C ⊢ U1 ≤ U2

C ⊢ T1 → U1 ≤ T2 → U2

C ⊢ U1 ≤ T1 . . . C ⊢ Un ≤ Tn
C ⊢ (U1 × . . . × Un) ≤ (T1 × . . . × Tn)

for all i ∈ I, there exists j ∈ J such that C ⊢ D′′i ≤ D′j and C ⊢ U ′j ≤ U ′′i
C ⊢ {D′j → U ′j}j∈J ≤ {D

′′
i → U ′′i }i∈I

C ⊢ U1 ≤ T1 . . . C ⊢ Uk ≤ Tk
C ⊢ 〈〈ℓ1:U1; . . . ; ℓk:Uk; . . . ; ℓk+j:Uk+j〉〉 ≤ 〈〈ℓ1:T1; . . . ; ℓk:Tk〉〉

The (pre)order for all types is given by the reflexive and transitive closure of the rules above.

C.2.1 Auxiliary Notation

C ⊢ 〈〈ℓ1:T1; . . . ; ℓk:Tk; . . . ; ℓk+j:Tk+j〉〉 ≤strict 〈〈ℓ1:T1; . . . ; ℓk:Tk〉〉

C ⊢ U1 ≤ T1 . . . C ⊢ Uk ≤ Tk
C ⊢ 〈〈ℓ1:U1; . . . ; ℓk:Uk〉〉 ⋐ 〈〈ℓ1:T1; . . . ; ℓk:Tk; . . . ; ℓk+j:Tk+j〉〉

C.3. TYPING RULES 313

C.3 Typing Rules

Let
Γ: (V ars ∪ {self})→ Types
S:AtomicTypes→ RecordTypes

Then we have the following typing rules:

[Taut] C;S; Γ ⊢ x : Γ(x) x ∈ (Vars∪{self})

[Funct]
C;S; Γ[x← T] ⊢ exp:U

C;S; Γ ⊢ fn(x:T) => exp : T → U
if T ∈CTypes

[Appl]
C;S; Γ ⊢ exp1:T → U C;S; Γ ⊢ exp2:W

C;S; Γ ⊢ exp1(exp2) : U
if C ⊢W ≤ T

[Prod]
C;S; Γ ⊢ exp1:T1 . . . C;S; Γ ⊢ expn:Tn

C;S; Γ ⊢ (exp1, . . . ,expn): (T1 × . . . × Tn)

[Record]
C;S; Γ ⊢ exp1:T1 . . . C;S; Γ ⊢ expn:Tn

C;S; Γ ⊢ {ℓ1 = exp1; . . . ;ℓn = expn} : 〈〈ℓ1 : T1; . . . ; ℓn : Tn〉〉

[Let]
C;S; Γ ⊢ exp′:W C;S; Γ[x← T] ⊢ exp:U

C;S; Γ ⊢ let x : T = exp′ in exp : U
if C ⊢W ≤ T

[New] C;S; Γ ⊢ new(A):A if A ∈ dom(S)

[Read] C;S; Γ ⊢ self.ℓ:T if S(Γ(self)) = 〈〈...ℓ:T...〉〉

[Write]
C;S; Γ ⊢ r:R

C;S; Γ ⊢ (update r) : Γ(self)
if C ⊢ R ⋐ S(Γ(self))

[OvAbst]
C;S; Γ ⊢ exp1:T1 . . . C;S; Γ ⊢ expn:Tn

C;S; Γ ⊢ &exp1& . . . & expn:{T1, ... ,Tn}
{T1, ... ,Tn}∈CTypes

[OvAppl]
C;S; Γ ⊢ exp: {Di → Ti}i∈I C;S; Γ ⊢ expj:Aj (j=0..n)

C;S; Γ ⊢ [exp0 exp exp1, . . . , expn]:Th

if Dh = mini∈I{Di | C ⊢ A0xA1x . . . An ≤ Di}.

[Coerce]
C;S; Γ ⊢ exp:A

C;S; Γ ⊢ coerce[A′](exp):A′
if C ⊢ A ≤ A′

[Super]
C;S; Γ ⊢ exp:A

C;S; Γ ⊢ super[A′](exp):A′
if C ⊢ A ≤ A′

314 APPENDIX C. SPECIFICATION OF THE TOY LANGUAGE

[Multi]
C;S; Γ ⊢ exp1:T1 . . . C;S; Γ ⊢ expn:Tn

C;S; Γ ⊢ &exp1& . . . & expn:{T1, ... ,Tn}
{T1, ... ,Tn}∈CTypes

[Extend]
C;S; Γ′[self← A] ⊢ expj : Vj (j=1..k) C;S; Γ′ ⊢ exp : T

C;S; Γ ⊢ extend A m1=exp1;...;mk=expk [[m1:V1,...,mk:Vk]] in exp:T

A ∈ dom(S) and for i = 1..k Γ(mi) ∪ {A ; Vi} ∈C Types

[Class]
C;S; Γ ⊢ r:R C ′;S′; Γ′[self← A] ⊢ expj:Vj (j=1..k) C ′;S′; Γ′ ⊢ p : T

C;S; Γ ⊢ class A is A1,...,An r:R m1=exp1;...;mk=expk I in p : T

if A 6∈ dom(S), for i = 1..n C ⊢ R ≤strict S(Ai) and for i = 1..k Γ(mi) ∪ {A ; Vi} ∈C′ Types

Where:

- A ; V =

{
{(A×Di)→ Ui}i∈I if V≡#{Di → Ui}i∈I
{A→ V } otherwise

- S′ ≡ S[A← R]

- C ′ ≡ C ∪ (
⋃
i=1..nA ≤ Ai)

- I ≡ [[m1 : V1,...,mm : Vm]]

- Γ′ ≡ Γ[mi ← Γ(mi) ∪ {A ; Vi}]i=1..m

Appendix D

Proof of theorem 5.3.8

We prove the theorem only for the case in which there are no mutaully recursive methods;
recursive terms do not pose any problem from the viewpoint of type-checking, but render the
proof more unreadeable. The proof goes by induction on p. When p is formed only by an
expression then the part 1 of the theorem is trivially proved by [Tautε]. Thus in the rest
of the proof we will prove the the part 1 of the theorem only when when p is is of the form
class A is . . . [[. . .]] .

1. p ≡ x but then ℑ[[x]]Γ I Γ(self)=xΓ(x): Γ(x) thus we have the result.

2. p ≡exp1(exp2) then C;S; Γ ⊢ exp1 : T1 → T and C;S; Γ ⊢ exp2 : T2 ≤ T1. By induction
C;S ⊢ ℑ[[exp1]]Γ I Γ(self):T1 → T and C;S ⊢ ℑ[[exp2]]Γ I Γ(self):T2. We obtain the thesis
by [→Elim(≤)].

3. p ≡(fn x:T1 =>exp) then C;S; Γ[x ← T1] ⊢ exp:T2 where T≡T1 → T2. By induction
C;S ⊢ ℑ[[exp]]Γ[x←T1] I Γ(self):T2. Therefore C;S ⊢ λxT1 .ℑ[[exp]]Γ[x←T1] I Γ(self):T1 → T2.

4. p ≡ (let x:T1 = exp in exp′); combine the techniques of the previous two cases.

5. p ≡ snd(exp) a straightforward use of the induction hypothesis.

6. p ≡ fst(exp) a straightforward use of the induction hypothesis.

7. p ≡ new(A). By hypothesis I(A):S(A) therefore inA(I(A)) is well typed and has type
A.

8. p ≡ [exp0 exp exp1, . . . ,expn] then C;S; Γ ⊢ exp : {Di → Ti}i∈I and C;S; Γ ⊢ expi : Ai

with Dj = mini∈I{Di|C ⊢ A0×...×An ≤ Di} and T≡Tj . From the induction hypothesis
C;S ⊢ ℑ[[exp]]Γ I Γ(self): {Di → Ti}i∈I and C;S ⊢ ℑ[[(exp0, exp1, ..., expn)]]Γ I Γ(self): A0×
...×An. Then the thesis is obtained by [{}Elim].

9. p ≡ coerce[A](exp) thus T≡A and C;S; Γ ⊢ exp : T1≤ A. By induction hypothesis
C;S ⊢ ℑ[[exp]]Γ I Γ(self):T1. Thus coerceA(ℑ[[exp]]Γ I Γ(self)) is well-typed and has type
A.

10. p ≡ super[A](exp). As the previous case.

315

316 APPENDIX D. PROOF OF THEOREM 5.3.8

11. p ≡ self straightforward

12. p ≡ (self.ℓ) Then S(Γ(self)) = 〈〈...ℓ:T...〉〉.

Since selfΓ(self): Γ(self) and outΓ(self): Γ(self)→ S(Γ(self)) then
outΓ(self)(selfΓ(self)) : 〈〈...ℓ:T...〉〉. Thus (outΓ(self)(selfΓ(self))).ℓ:T .

13. p ≡ update(r) Then T ≡ Γ(self) , C;S; Γ ⊢ r : R and C ⊢ S(Γ(self)) ≤ R. If r≡{ℓ1 =
exp1; ...; ℓn = expn} then by induction hypothesis

C;S ⊢ 〈ℓ1 = ℑ[[exp1]]Γ I Γ(self); ...; ℓn = ℑ[[expn]]Γ I Γ(self)〉:R

By definition outΓ(self)(selfΓ(self)):S(Γ(self)). Since C ⊢ S(Γ(self)) ≤ R then
(〈outΓ(self)(selfΓ(self)) ← ℓ1 = ℑ[[exp1]]Γ I Γ(self)... ← ℓn = ℑ[[expn]]Γ I Γ(self)〉) is well
typed and has type S(Γ(self)).
Therefore also ℑ[[p]]Γ I Γ(self) ≡ inΓ(self)(〈outΓ(self)(selfΓ(self)) ← ...〉) is well-typed and
has type Γ(self).

14. We prove w.l.o.g. the case for extend with only one multi-method: the case with
ordinary methods is a slight modification of this case that can be deduced from the
next case; extensions including more than one method can be translated in a suite
of extensions with only one method, since, we recall, we do not consider the case of
mutually recursive methods.

Let p ≡ extend A m=&exp1 . . . &expn in [[m:V]] in exp

where V ≡#{D1 → T1,. . . ,Dn → Tn}
and Di ≡ Ai

1 × . . . ×Ai
ni

and expi ≡ fn(xi1: .A
i
1,. . . ,x

i
ni

: .Ai
ni
) => exp′i (for i = 1..n)

Let exp∗1 denote the following expression:

fn(self:A, xi1: .A
i
1,. . . ,x

i
ni

: .Ai
ni
) => exp′i

Then p is translated into:

(λmΓ(m)&Γ(m)⊕{A;V }.ℑ[[exp]]Γ I Γ(self))

(· · · (mΓ(m)&Γ(m)⊕{A×Dσ(1)→Tσ(1)}ℑ[[exp∗1]]Γ I B)

...

&(Γ(m)⊕{A×Dσ(1)→Tσ(1)}⊕...⊕{A×Dσ(n−1)→Tσ(n−1)})⊕{A×Dσ(n)→Tσ(n)}ℑ[[exp∗n]]Γ I B)

By hypothesis
C;S; Γ[self ← A] ⊢ &exp1...&expn:V

and thus it is clear that

C;S; Γ[self ← A] ⊢ &expσ(1)...&expσ(n):V

Therefore
C;S; Γ ⊢ &exp∗σ(1)...&exp

∗
σ(n):A ; V (D.1)

317

Also by hypothesis
C;S; Γ[m← Γ(m) ∪ {A ; V }] ⊢ exp:T (D.2)

Note now that given an overloaded type V if V ∪ {S → T} is a well formed overloaded
type then

1. Also V ⊕ {S → T} is well formed
2. V ∪ {S → T} = V ⊕ {S → T}

Thus from (D.2) we obtain

C;S; Γ[m← Γ(m)⊕ {A ; V }] ⊢ exp:T

We can now apply the induction hypothesis obtaining:

C;S ⊢ λmΓ(m)⊕{A;V }.ℑ[[exp]]Γ I Γ(self): (Γ(m) ⊕ {A ; V })→ T

Thus the thesis holds if we prove that

(· · · (m&Γ(m)⊕... . . . &(Γ(m)⊕{A×Dσ(1)→Tσ(1)}⊕...)⊕{A×Dσ(n)→Tσ(n)} . . .): Γ(m)⊕ {A ; V }

This can be proved by induction on n: for n = 1 the thesis is a strightforward application
of the induction hypothesis on exp∗1 for (D.1). Consider now

(· · · (m&Γ(m)⊕... . . . &(Γ(m)⊕{A×Dσ(1)→Tσ(1)}⊕...)⊕{A×Dσ(i)→Tσ(i)}ℑ[[exp∗i]]Γ I B)

Using the induction hypothesis on (D.1) it easy to see that the thesis fails only if
Γ(m)⊕{A×Dσ(1) → Tσ(1)}⊕ ...⊕{A×Dσ(i) → Tσ(i)} is not a well formed overloaded
type. But since Γ(m) ⊕ {A ; V } is well-formed, thus the previous type (which is a
“subset” of this) surely satisfies the conditions of covariance and input type uniqueness.
And thanks to the definition of σ it also satisfies the condition of multiple inheritance:
if A×Dσ(i) has a strict lower bound in common with any other input type, then all the
branches with maximal input types (which must already be in Γ(m) ⊕ {A ; V }) are
already in Γ(m)⊕ {A×Dσ(1) → Tσ(1)} ⊕ ... ⊕ {A×Dσ(i) → Tσ(i)}, for either they are
in Γ(m) or they are of the form {A×Dσ(j) → Tσ(j)} but then, because of the condition
on σ, we have σ(j) < σ(i).

15. As in the previous case we consider a simpler version where we have only one ancestor
and one method in the class declaration: the general case can be obtained by adding
some indexing in the right places.

p ≡class A is A′ r:R m = exp [[m:V]] in p′. This is the only case where the
proof of the first part of the theorem is non-trivial thus:

1. We have to prove that for all m ∈ Vars

C ∪ Cp;S ⊢M[[p]]Γ I Γ(self)(m):T [[p]](m)

If m 6≡ m then the thesis follows from the induction hypothesis. Otherwise let
first consider the case when m = exp is not a multi-method; then T [[p]](m) =

318 APPENDIX D. PROOF OF THEOREM 5.3.8

T [[p′]](m)⊕ {A→ V }. Since p is well-typed then it is easy to prove that T [[p]](m)
is a well-formed type; moreover it holds that
M[[p]]Γ I Γ(self)(m) = (M[[p′]]Γ′ I Γ(self)(m)&(T [[p′]](m))⊕{A→V }λselfA.ℑ[[exp]]Γ I[A←r]A).
By induction hypothesis C ∪Cp′ ;S · Sp′ ⊢ M[[p′]]Γ′ I Γ(self)(m):T [[p′]](m). Further-
more by hypothesis we have that

C ∪ (A ≤ A′);S[A← R]; Γ[self← A] ⊢ exp:V
By induction hypothesis on the part 2 of the theorem we have

C ∪ (A ≤ A′);S[A← R] ⊢ ℑ[[exp]]Γ[self←A] I[A←r]A:V
(Note that r:R and thus the hypothesis on I and S holds). By construction exp
is not affected by the declarations in p′ thus one also has

C ∪ (A ≤ A′) ∪ Cp′ ;S[A← R] · Sp′ ⊢ ℑ[[exp]]Γ[self←A] I[A←r]A:V
which is equivalent to

C ∪ Cp;S · Sp ⊢ ℑ[[exp]]Γ[self←A] I[A←r]A:V
But then

C ∪ Cp;S · Sp ⊢ λselfA.ℑ[[exp]]Γ[self←A] I[A←r]A:A→ V

The thesis follows by the rule [{}Intro].
In the case of a multi-method then exp must be of the form & exp1 ... & expn
and V ≡ #{D1 → T1,. . . ,Dn → Tn}. Again since p is well-typed it can be shown
that T [[p]] is a well-formed type. Then define exp∗i as in the previous case. Thus
we have to prove under the assumptions C ∪ Cp and S · Sp that
(· · · ((M[[p′]]Γ′ I Γ(self)(m)

&T [[p′]](m)⊕{A×Dσ(1)→Tσ(1)}ℑ[[exp∗σ(1)]]Γ[self←A] I[A←r]A)

...
&(T [[p′]](m)⊕...⊕{A×Dσ(n−1)→Tσ(n−1)})⊕{A×Dσ(n)→Tσ(n)}ℑ[[exp∗σ(h)]]Γ[self←A] I[A←r]A)

has type T [[p′]](m) ⊕ {A ; V } This can be shown by induction on n. For n = 1
use the induction hypothesis on p′. For n > 1 the proof is exactly the same as the
corresponding one of the previous case.

2. We know that C;S; Γ ⊢ p:T and we have to prove that under the hypothesis C
and S the following expression

let A hide R in
let A ≤ A′ in
ℑ[[p′]]Γ I A[m(T [[p]](m)) :=M[[p]]Γ I A(m)]

has type T . Thus we prove that

i. C ∪ (A ≤ A′);S[A← R] ⊢ ℑ[[p′]]Γ I[A←r] Γ(self):T
ii. R ≤ S(A′)
iii. M[[p]]Γ I Γ(self)(m):T [[p]](m) so that we substitute the variable mT [[p]](m) by a

term of the same type.

The first two conditions follow from the fact that C;S; Γ ⊢ p : T and by induction
hypothesis on p′.
Clearly mT [[p]](m) appears after the declarations given in p′ since in λ object no
expressions can precede a let . . . in declaration. Thus the thesis follows if we prove
the point (iii) in an environment where also the constraints of p′ are considered.
Thus what we prove is that:

319

C ∪ (A ≤ A′) ∪ Cp′ ;S[A← R] · Sp′ ⊢M[[p]]Γ I Γ(self)(m):T [[p]](m)
But since (A ≤ A′) ∪ Cp′ = Cp and [A← R] · Sp′ = Sp then it is exactly what we
have proved in the proposition 1 of the theorem

320 APPENDIX D. PROOF OF THEOREM 5.3.8

Appendix E

Original F≤ rules

E.1 Subtyping

(refl) C ⊢ T≤T

(trans)
C ⊢ T1 ≤ T2 C ⊢ T2 ≤ T3

C ⊢ T1 ≤ T3

(taut) C ⊢ X≤C(X)

(Top) C ⊢ T≤Top

(→)
C ⊢ T1≤S1 C ⊢ S2≤T2

C ⊢ S1 → S2≤T1 → T2

(∀)
C ⊢ T1≤S1 C ∪ {X≤T1} ⊢ S2≤T2

C ⊢ ∀(X≤S1)S2 ≤ ∀(X≤T1)T2

E.2 Typing

[Vars] C ⊢ xT :T

[→Intro]
C ⊢ a:T ′

C ⊢ (λxT .a):T → T ′

[→Elim]
C ⊢ a:S → T C ⊢ b:S

C ⊢ a(b):T

321

322 APPENDIX E. ORIGINAL F≤ RULES

[Top] C ⊢ top:Top

[∀Intro]
C ∪ {X≤T} ⊢ a:T ′

C ⊢ ΛX≤T.a:∀(X≤T)T ′

[∀Elim]
C ⊢ a:∀(X≤S)T C ⊢ S′≤S

C ⊢ a(S′):T [X := S′]

[Subsumption]
C ⊢ a:T ′ C ⊢ T ′ ≤ T

C ⊢ a:T

E.3 Typing algorithm

[Vars-Alg] C ⊢ xT :T

[→Intro-Alg]
C ⊢ a:T ′

C ⊢ (λxT .a):T → T ′

[→Elim-Alg]
C ⊢ a:T ′ C ⊢ b:S′≤S

C ⊢ a(b):T
B(T ′)C= S → T

[Top-Alg] C ⊢ top:Top

[∀Intro-Alg]
C ∪ {X≤T} ⊢ a:T ′

C ⊢ ΛX≤T.a:∀(X≤T)T ′

[∀Elim-Alg]
C ⊢ a:T ′ C ⊢ S′≤S

C ⊢ a(S′):T [X := S′]
B(T ′)C= ∀(X≤S)T

Where B(T)C= T if T is not a type variable B(T)C = B(C(T))C otherwise

Appendix F

Translation of F⊤≤ into explicit
coercions

X∗ = X
Top∗ = 1
(S → T)∗ = S∗ → T ∗

(∀(X≤S)T)∗ = ∀X.((X ◦→ S∗)→ T ∗)
〈〈ℓ1:T1, . . . , ℓn:Tn〉〉

∗ = 〈〈ℓ1:T
∗
1 , . . . , ℓn:T

∗
n〉〉

([ℓ1:T1, . . . , ℓn:Tn])
∗ = [ℓ1:T

∗
1 , . . . , ℓn:T

∗
n]

(µX.T)∗ = µX.T ∗

Ø∗ = Ø
(C ∪ {X≤T})∗ = C∗ ∪X ∪ {x:X ◦→ T ∗}

(refl)∗ C∗ ⊢ refl:T ∗ ◦→ T ∗

(trans)∗
C∗ ⊢ a : T ∗1 ◦→ T ∗2 C∗ ⊢ b : T ∗2 ◦→ T ∗3

C∗ ⊢ trans(a)(b) : T ∗1 ◦→ T ∗3

(taut)∗ C∗ ∪X ∪ {x:X ◦→ C(X)∗} ⊢ x:X ◦→ C(X)∗

(Top) C ⊢ top[T ∗]:T ∗ ◦→ 1

(→)∗
C∗ ⊢ a:S∗1 ◦→ T ∗1 C∗ ⊢ b:T ∗2 ◦→ S∗2

C∗ ⊢ arrow(a)(b): (T ∗1 → T ∗2) ◦→ (S∗1 → S∗2)

(∀)∗
C∗ ⊢ a:S∗1 ◦→ T ∗1 C∗ ∪X ∪ {x:X ◦→ 1} ⊢ b:T ∗2 ◦→ S∗2

C∗ ⊢ forall(a)(ΛX.λxX ◦→1.b):∀X((X ◦→ T ∗1)→ T ∗2) ◦→ ∀X((X ◦→ S∗1)→ S∗2)

(recd)∗
C∗ ⊢ a1:S

∗
1 ◦→ T ∗1 . . . C∗ ⊢ ap:S

∗
p ◦→ T ∗p

C∗ ⊢ recd(a1) · · · (ap): 〈〈ℓ1:S
∗
1 , . . . , ℓp:S∗p , . . . , ℓq:S

∗
q 〉〉 ◦→ 〈〈ℓ1:T

∗
1 , . . . , ℓp:T ∗p 〉〉

323

324 APPENDIX F. TRANSLATION OF F⊤≤ INTO EXPLICIT COERCIONS

(vart)∗
C∗ ⊢ a1:S

∗
1 ◦→ T ∗1 . . . C∗ ⊢ p:S∗p ◦→ T ∗p

C∗ ⊢ vart(a1) · · · (ap): [ℓ1:S∗1 , . . . , ℓp:S∗p] ◦→ [ℓ1:T ∗1 , . . . , ℓp:T ∗p , . . . , ℓq:T ∗q]

[Vars]∗ C∗ ∪ (x:T ∗) ⊢ x:T ∗ translation of xT

[→Intro]∗
C∗ ∪ {x:T ∗} ⊢ a:T ′∗

C∗ ⊢ (λxT ∗ .a):T ∗ → T ′∗

[→Elim]∗
C∗ ⊢ a:S∗ → T ∗ C∗ ⊢ b:S∗

C∗ ⊢ a(b):T ∗

[Top]∗ C∗ ⊢ 〈〉: 1

[∀Intro]∗
C∗ ∪X ∪ {x:X ◦→ T ∗} ⊢ a:T ′∗

C∗ ⊢ ΛXλxX ◦→T ∗ .a:∀X(X ◦→ T ∗)→ T ′∗

[∀Elim]∗
C∗ ⊢ a:∀X(X ◦→ S∗)→ T ∗C∗ ⊢ b:S′∗ ◦→ S∗

C∗ ⊢ a(S′∗)(b):T ∗[X := S′∗]

[〈〈〉〉Intro]∗
C∗ ⊢ a1:T

∗
1 . . . C∗ ⊢ ap:T

∗
p

C∗ ⊢ 〈ℓ1 = a1, . . . , ℓp = ap〉: 〈〈ℓ1:T ∗1 , . . . , ℓp:T ∗p 〉〉

[〈〈〉〉Elim]∗
C∗ ⊢ a: 〈〈ℓ1:T

∗
1 , . . . , ℓp:T

∗
p 〉〉

C∗ ⊢ a.ℓi:T
∗
i

[[]Intro]∗
C∗ ⊢ a:T ∗i

C∗ ⊢ [ℓ1:T
∗
1 , . . . , ℓi = ai; . . . , ℓp:T ∗p]: [ℓ1:T

∗
1 , . . . , ℓi:T

∗
i , . . . , ℓp:T ∗p]

[[]Elim]∗
C∗ ⊢ b: [ℓ1:T

∗
1 , . . . , . . . , ℓp:T

∗
p] C∗ ⊢ a1:T

∗
1 → T ∗ . . . C∗ ⊢ ap:T

∗
p → T ∗

C∗ ⊢ case b of ℓ1 ⇒ a1, . . . , ℓp ⇒ ap:T
∗

[µIntro]∗
C∗ ⊢ a:T ∗[X := µX.T ∗]

C∗ ⊢ introµX.T ∗(a):µX.T ∗

[µElim]∗
C∗ ⊢ a:µX.T ∗

C∗ ⊢ elim(a): [X := µX.T ∗]

[Subsumption]∗
C∗ ⊢ a:T ′∗ C∗ ⊢ b:T ′∗ ◦→ T ∗

C∗ ⊢ ι(b)(a):T ∗

Bibliography

[ABGO93] A. Albano, R. Bergamini, G. Ghelli, and R. Orsini. An object data model with
roles. In Proceedings of the 19th VLDB Conference, Dublin, 1993.

[ABW+92] M. Atkinson, F. Bancilhlon, D. De Witt, K. Dittrich, D. Maier, and S. Zdonik.
The object-oriented database system manifesto, chapter 1, pages 3–20. Morgan
Kaufmann, 1992. In [BDe92].

[AC90] R. Amadio and L. Cardelli. Subtyping recursive types. Technical report, Digital
System Research Center, August 1990.

[ACC93] M. Abadi, L. Cardelli, and P.-L. Curien. Formal parametric polymorphism. In
Dezani, Ronchi, and Venturini, editors, Böhm Festschrift. 1993.

[AKP91] H. Aı̈t-Kaci and A. Podelski. Towards a meaning of LIFE. Technical Report 11,
Digital, Paris Research Laboratory, June 1991.

[AL91] A. Asperti and G. Longo. Categories, Types and Structures: An Introduction to
Category Theory for the Working Computer Scientist. MIT-Press, 1991.

[Ama91] R. Amadio. Recursion and Subtyping in Lambda Calculi. PhD thesis, Università
degli Studi di Pisa, 1991.

[App92] Apple Computer Inc., Eastern Research and Technology. Dylan: an object-
oriented dynamic language, April 1992.

[Bar84] H.P. Barendregt. The Lambda Calculus Its Syntax and Semantics. North-
Holland, 1984. Revised edition.

[BDe92] F. Bancilhon, C. Delobel, and P. Kanellakis (eds.). Implementing an Object-
Oriented database system: The story of O2. Morgan Kaufmann, 1992.

[BL90] K.B. Bruce and G. Longo. A modest model of records, inheritance and bounded
quantification. Information and Computation, 87(1/2):196–240, 1990. A prelim-
inary version can be found in 3rd Ann. Symp. on Logic in Computer Science,
1988.

[BM92] Kim Bruce and John Mitchell. PER models of subtyping, recursive types and
higher-order polymorphism. In Proceedings of the Nineteenth ACM Symposium
on Principles of Programming Languages, Albequerque, NM, January 1992.

325

326 BIBLIOGRAPHY

[Bru91] K.B. Bruce. The equivalence of two semantic definitions of inheritance in object-
oriented languages. In Proceedings of the 6th International Conference on Math-
ematical Foundation of Programming Semantics, 1991. To appear.

[Bru92] K.B. Bruce. A paradigmatic object-oriented programming language: Design,
static typing and semantics. Technical Report CS-92-01, Williams College,
Williamstown, MA 01267, January 1992.

[Bru93] K. B. Bruce. Safe type checking in a statically typed object-oriented program-
ming language. In 20th Ann. ACM Symp. on Principles of Programming Lan-
guages. ACM Press, 1993.

[BTCGS91] V. Breazu-Tannen, T. Coquand, C. Gunter, and A. Scedrov. Inheritance as
implicit coercion. Information and Computation, 93(1):172–221, July 1991.

[Car88] Luca Cardelli. A semantics of multiple inheritance. Information and Computa-
tion, 76:138–164, 1988. A previous version can be found in Semantics of Data
Types, LNCS 173, 51-67, Springer-Verlag, 1984.

[Car92] Luca Cardelli. Extensible records in a pure calculus of subtyping. Research
report 81, DEC Systems Research Center, January 1992. To appear in [GM93].

[Car93] L. Cardelli. An implementation of F<:. Technical Report 97, Digital Equipment
Corporation, February 1993.

[Cas90a] G. Castagna. Modélisation et typage de quelques propriétés des langages orientés
objets. Dea d’informatique fondamentale, Université Paris 7, 1990. (in english).

[Cas90b] G. Castagna. Teoria dei tipi dei linguaggi orientati ad oggetti. Tesi di laurea in
scienze dell’informazione, Università di Pisa, April 1990.

[Cas92] G. Castagna. Strong typing in object-oriented paradigms. Technical Report 92-
11, Laboratoire d’Informatique, Ecole Normale Supérieure - Paris, June 1992.

[Cas93a] G. Castagna. F&
≤ : integrating parametric and ”ad hoc” second order poly-

morphism. In C. Beeri, A. Ohori, and D. Shasha, editors, Proc. of the 4th
International Workshop on Database Programming Languages, Workshops in
Computing, pages 335–355, New York City, September 1993. Springer-Verlag.
DBPL4.

[Cas93b] G. Castagna. A meta-language for typed object-oriented languages. In R.K.
Shyamasundar, editor, 13th Conference on the Foundations of Software Tech-
nology and Theoretical Computer Science, number 761 in LNCS, pages 52–71,
Bombay, India, December 1993. Springer-Verlag. FST&TCS’93.

[CCH+89] P.S. Canning, W.R. Cook, W.L. Hill, J. Mitchell, and W.G. Olthoff. F-bounded
quantification for object-oriented programming. In ACM Conference on Func-
tional Programming and Computer Architecture, September 1989.

BIBLIOGRAPHY 327

[CCHO89] P.S. Canning, W.R. Cook, W.L. Hill, and W.G. Orthoff. Interfaces for strongly-
typed object-oriented programming. In OOPSLA ’89, New Orleans, October
1989.

[CDG+89] L. Cardelli, J. Donahue, L. Glassman, M. Jordan, B. Kalsow, and G.Nelson.
Modula-3 Report. Digital SRC, 130 Lytton Avenue, Palo Alto CA, tr 52 edition,
November 1989.

[CG92] P. L. Curien and G. Ghelli. Coherence of subsumption, minimum typing and
the type checking in F≤. Mathematical Structures in Computer Science, 2(1),
1992.

[CGL92a] G. Castagna, G. Ghelli, and G. Longo. A calculus for overloaded functions with
subtyping. In ACM Conference on LISP and Functional Programming, pages
182–192, San Francisco, July 1992. ACM Press. Extended abstract.

[CGL92b] G. Castagna, G. Ghelli, and G. Longo. A calculus for overloaded functions
with subtyping, 1992. To appear in Information and Computation. An extended
abstract has appeared in the proceedings of the ACM Conference on LISP and
Functional Programming, pp.182-192; San Francisco, June 1992.

[CGL93] G. Castagna, G. Ghelli, and G. Longo. A semantics for λ&-early: a calculus
with overloading and early binding. In M. Bezem and J.F. Groote, editors,
International Conference on Typed Lambda Calculi and Applications, number
664 in LNCS, pages 107–123, Utrecht, The Netherlands, March 1993. Springer-
Verlag. TLCA’93.

[CH88] T. Coquand and G. Huet. The calculus of constructions. Information and
Computation, 76, 1988.

[CHC90] W.R. Cook, W.L. Hill, and P.S. Canning. Inheritance is not subtyping. 17th
Ann. ACM Symp. on Principles of Programming Languages, January 1990.

[CL91a] L. Cardelli and G. Longo. A semantic basis for Quest. Journal of Functional
Programming, 1(4):417–458, 1991.

[CL91b] G. Castagna and G. Longo. From inheritance to Quest’s type theory. In Ecole Je-
unes Chercheurs du GRECO de Programmation, Sophia-Antipolis (Nice), April
1991. Talk given at the 5th Jumelage on Typed Lambda Calculus - Paris -
January 1990.

[CM91] L. Cardelli and J.C. Mitchell. Operations on records. Mathematical Structures
in Computer Science, 1(1):3–48, 1991.

[CMMS91] L. Cardelli, S. Martini, J.C. Mitchell, and A. Scedrov. An extension of system
F with subtyping. In T. Ito and A.R. Meyer, editors, Theoretical Aspects of
Computer Software, pages 750–771. Springer-Verlag, September 1991. LNCS
526 (preliminary version). To appear in Information and Computation.

328 BIBLIOGRAPHY

[CP89] W. Cook and J. Palsberg. A denotational semantics of inheritance and its cor-
rectness. In OOPSLA ’89, New Orleans, October 1989.

[CP94] G. Castagna and B.C. Pierce. Decidable bounded quantification. In 21st Annual
Symposium on Principles Of Programming Languages, pages 151–162, Portland,
Oregon, January 1994. ACM Press. POPL’94.

[CW85] L. Cardelli and P. Wegner. On understanding types, data abstraction, and
polymorphism. Computing Surveys, 17(4):471–522, December 1985.

[dB72] Nicolas G. de Bruijn. Lambda-calculus notation with nameless dummies: a
tool for automatic formula manipulation with application to the Church-Rosser
theorem. Indag. Math., 34(5):381–392, 1972.

[DG87] L.G. DeMichiel and R.P. Gabriel. Common lisp object system overview. In
Bézivin, Hullot, Cointe, and Lieberman, editors, Proc. of ECOOP ’87 European
Conference on Object-Oriented Programming, number 276 in LNCS, pages 151–
170, Paris, France, June 1987. Springer-Verlag.

[ES90] M.A. Ellis and B. Stroustrup. The Annotated C++ Reference Manual. Addison-
Wesley, 1990.

[Ghe90] G. Ghelli. Proof Theoretic Studies about a Minimal Type System Integrating
Inclusion and Parametric Polymorphism. PhD thesis, Dipartimento di Infor-
matica, Università di Pisa, March 1990. Tech. Rep. TD-6/90.

[Ghe91] G. Ghelli. A static type system for message passing. In Proc. of OOPSLA ’91,
1991.

[Ghe93a] G. Ghelli. Divergence of F≤ type-checking. Technical Report 5/93, Dipartimento
d’Informatica, Università degli Studi di Pisa, 1993.

[Ghe93b] G. Ghelli. Recursive types are not conservative over F≤. In M. Bezem and J.F.
Groote, editors, International Conference on Typed Lambda calculi and Appli-
cations, number 664 in LNCS, pages 146–162, Utrecht, The Netherlands, March
1993. Springer-Verlag. TLCA’93.

[Ghe93c] G. Ghelli. S-All-Loc is not transitive. Mail to the TYPES mailing list, February
1993.

[Gir72] J-Y. Girard. Interprétation fonctionelle et élimination des coupures dans
l’arithmétique d’ordre supérieur. Thèse de doctorat d’état, 1972. Université
Paris VII.

[GM85] Joseph Goguen and José Meseguer. EQLOG: equality, types and generic modules
for logic programming. In deGroot and Lindstrom, editors, Functional and Logic
Programming. Prentice-Hall, 1985.

BIBLIOGRAPHY 329

[GM89] J.A. Goguen and J. Meseguer. Order-sorted algebra I: Equational deduction for
multiple inheritance, overloading, exceptions and partial operations. Technical
Report SRI-CSL-89-10, Computer Science Laboratory, SRI International, July
1989.

[GM93] Carl A. Gunter and John C. Mitchell. Theoretical Aspects of Object-Oriented
Programming: Types, Semantics, and Language Design. The MIT Press, 1993.
To appear.

[GP93] G. Ghelli and B. Pierce. Bounded existentials and minimal typing. Draft report,
Dipartimento d’Informatica Università di Pisa, 1993. Unpublished.

[GR83] A. Goldberg and D. Robson. Smalltalk-80: The Language and its implementa-
tion. Addison-Wesley, 1983.

[Hin64] R. Hindley. The Church-Rosser property and a result of combinatory logic.
Dissertation, 1964. University of Newcastle-upon-Tyne.

[Hin69] R. Hindley. The principal type-scheme of an object in combinatory logic. Trans.
A.M.S., 149:22–60, January 1969.

[How80] W.A. Howard. The formulae-as-types notion of construction. In J.R. Hindley
and J.P. Seldin, editors, To H.B. Curry: Essays in Combinatory Logic, Lambda
Calculus and formalism. Academic Press, 1980.

[KB70] Donald E. Knuth and Peter B. Bendix. Simple word problems in universal
algebras. In J. Leech, editor, Computational Problems in Abstract Algebra, pages
263–297. Pergamon Press, 1970.

[Kee89] S.K. Keene. Object-Oriented Programming in Common Lisp: A Programming
Guide to CLOS. Addison-Wesley, 1989.

[KLR92] P. Kanellakis, C. Lécluse, and P. Richard. Introduction to the O2 data model,
chapter 3, pages 61–76. Morgan Kaufmann, 1992. In [BDe92].

[KS92] D. Katiyar and S. Sankar. Completely bounded quantification is decidable. In
Proceedings of the ACM SIGPLAN Workshop on ML and its Applications, pages
68–77, San Francisco, June 1992.

[LM91] G. Longo and E. Moggi. Constructive natural deduction and its ω-set interpre-
tation. Mathematical Structures in Computer Science, 1(2):215–253, 1991.

[LMS93] G Longo, K. Milsted, and S. Soloviev. The genericity theorem and parametricity
in functional languages. Theoretical Computer Science, 1993. Special issue in
honour of Corrado Böhm, to appear. An extended abstract has been presented
at the 8th Annual IEEE Symposium on Logic in Computer Science, Montreal,
June 1993.

[Lon83] G. Longo. Set-theoretical models of lambda-calculus: Theories, expansions,
isomorphisms. Annals of Pure and Applied Logic, 24:153–188, 1983.

330 BIBLIOGRAPHY

[Lon93] Giuseppe Longo. Types as parameters. In M.-C. Gaudel and J.-P. Jouannaud,
editors, TAPSOFT’93: Theory and Practice of Software Development, number
668 in LNCS, pages 658–670, Orsay, France, April 1993. Springer-Verlag.

[Mey88] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall Interna-
tional Series, 1988.

[MH88] J.C. Mitchell and R. Harper. The essence of ML. 15th Ann. ACM Symp. on
Principles of Programming Languages, January 1988.

[Mil78] Robin Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17:348–375, 1978.

[Mit86] J. C. Mitchell. A type inference approach to reduction properties and seman-
tics of polymorphic expressions. In ACM Conference on LISP and Functional
Programming, pages 308–319, 1986.

[Mit90a] J.C. Mitchell. Toward a typed foundation for method specialization and inheri-
tance. 17th Ann. ACM Symp. on Principles of Programming Languages, January
1990.

[Mit90b] John C. Mitchell. Toward a typed foundation for method specialization and
inheritance. In Proceedings of the 17th ACM Symposium on Principles of Pro-
gramming Languages, pages 109–124, January 1990. To appear in [GM93].

[MOM90] N. Mart́ı-Oliet and J. Meseguer. Inclusions and subtypes. Technical report, SRI
International, Computer Science Laboratory, December 1990.

[MP85] J.C. Mitchell and G. Plotkin. Abstract types have existential type. 12th Ann.
ACM Symp. on Principles of Programming Languages, pages 37–51, January
1985.

[MR91] Q.Y. Ma and J. Reynolds. Types, abstractions and parametric polymorphism,
part II. In MFCS. LNCS, Springer-Verlag, 1991.

[New42] M.H.A. Newman. On theories with a combinatorial definition of “equivalence”.
Annals of Math., 43(2):223–243, 1942.

[NeX91] NeXT Computer Inc. NeXTstep-concepts. Chapter 3: Object-Oriented Program-
ming and Objective-C, 2.0 edition, 1991.

[Pie93] Benjamin C. Pierce. Bounded quantification is undecidable. Information and
Computation, 1993. To appear; also to appear in [GM93]. Preliminary version
in proceedings of POPL ’92.

[Plo75] G.D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Com-
puter Science, 1, 1975.

BIBLIOGRAPHY 331

[PT93] B.C. Pierce and D.N. Turner. Simple type-theoretic foundations for object-
oriented programming. Journal of Functional Programming, 1993. To appear;
a preliminary version appeared in Principles of Programming Languages, 1993,
and as University of Edinburgh technical report ECS-LFCS-92-225, under the
title “Object-Oriented Programming Without Recursive Types”.

[PW92] L.J. Pinson and R.S. Wiener. Objective-C: Object-Oriented Programming Tech-
niques. Addison-Wesley, 1992.

[“Q65] Joaquin Salvador Lavado “Quino”. Mafalda, volume 1. Ediciones de la Flor,
Buenos Aires, Argentina, December 1965.

[Rém89] D. Rémy. Typechecking records and variants in a natural extension of ML. In
16th Ann. ACM Symp. on Principles of Programming Languages, 1989.

[Rém90] Didier Rémy. Algèbres Touffues. Application au Typage Polymorphe des Objects
Enregistrements dans les Langages Fonctionnels. Thèse de doctorat, Université
de Paris 7, 1990.

[Rey74] J.C. Reynolds. Towards a theory of type structures. LNCS, 19:408–425, 1974.

[Rey83] J.C. Reynolds. Types, abstractions and parametric polymorphism. In R.E.A.
Mason, editor, Information Processing ’83, pages 513–523. North-Holland, 1983.

[Rey84] J.C. Reynolds. Polymorphism is not set-theoretic. LNCS, 173, 1984.

[Ros73] B. K. Rosen. Tree manipulation systems and Church-Rosser theorems. Journal
of ACM, 20:160–187, 1973.

[Rou90] F. Rouaix. ALCOOL-90, Typage de la surcharge dans un langage fonctionnel.
PhD thesis, Université PARIS VII, December 1990.

[Sco76] D. Scott. Data-types as lattices. S. I. A. M. J. Comp., 5:522–587, 1976.

[Str67] C. Strachey. Fundamental concepts in programming languages. Lecture notes for
International Summer School in Computer Programming, Copenhagen, August
1967.

[Str84] Bjarne Stroustrup. Data abstraction in C. AT&T Bell Laboratories Technical
Journal, 63(8):1701–1732, October 1984.

[Tsu92] Hideki Tsuiki. A record calculus with a merge operator. PhD thesis, Faculty of
Environmental Information, Keio University, November 1992.

[Tsu94] Hideki Tsuiki. A normalizing calculus with overloading and subtyping. In TACS,
LNCS. Springer-Verlag, 1994.

[Tur37] A.M. Turing. The p-functions in λ-K-conversion. Journal of Symbolic Logic, 2,
1937.

332 BIBLIOGRAPHY

[Wan87] Mitchell Wand. Complete type inference for simple objects. In 2nd Ann. Symp.
on Logic in Computer Science, 1987.

[Wan88] Mitchell Wand. Corrigendum: Complete type inference for simple objects. In
3rd Ann. Symp. on Logic in Computer Science, 1988.

[Wan91] Mitchell Wand. Type inference for record concatenation and multiple inheri-
tance. Information and Computation, 93(1):1–15, 1991.

[WB89] Philip Wadler and Stephen Blott. How to make “ad-hoc” polymorphism less
“ad-hoc”. In 16th Ann. ACM Symp. on Principles of Programming Languages,
pages 60–76, 1989.

Index

>R, 59
>=
R, 59

>+
R, 59

>∗R, 59

&, 81
•, 81
←, 99

∩-closure, see meet closure
ΩT , 112

ΘT , 113
YT , 112

⇓, 83

;, 148, 232, 260
⊕, 124

∼, 85, 172
r, 99, 241

ζ, 133

β, 90

β&

for second order, 240
for simple typing, 90

unconditional, 118
β∀, 240

β+
& , 125

Church-Rosser, see theorem

property, 60

class, 66
abstract, 107

extension, 72, 267
generic, 271

partially abstract, 109
closure

compatible, 59

reflexive, 59
transitive, 59

code reuse, 52
coerce, 73
coercion combinators, 215
coercion expressions, 231
coercions, 128–131

semantic, 179
completion, 173
confluence, 60
contractum, 60
covariance, 78, 265

rule in λ&, 83
vs. contravariance, 107, 276

Curry-Horward isomorphism, 231

early binding, 52, 65, 175–176
encoding

of simple records in λ&, 98
of surjective pairs in λ&, 97
of updatable records in λ&, 99

fixed point combinators, 112
F≤, 198
F&
≤ , 223

F&⊤
≤ , 259

F⊤≤ , 201

F⊤µ≤ , 218

generator, 103

heterarchy, 71

inheritance
by generator extension, 103
in λ&, 105

instance variables, 63
interface, 67

λ&, 81–120

333

334 INDEX

λ&-
≤, 114

λ&+, 121
λ&-

T, 114
λ object , 150
λ{}, 132
λ&+coerce, 128
language

target
for F⊤≤ , 214
for λ object , 167

late binding, 52, 65, 82, 240
lemma

Hindley-Rosen, 95, 255
substitution

for λ&+coerce, 129
for λ&+, 126
in λ&, 92

loss of information, 196, 224

meet closure, 226
message, 64
messages, 75
method, 63

binary, 104, 105
deferred, 107
multi-method, 74
virtual, 107

multiple dispatch, 74, 269
multiple inheritance, 71, 79, 122
Mytype, 104, 264

normal form, 60
notion of reduction, 59

objects, 63, 151
as records analogy, 54, 102, 196

overloaded functions
semantic of, 184

overloaded types
completion of, 172–175
semantics of, 180–184

overloading, 64, 75
coherent, 176fn, 191

overriding, 70

partial equivalence relations, see PER

PER, 177–179
polymorphism

ad hoc, 51
explicit, 197
F-bounded, 104

implicit, 196
parametric, 51

Pω, 177

pretypes, 84
product

indexed, 181

receiver, 64
records

generator, 103

simple, 98
updatable, 99, 131, 241

redex, 60

reduction
in F&

≤ , 240
in λ&, 90

relation, 59
compatible, 59
equivalence, 59

reducttion, 59
reflexive, 59
transitive, 59

residual, 82

self, 73

semantics
of →, 178
of F⊤≤ , 212

of λ&, 171
operational, 152

state coherence, 78

stratified system, 113
subclass, 68
subject reduction, see theorem

substitution
in λ&, 90
lemma, see lemma

subsumption
elimination, 88
rule, 88

INDEX 335

subtyping, 69, 78

algorithm for F&⊤
≤ , 259

algorithm for F⊤≤ , 207

algorithm of F&
≤ , 236

in F&
≤ , 227

in λ&, 84

in the toy language, 143

semantics of, 179

super, 73

superclass, 68

surjective pairings, 98

tag, 150

target language, see language

termination, 260

terms

in F&
≤ , 238

in λ&, 86

in λ object , 152

theorem

Church-Rosser

for λ&+coerce, 129

for λ{}, 134

for F&
≤ , 255

for λ&, 95

for λ&+, 127

coherence for F⊤≤ , 217

coherence of F&
≤ , 236

completeness

of the typing algorithm for F⊤≤ , 207

conservativity of λ&+, 126

conservativity of recursive types, 218

soundness

of semantics w.r.t. reductions, 188

of semantics w.r.t. types, 185

of the typing algorithm for F⊤≤ , 207

strong normalization, 114

subject reduction

for λ&+coerce, 129

for λ{}, 133

for F&
≤ , 243

for λ&, 92

for λ&+, 126

subsumption elimination, 88

termination
for F&⊤

≤ , 260

for F⊤≤ , 209
transitivity elimination, see transitiv-

ity elimination
theory, 60

conservative extension, 60
extension, 60

transitivity elimination
in F⊤≤ , 208, 230
in λ&, 85

type
compile-time, 82
errors, 153
representation, 100
run-time, 82

type constraint system, 204
typed induction, 115
types

in the toy language, 144
dynamic, 160
general overloaded, 172
in F&

≤ , 227
in λ&, 85
in λ object , 154
isolated, 97
recursive, 213, 218
variant, 213

typing rules
in the toy language, 145
in F&

≤ , 238
in λ&, 87

value, 83, 152
in λ&, 89

wrapping, 103

336 INDEX

Look, that’s the world, you see?
Do you know why this world is nice? Ehee?
’cause it’s a model . . . The original is a disaster!

