
Polymorphic Records for Dynamic Languages

GIUSEPPE CASTAGNA, CNRS, Université Paris Cité, France
LOÏC PEYROT, Université Paris Cité, France

We define and study row polymorphism for a type system with set-theoretic types, specifically union, in-

tersection, and negation types. We consider record types that embed row variables and define a subtyping

relation by interpreting types into sets of record values and by defining subtyping as the containment of

interpretations. We define a functional calculus equipped with operations for field extension, selection, and

deletion, its operational semantics, and a type system that we prove to be sound. We provide algorithms for

deciding the typing and subtyping relations.

This research is motivated by the current trend of defining static type system for dynamic languages and,

in our case, by an ongoing effort of endowing the Elixir programming language with a gradual type system.

CCS Concepts: • Theory of computation → Type structures; Program analysis; • Software and its engi-

neering→ Functional languages.

1 INTRODUCTION
The goal of this work is to study row polymorphism for a type system with set-theoretic types, in

particular, union, intersection, and negation types. Row polymorphism was originally introduced

by Rémy [1989, 1994] and Wand [1987, 1991] and further studied and developed in several works

(e.g., [Gaster and Jones 1996; Leijen 2005; Morris and McKinna 2019; Tang et al. 2023]). However,

as we argue in this work, the theories in the current literature cannot be reused for systems with

set-theoretic types and, hence, an original one must be developed.

The interest of developing this new theory is grounded in practice. There is a growing effort

to develop type systems for dynamic languages: TypeScript [Microsoft 2012] and Flow [Facebook

2015] are two major examples of such an effort and, as most of the existing attempts to add type

systems to dynamic languages, they include union and intersection types to accommodate the

flexible programming patterns prevalent in such languages. In particular, some widely used dynamic

programming languages—such as Luau [Jeffrey 2022; Roblox 2021], and Elixir [2012]—have adopted

set-theoretic types as defined in the semantic subtyping framework by Frisch et al. [2008]. There, (𝑖)
types are interpreted as sets of values, (𝑖𝑖) unions, intersections, and negation types are interpreted

as the corresponding set-theoretic interpretations, and (𝑖𝑖𝑖) the subtyping between two types is

defined as set-containment of their interpretations. Since semantic subtyping is the framework

that we use here, our work can be considered as a study on adding row polymorphism to Luau and

Elixir. In particular, the rest of this section uses Elixir’s syntax to showcase practical motivations.

1.1 A motivating example
To show the interest of having row polymorphism in dynamic languages, let us consider the logger
module of Elixir’s standard library, which exports the following function (lightly rewritten to make

its definition less dependent on Elixir idiom: see [Elixir 2024] for the actual version):

1 def add_elixir_domain(x) do
2 case x do
3 %{domain: y} when is_list(y) -> %{x | domain: [:elixir | y]}
4 _ -> Map.put(x, :domain, [:elixir])
5 end
6 end

This code snippet defines the function add_elixir_domain, whose argument, bound to x , is matched

in a case expression. The argument must be a record value (in Elixir records are called maps and

HTTPS://ORCID.ORG/0000-0003-0951-7535
HTTPS://ORCID.ORG/0000-0002-1398-7460

2 Giuseppe Castagna and Loïc Peyrot

are delimited by curly brackets prefixed by the “%” symbol). If it is a record with (at least) a field for

the key :domain whose content is a list (line 3), then the function returns a copy of the argument

in which the field with key :domain is updated by consing the atom
1 :elixir to the list in the

argument. Otherwise, (line 4), the function adds (if absent) or replaces (if present but does not

contain a list) in the record x a field :domain whose content is the singleton list whose only element

is the atom :elixir (this is performed by the function Map.put of Elixir’s standard library).

The current proposal for the Elixir type system [Castagna et al. 2024a] does not feature row

polymorphism. Hence, add_elixir_domain can be given the following type (Elixir uses the symbol

$ to signal that what follows is a type):

7 $ %{...} -> %{domain: list(term()),...}

In Elixir the ellipsis “...” in a record type means that the record type is “open”, that is, that the

values of the record type may define other fields besides those specified in the type. Therefore,

the type above states that add_elixir_domain is a function that accepts any record value (since

%{...} is the top record type) and returns a record with at least a :domain field that contains a list

of values (in Elixir term() is the top type, which types all values, so list(term()) is the type of all

lists; following the Erlang convention, type names are post-fixed by (), e.g., integer(), term(), ...).
The problem with such a type is well known: the type does not specify that the fields correspond-

ing to the ellipsis in the result are the same as those in the argument. Thus, any static knowledge of

these fields is lost after the application. The practical consequence of this loss is that an expression

such as add_elixir_domain(%{file: "foo.txt", line: 42}).line, which tries to select the field

:line in the result of the application, is rejected by the type checker despite being correct. This

hinders the applicability of the type system to existing code and obliges the programmer to resort

to the less precise gradual typing features of Elixir’s type system.

The solution to this problem is also well known, and resorts to using row variables, which are

variables that range over “rows” of fields of a record type. For Elixir, this would correspond to

extending the system so that add_elixir_domain could be typed as follows:
2

8 $ %{f} -> %{domain: list(term()), f} when f: fields()

where f is a row variable, as stated by the post-fix declaration f: fields() (in Elixir, type variables

are post-fixedly quantified by a when declaration). Now, when typing the previous expression

add_elixir_domain(%{file: "foo.txt", line: 42}).line, this variable can be instantiated to in-

clude the two fields for the keys :file and :line in the argument, enabling the system to deduce

for the expression the type integer().

The system by Castagna et al. [2024a] for Elixir also features union, intersection, and negation

types, denoted by or, and, and not. Combined with row polymorphism, they refine the previous

type of add_elixir_domain as follows:
3

9 $ (%{domain: list(a), f} -> %{domain: list(atom() or a), f}) and
10 (%{:domain => not(list(term()), g} -> %{domain: list(atom()), g})
11 when a: term(), f: fields(), g: fields()

1
Atoms are user-defined constants prefixed by a colon and of type atom(). Field keys are atoms, too, in which the starting

colon can be omitted if the field is not optional (see later on): %{domain: 42} has a field with key :domain and value 42.
2
The syntax we propose below may differ from the one that will be included in Elixir, if any.

3
Such a refinement can also be done without row variables, but the problem with forgotten fields is still the same.

3

The type above uses the whole palette of set-theoretic types. It also uses both parametric and row

polymorphism, since the type features a type variable a and two row variables f and g, as stated

by the when declaration in line 11. The combination of these two features renders a more precise

description of the behavior of add_elixir_domain:

• The arrow type in line 9 states that when add_elixir_domain is applied to a record value formed

by a field :domain that contains a list of a elements, and by some other fields captured by f, then

the function returns a record that is of the same type as the argument except in the :domain

field that now contains a list of atom() or a elements (union type).

• The arrow type in line 10 specifies as input type a record type with an optional field (denoted

by “=>”)4 of type not(list(term())). Thus, the function type in line 10 types functions that

when applied to values in which the field :domain is either absent or bound to a value that is

not a list (negation type), then it returns a record where the :domain field contains a list of

atoms and, thanks to the row variable g, where the other fields of the argument are preserved.

• The two arrows above are connected by an intersection (the and connective at the end of line 9)

meaning that the function has both types and, thus, obeys both specifications.

If add_elixir_domain is given the type in lines 9–11 and if x is defined as:

12 x = add_elixir_domain(%{domain: [41, 43], file: "foo.txt", line: 42})

then the type deduced for the expression [x.line | x.domain] is list(atom() or integer()).

It is out of the scope of this work to explain why the precision allowed by set-theoretic types is

necessary to the typing of dynamic languages. For such an explanation, we invite the reader to

refer to [Castagna et al. 2024a] which treats the case of Elixir. We want nevertheless to stress the

importance of negation types for a precise typing of pattern matching. This is shown in line 4 of

the definition of add_elixir_domain, where the type deduced for the variable x occurring in that

line is obtained by removing, by a negation type, from the type of the input the type of all the

values captured by the preceding pattern occurring in line 3.

In the rest of this introduction we explain the details of adding row polymorphism in the presence

of set-theoretic types and how to use it to type a language with extensible records in which fields

can be added or deleted. We start by explaining why we need a new theory for row variables.

1.2 The need for row polymorphism
Even before considering whether we need a new theory for row polymorphism, we may wonder

whether we need row polymorphism at all. The system we are planning to extend features first

order (a.k.a., prenex) polymorphism with set-theoretic types and their combination is enough

to encode a limited form of bounded polymorphism, which can be used to type the following

bump_counter functions without losing the static information of the fields of the argument

13 def bump_counter(x), do: %{x | counter: x.counter+1}

This function increments the :counter field of its argument and can be typed by bounded poly-

morphism by the type ∀(𝛼≤{counter=integer(), ...}).𝛼 → 𝛼 . The type variable 𝛼 captures the

whole type of the argument, thus also its extra fields. Thanks to that the type system deduces for

4
A record type such as %{:bar => t()} means that in the values of this type, a field for the key :bar may be absent, but if

present it must contain a value of type t(). This is Erlang’s Typespec syntax: in Elixir the keyword optional is mandatory,

as in %{optional(:bar) => t()} , but we omit it to streamline the presentation.

4 Giuseppe Castagna and Loïc Peyrot

(bump_counter(%{counter: 1, file: "foo.txt"})).file the type string. The bounded polymor-

phic type above is encoded by set-theoretic types as follows (see [Castagna 2024]):
5

14 $ (%{counter: integer(),...} and a -> %{counter: integer(),...} and a) when a: term()

for which Elixir provides the nifty shorthand (a -> a) when a: %{counter: integer(),...} of

bounded polymorphism.

The example above may suggest that intersecting record types with type variables could play the

same role as row polymorphism. Unfortunately, the example above is one of the few cases in which

this works.
6
This technique may work to type functions in which the input and the output have

the same fields; but even in that case it is easy to have a partial loss of information. For instance,

consider the following function that takes as input a record with a field foo and redefines its content

(in Elixir, functions are annotated by the $-prefixed type that precedes their definition):

15 $ (a, b) -> a when b: term(), a: %{foo: b,...}
16 def redefine_foo(x,y), do: %{x | foo: y}

even though we do not lose the static type information of any field of the argument (thanks to

the type variable a), the type for the :foo field may lose precision. For example, the type deduced

for redefine_foo(%{foo: 42},true).foo is the union integer() or boolean()—rather than just

boolean()—since the type variable b is unified with the union of the type of the second argument

and the type of the field foo: of the first argument. Furthermore, the technique fails when we try

to add a new field to a record or delete an existing field from it. For instance, consider again the

function Map.put, whose use in line 4 can be abstracted as follows:

17 $ (%{...} and a -> %{domain: list(atom()),...} and a) when a: term()
18 def put_domain(x), do: Map.put(x, :domain, [:elixir])

One might think that the use of the intersection with the type variable a captures all the fields

of the argument, but the type declaration is wrong—and, as such, rejected by the type system—

because if we instantiate the variable a by a type such as %{domain: integer()} , then we deduce for

put_domain the type %{domain: integer()} -> none() , where none() is the empty type (resulting

by simplifying the intersection in the codomain): this type states that the application of put_domain

to an argument of type %{domain: integer()} must diverge (since any returned value must be in

the empty type, which contains none), which is clearly wrong. A similar problem happens when

we apply the record operations of deleting a field or of adding a field that is not already present.

The problem with the type in line 17 is that for each intersection in it not to be empty, the type

variable a must be instantiated by a record type that contains all the fields both of the input and of

the output, so in particular the field for :domain. If, as above, the field :domain has different types

in the input and in the output, then one of the two intersections results empty, which is unsound.

For the typing to work we need the type variable to instantiate all the fields of the input except the

field for :domain. This is exactly the role of row variables, which instantiate “all the other fields” of

the record type. The function put_domain can be given any of the two following types

19 $ %{f} -> %{domain: list(atom()),f} when f: fields()
20 $ %{:domain => term(), f} -> %{domain: list(atom()), f} when f: fields()

5
Intersections and unions have a precedence higher than arrows and records, and negation has the highest precedence of all.

6
Even this is not true: it is just an approximation we did for presentation purposes, since it is unsound to deduce the type a

for the result type. To see why, try to instantiate a with %{counter: 42}.

5

The type in line 19 is syntactic sugar for the one in line 20 whose domain, despite being more

verbose, explicitly states that the field :domain is either undefined or contains a value of any type.

The type in 20, thus, explicitly shows that the row variable f captures all fields but :domain.

Likewise, we need row variables for typing a function that deletes, say, the :domain field since,

once again, the type of the deleted field will be different in the input and in the output:

21 $ %{:domain => term(), f} -> %{:domain => none(), f} when f: fields()
22 def del_domain(x), do: Map.delete(x, :domain)

The codomain of the type in line 21 states that the field for :domain must be absent (i.e., if present,

it must contain a value of the empty type none(), of which there is none). As before, the type above

can be more conveniently written as: %{f} -> %{:domain => none(), f} when f: fields() , and

again, this works because f can only be instantiated to rows that do not contain a field for :domain.

Since we have established that we need row polymorphism, the next question is why not use

the existing theory? A first reason is that to integrate row polymorphism in a semantic subtyping

setting, we need to define subtyping for the polymorphic records, and this requires to interpret

the row-polymorphic record types as sets of values which, in our ken, was not done before. A

second peculiarity of our setting are optional fields that, as far as we know, are not dealt with by the

current approaches (see the discussion on presence polymorphism in Section 5 and Appendix A.1).

A third and much harder to tackle reason is that the usual unification techniques used in row

polymorphism are not sufficient in this setting. Indeed, consider the following example:

23 type figure() = %{shape: "circle", perim: integer(), diam: float()} or
24 %{shape: "polygon", perim: integer(), edges: integer()}
25 $ {perim: integer(), f} -> {perim: float(), f} when f: fields()
26 def perim_to_float(x), do: %{x | perim: to_float(x.perim)}

The first two lines define the type of figures, which are records with an integer field :perim and

with either a :diam or an :edges field, according to the value of their :shape field. In line 26 we

define a function that transforms the integer field :perim of the input into float. Its type is given in

line 25. Now, if we apply the function perim_to_float to an argument of type figure() we expect

to deduce the for it a type like figure() but where the :perim field is of type float(), that is

27 $ %{shape: "circle", perim: float(), diam: float()} or
28 %{shape: "polygon", perim: float(), edges: integer()}

but current theories of row polymorphism unify record types component-wise, which in our case

would yield the following less precise type:

29 $ %{shape: "circle" or "polygon", perim: float(), :diam => float(), :edges => integer()}

where the :shape field has now a union type and :diam and :edges have become optional. To

deduce the type in lines 27 and 28 the row variable f must be expanded into the union of two rows,

one for the shape circle and the other for the shape polygon.

Even if the problem above can be solved by particular typing techniques, the presence of negation

types in our theory invalidate such techniques in general (see example in Appendix C.1). Therefore,

we need to develop an original technique to replace unification, so that it takes into account

subtyping and enables substitutions to expand row variables into Boolean combinations of rows.

In conclusion, to embed row polymorphism in a type system featuring semantically defined

union, intersection, and negation types, we need new theoretical developments to cope with the

6 Giuseppe Castagna and Loïc Peyrot

semantic interpretation of types and the inference of substitutions for type variables in the presence

of subtyping and set-theoretic types. To do that, we proceed as we describe next.

1.3 Overview
In Section 2 we define the syntax of types and the subtyping relation. We abandon Elixir’s syntax

for maps and introduce in Section 2.1 a more theoretically-oriented one: we denote records types

as finite lists of field type specifications of the form ℓ = 𝜏 , followed by a tail 𝜍 specifying an infinite

row of fields as in {{{ℓ1 = 𝜏1, ..., ℓ𝑛 = 𝜏𝑛|||𝜍}}}. In this type, each ℓ𝑖 denotes a label (or key) of a field, and

labels are pairwise distinct; 𝜏𝑖 is either a type 𝑡 or the union 𝑡 ∨⊥, meaning that the field is optional

with type 𝑡 (i.e., Elixir’s :key => t() field) and absent if 𝑡 is the empty type (i.e., :key => none());

𝜍 is either a row variable 𝜌 , or “..” (meaning that the record type is open), or “𝜖” (meaning that the

record is closed: its values contain all and only the fields specified in the type).

To define the subtyping relation on types, we give in Section 2.2 an interpretation of types as sets

of elements of a domain D—whose elements, intuitively, represent the values of the language—and

then define subtyping as containment of the interpretations. Following Frisch [2004], records values

are interpreted as quasi-constant functions, that is, functions that map all labels into ⊥ (meaning

that the field for that label is undefined) except for a finite set of labels that are mapped into values.

Therefore, (ground) record types are interpreted as sets of quasi-constant functions. More subtle is

the interpretation for row variables which, as we saw, define the type of all the labels but a few ones;

as a consequence our interpretation will map them into partial quasi-constant functions, requiring

a careful handling of their domains.

In Section 2.3 we define an algorithm to decide the subtyping relation just defined. We do so by

extending the subtyping algorithm of the language CDuce [Benzaken et al. 2003], on which we base

our theory, and monomorphic record types to our polymorphic records. This algorithm essentially

works on Boolean combinations of record type atoms put into a specific normal form that we have

to adapt to deal with row variables. This normal form is then decomposed by comparing the types

of the fields and the tails of the record type atoms that compose it, using appropriate combinatorics.

The resulting algorithm has the same order of complexity as the one for monomorphic record types,

and we also define a backtracking-free implementation for it. Finally, we give a formal definition

for type substitutions in Section 2.4, in particular for the case of row variables which are expanded

into Boolean combinations of rows of fields, and prove that its application preserves subtyping.

In Section 3we define a languagewith record operations. For record operations, several equivalent

choices are possible [Cardelli and Mitchell 1991]. We build records starting from the empty record

value, noted {}, and adding new fields to it by the expression {𝑒 with ℓ = 𝑒′} which extends the

record (resulting from the evaluation of) 𝑒 with the field ℓ = 𝑒′, provided that a field for ℓ is not

already present in 𝑒 (this constraint is statically enforced by the type system: see rule [Ext] in

Fig. 1). The other operations on records are field selection, noted 𝑒.ℓ , which returns the content of

the field ℓ in 𝑒 , and field deletion, noted 𝑒\ℓ which removes from 𝑒 the field labeled ℓ , if any. We

define an operational semantics and a declarative type system, and we show that the latter is sound

in the sense of Wright and Felleisen [1994], by proving that every well-typed expression either

diverges or returns a value of the expression’s type (Section 3.1). Next, we define an algorithmic

type system and prove it to be sound and complete with respect to the declarative one. The system

is derived from the declarative one in a standard way: subsumption is embedded in the elimination

rules, intersection introduction is essentially embedded in the typing of 𝜆-abstractions, and the

rule for applications performs instantiation and expansion by looking for a set of substitutions that

make the type of the argument be a subtype of the domain of the function (Section 3.2).

7

Section 4 studies the tallying problem, which plays the same role as the unification problem in

type inference, but for a subtyping—rather than an equality—relation on types. The algorithmic

system in Section 3.2 is effective, provided that we produce an algorithm to deduce the type

substitutions to apply to the types of the function and the argument when typing an application.

Following Castagna et al. [2015] this can be done by solving the tallying problem for our types,

namely, the problem of deciding whether given two types, there exists a type substitution that

makes one type subtype of the other. Castagna et al. [2015] prove that the problem is decidable for

a system with function and product type constructors and set-theoretic types, and give a sound

and complete algorithm. However, defining a tallying algorithm for types with row variables is

far more difficult. This is because substitutions replace row variables by Boolean combinations of

rows of fields. We tackle this problem in Section 4, where we define a tallying algorithm for row

polymorphic types. We prove that the algorithm is sound but not complete, and we conjecture

completeness for the case in which row variables are substituted by a single row of fields.

We conclude by discussing related work (Section 5) and further research directions (Section 6).

1.4 Contributions and limitations
The overall contribution of this work is threefold, since it provides (𝑖) a theory for a first-order

polymorphic type system with row polymorphism and set-theoretic types, (𝑖𝑖) the practical motiva-

tions for such a system, as well as (𝑖𝑖𝑖) the relevant algorithms to apply it in practice. In particular,

all the examples we presented in Sections 1.1 and 1.2 are typed by our system.

The technical contributions can be summarized as follows:

(1) We describe a first-order polymorphic type theory with union, intersection and negation type

connectives, and function and record type constructors, where record types can be either closed,

open, or specify a row variable, and their fields can be declared optional (Section 2.1). We define

a subtyping relation for these types by providing an interpretation where types are interpreted

as set of values and subtyping as set containment (Section 2.2).

(2) We prove that the subtyping relation is decidable and provide a backtrack-free algorithm to

decide it (Section 2.3).

(3) We define type substitutions that map row variables into Boolean combinations of rows, and

prove that the application of type substitutions preserves subtyping (Section 2.4).

(4) We define a declarative type system for a record calculus with record extension, selection, and

deletion and prove its soundness (Section 3.1).

(5) We define an algorithmic system that we prove sound and complete with respect to the declara-

tive one (Section 3.2).

(6) We define an algorithm for the tallying problem, that is, the problem of deciding whether

given two types there exists a type substitution that make one subtype of the other; we prove

soundness of the algorithm (Section 4).

The system we define presents some limitations. Some are expected and characteristic of the kind

of systems we consider here: the typing relation is not decidable (this is typical of systems with

intersection types) and the type system has no principal types (which is already the case both for

systems with polymorphic set-theoretic types [Castagna et al. 2015, 2014] and for expressive record

type systems [Cardelli and Mitchell 1991]). Other limitations are instead new, in particular that

the tallying algorithm is sound but not complete (an example is given in Example 4.5; a complete

algorithm exists when record types are kept out of the equation: see Castagna et al. [2015]). We

prove that one of the reasons for incompleteness is that we interpret row variables into Boolean

combinations of rows rather than into single rows, and we conjecture that completeness can be

8 Giuseppe Castagna and Loïc Peyrot

recovered in the latter case, but at the expenses of the type system which can type fewer expressions

(cf. Example C.2).

Finally, from a practical point of view, the main limitation of this system is that it does not feature

first class labels, that is, the operations for field selection, extension, and deletion must specify

nominal labels which, thus, cannot be obtained as the result of a computation. This important

omission might hinder the application of our theory to dynamic languages where such a feature is

widely used. This omission, however, is deliberate since we wanted to focus on the problem of row

polymorphism, and we consider that having first-class labels is mostly orthogonal to it. We believe

that it will not be hard to extend our work on the lines of Castagna [2023] to have first class labels

also in our system, and we leave it for future work.

2 TYPES
We introduce the syntax of types (Section 2.1) and their set-theoretic interpretation from which

we derive the subtyping relation (Section 2.2). We define the algorithm to decide the subtyping

relation (Section 2.3) and prove that subtyping is preserved by type substitutions (Section 2.4).

2.1 Syntax of Types
Definition 2.1 (Rows and Types). Let L be a countable set of labels ranged over by ℓ ,V𝑡 be a

countable set of type variables ranged over by 𝛼 ,V𝑓 be a countable set of field-type variables ranged

over by 𝜃 ,V𝑟 be a countable set of row variables ranged over by 𝜌 , and B a finite set of basic types

(e.g., Int, Bool, ...) ranged over by 𝑏. The set of rows R, ranged over by 𝑟 , contains all terms inductively

generated by the corresponding grammar below. The set of types T , ranged over by 𝑡 , contains all

terms coinductively generated by the corresponding grammar below and that (1) have a finite number

of different sub-terms (regularity) and (2) in which every infinite branch contains an infinite number

of occurrences of the record or arrow type constructors (contractivity).

Kinds 𝜅 F ★ | ★⊥ | Row(𝐿)
Types 𝑡 F 𝛼 | 𝑏 | 𝑡 → 𝑡 | {{{ℓ = 𝜏, . . . , ℓ = 𝜏|||𝜍}}} | 𝑡 ∨ 𝑡 | ¬𝑡 | 0
Field types 𝜏 F 𝜃 | 𝑡 | ⊥ | 𝜏 ∨ 𝜏 | ¬𝜏
Tails 𝜍 F 𝜌 | 𝜖 | ..
Rows 𝑟 F ⟨⟨⟨ℓ = 𝜏, . . . , ℓ = 𝜏|||𝜍⟩⟩⟩𝐿 | 𝑟 ∨ 𝑟 | ¬𝑟

(1)

where 𝐿 ∈ Pfin (L) is a finite set of labels and field types are inductively defined.

We use 𝑇 to range over types, field types, and rows, and define 𝑇1 ∧ 𝑇2 =
def ¬(¬𝑇1 ∨ ¬𝑇2) and

𝑇1∖𝑇2 =
def

𝑇1 ∧ ¬𝑇2. For types, we define 1 =
def ¬0. For rows, we use a generic notation 0 for ¬⟨⟨⟨|||..⟩⟩⟩𝐿 ,

whatever the 𝐿. Following a mathematical logic terminology, basic types, arrows, and records are

called type constructors and yield type atoms, while unions, intersections, and negations are type

connectives.

The types of Definition 2.1 are those of Castagna and Xu [2011] where record types replace

product types. Coinduction accounts for recursive types and comes with the usual restrictions of

regularity (necessary for the decidability of the subtyping relation) and contractivity (which rules

out meaningless types such as an infinite tower of negations, while providing a well-founded order

for inductive proofs); see [Castagna 2024] for a detailed explanation.

We use R to range over record type atoms, that is, types of the form {{{ℓ = 𝜏, . . . , ℓ = 𝜏|||𝜍}}}. These
are unordered finite sets of fields, mapping pairwise distinct labels into field types, and followed

by a tail. We often use the more compact notation {{{(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝜍}}} where 𝐿 ∈ Pfin (L) (as in the

above definition and hereafter). If R = {{{(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝜍}}}, then we define lab(R) =
def

𝐿, tail(R) =
def

𝜍 , and

similarly for a row 𝑟 = ⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝜍⟩⟩⟩𝐿
′
. The type R above is said to be closed if 𝜍 = 𝜖 , open if 𝜍 = ..,

9

and polymorphic if 𝜍 is a row variable. We use the notation R(ℓ) to denote the field type associated

to ℓ by R. Precisely, if R = {{{(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝜍}}}, then:

R(ℓ) =
def

𝜏ℓ if ℓ ∈ 𝐿

⊥ if ℓ ∈ L ∖ 𝐿 and 𝜍 = 𝜖

1 ∨ ⊥ otherwise

Record types are largely those of polymorphic CDuce [Castagna et al. 2015, 2014; CDuce Manual]

with two exceptions: row variables and field types. The theory for the records used first in CDuce

and then in other languages (e.g., Ballerina [Clark 2022] and Elixir), was defined by Frisch [2004]

and recently extended by Castagna [2023] to account for first class labels. It considers record values

as total functions that map every label in L either into a value or into a distinguished symbol ⊥
representing undefined. Since record values are defined only on a finite set of labels, then these

functions map every label into ⊥ apart from a finite set of labels. Frisch [2004] calls these functions

the quasi-constant functions, since they map a co-finite part of their domain into a single image

called the default value: see Definition 2.2 for their formal definition.

Record types reflect this interpretation: they are composed by a finite set of field types, which

covers a finite set of labels, and by a tail which covers the infinitely many remaining labels including

the constant part of the quasi-constant function. The definition of field types given in Definition 2.1

states that when the type of the field is not a variable, then it is morally either 𝑡 or 𝑡 ∨ ⊥: in the

former case the field is mandatory with type 𝑡 ; in the latter case it is optional with type 𝑡 (and if

𝑡 = 0, then the field is undefined).

The definition of field types includes Boolean connectives and field-type variables (field variables

for short). The latter are used in two ways: for presence polymorphism (see Section 5 and Appen-

dix A.1) and to solve the tallying problem (Section 4). The tallying problem generates constraints

with Boolean formulas containing variables in arbitrary positions. Since these variables can be

instantiated by 𝑡 ∨ ⊥ we have to differentiate them from type variables which can be instantiated

only by types (hence the introduction of field variables 𝜃) and, as a consequence of instantiation,

allow ⊥ to appear anywhere (hence the introduction of Boolean combinations).

We said in the introduction that a row variable in a record type stands for all the fields not already

defined in the record type. Thus, in {{{(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝜌}}} the row variable 𝜌 represents the fields whose

labels are in L ∖ 𝐿. Formally, each row variable 𝜌 defines the fields for a cofinite set of labels that

we call the domain of 𝜌 and note as dom(𝜌) ∈ Pcofin (L). Since record types are total functions on

L, we cannot use them to interpret row variables. We need another syntactic category to denote

partial functions defined on co-finite sets of labels, that we will use to interpret row variables.

This syntactic category is the one of rows also given in Definition 2.1. Rows are of the form

⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝜍⟩⟩⟩𝐿
′
. The relevant part is the set 𝐿′ ∈ Pfin (L) at the index, which denotes the finite

set of labels on which the row is not defined. In other terms, the row above is a total function from

L ∖ 𝐿′ into field types: the 𝜏ℓ ’s define the fields for the labels in 𝐿 and the tail 𝜍 the fields for the

labels in L ∖ (𝐿∪𝐿′). Of course, not every row or record type is well-formed, since we must ensure

that the various 𝐿, 𝐿′, and dom(𝜌) form a partition of L. They have to verify three properties:

(1) In a type {{{(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝜌}}} we must have L ∖ 𝐿 = dom(𝜌);
(2) In a row ⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝜍⟩⟩⟩𝐿

′
we must have 𝐿 ∩ 𝐿′ = ∅ and, if 𝜍 = 𝜌 , L ∖ (𝐿 ∪ 𝐿′) = dom(𝜌);

(3) Unions (and, thus, intersections) can only be performed between rows defined on the same

set of labels.

These conditions are enforced by a kinding system (whose straightforward definition is given in

Fig. 3), which selects the terms that are well-formed in the kind ★ of types, the kind ★⊥ of field

types, and the kind Row(𝐿) of rows that are defined on the labels in L ∖ 𝐿.

10 Giuseppe Castagna and Loïc Peyrot

2.2 Subtyping relation
Following Frisch et al. [2008] the subtyping relation for the types of the previous section is defined

by interpreting them into subsets of some domain D whose elements represent the values of the

language, and by defining subtyping as the containment of interpretations. Defining an interpre-

tation for our types presents three major challenges: (1) how to interpret function types into a

domain D which, for cardinality reasons, cannot contain its function space; (2) how to interpret

type, row, and field variables; (3) how to interpret polymorphic record types.

The techniques to solve the first two problems are already found in the literature on semantic

subtyping. Frisch et al. [2008] interpret function types by giving the definition of a model, that is, a

domain and an interpretation on that domain that satisfy some specific conditions. These conditions

are given by an auxiliary function called the extensional interpretation and require that the zeros of

the interpretation function and of its extensional interpretation are the same. Frisch et al. [2008]

then define some specific interpretations and prove that each of them satisfies the conditions of

model, thus yielding a subtyping relation. When types include type variables, Castagna and Xu

[2011] show that the solution by Frisch et al. [2008] can be used provided that the interpretation

function and its extensional interpretation are parametric in the interpretation of the variables,

and that models satisfy a further condition called convexity. To solve the third challenge, then, one

can start from the interpretation of monomorphic records given by Frisch [2004], extend it with

the techniques by Castagna and Xu [2011] to interpret type variables, adapt it to interpret field

variables, and introduce new techniques to handle row variables.

This is exactly what we do here. We extend the definitions of extensional interpretation and of

model given by Castagna and Xu [2011] to cope with polymorphic record types. Then we define a

specific interpretation, that is convex by construction, and prove it to satisfy the conditions of a

model. To do this proof we need the definition of a second specific interpretation, which is harder

to work with (e.g., for proving properties of the subtyping relation) but that can be more easily

proved to be a model. Finally, we prove that the latter interpretation is equivalent to (in the sense

that it induces the same subtyping relation as) the former. For space reasons, we present here

only the specific interpretation that we use to define subtyping and derive its decision procedure.

The comprehensive technical development with the definition of the extensional interpretation,

of a model, and the proof that the interpretation we present below is indeed a model is moved to

Appendix A.2, given as supplemental material of the submission.

To interpret record values we follow Frisch [2004] and represent a record value by a quasi-

constant function that maps labels into either values (i.e., the elements of D) or ⊥. Quasi-constant
functions are total functions that map all but a finite set of elements of their domain into the same

value (called default value). Thus, record values can be represented by quasi-constant functions

whose default value is ⊥ (see Castagna [2023] for a more detailed explanation). Formally, we have

the following definition.

Definition 2.2 ([Frisch 2004]). Let 𝑍 denote some set. A function 𝑟 : L → 𝑍 is quasi-constant if

there exists 𝑧 ∈ 𝑍 such that the set {ℓ ∈ L | 𝑟 (ℓ) ≠ 𝑧} is finite. We use L _ 𝑍 to denote the set of

quasi-constant functions from L to 𝑍 and {[ℓ1 = 𝑧1, . . . , ℓ𝑛 = 𝑧𝑛, = 𝑧]} to denote the quasi-constant
function 𝑟 : L _ 𝑍 defined by 𝑟 (ℓ𝑖) = 𝑧𝑖 for 𝑖 = 1..𝑛 and 𝑟 (ℓ) = 𝑧 for ℓ ∈ L∖{ℓ1, . . . , ℓ𝑛}.

Let us write D⊥ for D ∪ {⊥} where ⊥ is a distinguished element not in D. We represent our

record values as quasi-constant functions from L to D⊥ and, thus, interpret record types as sets

of these values, that is, of functions in L _ D⊥. But we have also to interpret rows, which are

defined only on a cofinite subset of L. In other terms, rows are partial quasi-constant functions

from L to D⊥, that we note L /_ D⊥.

11

Since a total function is also a partial one, then we need just the latter in our domain to interpret

record types and rows. This yields the following definition of domain.

Definition 2.3 (Interpretation Domain). As interpretation domain D for types, we take the

set of finite terms 𝑑 produced inductively by the following grammar, where 𝑐 ranges over the set C of

constants, ℓ over the set L of labels, and𝑉 over sets of variables contained inV = V𝑡 ∪V𝑓 ∪V𝑟 . The

interpretation domain D⊥ for fields (resp. Drow for rows) is the set of terms 𝛿 (resp. ¯̄𝑑).

𝑑 F 𝑐𝑉 | {(𝑑, 𝜕), . . . , (𝑑, 𝜕)}𝑉 | Rec(¯̄𝑑)𝑉 dom(¯̄𝑑) = L
¯̄𝑑 F ⟨|ℓ1 = 𝛿, . . . , ℓ𝑛 = 𝛿, _ = ⊥∅ |⟩𝑉𝐿 𝐿 ∈ Pfin (L ∖ {ℓ1, ..., ℓ𝑛})
𝜕 F 𝑑 | Ω
𝛿 F 𝑑 | ⊥𝑉

We use 𝐷 for an element that is either 𝑑 , ¯̄𝑑 or 𝛿 . We define dom(⟨|(ℓ = 𝛿ℓ)ℓ∈𝐿1
, _ = ⊥∅ |⟩𝑉

𝐿2
) = L ∖ 𝐿2.

We use tag(𝐷) to denote the set of variables indexing 𝐷 , that is, tag(𝑐𝑉) = tag({(𝑑, 𝜕), . . . , (𝑑, 𝜕)}𝑉) =
tag(Rec(¯̄𝑑)𝑉) = tag(⟨|ℓ1 = 𝛿, . . . , ℓ𝑛 = 𝛿, _ = ⊥∅ |⟩𝑉

𝐿
) = tag(⊥𝑉) = 𝑉 .

The intuition behind this definition is simple. The elements of the domain are constants C to

interpret basic types, sets of finite binary relations Pfin (D × DΩ) to interpret function types, and

partial quasi constant functions L /_ D⊥ to interpret rows (and record types by the total ones).

The fact that functions are finite binary relations is standard in semantic subtyping and corresponds

to interpret function spaces into the infinite set of their finite approximations; that these binary

relations can yield a distinguished element Ω (which, intuitively, represents a type error) is also a

standard technique of semantic subtyping to avoid 1 → 1 to be a supertype of all function types:

since both aspects not play any specific role in our work we will not further comment on them

(see [Frisch et al. 2008] for a detailed explanation or Castagna [2023, Section 3.2] for a shorter one).

If we look more closely at the definition of the row elements in Definition 2.3, we see that they

are partial quasi-constant functions in L /_ D⊥ with default value ⊥. More precisely, the row

element ⟨|ℓ1 = 𝛿1, . . . , ℓ𝑛 = 𝛿𝑛, _ = ⊥∅ |⟩𝐿 is the quasi-constant function {[ℓ1 = 𝛿1, . . . , ℓ𝑛 = 𝛿𝑛, = ⊥]}
in (L∖𝐿) _ D⊥. When a row is total on L, then it can be wrapped in a Rec() constructor yielding
(the interpretation of) a record value (the inverse operation is given in Definition 2.4 below).

All these elements are indexed by a finite set of variables ranged over by 𝑉 . This standard

technique was introduced by Gesbert et al. [2015] to interpret type variables (cf. Definition 2.5),

while ensuring that the model we obtain is convex in the sense of Castagna and Xu [2011]. The

domain of Definition 2.3 is the one by Gesbert et al. [2015], but where records and rows replace

pairs.

Definition 2.4. Let R = {{{(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝜍}}}. We define row(R) = ⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝜍⟩⟩⟩∅ . We extend this

definition homomorphically to Boolean combinations of record type atoms.

We have now all ingredients needed to define our set-theoretic interpretation for the types:

Definition 2.5 (Interpretation of Types and Rows as Sets). Let D be the domain of Defini-

tion 2.3 and T the types of Definition 2.1. We define a binary predicate (𝐷 : 𝑇) (“the element 𝐷 belongs

to 𝑇 ”) on D × T ∪ D⊥ × T⊥ ∪ Drow × R by induction on the pair (𝐷,𝑇) ordered lexicographically.
The predicate is only defined if 𝐷 is coherent with the kind of 𝑇 : 𝐷 = 𝑑 if 𝑇 = 𝑡 , 𝐷 = 𝛿 if 𝑇 = 𝜏 , and

𝐷 = ¯̄𝑑 if 𝑇 = 𝑟 and dom(𝐷) = dom(𝑟).
• On types:

(𝑑 : 𝛼) = 𝛼 ∈ tag(𝑑) (𝑐𝑉 : 𝑏) = 𝑐 ∈ B(𝑏) (Rec(¯̄𝑑)𝑉 : R) = (¯̄𝑑 : row(R))
({(𝑑1, 𝜕1), . . . , (𝑑𝑛, 𝜕𝑛)}𝑉 : 𝑡1 → 𝑡2) = ∀𝑖 ∈ [1..𝑛] . if (𝑑𝑖 : 𝑡1) then (𝜕𝑖 : 𝑡2)

12 Giuseppe Castagna and Loïc Peyrot

• On fields:

(𝛿 : 𝜃) = 𝜃 ∈ tag(𝛿) (⊥𝑉
: ⊥) = true

• On atomic rows:

(⟨|(ℓ = 𝛿ℓ)ℓ∈𝐿1
, _ = ⊥∅ |⟩𝑉𝐿2

: 𝑟) = (∀ℓ ∈ 𝐿1 .(𝛿ℓ : 𝑟 (ℓ))) and (∀ℓ ∈ dom(𝑟) ∖ 𝐿1 .(⊥∅
: 𝑟 (ℓ)))

and tail(𝑟) = 𝜌 =⇒ 𝜌 ∈ 𝑉
(2)

• On types, fields and rows:

(𝐷 : 𝑇1 ∨𝑇2) = (𝐷 : 𝑇1) or (𝐷 : 𝑇2) and 𝑇1, 𝑇2 are of the same kind

(𝐷 : ¬𝑇) = not (𝐷 : 𝑇) and the kinds of 𝐷 and 𝑇 correspond

(𝐷 : 𝑇) = false otherwise

We define the interpretation J·K : T → P(D) as J𝑡K = {𝑑 ∈ D | (𝑑 : 𝑡)}.

The interpretation of Definition 2.5 is mostly the same as the one by Gesbert et al. [2015], where

the interpretation of a type variables 𝛼 is the set of all elements that are tagged by 𝛼 . The only

difference with respect to [Gesbert et al. 2015] is the interpretation of rows and, thus, of record

types. Equation (2) defines when a row element is in the interpretation of a row 𝑟 : it requires that

all the components of the row element are in the interpretations of the types specified by 𝑟 (first

line) and if the tail of 𝑟 is a row variable, then it must index the row element (second line).

Definition 2.6 (Subtyping). Let J·K : T → P(D) be the interpretation from Definition 2.5. It

induces the following subtyping relation in T×T :

𝑡1 ≤ 𝑡2 ⇐⇒def J𝑡1K ⊆ J𝑡2K
The interpretation also induces the subfield relation in T⊥×T⊥ and subrow relation in R×R defined as

𝜏1 ≤ 𝜏2 ⇐⇒def J𝜏1Kfld ⊆ J𝜏2Kfld 𝑟1 ≤ 𝑟2 ⇐⇒def J𝑟1Krow ⊆ J𝑟2Krow

where, the interpretation J·Kfld
: T⊥ → P(D⊥) is defined as J𝜏Kfld = {𝛿 ∈ D⊥ | (𝛿 : 𝜏)}, and the

interpretation J·Krow
: R → P(Drow) is defined as J𝑟Krow = { ¯̄𝑑 ∈ Drow | (¯̄𝑑 : 𝑟)}.

2.3 Deciding subtyping
Now that subtyping is defined via an interpretation of types of a specific model, we need an

effective decision procedure for it. We derive it in two steps: first, we give a formula to decompose

subtyping of two record types into several subtyping problems for the subterms of these record

types (Lemma 2.1); second, we define an efficient implementation of this decomposition that we

prove sound and complete with respect to the model (Lemma 2.2).

From now on, we use the notation {{{𝐿|||𝜍}}} for the record {{{(ℓ = 1∨⊥)ℓ∈𝐿|||𝜍}}}. In technical develop-

ments, we often decompose a type {{{(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝜍}}} to the equivalent {{{(ℓ = 𝜏ℓ)ℓ∈𝐿|||..}}} ∧ {{{𝐿|||𝜍}}}. It is
particularly useful to separate row variables into their own atomic record, when 𝜍 ∈ V . We can

even decompose further, the previous type being equivalent to (∧ℓ∈𝐿 {{{ℓ = 𝜏ℓ|||..}}}) ∧ {{{𝐿|||𝜍}}}.
Deciding subtyping amounts to deciding the emptiness of a type, since 𝑡1 ≤ 𝑡2 is equivalent to

𝑡1 ∧ ¬𝑡2 ≤ 0. From [Frisch et al. 2008], we know that any type can be equivalently rewritten into

a disjunctive normal form (DNF) of the form
∨

𝑖∈𝐼 (
∧

𝑎∈𝑃𝑖 𝑎 ∧ ∧
𝑎∈𝑁𝑖

¬𝑎 ∧ ∧
𝛼∈𝑉 𝑝

𝑖
𝛼 ∧ ∧

𝛼∈𝑉𝑛
𝑖
¬𝛼)

where each intersection contains only atoms 𝑎’s with the same type constructors: they are all

basic types, or all arrows, or all records. Thus, checking emptiness of a type amounts to checking

emptiness of all these intersections. Emptiness of these intersections cannot depend on the type

variables (unless the same variable appears both positive and negated, in which case emptiness is

straightforward), since their intersection is never empty. Thus, we just have to check emptiness

for the
∧

𝑎∈𝑃𝑖 𝑎 ∧
∧

𝑎∈𝑁𝑖
¬𝑎 parts. The procedure is already known for every intersection of atoms

but polymorphic records. What is still missing is a formula that characterizes the emptiness of an

intersection of the form
∧

R∈𝑃 R ∧
∧

R∈𝑁 ¬R, that is, that decides whether ∧
R∈𝑃 R ≤ ∨

R∈𝑁 R holds.

13

The lemma below gives a characterization of the emptiness of
∧

𝑟 ∈𝑃 𝑟 ∧
∧

𝑟 ∈𝑁 ¬𝑟 . We prefer to

state it on rows, as we will refer back to it in that way for tallying (Section 4.1). The corollary for

records follows immediately by 𝑡1 ≤ 𝑡2 ⇐⇒ row(𝑡1) ≤ row(𝑡2) when 𝑡1, 𝑡2 ≤ {{{|||..}}}.

Lemma 2.1. Let 𝑃 and 𝑁 be sets of atomic row types 𝑟 each of domain L∖𝐿𝑟 . Let 𝐿 be a finite set

of labels such that

⋃
𝑟 ∈𝑃∪𝑁 lab(𝑟) ⊆ 𝐿 ⊆ L∖𝐿𝑟 . Let 𝑃V = {𝑟 ∈ 𝑃 | tail(𝑟) ∈ V} and likewise for

𝑁V . For every 𝑟 , we define its default type def (𝑟) as: def (𝑟) = ⊥ if 𝑟 is closed, and def (𝑟) = 1 ∨ ⊥
otherwise. The relation

∧
𝑟 ∈𝑃 𝑟 ≤ ∨

𝑟 ∈𝑁 𝑟 holds iff ∀𝜄 : 𝑁 → 𝐿 ∪ { },

©«∃ℓ ∈ 𝐿.
∧
𝑟 ∈𝑃

𝑟 (ℓ) ≤
∨

𝑟 ∈𝜄−1 (ℓ)
𝑟 (ℓ)ª®¬ (3)

or

(
∃𝑟◦ ∈ 𝜄−1 (_) ∖ 𝑁V .(

∧
𝑟 ∈𝑃

def (𝑟) ≤ def (𝑟◦))
)

(4)

or
(
∃𝑟◦ ∈ 𝜄−1 (_) ∩ 𝑁V .∃𝑟 ∈ 𝑃V . tail(𝑟◦) = tail(𝑟)

)
(5)

This lemma generalizes to rows and polymorphic record types the decomposition of monomorphic

ones defined by Frisch [2004]. The main difference is the addition the third condition on line (5),

that checks whether a row variable appears both in the positive and in the negative fragment.

Subtyping algorithm. Naively implementing the above subtyping formula requires backtracking.

Indeed, for all map 𝜄 : 𝑁 → 𝐿 ∪ {_}, we have to check if subtyping holds on one of the labels ℓ ∈ 𝐿.

On that recursive call, since the types are coinductive, we need to assume that the type we are

checking is empty. So, we are collecting a series of emptiness assumptions along the call stack. If

later a contradiction arises, we need to backtrack to the point where the wrong assumption was

introduced, to then take another branch, in our case, check subtyping for another ℓ . Following

[Frisch 2004, Chapter 7], we avoid backtracking by defining a function Φ to compute subtyping

more efficiently.

Computing subtyping on a record type amounts to give a decision procedure for the emptiness

of 𝑡 =
∧

R∈𝑃 R ∧
∧

R∈𝑁 ¬R. Before applying function Φ, we preprocess 𝑡 by normalizing the positive

side of the type to isolate row variables. We choose 𝐿 =
⋃

𝑟 ∈𝑃∪𝑁 lab(𝑟). Our starting type 𝑡 is

equivalent to the following intermediate one:

{{{(ℓ = ∧
R∈𝑃 R(ℓ))ℓ∈𝐿|||..}}} ∧

∧
R∈𝑃

{{{ lab(R)||| tail(R)}}} ∧
∧
R∈𝑁

¬R (6)

In this type, we merge the field types in 𝐿 into a single atomic record type, and group the tails of

positive records in a separate intersection. Next, we are going to rewrite the type in (6) by splitting

the middle intersection
∧

R∈𝑃 {{{ lab(R)||| tail(R)}}} in two: an intersection with all the record atoms

whose tail is a row variable, and all the others that we will merge with the leftmost record in (6).

For that, let us define 𝜍◦ to represent the intersection of the tails of the records in 𝑃 whenever this

tail is either 𝜖 or .., that is, 𝜍◦ = 𝜖 if there is R ∈ 𝑃 such that tail(R) = 𝜖 , and 𝜍◦ = .. otherwise. If

we take all the records in
∧

R∈𝑃 {{{ lab(R)||| tail(R)}}} whose tail is not a row variable and intersect

them with the leftmost record in (6), then we obtain the record type R◦ = {{{(ℓ = ∧
R∈𝑃 R(ℓ))ℓ∈𝐿|||𝜍◦}}}.

Notice that R◦ is a monomorphic record type. For the remaining records in the middle intersection,

let us denote by 𝑉𝑝 = {𝜌 | ∃R ∈ 𝑃 . tail(R) = 𝜌} the set of all top-level type variables occurring in
𝑃 . The intersection of atoms in (6) is then equivalent to the following type, which is the one for

which we decide emptiness:

R◦ ∧
∧
𝜌∈𝑉𝑝

{{{L∖ dom(𝜌)|||𝜌}}} ∧
∧
R∈𝑁

¬R (7)

14 Giuseppe Castagna and Loïc Peyrot

The key ingredient for our subtyping algorithm is the function Φ(R◦,𝑉𝑝 , 𝑁), where R◦ ≰ 0:

Φ(R◦,𝑉𝑝 , ∅) ≔ false
Φ(R◦,𝑉𝑝 , 𝑁 ∪ {R}) ≔ if (tail(R) = .. or tail(R) = tail(R◦) or tail(R) ∈ 𝑉𝑃) then

∀ℓ∈ lab(R◦). (R◦ (ℓ) ≤ R(ℓ) or Φ(R◦ ∧ {{{ℓ : ¬R(ℓ)|||..}}},𝑉𝑝 , 𝑁))
else Φ(R◦,𝑉𝑝 , 𝑁)

The function must decide whether R◦ ∧
∧

𝜌∈𝑉𝑝 {{{L∖ dom(𝜌)|||𝜌}}} ≤ ∨
R∈𝑁 R, so it picks an R ∈ 𝑁

and generates the conditions to test the containment. The first clause of the definition states that if

we already examined all R ∈ 𝑁 , then subtyping does not hold, since R◦ ≰ 0 and so its intersection

with some row variables is also non empty. If R◦ is open and R is closed, or if R is polymorphic, but

its row variable is not one in 𝑉𝑃 , then the containment cannot come from this particular R, that is
discarded. This corresponds to the else branch of second clause. Otherwise, we are in the case in

which either R◦ is closed, or we are comparing two records types with a common row variable, or R
is open. In these cases we compare R◦ and R component-wise and for each ℓ we check that either

R◦ (ℓ) ≤ R(ℓ) or that the part that is in excess in R◦ (ℓ) is contained in the records remaining in 𝑁 .
7

If we compare this function to its monomorphic version found in [Castagna 2023], we can see

that the only addition is the third test (tail(R) ∈ 𝑉𝑝), where 𝑉𝑝 is constant in the function. This

means that the complexity of this function and of its monomorphic version are the same.

Lemma 2.2 (Soundness and completeness of Φ). Let R◦ be an open or closed record type,𝑉𝑝 ⊂ V𝑟

and 𝑁 a set of atomic record types. Then,

R◦ ∧
∧
𝜌∈𝑉𝑝

{{{L∖ dom(𝜌)|||𝜌}}} ≤
∨
R∈𝑁

R ⇐⇒ R◦ ≤ 0 or Φ(R◦,𝑉𝑝 , 𝑁).

Proposition 2.3. The subtyping algorithm terminates. As a corollary, subtyping is decidable.

2.4 Substitutions
The upcoming descriptions of the type systems and of the inference algorithm rely on type, row,

and field substitutions.

Definition 2.7. Substitutions, ranged over by 𝜎 , are total mappings from variables of kind 𝜅 to

expressions of kind 𝜅 (i.e., type variables to types, field variables to field types, and row variables of

domain 𝐿 to rows of domain 𝐿) that is the identity everywhere except on a finite set of variables. This

set is called the domain of the substitution 𝜎 and is defined as dom(𝜎) = {𝛼 | 𝜎 (𝛼) ≠ 𝛼} ∪ {𝜃 |
𝜎 (𝜃) ≠ 𝜃 } ∪ {𝜌 | 𝜎 (𝜌) ≠ ⟨⟨⟨|||𝜌⟩⟩⟩L∖dom(𝜌) }.

The application of a substitution 𝜎 to a term 𝑇 is denoted by 𝑇𝜎 . Notice that the application is

defined both on field types and on rows, the latter being useful only for tallying. The application of

a substitution satisfies the following equalities.

0𝜎 = 0 𝑏𝜎 = 𝑏

(𝑡1 → 𝑡2)𝜎 = 𝑡1𝜎 → 𝑡2𝜎 (𝑇1 ∨𝑇2)𝜎 = 𝑇1𝜎 ∨𝑇2𝜎

(¬𝑇)𝜎 = ¬(𝑇𝜎) ⊥𝜎 = ⊥
𝛼𝜎 = 𝜎 (𝛼) 𝜃𝜎 = 𝜎 (𝜃)

{{{(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝜍}}}𝜎 =

{
{{{(ℓ = 𝜏ℓ𝜎)ℓ∈𝐿|||𝜎 (𝜌)}}}, if 𝜍 = 𝜌

{{{(ℓ = 𝜏ℓ𝜎)ℓ∈𝐿|||𝜍}}}, otherwise.
(8)

7
This formula generalizes the decomposition for tuples: e.g., if 𝑠◦×𝑡◦ ≰ 0 then 𝑠◦×𝑡◦ ≤ 𝑠1×𝑡1 ∨ 𝑠2×𝑡2 ⇐⇒ (𝑠◦ ≤ 𝑠1 or
(𝑠◦∖𝑠1)×𝑡1 ≤ 𝑠2×𝑡2) and (𝑡◦ ≤ 𝑡1 or 𝑠1×(𝑡◦∖𝑡1) ≤ 𝑠2×𝑡2) : see [Castagna 2023, Appendix D] for a longer explanation.

15

Where {{{(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝑟}}} =
def {{{(ℓ = 𝜏ℓ)ℓ∈𝐿|||..}}} ∧ {{{𝐿|||𝑟}}} and:

{{{𝐿|||⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿′|||𝜍⟩⟩⟩𝐿}}} =
def {{{𝐿, (ℓ = 𝜏ℓ)ℓ∈𝐿′|||𝜍}}} {{{𝐿|||𝑟1∨𝑟2}}} =

def {{{𝐿|||𝑟1}}}∨{{{𝐿|||𝑟2}}} {{{𝐿|||¬𝑟}}} =
def ¬{{{𝐿|||𝑟}}}

The equalities above are standard, apart from the one in (8) which needs a definition for the notation

{{{(ℓ = 𝜏ℓ𝜎)ℓ∈𝐿|||𝜎 (𝜌)}}}, since 𝜎 (𝜌) is a row rather than a tail. The definition is given right after (8)

and simply states that {{{(ℓ = 𝜏ℓ𝜎)ℓ∈𝐿|||𝜎 (𝜌)}}} stands for the record type obtained by recursively

decomposing the Boolean combinations of the rows in 𝜎 (𝜌), until we arrive to single rows that

are expanded in the record type (recall that rows are inductively defined). Substitution for rows

is defined in the same way as for records (just change the delimiting brackets). We give several

examples of applications of (row) substitutions in Section 4.1 when discussing constraints.

As expected, if dom(𝜎) = ∅, then 𝑇𝜎 = 𝑇 . If 𝜎 (𝜌) ≤ 0 and tail(R) = 𝜌 , then R𝜎 ≤ 0. As we can
show thanks to the parametric interpretation of types, substitution preserves subtyping.

Proposition 2.4. If 𝑡1 ≤ 𝑡2, then 𝑡1𝜎 ≤ 𝑡2𝜎 for any row substitution 𝜎 .

3 LANGUAGE
We define the syntax, static and dynamic semantics of a record calculus that we prove to be type

sound (Section 3.1) and define a sound and complete typing algorithm for it (Section 3.2).

3.1 Syntax and Semantics

Expressions 𝑒 F 𝑐 | 𝑥 | 𝑒𝑒 | 𝜆∧𝑖∈𝐼 (𝑡𝑖→𝑠𝑖)𝑥 .𝑒 | {} | {𝑒 with ℓ = 𝑒} | 𝑒.ℓ | 𝑒\ℓ
Values 𝑣 F 𝑐 | 𝜆∧𝑖∈𝐼 (𝑡𝑖→𝑠𝑖)𝑥 .𝑒 | {} | {𝑣 with ℓ = 𝑣}
Evaluation contexts 𝐸 F [] | 𝐸𝑒 | 𝑣𝐸 | {𝑒 with ℓ = 𝐸} | {𝐸 with ℓ = 𝑣} | 𝐸.ℓ | 𝐸\ℓ

The syntax above describes a functional language with constants, functions, and records with

field selection (𝑒.ℓ), addition ({𝑒 with ℓ = 𝑒}), and deletion (𝑒\ℓ). As customary in semantic

subtyping, 𝜆-abstractions are annotated by their type, which is an intersection of arrow types. We

use {ℓ1 = 𝑒1, . . . , ℓ𝑛 = 𝑒𝑛} as syntactic sugar for { . . . {{} with ℓ1 = 𝑒1} . . . with ℓ𝑛 = 𝑒𝑛}.
The semantics of the language is given by the call-by-value weak reduction defined below:

[Rapp] (𝜆𝑡𝑥 .𝑒)𝑣 { 𝑒 [𝑣/𝑥]
[R=

sel] {𝑣 with ℓ = 𝑣 ′}.ℓ { 𝑣 ′

[R≠
sel] {𝑣 with ℓ ′ = 𝑣 ′}.ℓ { 𝑣 .ℓ if ℓ ≠ ℓ ′

[R=
del] {𝑣 with ℓ = 𝑣 ′}\ℓ { 𝑣\ℓ

[R≠
del] {𝑣 with ℓ ′ = 𝑣 ′}\ℓ { {𝑣\ℓ with ℓ ′ = 𝑣 ′} if ℓ ≠ ℓ ′

[Remp] {}\ℓ { {}
[Rctx] 𝐸 [𝑒] { 𝐸 [𝑒′] if 𝑒 { 𝑒′

where 𝑒 [𝑣/𝑥] is the term obtained by standard capture-avoiding substitution of 𝑣 for 𝑥 in 𝑒 , defined

modulo 𝛼-equivalence. Notice that the deletion of a label ℓ is defined for the empty record {} but
selection is not: selection requires the presence of the field ℓ while deletion does not.

The terms of the language are typed by the declarative type system in Fig. 1, whose judgments

are of the form Δ | Γ ⊢D 𝑒 : 𝑡 , where Δ ⊆ Pfin (V𝑡∪V𝑓 ∪V𝑟) is a set of monomorphic variables

(i.e., variables that cannot be instantiated) and Γ is a type environment mapping term variables

into types. The rules for the functional part are standard: they are a simplified version of those

by Castagna et al. [2014] where we do not track the relabeling of type annotations (these are only

necessary in the presence of type-cases that can discriminate on functions of different types: see

Castagna et al. [2014, Section 2]).

16 Giuseppe Castagna and Loïc Peyrot

(Const)

Δ | Γ ⊢D 𝑐 : b𝑐
(Var)

Δ | Γ ⊢D 𝑥 : Γ(𝑥)
𝑥 ∈ dom(Γ)

(Abs)

(Δ ∪ Δ′ | Γ, 𝑥 : 𝑡𝑖 ⊢D 𝑒 : 𝑠𝑖)𝑖∈𝐼
Δ | Γ ⊢D 𝜆∧𝑖∈𝐼 (𝑡𝑖→𝑠𝑖)𝑥 .𝑒 :

∧
𝑖∈𝐼 (𝑡𝑖 → 𝑠𝑖)

Δ′= var(∧𝑖∈𝐼 𝑡𝑖 → 𝑠𝑖)

(App)

Δ | Γ ⊢D 𝑒1 : 𝑡1 → 𝑡2 Δ | Γ ⊢D 𝑒2 : 𝑡1

Δ | Γ ⊢D 𝑒1𝑒2 : 𝑡2
(Emp)

Δ | Γ ⊢D {} : {{{|||𝜖}}}

(Ext)

Δ | Γ ⊢D 𝑒 : 𝑡 ≤ {{{ℓ = ⊥|||..}}} Δ | Γ ⊢D 𝑒′ : 𝑡 ′

Δ | Γ ⊢D {𝑒 with ℓ = 𝑒′} : {{{ℓ = 𝑡 ′|||𝑡\ℓ}}}
ℓ#𝑡 (Del)

Δ | Γ ⊢D 𝑒 : 𝑡 ≤ {{{|||..}}}

Δ | Γ ⊢D 𝑒\ℓ : {{{ℓ = ⊥|||𝑡\ℓ}}}
ℓ#𝑡

(Sel)

Δ | Γ ⊢D 𝑒 : {{{ℓ = 𝑡|||..}}}

Δ | Γ ⊢D 𝑒.ℓ : 𝑡
(Inter)

Δ | Γ ⊢D 𝑒 : 𝑡1 Δ | Γ ⊢D 𝑒 : 𝑡2

Δ | Γ ⊢D 𝑒 : 𝑡1 ∧ 𝑡2

(Sub)

Δ | Γ ⊢D 𝑒 : 𝑡 ′ ≤ 𝑡

Δ | Γ ⊢D 𝑒 : 𝑡
(Inst)

Δ | Γ ⊢D 𝑒 : 𝑡

Δ | Γ ⊢D 𝑒 : 𝑡𝜎
dom(𝜎) ∩ Δ = ∅

Fig. 1. Declarative type system

Constants are typed by a given function bwhichmaps each constant to its basic type (rule (const)).
8

Rule (Abs) checks that a function has all the types declared in its annotation, by checking the body

of the function under suitable environments in which all the variables in the annotation are added

to the set of monomorphic variables. The rules for intersection introduction (rule (Inter)) and

subsumption (rule (Sub)) are standard (we use the notation Δ | Γ ⊢D 𝑒 : 𝑡 ≤ 𝑡 ′ in the premises of a

rule, to indicate that the rule has premise Δ | Γ ⊢D 𝑒 : 𝑡 and side condition 𝑡 ≤ 𝑡 ′). The instantiation
rule (Inst), does not instantiate monomorphic variables in Δ, since this would be unsound.

The new rules in this system are those for record expressions and their operations. The empty

record value has the closed empty record type (rule (Emp)). Rule (Sel) states that selection is typable

only if the selected field is present, in which case its type is given to the select expression. Rule (Ext)

is a strict extension of an expression 𝑒 of type 𝑡 by the expression 𝑒′ on label ℓ , only if the field ℓ is

undefined in 𝑒 , that is, the type of 𝑒 is a subtype of {{{ℓ = ⊥|||..}}}. Rule (Del) states that we can delete a

field ℓ from a record expression 𝑒 provided that the condition ℓ#𝑡 is satisfied. This condition is that

the label ℓ is not in the domain of any row variable 𝜌 or type variable 𝛼 that appears at top-level in

the record type 𝑡 : formally, ℓ#𝑡 ⇐⇒def ∀𝜌 ∈ tlv(row(𝑡)), ℓ ∉ dom(𝜌) and tlv(𝑡) = ∅, where tlv(𝑇)
returns the top-level variables of a term (i.e., any type variable under only type connectives if 𝑇 is

a type, and any row variable under only type connectives and a single record or row constructor if

𝑇 is a row: see Definition B.1).

The types of the expressions typed by (Ext) and (Del) are computed in similar way. First, we

compute the operator 𝑡\ℓ which returns row(𝑡) truncated by the field of label ℓ and whose formal

definition we give below. If 𝑡\ℓ is defined (otherwise the expression are not well typed), then we put

back the field of label ℓ with the desired field type (𝑡 ′ or ⊥) using to the operation {{{(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝑟}}}
we defined in Section 2.4 for substitutions (cf. Eq. (8)). As an aside, the side condition ℓ#𝑡 of (Del)

can always be satisfied by subsuming the type of 𝑒 to a type 𝑡 ′′ obtained from 𝑡 by replacing with

“..” every top-level row variable whose domain contains ℓ . But then, the type of the expression

would be computed using 𝑡 ′′\ℓ and, thus, would not contain any critical row variable.
9

8
The functions b and B used in Definitions 2.5 and A.5 must satisfy 𝑐 ∈ B(b𝑐) for all 𝑐 ∈ C.

9
In practice, this means that we can give the function def add_delete(x), do: Map.delete(%{x | a: x.a + 1}, :b)
the type %{a: integer(), f} -> %{a: integer(), :b => none(), ...} when f: fields() but not the type

17

(Abs)

(
Δ ∪ Δ′ | Γ, 𝑥 : 𝑡𝑖 ⊢A 𝑒 : 𝑠′𝑖 ⊑Δ∪Δ′ 𝑠𝑖

)
𝑖∈𝐼

Δ | Γ ⊢A 𝜆∧𝑖∈𝐼 (𝑡𝑖→𝑠𝑖)𝑥 .𝑒 :
∧

𝑖∈𝐼 (𝑡𝑖 → 𝑠𝑖)
Δ′= var(∧𝑖∈𝐼 𝑡𝑖 → 𝑠𝑖)

(App)

Δ | Γ ⊢A 𝑒1 : 𝑡1 Δ | Γ ⊢A 𝑒2 : 𝑡2

Δ | Γ ⊢A 𝑒1𝑒2 : 𝑢
𝑢 ∈ 𝑡1 •Δ 𝑡2

(Ext)

Δ | Γ ⊢A 𝑒 : 𝑡 Δ | Γ ⊢A 𝑒′ : 𝑡 ′

Δ | Γ ⊢A {𝑒 with ℓ = 𝑒′} : {{{ℓ = 𝑡 ′|||𝑟}}}
𝑟 ∈ 𝑡 ⊙⊥

Δ ℓ

(Del)

Δ | Γ ⊢A 𝑒 : 𝑡

Δ | Γ ⊢A 𝑒\ℓ : {{{ℓ = ⊥|||𝑟}}}
𝑟 ∈ 𝑡 ⊙Δ ℓ (Sel)

Δ | Γ ⊢A 𝑒 : 𝑡

Δ | Γ ⊢A 𝑒.ℓ : 𝑢
𝑢 ∈ ⨿ℓ

Δ (𝑡)

Fig. 2. Algorithmic type system

Finally, let us define the operator 𝑡\ℓ , where 𝑡 ≤ {{{|||..}}} and ℓ#𝑡 . The operator 𝑡\ℓ , which returns a

row, is defined only if 𝑡 ≃ ∨
𝑖∈𝐼

∧
R∈𝑃𝑖 R ∧

∧
R∈𝑁𝑖

¬R, that is, if 𝑡 is a record type composed only of

atoms and negation of atoms that are not intersected at top-level with any type variable.
10
In that

case, we define 𝑡\ℓ = ∨
𝑖∈𝐼

∧
R∈𝑃𝑖 R\ℓ ∧

∧
R∈𝑁𝑖

(¬R)\ℓ where on atoms:

{{{ℓ = 𝜏ℓ|||𝑟}}}\ℓ = 𝑟

(¬{{{ℓ = 1 ∨ ⊥|||𝑟}}})\ℓ = ¬𝑟
(¬{{{ℓ = 𝜏|||𝑟}}})\ℓ = ⟨⟨⟨|||..⟩⟩⟩{ℓ } if 𝜏 ≠ 1 ∨ ⊥

The three definitions above cover all possible cases. On an atom R, since ℓ#R, then R has the shape

{{{ℓ = 𝜏ℓ|||𝑟}}}, where 𝑟 is an atomic row of domain L∖{ℓ} containing the other elements of the record.

We intuitively want R\ℓ = 𝑟 . Given a negative atom R, ℓ#R also implies that ¬R is of the shape

¬{{{ℓ = 𝜏ℓ|||𝑟}}}. If 𝜏ℓ ≠ 1∨⊥, then the type ¬R contains, among others, all row elements such that the

field ℓ is not of type 𝜏ℓ (since 𝜏ℓ ≠ 1 ∨ ⊥, then there exists at least one such element), and every

other field is of arbitrary value. Hence, the set obtained from removing the field ℓ from these values

gives all quasi-constant functions on L ∖ {ℓ}, without restriction, that is the set entailed by ⟨⟨⟨|||..⟩⟩⟩{ℓ } .
When 𝜏ℓ = 1 ∨ ⊥, it is impossible to have a value of a type different from 𝜏ℓ , hence the constraints

on the type must be on the other fields, so on ¬𝑟 .
The language satisfies the property of soundness. Its proof is routine (subject reduction and

progress, using inversion and generation lemmas) and is given in Appendix B.

Theorem 3.1 (Type soundness). Let 𝑒 be a well-typed closed expression, that is, ∅ | ∅ ⊢D 𝑒 : 𝑡 for

some 𝑡 . Then either 𝑒 diverges or it reduces to a value of type 𝑡 .

3.2 Algorithmic type system
The system in Fig. 1 is not algorithmic: it is not syntax-directed and some of its rules are not

analytic
11
. A sound and complete algorithmic system for the functional part of the system in Fig. 1

%{a: integer(), f} -> %{a: integer(), :b => none(), f} when f: fields() unless this type is considered syntactic

sugar for %{a: integer(), :b => term(), f} -> %{a: integer(), :b => none(), f} when f: fields() . The row variable f

cannot appear in the type of the result if b is in its domain.
10
Requiring that the type of a record in which we add or remove a field is not intersected by a type variable is not restrictive

in practice: intersections with top-level type variables are used in practice only to implement bounded polymorphism which,

as argued in the introduction, cannot be used for extensions and deletions, these requiring instead the use of row variables.
11
A rule is analytic (as opposed to synthetic) when the input (i.e., Γ and 𝑒) of the judgment at the conclusion is sufficient to

determine the inputs of the judgments at the premises (cf. [Martin-Löf 1994; Types mailing list 2019]).

18 Giuseppe Castagna and Loïc Peyrot

is given in Fig. 2 (from which we omit the rules that are the same as in Fig. 1). The system includes

the algorithmic counterparts of the typing rules for record operations which, apart from (Emp),

must be changed. In fact, for (Ext) and (Del) we could use in practice the same rules as in the

declarative systems, but the system would not be complete. Indeed, in the declarative system if

𝑥 : 𝛼 and 𝛼 ∉ Δ, then 𝑥 .ℓ : Int can be deduced by instantiating 𝛼 to {{{ℓ = Int|||..}}}. For all record
operations, the algorithmic system needs to perform a possible instantiation of the type of the

record. We use operators in the side conditions of the record rules, which instantiate the type of

the record to match the conditions in the declarative system:

⨿ℓ
Δ (𝑡) = {𝑢 | [𝜎𝑖]𝑖∈𝐼 ⊩ 𝑡 ⊑Δ {{{ℓ = 1|||..}}} and 𝑢 = (∧𝑖∈𝐼 𝑡𝜎𝑖).ℓ}

𝑡 ⊙Δ ℓ = {𝑟 | [𝜎𝑖]𝑖∈𝐼 ⊩ 𝑡 ⊑Δ {{{|||..}}} and ℓ#𝑡 and 𝑟 = (∧𝑖∈𝐼 𝑡𝜎𝑖)\ℓ}
𝑡 ⊙⊥

Δ ℓ = {𝑟 | [𝜎𝑖]𝑖∈𝐼 ⊩ 𝑡 ⊑Δ {{{ℓ = ⊥|||..}}} and ℓ#𝑡 and 𝑟 = (∧𝑖∈𝐼 𝑡𝜎𝑖)\ℓ}

The interest of these side conditions is only theoretical (to satisfy completeness) since they cover

only the case of record expressions returning polymorphic values, which never happens in practice.

In practice, the sets in the side conditions are never computed, the rules (Ext) and (Del) of Fig. 1

are used, while for selection the rule used in practice has premises Δ | Γ ⊢A 𝑒 : 𝑡 , side-condition

𝑡 ≤ {{{ℓ = 1|||..}}}, and conclusion Δ | Γ ⊢A 𝑒.ℓ : 𝑡 .ℓ : we loose completeness, but only in theory, and we

gain efficiency (see Castagna et al. [2015, Appendix B.3] for a detailed discussion of this point).

In any case, selection uses a new type operator 𝑡 .ℓ (theoretically, in its side condition to compute

𝑢, in practice in its conclusion). Since the algorithmic type system does not include a subsumption

rule, we cannot assume that the type 𝑡 deduced for the expression 𝑒 in (Sel) will be a record type

atom of the form required by the declarative system (i.e., {{{ℓ = 𝑡|||..}}}): in general, 𝑡 will be a union of

intersections of such atoms, type variables, and their negations. Thus the rule checks that 𝑡 is a

record type in which the field ℓ is surely defined, and delegates to the operator 𝑡 .ℓ (defined below)

the computation of the type of the result.

Definition 3.1 (Field Selection). Let 𝑡 ≤ {{{ℓ = 1|||..}}} be a DNF. We define the selection of the

field ℓ of 𝑡 as (∨𝑖∈𝐼 𝑡𝑖).ℓ =
def ∨

𝑖∈𝐼 𝑡𝑖 .ℓ and

(
∧
R∈𝑃

R ∧
∧
R∈𝑁

¬R ∧
∧
𝛼∈𝑉𝑝

𝛼 ∧
∧
𝛼∈𝑉𝑛

¬𝛼) =
def

∨
𝑁 ′⊆𝑁

(∧
R∈𝑃

R(ℓ) ∧
∧
R∈𝑁 ′

¬R(ℓ)
)

The condition 𝑡 ≤ {{{ℓ = 1|||..}}} assures that that 𝑡 .ℓ ≤ 1, so that selection always returns a type

(and not a generic field type). The transformation applied to 𝑡 to derive the definition above and

the proof that 𝑡 .ℓ is equivalent to min{𝑢 | 𝑡 ≤ {{{ℓ = 𝑢|||..}}}} are given in Appendix B.2. Once more,

the presence of top-level intersections with type variables does not play any role in selection.

To finish explaining the algorithmic system, we need to introduce the notations ⊩ 𝑠 ⊑Δ 𝑡 and

𝑡 •Δ 𝑠 , whose definitions are taken verbatim from [Castagna et al. 2015]:

Definition 3.2 ([Castagna et al. 2015]). Let 𝑠 and 𝑡 be two types and Δ a set of variables. We

define the following relations:

[𝜎𝑖]𝑖∈𝐼 ⊩ 𝑠 ⊑Δ 𝑡 ⇐⇒def ∧
𝑖∈𝐼 𝑠𝜎𝑖 ≤ 𝑡 and ∀𝑖 ∈ 𝐼 . dom(𝜎𝑖) ∩ Δ = ∅

⊩ 𝑠 ⊑Δ 𝑡 ⇐⇒def ∃[𝜎𝑖]𝑖∈𝐼 such that [𝜎𝑖]𝑖∈𝐼 ⊩ 𝑠 ⊑Δ 𝑡

Definition 3.3 ([Castagna et al. 2015]). Let 𝑠 and 𝑡 be two types and Δ a set of variables. We

define 𝑡 •Δ 𝑠 as the set of types for which there exist two sets of type substitutions (for variables not in

19

Δ) that make 𝑠 compatible with the domain of 𝑡 :

𝑡 •Δ 𝑠 =
def

 𝑢

[𝜎 𝑗] 𝑗∈ 𝐽 ⊩ 𝑡 ⊑Δ 0 → 1
[𝜎𝑖]𝑖∈𝐼 ⊩ 𝑠 ⊑Δ dom(∧𝑗∈ 𝐽 𝑡𝜎 𝑗)
𝑢 =

∧
𝑗∈ 𝐽 𝑡𝜎 𝑗 ·

∧
𝑖∈𝐼 𝑠𝜎𝑖

Where 𝑡 · 𝑠 =

def
min{𝑢 | 𝑡 ≤ 𝑠 → 𝑢}. For an arrow type 𝑡 ≤ 0 → 1, we have 𝑡 ≃ ∨

𝑖∈𝐼 (
∧

𝑝∈𝑃𝑖 (𝑠𝑝 →
𝑡𝑝) ∧

∧
𝑛∈𝑁𝑖

¬(𝑠𝑛 → 𝑡𝑛) ∧
∧

𝛼∈𝑉 𝑝

𝑖
𝛼 ∧ ∧

𝛼∈𝑉𝑛
𝑖
¬𝛼). Then, dom(𝑡) =

∧
𝑖∈𝐼

∨
𝑝∈𝑃𝑖 𝑠𝑝 (see [Castagna

et al. 2014]).

These two definitions are used in the rule (App), the key rule for the algorithmic system, which

again is taken verbatim from [Castagna et al. 2015] where all details can be found. Essentially,

(App) merges together intersection elimination (in this case the standard terminology is expansion),

instantiation, and subsumption. For the application 𝑒1𝑒2 to be well typed, the type of the function

must be a functional type (i.e., a subtype of 0 → 1, the type of all functions) whose domain

is a supertype of the type of the argument. Therefore, the rule looks for two finite sets of type

substitutions for the variables not in Δ, that make the type of the function subtype of 0 → 1
and the type of the argument subtype of the function’s domain. This search is collapsed in the

definition of 𝑡1 •Δ 𝑡2. Concretely, this operation finds two sets of substitutions [𝜎 𝑗] 𝑗∈ 𝐽 and [𝜎𝑖]𝑖∈𝐼
such that (1)

∧
𝑗∈ 𝐽 𝑡1𝜎 𝑗 ≤ 0 → 1 (this corresponds to the notation 𝑡1 ⊑Δ 0 → 1 of Definition 3.2)

and (2)
∧

𝑖∈𝐼 𝑡2𝜎𝑖 is a subtype of the domain of
∧

𝑗∈ 𝐽 𝑡1𝜎 𝑗 . It then returns all the types of the result

of the application of such two types. See [Castagna et al. 2015] for details.

While the typing rules (Abs) and (App) themselves are not new, the process behind 𝑠 ⊑Δ 𝑡 and

𝑡 •Δ 𝑠 are. The novelty is that we infer type substitutions that range not only over types, but also

over rows and field types. In the next section, we describe how to adapt the existing algorithms to

our framework.

As expected, the algorithmic type system is sound and complete with respect to the declarative

one, as stated by the following theorems (proofs are given in Appendix B.2):

Theorem 3.2 (Soundness). If Δ | Γ ⊢A 𝑒 : 𝑡 , then Δ | Γ ⊢D 𝑒 : 𝑡 .

Theorem 3.3 (Completeness). If Δ | Γ ⊢D 𝑒 : 𝑡 , then there is 𝑠 such that Δ | Γ ⊢A 𝑒 : 𝑠 and 𝑠 ⊑Δ 𝑡 .

4 TALLYING
The algorithmic type system we have defined in the last section is parametric in the decision

procedure ⊑Δ. While this problem has been tackled for type variables by Castagna et al. [2015],

here we need to extend it to row and field variables.

The main part of the design of a procedure to decide ⊑Δ is the tallying algorithm. Tallying is a

unification problem with subtyping instead equality. Given an initial set of subtyping constraints,

tallying looks for a substitution that satisfies these constraints. As explained in detail by Castagna

et al. [2015, §3.2.2-3.2.3], deciding both 𝑠 ⊑Δ 𝑡 and 𝑡 •Δ 𝑠 can be reduced to solving a sequence of tally

problems that are generated by varying the cardinality of the set of substitutions we are looking

for. For instance, looking for a set [𝜎𝑖]𝑖=1,2 such that [𝜎𝑖]𝑖=1,2 ⊩ 𝑠 ⊑Δ 𝑡 , is equivalent to solving the

tallying problem for 𝑠1 ∧ 𝑠2 ≤ 𝑡 where each 𝑠𝑖 is obtained from 𝑠 by replacing all variables not in Δ
by fresh ones. It then suffices to test all cardinalities of the set of substitutions, following a dove-tail

order for the two sets sought for 𝑡 •Δ 𝑠 .
We define the solving procedure for the type tallying of a constraint-set as an extension of the

existing one for type variables. The procedure follows the same steps given by Castagna et al. [2015]

(plus an additional one), namely: (1) normalization (Appendix C.4), (2) merging and saturation

(Appendix C.5), (3) harmonization (which is new and specific to row variables: Appendix C.6), (4)

20 Giuseppe Castagna and Loïc Peyrot

transformation of constraints into equations (Appendix C.7), and (5) creation of the substitution

solutions (Appendix C.8). For space reasons, in what follows we detail only the most important

step, that is, step (1) normalization. The other steps are more straightforward and, in the case of

steps (2), (4), and (5), they are similar to the corresponding steps defined by Castagna et al. [2015].

Therefore, we just hint at them in Section 4.2, and move their definition to the appendix.

We begin with giving few definitions, starting with the definition for constraints. Although

the typing rules need to solve the tallying problem on types, types will be decomposed in their

subterms, thus generating constraints on field types and rows, too.

Definition 4.1 (Constraints). A constraint (𝑇1, 𝑐,𝑇2) is a triple such that 𝑐 ∈ {≤, ≥} and

(𝑇1,𝑇2) ∈ (T ×T)∪(T⊥×T⊥)∪(R×R).𝑇1 and𝑇2 must be of the same kind which, in particular, implies

dom(𝑇1) = dom(𝑇2) if𝑇1 and𝑇2 are rows. Let C denote the set of all constraints. Given a constraint-set

𝐶 ⊆ C, the set of variables occurring in 𝐶 is defined as var(𝐶) = ⋃
(𝑇1,𝑐,𝑇2) ∈𝐶 var(𝑇1) ∪ var(𝑇2).

The presence of subtyping, and in particular of the empty type, implies that to solve a single

constraint-set𝐶 we need to generate several constraint sets, yielding different solutions (e.g., solving

{𝑠1×𝑠2 ≤ 𝑡1×𝑡2} generates three independent subproblems: {𝑠1≤0}, {𝑠2≤0}, and {𝑠1≤𝑡1, 𝑠2≤𝑡2}).
Thus, we consider sets S of constraint-sets, each set representing a possible solution. Given two

such sets S1,S2 ⊆ P(C), we define their union as S1 ⊔ S2 = S1 ∪ S2 and their intersection as

S1 ⊓ S2 = {𝐶1 ∪𝐶2 | 𝐶1 ∈ S1,𝐶2 ∈ S2}.
We create a solution by decomposing types into elementary constraints. For records and rows, it

might be necessary to decompose the row variables across different fields. For instance, the record

{{{|||𝜌0}}} might need to be decomposed over labels ℓ1 and ℓ2. For this, we define two constructors:

𝜌.ℓ , that we treat as a field variable, and 𝜌\𝐿, that we treat as a row variable of domain dom(𝜌)∖𝐿.
Using these constructors the row variable 𝜌0 can be decomposed into 𝜌0 .ℓ1, 𝜌0.ℓ2 and 𝜌0\{ℓ1, ℓ2}, so
that {{{|||𝜌0}}} can be equivalently written {{{ℓ1 = 𝜌0.ℓ1, ℓ2 = 𝜌0 .ℓ2|||𝜌0\{ℓ1, ℓ2}}}}. Substitution is extended

to (𝜌.ℓ)𝜎 = 𝜏 if 𝜎 (𝜌) ≃ ⟨⟨⟨ℓ = 𝜏|||𝑟⟩⟩⟩𝐿′ , and (𝜌\𝐿)𝜎 = 𝑟 if 𝜎 (𝜌) ≃ ⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿∩dom(𝜌)|||𝑟⟩⟩⟩𝐿
′
. Substitution

is undefined if 𝜎 (𝜌) does not have the desired shape. For 𝜌0, the tallying algorithm might give

constraints over 𝜌0 .ℓ1, 𝜌0.ℓ2 and 𝜌0\{ℓ1, ℓ2}, and we will expect a solution of the shape 𝜎 (𝜌0) = ⟨⟨⟨ℓ1 =
𝜏1, ℓ2 = 𝜏2|||𝑟⟩⟩⟩∅ , where 𝜏𝑖 has been obtained from the constraints on 𝜌0.ℓ𝑖 , and 𝑟 from the ones over

𝜌0\{ℓ1, ℓ2}.
In this section, the name 𝜌 ranges over row variables and 𝜌\𝐿 constructors, the name 𝜃 ranges

over field variables and 𝜌.ℓ constructors, and the name 𝑋 ranges over all kinds of variables plus

these new constructors. We consider 𝜌\𝐿 up to the equivalence generated by identifying 𝜌 ∈ V𝑟

with 𝜌\𝐿 for all 𝐿 ⊆ L∖ dom(𝜌), and (𝜌\𝐿1)\𝐿2 with 𝜌\(𝐿1 ∪ 𝐿2). With an abuse of notation

we write 𝜌 for the row ⟨⟨⟨|||𝜌⟩⟩⟩L∖ dom(𝜌)
—in particular in rows constraints (e.g., (𝜌, 𝑐, 𝑟))—when no

confusion arises.

Definition 4.2 (Constraint solution). Let 𝐶 ⊆ C be a constraint-set. A solution to 𝐶 is a

substitution 𝜎 such that ∀(𝑇1, ≤,𝑇2) ∈ 𝐶.𝑇1𝜎 ≤ 𝑇2𝜎 and ∀(𝑇1, ≥,𝑇2) ∈ 𝐶.𝑇1𝜎 ≥ 𝑇2𝜎 hold. If 𝜎 is a

solution to 𝐶 , we write 𝜎 ⊩ 𝐶 . In particular, 𝑇1𝜎 and 𝑇2𝜎 must be defined, that is, for all 𝜌 ∈ dom(𝜎):
• ∀ℓ ∈ L . 𝜌 .ℓ ∈ vars(𝐶) =⇒ ∃𝜏, 𝑟 .𝜎 (𝜌) ≃ ⟨⟨⟨ℓ = 𝜏|||𝑟⟩⟩⟩L∖ dom(𝜌)

, and

• ∀𝐿 ⊆ L . 𝜌\𝐿 ∈ vars(𝐶) =⇒ ∃(𝜏ℓ)ℓ∈𝐿, 𝑟 .𝜎 (𝜌) ≃ ⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝑟⟩⟩⟩L∖ dom(𝜌)
.

where vars(𝐶) is the set of all variables occurring in 𝐶 (see Definition C.1):

The tallying algorithm is parametric on a total order 𝑂 (Definition C.2) which is used to ensure

that the step (5) of tallying produces (contractive) types. A set of constraints is well-ordered if for

all constraints of the shape (𝑋, 𝑐,𝑇) and for all 𝑋 ′ ∈ tlv(𝑇), 𝑂 (𝑋) < 𝑂 (𝑋 ′) holds.

21

4.1 Constraint normalization
The first step of tallying decomposes the initial constraints on types into a set of normalized

constraint-sets S. This one only contains sets𝐶 ∈ S where all constraints are of the shape (𝑋, 𝑐,𝑇),
with 𝑋 and 𝑇 of the same kind. This step is implemented by a recursive function norm(𝑡, 𝑀) that
takes a type 𝑡 as input and returns a set of normalized constraint-sets necessary for 𝑡 ≤ 0 to hold.

The argument 𝑀 is a set of visited types, that guarantees termination of recursion on infinitary

types. A formal description of normalization as inference rules is given in Figs. 5 to 7 in Appendix C.

The general idea of normalization is the following. We first rewrite each constraint (𝑇, 𝑐,𝑇)
into a set of constraints {(𝑇𝑖 , ≤, 0)}𝑖∈𝐼 , where 𝑇𝑖 is a conjunction of atoms (basic types, arrows,

records), type and field variables (in the latter case, ⊥ can also be present), or their negations. This

first constraint-set is obtained by transforming the type into DNF and putting each summand

of the outer union into a separate constraint. For each constraint (𝑇𝑖 , ≤, 0) we then isolate the

smallest (w.r.t., the order𝑂) top-level type variable or field variable𝑋 not in Δ, to obtain a constraint
(𝑋, 𝑐,𝑇 ′

𝑖) that gives a lower (i.e., 𝑐 is ≥ when 𝑋 is negated in 𝑇𝑖) or an upper (i.e., 𝑐 is ≤ otherwise)

bound on that variable, where 𝑇 ′
𝑖 is obtained from 𝑇𝑖 simply by removing 𝑋 .

There may be no variable in 𝑇𝑖 , or they all may be in Δ. A variable in Δ is monomorphic, cannot

be instantiated and is treated as a constant. In that case, we erase monomorphic variables because

they cannot help to satisfy the constraint (see case (Ntlv) in Lemma C.8). On basic types, we can

directly see if the constraint holds. For arrow constructors, we use the subtyping formula, that

decomposes the types into constraints on their subtypes. Until now, all these steps (apart from

dealing with field variables) are similar to those of the existing tallying algorithm for type variables

by Castagna et al. [2015]. For a conjunction of record atoms, the technique is more elaborated.

First, we start by defining the normalization of a conjunction of records 𝑡 as the normalization of

its underlying row so that we have an auxiliary procedure on rows.

norm(𝑡, 𝑀) = normrow (row(𝑡), 𝑀 ∪ {𝑡})
In the literature where rows are all atomic, rather than Boolean combinations, unification of a

row variable with another row is often done component-wise by introducing a series of fresh type

variables. In our setting, these variables would be named 𝜌.ℓ1, . . . , 𝜌 .ℓ𝑛 and 𝜌\{ℓ1, . . . , ℓ𝑛}.

Example 4.1. With component-wise unification, the constraint-set {(⟨⟨⟨log = String|||𝜌⟩⟩⟩∅, ≤, ⟨⟨⟨log =

String, succ = True, val = 1|||𝜖⟩⟩⟩∅)} is normalized to {(String, ≤, String), (𝜌.succ, ≤, True), (𝜌.val, ≤
, 1), (𝜌\𝐿, ≤, ⟨⟨⟨|||𝜖⟩⟩⟩𝐿)}, where 𝐿 = {log, succ, val}. Putting the solutions for each parts together yields

the solution 𝜎 (𝜌) = ⟨⟨⟨succ = True, val = 1|||𝜖⟩⟩⟩{log} .

As the example above shows, component-wise unification works well with atomic rows. However,

it fails when considering Boolean combination of rows.

Example 4.2. Let result = ⟨⟨⟨log = String, succ = True, val = 1|||𝜖⟩⟩⟩∅ ∨ ⟨⟨⟨log = String, succ =

False, val = ⊥|||𝜖⟩⟩⟩∅ . Applying an argument of type result to a function of type ⟨⟨⟨log = String|||𝜌⟩⟩⟩∅ →
⟨⟨⟨log = String|||𝜌⟩⟩⟩∅ gives the following constraint: (⟨⟨⟨log = String|||𝜌⟩⟩⟩∅, ≤, result). A component-wise

unification gives the constraint-set {(String, ≤, String), (𝜌.succ, ≤,Bool), (𝜌.val, ≤, 1 ∨ ⊥), (𝜌\𝐿, ≤
, ⟨⟨⟨|||𝜖⟩⟩⟩𝐿)}, where 𝐿 = {log, succ, val}. This entails the solution 𝜎 (𝜌) = ⟨⟨⟨succ = Bool, val = 1 ∨
⊥|||𝜖⟩⟩⟩{log} , which is not the most precise one: since the type of the function is essentially the type

of an identity function, we would have expected the application to have type result.

In some cases, component-wise unification is not even sound.

Example 4.3. From the constraint (⟨⟨⟨val = 1 ∨ ⊥|||𝜌 ′⟩⟩⟩∅, ≤, result), component-wise unification

gives 𝜎 (𝜌 ′) = ⟨⟨⟨log = String, succ = Bool|||𝜖⟩⟩⟩{val} as a solution, which does not verify the constraint

22 Giuseppe Castagna and Loïc Peyrot

(the type obtained as “solution” contains record values in which succ is True and val is undefined,
which are not included in result).

To obtain a sound decomposition of rows, we can adapt the subtyping formula from Lemma 2.1.

Given a constraint 𝐶 on DNFs of rows, we consider the set 𝐿 of all top-level labels in the DNF. The

formula decomposes the constraints into independent constraints over the fields with labels in 𝐿

and constraints over the rest of the rows. Since we rely on Lemma 2.1, we find no solution for the

constraint in Example 4.3, which thus, correctly, cannot be satisfied.

Although this method yields a correct set of solutions, this set is far from complete. In fact,

since it decomposes records over the set 𝐿 = {log, succ, val} of all top-level labels, the solution
found for the constraint of Example 4.2 is the same as the one given there, as it will decompose

𝜌 unnecessarily into 𝜌.succ, 𝜌.val and 𝜌\𝐿. To solve this, we give a more general decomposition

formula, where the set 𝐿 of labels over which we decompose can be as small as desired.

Example 4.4. From the same constraint as in Example 4.2: (⟨⟨⟨log = String|||𝜌⟩⟩⟩∅, ≤, result), we take
𝐿 = {log} and obtain the constraint-set: {(String, ≤, String), (𝜌, ≤, ⟨⟨⟨succ = True, val = 1|||𝜖⟩⟩⟩{log} ∨
⟨⟨⟨succ = False, val = ⊥|||𝜖⟩⟩⟩{log}). This entails the desired solution.

The general decomposition formula is given in Lemma C.4. The auxiliary function for normaliza-

tion of constraints on rows makes use of two operators.

Definition 4.3. Let 𝑟 = ⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿1
|||𝜍⟩⟩⟩𝐿2

, Δ be a set of variables, ℓ ∈ L∖𝐿2 and 𝐿 ∈ Pfin (L).
• 𝑟 [ℓ] =

def
𝜌.ℓ if 𝜍 = 𝜌 ∉ Δ and ℓ ∈ dom(𝜌), and 𝑟 [ℓ] =

def
𝑟 (ℓ) otherwise.

• ⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿1
|||𝜍⟩⟩⟩𝐿2\Δ𝐿 =

def ⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿1∖𝐿|||𝜍
′⟩⟩⟩𝐿2∪𝐿

; where if 𝜍 = 𝜌 and dom(𝜌) ∩ 𝐿 ≠ ∅: 𝜍 ′ = ..
if 𝜌 ∈ Δ and 𝜍 ′ = 𝜌\𝐿 otherwise; and 𝜍 ′ = 𝜍 otherwise.

Let us consider a row in DNF 𝑟0 =
∧

𝑟 ∈𝑃 𝑟 ∧
∧

𝑟 ∈𝑁 ¬𝑟 . Let 𝜌0 be the smallest top-level variable

of 𝑟0 not in Δ and 𝐿 = dom(𝑟0)∖ dom(𝜌0), or 𝐿 = ∅ if there is no such variable. Let 𝑆Δ = {𝑟 ∈ 𝑆 |
tail(𝑟) = 𝜌 ∈ Δ and dom(𝜌) ∩ 𝐿 ≠ ∅}, for 𝑆 = 𝑃, 𝑁 . Normalization normrow (𝑟0, 𝑀) is defined as:

l

𝜄:𝑁→𝐿∪{_}

(⊔
ℓ∈𝐿

normfld

(∧
𝑟 ∈𝑃

𝑟 [ℓ]∧
∧

𝑟 ∈𝜄−1 (ℓ)
¬𝑟 [ℓ], 𝑀

)
⊔
l

𝑁 ′∈N

(
normtl

(∧
𝑟 ∈𝑃

(𝑟\Δ𝐿)∧
∧

𝑟 ∈𝜄−1 (_)∖𝑁 ′∈𝑆
¬(𝑟\Δ𝐿), 𝑀

))
where N = {𝑁 ′ ⊆ 𝜄−1 (_) ∩ 𝑁Δ | ∧𝑟 ∈𝑃Δ ⟨⟨⟨ lab(𝑟)||| tail(𝑟)⟩⟩⟩ ≰ ∨

𝑟 ∈𝑁 ′ ⟨⟨⟨ lab(𝑟)||| tail(𝑟)⟩⟩⟩}.
Here, the idea of the algorithm is the following. If there is no polymorphic top-level variable

(these can only be row variables), we let 𝐿 = ∅, which does not decompose the row, only calls the

function normtl (𝑟0, 𝑀) recursively. In that case, this function will decompose the record over the

whole set of top-level labels using the formula for subtyping. We do not loose solutions doing so:

due to the absence of top-level polymorphic variables, the emptiness of 𝑟0 can only be satisfied by

the emptiness of one of the components.

If there is a smallest polymorphic top-level variable 𝜌0, we take 𝐿 = dom(𝑟0) ∖ dom(𝜌0). In other

words, we take 𝐿 to be the set of labels on the left of the variable 𝜌0. In Example 4.4, we take 𝐿 to

be {log}. In this way, we decompose the row on one side over the elements in 𝐿, which does not

affect 𝜌0. These elements are handled by the auxiliary function normfld, that normalizes constraints

on fields in a similar way than is done on types. On the other side, we obtain constraints over 𝜌0,

where 𝜌0 is in a row of the shape ⟨⟨⟨|||𝜌0⟩⟩⟩L∖ dom(𝜌0) . Then, the recursive call to normtl singles out the

variable 𝜌0 in order to obtain an upper or lower bound for 𝜌0, as we do for type and field variables.

The definitions of normfld and normtl are in Appendix C.3.

While 𝜌0 is not affected by the decomposition thanks to our choice of 𝐿, there can be polymorphic

top-level variables 𝜌 ′ such that dom(𝜌 ′) ∩ 𝐿 ≠ ∅. This is why we have introduced the two new

operators 𝑟 [ℓ] and 𝑟\Δ𝐿.

23

By correction of the decomposition formula, the normalization function is sound. However, the

procedure is still not complete.

Example 4.5 (Incompleteness). Let𝑂 (𝜌1) < 𝑂 (𝜌2). From the constraint-set {(⟨⟨⟨log = String|||𝜌2⟩⟩⟩∅ →
⟨⟨⟨log = String|||𝜌2⟩⟩⟩∅, ≥, result → result), (⟨⟨⟨log = String|||𝜌2⟩⟩⟩∅ → ⟨⟨⟨|||..⟩⟩⟩∅, ≥, ⟨⟨⟨succ = 1 ∨ ⊥, val =
1 ∨ ⊥|||𝜌1⟩⟩⟩∅ → ⟨⟨⟨succ = 1 ∨ ⊥, val = 1 ∨ ⊥|||𝜌1⟩⟩⟩∅)}, by a decomposition over 𝐿 = {log} in the first

constraint and 𝐿 = {succ, val} in the second constraint, we derive the constraint-set (omitting trivial

constraints) {(String, ≤, 𝜌1.log), (𝜌2\{succ, val}, ≤, 𝜌1\{log}), (𝜌2, ≤, result), (𝜌2, ≥, result)}. As we
describe in Section 4.2 below, a further step of the tallying algorithm harmonizes the decomposition

of the row variables across all constraints. In particular, it decomposes 𝜌2 over {succ, val} in the

constraints (𝜌2, ≤, result) and (𝜌2, ≥, result). Since when decomposing 𝜌2 in this way, no solution

might apply to both of these constraints (𝜌2 needs to be instantiated exactly to the union type

result), tallying fails. The solution mapping 𝜌2 to result is not found.

4.2 Other Steps
Constraint merging and saturation. After normalization a constraint set may have for the same

variable 𝑋 different constraints of the form 𝑇𝑖 ≤ 𝑋 or 𝑋 ≤ 𝑇 ′
𝑗 for 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽 : we replace

them by two constraints
∨

𝑖∈𝐼 𝑇𝑖 ≤ 𝑋 and 𝑋 ≤ ∧
𝑗∈ 𝑗 𝑇

′
𝑗 , add

∨
𝑖∈𝐼 𝑇𝑖 ≤

∧
𝑗∈ 𝑗 𝑇

′
𝑗 to (i.e., saturate) the

constraint set, and normalize again.

Harmonization. As mentioned in Example 4.5, harmonization of constraint-set rewrites the

constraints of the shape (𝜌\𝐿1, 𝑐, 𝑟) into (𝜌\𝐿, 𝑐, 𝑟) and feeds this constraint to normalization again.

This happens when 𝐿1 ⊊ 𝐿 and 𝐿 is the set of labels appearing within terms 𝜌 ′ .ℓ or 𝜌 ′\𝐿2. The goal

is to have a homogeneous domain, where for a given row variable 𝜌 all occurrences of 𝜌\𝐿 are

defined with the same 𝐿.

Equations generation. At this point, for each type and field variable 𝑋 there is a unique (double)

constraint of the form 𝑇 ≤ 𝑋 ≤ 𝑇 ′
, that we transform into the equation 𝑋 = (𝑇 ∨𝑋 ′) ∧𝑇 ′

with 𝑋 ′

fresh. For a row variable 𝜌 , there is a set of labels 𝐿 and constraints of the form 𝜏1 ≤ 𝜌.ℓ ≤ 𝜏2 for each

ℓ ∈ 𝐿, and a constraint 𝑟1 ≤ 𝜌\𝐿 ≤ 𝑟2. We define the terms 𝜏ℓ = (𝜏1 ∨𝜃 ℓ𝜌) ∧𝜏2 and 𝑟 = (𝑟1 ∨ 𝜌 ′) ∧ 𝑟2),
with fresh variables 𝜃 ℓ𝜌 and 𝜌 ′. We finally create an equation 𝜌 = ⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝑟⟩⟩⟩L∖ dom(𝜌)

.

Solution. We solve the equations in the order𝑂 of the variables on the left-hand side, by collecting

the equation𝑋 = 𝑇 and replacing in all other equations𝑋 by 𝜇𝑋 ′ .(𝑇 {𝑋 ′/𝑋 }) with𝑋 ′
fresh. Thanks

to the order 𝑂 , the type 𝜇𝑋 ′ .(𝑇 {𝑋 ′/𝑋 }) is contractive (cf. Proposition C.22).

4.3 Properties of the algorithm
We call SolΔ (𝐶) the solving procedure for the type tallying of𝐶 . We write SolΔ (𝐶) ⇝ Θ if SolΔ (𝐶)
terminates with Θ, and we call Θ the solution of the type tallying problem for 𝐶 .

Theorem 4.6 (Soundness). Let 𝐶 be a constraint-set. If SolΔ (𝐶) ⇝ Θ, then for all 𝜎 ∈ Θ, 𝜎 ⊩ 𝐶 .

Theorem 4.7 (Termination). Let 𝐶 be a constraint-set. Then SolΔ (𝐶) terminates.

Proposition 4.8. Let 𝐶 be a constraint-set and SolΔ (𝐶) ⇝ Θ. Then (1) Θ is finite and (2) for all

𝜎 ∈ Θ and for all 𝑋 ∈ dom(𝜎), the types in 𝜎 (𝑋) are contractive.

5 RELATEDWORK
Row polymorphism. Our formalization of records as quasi-constant total functions and the

inclusion of row polymorphism are directly inspired from the formalism of Rémy [1989, 1994].

Remy’s work contains neither set-theoretic types nor subtyping, and therefore commutation of

24 Giuseppe Castagna and Loïc Peyrot

fields is obtained by structural equations. Unlike our case, the types in [Rémy 1994] are not recursive.

An extension of this system to recursive types is given by Rémy and Vouillon [1998] when describing

a type system for objects.

Before Rémy, Wand [1987] introduced row polymorphism to type object inheritance. His type

inference algorithm, corrected in [Wand 1991], considers free record extension (i.e., right priority

record concatenation) but lacks principal solutions. Instead, it deduces a finite set of solutions of

which all types of the term under consideration are instances, as we also do. However, unlike us,

Wand’s type grammar lacks intersection types, so he is unable to merge the multiple solutions into

a single type, as we instead do. An earlier attempt of our work considered free record extension, as

it is present both in CDuce and in its generalization by Castagna [2023], but this made the theory

much more involved, in particular tallying. It would be worthwhile to study this possibility again,

now that the theory with strict extension is precisely laid down.

(Syntactic) subtyping is present in the work of Cardelli and Mitchell [1991]. Operations on

records (deletion, selection, extension) are directly defined within the syntax of types. In our system

instead, we compute these operations on the types during typing. It is thus currently impossible

to postpone the extension or deletion of a field with label ℓ that is affected by a row variable,

until the point where the row variable will be instantiated and, in that case, we must resort to

an approximation. Cardelli and Mitchell must however define syntactic equivalence relations on

operators and fields, and their system lacks principal typing, as well.

Row polymorphism and extensible records are implemented using predicate on types by Harper

and Pierce [1991], later by Gaster and Jones [1996] under the name qualified types. In the latter,

positive information is given in the type and negative information (absent field) in the predicate.

Morris and McKinna [2019] use qualified type with uninterpreted predicates for concatenation and

membership of fields. Their system can be instantiated to most of the standard approaches of the

literature. We aimed to minimize changes to the type syntax of CDuce and Elixir, opting to refrain

from incorporating qualified types.

A convenient way to define extensible records is with scoped labels [Leijen 2005], where labels

may appear several times in a record, the most recent occurrence shadowing earlier ones. Paszke

and Xie [2023] recently extended the formalism to deal with first-class labels, first-class rows and

concatenation. This gives a simple formulation of types, yet too syntactic for our semantic approach

to typing and subtyping, and our desire to interpret records as quasi-constant functions.

Variants, the dual of records, are studied in a semantic subtyping setting by Castagna et al. [2016],

where they show that adopting full-fledged union (and intersection and negation) types as well as

let-polymorphism gives a more intuitive and expressive theory of polymorphic variants, which is

why here we focused only on polymorphism for records.

Presence polymorphism. In [Rémy 1994] record fields can be either present or absent, and this is

indicated by an annotation. Rémy [1994] shows how to add presence polymorphism over these

annotations, to have records parametric in the absence or presence of some fields. In our work,

field variables that range over types augmented with ⊥ give a natural notion of presence poly-

morphism. They can be instantiated with ⊥ for an absent field, a type 𝑡 for a mandatory field,

but also by 𝑡 ∨ ⊥ for an optional one. To our knowledge, our work is the first to allow presence

polymorphism over optional fields: fields on polymorphic records in existing literature can just be

either present or absent. For a comparison between presence polymorphism of [Rémy 1994] and

ours, see Appendix A.1.

Relation between different kinds of polymorphism. Our type system features three kinds of para-

metric polymorphism: on types, rows, and field types. It also features subtype polymorphism and

ad-hoc polymorphism via intersection and union types. The question naturally arises: how are these

25

concepts interconnected, and where do they overlap? It is folklore that unrestricted intersections

combined with parametric polymorphism encode a form of bounded quantification, as described in

the introduction (see also [Castagna 2024, Section 2]). Xie et al. [2020] show that row and bounded

polymorphism can be encoded with disjoint polymorphism, obtained by adding parametric poly-

morphism to a system with disjoint intersections, and having a disjointedness predicate in the

quantification of types. Contrary to our intersections that are uninhabited if applied to separate

types, disjoint intersections type a merge operator that generalizes the disjoint concatenation of

extensible data types, like records, to arbitrary types. The deletion operator of extensible data types

can also be generalized to arbitrary types using disjoint polymorphism and a merge operator. This

operator once again differs from our set exclusion operation 𝑡1 ∖ 𝑡2 = 𝑡1 ∧ ¬𝑡2.
Tang et al. [2023] formally compare the expressiveness of row and presence polymorphism to

structural subtyping, for calculi with records and variants. More precisely, they encode diverse

subtyping using relevant polymorphic systems. They take special care in framing the complexity

of the translation, for instance when it can be done by changing only types.

Practice. Efficient compilation of polymorphic or extensible records has been widely explored

by researchers such as Gaster and Jones [1996] and Ohori [1995]. These works advocate moving

away from Rémy’s formalism. Ohori’s calculus in particular stores information in elaborated kinds.

It was expanded to extensible records by Alves and Ramos [2021], but with no mention of the

compilation method. Yet, Hillerström and Lindley [2016] provide a compelling abstract machine for

a calculus employing this formalism, serving as a foundation for their language Links. Regarding

general-purpose languages, several of them propose either a flavor of set-theoretic types (like

Typescript [Microsoft 2012] or Flow [Facebook 2015]), sometimes based on the theory of semantic

subtyping (CDuce, Luau, Elixir or Ballerina), or polymorphic extensible records (like Purescript

[Freeman 2013] or OCaml) but to our knowledge, none of them offers both of these features.

6 CONCLUSION
We designed a type system featuring set-theoretic types and semantic subtyping for record calculi

with row and presence polymorphism. We instantiated this type system on a specific λ-calculus in-

corporating record selection, extension, and deletion, and devised a unification (tallying) algorithm.

Our next goal is implementing these results in the CDuce compiler, thereby enhancing the

language with row polymorphism. We closely adhered to the theory used for CDuce, in that record

types were simply extended with row variables and presence polymorphism, leveraging the union

connective and an existing constant for undefinedness. Our model and algorithms, specifically for

subtyping and tallying, naturally extend the existing ones. While we did not address the problem

of type reconstruction, Castagna et al. [2024b] provide the theory and an implementation of type

reconstruction for an ML-like language, that uses CDuce’s tallying library as a black box. We are

confident that plugging our tallying algorithm into that system and adding records to the language

should yield, with some extra effort, a reconstruction system with polymorphic records.

CDuce is of course more complex than our record calculus. Likewise, any type system for a

dynamic language needs to account for features like pattern matching, type cases, guards, or type

narrowing. At first sight, and considering the implementation of CDuce, these features seem mostly

orthogonal to the introduction of row polymorphism. Our hope is to be able to integrate the latter

seamlessly in any existing set-theoretic type system with semantic subtyping like Elixir [Castagna

et al. 2024a], Ballerina [Ballerina 2024], Luau [Jeffrey 2022] or Erlang [Schimpf et al. 2022], and we

closely monitor the ongoing efforts to port CDuce’s tallying algorithm into the Elixir’s compiler.

Our record calculus lacks first-class labels. Castagna [2023] defines a unique type system in which

records can be used both as “structs” (i.e., records without first-class labels) and as dictionaries/maps

26 Giuseppe Castagna and Loïc Peyrot

with first-class labels. His work is carried out in the same setting as ours, set-theoretic types with

semantic subtyping and records as quasi-constant functions, but without row-polymorphism.

However, some solutions proposed by Castagna [2023] are explicitly motivated by having a system

that could be easily extended with row and presence polymorphism, which is why we believe that

merging the two systems should not pose any fundamental issue. The actual expressiveness of

a system with first-class labels where operations on records are not part of the syntax of types

remains to be investigated.

REFERENCES
Sandra Alves and Miguel Ramos. Dec. 2021. “An ML-style Record Calculus with Extensible Records”. Electronic Proceedings

in Theoretical Computer Science, 351, (Dec. 2021), 1–17. doi: 10.4204/eptcs.351.1.

Ballerina. 2024. Structural Typing. Retrieved Feb. 2024 from https://ballerina.io/learn/by-example/structural-typing/.

Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. 2003. “CDuce: an XML-Centric General-Purpose Language”. In:

ICFP ’03, 8th ACM International Conference on Functional Programming. ACM Press, Uppsala, Sweden, 51–63.

Luca Cardelli and John C. Mitchell. Mar. 1991. “Operations on records”. Mathematical Structures in Computer Science, 1, 1,

(Mar. 1991), 3–48. doi: 10.1017/s0960129500000049.

Giuseppe Castagna. Mar. 2024. “Programming with union, intersection, and negation types”. In: The French School of

Programming. Ed. by Bertrand Meyer. ISBN 978-3-031-34517-3. To appear. Preprint at arXiv:2111.03354. Springer, (Mar.

2024).

Giuseppe Castagna. Aug. 2023. “Typing Records, Maps, and Structs”. Proceedings of the ACM on Programming Languages, 7,

ICFP, (Aug. 2023), 215–258. doi: 10.1145/3607838.

Giuseppe Castagna, Guillaume Duboc, and José Valim. 2024a. “The Design Principles of the Elixir Type System”. The Art,

Science, and Engineering of Programming, 8, 2. doi: 10.22152/programming-journal.org/2024/8/4.

Giuseppe Castagna, Mickaël Laurent, and Kim Nguyen. Jan. 2024b. “Polymorphic Type Inference for Dynamic Languages”.

Proceedings of the ACM on Programming Languages, 8, POPL, (Jan. 2024), 1179–1210. doi: 10.1145/3632882.

Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, and Pietro Abate. Jan. 2015. “Polymorphic Functions with Set-Theoretic Types”.

In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM,

(Jan. 2015). doi: 10.1145/2676726.2676991.

Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, Hyeonseung Im, Sergueï Lenglet, and Luca Padovani. Jan. 2014. “Polymorphic

functions with set-theoretic types”. In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages. ACM, (Jan. 2014). doi: 10.1145/2535838.2535840.

Giuseppe Castagna, Tommaso Petrucciani, and Kim Nguyen. Sept. 2016. “Set-theoretic types for polymorphic variants”.

In: Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming. ACM, (Sept. 2016). doi:

10.1145/2951913.2951928.

Giuseppe Castagna and Zhiwu Xu. Sept. 2011. “Set-theoretic foundation of parametric polymorphism and subtyping”.

In: Proceedings of the 16th ACM SIGPLAN international conference on Functional programming. ACM, (Sept. 2011). doi:

10.1145/2034773.2034788.

[SW] CDuce, CDuce Manual. url: https://www.cduce.org/manual.html.

James Clark. 2022. Ballerina Language Specification, 2022R4. Ed. by WSO2. Retrieved Feb. 21, 2024 from https://ballerina.io/s

pec/lang/2022R4/.

[SW] Elixir, Elixir Language (Coord.by The Elixir Team), 2012. url: https://elixir-lang.org/.

[SW] Elixir, Function add_elixir_domain in logger.ex module 2024. url: https://github.com/elixir-lang/elixir/blob/af2b21d6

7d4865313807e485e43d4e38a1676a54/lib/logger/lib/logger.ex#L940-L944.

[SW] Facebook, Flow 2015. url: https://flow.org/.

[SW] Phil Freeman, PureScript 2013. url: https://www.purescript.org/.

Alain Frisch. Dec. 2004. “Théorie, conception et réalisation d’un langage de programmation adapté à XML”. PhD thesis.

Université Paris 7 - Denis Diderot, (Dec. 2004).

Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. Sept. 2008. “Semantic subtyping: Dealing set-theoretically with

function, union, intersection, and negation types”. Journal of the ACM, 55, 4, (Sept. 2008), 1–64. doi: 10.1145/1391289.139

1293.

Benedict R. Gaster and Mark P. Jones. Nov. 1996. A Polymorphic Type System for Extensible Records and Variants. Tech. rep.

Department of Computer Science, University of Nottingham, (Nov. 1996).

Nils Gesbert, Pierre Genevès, and Nabil Layaïda. Oct. 2015. “A Logical Approach to Deciding Semantic Subtyping”. ACM

Transactions on Programming Languages and Systems, 38, 1, (Oct. 2015), 1–31. doi: 10.1145/2812805.

https://doi.org/10.4204/eptcs.351.1
https://ballerina.io/learn/by-example/structural-typing/
https://doi.org/10.1017/s0960129500000049
https://arxiv.org/abs/2111.03354
https://doi.org/10.1145/3607838
https://doi.org/10.22152/programming-journal.org/2024/8/4
https://doi.org/10.1145/3632882
https://doi.org/10.1145/2676726.2676991
https://doi.org/10.1145/2535838.2535840
https://doi.org/10.1145/2951913.2951928
https://doi.org/10.1145/2034773.2034788
https://www.cduce.org/manual.html
https://ballerina.io/spec/lang/2022R4/
https://ballerina.io/spec/lang/2022R4/
https://elixir-lang.org/
https://github.com/elixir-lang/elixir/blob/af2b21d67d4865313807e485e43d4e38a1676a54/lib/logger/lib/logger.ex#L940-L944
https://github.com/elixir-lang/elixir/blob/af2b21d67d4865313807e485e43d4e38a1676a54/lib/logger/lib/logger.ex#L940-L944
https://flow.org/
https://www.purescript.org/
https://doi.org/10.1145/1391289.1391293
https://doi.org/10.1145/1391289.1391293
https://doi.org/10.1145/2812805

27

Robert Harper and Benjamin Pierce. 1991. “A record calculus based on symmetric concatenation”. In: Proceedings of the

18th ACM SIGPLAN-SIGACT symposium on Principles of programming languages - POPL ’91 (POPL ’91). ACM Press. doi:

10.1145/99583.99603.

Daniel Hillerström and Sam Lindley. Sept. 2016. “Liberating effects with rows and handlers”, (Sept. 2016). doi: 10.1145/2976

022.2976033.

Alan Jeffrey. Nov. 2022. Semantic Subtyping in Luau. Blog post. Accessed on May 6th 2023. (Nov. 2022). https://blog.roblox.c

om/2022/11/semantic-subtyping-luau.

Daan Leijen. 2005. “Extensible Records with Scoped Labels”. Revised Selected Papers from the Sixth Symposium on Trends in

Fuctional Programming, TFP 2005. Ed. by Marko C. J. D. van Eekelen.

[SW] Roblox, Luau 2021.

Ed. by Paolo Parrini. “Analytic and Synthetic Judgements in Type Theory”. Kant and Contemporary Epistemology. Springer

Netherlands, Dordrecht, 87–99. isbn: 978-94-011-0834-8. doi: 10.1007/978-94-011-0834-8_5.

[SW] Microsoft, TypeScript 2012. url: https://www.typescriptlang.org/.

J. Garrett Morris and James McKinna. Jan. 2019. “Abstracting extensible data types: or, rows by any other name”. Proceedings

of the ACM on Programming Languages, 3, POPL, (Jan. 2019), 1–28. doi: 10.1145/3290325.

Atsushi Ohori. Nov. 1995. “A polymorphic record calculus and its compilation”.ACM Transactions on Programming Languages

and Systems, 17, 6, (Nov. 1995), 844–895. doi: 10.1145/218570.218572.

Adam Paszke and Ningning Xie. Aug. 2023. “Infix-Extensible Record Types for Tabular Data”. In: Proceedings of the 8th ACM

SIGPLAN International Workshop on Type-Driven Development (TyDe ’23). ACM, (Aug. 2023). doi: 10.1145/3609027.3609406.

Tommaso Petrucciani. Mar. 2019. “Polymorphic Set-Theoretic Types for Functional Languages”. PhD thesis. Università di

Genova, Université Paris Diderot, (Mar. 2019).

Didier Rémy. 1989. “Type checking records and variants in a natural extension of ML”. In: Proceedings of the 16th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages - POPL ’89 (POPL ’89). ACM Press, Austin, Texas,

USA, 77–88. isbn: 0897912942. doi: 10.1145/75277.75284.

“Type inference for records in natural extension of ML”. Theoretical Aspects of Object-Oriented Programming: Types, Semantics,

and Language Design. MIT Press, Cambridge, MA, USA, 67–95. isbn: 026207155X.

Didier Rémy and Jérôme Vouillon. 1998. “Objective ML: An effective object-oriented extension to ML”. Theory and Practice

of Object Systems, 4, 1, 27–50. doi: 10.1002/(sici)1096-9942(1998)4:1<27::aid-tapo3>3.0.co;2-4.

Albert Schimpf, Stefan Wehr, and Annette Bieniusa. Aug. 2022. “Set-theoretic Types for Erlang”. In: Proceedings of the 34th

Symposium on Implementation and Application of Functional Languages (IFL 2022). ACM, (Aug. 2022). doi: 10.1145/358721

6.3587220.

Wenhao Tang, Daniel Hillerström, James McKinna, Michel Steuwer, Ornela Dardha, Rongxiao Fu, and Sam Lindley. Oct. 2023.

“Structural Subtyping as Parametric Polymorphism”. Proceedings of the ACM on Programming Languages, 7, OOPSLA2,

(Oct. 2023), 1093–1121. doi: 10.1145/3622836.

Types mailing list. June 2019. What exactly should we call syntax-directed inference rules? http://lists.seas.upenn.edu/piperm

ail/types-list/2019/002138.html. (June 2019).

Mitchell Wand. 1987. “Complete Type Inference for Simple Objects”. In: Proceedings of the IEEE Symposium on Logic in

Computer Science.

Mitchell Wand. July 1991. “Type inference for record concatenation and multiple inheritance”. Information and Computation,

93, 1, (July 1991), 1–15. doi: 10.1016/0890-5401(91)90050-c.

Andrew K. Wright and Matthias Felleisen. 1994. “A Syntactic Approach to Type Soundness”. Information and Computation,

115, 1, 38–94. doi: 10.1006/inco.1994.1093.

Ningning Xie, Bruno C. d. S. Oliveira, Xuan Bi, and Tom Schrijvers. 2020. “Row and Bounded Polymorphism via Disjoint

Polymorphism”. en. In: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. doi: 10.4230/LIPICS.ECOOP.2020.27.

https://doi.org/10.1145/99583.99603
https://doi.org/10.1145/2976022.2976033
https://doi.org/10.1145/2976022.2976033
https://blog.roblox.com/2022/11/semantic-subtyping-luau
https://blog.roblox.com/2022/11/semantic-subtyping-luau
https://doi.org/10.1007/978-94-011-0834-8_5
https://www.typescriptlang.org/
https://doi.org/10.1145/3290325
https://doi.org/10.1145/218570.218572
https://doi.org/10.1145/3609027.3609406
https://doi.org/10.1145/75277.75284
https://doi.org/10.1002/(sici)1096-9942(1998)4:1<27::aid-tapo3>3.0.co;2-4
https://doi.org/10.1145/3587216.3587220
https://doi.org/10.1145/3587216.3587220
https://doi.org/10.1145/3622836
http://lists.seas.upenn.edu/pipermail/types-list/2019/002138.html
http://lists.seas.upenn.edu/pipermail/types-list/2019/002138.html
https://doi.org/10.1016/0890-5401(91)90050-c
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.4230/LIPICS.ECOOP.2020.27

28 Giuseppe Castagna and Loïc Peyrot

A APPENDIX FOR TYPES
The kinding rules for types are given in Fig. 3.

0 : 𝜅

𝑡 : 𝜅

¬𝑡 : 𝜅

𝑡1 : 𝜅 𝑡2 : 𝜅

𝑡1 ∨ 𝑡2 : 𝜅 𝛼 : ★ 𝑏 : ★

𝑡1 : ★ 𝑡2 : ★

𝑡1 → 𝑡2 : ★

⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝜍⟩⟩⟩∅ : Row(∅)
{{{(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝜍}}} : ★

∀ℓ ∈ 𝐿1 .𝜏ℓ : ★⊥

⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿1
|||𝜍⟩⟩⟩𝐿2 : Row(𝐿2)

𝜍 ∈ {𝜖, ..}
𝐿1 ∩ 𝐿2 = ∅

∀ℓ ∈ 𝐿1 .𝜏ℓ : ★⊥

⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿1
|||𝜌⟩⟩⟩𝐿2 : Row(𝐿2)

𝐿1 ∩ 𝐿2 = ∅
dom(𝜌) = L∖(𝐿1 ∪ 𝐿2) 𝜃 : ★⊥ ⊥ : ★⊥

𝑡 : ★

𝑡 : ★⊥

Fig. 3. Kinding rules

A.1 Example of a presence polymorphic type
Presence polymorphism has been introduced by Rémy [1994] to let a field be polymorphic in its

presence. A presence variable 𝜃 can be instantiated to one of {abs, pre}. Our calculus also supports
presence polymorphism thanks to field variables. Let us reproduce an example of a presence

polymorphic type declaration from [Rémy 1994], that we will then transcribe to our setting.

30 type tree(𝜃) = Leaf of Int | Node of {left:pre.tree(𝜃), right:pre.tree(𝜃), annot:𝜃.int}

Instantiating 𝜃 to abs gives the type of trees with no annotations on the nodes, while instantiating

it with pre gives the type of trees with integers annotated on the nodes.

But there are several problems: adding yet another kind of polymorphism adds a bit of work,

and most of all, even absent fields must have a type attached. In [Rémy 1994], this can cause

losing unification of two semantically equivalent records, if for instance one has a field ℓ of type

abs.int, and the other a field ℓ of type abs.bool. To avoid this problem, Tang et al. [2023]

requires every record value to be annotated with its type, so that they can forget about absent

types, and also so that they can have deterministic typing. So for instance the superfluous type

{ℓ1 = 𝑀 ; ℓ2 = 𝑁 }{ℓ1:pre.𝐴;ℓ2:abs.𝐵}
is equivalent to {ℓ1 = 𝑀}{ℓ1:pre.𝐴}

.

In CDuce, there is no presence polymorphism at all, and the tree type defined previously cannot be

expressed without code redundancy. In our formalism, presence polymorphism is simply obtained

by means of field variables, and adding support for it in CDuce would make it possible to write the

following (note that we use unions instead of tagged unions):

31 type tree(𝜃) = Int | {left:tree(𝜃), right:tree(𝜃), annot:𝜃}

Fields do not have any superfluous type information when they are absent, so we do not have

the redundant record expressions, and do not need to put type annotations directly on the values.

Moreover, in CDuce and in our type system, fields can be optional. This is achieved thanks to union

types (an optional field is encoded as 𝑡 ∨ ⊥). We do not know of any presence polymorphic type

system dealing with optional types.

We could instantiate the type of the example to any field type, such as Int for a tree with all nodes

annotated by an integer, Int∨⊥ for a tree with some nodes annotated by an integer,⊥ for a tree with

no annotation, and even for instance to a type variable 𝛼 , to create a type parametric in the type of

its annotation, but where the annotation is mandatory on every node. In Rémy’s system, having

29

polymorphism also on the type of the annotations would require having two parameter variables

(for presence and for type). From a technical point of view, the theory behind field variables is

mostly the same as for type variables, and field variables can generally be described in the same

way as type variables.

A.2 Models
In this section we give the detailed technical development to define our subtyping relation.

To interpret record values we follow Frisch [2004] and represent a record value by a quasi-

constant function that maps labels into either values (i.e., the elements of D) or ⊥. Quasi-constant
functions are total functions that map all but a finite set of elements of their domain into the same

value (called default value). Thus record values can be represented by quasi-constant functions

whose default value is ⊥ (see Castagna [2023] for a more detailed explanation). Formally, let us

write D⊥ for D ∪ {⊥} where ⊥ is a distinguished element not in D. We represent our record

values as quasi-constant functions from L to D⊥ and, thus, interpret record types as sets of these

functions.

The formal definition of quasi-constant function has been given in Definition 2.2 and is repeated

below for convenience.

Definition 2.2 ([Frisch 2004]). Let 𝑍 denote some set. A function 𝑟 : L → 𝑍 is quasi-constant if

there exists 𝑧 ∈ 𝑍 such that the set {ℓ ∈ L | 𝑟 (ℓ) ≠ 𝑧} is finite. We use L _ 𝑍 to denote the set of

quasi-constant functions from L to 𝑍 and {[ℓ1 = 𝑧1, . . . , ℓ𝑛 = 𝑧𝑛, = 𝑧]} to denote the quasi-constant
function 𝑟 : L _ 𝑍 defined by 𝑟 (ℓ𝑖) = 𝑧𝑖 for 𝑖 = 1..𝑛 and 𝑟 (ℓ) = 𝑧 for ℓ ∈ L∖{ℓ1, . . . , ℓ𝑛}.

Although this notation is not univocal (unless we require 𝑧𝑖 ≠ 𝑧 and the ℓ𝑖 ’s to be pairwise

distinct), this is largely sufficient for the purposes of this work. If (𝑍ℓ)ℓ∈L is a family of subsets of 𝑍

indexed by L, we denote by ⊲
∏

ℓ∈L 𝑍ℓ the subset of L _ 𝑍 formed by all quasi-constant functions

𝑟 such that 𝑟 (ℓ) ∈ 𝑍ℓ for all ℓ ∈ L (intuitively, ⊲
∏

ℓ∈L 𝑍ℓ is a “type” of quasi-constant functions).

Next we have to give an interpretation for the variables. Castagna and Xu [2011] tell us that

type variables must be interpreted as sets in the domain D. Therefore, an interpretation for type

variables is a function inV𝑡 → P(D). Field variables are not much harder, since the only difference

with type variables is that their interpretation can contain ⊥, and therefore it is a function in

V𝑓 → P(D⊥). More difficult is the interpretation of row variables, since these are mapped into

rows, that is, partial quasi-constant functions on L. Let us write L /_ D⊥ for the partial quasi-

constant functions from L to D⊥. Thus, an interpretation of row variables must map an element of

V𝑟 into a set of functions in L /_ D⊥. However, for a given 𝜌 we cannot consider any element in

P(L /_ D⊥): we need that the functions in the interpretation of 𝜌 are total on dom(𝜌). Formally,

we have:

Definition A.1 (Well-Kinded Interpretation). Let 𝜂 be a function in V𝑟 → P(L /_ D⊥).
We say that 𝜂 is well kinded if for every 𝜌 ∈ V𝑟 and for every 𝑓 ∈ 𝜂 (𝜌), 𝑓 is a (total) quasi-constant

function in dom(𝜌) _ D⊥. We denote by V𝑟 ◦→ P(L /_ D⊥) the set of well-kinded functions.

In conclusion our interpretation of types will be parametric in an assignment 𝜂 for the variables,

which will be a function in

H =
def (V𝑡 → P(D)) ∪ (V𝑓 → P(D⊥)) ∪ (V𝑟 ◦→ P(L /_ D⊥))

The next step is to define the domain D in which to give the interpretation of types. This is quite

simple for us since it suffices to take the model defined by Castagna and Xu [2011] and replace

products by quasi-constant functions. The hard problem for defining this model, and thus the

interpretation of types, is to give an interpretation of the function spaces, but this problem was

30 Giuseppe Castagna and Loïc Peyrot

solved by Frisch et al. [2008] whose solution is reused by Castagna and Xu [2011]. In a nutshell

we want to define an interpretation function J.K : T → H → P(D). Since the elements of D
represent the values of the language, then D must contain the set C of constants of the language,

the quasi-constant functions (to represent record values), and the functions from D to D, but

the last containment is impossible for cardinality reasons. The solution by [Frisch et al. 2008]

is to associate to every domain D and function J.K : T → H → P(D) a unique extensional

interpretation E(·) : T → H → P(ED) which fixes the semantic of the type constructors, and

then to accept as a valid interpretation of the types only the pairs (J.K,D) such that for all 𝜂,

J𝑡K𝜂 = ∅ ⇐⇒ E(𝑡)𝜂 = ∅.
We invite the reader to refer to Castagna and Xu [2011, Section 2.2] for amore detailed explanation

of how the extensional interpretation works and to Frisch et al. [2008] for full details. Henceforth,

we just present how to extend the extensional interpretation of Castagna and Xu [2011] to include

quasi-constant functions and the interpretation of row-variables, and pinpoint the differences

between the two definitions. We suppose to be given an interpretation B : B → P(C) of basic
types into sets of constants. Given a set 𝑆 we use the notation 𝑆 to denote its complement in

an appropriate universe: this notation is in particular used for the set P(J𝑡1K𝜂 × J𝑡2K𝜂) which
corresponds to interpreting the elements in 𝑡1 → 𝑡2 as binary relations, namely as elements of the

set { 𝑓 ⊆ D2 | for all (𝑑1, 𝑑2)∈𝑓 , if 𝑑1∈J𝑡1K𝜂 then 𝑑2∈J𝑡2K𝜂 }.
Definition A.2 (Extensional interpretation). LetD be a set. The extensional domain ofD is

defined as: ED = C + D + P(D × DΩ) + (L _ D⊥) where Ω and ⊥ are two different distinguished

elements not in D.

Let J·K : T → H → P(D) be an interpretation of types parametric in a well-kinded interpretation

of variables. The associated extensional interpretation of types is the unique function E(·) : T →
H → P(ED) such that:

E(0)𝜂 = ∅
E(𝛼)𝜂 = 𝜂 (𝛼)
E(𝑏)𝜂 = B(𝑏)

E(¬𝑡)𝜂 = ED ∖ E(𝑡)𝜂
E(𝑡1 ∨ 𝑡2)𝜂 = E(𝑡1)𝜂 ∪ E(𝑡2)𝜂

E(𝑡1 → 𝑡2)𝜂 = P(J𝑡1K𝜂 × J𝑡2K𝜂)

E(R)𝜂 =

{ ⋃
¯̄𝑑∈𝜂 (𝜌)

(
⊲
∏

ℓ∈lab(R)JR(ℓ)Kfld
𝜂 ⊔ ¯̄𝑑

)
if tail(R) = 𝜌

⊲
∏

ℓ∈LJR(ℓ)Kfld
𝜂 otherwise

where

J𝑡Kfld
𝜂 = J𝑡K𝜂 if 𝑡 ≠ ¬𝑡 ′ and 𝑡 ≠ 𝑡1 ∨ 𝑡2

J𝜃Kfld
𝜂 = 𝜂 (𝜃)

J⊥Kfld
𝜂 = {⊥}

J𝜏1 ∨ 𝜏2Kfld
𝜂 = J𝜏1Kfld

𝜂 ∪ J𝜏2Kfld
𝜂

J¬𝜏Kfld
𝜂 = (ED ∪ {⊥}) ∖ J𝜏Kfld

𝜂

Notice that the induction used in the definition is well-founded thanks to the contractivity

condition in the definition of types and the fact that field types are inductively defined.

The extensional interpretation is defined with respect to some domain D and interpretation J.K,
and maps types into a domain ED that contains D, constants C to interpret basic types, sets of

binary relations P(D × DΩ) to interpret function types, and quasi constant functions L _ D⊥ to

interpret record types. The fact that functions are binary relations that can yield a distinguished

element Ω (which, intuitively, represents a type error) is a standard technique of semantic subtyping

to avoid 1 → 1 to be a supertype of all function types: since it does not play any specific role in

our work we will not further comment on it (see [Frisch et al. 2008] for a detailed explanation

or Castagna [2023, Section 3.2] for a shorter one).

The definitions for the extensional interpretation given on the right-hand side in Definition A.2

are the same as those by Castagna and Xu [2011]. They state that the empty type is interpreted as

the empty set, the interpretation of the type variables is given by 𝜂, that unions and negations are

31

interpreted as set-theoretic unions and complements, and that functions types are interpreted as

sets of binary relations whose output is in the codomain if the input is in the domain.

The novelty of our definition is the interpretation of record types given on the left-hand side.

There are two cases. The easy case is when the tail of the record type is either 𝜖 or ..: in that case

the interpretation of the record type is the set of all quasi constant functions in L _ P(D⊥) that
map a label ℓ into an element of the interpretation of R(ℓ) (recall that for ℓ ∉ lab(R), R(ℓ) is ⊥ for

tail(R) = 𝜖 and 1 ∨ ⊥ for tail(R) = ..). If instead tail(R) is a row variable 𝜌 , then L is partitioned in

two, the sets lab(R) and—by well-kindedness—dom(𝜌), and the interpretation of R will be the set
of quasi-constant functions in L _ D⊥ obtained by unioning two partial functions: a function in

⊲
∏

ℓ∈lab(R)JR(ℓ)Kfld
𝜂 for the lab(R) labels of L, and a function in 𝜂 (𝜌) for the remaining labels of L.

There is a caveat: fields can map labels both into values and ⊥. Therefore, the interpretation of field

types must be slightly different from that of types, since it must map ⊥ into {⊥} and the negation

of a field type is the complement with respect to D⊥, rather than D: the J.Kfld
does just that.

Given a domain D and a set-theoretic interpretation of the types into this domain, they form a

model if the interpretation and the associated extensional interpretation have the same zeros:

Definition A.3 (Model). Let D be a domain and J·K : T → H → P(D). The pair (D, J·K) is a
model if and only, if for all 𝑡 ∈ T and 𝜂 ∈ H , J𝑡K𝜂 = ∅ ⇐⇒ E(𝑡)𝜂 = ∅.

Every model induces a subtyping relation on types
12
:

Definition A.4 (Subtyping). If (D, J·K) is a model, then it induces a subtyping relation defined as

follows: 𝑡1 ≤ 𝑡2 ⇐⇒def ∀𝜂.J𝑡1K𝜂 ⊆ J𝑡2K𝜂

As explained by Frisch [2004, Section 2.6], the interest of defining of a model is that we can work

with the interpretation of the model “as if ” the interpretation of the type constructors (in particular,

the function type constructor) were defined as their extensional interpretation. So when deducing

the properties for the subtyping relation of a model—and just for the subtyping relation—we can

assume that P(J𝑡1K𝜂 × J𝑡2K𝜂), even if this is impossible for cardinality reasons.

Definition A.3 specifies which characteristics a model must have to induce a subtyping relation

(that behaves “as if ”), but it does not define any particular model nor, thus, any particular subtyping

relation. In what follows we define a concrete interpretation domainD (whose elements are defined

by induction) and two specific interpretations, and prove that they satisfy the conditions to be

models, since they both have the same zeros as the extensional interpretation (of one of them). This

yields two equivalent definitions of a concrete subtyping relation we are going to use in the rest of

this presentation. We will define:

• An interpretation J𝑡Kq

𝜂 parametrized by an assignment 𝜂, for which subtyping 𝑡1 ≤q 𝑡2 is

defined as ∀𝜂.J𝑡1Kq

𝜂 ⊆ J𝑡2K
q

𝜂 ; (the index 𝑞 stands for quantified, since subtyping is quantified

on all variable interpretations);

• An interpretation of types directly into sets J𝑡K, that avoids quantification over 𝜂, and for

which subtyping 𝑡1 ≤ 𝑡2 is defined directly as J𝑡1K ⊆ J𝑡2K (notice the absence of a variable
interpretation argument 𝜂).

The interpretation of types is mutually recursive with interpretations of rows and field types.

Both of these will also give rise to subtyping relations. We will use the same notation ≤ for the

relations in T × T , T⊥ × T⊥ and R × R.
This interpretation in Definition 2.5 induces a subtyping relation that it is easy to work with,

since it got rid of the interpretation 𝜂 for the variables. We can consider the interpretation J·K :

12
Actually, a model must be convex: see Castagna and Xu [2011]. We omit this detail since it is not relevant to our

presentation.

32 Giuseppe Castagna and Loïc Peyrot

T → P(D) as a function in T → H → P(D) that is constant on its second argument: if we

apply Definition A.4 to it, then the subtyping relation is defined as simply as 𝑠 ≤ 𝑡 ⇐⇒def J𝑠K ⊆ J𝑡K.
But getting rid of 𝜂 makes it difficult to prove that this interpretation is a model and, thus, that

when considering the properties of this subtyping relation, we can work “as if” the interpretation

of type constructors were as in the extensional interpretation. To overcome this difficulty we define

a second interpretation, on the same domain, but this interpretation disregards the indexes of the

elements and uses an assignment 𝜂 to interpret the variables.

Definition A.5 (Parametrized intepretation of types and rows). We define a ternary

predicate (𝐷 : 𝑇)q

𝜂 (“the element 𝐷 belongs to 𝑇 under assignment 𝜂”), by induction on the pair (𝐷,𝑇)
ordered lexicographically. The only differences with the predicate (𝐷 : 𝑇) (apart from recursive calls to

the appropriate predicate), are:

(𝑑 : 𝛼)q

𝜂 = 𝑑 ∈ 𝜂 (𝛼)
(𝛿 : 𝜃)q

𝜂 = 𝛿 ∈ 𝜂 (𝜃)
(⟨|(ℓ = 𝛿ℓ)ℓ∈𝐿1

, _ = ⊥∅ |⟩𝑉𝐿2
: 𝑟)q

𝜂 = (∀ℓ ∈ 𝐿1.(𝛿ℓ : 𝑟 (ℓ))q

𝜂) and (∀ℓ ∈ dom(𝑟) ∖ 𝐿1.(⊥∅
: 𝑟 (ℓ))q

𝜂)
and tail(𝑟) = 𝜌 =⇒ ⟨|(ℓ = 𝛿ℓ)ℓ∈𝐿1∩dom(𝜌) , _ = ⊥∅ |⟩𝑉L∖ dom(𝜌) ∈ 𝜂 (𝜌)

We define the interpretations J·Kq

𝜂 , J·K
qfld

𝜂 and J·Kqrow

𝜂 as expected.

While the interpretation of type and field variables is straightforwardly given by 𝜂, the interpre-

tation of row variables is less evident. The first line of the interpretation of a row is the same as

in Definition 2.5: in both definitions this line deals with the case when the tail of 𝑟 is not a row

variable. The second line covers the case for tail(𝑟) = 𝜌 : it checks that ¯̄𝑑 ∈ 𝜂 (𝜌), where ¯̄𝑑 is obtained

by restricting the quasi-constant function on the left to the domain of 𝜌 .

Our goal is to prove that both interpretations give a model of types. Formally, this corresponds to

proving the following equivalences: Let E(·) be the extensional interpretation of J.Kq
. For all 𝑡 ∈ T :

(∀𝜂.E(𝑡)𝜂 = ∅) ⇐⇒ (∀𝜂.J𝑡Kq

𝜂 = ∅) ⇐⇒ J𝑡K = ∅ (9)

The leftmost “iff” proves that (D, J.Kq) is a model, while the rightmost one proves that the subtyping

relation induced by J.K is the same as the one induced by the model J.Kq
(since ∀𝜂.J𝑠Kq

𝜂 ⊆ J𝑡Kq

𝜂 ⇐⇒
∀𝜂.J𝑠Kq

𝜂 ∩ (D∖J𝑡Kq

𝜂) = ∅ ⇐⇒ ∀𝜂.J𝑠∧¬𝑡Kq

𝜂 = ∅ ⇐⇒ J𝑠∧¬𝑡K = ∅ ⇐⇒ J𝑠K ⊆ J𝑡K).
For the first equivalence, we prove the following, more precise, statement.

Lemma A.1. For all type 𝑡 , for all 𝜂,

J𝑡Kq

𝜂 = ∅ ⇐⇒ E(𝑡)𝜂 = ∅

Proof. For all 𝑑 , we show (𝑑 : 𝑡)q

𝜂 ⇐⇒ 𝑑 ∈ E(𝑡)𝜂 by induction on 𝑡 in both directions. This

induction is well-founded because the cases for type constructors do not use induction, E(𝑡)𝜂 is

defined on top of J𝑡Kq

𝜂 , and the number of type connectives is finite by regularity of the types.

We start with the left-to-right implication and detail the case 𝑡 = R. By hypothesis there is

¯̄𝑑 = ⟨|(ℓ = 𝛿ℓ)ℓ∈𝐿, _ = ⊥∅ |⟩𝑉∅ such that (Rec(¯̄𝑑)𝑉 ′
: R)q

𝜂 . By hypothesis, ∀ℓ ∈ 𝐿.(𝛿ℓ : R(ℓ))q

𝜂 , so

𝛿ℓ ∈ JR(ℓ)Kqfld

𝜂 , and ∀ℓ ∈ L ∖ 𝐿.(⊥∅
: R(ℓ))q

𝜂 , so ⊥∅ ∈ JR(ℓ)Kqfld

𝜂 . It is easy to see that this implies

respectively 𝛿ℓ ∈ JR(ℓ)Kfld
𝜂 and⊥∅ ∈ JR(ℓ)Kfld

𝜂 . Moreover, if tail(𝜌) = 𝜌 , then ⟨|(ℓ = 𝛿ℓ)ℓ∈𝐿∩dom(𝜌) , _ =

⊥∅ |⟩𝑉L∖ dom(𝜌) ∈ 𝜂 (𝜌). So ¯̄𝑑 ∈ E𝜂 (R).
Now, for the right-to-left implication. Let ¯̄𝑑 = ⟨|(ℓ = 𝛿ℓ)ℓ∈𝐿, _ = ⊥∅ |⟩𝑉∅ ∈ E𝜂 (R). For all ℓ ∈ lab(R),

we have by hypothesis 𝛿 ∈ JR(ℓ)Kfld
, which implies (𝛿 : R(ℓ))qfld

𝜂 . Let ℓ ∉ lab(R). If ℓ ∈ 𝐿1, then

(𝛿ℓ : R(ℓ))q

𝜂 holds. If ℓ ∉ 𝐿1: if tail(R) ∈ V , by definition R(ℓ) = 1 ∨ ⊥, and if tail(R) ∉ V ,

33

R(ℓ) = 1 ∨ ⊥, or R(ℓ) = ⊥. In any case, (⊥∅
: R(ℓ))q

𝜂 holds. Finally, if tail(R) = 𝜌 ∈ V , then

⟨|(ℓ = 𝛿ℓ)ℓ∈𝐿∩dom(𝜌) , _ = ⊥∅ |⟩𝑉L∖ dom(𝜌) ∈ 𝜂 (𝜌). □

We have thus shown that the subtyping relation generated by J·Kq
has the expected properties

described by E(·). In particular, it is a set-theoretic model because type operators are interpreted as

set operators.

Since it will be easier to work directly with interpretations as sets rather than to quantify over 𝜂,

we now show that the subtyping relation generated by J·K is equivalent to the parametrized one.

We show that equivalence not only on types, but also on field types and rows. The main element of

the proof is the canonical assignment 𝜂, defined as

𝜂 (𝛼) = {𝑑 ∈ D | 𝛼 ∈ tag(𝑑)} (10)

𝜂 (𝜃) = {𝛿 ∈ D⊥ | 𝜃 ∈ tag(𝛿)} (11)

𝜂 (𝜌) = { ¯̄𝑑 ∈ Drow | dom(¯̄𝑑) = dom(𝜌) and 𝜌 ∈ tag(¯̄𝑑)} (12)

Lemma A.2. For every 𝑇 ∈ T⊥ ∪ R, J𝑇 K = J𝑇 Kq

𝜂
.

Proof. For any 𝐷 and 𝑇 we prove that (𝐷 : 𝑇) ⇐⇒ (𝐷 : 𝑇)q

𝜂
by induction on (𝐷,𝑇).

The only interesting case is when 𝑇 = 𝑟 and 𝐷 = ⟨|(ℓ = 𝛿ℓ)ℓ∈𝐿1
, _ = ⊥∅ |⟩𝑉

𝐿2
. For all ℓ ∈ 𝐿1

we have (𝛿ℓ : 𝑟 (ℓ)) ⇐⇒ (𝛿ℓ : 𝑟 (ℓ))q

𝜂
by induction hypothesis. Let ℓ ∉ 𝐿1. We show that

(⊥∅
: 𝑟 (ℓ)) ⇐⇒ (⊥∅

: 𝑟 (ℓ))q

𝜂 by induction on 𝑟 (ℓ). This induction is well-founded : for

𝑟 (ℓ) = ⊥, both propositions are true and they are false for any other type constructor (in particular

𝑟 (ℓ) = 𝜃). The inductive cases on type operators are straightforward. If tail(𝑟) ∉ V , we are

done. Otherwise, let tail(𝑟) = 𝜌 . On the left side, we have 𝜌 ∈ 𝑉 . On the right side, we have

⟨|(ℓ = 𝛿ℓ)ℓ∈𝐿∩dom(𝜌) , _ = ⊥∅ |⟩𝑉L∖ dom(𝜌) ∈ 𝜂 (𝜌). By definition of 𝜂 (𝜌), this is equivalent to 𝜌 ∈ 𝑉 . □

Lemma A.3. Let𝑊 ∈ Pfin (V) and 𝑇𝑊 = {𝑇 ∈ T⊥ ∪ R | vars(𝑇) ⊆𝑊 }. For every 𝑇 ∈ 𝑇𝑊 ,

J𝑇 Kq

𝜂
= ∅ ⇐⇒ ∀𝜂.J𝑇 Kq

𝜂 = ∅.

Proof. The right-to-left implication is trivial, by instantiation of the quantifier by 𝜂′. The left-
to-right implication is by contraposition: for an arbitrary𝑊 and𝑇𝑊 , we prove ∀𝑇 ∈ 𝑇𝑊 .(∃𝜂.J𝑇 Kq

𝜂 ≠

∅ =⇒ J𝑇 Kq

𝜂
≠ ∅). For this, we define the functions 𝐹𝜂

𝑊
: D⊥ ∪ Drow ∪ {Ω} → D⊥ ∪ Drow ∪ {Ω}

as 𝐹
𝜂

𝑊
(Ω) = Ω and:

𝐹
𝜂

𝑊
(𝐷) =

𝑐�̂� (𝐷)
if 𝐷 = 𝑐;

{(𝐹𝜂
𝑊
(𝑑1), 𝐹𝜂𝑊 (𝜕1)), . . . , (𝐹𝜂𝑊 (𝑑𝑛), 𝐹𝜂𝑊 (𝜕𝑛))}�̂� (𝐷)

if 𝐷 = {(𝑑1, 𝜕1), . . . , (𝑑𝑛, 𝜕𝑛)}𝑉 ;

Rec(¯̄𝑑)�̂� (𝐷)
if 𝐷 = Rec(¯̄𝑑)𝑉 ;

⊥�̂� (𝐷)
if 𝐷 = ⊥𝑉

;

⟨|(ℓ = 𝐹
𝜂

𝑊
(𝛿ℓ))ℓ∈𝐿1

, _ = ⊥∅ |⟩�̂� (𝐷)
𝐿2

if 𝐷 = ⟨|(ℓ = 𝛿ℓ)ℓ∈𝐿1
, _ = ⊥∅ |⟩𝑉

𝐿2

where𝑉 (𝐷) = {𝛼 ∈𝑊 | 𝐷 ∈ 𝜂 (𝛼)} ∪ {𝜃 ∈𝑊 | 𝐷 ∈ 𝜂 (𝜃)} ∪ {𝜌 ∈𝑊 | 𝐷 ∈ 𝜂 (𝜌)}. The finiteness of
𝑊 ensures that 𝑉 is finite. We prove the following statement, for an arbitrary 𝜂 and by induction

on (𝐷,𝑇) ordered lexicographically:

∀𝑇 ∈ 𝑇𝑊 .∀𝐷 ∈ D⊥ ∪ R .(𝐷 : 𝑇)q

𝜂 =⇒ (𝐹𝜂
𝑊
(𝐷) : 𝑇)q

𝜂

• 𝑇 = 𝛼 . We have (𝐹𝜂
𝑊
(𝐷) : 𝛼)q

𝜂
⇐⇒ 𝛼 ∈ tag(𝐹𝜂

𝑊
(𝐷)) ⇐⇒ 𝛼 ∈ 𝑉 (𝐷) ⇐⇒ 𝐷 ∈

𝜂 (𝛼) and 𝛼 ∈𝑊 ⇐⇒ (𝐷 : 𝛼)q

𝜂 . The last equivalence holds by the hypothesis that 𝑇 ∈ 𝑇𝑊 .

The case for 𝑇 = 𝜃 is similar.

34 Giuseppe Castagna and Loïc Peyrot

• 𝑇 = ⊥ and 𝐷 = ⊥𝑉
. (𝐹𝜂

𝑊
(⊥𝑉) : ⊥)q

𝜂
= (⊥�̂� (𝐷)

: ⊥)q

𝜂 holds.

• 𝑇 = R and 𝐷 = Rec(¯̄𝑑)𝑉 . By hypothesis, we have (¯̄𝑑 : row(R))q

𝜂 . By induction, this implies

(𝐹𝜂
𝑊
(¯̄𝑑) : row(R))q

𝜂
and thus (𝐹𝜂

𝑊
(𝐷) : R)q

𝜂
.

• 𝑑 = ⟨|(ℓ = 𝛿ℓ)ℓ∈𝐿1
, _ = ⊥∅ |⟩𝑉

𝐿2
and 𝑡 = 𝑟 . The statement holds for labels in and outside of 𝐿1

by induction hypothesis. If tail(𝑟) ∉ V , we are done. Let tail(𝑟) = 𝜌 . By hypothesis, 𝜌 ∈𝑊 .

By definition of the predicate, there is ¯̄𝑑 = ⟨|(ℓ = 𝛿ℓ)ℓ∈𝐿1∩dom(𝜌) , _ = ⊥∅ |⟩𝑉L∖ dom(𝜌) ∈ 𝜂 (𝜌).
As in the case for type variables, we show: (𝐹𝜂

𝑊
(¯̄𝑑) : 𝜌)q

𝜂
⇐⇒ 𝜌 ∈ tag(𝐹𝜂

𝑊
(¯̄𝑑)) ⇐⇒ 𝜌 ∈

𝑉 (¯̄𝑑) ⇐⇒ 𝐷 ∈ 𝜂 (𝜌) and 𝜌 ∈𝑊 .

• Other cases can be found in [Petrucciani 2019, Lemma 2.8] or are direct by falsity of the

premise. □

Lemma A.4. For all 𝑡1 and 𝑡2, 𝑡1 ≤q 𝑡2 ⇐⇒ 𝑡1 ≤ 𝑡2.

Proof. By definition, Lemma A.3 and Lemma A.2, we show:

𝑡1 ≤q 𝑡2 ⇐⇒ ∀𝜂.J𝑡1∖𝑡2Kq

𝜂 = ∅ ⇐⇒ J𝑡1∖𝑡2K
q

𝜂
= ∅ ⇐⇒ J𝑡1∖𝑡2K = ∅ ⇐⇒ 𝑡1 ≤ 𝑡2 □

A.3 Subtyping relation
Lemma A.5. Let 𝑟 be an atomic row of domain L ∖ 𝐿𝑟 and 𝐿 such that lab(𝑟) ⊆ 𝐿 ⊆ dom(𝑟). Then,

𝑟 ≃ ⟨⟨⟨(ℓ = 𝑟 (ℓ)|||..⟩⟩⟩𝐿𝑟 ∧ ⟨⟨⟨𝐿′||| tail(𝑟)⟩⟩⟩𝐿𝑟 ≃
∧
ℓ∈𝐿

⟨⟨⟨ℓ = 𝑟 (ℓ)|||..⟩⟩⟩𝐿𝑟 ∧ ⟨⟨⟨𝐿′||| tail(𝑟)⟩⟩⟩𝐿𝑟

where 𝐿′ = lab(𝑟) if tail(𝑟) ∈ V and 𝐿′ = 𝐿 otherwise.

Proof. Straightforward by the definition of the models. □

Lemma 2.1. Let 𝑃 and 𝑁 be sets of atomic row types 𝑟 each of domain L∖𝐿𝑟 . Let 𝐿 be a finite set

of labels such that

⋃
𝑟 ∈𝑃∪𝑁 lab(𝑟) ⊆ 𝐿 ⊆ L∖𝐿𝑟 . Let 𝑃V = {𝑟 ∈ 𝑃 | tail(𝑟) ∈ V} and likewise for

𝑁V . For every 𝑟 , we define its default type def (𝑟) as: def (𝑟) = ⊥ if 𝑟 is closed, and def (𝑟) = 1 ∨ ⊥
otherwise. The relation

∧
𝑟 ∈𝑃 𝑟 ≤ ∨

𝑟 ∈𝑁 𝑟 holds iff ∀𝜄 : 𝑁 → 𝐿 ∪ { },

©«∃ℓ ∈ 𝐿.
∧
𝑟 ∈𝑃

𝑟 (ℓ) ≤
∨

𝑟 ∈𝜄−1 (ℓ)
𝑟 (ℓ)ª®¬ (3)

or

(
∃𝑟◦ ∈ 𝜄−1 (_) ∖ 𝑁V .(

∧
𝑟 ∈𝑃

def (𝑟) ≤ def (𝑟◦))
)

(4)

or
(
∃𝑟◦ ∈ 𝜄−1 (_) ∩ 𝑁V .∃𝑟 ∈ 𝑃V . tail(𝑟◦) = tail(𝑟)

)
(5)

Proof. In the following, we let 𝐿𝑖 = lab(𝑟𝑖) and 𝜍𝑖 = tail(𝑟𝑖). Using Lemma A.5, we decompose

the conjunction into:∧
𝑟𝑝 ∈𝑃

(⟨⟨⟨(ℓ = 𝑟𝑝 (ℓ))ℓ∈𝐿|||..⟩⟩⟩𝐿𝑟 ∧ ⟨⟨⟨𝐿′𝑝|||𝜍𝑝⟩⟩⟩𝐿𝑟) ∧
∧
𝑟𝑛∈𝑁

(∨ℓ∈𝐿⟨⟨⟨ℓ = ¬𝑟𝑛 (ℓ)|||..⟩⟩⟩𝐿𝑟 ∨ ¬⟨⟨⟨𝐿′𝑛|||𝜍𝑛⟩⟩⟩𝐿𝑟) (13)

Where 𝐿′𝑖 = 𝐿𝑖 if 𝑟𝑖 ∈ V and 𝐿′𝑖 = 𝐿 otherwise. We can distribute the intersection of the elements of

𝑁 on the right of (13) over the unions in the second brackets. We obtain a union of intersections of,

each time, |𝑁 | elements, where each intersection is a possible combination of the individual rows

present in the second line. Each combination is described by a function 𝜄 : 𝑁 → 𝐿 ∪ {_}, where
𝜄 (𝑟𝑛) = ℓ means that the element ⟨⟨⟨ℓ = ¬𝑟𝑛 (ℓ)|||..⟩⟩⟩𝐿𝑟 is present in the combination given by 𝜄, while

35

𝜄 (𝑟𝑛) = _ means that the element ¬⟨⟨⟨𝐿′𝑛|||𝜍𝑛⟩⟩⟩𝐿𝑟 is present in the combination. For each 𝑟𝑛 ∈ 𝑁 , let us

write 𝑟𝑛ℓ = ⟨⟨⟨ℓ = ¬𝑟𝑛 (ℓ)|||..⟩⟩⟩𝐿𝑟 and 𝑟𝑛− = ¬⟨⟨⟨𝐿′𝑛|||𝜍𝑛⟩⟩⟩𝐿𝑟 . Therefore the row in (13) is equivalent to:∧
𝑟𝑝 ∈𝑃

(⟨⟨⟨(ℓ = 𝑟𝑝 (ℓ))ℓ∈𝐿|||..⟩⟩⟩𝐿𝑟 ∧ ⟨⟨⟨𝐿′𝑝|||𝜍𝑝⟩⟩⟩𝐿𝑟) ∧
∨

𝜄:𝑁→𝐿∪{_}
(
∧
𝑟𝑛∈𝑁

𝑟𝑛
𝜄 (𝑟𝑛)) (14)

By distributing the intersection over the union we obtain∨
𝜄:𝑁→𝐿∪{_}

©«
∧
𝑟𝑝 ∈𝑃

(⟨⟨⟨(ℓ = 𝑟𝑝 (ℓ))ℓ∈𝐿|||..⟩⟩⟩𝐿𝑟 ∧ ⟨⟨⟨𝐿′𝑝|||𝜍𝑝⟩⟩⟩𝐿𝑟) ∧
∧
𝑟𝑛∈𝑁

𝑟𝑛
𝜄 (𝑟𝑛)

ª®¬ (15)

A union is empty if and only if each summand of the union is empty. Therefore the row above is

empty if and only if for all 𝜄 : 𝑁 → 𝐿 ∪ {_}, the following is empty:∧
𝑟𝑝 ∈𝑃

(⟨⟨⟨(ℓ = 𝑟𝑝 (ℓ))ℓ∈𝐿|||..⟩⟩⟩𝐿𝑟 ∧ ⟨⟨⟨𝐿′𝑝|||𝜍𝑝⟩⟩⟩𝐿𝑟) ∧
∧
𝑟𝑛∈𝑁

𝑟𝑛
𝜄 (𝑟𝑛)

≃
∧
𝑟𝑝 ∈𝑃

(⟨⟨⟨(ℓ = 𝑟𝑝 (ℓ))ℓ∈𝐿|||..⟩⟩⟩𝐿𝑟 ∧ ⟨⟨⟨𝐿′𝑝|||𝜍𝑝⟩⟩⟩𝐿𝑟) ∧
∧

ℓ∈𝐿∪{_}

∧
𝑟𝑛∈𝜄−1 (ℓ)

𝑟𝑛ℓ

≃
∧
𝑟𝑝 ∈𝑃

(⟨⟨⟨(ℓ = 𝑟𝑝 (ℓ))ℓ∈𝐿|||..⟩⟩⟩𝐿𝑟 ∧ ⟨⟨⟨𝐿′𝑝|||𝜍𝑝⟩⟩⟩𝐿𝑟) ∧
∧

𝑟𝑛∈𝜄−1 (_)
𝑟𝑛− ∧

∧
ℓ∈𝐿

∧
𝑟𝑛∈𝜄−1 (ℓ)

𝑟𝑛ℓ

=
∧
𝑟𝑝 ∈𝑃

(⟨⟨⟨(ℓ = 𝑟𝑝 (ℓ))ℓ∈𝐿|||..⟩⟩⟩𝐿𝑟 ∧ ⟨⟨⟨𝐿′𝑝|||𝜍𝑝⟩⟩⟩𝐿𝑟) ∧
∧

𝑟𝑛∈𝜄−1 (_)
¬⟨⟨⟨𝐿′𝑛|||𝜍𝑛⟩⟩⟩𝐿𝑟 ∧

∧
ℓ∈𝐿

∧
𝑟𝑛∈𝜄−1 (ℓ)

⟨⟨⟨ℓ = ¬𝑟𝑛 (ℓ)|||..⟩⟩⟩𝐿𝑟

≃
∧
𝑟𝑝 ∈𝑃

(⟨⟨⟨(ℓ = 𝑟𝑝 (ℓ))ℓ∈𝐿|||..⟩⟩⟩𝐿𝑟 ∧ ⟨⟨⟨𝐿′𝑝|||𝜍𝑝⟩⟩⟩𝐿𝑟) ∧
∧

𝑟𝑛∈𝜄−1 (_)
¬⟨⟨⟨𝐿′𝑛|||𝜍𝑛⟩⟩⟩𝐿𝑟 ∧ ⟨⟨⟨(ℓ = ∧

𝑟𝑛∈𝜄−1 (ℓ)¬𝑟𝑛 (ℓ))ℓ∈𝐿|||..⟩⟩⟩𝐿𝑟

≃ ⟨⟨⟨(ℓ =
∧
𝑟𝑝 ∈𝑃

𝑟 (ℓ) ∧
∧

𝑟𝑛∈𝜄−1 (ℓ)
¬𝑟 (ℓ))ℓ∈𝐿|||..⟩⟩⟩𝐿𝑟 ∧

∧
𝑟𝑝 ∈𝑃

⟨⟨⟨𝐿′𝑝|||𝜍𝑝⟩⟩⟩𝐿𝑟 ∧
∧

𝑟𝑛∈𝜄−1 (_)
¬⟨⟨⟨𝐿′𝑛|||𝜍𝑛⟩⟩⟩𝐿𝑟

≃ ⟨⟨⟨(ℓ =
∧
𝑟𝑝 ∈𝑃

𝑟𝑝 (ℓ) ∧
∧

𝑟𝑛∈𝜄−1 (ℓ)
¬𝑟𝑛 (ℓ))ℓ∈𝐿|||..⟩⟩⟩𝐿𝑟

∧
∧

𝑟𝑝 ∈𝑃V̄

⟨⟨⟨𝐿|||𝜍𝑝⟩⟩⟩𝐿𝑟 ∧
∧

𝑟𝑛∈𝜄−1 (_)∩𝑁V̄

¬⟨⟨⟨𝐿|||𝜍𝑛⟩⟩⟩𝐿𝑟 ∧
∧

𝑟𝑝 ∈𝑃V
⟨⟨⟨𝐿𝑝|||𝜍𝑝⟩⟩⟩𝐿𝑟 ∧

∧
𝑟𝑛∈𝜄−1 (_)∩𝑁V

¬⟨⟨⟨𝐿𝑛|||𝜍𝑛⟩⟩⟩𝐿𝑟

Let:

• 𝑟 1
𝜄 = ⟨⟨⟨(ℓ = ∧

𝑟𝑝 ∈𝑃 𝑟𝑝 (ℓ) ∧
∧

𝑟𝑛∈𝜄−1 (ℓ) ¬𝑟𝑛 (ℓ))ℓ∈𝐿|||..⟩⟩⟩𝐿𝑟 ;
• 𝑟 2

𝜄 =
∧

𝑟𝑝 ∈𝑃V̄ ⟨⟨⟨𝐿|||𝜍𝑝⟩⟩⟩𝐿𝑟 ∧
∧

𝑟𝑛∈𝜄−1 (_)∩𝑁V̄
¬⟨⟨⟨𝐿|||𝜍𝑛⟩⟩⟩𝐿𝑟 ;

• 𝑟 3
𝜄 =

∧
𝑟𝑝 ∈𝑃V ⟨⟨⟨𝐿𝑝|||𝜍𝑝⟩⟩⟩𝐿𝑟 ∧

∧
𝑟𝑛∈𝜄−1 (_)∩𝑁V ¬⟨⟨⟨𝐿𝑛|||𝜍𝑛⟩⟩⟩𝐿𝑟 .

We can see that 𝑟 1
𝜄 is empty iff condition (3) holds, 𝑟 2

𝜄 is empty iff condition (4) does (in the case

where 𝑃V̄ is empty, notice that the intersection is equal to 1 ∨ ⊥), and 𝑟 3
𝜄 is empty iff condition (5)

holds. We directly obtain that if one of the conditions holds, then the row 𝑟𝜄 is empty. We now show

that if 𝑟𝜄 is empty, then there is 1 ≤ 𝑖 ≤ 3 such that 𝑟 𝑖𝜄 is empty.

For this, we suppose that none of the subtypes is empty and build an element ¯̄𝑑 ∈ J𝑟𝜄Krow
.

(1) Since 𝑟 1
𝜄 is not empty, for all ℓ ∈ 𝐿 there is an element𝛿1

ℓ ∈ J∧𝑟𝑝 ∈𝑃 𝑟𝑝 (ℓ)∧
∧

𝑟𝑛∈𝜄−1 (ℓ) ¬𝑟𝑛 (ℓ)Kfld
.

(2) Since 𝑟 2
𝜄 is not empty, there is an element ⟨|(ℓ = 𝛿2

ℓ)ℓ∈𝐿2
, _ = ⊥∅ |⟩𝑉2 ∈ J𝑟 2

𝜄 Krow
.

(3) Since 𝑟 3
𝜄 is not empty, there is an element ¯̄𝑑3 ∈ J𝑟 3

𝜄 Krow
. However, the restrictions on the set

of elements in J𝑟 3
𝜄 Krow

only concern their tags so that any element ¯̄𝑑 ′ with tag(¯̄𝑑 ′) = tag(¯̄𝑑3)
and dom(¯̄𝑑 ′) = dom(¯̄𝑑3) is in J𝑟3Krow

. Let 𝑉3 = tag(¯̄𝑑3).

36 Giuseppe Castagna and Loïc Peyrot

We build the element ⟨|(ℓ = 𝛿1

ℓ)ℓ∈𝐿, (ℓ = 𝛿2

ℓ)ℓ∈𝐿2∖𝐿, _ = ⊥∅ |⟩𝑉3 . This element belongs to J𝑟𝜄Krow
,

which is a contradiction. □

A.4 Subtyping algorithm
Lemma 2.2 (Soundness and completeness of Φ). Let R◦ be an open or closed record type,𝑉𝑝 ⊂ V𝑟

and 𝑁 a set of atomic record types. Then,

R◦ ∧
∧
𝜌∈𝑉𝑝

{{{L∖ dom(𝜌)|||𝜌}}} ≤
∨
R∈𝑁

R ⇐⇒ R◦ ≤ 0 or Φ(R◦,𝑉𝑝 , 𝑁).

Proof. If R◦ ≃ 0, the result holds. Otherwise, we prove this by induction on the cardinality of

𝑁 . In the following, given a variable 𝜌 ∈ 𝑉𝑝 , let us write 𝐿𝜌 for L ∖ dom(𝜌).
If 𝑁 = ∅, the union

∨
R∈𝑁 R is empty. So the statement holds if and only if R◦ ≃ 0, since

Φ(R◦,𝑉𝑝 , ∅) = false, and
∧

𝜌∈𝑉𝑝 {{{𝐿𝜌|||𝜌}}} is never empty.

Now, let 𝑁 = 𝑁 ′ ∪ {R}. Let 𝐿 = lab(R◦). R can be decomposed as
∧

ℓ∈𝐿 {{{ℓ = R(ℓ)|||..}}} ∧ {{{𝐿′|||𝜍}}},
where 𝐿′ = 𝐿 if 𝜍 ∉ V and 𝐿′ = lab(R) otherwise. The left-hand side of the statement is thus equiv-

alent to R◦ ∧
∧

𝜌∈𝑉𝑝 {{{𝐿𝜌|||𝜌}}}∧ (∨ℓ∈𝐿 {{{ℓ = ¬R(ℓ)|||..}}}∨¬{{{𝐿′|||𝜍}}}) ≤ ∨
𝑛∈𝑁 ′ R𝑛 . We can distribute the

intersection over the unions. We must then prove an equivalence between (R◦ ≃ ∅ or Φ(R◦,𝑉𝑝 , 𝑁))
and:

∀ℓ ∈ 𝐿.R◦ ∧ {{{ℓ = ¬R(ℓ)|||..}}} ∧
∧
𝜌∈𝑉𝑝

{{{𝐿𝜌|||𝜌}}} ≤
∨
𝑛∈𝑁 ′

R𝑛 (16)

and R◦ ∧
∧
𝜌∈𝑉𝑝

{{{𝐿𝜌|||𝜌}}} ∧ ¬{{{𝐿′|||𝜍}}} ≤
∨
𝑛∈𝑁 ′

R𝑛 (17)

We now have to verify that each of these statements are equivalent to Φ(R◦,𝑉𝑝 , 𝑁).
We start with (16). Let ℓ ∈ 𝐿 and let Rℓ◦ = R◦ ∧ {{{ℓ = ¬R(ℓ)|||..}}}. By the induction hypothesis,

we have that Rℓ◦ ∧ ∧
𝜌∈𝑉𝑝 {{{𝐿𝜌|||𝜌}}} ≤ ∨

𝑛∈𝑁 ′ R𝑛 ⇐⇒ Rℓ◦ ≃ 0 or Φ(Rℓ◦,𝑉𝑝 , 𝑁 ′). Since R◦ ; 0,
Rℓ◦ ≃ 0 ⇐⇒ R◦ (ℓ) ≤ R(ℓ).
We continue with (17). We define Ψ(R◦,𝑉𝑝 ,{{{𝐿′|||𝜍}}}) as (𝜍 = .. or 𝜍 = tail(R◦) or 𝜍 ∈ 𝑉𝑝). We show

that (17) is equivalent to: Ψ(R◦,𝑉𝑝 ,{{{𝐿′|||𝜍}}}) or (¬Ψ(R◦,𝑉𝑝 ,{{{𝐿′|||𝜍}}}) and Φ(R◦,𝑉𝑝 , 𝑁 ′)). It is easy to

show using Lemma 2.1 that R◦ ∧
∧

𝜌∈𝑉𝑝 {{{𝐿𝜌|||𝜌}}} ∧ ¬{{{𝐿′|||𝜍}}} is empty iff Ψ(R◦,𝑉𝑝 ,{{{𝐿′|||𝜍}}}) holds. In
particular, the first condition of Lemma 2.1 never holds since 𝐿′ = 𝐿 when 𝜍 ∉ V . Then, there are

two cases.

(1) R◦ ∧
∧

𝜌∈𝑉𝑝 {{{𝐿𝜌|||𝜌}}} ∧ ¬{{{𝐿′|||𝜍}}} ≤ 0. This means that Ψ(R◦,𝑉𝑝 ,{{{𝐿′|||𝜍}}}) holds, and also that

R◦ ∧
∧

𝜌∈𝑉𝑝 {{{𝐿𝜌|||𝜌}}} ∧ ¬{{{𝐿′|||𝜍}}} ≤ ∨
𝑛∈𝑁 ′ R𝑛 .

(2) R◦ ∧
∧

𝜌∈𝑉𝑝 {{{𝐿𝜌|||𝜌}}} ∧ ¬{{{𝐿′|||𝜍}}} ≰ 0. This means that Ψ(R◦,𝑉𝑝 ,{{{𝐿′|||𝜍}}}) does not hold. Thus,
there are two possible cases: either (a) tail(R◦) = 𝜖 and 𝜍 = .., or (b) 𝜍 = 𝜌 ∉ 𝑉𝑝 . We show that

R◦ ∧
∧

𝜌∈𝑉𝑝 {{{𝐿𝜌|||𝜌}}} ∧ ¬{{{𝐿′|||𝜍}}} ≤ ∨
R∈𝑁 ′ R is equivalent to R◦ ∧

∧
𝜌∈𝑉𝑝 {{{𝐿𝜌|||𝜌}}} ≤ ∨

R∈𝑁 ′ R.

From this, we use the induction hypothesis to obtain the equivalence with Φ(R◦,𝑉𝑝 , 𝑁 ′)
(since R◦ ; 0).
The right-to-left implication of the equivalence is trivial. For the converse implication, we

use Lemma 2.1 on R◦ ∧
∧

𝜌∈𝑉𝑝 {{{𝐿𝜌|||𝜌}}} ≤ ¬{{{𝐿′|||𝜍}}} ∨ ∨
R∈𝑁 ′ R. By the hypothesis (a) and (b)

in the corresponding cases, the second and third conditions of that lemma never hold. Thus,

we have by hypothesis that ∀𝜄 : 𝑁 ′ ∪ {{{𝐿′|||𝜍}}} → 𝐿 ∪ {_}.∃ℓ ∈ 𝐿.R◦ (ℓ) ≤
∨

R∈𝜄−1 (ℓ) R(ℓ). The
implication holds because ∀ℓ ∈ 𝐿.{{{𝐿′|||𝜍}}}(ℓ) = 1 ∨ ⊥.

Summing up, we have proved by induction that if R◦ ∧
∧

𝜌∈𝑉𝑝 {{{𝐿𝜌|||𝜌}}} is not empty, checking

that it is a subtype of
∨

𝑛∈𝑁 R𝑛 is equivalent to checking both these two propositions:

(1) ∀ℓ ∈ 𝐿 . ((R◦ (ℓ) ≤ R(ℓ)) or Φ(R◦ ∧ {{{ℓ = ¬R(ℓ)|||..}}},𝑉𝑝 , 𝑁 ′))

37

(2) (Ψ(R◦,𝑉𝑝 ,{{{𝐿′|||𝜍}}})) or (¬Ψ(R◦,𝑉𝑝 ,{{{𝐿′|||𝜍}}}) and Φ(R◦,𝑉𝑝 , 𝑁 ′))
To conclude, notice that if (¬Ψ(R◦,𝑉𝑝 ,{{{𝐿′|||𝜍}}}) and Φ(R◦,𝑉𝑝 , 𝑁 ′)) holds, then by induction hypoth-

esis we have R◦ ∧𝜌∈𝑉𝑝 {{{𝐿𝜌|||𝜌}}} ≤ ∨
𝑛∈𝑁 ′ R𝑛 and, a fortiori, R◦ ∧

∧
𝜌∈𝑉𝑝 {{{𝐿𝜌|||𝜌}}} ≤ R ∨∨

𝑛∈𝑁 ′ R𝑛 . It is

therefore useless to check the other proposition (1) above, which thus must be checked only when

Ψ(R◦,𝑉𝑝 ,{{{𝐿′|||𝜍}}}) holds. This yields

(¬Ψ(R◦,𝑉𝑝 ,{{{𝐿′|||𝜍}}}) and Φ(R◦,𝑉𝑝 , 𝑁 ′))
or (Ψ(R◦,𝑉𝑝 ,{{{𝐿′|||𝜍}}}) and (∀ℓ ∈ 𝐿 . (R◦ (ℓ) ≤ R(ℓ) or Φ(R◦ ∧ {{{ℓ = ¬R(ℓ)|||..}}},𝑉𝑝 , 𝑁 ′)))

which corresponds to the second clause of the definition of Φ. □

Proposition 2.3. The subtyping algorithm terminates. As a corollary, subtyping is decidable.

Proof. The number of disjoint types in a DNF is finite. Also, the preprocessing of a conjunction

of record types can be defined for all such types and computed in a finite number of steps. Finally,

in function Φ, the number of elements in the third parameter decreases at each recursive call.

Moreover, the subtyping relation on non-record types is decidable [Castagna and Xu 2011], from

which we get decidability of the subtyping relation on field types. □

A.5 Substitutions
Lemma A.6. Let J·K𝒒𝜂 be the appropriate interpretation among J·Kq

𝜂 , J·K
qfld

𝜂 and J·Kqrow

𝜂 . For every 𝑇 ,

𝜎 and 𝜂, if 𝜂′ is defined by 𝜂′ (𝑋) = J𝜎 (𝑋)K𝒒𝜂 , then J𝑇𝜎K
𝒒
𝜂 = J𝑇 K𝒒

𝜂′ .

Proof. For an arbitrary 𝜎 and 𝜂, we show that

∀𝑇 ∈ T⊥ ∪ R .∀𝐷 ∈ D⊥ ∪ Drow.(𝐷 : 𝑇𝜎)q

𝜂 ⇐⇒ (𝐷 : 𝑇)q

𝜂′

by induction on (𝐷,𝑇) and with 𝜂′ defined as before. We detail two cases, the others are straight-

forward.

• 𝑇 = 𝛼 and 𝐷 = 𝑑 . On the left, we have (𝑑 : 𝛼𝜎)q

𝜂 = (𝑑 : 𝜎 (𝛼))q

𝜂 and on the right (𝑑 : 𝛼)q

𝜂′ =

𝑑 ∈ 𝜂′ (𝛼) = 𝑑 ∈ J𝜎 (𝛼)Kq

𝜂 = (𝑑 : 𝜎 (𝛼))q
.

• 𝑇 = {{{(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝜌}}} and 𝐷 = Rec ⟨|(ℓ = 𝛿ℓ)ℓ∈𝐿𝑑 , _ = ⊥∅ |⟩𝑉 . The case for rows is similar. We

have 𝑇𝜎 = {{{(ℓ = 𝜏ℓ)ℓ∈𝐿|||..}}} ∧ {{{𝐿|||𝜎 (𝜌)}}}. Let ¯̄𝑑 = ⟨|(ℓ = 𝛿ℓ)ℓ∈𝐿𝑑∖𝐿, _ = ⊥∅ |⟩𝑉
𝐿
. On the left, we

have:

(𝐷 : 𝑇𝜎)q

𝜂 = (∀ℓ ∈ 𝐿𝑑 .(𝛿ℓ : 𝑇 (ℓ)𝜎)q

𝜂) and (∀ℓ ∉ 𝐿𝑑 .(⊥∅
: 𝑇 (ℓ)𝜎)q

𝜂 and (¯̄𝑑 : 𝜎 (𝜌))q

𝜂

By induction hypothesis, the first two conditions are equivalent to ∀ℓ ∈ 𝐿𝑑 .(𝛿ℓ : 𝑇 (ℓ))q

𝜂′ and

∀ℓ ∉ 𝐿𝑑 .(⊥∅
: 𝑇 (ℓ))q

𝜂′ . By the same reasoning as in the previous case, the last condition is

equivalent to (¯̄𝑑 : 𝜌)q

𝜂′ , which altogether give (𝐷 : 𝑇)q

𝜂′ . □

Proposition 2.4. If 𝑡1 ≤ 𝑡2, then 𝑡1𝜎 ≤ 𝑡2𝜎 for any row substitution 𝜎 .

Proof. By definition, 𝑡1 ≤ 𝑡2 ⇐⇒ J𝑡1∖𝑡2K = ∅. By Lemma A.4, this is equivalent to ∀𝜂.J𝑡1∖𝑡2Kq

𝜂 .

In particular, this holds for 𝜂′ defined as in Lemma A.6, so that J𝑡1∖𝑡2K
q

𝜂′ = ∅. By Lemma A.6, this

implies J(𝑡1∖𝑡2)𝜎Kq

𝜂 = ∅ which means 𝑡1𝜎 ≤ 𝑡2𝜎 . □

38 Giuseppe Castagna and Loïc Peyrot

B APPENDIX FOR LANGUAGE
B.1 Syntax and semantics

Definition B.1 (Top-level variables). The top-level variables of a type (resp. field type, row) are

defined as tlv(𝑡) = tlv
′ (𝑡) ∩ V𝑡 (resp. tlv(𝜏) = tlv

′ (𝜏) ∩ V𝑓 , tlv(𝑟) = tlv
′ (𝑟) ∩ V𝑟).

tlv
′ (𝛼) = {𝛼}

tlv
′ (𝜃) = {𝜃 }

tlv
′ (⟨⟨⟨ℓ = 𝜏, . . . , ℓ = 𝜏|||𝜌⟩⟩⟩𝐿) = tlv

′ ({{{ℓ = 𝜏, . . . , ℓ = 𝜏|||𝜌}}}) = {𝜌}
tlv

′ (𝑇1 ∨𝑇2) = tlv
′ (𝑇1) ∪ tlv

′ (𝑇2)
tlv

′ (¬𝑇) = tlv
′ (𝑇)

tlv
′ (𝑇) = ∅ otherwise

Lemma B.1. If 𝑡1 ≤ 𝑡2 with 𝑡2 ≤ {{{|||..}}} and ℓ#𝑡1 and ℓ#𝑡2, then 𝑡1\ℓ ≤ 𝑡2\ℓ .

Proof. We show that for any 𝑡 ≤ {{{|||..}}}, we have J𝑡\ℓK = { ¯̄𝑑\ℓ | (Rec(¯̄𝑑)𝑉 : 𝑡)}, where ⟨|(ℓ =

𝜏ℓ)ℓ∈𝐿, _ = ⊥∅ |⟩𝑉∅ \ℓ = ⟨|(ℓ = 𝜏ℓ)ℓ∈𝐿∖ℓ , _ = ⊥∅ |⟩𝑉{ℓ } . We start with { ¯̄𝑑\ℓ | (Rec(¯̄𝑑)𝑉 : 𝑡)} ⊆ J𝑡\ℓK. Let
(Rec(¯̄𝑑)𝑉 : 𝑡) and 𝑡 in DNF. The proof is by induction on the top-level type connectives of 𝑡 . Let

¯̄𝑑 = ⟨|(ℓ = 𝛿ℓ)ℓ∈𝐿, _ = ⊥∅ |⟩𝑉∅ , with ℓ ∈ 𝐿.

• 𝑡 = {{{ℓ = 𝜏ℓ|||𝑟}}} with 𝑟 atomic. Then 𝑡\ℓ = 𝑟 and it is clear that (¯̄𝑑\ℓ : 𝑟).
• 𝑡 = ¬{{{ℓ = 𝜏ℓ|||𝑟}}} with 𝑟 atomic. If 𝜏ℓ = 1 ∨ ⊥, then 𝑡\ℓ = ¬𝑟 and there is ℓ ′ ≠ ℓ such that

(𝛿ℓ : 𝑟 (ℓ)) is false, or (⊥∅
: 𝑟 (ℓ)) is false. Thus, (¯̄𝑑\ℓ : ¬𝑟). Otherwise, 𝑡\ℓ = ⟨⟨⟨|||..⟩⟩⟩ℓ and any

(¯̄𝑑\ℓ : 𝑡\ℓ).
• If 𝑡 = 𝑡1 ∧ 𝑡2, we have 𝑡\ℓ = 𝑡1\ℓ ∧ 𝑡2\ℓ . By induction hypothesis, we have (¯̄𝑑\ℓ : 𝑡𝑖\ℓ) for
𝑖 ∈ {1, 2}, so (¯̄𝑑\ℓ : 𝑡\ℓ).

• If 𝑡 = 𝑡1 ∨ 𝑡2, we have 𝑡\ℓ = 𝑡1\ℓ ∨ 𝑡2\ℓ . By induction hypothesis, there is 𝑖 ∈ {1, 2} such that

(¯̄𝑑\ℓ : 𝑡𝑖\ℓ). By induction hypothesis, we have (¯̄𝑑\ℓ : 𝑡\ℓ).
Now, we consider J𝑡\ℓK ⊆ { ¯̄𝑑\ℓ | (Rec(¯̄𝑑)𝑉 : 𝑡)}. Let (¯̄𝑑ℓ : 𝑡\ℓ). Let 𝑡 = ∨

𝑖∈𝐼
∧

R∈𝑃𝑖 R ∧
∧

R∈𝑁𝑖
¬R.

By a reasoning similar to Lemma C.4 and since ℓ#𝑡 , we have 𝑡 ≃ ∨
𝑁 ′⊆𝑁𝑖

𝑡𝑁 ′ =
∨

𝑖∈𝐼
∨

𝑁 ′⊆𝑁𝑖
({{{ℓ =∧

R∈𝑃𝑖 R(ℓ)∧
∧

R∈𝑁 ′ ¬R(ℓ)|||..}}}∧
∧

R∈𝑃𝑖 {{{ℓ|||R\ℓ}}}∧
∧

R∈𝑁𝑖∖𝑁 ′ ¬{{{ℓ|||R\ℓ}}}). For each 𝑁 ′
, we have 𝑡𝑁 ′\ℓ =∧

R∈𝑃𝑖 {{{ℓ|||R\ℓ}}}∧
∧

R∈𝑁𝑖∖𝑁 ′ ¬{{{ℓ|||R\ℓ}}}). If 𝑡 ≤ 0, then by definition 𝑡\ℓ is also. Otherwise, by hypoth-
esis, there are 𝑖 ∈ 𝐼 and 𝑁 ′

such that (¯̄𝑑ℓ : 𝑡𝑁 ′\ℓ). Let 𝛿 be such that (𝛿ℓ :
∧

R∈𝑃𝑖 R(ℓ) ∧
∧

R∈𝑁 ′ ¬R(ℓ)).
We take ¯̄𝑑 to be ¯̄𝑑ℓ completed by ℓ = 𝛿 and we have (Rec(¯̄𝑑)tag(¯̄𝑑ℓ) : 𝑡 ′). Now, we show that for all

𝑡 ≤ {{{|||..}}}, 𝑡\ℓ ≃ split(𝑡)\ℓ , where split(𝑡) is the type obtained by the previous decomposition. First,

let 𝑡 =
∧

R∈𝑃 R ∧
∧

R∈𝑁 ¬R. The proof is by induction on |𝑁 |.
• 𝑁 = ∅. Then, split(𝑡) = {{{ℓ =

∧
R∈𝑃 R(ℓ)|||..}}}∧

∧
𝑅∈𝑃 {{{ℓ|||R\ℓ}}} and split(𝑡)\ = ∧

𝑅∈𝑃 R\ℓ = 𝑡\ℓ .
• 𝑁 = 𝑁0 ∪ {¬{{{ℓ = 𝜏|||𝑟}}}}. Let 𝑡0 =

∧
R∈𝑃 R ∧

∧
R∈𝑁0

¬R. The type 𝑡 is decomposed as follows:

𝑡 ≃
∨

𝑁 ′⊆𝑁0

(
{{{ℓ =

∧
R∈𝑃

R(ℓ) ∧
∧
R∈𝑁 ′

R(ℓ) ∧ ¬𝜏|||..}}} ∧
∧
R∈𝑃

{{{ℓ|||R\ℓ}}} ∧
∧

R∈𝑁0∖𝑁 ′
¬{{{ℓ|||R\ℓ}}}

∨ {{{ℓ =
∧
R∈𝑃

R(ℓ) ∧
∧
R∈𝑁 ′

R(ℓ)|||..}}} ∧
∧
R∈𝑃

{{{ℓ|||R\ℓ}}} ∧
∧

R∈𝑁0∖𝑁 ′
¬{{{ℓ|||R\ℓ}}} ∧ ¬{{{ℓ|||𝑟}}}

)
There are two cases.

(1) 𝜏 = 1 ∨ ⊥. Then, (¬{{{ℓ|||𝑟}}})\ℓ = ¬𝑟 and

split(𝑡) =
∨

𝑁 ′⊆𝑁0

(
{{{ℓ =

∧
R∈𝑃

R(ℓ) ∧
∧
R∈𝑁 ′

R(ℓ)|||..}}} ∧
∧
R∈𝑃

{{{ℓ|||R\ℓ}}} ∧
∧

R∈𝑁0∖𝑁 ′
¬{{{ℓ|||R\ℓ}}} ∧ ¬{{{ℓ|||𝑟}}}

)

39

So by induction hypothesis,

split(𝑡)\ℓ =
∨

𝑁 ′⊆𝑁0

(∧
R∈𝑃

R\ℓ ∧
∧

R∈𝑁0∖𝑁 ′
¬R\ℓ ∧ ¬𝑟

)
≃ split(𝑡0)\ℓ ∧ ¬𝑟 ≃ 𝑡0\ℓ ∧ ¬𝑟 = 𝑡\ℓ

(2) 𝜏 ≠ 1 ∨ ⊥. Then, (¬{{{ℓ = 𝜏|||𝑟}}})\ℓ = ⟨⟨⟨|||..⟩⟩⟩{ℓ } and by induction hypothesis

split(𝑡)\ℓ =
∨

𝑁 ′⊆𝑁0

(∧
R∈𝑃

{{{ℓ|||R\ℓ}}} ∧
∧

R∈𝑁0∖𝑁 ′
¬{{{ℓ|||R\ℓ}}} ∨

∧
R∈𝑃

{{{ℓ|||R\ℓ}}} ∧
∧

R∈𝑁0∖𝑁 ′
¬{{{ℓ|||R\ℓ}}} ∧ ¬{{{ℓ|||𝑟}}}

)
≃ split(𝑡0)\ℓ ≃ 𝑡0\ℓ ≃ 𝑡0\ℓ ∧ ⟨⟨⟨|||..⟩⟩⟩{ℓ } = 𝑡\ℓ

Now, if 𝑡 =
∨

𝑖∈𝐼 𝑡𝑖 where the 𝑡𝑖 ’s are conjunctions, we have 𝑡\ℓ =
∨

𝑖∈𝐼 𝑡𝑖\ℓ ≃ ∨
𝑖∈𝐼 split(𝑡𝑖)\ℓ =

split(𝑡)\ℓ . □

Lemma B.2 (Inversion). Let 𝑣 = {𝑣1 with ℓ = 𝑣2}. If there is a derivation Δ | Γ ⊢D 𝑣 : 𝑡 , then there

are derivations Δ | Γ ⊢D 𝑣1 : 𝑡1 ≤ {{{ℓ = ⊥|||..}}} and Δ | Γ ⊢D 𝑣2 : 𝑡2 such that {{{ℓ = 𝑡2|||𝑡1\ℓ}}} ≤ 𝑡 .

Proof. By induction on Δ | Γ ⊢D 𝑣 : 𝑡 , with a case analysis on the last rule used, that has to be

of (Ext), (Inter) or (Sub).

(Ext) Straightforward.

(Inter) We apply the induction hypothesis twice. Since both types obtained are supertypes of

{{{ℓ = 𝑡2|||𝑡1\ℓ}}}, their intersection is also.

(Sub) By induction hypothesis and transitivity of subtyping. □

Lemma B.3 (Subject reduction). Let 𝑒 be an expression and 𝑡 a type. If Δ | Γ ⊢D 𝑒 : 𝑡 and 𝑒 { 𝑒′,
then Δ | Γ ⊢D 𝑒′ : 𝑡 .

Proof. The proof is by induction on the derivation of Δ | Γ ⊢D 𝑒 : 𝑡 and by a case analysis on

the last rule used in the derivation of Δ | Γ ⊢D 𝑒 : 𝑡 . We detail the cases related to the rules for

records, for the rest, see e.g. [Frisch et al. 2008].

(Emp) 𝑒 = {}, so it does not reduce.

(Ext) 𝑒 = {𝑒1 with ℓ = 𝑒2}. Necessarily, we have 𝑒
′ = {𝑒′

1
with ℓ = 𝑒2} or 𝑒′ = {𝑒1 with ℓ = 𝑒′

2
}

and this is direct by induction hypothesis.

(Sel) If 𝑒 = 𝑒0.ℓ { 𝑒′
0
.ℓ = 𝑒′ or if 𝑒 = {𝑒1 with ℓ ′ = 𝑒2}.ℓ and the reduction occurs in 𝑒1 or

𝑒2, this is direct by induction hypothesis. Otherwise, we have 𝑒 = {𝑣 with ℓ ′ = 𝑣 ′}.ℓ and
Δ | Γ ⊢D {𝑣 with ℓ ′ = 𝑣 ′} : {{{ℓ = 𝑡|||..}}}. By Lemma B.2, there are derivations Δ | Γ ⊢D 𝑣 : 𝑡1 ≤
{{{ℓ ′ = ⊥|||..}}} and Δ | Γ ⊢D 𝑣 ′ : 𝑡2 such that {{{ℓ ′ = 𝑡2|||𝑡1\ℓ ′}}} ≤ {{{ℓ = 𝑡|||..}}}.
• If ℓ = ℓ ′, then 𝑒′ = 𝑣 ′. Since {{{ℓ = 𝑡2|||𝑡1\ℓ}}} ≤ {{{ℓ = 𝑡|||..}}}, we have 𝑡2 ≤ 𝑡 and we conclude

by (Sub).

• If ℓ ≠ ℓ ′, then 𝑒′ = 𝑣 .ℓ . Since {{{ℓ ′ = 𝑡2|||𝑡1\ℓ ′}}} ≤ {{{ℓ = 𝑡|||..}}}, we have 𝑡1 ≤ {{{ℓ = 𝑡, ℓ ′ =
⊥|||..}}}. We conclude by rules (Sub) and (Sel).

(Del) If 𝑒 = {}\ℓ { {}, since {}\ℓ = {}, we can use the same derivation. If 𝑒 = {𝑒1 with ℓ ′ = 𝑒2}\ℓ
and the reduction occurs in 𝑒1 or 𝑒2, this is direct by induction hypothesis. Otherwise, we have

𝑒 = {𝑣 with ℓ ′ = 𝑣 ′}\ℓ . By Lemma B.2, there are derivations Δ | Γ ⊢D 𝑣 : 𝑡1 ≤ {{{ℓ ′ = ⊥|||..}}}
and Δ | Γ ⊢D 𝑣 ′ : 𝑡2 such that {{{𝑡1 with ℓ ′ = 𝑡2}}} ≤ 𝑡 .

• If ℓ = ℓ ′, then 𝑒′ = 𝑣\ℓ . Since 𝑡1 ≤ {{{ℓ = ⊥|||..}}}, 𝑣 can be typed with 𝑡1 = 𝑡1\ℓ =

{{{𝑡1 with ℓ = 𝑡2}}}\ℓ . We conclude because {{{𝑡1 with ℓ = 𝑡2}}} ≤ 𝑡 .

• If ℓ ≠ ℓ ′, then 𝑒′ = {𝑣\ℓ with ℓ ′ = 𝑣 ′}. Since ℓ#𝑡1, there is a derivation Δ | Γ ⊢D 𝑣\ℓ :

𝑡1\ℓ . Since {{{𝑡1\ℓ with ℓ ′ = 𝑡2}}} = {{{𝑡1 with ℓ ′ = 𝑡2}}}\ℓ , we conclude by rule (Ext).

(Inst) Direct by induction hypothesis. □

40 Giuseppe Castagna and Loïc Peyrot

Lemma B.4 (Generation for values). Let 𝑣 be a value such that Δ | Γ ⊢D 𝑣 : 𝑡 with 𝑡 ≤ {{{|||..}}}.
Then 𝑣 has one of the forms {} or {𝑣1 with ℓ = 𝑣2}.

Proof. It is easy to see that a derivation for 𝑣 is obtained by a rule (Emp) followed by rules (Ext),

(Inter) or (Sub). Remark that there are no rules (Inst) because it is impossible to derive a poly-

morphic type 𝑡 for 𝑣 , in particular since for instance {{{|||𝜖}}} ≰ {{{|||𝜌}}}. Moreover, we can show by

induction on the depth of the derivation that if Δ | Γ ⊢D 𝑣 : 𝑡 is derivable, then 𝑡 ; 0. The proof is
by induction on the derivation.

(Emp) This is the base case, where 𝑣 = {}.
(Ext) 𝑣 is of the second form.

(Inter) 𝑡1 and 𝑡2 are reducible to disjunctive normal forms 𝑡R
1
∧𝑡 ′

1
and 𝑡R

2
∧𝑡 ′

2
, such that 𝑡R

1
, 𝑡R

2
≤ {{{|||..}}}

and by hypothesis, 𝑡 ′
1
∧ 𝑡 ′

2
≤ 0. We can show by induction on the derivation of 𝑣 that this

last property does not hold if 𝑣 is not a record expression.

(Sub) We have Δ | Γ ⊢D 𝑣 : 𝑡 ′ ≤ 𝑡 . 𝑡 ′ ≰ 0 since 𝑣 is a value, so we can apply the induction

hypothesis. □

Lemma B.5 (Progress). Let 𝑒 be a well-typed closed expression, that is, ∅ | ∅ ⊢D 𝑒 : 𝑡 for some 𝑡 . If

𝑒 is not a value, then there exists an expression 𝑒′ such that 𝑒 { 𝑒′.

Proof. The proof is by induction on the derivation of Δ | Γ ⊢D 𝑒 : 𝑡 and by a case analysis on

the last rule used in the derivation of Δ | Γ ⊢D 𝑒 : 𝑡 . We detail the cases related to records, for the

rest, see e.g. [Frisch et al. 2008].

(Emp) 𝑒 = {} is a value.

(Ext) 𝑒 = {𝑒1 with ℓ = 𝑒2}. If 𝑒1 or 𝑒2 can be reduced, 𝑒 can also. Otherwise, 𝑒1 and 𝑒2 are values

by induction and so is 𝑒 .

(Del) 𝑒 = 𝑒0\ℓ . If 𝑒0 can be reduced, so can 𝑒 . Otherwise, we have by induction hypothesis that 𝑒0

is a value. By Lemma B.4, either 𝑒0 = {𝑣 with ℓ ′ = 𝑣 ′} and 𝑒 reduces with [R=
del] or [R

≠
del],

or 𝑒0 = {} and 𝑒 reduces with [Remp].
(Sel) 𝑒 = 𝑒0 .ℓ . If 𝑒0 can be reduced, so can 𝑒 . Otherwise, we have by induction hypothesis that 𝑒0

is a value. By Lemma B.4, 𝑒0 = {𝑣 with ℓ ′ = 𝑣 ′} or 𝑒0 = {}. In the first case, 𝑒 reduces with

[R=
del] or [R

≠
del]. The second case is impossible, since there is no derivation for 𝑒0 of type

{{{ℓ = 𝑡|||..}}}.
(Inst) Directly by induction hypothesis. □

Theorem 3.1 (Type soundness). Let 𝑒 be a well-typed closed expression, that is, ∅ | ∅ ⊢D 𝑒 : 𝑡 for

some 𝑡 . Then either 𝑒 diverges or it reduces to a value of type 𝑡 .

Proof. Consequence of Lemmas B.3 and B.5. □

B.2 Algorithmic type system
B.2.1 Field selection. We remind here the definition of the field selection operator.

Definition 3.1 (Field Selection). Let 𝑡 ≤ {{{ℓ = 1|||..}}} be a DNF. We define the selection of the

field ℓ of 𝑡 as (∨𝑖∈𝐼 𝑡𝑖).ℓ =
def ∨

𝑖∈𝐼 𝑡𝑖 .ℓ and

(
∧
R∈𝑃

R ∧
∧
R∈𝑁

¬R ∧
∧
𝛼∈𝑉𝑝

𝛼 ∧
∧
𝛼∈𝑉𝑛

¬𝛼) =
def

∨
𝑁 ′⊆𝑁

(∧
R∈𝑃

R(ℓ) ∧
∧
R∈𝑁 ′

¬R(ℓ)
)

For an arbitrary type 𝑡 ≤ {{{ℓ = 1|||..}}}, we define 𝑡 .ℓ =
def (dnf (𝑡 ∧ {{{|||..}}})).

Lemma B.6. Let 𝑡 =
∧

R∈𝑃 R ∧ ∧
R∈𝑁 ¬R and 𝜌 ∈ V𝑟 such that 𝜌 ∉ tlv(row(𝑡)). Then, 𝑡 ∧

{{{L∖ dom(𝜌)|||𝜌}}} ≤ 0 ⇐⇒ 𝑡 ≤ 0.

41

Proof. Because 𝜌 ∉ tlv(row(𝑡)), the set of elements Rec(¯̄𝑑) ∈ J𝑡 ..K is exactly the elements of

J𝑡K, where 𝜌 is added from tag(¯̄𝑑). □

Lemma B.7. Let 𝑡 ≤ {{{ℓ = 1|||..}}}. Then, for all 𝑢, 𝑡 ≤ {{{ℓ = 𝑢|||..}}} ⇐⇒ 𝑡 .ℓ ≤ 𝑢. In particular, 𝑡 .ℓ ≤ 1
and 𝑡 ≤ {{{ℓ = 𝑡 .ℓ|||..}}}.

Proof. By Lemma C.4, 𝑡 is equivalent to:∨
𝑖∈𝐼

∨
𝑁 ′⊆𝑁𝑖

∨
𝑁 ′
V⊆𝑁 ′∩𝑁V

(
{{{ℓ =

∧
R∈𝑃

R(ℓ) ∧
∧

R∈𝑁∖𝑁 ′
¬R(ℓ)|||..}}}

∧
∧
R∈𝑃

{{{ℓ = 1 ∨ ⊥|||R\ℓ}}} ∧
∧

R∈𝑁 ′∖𝑁 ′
V

¬{{{ℓ = 1 ∨ ⊥|||R\ℓ}}}

∧
∧
R∈𝑃V

{{{ lab(R)||| tail(R)}}} ∧
∧
R∈𝑁 ′

V

¬{{{ lab(R)||| tail(R)}}}
)

where 𝑃V = {R ∈ 𝑃 | tail(R) = 𝜌 and ℓ ∈ dom(𝜌)}, similarly for 𝑁V , and because for any atom R,
row(R)\{ℓ} = R\ℓ . Then, for any 𝑢 it is clear that 𝑡 ≤ {{{ℓ = 𝑢|||..}}} is equivalent to 𝑡 .ℓ ≤ 𝑢. □

Corollary B.8. Let 𝑡 ≤ {{{ℓ = 1|||..}}} and [𝜎𝑖]𝑖∈𝐼 be a set of substitutions. Then (∧𝑖∈𝐼 𝑡𝜎𝑖).ℓ ≤∧
𝑖∈𝐼 𝑡 .ℓ𝜎 .

B.2.2 Taming non-structural rules. To prove soundness and completeness of the algorithmic type

system, we go through an intermediate type system, where the intersection rule is n-ary, and the

introduction of a term variable can perform a renaming of polymorphic variables. The introduction

of a renaming aims at eliminating trivial instantiations (only renamings) in the uses of (Inst). More

details are given by Castagna et al. [2024b, Section I.1].

(Var)

Δ | Γ ⊢𝑚 𝑥 : Γ(𝑥)𝜎
𝑥 ∈ dom(Γ)
dom(𝜎) ∩ Δ = ∅
and 𝜎 is a renaming

(Inter)

(Δ | Γ ⊢𝑚 𝑒 : 𝑡𝑖)𝑖∈𝐼
Δ | Γ ⊢𝑚 𝑒 :

∧
𝑖∈𝐼

𝑡𝑖

|𝐼 | > 0

Rules different from (Inst) and (Var) are the same as in the declarative type system.

Lemma B.9. Δ | Γ ⊢𝑚 𝑒 : 𝑡 ⇐⇒ Δ | Γ ⊢D 𝑒 : 𝑡 .

Proof. The left-to-right direction is straightforward since the rules in the intermediate system

generalize the ones of the declarative system. The right-to-left direction is obtained by replacing

instances of (Var) by instances of (Var) followed by (Inst) in the declarative system, and by

replacing occurences of n-ary intersections by 𝑛 − 1 (Inter) nodes. □

Next, we want to restrict derivations in the intermediate system to a canonical form, where the

apparition of (Inst) and (Sub) nodes is controlled. For convenience, we introduce the following

rule macro:

(⊑)
Δ | Γ ⊢𝑚 𝑒 : 𝑠

Δ | Γ ⊢𝑚 𝑒 : 𝑡
𝑠 ⊑Δ 𝑡

42 Giuseppe Castagna and Loïc Peyrot

which is a stands for (Sub) when 𝑠 ≤ 𝑡 and otherwise for:

(Sub)

(Inter)

(Inst)

Δ | Γ ⊢𝑚 𝑒 : 𝑠

Δ | Γ ⊢𝑚 𝑒 : 𝑠𝜎𝑖
∀𝑖 ∈ 𝐼

Δ | Γ ⊢𝑚 𝑒 :

∧
𝑖∈𝐼

𝑠𝜎𝑖

Δ | Γ ⊢𝑚 𝑒 : 𝑡

Definition B.2 (Canonical derivation). A derivation is canonical if every (Inst) node it contains

is part of a (⊑) pattern and every (⊑) and (Sub) nodes are either:
• The premise of an (Del) or (Sel) node, or

• The first premise of a (Ext) node, or

• One of the premises of an (Abs) or (App) node.

Lemma B.10. A derivation of Δ | Γ ⊢𝑚 𝑒 : 𝑡 can be transformed into a derivation Δ | Γ ⊢𝑚 𝑒 : 𝑡𝜎 ,

for any renaming 𝜎 such that dom(𝜎) ∩ Δ = ∅, without changing the structure of the derivation.

Proof. As in [Castagna et al. 2024b, Lemma I.14]. □

Lemma B.11. Let 𝐼 , Δ and 𝑡 ′𝑖 ⊑Δ 𝑡𝑖 for all 𝑖 ∈ 𝐼 . Then,
∧

𝑖∈𝐼 𝑡
′
𝑖 ⊑Δ

∧
𝑖∈𝐼 𝑡𝑖 .

Proof. As in [Castagna et al. 2024b, Proposition I.15]. □

Lemma B.12. Let 𝑠′ ⊑Δ 𝑠 , ℓ and 𝑟 of domain L ∖ ℓ such that vars(𝑠′) ∩ vars(𝑟) ⊆ Δ. Then,
{{{ℓ = 𝑠′|||𝑟}}} ⊑Δ {{{ℓ = 𝑠|||𝑟}}}.

Proof. Let {𝜎𝑖 }𝑖∈𝐼 such that
∧

𝑖∈𝐼 𝑠
′𝜎𝑖 ≤ 𝑠 , with dom(𝜎) ⊆ vars(𝑠′). We have

∧
𝑖∈𝐼 {{{ℓ =

𝑠′|||𝑟}}}𝜎𝑖 ≃ {{{ℓ =
∧

𝑖∈𝐼 𝑠
′𝜎𝑖|||𝑟}}} ≤ {{{ℓ = 𝑠|||𝑟}}}. □

Lemma B.13. Any derivation of Δ | Γ ⊢𝑚 𝑒 : 𝑡 can be transformed into a canonical derivation of

Δ | Γ ⊢𝑚 𝑒 : 𝑡 ′, where 𝑡 ′ ⊑Δ 𝑡 .

Proof. By induction on the size of the derivation and through a case analysis on the root of the

derivation tree used.

(Inst) or (Sub) We remove the root and let its premise be the new one.

(Inter) Let 𝑡 =
∧

𝑖∈𝐼 𝑠𝑖 . By induction hypothesis, for all 𝑖 ∈ 𝐼 we have derivations Δ | Γ ⊢𝑚 𝑒 : 𝑠′𝑖
with 𝑠′𝑖 ⊑Δ 𝑠𝑖 . By rule (Inter), we have a derivation of 𝑡 ′ =

∧
𝑖∈𝐼 𝑠

′
𝑖 , and 𝑡

′ ⊑Δ 𝑡 is verified

by Lemma B.11.

(Const), (Var), (Emp) Alredy canonical.

(Ext) Let 𝑒 = {𝑒1 with ℓ = 𝑒2} and 𝑡 = {{{ℓ = 𝑡2|||𝑡1\ℓ}}}. By induction hypothesis, we have canonical

derivations Δ | Γ ⊢𝑚 𝑒1 : 𝑡 ′
1
and Δ | Γ ⊢𝑚 𝑒2 : 𝑡 ′

2
with 𝑡 ′

1
⊑Δ 𝑡1 and 𝑡

′
2
⊑Δ 𝑡2. By rule (⊑), we

derive Δ | Γ ⊢𝑚 𝑒1 : 𝑡1. Let 𝑡
′ = {{{ℓ = 𝑡 ′

2
|||ℓ}}}𝑡1. Rule (Ext) node gives a canonical derivation of

Δ | Γ ⊢𝑚 𝑒 : 𝑡 ′. We can suppose that the variables in 𝑡 ′
2
and 𝑡1 are disjoint (otherwise we use

Lemma B.10), and conclude 𝑡 ′ ⊑Δ 𝑡 by Lemma B.12.

(Abs) By induction hypothesis, for each 𝑖 ∈ 𝐼 we have derivations Δ ∪ vars(𝑡) | Γ, 𝑥 : 𝑡𝑖 ⊢𝑚 𝑒 : 𝑠′𝑖
with 𝑠′𝑖 ⊑Δ 𝑠𝑖 . By rule (⊑), we have derivations Δ ∪ vars(𝑡) | Γ, 𝑥 : 𝑡𝑖 ⊢𝑚 𝑒 : 𝑠𝑖 and we

conclude by rule (Abs).

(App), (Sel), (Del) Similar to the previous case. □

43

B.2.3 Soundness and completeness.

Theorem 3.2 (Soundness). If Δ | Γ ⊢A 𝑒 : 𝑡 , then Δ | Γ ⊢D 𝑒 : 𝑡 .

Proof. By induction on the algorithmic typing derivation. By Lemma B.9, it sufices to give a

derivation Δ | Γ ⊢𝑚 𝑒 : 𝑡 . We proceed by a case analysis on the last rule used in the derivation.

(Const), (Var) Straightforward.

(Abs) By induction hypothesis, for each 𝑖 ∈ 𝐼 we have Δ ∪ Δ′ | Γ, 𝑥 : 𝑡𝑖 ⊢𝑚 𝑒 : 𝑠′𝑖 . Since 𝑠
′
𝑖 ⊑Δ∪Δ′ 𝑠𝑖 ,

we derive Δ∪Δ′ | Γ, 𝑥 : 𝑡𝑖 ⊢𝑚 𝑒 : 𝑠𝑖 by rule (⊑). We conclude by rule (Abs) in the declarative

system.

(App) By hypothesis, we have 𝑢 ∈ 𝑡1 •Δ 𝑡2, so 𝑢 is such that there are two substitution sets with∧
𝑗∈ 𝐽 𝑡1𝜎 𝑗 ≤ ∧

𝑖∈𝐼 𝑡2𝜎𝑖 → 𝑢. By induction hypothesis and (⊑), we obtain Δ | Γ ⊢𝑚 𝑒1 :∧
𝑗∈ 𝐽 𝑡1𝜎 𝑗 and Δ | Γ ⊢𝑚 𝑒2 :

∧
𝑖∈𝐼 𝑡2𝜎𝑖 . By (Sub), we have Δ | Γ ⊢𝑚 𝑒1 :

∧
𝑖∈𝐼 𝑡2𝜎𝑖 → 𝑢. We

conclude by rule (App) in the declarative system.

(Emp) Straightforward.

(Ext) By induction hypothesis, we have Δ | Γ ⊢𝑚 𝑒 : 𝑡 , Δ | Γ ⊢𝑚 𝑒′ : 𝑡 ′ and sets of substitutions

[𝜎𝑖]𝑖∈𝐼 such that
∧

𝑖∈𝐼 𝑡𝜎𝑖 ≤ {{{|||..}}} and 𝑟 = (∧𝑖∈𝐼 𝑡𝜎𝑖)\ℓ . By rules (Inst) and (Inter), we

have Δ | Γ ⊢𝑚 𝑒 :
∧

𝑖∈𝐼 𝑡𝜎𝑖 , and we conclude with rule (Del).

(Del) Similar to the case for (Ext), without the derivation of 𝑡 ′.
(Sel) By induction hypothesis, we have Δ | Γ ⊢𝑚 𝑒 : 𝑡 and a set of substitutions [𝜎𝑖]𝑖∈𝐼 such that∧

𝑖∈𝐼 𝑡𝜎𝑖 ≤ {{{ℓ = 1|||..}}} and 𝑢 = (∧𝑖∈𝐼 𝑡𝜎𝑖).ℓ . By Lemma B.7, we have
∧

𝑖∈𝐼 𝑡𝜎𝑖 ≤ {{{ℓ = 𝑢|||..}}},
so we conclude with rule (⊑) and (Sel). □

Theorem 3.3 (Completeness). If Δ | Γ ⊢D 𝑒 : 𝑡 , then there is 𝑠 such that Δ | Γ ⊢A 𝑒 : 𝑠 and 𝑠 ⊑Δ 𝑡 .

Proof. By Lemmas B.9 and B.13 we transform the input derivation into a canonical derivation

Δ | Γ ⊢𝑚 𝑒 : 𝑡 ′, where 𝑡 ′ ⊑Δ 𝑡 . The proof is by induction on the derivation (where we use (⊑) instead
of the corresponding pattern). In the end, we obtain Δ | Γ ⊢A 𝑒 : 𝑠 with 𝑠 ⊑Δ 𝑡 ′ and thus conclude

since by transitivity of ⊑Δ, we have 𝑠 ⊑Δ 𝑡 .

(Const), (Var) Straightforward.

(Abs) By induction hypothesis, for each 𝑖 ∈ 𝐼 , we have Δ ∪ Δ′ | Γ, 𝑥 : 𝑡𝑖 ⊢A 𝑒 : 𝑠𝑖 with 𝑠
′
𝑖 ⊑Δ 𝑠𝑖 . We

conclude with rule (Abs) in the algorithmic system.

(App) By induction hypothesis, we have Δ | Γ ⊢A 𝑒1 : 𝑡 and Δ | Γ ⊢A 𝑒2 : 𝑠 , where 𝑡 ⊑Δ 𝑡1 → 𝑡2
and 𝑠 ⊑Δ 𝑡1. So 𝑡2 ∈ 𝑡 •Δ 𝑠 since (𝑡1 → 𝑡2) · 𝑡1 = 𝑡2.

(Emp) Straightforward.

(Ext) By induction hypothesis, we have Δ | Γ ⊢A 𝑒 : 𝑠 , a set of substitutions such that [𝜎𝑖]𝑖∈𝐼 ⊩
𝑠 ⊑Δ 𝑡 ≤ {{{ℓ = ⊥|||..}}}, Δ | Γ ⊢A 𝑒′ : 𝑠′ and 𝑠′ ⊑Δ 𝑡 ′. Thus, we have [𝜎𝑖]𝑖∈𝐼 ⊩ 𝑠 ⊑Δ {{{ℓ = ⊥|||..}}}.
Since 𝑡 ≤ {{{ℓ = ⊥|||..}}}. By hypothesis, we also have ℓ#𝑡 . Let 𝑟 = (∧𝑖∈𝐼 𝑡𝜎𝑖)\ℓ . By Lemma B.1,

we have 𝑟 ≤ 𝑡\ℓ , so that {{{ℓ = 𝑠′|||𝑟}}} ⊑Δ {{{ℓ = 𝑡 ′|||..}}}𝑡\ℓ .
(Del) By induction hypothesis, we have Δ | Γ ⊢A 𝑒 : 𝑠 and a set of substitutions such that

[𝜎𝑖]𝑖∈𝐼 ⊩ 𝑠 ⊑Δ 𝑡 ≤ {{{|||..}}}. Thus, we have [𝜎𝑖]𝑖∈𝐼 ⊩ 𝑠 ⊑Δ {{{|||..}}}. By hypothesis, we also have ℓ#𝑡 .
Let 𝑟 = (∧𝑖∈𝐼 𝑡𝜎𝑖)\ℓ . By Lemma B.1, we have 𝑟 ≤ 𝑡\ℓ , so that {{{ℓ = ⊥|||𝑟}}} ⊑Δ {{{ℓ = ⊥|||𝑡\ℓ}}}.

(Sel) By induction hypothesis, we have Δ | Γ ⊢A 𝑒 : 𝑠 and a set of substitutions such that

[𝜎𝑖]𝑖∈𝐼 ⊩ 𝑠 ⊑Δ {{{ℓ = 𝑡|||..}}}. Thus, we have [𝜎𝑖]𝑖∈𝐼 ⊩ 𝑠 ⊑Δ {{{ℓ = 1|||..}}}. Let 𝑢 = (∧𝑖∈𝐼 𝑠𝜎𝑖).ℓ . We

have 𝑢 ∈ ⨿ℓ
Δ (𝑠), and by Lemma B.7 𝑢 ≤ 𝑡 so 𝑢 ⊑Δ 𝑡 .

(⊑) Straightforward by induction hypothesis and transitivy of ⊑.
(Sub) Straightforward by induction hypothesis, inclusion of ≤ in ⊑ and transitivity of ⊑.
(Inter) By hypothesis, there is 𝐼 and derivations Δ | Γ ⊢𝑚 𝑒 : 𝑠𝑖 for all {𝑠𝑖 }𝑖∈𝐼 , with 𝑡 =

∧
𝑖∈𝐼 𝑠𝑖 .

Since the derivation is canonical, we know that each of these derivations ends with (the

44 Giuseppe Castagna and Loïc Peyrot

(Ext)

Δ | Γ ⊢ 𝑒 : 𝑡 ≤ {{{ℓ = ⊥|||..}}} Δ | Γ ⊢ 𝑒′ : 𝑡 ′

Δ | Γ ⊢ {𝑒 with ℓ = 𝑒′} : {{{ℓ = 𝑡 ′|||𝑡\ℓ}}}
(Del)

Δ | Γ ⊢ 𝑒 : 𝑡 ≤ {{{|||..}}}

Δ | Γ ⊢ 𝑒\ℓ : {{{ℓ = ⊥|||𝑡\ℓ}}}

(Sel)

Δ | Γ ⊢ 𝑒 : 𝑡

Δ | Γ ⊢ 𝑒.ℓ : 𝑡 .ℓ

The rules (Const), (Var), (Abs), (App), (Emp) are the same as in the algorithmic system.

Fig. 4. Alternative algorithmic system

same kind of) structural rule. According to the other cases, for all 𝑖 ∈ 𝐼 we have derivations

Δ | Γ ⊢𝑚 𝑒 : 𝑠′𝑖 , where 𝑠
′
𝑖 ⊑Δ 𝑠𝑖 . By Lemma B.11 we have 𝑡 ′ =

∧
𝑖∈𝐼 𝑠

′
𝑖 ⊑Δ

∧
𝑖∈𝐼 𝑠𝑖 = 𝑡 . □

B.2.4 Alternative incomplete type system.

Lemma B.14. The type system in Fig. 4 is sound with respect to the declarative type system.

Proof. Similar to the proof of Theorem 3.2. □

C APPENDIX FOR TALLYING
Definition C.1. Given a type term 𝑇 , we write vars(𝑇) the set of variables occurring in it. The

following equalities hold.

vars(𝛼) = {𝛼} vars(𝑇1 → 𝑇2) = vars(𝑇1) ∪ vars(𝑇2) vars(𝑏) = ∅
vars(𝜃) = {𝜃 } vars(𝑇1 ∨𝑇2) = vars(𝑇1) ∪ vars(𝑇2) vars(⊥) = ∅

vars(⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿1
|||𝜍⟩⟩⟩𝐿2) = {𝜍} ∩ V𝑟 vars(¬𝑇) = vars(𝑇) vars(0) = ∅

vars(R) = vars(row(R))

Definition C.2 (Ordering). Let 𝑉 and Δ be sets of variables and 𝐿 a set of labels. An ordering

𝑂𝑋 on 𝑉 is an injective map from 𝑉 to N, an ordering 𝑂ℓ on 𝐿 is an injective map from 𝐿 to N. An

ordering𝑂 on𝑉 and 𝐿 is defined as a lexicographic ordering on N ×N according to𝑂𝑋 and𝑂ℓ , where:

𝑂 (𝜌.ℓ) = (𝑂𝑋 (𝜌),𝑂ℓ (ℓ)), 𝑂 (𝜌\𝐿) = (𝑂𝑋 (𝜌),𝑂 ′ (𝜌, 𝐿)) and 𝑂 (𝑋) = (𝑂𝑋 (𝑋), 0)) otherwise; for all
𝑋1 ∉ Δ and 𝑋2 ∈ Δ of the same kind, 𝑂 (𝑋1) < 𝑂 (𝑋2); and 𝑂 ′ (𝜌, 𝐿) is an integer obtained in a

canonical way from the set 𝐿 ∪ dom(𝜌) and different from any 𝑂ℓ (ℓ).

C.1 Examples regarding the restriction of solutions to atomic rows
We give two examples where we discuss considering only atomic rows instead of Boolean combi-

nations of them in the grammar. The first one shows that we can find tallying solutions even for

unions of records thanks to the unification technique. The second demonstrates that this technique

is not enough to recover all desired solutions, and therefore that Boolean combinations of rows, as

we adopt them in our system, are welcome.

Example C.1. Let us consider the types of the example on Page 5, that we rewrite as follows:

𝑡 = {{{𝑝 = Int|||𝜌}}} → {{{𝑝 = Float|||𝜌}}} and 𝑢 = {{{𝑠 = "circle", 𝑝 = Int, 𝑑 = Float|||𝜖}}} ∨ {{{𝑠 =

"polygon", 𝑝 = Int, 𝑒 = Int|||𝜖}}}. We would like to be able to unify the parameter of the function

with the argument, even though the latter is a union. As explained in [Castagna et al. 2015, §C.2.1],

the problem of computing 𝑡 •∅ 𝑢 can be reduced to solving {(𝑡 ′, ≤, 𝑢 → 𝛼)}, where 𝛼 is a fresh

variable, and 𝑡 ′ =
∧

𝑖∈𝐼 𝑡𝜎𝑖 , where the 𝜎𝑖 are renamings of 𝜌 . The cardinality of 𝐼 will be increased

during the search for a solution.

With a cardinality |𝐼 | = 1, we need in particular to find a solution for the constraint ({{{𝑝 =

Int|||𝜌}}}, ≥, 𝑢). A component-wise unification gives the most precise solution (since we restrict

ourselves to atomic rows): 𝜎 (𝜌) = ⟨⟨⟨𝑠 = "circle" ∨ "polygon", 𝑑 = Float ∨ ⊥, 𝑒 = Int ∨ ⊥|||𝜖⟩⟩⟩{𝑠 } .

45

This is however not the solution we want. Incrementing the cardinality of 𝐼 , we now look for

a solution of {(({{{𝑝 = 𝐼𝑛𝑡|||𝜌1}}} → {{{𝑝 = Int|||𝜌1}}}) ∧ ({{{𝑝 = 𝐼𝑛𝑡|||𝜌2}}} → {{{𝑝 = Int|||𝜌2}}}), ≤, 𝑢 → 𝛼)}.
Thus, we look in particular for a solution to the constraint ({{{𝑝 = 𝐼𝑛𝑡|||𝜌1}}} ∨ {{{𝑝 = 𝐼𝑛𝑡|||𝜌2}}}, ≥, 𝑢). A
component-wise unification gives the solution 𝜎 (𝜌1) = ⟨⟨⟨𝑠 = "circle", 𝑑 = Float|||𝜖⟩⟩⟩{𝑠 }, 𝜎 (𝜌2) =
⟨⟨⟨𝑠 = "polygon", 𝑒 = Int|||𝜖⟩⟩⟩{𝑠 } , thanks to which we retrieve the desired solution, even with the

restriction that rows are all atomic.

Example C.2 (Necessity of connectives on rows). This second examples illustrates why considering

only atomic rows is not satisfactory. Take 𝑡 = {{{|||𝜌}}} → {{{|||𝜌}}} and 𝑠 = {{{𝑎 = ⊥|||..}}}∧¬{{{|||𝜖}}} and let us
look for a solution of 𝑡 •∅ 𝑠 . As in the previous example, this problem can be reduced to solving

{(𝑡 ′, ≤, 𝑠 → 𝛼)}, where 𝛼 is a fresh variable, and 𝑡 ′ =
∧

𝑖∈𝐼 𝑡𝜎𝑖 , where the 𝜎𝑖 are renamings of 𝜌 .

At first, we try |𝐼 | = 1, so we look for a solution of {({{{|||𝜌}}} → {{{|||𝜌}}}, ≤,{{{𝑎 = ⊥|||..}}}∧¬{{{|||𝜖}}} → 𝛼)}.
After normalization, we obtain the constraint-set {(𝛼, ≥,{{{|||𝜌}}}), (𝜌, ≥, ⟨⟨⟨𝑎 = ⊥|||..⟩⟩⟩∅ ∧¬⟨⟨⟨|||𝜖⟩⟩⟩∅)}. If we
were to consider only atomic rows, we could only give the solution 𝜎 (𝜌) = ⟨⟨⟨|||..⟩⟩⟩∅ and 𝜎 (𝛼) = {{{|||..}}}.

To try to find a more precise solution, we run tallying again after incrementing the cardinal of

𝐼 . This yields the following constraint-set: {(({{{|||𝜌1}}} → {{{|||𝜌1}}}) ∧ ({{{|||𝜌2}}} → {{{|||𝜌2}}}), ≤, 𝑠 → 𝛼)},
which normalizes first to {(𝛼, ≥,{{{|||𝜌1}}} ∧ {{{|||𝜌2}}}), (𝜌1 ∨ 𝜌2, ≥, ⟨⟨⟨𝑎 = ⊥|||..⟩⟩⟩∅ ∧ ¬⟨⟨⟨|||𝜖⟩⟩⟩∅)}, and then

(assuming 𝑂 (𝜌1) ≤ 𝑂 (𝜌2)) to {(𝛼, ≥,{{{|||𝜌1}}} ∧ {{{|||𝜌2}}}), (𝜌1, ≥, ⟨⟨⟨𝑎 = ⊥|||..⟩⟩⟩∅ ∧ ¬⟨⟨⟨|||𝜖⟩⟩⟩∅ ∧ ¬𝜌2)}, With

atomic rows only, we still do not have a satisfactory solution, and further expansions do not help.

C.2 General decomposition of rows
Definition C.3. Let 𝑟 = ⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿1

|||𝜍⟩⟩⟩𝐿2
and 𝐿 a finite set of labels. We define 𝑟\𝐿 = ⟨⟨⟨(ℓ =

𝜏ℓ)ℓ∈𝐿1∖𝐿|||𝜍
′⟩⟩⟩𝐿2∪𝐿

, where 𝜍 ′ = .. if 𝜍 ∈ V and 𝐿 ⊈ 𝐿1 ∪ 𝐿2, and 𝜍
′ = 𝜍 otherwise.

Lemma C.3. Let 𝑟 be an atomic row and 𝐿 a set of labels. Let 𝑟 ′ = ⟨⟨⟨𝐿 ∩ lab(𝑟)|||𝑟\(𝐿 ∩ lab(𝑟))⟩⟩⟩ if
tail(𝑟) = 𝜌 and dom(𝜌) ∩ 𝐿 ≠ ∅, and 𝑟 ′ = ⟨⟨⟨𝐿|||𝑟\𝐿⟩⟩⟩ otherwise.

(1) 𝑟 ≃ ⟨⟨⟨(ℓ = 𝑟 (ℓ))ℓ∈𝐿|||..⟩⟩⟩ ∧ 𝑟 ′ ≃ ∧
ℓ∈𝐿 ⟨⟨⟨ℓ = 𝑟 (ℓ)|||..⟩⟩⟩ ∧ 𝑟 ′

(2) ⟨⟨⟨𝐿 ∩ lab(𝑟)|||𝑟\(𝐿 ∩ lab(𝑟))⟩⟩⟩ ≃ ⟨⟨⟨𝐿|||𝑟\𝐿⟩⟩⟩ ∧ ⟨⟨⟨ lab(𝑟)||| tail(𝑟)⟩⟩⟩ if tail(𝑟) ∈ V .

Proof. If 𝑟 ′ = ⟨⟨⟨𝐿|||𝑟\𝐿⟩⟩⟩ , the proof is straightforward. Otherwise, let 𝑟 = ⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿1
|||𝜌⟩⟩⟩𝐿2 ,

with 𝐿 ⊈ 𝐿1 ∪ 𝐿2. For the first item, since 𝑟 (ℓ) = 1 ∨ ⊥ for any ℓ ∉ 𝐿1 ∩ 𝐿2, we must show

𝑟 ≃ ⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿∩𝐿1
, (ℓ = 1 ∨ ⊥)ℓ∈𝐿∖𝐿1

|||..⟩⟩⟩ ∧ ⟨⟨⟨𝐿 ∩ 𝐿1, (ℓ = 𝜏ℓ)ℓ∈𝐿1∖𝐿|||𝜌⟩⟩⟩ . For the second item, we

must show ⟨⟨⟨𝐿 ∩ 𝐿1, (ℓ = 𝜏ℓ)ℓ∈𝐿1∖𝐿|||𝜌⟩⟩⟩ ≃ ⟨⟨⟨𝐿, (ℓ = 𝜏ℓ)ℓ∈𝐿1∖𝐿|||..⟩⟩⟩ ∧ ⟨⟨⟨ lab(𝑟)|||𝜌⟩⟩⟩ . Both of them are

straightforward. □

Lemma C.4. Let 𝑃 and 𝑁 be sets of atomic rows of the same domain and 𝐿 be a finite set of labels. Let

𝑃V = {𝑟 ∈ 𝑃 | tail(𝑟) = 𝜌 and 𝐿 ∩ dom(𝜌) ≠ ∅}, similarly for 𝑁V . The relation

∧
𝑟 ∈𝑃 𝑟 ≤ ∨

𝑟 ∈𝑁 𝑟

holds iff for every map 𝜄 : 𝑁 → 𝐿 ∪ {_}, for every 𝑁 ′ ⊆ 𝜄−1 (_) ∩ 𝑁V :

©«∃ℓ ∈ 𝐿.
∧
𝑟 ∈𝑃

𝑟 (ℓ) ≤
∨

𝑟 ∈𝜄−1 (ℓ)
𝑟 (ℓ)ª®¬ or ©«

∧
𝑟 ∈𝑃

𝑟\𝐿 ≤
∨

𝑟 ∈𝜄−1 (_)∖𝑁 ′

𝑟\𝐿 ª®¬
or

(∧
𝑟 ∈𝑃V

⟨⟨⟨ lab(𝑟)||| tail(𝑟)⟩⟩⟩ ≤
∨
𝑟 ∈𝑁 ′

⟨⟨⟨ lab(𝑟)||| tail(𝑟)⟩⟩⟩
)

Proof. For each 𝑟 ∈ 𝑃V ∪ 𝑁V , let 𝑟− = ⟨⟨⟨𝐿 ∩ lab(𝑟)|||𝑟\(𝐿 ∩ lab(𝑟)⟩⟩⟩ and for each 𝑟 ∈ (𝑃 ∪ 𝑁) ∖
(𝑃V ∪ 𝑁V), let 𝑟− = ⟨⟨⟨𝐿|||𝑟\𝐿⟩⟩⟩ .
Using Lemma C.3, we decompose the type in the statement into:∧

𝑟 ∈𝑃
(⟨⟨⟨(ℓ = 𝑟 (ℓ))ℓ∈𝐿|||..⟩⟩⟩ ∧ 𝑟− ∧

∧
𝑟 ∈𝑁

(
∨
ℓ∈𝐿

¬⟨⟨⟨ℓ = 𝑟 (ℓ)|||..⟩⟩⟩ ∨ ¬𝑟−) (18)

46 Giuseppe Castagna and Loïc Peyrot

We can distribute the intersection of the elements of 𝑁 on the right of (18) over the unions in

the second brackets. We obtain a union of intersections of, each time, |𝑁 | elements, where each

intersection is a possible combination of the individual types present in the second line. Each

combination is described by a function 𝜄 : 𝑁 → 𝐿 ∪ {_}, where 𝜄 (𝑛) = ℓ means that the element

⟨⟨⟨ℓ = ¬𝑟 (ℓ)|||..⟩⟩⟩ is present in the combination given by 𝜄, while 𝜄 (𝑛) = _ means that the element ¬𝑟−
is present in the combination. For each 𝑟 ∈ 𝑁 and ℓ ∈ 𝐿, let us write 𝑟ℓ = ⟨⟨⟨ℓ = 𝑟 (ℓ)|||..⟩⟩⟩ . Therefore
the type in (18) is equivalent to:∧

𝑟 ∈𝑃
(⟨⟨⟨(ℓ = 𝑟 (ℓ))ℓ∈𝐿|||..⟩⟩⟩ ∧ 𝑟−) ∧

∨
𝜄:𝑁→𝐿∪{_}

(
∧
𝑟 ∈𝑁

¬𝑟𝜄 (𝑟)) (19)

By distributing the intersection over the union we obtain∨
𝜄:𝑁→𝐿∪{_}

(∧
𝑟 ∈𝑃

(⟨⟨⟨(ℓ = 𝑟 (ℓ))ℓ∈𝐿|||..⟩⟩⟩ ∧ 𝑟−) ∧
∧
𝑟 ∈𝑁

¬𝑟𝜄 (𝑟)

)
(20)

A union is empty if and only if each summand of the union is empty. Therefore the type above is

empty if and only if for all 𝜄 : 𝑁 → 𝐿 ∪ {_}, the following type is empty:∧
𝑟 ∈𝑃

(⟨⟨⟨(ℓ = 𝑟 (ℓ))ℓ∈𝐿|||..⟩⟩⟩ ∧ 𝑟−) ∧
∧
𝑟 ∈𝑁

¬𝑟𝜄 (𝑟)

≃
∧
𝑟 ∈𝑃

(⟨⟨⟨(ℓ = 𝑟 (ℓ))ℓ∈𝐿|||..⟩⟩⟩ ∧ 𝑟−) ∧
∧

ℓ∈𝐿∪{_}

∧
𝑟 ∈𝜄−1 (ℓ)

¬𝑟ℓ

≃
∧
𝑟 ∈𝑃

(⟨⟨⟨(ℓ = 𝑟 (ℓ))ℓ∈𝐿|||..⟩⟩⟩ ∧ 𝑟−) ∧
∧

𝑟 ∈𝜄−1 (_)
¬𝑟− ∧

∧
ℓ∈𝐿

∧
𝑟 ∈𝜄−1 (ℓ)

¬𝑟ℓ

≃
∧
𝑟 ∈𝑃

(⟨⟨⟨(ℓ = 𝑟 (ℓ))ℓ∈𝐿|||..⟩⟩⟩ ∧ 𝑟−) ∧
∧

𝑟 ∈𝜄−1 (_)
¬𝑟− ∧ ⟨⟨⟨(ℓ = ∧

𝑟 ∈𝜄−1 (ℓ)¬𝑟 (ℓ))ℓ∈𝐿|||..⟩⟩⟩

≃ ⟨⟨⟨(ℓ = ∧
𝑟 ∈𝑃𝑟 (ℓ) ∧

∧
𝑟 ∈𝜄−1 (ℓ)¬𝑟 (ℓ))ℓ∈𝐿|||..⟩⟩⟩ ∧

∧
𝑟 ∈𝑃

𝑟− ∧
∧

𝑟 ∈𝜄−1 (_)
¬𝑟−

Let 𝑟1 = ⟨⟨⟨(ℓ = ∧
𝑟 ∈𝑃𝑟 (ℓ) ∧

∧
𝑟 ∈𝜄−1 (ℓ)¬𝑟 (ℓ))ℓ∈𝐿|||..⟩⟩⟩ . The last type is equivalent to

𝑟1 ∧
∧
𝑟 ∈𝑃

⟨⟨⟨𝐿|||𝑟\𝐿⟩⟩⟩ ∧
∧
𝑟 ∈𝑃V

⟨⟨⟨ lab(𝑟)||| tail(𝑟⟩⟩⟩

∧
∧

𝑟 ∈𝜄−1 (_)∖𝑁V

¬⟨⟨⟨𝐿|||𝑟\𝐿⟩⟩⟩ ∧
∧

𝑟 ∈𝜄−1 (_)∩𝑁V

(¬⟨⟨⟨𝐿|||𝑟\𝐿⟩⟩⟩ ∨ ¬⟨⟨⟨ lab(𝑟)||| tail(𝑟)⟩⟩⟩)

≃ 𝑟1 ∧
∧
𝑟 ∈𝑃

⟨⟨⟨𝐿|||𝑟\𝐿⟩⟩⟩ ∧
∧
𝑟 ∈𝑃V

⟨⟨⟨ lab(𝑟)||| tail(𝑟⟩⟩⟩ ∧
∧

𝑟 ∈𝜄−1 (_)∖𝑁V

¬⟨⟨⟨𝐿|||𝑟\𝐿⟩⟩⟩

∧
∨

𝑁 ′⊆𝜄−1 (_)∩𝑁V

(
∧

𝑟 ∈ (𝜄−1 (_)∩𝑁V)∖𝑁 ′

¬⟨⟨⟨𝐿|||𝑟\𝐿⟩⟩⟩ ∧
∧
𝑟 ∈𝑁 ′

¬⟨⟨⟨ lab(𝑟)||| tail(𝑟)⟩⟩⟩)

≃
∨

𝑁 ′⊆𝜄−1 (_)∩𝑁V

(
𝑟1 ∧

∧
𝑟 ∈𝑃

⟨⟨⟨𝐿|||𝑟\𝐿⟩⟩⟩ ∧
∧

𝑟 ∈𝜄−1 (_)∖𝑁 ′

¬⟨⟨⟨𝐿|||𝑟\𝐿⟩⟩⟩

∧
∧
𝑟 ∈𝑃V

⟨⟨⟨ lab(𝑟)||| tail(𝑟)⟩⟩⟩ ∧
∧
𝑟 ∈𝑁 ′

¬⟨⟨⟨ lab(𝑟)||| tail(𝑟)⟩⟩⟩
)

This type is empty if and only if the conjunctions are all empty for each 𝜄 and𝑁 ′ ⊆ 𝜄−1 (_)∩𝑁V . Take

𝜄 and 𝑁 ′
and let 𝑟2 =

∧
𝑟 ∈𝑃 ⟨⟨⟨𝐿|||𝑟\𝐿⟩⟩⟩ ∧

∧
𝑟 ∈𝜄−1 (_)∖𝑁 ′ ¬⟨⟨⟨𝐿|||𝑟\𝐿⟩⟩⟩ and 𝑟3 = ∧∧

𝑟 ∈𝑃V ⟨⟨⟨ lab(𝑟)||| tail(𝑟)⟩⟩⟩ ∧

47∧
𝑟 ∈𝑁 ′ ¬⟨⟨⟨ lab(𝑟)||| tail(𝑟)⟩⟩⟩ . Let 𝑟𝜄 =

∧
1≤𝑖≤3 𝑟𝑖 . It is immediate that 𝑟1 is empty iff the first condition

of the statement holds, 𝑟2 is empty iff the second does, and 𝑟3 is empty iff the third does. We

directly obtain that if one of the conditions holds, then the type 𝑟𝜄 is empty. We now show that if 𝑟𝜄
is empty, then there is 1 ≤ 𝑖 ≤ 3 such that 𝑟𝑖 is empty.

For this, we suppose that none of the subtypes is empty and build an element ¯̄𝑑 ∈ J𝑟𝜄Krow
.

(1) Since 𝑟1 is not empty, for all ℓ ∈ 𝐿 there is an element 𝛿1

ℓ ∈ J∧𝑟 ∈𝑃 𝑟 (ℓ) ∧
∧

𝑟 ∈𝜄−1 (ℓ) ¬𝑟 (ℓ)Kfld
.

(2) Since 𝑟2 is not empty, there is an element ⟨|(ℓ = 𝛿2

ℓ)ℓ∈𝐿2
, _ = ⊥∅ |⟩𝑉2 ∈ J𝑟2Krow

.

(3) Since 𝑟3 is not empty, there is an element ¯̄𝑑3 ∈ J𝑟3Krow
. However, the restrictions on the set

of elements in J𝑟3Krow
only concern their tags so that any element ¯̄𝑑 ′ with tag(¯̄𝑑 ′) = tag(¯̄𝑑3)

and dom(¯̄𝑑 ′) = dom(¯̄𝑑3) is in J𝑟3Krow
. Let 𝑉3 = tag(¯̄𝑑3).

We build the element ⟨|(ℓ = 𝛿1

ℓ)ℓ∈𝐿, (ℓ = 𝛿2

ℓ)ℓ∈𝐿2∖𝐿, _ = ⊥∅ |⟩𝑉3 . This element belongs to J𝑟𝜄Krow
,

which is a contradiction. □

C.3 Normalization of fields and tails
In this subsection, we define the functions normfld (𝜏,𝑀) and normtl (𝑟, 𝑀) that are mentioned in

Section 4.1. The formal definition of the whole algorithm is given below in Appendix C.4.

Fields. A field type is always equivalent to a DNF that is a disjunction of conjunctions of either

of the shape 𝜏 ∧ ∧
𝜃 ∈𝑃 𝜃 ∧ ∧

𝜃 ∈𝑁 𝜃 , where 𝜏 is either ⊥ or a type 𝑡 . If there is a smallest variable

𝜃0 ∈ 𝑃 ∪ 𝑁 not in Δ, we single out this variable, in the same way as is done for type variables in

our algorithm and in [Castagna et al. 2015]. If all top-level field variables are monomorphic:

• If 𝜏 = 𝑡 , 𝜏 can be instantiated to an empty type only if 𝑡 can, so we apply norm(𝑡, 𝑀).
• If 𝜏 = ⊥, 𝜏 can never be instantiated to an empty type since ⊥ ≰ 0, so normalization fails.

We use the notation 𝑋 𝑇 to indicate that 𝑋 is the smallest top-level variable in 𝑇 .

normfld (𝜏,𝑀) =

{{(𝜃0, ≤,¬𝜏 ∨

∨
𝜃 ∈𝑃∖{𝜃0 } ¬𝜃 ∨ ∨

𝜃 ∈𝑁 𝜃)}}, if ∃𝜃0 ∈ 𝑃 .𝜃0 𝜏
{{(𝜏 ∧ ∧

𝜃 ∈𝑃 𝜃 ∧ ∧
𝜃 ∈𝑁∖{𝜃0 } ¬𝜃 ≤ 𝜃0)}}, if ∃𝜃0 ∈ 𝑁 .𝜃0 𝜏

norm(𝑡, 𝑀), if 𝜏 ′ = 𝑡 and (𝑃 ∪ 𝑁) ∖ Δ = ∅
∅, if 𝜏 ′ = ⊥ and (𝑃 ∪ 𝑁) ∖ Δ = ∅

Tails. By design, the input of this function is a row such that:

• Either there is a polymorphic top-level variable that is an a row 𝑟0 with lab(𝑟) = ∅. Then,
we single out this variable on the left of a new constraint.

• Or there is no polymorphic top-level row variable. In that case, we decompose the row over

all the labels using the subtyping formula.

normtl (𝑟, 𝑀) =

{{(𝜌0, ≤,

∨
𝑟 ∈𝑃∖{𝑟0 } ¬𝑟 ∨

∨
𝑟 ∈𝑁 𝑟)}}, if 𝑟0 ∈ 𝑃

{{(𝜌0, ≥,
∧

𝑟 ∈𝑃 𝑟 ∧𝑟 ∈𝑁∖{𝜌 } ¬𝑟)}}, if 𝑟0 ∈ 𝑁
d

𝜄∈𝐼
⊔

ℓ∈𝐿 normfld

(∧
𝑟 ∈𝑃 𝑟 (ℓ) ∧

∧
𝑟 ∈𝜄−1 (ℓ) ¬𝑟 (ℓ), 𝑀

)
, if tlv(𝑟) ⊆ Δ

where in the two first cases, there is 𝜌0 ∈ (𝑃 ∪ 𝑁) ∖ Δ such that there is 𝑟0 ∈ 𝑃 ∪ 𝑁 with

𝑟0 = ⟨⟨⟨|||𝜌0⟩⟩⟩L∖ dom(𝑟)
, and where in the last case:

• 𝐿 =
⋃

𝑟 ∈𝑃∪𝑁 lab(𝑟);
• 𝑃Δ = {𝑟 ∈ 𝑃 | tail(𝑟) ∈ V} and 𝑁Δ = {𝑟 ∈ 𝑁 | tail(𝑟) ∈ V};
• 𝐼 = {𝜄 : 𝑁 → 𝐿 ∪ {_} | (∀𝑟◦ ∈ 𝜄−1 (_) ∖ 𝑁Δ .

∧
𝑟 ∈𝑃 def (𝑟) ≰ def (𝑟◦)) and (∀𝑟0 ∈ 𝜄−1 (_) ∩

𝑁Δ .∀𝑟𝑝 ∈ 𝑃Δ . tail(𝑟◦) ≠ tail(𝑟𝑝))}, where def (𝑟) is defined as in Lemma 2.1.

48 Giuseppe Castagna and Loïc Peyrot

Σ ⊢N ∅⇝ {∅}
(Nempty)

(Σ ⊢N {(𝑇𝑖 , 𝑐𝑖 ,𝑇 ′
𝑖)}⇝ S𝑖)𝑖∈𝐼

Σ ⊢N {(𝑇𝑖 , 𝑐𝑖 ,𝑇 ′
𝑖) | 𝑖 ∈ 𝐼 }⇝ ⊓𝑖∈𝐼S𝑖

(Njoin)

Σ ⊢N (𝑇, ≤,𝑇 ′) ⇝ S
Σ ⊢N (𝑇 ′, ≥,𝑇) ⇝ S

(Nsym)

Σ ⊢N {(𝑇 ∧ ¬𝑇 ′, ≤, 0)}⇝ S 𝑇 ′ ≠ 0

Σ ⊢N {(𝑇, ≤,𝑇 ′)}⇝ S
(Nzero)

Σ ⊢N {(dnf (𝑇), ≤, 0)}⇝ S 𝑇 ≠ dnf (𝑇)
Σ ⊢N {(𝑇, ≤, 0)}⇝ S

(Ndnf)

Σ ⊢N {(𝑇𝑖 , ≤, 0) | 𝑖 ∈ 𝐼 }⇝ S
Σ ⊢N {(∨𝑖∈𝐼 𝑇𝑖 , ≤, 0)}⇝ S

(Nunion)

Where 𝑇𝑖 in (Nunion) are single normal forms.

Fig. 5. Normalization rules for all kinds

𝑡 ∈ Σ tlv(𝑡) = ∅
Σ ⊢N {(𝑡, ≤, 0)}⇝ {∅}

(Nhyp)

Σ ∪ {𝑡} ⊢N★ {(𝑡, ≤, 0)}⇝ S 𝑡 ∉ Σ

Σ ⊢N {(𝑡, ≤, 0)}⇝ S
(Nassum)

tlv(𝑇) = ∅ 𝑋 ′ 𝑂𝑃 ∪ 𝑁 S =

{
{single(𝑋 ′,𝑇0)} 𝑋 ′ ∉ Δ

Σ ⊢N {(𝑇, ≤, 0)} 𝑋 ′ ∈ Δ

Σ ⊢N {(𝑇0 =
∧
𝑋 ∈𝑃

𝑋 ∧
∧
𝑋 ∈𝑁

¬𝑋 ∧𝑇, ≤, 0)}⇝ S
(Ntlv)

Σ ⊢N {(⊥, ≤, 0)}⇝ ∅
(Nopt)

S =

{
{∅} if 𝑡, ≤, 0
∅ if 𝑡 ≰ 0

Σ ⊢N★ {(𝑡 =
∧
𝑖∈𝑃

𝑏𝑖 ∧
∧
𝑗∈𝑁

¬𝑏 𝑗 , ≤, 0)}⇝ S
(Nbasic)

∃ 𝑗 ∈ 𝑁 .∀𝑃 ′ ⊆ 𝑃 .

Σ ⊢N {𝑡1

𝑗 ∧
∧
𝑖∈𝑃 ′

¬𝑡1

𝑖 , ≤, 0}⇝ S1

𝑃 ′
Σ ⊢N {

∧
𝑖∈𝑃∖𝑃 ′

𝑡2

𝑖 ∧ ¬𝑡2

𝑗 , ≤, 0}⇝ S2

𝑃 ′ 𝑃 ′ ≠ 𝑃

S2

𝑁 ′ = ∅ otherwise

Σ ⊢N★ {(
∧
𝑖∈𝑃

(𝑡1

𝑖 → 𝑡2

𝑖) ∧
∧
𝑗∈𝑁

¬(𝑡1

𝑗 → 𝑡2

𝑗), ≤, 0)}⇝
⊔
𝑗∈𝑁

l

𝑃 ′⊆𝑃
(S1

𝑃 ′ ⊔ S2

𝑃 ′)
(Narrow)

Σ ⊢N {(row(
∧
R∈𝑃

R ∧
∧
R∈𝑁

¬R), ≤, 0)}⇝ S

Σ ⊢N★ {(
∧
R∈𝑃

R ∧
∧
R∈𝑁

¬R, ≤, 0)}⇝ S
(Nrec)

Fig. 6. Normalization rules for type and field single normal forms

49

C.4 Constraint normalization
We formalize normalization as a judgment Σ ⊢N 𝐶 ⇝ S, which states that under the environment

Σ (which, informally, contains the types that have already been processed at this point), 𝐶 is

normalized to S. The main judgment is derived according to the rules in Figs. 5 to 7. Given a type,

field or row variable 𝑋 and a conjunction of types, field types or rows respectively, we define

single(𝑋,𝑇 ∧ 𝑋) = {(𝑋, ≤,¬𝑇)} and single(𝑋,𝑇 ∧ ¬𝑋) = {(𝑋, ≥,𝑇)}. We call single normal form

a DNF that has no topmost disjunction.

If ∅ ⊢N 𝐶 ⇝ S, then S is the result of the normalization of 𝐶 . We now prove soundness and

termination of the constraint normalization algorithm.

Definition C.4. We define the family (≤𝑛)𝑛∈N of subtyping relations as

𝑡 ≤𝑛 𝑠 ⇐⇒def ∀𝜂.J𝑡K𝑛𝜂 ⊆ J𝑠K𝑛𝜂

where J·K𝑛 is the rank 𝑛 interpretation of a type, defined as

J𝑡K𝑛𝜂 = {𝑑 ∈ J𝑡K𝜂 | height(𝑑) ≤ 𝑛}
and height(𝑑) is the height of an element in D, defined as

. . .

height(Rec(¯̄𝑑)𝑉) = 1 + height(¯̄𝑑)
height(⟨|(ℓ = 𝛿ℓ)ℓ∈𝐿, _ = ⊥∅ |⟩𝑉𝐿′) = max(1, (height(𝛿ℓ))ℓ∈𝐿)

Lemma C.5. Let 𝑡 ≤ {{{|||..}}}. Then, 𝑡 ≤𝑛+1 0 ⇐⇒ row(𝑡) ≤𝑛 0.

Proof. By definition and a trivial well-founded induction on type operators, we have J𝑡Kq

𝜂 =

{Rec(¯̄𝑑)𝑉 | ¯̄𝑑 ∈ Jrow(𝑡)Kq

𝜂}. Thus, by definition of height, we have J𝑡Kq

𝑛+1
𝜂 = {Rec(¯̄𝑑)𝑉 | ¯̄𝑑 ∈

Jrow(𝑡)Kq

𝑛𝜂}. □

Definition C.5. Given a constraint-set 𝐶 and a substitution 𝜎 , we define the rank 𝑛 satisfaction

predicate ⊩𝑛 as

𝜎 ⊩𝑛 𝐶 ⇐⇒def ∀(𝑇1, ≤,𝑇2) ∈ 𝐶.𝑇1 ≤𝑛 𝑇2 and ∀(𝑇1, ≥,𝑇2) ∈ 𝐶.𝑇1 ≥𝑛 𝑇2

Lemma C.6. (1) 𝜎 ⊩0 𝐶 for all 𝜎 and 𝐶 .

(2) 𝜎 ⊩ 𝐶 ⇐⇒ ∀𝑛.𝜎 ⊩𝑛 𝐶 .

Proof. Consequence of [Castagna et al. 2015, Lemma C.7] and Lemma C.5. □

Definition C.6 (Marshalling). Given a conjunction of atomic rows 𝑟0 =
∧

𝑟 ∈𝑃 𝑟 ∧
∧

𝑟 ∈𝑁 𝑟 , a

finite set of labels and a set of variables, we define marshalling as

marsh(𝑟, 𝐿,Δ) =
∧

𝑟 ∈𝑃∖𝑃0

𝑟 ∧
∧

𝑟 ∈𝑁∖𝑁0

¬𝑟 ∧
∧
𝑟 ∈𝑃0

⟨⟨⟨(ℓ = 𝑟 [ℓ])ℓ∈𝐿|||𝑟\Δ𝐿⟩⟩⟩ ∧
∧
𝑟 ∈𝑁0

¬⟨⟨⟨(ℓ = 𝑟 [ℓ])ℓ∈𝐿|||𝑟\Δ𝐿⟩⟩⟩

where 𝑃0 = {𝑟 ∈ 𝑃 | tail(𝑟) = 𝜌 ∉ Δ and dom(𝜌) ∩ 𝐿 ≠ ∅}, similarly for 𝑁0.

Lemma C.7. If 𝜎 ⊩ {(marsh(𝑟, 𝐿,Δ), ≤, 0}, then 𝜎 ⊩ {(𝑟, ≤, 0)}.

Proof. We show that marsh(𝑟0, 𝐿,Δ)𝜎 = 𝑟0𝜎 . Let 𝑟 = ⟨⟨⟨(ℓ = 𝑟 (ℓ))ℓ∈𝐿1
|||𝜌⟩⟩⟩ ∈ 𝑃0 ∪ 𝑁0 and

𝑟 ′ = ⟨⟨⟨(ℓ = 𝑟 [ℓ]ℓ∈𝐿|||𝑟\Δ𝐿⟩⟩⟩ . Then, 𝑟 ′ = ⟨⟨⟨(ℓ = 𝑟 (ℓ)ℓ∈𝐿1
, (ℓ = 𝜌.ℓ)ℓ∈𝐿∖𝐿1

|||𝜌\𝐿⟩⟩⟩ . We have 𝜎 (𝜌) ≃
⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿∖𝐿1

|||𝑟 ′′⟩⟩⟩L∖ dom(𝜌)
because 𝜎 is a solution for {marsh(𝑟0, 𝐿,Δ), ≤, 0}. Hence, 𝑟𝜎 =

marsh(𝑟, 𝐿,Δ)𝜎 . □

Given a set Σ of types and rows, we write 𝐶 (Σ) for the constraint-set {(𝑇, ≤, 0) | 𝑇 ∈ Σ}.

50 Giuseppe Castagna and Loïc Peyrot

Lemma C.8 (Soundness). Let 𝐶 be a constraint-set. If ∅ ⊢N 𝐶 ⇝ S, then for all constraint-set

𝐶′ ∈ S and all substitution 𝜎 , we have 𝜎 ⊩ 𝐶′ =⇒ 𝜎 ⊩ 𝐶 .

Proof. We prove the following stronger statements.

(1) Assume Σ ⊢N 𝐶 ⇝ S. For all 𝐶′ ∈ S, 𝜎 and 𝑛, if 𝜎 ⊩𝑛 𝐶 (Σ) and 𝜎 ⊩𝑛 𝐶′
, then 𝜎 ⊩𝑛 𝐶 .

(2) Assume Σ ⊢N★ 𝐶 ⇝ S. For all 𝐶′ ∈ S, 𝜎 and 𝑛, if 𝜎 ⊩𝑛 𝐶 (Σ) and 𝜎 ⊩𝑛 𝐶′
, then 𝜎 ⊩𝑛+1 𝐶 .

The cases (Nempty), (Njoin), (Nsym), (Nzero), (Ndnf), (Nunion), (Nhyp), (Nassum), (Nbasic) and

(Narrow) are given in [Castagna et al. 2015, Lemma C.10].

(Ntlv) Let 𝑇0 = 𝑇 ∧ ∧
𝑋 ∈𝑃 𝑋 ∧ ∧

𝑋 ∈𝑁 ¬𝑋 and 𝑋 ′
be the smallest type variable with respect

to the order in 𝑃 ∪ 𝑁 . If 𝑋 ′ ∈ 𝑃 ∖ Δ, then we have 𝜎 ⊩𝑛 {(𝑋 ′, ≤,¬𝑇𝑋 ′)} with 𝑇𝑋 ′ =

𝑇 ∧ ∧
𝑋 ∈𝑃∖𝑋 𝑋 ∧ ∧

𝑋 ∈𝑁 ¬𝑋 , thus (𝑋 ′)𝜎 ≤𝑛 ¬𝑇𝑋 ′𝜎 . This is equivalent to 𝑇𝜎 ≤𝑛 0, and
we conclude 𝜎 ⊩𝑛 {(𝑇, ≤, 0)}. If 𝑋 ′ ∈ 𝑁 ∖ Δ, the result follows as well. If 𝑋 ′ ∈ Δ, then
𝑃 ∪ 𝑁 ⊆ Δ by Definition C.2. We have J𝑇0K = {𝐷 ∈ J𝑇 K | 𝑃 ⊆ tag(𝐷) and 𝑁 ∩ tag(𝐷) = ∅}.
Since 𝑇0 is non empty, the variables in 𝑃 and 𝑁 are different, and since those variables

cannot be instantiated, we can satisfy 𝑇0 ≤ 0 if and only if 𝑇 ≤ 0 is satisfied.

(Nopt) Direct by emptiness of S.
(Nrec) Let 𝑡 =

∧
R∈𝑃 R ∧ ∧

R∈𝑁 ¬R. By induction, we have 𝜎 ⊩𝑛 {(row(𝑡) ≤ 0)}. This is by
definition equivalent to row(𝑡)𝜎 ≤𝑛 0, thus row(𝑡𝜎) ≤𝑛 0 and by Lemma C.5 𝑡𝜎 ≤𝑛+1 0,
which concludes 𝜎 ⊩𝑛+1 {(𝑡 ≤ 0)}.

(Nrow) The result is direct if S = ∅. Otherwise, we have 𝐶′ =
⋃

𝜄∈𝑁→𝐿∪{_} 𝐶
′
𝜄 , where 𝐶

′
𝜄 ∈⊔

ℓ∈𝐿 S𝜄
ℓ ⊔

d
𝑁 ′∈N S𝜄

𝑁 ′ . For all 𝜄 : 𝑁 → 𝐿 ∪ {_}, there are two cases.

(1) In the first case, there is ℓ ∈ 𝐿 such that 𝐶′
𝜄 ∈ Sℓ

𝜄 . Then, by induction,

𝜎 ⊩𝑛 {(
∧
𝑟 ∈𝑃

𝑟 [ℓ] ∧
∧

𝑟 ∈𝜄−1 (ℓ)
¬𝑟 [ℓ] ≤ 0)}

(2) In the second case, we have 𝐶′
𝜄 =

⋃
𝑁 ′ 𝐶𝑁 ′

𝜄 , where 𝐶𝑁 ′
𝜄 ∈ S𝜄

𝑁 ′ . For all 𝑁
′
, there are two

subcases.

(a) In the first subcase, 𝑁 ′ ∈ N . Then, by induction,

𝜎 ⊩𝑛 {(
∧
𝑟 ∈𝑃

𝑟\Δ𝐿 ∧
∧

𝑟 ∈𝜄−1 (_)∖𝑁 ′

¬(𝑟\Δ𝐿) ≤ 0)}

(b) In the second subcase, 𝑁 ′ ∈ 𝜄−1 (_) ∩ 𝑁Δ ∖N . Then we have

𝜎 ⊩𝑛 {(
∧
𝑟 ∈𝑃Δ

⟨⟨⟨ lab(𝑟)||| tail(𝑟)⟩⟩⟩ ∧
∧
𝑟 ∈𝑁 ′

¬⟨⟨⟨ lab(𝑟)||| tail(𝑟)⟩⟩⟩, ≤, 0)}

In other words, ∀𝜄 : 𝑁 → 𝐿 ∪ {_}.∀𝑁 ′ ⊆ 𝜄−1 (_) ∩ 𝑁Δ :

©«∃ℓ ∈ 𝐿.
∧
𝑟 ∈𝑃

𝑟 [ℓ]𝜎 ≤𝑛

∨
𝑟 ∈𝜄−1 (ℓ)

𝑟 [ℓ]𝜎ª®¬ or ©«
∧
𝑟 ∈𝑃

(𝑟\Δ𝐿)𝜎 ≤𝑛

∨
𝑟 ∈𝜄−1 (_)∖𝑁 ′

(𝑟\Δ𝐿)𝜎 ª®¬
or

(∧
𝑟 ∈𝑃Δ

⟨⟨⟨ lab(𝑟)||| tail(𝑟)⟩⟩⟩ ∧
∧
𝑟 ∈𝑁 ′

¬⟨⟨⟨ lab(𝑟)||| tail(𝑟)⟩⟩⟩
)

Let 𝑃0 = {𝑟 ∈ 𝑃 | tail(𝑟) = 𝜌 ∉ Δ and dom(𝜌) ∩ 𝐿 ≠ ∅}, same for 𝑁0. By Lemma C.4, the

definition of substitution and the fact that 𝑟 [ℓ] = 𝑟 (ℓ) and 𝑟\Δ𝐿 = 𝑟\𝐿 for all 𝑟 ∉ 𝑃0 ∪𝑁0, we

have marsh(𝑟0, 𝐿,Δ)𝜎 ≤𝑛 0, that is 𝜎 ⊩ {marsh(𝑟0, 𝐿,Δ), ≤, 0)}, By Lemma C.7, we conclude

𝜎 ⊩𝑛 {(𝑟0 ≤ 0)}.

51

(Ntail-mono) The result is direct if
d

𝜄∈𝐼
⊔

ℓ∈𝐿 S𝜄
ℓ = ∅. Otherwise, we have 𝐶′ =

⋃
𝜄∈𝐼 𝐶

′
𝜄 , where

S′
𝜄 ∈

⊔
ℓ∈𝐿 Sℓ

𝜄 . By definition of ⊔, for all 𝜄 ∈ 𝐼 , there is ℓ ∈ 𝐿 such that𝐶′
𝜄 ∈ Sℓ

𝜄 . By induction,

𝜎 ⊩𝑛 {(∧𝑟 ∈𝑃 𝑟 (ℓ) ∧
∧

𝑟 ∈𝜄−1 (ℓ) ¬𝑟 (ℓ))}. In other words,

∀𝜄 ∈ 𝐼 .∃ℓ ∈ 𝐿.
∧
𝑟 ∈𝑃

𝑟 (ℓ)𝜎 ∧
∧

𝑟 ∈𝜄−1 (ℓ)
¬𝑟 (ℓ)𝜎 ≤𝑛 0

Moreover, by hypothesis that 𝐿 ⊆ ⋃
𝑟 ∈𝑃∪𝑁 lab(𝑟). Also, for each 𝜄 ∉ 𝐼 , one of the two

conditions (4) or (5) of Lemma 2.1 is satisfied. By this corollary,
∧

𝑟 ∈𝑃 𝑟𝜎 ∧ ∧
𝑟 ∈𝑁 ¬𝑟𝜎 ≤𝑛 0.

We conclude 𝜎 ⊩𝑛 {(∧𝑟 ∈𝑃 𝑟 ∧
∧

𝑟 ∈𝑁 ¬𝑟 ≤ 0)}.
(Ntail-tlv) Let 𝑟0 =

∧
𝑟 ∈𝑃 𝑟 ∧

∧
𝑟 ∈𝑁 𝑟 . By hypothesis, there is 𝑟 ′ = ⟨⟨⟨|||𝜌\𝐿1⟩⟩⟩𝐿2 ∈ 𝑃 ∪ 𝑁 such that

𝜌 𝑂𝑟 ′. There are two similar cases, we detail the one where 𝑟 ′ ∈ 𝑃 . Let 𝑟 ′
0
=

∧
𝑟 ∈𝑃∖{𝑟 ′ } ¬𝑟 ∧∧

𝑟 ∈𝑁 𝑟 . By hypothesis, we have 𝜎 ⊩𝑛 {(𝑟 ′𝜎 ≤ ¬𝑟 ′
0
)}, thus 𝑟 ′𝜎 ≤𝑛 𝑟 ′

0
𝜎 . This is equivalent to

𝑟0𝜎 ≤𝑛 0, and we conclude 𝜎 ⊩𝑛 {(𝑟0 ≤ 0)}. □

We introduce a notion of plinth generalizing the one of Frisch [2004] to types, field types and

rows. This notion is used to prove termination of the algorithm.

Definition C.7 (Plinth). A plinth ℶ ⊂ T⊥ ∪ R is a set of types, field types and rows with the

following properties:

• ℶ is finite;

• ℶ contains 0, 1, ⊥, ⟨⟨⟨|||..⟩⟩⟩∅ and is closed under Boolean connectives (∨, ∧, ¬);
• for all type 𝑡1 → 𝑡2 ∈ ℶ, we have 𝑡1 ∈ ℶ and 𝑡2 ∈ ℶ;
• for all type R ∈ ℶ, we have row(R) ∈ ℶ;
• for all row 𝑟 ∈ ℶ of domain L∖𝐿𝑟 , let 𝐿 be the set of labels appearing explicitely in ℶ and 𝑉

the set of row variables in ℶ, we have:
– for all ℓ ∈ 𝐿, 𝑟 (ℓ) ∈ ℶ
– for all 𝐿′ ⊆ 𝐿, ∀𝑉 ′ ⊆ 𝑉 , 𝑟\𝑉 ′

𝐿′ ∈ ℶ and marsh(𝑟, 𝐿′,𝑉 ′) ∈ ℶ.

Every finite set of types, field types and types is included in a plinth. Indeed, for a regular type 𝑡 ,

the set of its subtrees 𝑆 is finite, while rows and field types are inductively defined. The definition

of the plinth ensures that the closure of 𝑆 under Boolean connectives is also finite. Moreover, if a

type, field type or row belongs in a plinth, the set of its subtrees also does. Finally, if a record or a

row belongs to a plinth, the rows obtained by marshalling or by removing fields also belongs to the

plinth, but only if these operations are done with respect to the set of labels present in the plinth,

in order to guarantee finiteness of the plinth.

Lemma C.9 (Termination). Let 𝐶 be a finite constraint set. The normalization of 𝐶 terminates.

Proof. Let 𝐵 be the set of types occuring in𝐶 . As𝐶 is finite, 𝐵 is finite as well. Let ℶ be a plinth

such that 𝐵 ⊆ ℶ. Then, when we normalize a constraint (𝑡, ≤, 0) during the process of ∅ ⊢N 𝐶 , 𝑡

would belong to ℶ. We prove the lemma by induction on (|ℶ∖Σ|,𝑈 , |𝐶 |),𝑈 is the number of unions

∨ occurring in the constraint-set𝐶 (over any kind) plus the number of constraints (𝑇1, ≤,𝑇2) where
𝑇2 ≠ 0 or𝑇1 is not in DNF, and𝐶 is the constraint-set to be normalized. We detail the original cases,

others are described in the proof [Castagna et al. 2015, Lemma C.14].

(Nopt) Terminates immediately.

(Nrec) None of the indices decreases, but the next rule to apply must be one of (Nrow), (Ntail-

mono) or (Ntail-tlv).

(Nrow) Although (|ℶ ∖ Σ|,𝑈 , |𝐶 |) may not change, the next rule to apply must be one of (Ndnf),

(Nhyp), (Nassum), (Ntlv), (Nopt) for S𝜄
ℓ and (Ntail-tlv) for S𝜄

𝑁 ′ .

52 Giuseppe Castagna and Loïc Peyrot

(Ntail-mono) Although (|ℶ ∖ Σ|,𝑈 , |𝐶 |) may not change, the next rule to apply must be one of

(Ndf), (Nhy), (Nassum), (Ntlv), (Nopt).

(Ntail-tlv) Terminates immediately. □

Definition C.8 (Normalized constraint). A constraint is said to be normalized if it is of the

shape (𝑋, 𝑐,𝑇), where 𝑋 and 𝑇 are of the same kind. A constraint-set is normalized if all constraints

are.

Lemma C.10. Let 𝐶 be a constraint-set and ∅ ⊢N 𝐶 ⇝ S. Then, all constraint-sets 𝐶′ ∈ S are

normalized.

Proof. Straightforward by induction on the algorithm derivation. □

Lemma C.11 (Finiteness). Let 𝐶 be a constraint-set and ∅ ⊢N 𝐶 ⇝ S. Then, S is finite.

Proof. It is easy to prove that each normalizing rule generates a finite set of finite sets of

normalized constraints. □

Definition C.9. Let 𝐶 be a normalized constraint-set and 𝑂 an ordering on var(𝐶) and on the

labels occurring in 𝐶 . We say 𝐶 is well-ordered if for all normalized constraint (𝑋1, 𝑐,𝑇) ∈ 𝐶 and for

all 𝑋2 ∈ tlv(𝑇), 𝑂 (𝑋1) < 𝑂 (𝑋2) holds.

Lemma C.12. Let 𝐶 be a constraint-set and ∅ ⊢N 𝐶 ⇝ S. Then for all normalized constraint-set

𝐶′ ∈ S, 𝐶′
is well-ordered.

Proof. There are two different ways to generate normalized constraints:

(Ntlv) We single out the type variable 𝑋 ′
whose order is minimum, because tlv(𝑇) = ∅.

(Ntail-tlv) We single out the row variable 𝜌 whose order is minimum. □

C.5 Constraint merging and saturation
After normalization, we have a set of constraint-sets where the same variable might have several

upper and lower bounds given by different constraints on that variable. After this step, we wish to

obtain unique upper and lower bounds for the same variable. This is done in two phases. For each

normalized constraint-set 𝐶 and following the order on variables, we:

• Merge two constraints (𝑋, ≤,𝑇1) and (𝑋, ≤,𝑇2) into (𝑋, ≤,𝑇1 ∧𝑇2).
• Merge two constraints (𝑋, ≥,𝑇1) and (𝑋, ≥,𝑇2) into (𝑋, ≥,𝑇1 ∨𝑇2).

Once the set 𝐶 has been transformed into 𝐶′
where there are no such constraints left, we saturate

the set to verify that the lower bound is indeed a subtype of the upper bound, once again following

the order on variables. From two constraints (𝑇1, ≤, 𝑋) and (𝑋, ≤,𝑇2), we normalize the constraint

(𝑇1 ∧ ¬𝑇2, ≤, 0). We obtain a set of constraint-sets S. We add the new resulting constraint-sets

accordingly to the existing ones with S ⊓ {𝐶′}, then apply the step of merging and saturation again

on each constraint-sets in S ⊓ {𝐶′}. Termination of this step is assured as in the step of constraint

normalization by an additional argument𝑀 to the merge function, saving visited types.

Formally, this part is almost exactly the same as in the original algorithm in [Castagna et al.

2015, Section C.1.2]. One simply needs to replace occurrences of 𝛼 and 𝑡 by the more general

meta-variables 𝑋 and 𝑇 . The rules are given in Figs. 8 and 9. Termination is proved thanks to the

generalized definition of plinths (Definition C.7).

53

∀𝜄 : 𝑁→𝐿∪{_}.

∀ℓ ∈ 𝐿.Σ ⊢N {(

∧
𝑟 ∈𝑃

𝑟 [ℓ] ∧
∧

𝑟 ∈𝜄−1 (ℓ)
¬𝑟 [ℓ], ≤, 0)}⇝ S𝜄

ℓ

∀𝑁 ′ ∈ N .Σ ⊢N {(
∧
𝑟 ∈𝑃

𝑟\Δ𝐿 ∧
∧

𝑟 ∈𝜄−1 (_)∖𝑁 ′

¬(𝑟\Δ𝐿), ≤, 0)}⇝ S𝜄
𝑁 ′

𝜌 𝑂 tlv(𝑟0) 𝜌 ∉ Δ 𝐿 = dom(𝑟0)∖ dom(𝜌) 𝐿 ≠ ∅
𝑃Δ = {𝑟 ∈ 𝑃 ∩ Δ | tail(𝑟) = 𝜌𝑝 and dom(𝜌𝑝) ∩ 𝐿 ≠ ∅}
𝑁Δ = {𝑟 ∈ 𝑁 ∩ Δ | tail(𝑟) = 𝜌𝑛 and dom(𝜌𝑛) ∩ 𝐿 ≠ ∅}

N = {𝑁 ′ ⊆ 𝜄−1 (_) ∩ 𝑁Δ |
∧
𝑟 ∈𝑃Δ

⟨⟨⟨ lab(𝑟)||| tail(𝑟)⟩⟩⟩ ∧
∧
𝑟 ∈𝑁 ′

¬⟨⟨⟨ lab(𝑟)||| tail(𝑟)⟩⟩⟩ ≰ 0}

Σ ⊢N {(𝑟0 =
∧
𝑟 ∈𝑃

𝑟 ∧
∧
𝑟 ∈𝑁

¬𝑟, ≤, 0)}⇝
l

𝜄:𝑁→𝐿∪{_}

(⊔
ℓ∈𝐿

S𝜄
ℓ ⊔

l

𝑁 ′∈N
S𝜄
𝑁 ′

) (Nrow)

∀𝜄 ∈ 𝐼1 ∩ 𝐼2.∀ℓ ∈ 𝐿.Σ ⊢N {(
∧
𝑟 ∈𝑃

𝑟 (ℓ) ∧
∧

𝑟 ∈𝜄−1 (ℓ)
¬𝑟 (ℓ), ≤, 0)}⇝ S𝜄

ℓ

𝐼1 = {𝜄 : 𝑁 → 𝐿 ∪ {_} | ∀𝑟◦ ∈ 𝜄−1 (_)∖𝑁Δ .
∧

𝑟 ∈𝑃∖𝑃Δ
def (𝑟) ≰ def (𝑟◦)}

𝐼2 = {𝜄 : 𝑁 → 𝐿 ∪ {_} | ∀𝑟◦ ∈ 𝜄−1 (_) ∩ 𝑁Δ .∀𝑟𝑝 ∈ 𝑃Δ . tail(𝑟◦) ≠ tail(𝑟𝑝)}
tlv(𝑃 ∪ 𝑁) ⊆ Δ 𝐿 =

⋃
𝑟 ∈𝑃∪𝑁

lab(𝑟)

𝑃Δ = {𝑟 ∈ 𝑃 | tail(𝑟) ∈ V} 𝑁Δ = {𝑟 ∈ 𝑁 | tail(𝑟) ∈ V}

Σ ⊢N {(
∧
𝑟 ∈𝑃

𝑟 ∧
∧
𝑟 ∈𝑁

¬𝑟, ≤, 0)}⇝
l

𝜄∈𝐼1∩𝐼2

⊔
ℓ∈𝐿

S𝜄
ℓ

(Ntail-mono)

𝜌 𝑂 tlv(𝑃 ∪ 𝑁) 𝜌 ∉ Δ ∃𝑟 ′ ∈ 𝑃 ∪ 𝑁 .𝑟 ′ = ⟨⟨⟨|||𝜌⟩⟩⟩𝐿

Σ ⊢N {(𝑟0 =
∧
𝑟 ∈𝑃

𝑟 ∧
∧
𝑟 ∈𝑁

¬𝑟, ≤, 0)}⇝ {single(⟨⟨⟨|||𝜌⟩⟩⟩𝐿, 𝑟0)}
(Ntail-tlv)

Fig. 7. Normalization rules for row single normal forms

∀𝑖 ∈ 𝐼 .(𝑋, ≥,𝑇𝑖) ∈ 𝐶 |𝐼 | ≥ 2

⊢M 𝐶 ⇝ (𝐶 ∖ {(𝑋, ≥,𝑇𝑖) | 𝑖 ∈ 𝐼 } ∪ {(𝑋, ≥,
∨
𝑖∈𝐼

𝑇𝑖)})
(MLB)

∀𝑖 ∈ 𝐼 .(𝑋, ≤,𝑇𝑖) ∈ 𝐶 |𝐼 | ≥ 2

⊢M 𝐶 ⇝ (𝐶 ∖ {(𝑋, ≤,𝑇𝑖) | 𝑖 ∈ 𝐼 } ∪ {(𝑋, ≤,
∨
𝑖∈𝐼

𝑇𝑖)})
(MUB)

Fig. 8. Merging rules

54 Giuseppe Castagna and Loïc Peyrot

Σ𝑝 ,𝐶Σ ∪ {(𝑋, ≥,𝑇1), (𝑋, ≤,𝑇2)} ⊢S 𝐶 ⇝ S (𝑇1,𝑇2) ∈ Σ𝑝

Σ𝑝 ,𝐶Σ ⊢S {(𝑋, ≥,𝑇1), (𝑋, ≤,𝑇2)} ∪𝐶 ⇝ S
(Shyp)

(𝑇1,𝑇2) ∉ Σ𝑝 ∅ ⊢N {(𝑇1, ≤,𝑇2)}⇝ S
S′ = {{(𝑋, ≥,𝑇1), (𝑋, ≤,𝑇2)} ∪𝐶 ∪𝐶Σ} ⊓ S
∀𝐶′ ∈ S′ .Σ𝑝 ∪ {(𝑇1,𝑇2)}, ∅ ⊢MS 𝐶

′ ⇝ S𝐶′

Σ𝑝 ,𝐶Σ ⊢S {(𝑋, ≥,𝑇1), (𝑋, ≤, 𝑋2)} ∪𝐶 ⇝
⊔

𝐶′∈S′

S𝐶′
(Sassum)

∀𝑋,𝑇1,𝑇2.�{(𝑋, ≥,𝑇1), (𝑋, ≤,𝑇2)} ⊆ 𝐶

Σ𝑝 ,𝐶Σ ⊢S 𝐶 ⇝ {𝐶 ∪𝐶Σ}
(Sdone)

Where Σ𝑝 ,𝐶Σ ⊢MS 𝐶 ⇝ S means that there exists 𝐶′
such that ⊢M 𝐶 ⇝ 𝐶′

and Σ𝑝 ,𝐶Σ ⊢S 𝐶′ ⇝ S.

Fig. 9. Saturation rules

C.6 Harmonization
Thanks to the last step, we now have a set of constraint-sets such that in all constraint-sets, each

variable in the domain of the constraint-set has at most one upper bound and one lower bound. Yet,

for a row variable 𝜌 of the original type constraints, we can have several constraints for the derived

constructors 𝜌\𝐿, for instance a constraint-set containing both (𝜌\𝐿1, ≤,𝑇1) and (𝜌\𝐿2, ≤,𝑇2), with
𝐿1 ∩ dom(𝜌) ≠ 𝐿2 ∩ dom(𝜌). There could also be occurrences of another construction 𝜌\𝐿3 in 𝑇1

with a different 𝐿3. We want a unique decomposition of 𝜌 in each constraint-set, with a unique set

𝐿0 such that only 𝜌\𝐿0 may appear in the domain of the constraint-set. From this, we will build a

solution such that 𝜎 (𝜌) ≃ (ℓ = 𝜏ℓ)ℓ∈𝐿0
𝑟 . There can be occurrences of 𝜌\𝐿′ not in the domain, or of

𝜌.ℓ ′, but substitution will be correctly defined since we take 𝐿0 to cover all such occurrences.

Formally, a harmonized constraint is defined as follow.

Definition C.10 (Harmonized constraint). Let 𝐶 ⊆ C be a saturated constraint-set. We say 𝐶

is harmonized if for each type variable 𝜌 ∈ dom(𝐶), there is a finite set of labels 𝐿 such that:

(1) ∀(𝜌\𝐿𝑖 , 𝑐, 𝑟𝑖) ∈ 𝐶. 𝐿𝑖∖ dom(𝜌) = 𝐿 ∖ dom(𝜌);
(2) ∀𝜌\𝐿′ ∈ var(𝐶). 𝐿′ ⊆ 𝐿;

(3) ∀𝜌.ℓ ∈ vars(𝐶). ℓ ∈ 𝐿 ∩ dom(𝜌).

If a constraint-set is not harmonized, then it is of the shape𝐶∪{⟨⟨⟨|||𝜌\𝐿⟩⟩⟩𝐿, 𝑐, 𝑟 }, where 𝐿0 ⊈ 𝐿, when

we define 𝐿0 =
⋃

𝜌.ℓ∈vars(𝐶)∪vars(𝑟) {ℓ} ∪
⋃

𝜌\𝐿′∈vars(𝐶)∪vars(𝑟) 𝐿
′
. To harmonize the decomposition

of the variable row, we normalize the constraint-set {(⟨⟨⟨(ℓ = 𝜌.ℓ)ℓ∈𝐿0∖𝐿|||𝜌\𝐿0⟩⟩⟩𝐿, 𝑐, 𝑟)}. We integrate

the obtained set of constraint-sets S to the existing constraints with {𝐶} ⊓ S and apply merging

and harmonization recursively. The rules are given in Fig. 10.

Lemma C.13 (Soundness). Let 𝐶 be a finite saturated constraint-set. If ∅ ⊢H 𝐶 ⇝ S, then for all

constraint-set 𝐶′ ∈ S and all substitution 𝜎 , we have 𝜎 ⊩ 𝐶′ =⇒ 𝜎 ⊩ 𝐶 .

Proof. The proof is by induction on the derivation tree. We prove the more general statement

for all Σ. The base case Σ ⊢H 𝐶 ⇝ {𝐶} is trivial. In the inductive case, let𝐶 = 𝐶0 ∪ {(⟨⟨⟨|||𝜌\𝐿⟩⟩⟩𝐿, 𝑐, 𝑟)}.
By definition of ⊔, there are 𝐶𝑛 ∈ {𝐶} ⊓ S and 𝐶𝑚 ∈ S𝑛 such that 𝐶′ ∈ S𝑚

𝑛 . Since 𝜎 ⊩ 𝐶′
, we have

by induction hypothesis on Σ ∪𝐶𝑚 ⊢H 𝐶𝑚 ⇝ S𝑚
𝑛 that 𝜎 ⊩ 𝐶𝑚 . By definition of ⊔ again, there is

𝐶𝑛 ∈ {𝐶0} ⊓ S such that 𝐶𝑚 ∈ S𝑛 . Since 𝜎 ⊩ 𝐶𝑚 , we have by soundness of constraint merging on

55

𝐶 is harmonized

Σ ⊢H 𝐶 ⇝ {𝐶}
(Hdone)

𝐿0 =
⋃

𝜌.ℓ∈vars(𝐶)∪vars(𝑟)
{ℓ} ∪

⋃
𝜌\𝐿′∈vars(𝐶)∪vars(𝑟)

𝐿′ 𝐿0 ⊈ 𝐿

∅ ⊢N {(⟨⟨⟨(ℓ = 𝜌.ℓ)ℓ∈𝐿0∖𝐿|||𝜌\𝐿0⟩⟩⟩𝐿, 𝑐, 𝑟)}⇝ S
∀𝐶𝑛 ∈ {𝐶} ⊓ S.(∅, ∅ ⊢MS 𝐶𝑛 ⇝ S𝑛)

∀𝐶𝑚 ∈ S𝑛 and 𝐶𝑚 ∉ Σ.(Σ ∪𝐶𝑚 ⊢H 𝐶𝑚 ⇝ S𝑚
𝑛)

Σ ⊢H 𝐶 ∪ {(⟨⟨⟨|||𝜌\𝐿⟩⟩⟩𝐿, 𝑐, 𝑟)}⇝
⊔

𝐶𝑛∈{𝐶 }⊓S

⊔
𝐶𝑚∈S𝑛

S𝑚
𝑛

(Harm)

Fig. 10. Harmonization rules

∅, ∅ ⊢MS 𝐶𝑛 ⇝ S𝑛 that 𝜎 ⊩ 𝐶𝑛 . We have 𝐶𝑛 = 𝐶0 ∪𝐶′
𝑛 with 𝐶′

𝑛 ∈ S. Since 𝜎 ⊩ 𝐶𝑛 , we have 𝜎 ⊩ 𝐶
′
𝑛

and by Lemma C.8 𝜎 ⊩ {(⟨⟨⟨(ℓ = 𝜌.ℓ)ℓ∈𝐿0∖𝐿|||𝜌\𝐿0⟩⟩⟩𝐿, 𝑐, 𝑟)}. Thus, 𝜎 (𝜌) ≃ ⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿∩dom(𝜌) , (ℓ =

𝜏ℓ)ℓ∈𝐿0∖𝐿|||𝑟
′⟩⟩⟩L∖ dom(𝜌)

. Then, (⟨⟨⟨(ℓ = 𝜌.ℓ)ℓ∈𝐿0∖𝐿|||𝜌\𝐿0⟩⟩⟩𝐿)𝜎 = (⟨⟨⟨|||𝜌\𝐿⟩⟩⟩𝐿)𝜎 = ⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿0∖𝐿|||𝑟
′⟩⟩⟩𝐿 .

Therefore, 𝜎 ⊩ {(⟨⟨⟨|||𝜌\𝐿⟩⟩⟩𝐿, 𝑐, 𝑟)}. We conclude 𝜎 ⊩ 𝐶0 as well because 𝜎 ⊩ 𝐶𝑛 and 𝐶0 ⊆ 𝐶𝑛 . □

Lemma C.14 (Termination). Let 𝐶 be a finite saturated constraint-set. The harmonization of 𝐶

terminates.

Proof. Let 𝐵 be the set of types, type fields and rows in 𝐶 , finite since 𝐶 is finite. Let ℶ be a

plinth such 𝐵 ⊆ ℶ. When adding a set of constraint𝐶𝑚 to Σ during harmonization, every constraint

of 𝐶𝑚 belongs to (ℶ × {≤, ≥} × ℶ). The proof is by induction on (| (ℶ × {≤, ≥},×ℶ) | − |Σ|, |𝐶 |)
lexicographically ordered.

(Hdone) Terminates immediatly.

(Harm) Normalization, merging and saturation all terminate. In the recursive step of harmoniza-

tion that are applied, | (ℶ × {≤, ≥} × ℶ) | − |Σ| decreases. □

Lemma C.15 (Finiteness). Let 𝐶 be a finite saturated constraint-set and ∅ ⊢H 𝐶 ⇝ S. Then S is

finite.

Proof. By induction on the derivation and by Lemma C.11 and finiteness of constraint merging.

□

Lemma C.16. Let 𝐶 be a finite saturated constraint-set and ⊢H 𝐶 ⇝ S. Then for all constraint-set

𝐶′ ∈ S, 𝐶′
is harmonized.

Proof. Direct by induction on the derivation, finite by Lemma C.14. □

Lemma C.17. Let 𝐶 be a well-ordered saturated constraint-set and ∅ ⊢H 𝐶 ⇝ S. Then for all

harmonized constraint-set 𝐶′ ∈ S, 𝐶′
is well-ordered.

Proof. Consequence of Lemma C.12 and conservation of well-orderedness by merging and

saturation. □

C.7 From constraints to equations
Once normalization, merging and harmonization are done, we have a set of well-ordered constraint-

sets at hand, where all variables have unique lower and upper bounds, and for each row variable 𝜌 ,

56 Giuseppe Castagna and Loïc Peyrot

there is at most a unique occurrence of 𝜌\𝐿 (where 𝐿 can be empty if 𝜌 has not been decomposed),

such that also every occurrence of 𝜌.ℓ has ℓ ∈ 𝐿. We are now able to rewrite each constraint-set 𝐶

into an equivalent equation system.

Definition C.11 (Eqation system). An equation system 𝐸 is a set of equations of the form

𝑋 = 𝑇 such that there exists at most one equation in 𝐸 for every variable 𝑋 , and 𝑋 and 𝑇 are of the

same kind. We define the domain of 𝐸, written dom(𝐸), as the set {𝑋 | ∃𝑇 .𝑋 = 𝑇 ∈ 𝐸}.

Definition C.12 (Eqation system solution). Let 𝐸 be an equation system. A solution to 𝐸 is a

substitution 𝜎 such that ∀(𝑋 = 𝑇) ∈ 𝐸.𝜎 (𝑋) ≃ 𝑇𝜎 holds. If 𝜎 is a solution to 𝐸, we write 𝜎 ⊩ 𝐸.

Given a constraint-set𝐶 , we will use the notation (𝑇1 ≤ 𝑋 ≤ 𝑇2) ∈ 𝐶 to indicate {(𝑇1, ≤, 𝑋), (𝑋, ≤
,𝑇2)} ⊆ 𝐶 . We assume that every variable and every term 𝜌.ℓ , 𝜌\𝐿 in dom(𝐶) have an upper and a

lower bound, without loss of generality because a constraint with bottom or top types can always

be added if needed:

• For a type variable 𝛼 , we can add constraints (0, ≤, 𝛼) or (𝛼, ≤, 1);
• For a field variable 𝜃 (or 𝜌.ℓ), we can add constraints (0, ≤, 𝜃) or (𝜃, ≤, 1 ∨ ⊥);
• For a row variable 𝜌\𝐿 (or 𝜌), we can add constraints (0, ≤, 𝜌\𝐿) or (𝜌\𝐿, ≤, ⟨⟨⟨|||..⟩⟩⟩L∖(dom(𝜌)∪𝐿)).

We rewrite the set 𝐶 to a set of equations with a function solve(𝐶), where 𝛼 ′
, 𝜃 ′, 𝜃ℓ and 𝜌 ′ are

fresh variables. We write (𝑇1 ≤ 𝑋 ≤ 𝑇2) for the constraints {(𝑇1, ≤, 𝑋), (𝑋, ≤,𝑇2)} ⊆ 𝐶 .

solve(𝐶) = {𝛼 = (𝑡1 ∨ 𝛼 ′) ∧ 𝑡2 | (𝑡1 ≤ 𝛼 ≤ 𝑡2) ∈ 𝐶}
∪ {𝜃 = (𝜏1 ∨ 𝜃 ′) ∧ 𝜏2 | (𝜏1 ≤ 𝜃 ≤ 𝜏2) ∈ 𝐶 and 𝜃 ≠ 𝜌.ℓ}
∪ {𝜌 = ⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝑟⟩⟩⟩L∖ dom(𝜌)

| (if ∃𝐿′ .(𝑟1 ≤ 𝜌\𝐿′ ≤ 𝑟2) ∈ 𝐶, then 𝐿 = 𝐿′ ∩ dom(𝜌) and 𝑟 = (𝑟1 ∨ 𝜌 ′) ∧ 𝑟2,

else 𝐿 = {ℓ | 𝜌.ℓ ∈ vars(𝐶)} and 𝑟 = 𝜌 ′)
and (∀ℓ ∈ 𝐿. if (𝜏1

ℓ ≤ 𝜌.ℓ ≤ 𝜏2

ℓ) ∈ 𝐶 then 𝜏ℓ = (𝜏1

ℓ ∨ 𝜃ℓ) ∧ 𝜏2

ℓ else 𝑟 = 𝜃ℓ)}
where 𝛼 ′

, 𝜃 ′, and 𝜌 ′ are fresh variables.

For type and field variables (not generated by the decomposition of a row variable), we obtain

an equation by means of the type connectives, where the union entails a lower bound and the

intersection an upper bound. For a row variable 𝜌 , there is 𝐿 and constraints (𝜏1

ℓ ≤ 𝜌.ℓ ≤ 𝜏2

ℓ) ∈ 𝐶

for all ℓ ∈ 𝐿 and (𝑟1 ≤ 𝜌\𝐿 ≤ 𝑟2), with the potentially missing constraints obtained with the default

values. Since we have decomposed 𝜌 into the labels in 𝐿 and a part of domain L ∖ (dom(𝜌) ∪ 𝐿),
we build an equation for 𝜌 by concatenating the independent types for 𝜌.ℓ and 𝜌\ℓ together.

To prove soundness of the transformation, we define the rank 𝑛 satisfaction predicate ⊩𝑛 for

equation systems, which is similar to the one for constraint-sets.

Lemma C.18 (Soundness). Let 𝐶 ⊆ C be a well-ordered saturated constraint-set and 𝐸 its trans-

formed equation system. Then for all substitutions 𝜎 , if 𝜎 ⊩ 𝐸, then 𝜎 ⊩ 𝐶 .

Proof. We write 𝑂 (𝐶1) < 𝑂 (𝐶2) if 𝑂 (𝑋1) < 𝑂 (𝑋2) for all 𝑋1 ∈ dom(𝐶1) and all 𝑋2 ∈ dom(𝐶2).
We prove a stronger statement:

(*) For all 𝜎 , 𝑛 and 𝐶Σ ⊆ 𝐶 , if 𝜎 ⊩𝑛 𝐸, 𝜎 ⊩𝑛 𝐶Σ, 𝜎 ⊩𝑛−1 𝐶 ∖ 𝐶Σ and 𝑂 (𝐶 ∖ 𝐶Σ) < 𝑂 (𝐶Σ), then
𝜎 ⊩𝑛 𝐶 ∖𝐶Σ.

Here𝐶Σ denotes the set of constraints that have been checked. The proof proceeds by induction on

|𝐶 ∖𝐶Σ |, and is similar to the proof of [Castagna et al. 2015, Lemma C.33] for type variables only.

The base case 𝐶 ∖𝐶Σ = ∅ is straightforward. Let 𝐶 ∖𝐶Σ ≠ ∅ and let us consider the case of row

variables. Take 𝜌 with the maximal order in dom(𝐶 ∖𝐶Σ). There are a set 𝐿 and corresponding

57

equations 𝜌\𝐿 = 𝑟 = (𝑟1 ∧ 𝜌 ′) ∧ 𝑟2 and (𝜌.ℓ = 𝜏ℓ = (𝜏1

ℓ ∨ 𝜃ℓ) ∧ 𝜏2

ℓ)ℓ∈𝐿 . As 𝜎 ⊩𝑛 𝐸, we have

𝜎 (𝜌) ≃𝑛 (⟨⟨⟨ℓ = 𝜏ℓ|||𝑟⟩⟩⟩𝐿𝜌𝜎), where 𝐿𝜌 = L ∖ dom(𝜌). Then, for all ℓ ∈ 𝐿:

(𝜌.ℓ)𝜎 ∧ ¬𝜏2

ℓ 𝜎 ≃𝑛 ((𝜏1

ℓ ∨ 𝜃ℓ) ∧ 𝜏2

ℓ)𝜎 ∧ ¬𝜏2

ℓ 𝜎 ≃𝑛 0

And similarly for (𝜌\𝐿)𝜎 ∧ ¬(𝜌\𝐿)𝜎 . On the other hand, for all ℓ ∈ 𝐿, we have:

𝜏1

ℓ 𝜎 ∧ ¬(𝜌.ℓ)𝜎 ≃𝑛 𝜏1

ℓ ∧ ¬((𝜏1

ℓ ∨ 𝜃ℓ) ∧ 𝜏2

ℓ)𝜎 ≃𝑛 𝜏1

ℓ 𝜎 ∧ ¬𝜏2

ℓ 𝜎

And similarly for 𝑟1𝜎 ∧ ¬(𝜌\𝐿)𝜎 . It remains to show that 𝜏1

ℓ 𝜎 ≤𝑛 𝜏2

ℓ 𝜎 holds for all ℓ ∈ 𝐿 and that

𝑟1𝜎 ≤𝑛 𝑟2𝜎 hold, that is 𝜎 ⊩𝑛 {(𝜏1

ℓ ≤ 𝜏2

ℓ)ℓ∈𝐿, (𝑟1 ≤ 𝑟2}. The rest of the proof goes as in [Castagna

et al. 2015, Lemma C.33]. We use the fact that the order of 𝜌.ℓ and 𝜌\𝐿 is directly superior to the

order of 𝜌 , and thus maximal in dom(𝐶 ∖𝐶Σ). □

Lemma C.19 (Completeness). Let 𝐶 ⊆ C be a saturated normalized constraint-set and 𝐸 its

transformed equation system. Then for all substitution 𝜎 , if 𝜎 ⊩ 𝐶 , there exists 𝜎 ′
such that dom(𝜎 ′) ∪

dom(𝜎) = ∅ and 𝜎 ∪ 𝜎 ′ ⊩ 𝐸.

Proof. Let 𝜎 ′ = {𝜎 (𝛼)/𝛼 ′ | 𝛼 ∈ dom(𝐶)} ∪ {𝜎 (𝜃)/𝜃 ′ | 𝜃 ∈ dom(𝐶) and 𝜃 ≠ 𝜌.ℓ} ∪
{(𝜌\𝐿)𝜎/𝜌 ′} ∪ {(𝜌.ℓ)𝜎/𝜃𝜌

ℓ
| 𝜌.ℓ ∈ dom(𝐶)}, where 𝐿 is obtained as in the definition of solve

either from 𝜌\𝐿′ ∈ dom(𝐶) and 𝐿 = 𝐿′ ∩ dom(𝜌), or by 𝐿 = {ℓ | 𝜌.ℓ ∈ vars(𝐶)}. The case for
type and field variables is as in [Castagna et al. 2015, Lemma C.34]. Let us consider an equation

𝜌 = ⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝑟⟩⟩⟩L∖ dom(𝜌) ∈ 𝐸. Correspondingly, there exist (𝑟1 ≤ 𝜌\𝐿 ≤ 𝑟2) ∈ 𝐶 and for all

ℓ ∈ 𝐿, there exist (𝜏1

ℓ ≤ 𝜌.ℓ ≤ 𝜏2

ℓ) ∈ 𝐶 (without loss of generality, we suppose 𝐶 to be saturated

with default values). As 𝜎 ⊩ 𝐶 , then 𝑟1𝜎 ≤ (𝜌\𝐿)𝜎 ≤ 𝑟2𝜎 , and for all ℓ ∈ 𝐿, 𝜏1

ℓ 𝜎 ≤ (𝜌.ℓ)𝜎 ≤ 𝑟2𝜎 ,

and the operations (𝜌\𝐿)𝜎 and (𝜌.ℓ)𝜎 are defined. Thus,

⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝑟⟩⟩⟩ (𝜎 ∪ 𝜎 ′) = ⟨⟨⟨(ℓ = (𝜏1

ℓ (𝜎 ∪ 𝜎 ′) ∨ (𝜎 ∪ 𝜎 ′) (𝜃𝜌
ℓ
)) ∧ 𝜏2

ℓ (𝜎 ∪ 𝜎 ′))ℓ∈𝐿|||
(𝑟1 (𝜎 ∪ 𝜎 ′) ∨ (𝜎 ∪ 𝜎 ′) (𝜌 ′)) ∧ 𝑟2 (𝜎 ∪ 𝜎 ′)⟩⟩⟩

= ⟨⟨⟨(ℓ = (𝜏1

ℓ 𝜎 ∨ (𝜌.ℓ)𝜎) ∧ 𝜏2

ℓ 𝜎)ℓ∈𝐿|||(𝑟1𝜎 ∨ (𝜌\𝐿)𝜎 ∧ 𝑟2𝜎⟩⟩⟩
≃ ⟨⟨⟨(ℓ = (𝜌.ℓ)𝜎 ∧ 𝜏2

ℓ 𝜎)ℓ∈𝐿|||(𝜌\𝐿)𝜎 ∧ 𝑟2𝜎⟩⟩⟩
≃ ⟨⟨⟨(ℓ = (𝜌.ℓ)𝜎)ℓ∈𝐿|||(𝜌\𝐿)𝜎⟩⟩⟩
= 𝜎 (𝜌)

The last line is justified by 𝜎 being a solution to𝐶 , so being of the shape 𝜎 (𝜌) = ⟨⟨⟨(ℓ = 𝜏 ′ℓ)ℓ∈𝐿|||𝑟 ′⟩⟩⟩ . □

Definition C.13. Let 𝐸 be an equation system and 𝑂 an ordering on dom(𝐸) and on the labels

occurring in 𝐸. We say that 𝐸 is well-ordered if for all 𝑋 = 𝑇𝑋 ∈ 𝐸 and 𝑋 ′ ∈ tlv(𝑇𝑋) ∩ dom(𝐸), we
have 𝑂 (𝑋1) < 𝑂 (𝑋 ′).

Lemma C.20. Let 𝐶 be a well-ordered saturated normalized constraint-set and 𝐸 its transformed

equation system. Then 𝐸 is well-ordered.

Proof. We have dom(𝐸) = dom(𝐶) ∩ (V𝑡 ∪V𝑓) ∪ {𝜌 | ∃ℓ .𝜌 .ℓ ∈ dom(𝐶) or ∃𝐿.𝜌\𝐿 ∈ dom(𝐶)}.
The case for type and field variables is as in [Castagna et al. 2015, Lemma C.36], but uses the

fact that (tlv(𝑇1) ∪ tlv(𝑇2)) ∩ dom(𝐸) = (tlv(𝑇1) ∪ tlv(𝑇2)) ∩ dom(𝐶). Now, consider 𝜌 = 𝑟0

with 𝑟0 = ⟨⟨⟨(ℓ = 𝜏ℓ)ℓ∈𝐿|||𝑟⟩⟩⟩ obtained from (𝑟1 ≤ 𝜌\𝐿 ≤ 𝑟2) ∈ 𝐶 with 𝑟 = (𝑟1 ∧ 𝜌 ′) ∨ 𝑟2, and

for all ℓ ∈ 𝐿 from (𝜏1

ℓ ≤ 𝜌.ℓ2) ∈ 𝐶 . We have tlv(𝑟0) = tlv(𝑟). Since 𝐶 is well-ordered, for all

(𝜌2 ∈ tlv(𝑟1) ∪ tlv(𝑟2)) ∩ dom(𝐶), 𝑂 (𝜌) < 𝑂 (𝜌2). Moreover, 𝜌 ′ is a fresh row variable in 𝐶 , that is

𝜌 ′ ∉ dom(𝐶). And then 𝜌 ′ ∉ dom(𝐸). Therefore, tlv(𝑟) ∩ dom(𝐸) = (tlv(𝑟1) ∪ tlv(𝑟2)) ∩ dom(𝐶)
and the result follows. □

58 Giuseppe Castagna and Loïc Peyrot

C.8 Solution of equation systems
We have now obtained a set of equation-sets 𝐸, that we must each transform into a substitution 𝜎 .

We do this in the same way as in [Castagna et al. 2015, §3.2.2], but with all kinds of variables rather

than just type variables. In the set of equations, there is no construction 𝜌.ℓ or 𝜌\𝐿 anymore. We

define a function Unify(𝐸) as Unify(∅) = {}, and otherwise:

(1) Select in 𝐸 the equation 𝑋 = 𝑇 for the smallest 𝑋 w.r.t. the order;

(2) Let 𝐸′
be the set of equations obtained by replacing in 𝐸∖{𝑋 = 𝑇 } every occurrence of 𝑋

by 𝜇𝑋 ′ .(𝑇 {𝑋 ′/𝑋 }) (𝑋 ′
fresh);

(3) Let 𝜎 = Unify(𝐸′) and return {𝑋 = (𝜇𝑋 ′ .𝑇 {𝑋 ′/𝑋 })𝜎} ∪ 𝜎 .

The ordering on the variables guarantees the regularity of the obtained types. For the elements

𝜎 (𝑋) = 𝜇𝑋 ′ .𝑇 where 𝑋 ′ ∉ vars(𝑇), we can remove the introduced 𝜇-abstraction.

It is straightforward to extend the proofs and definitions.

Definition C.14 (General solution). Let 𝐸 be an equation system. A general solution to 𝐸 is

a substitution 𝜎 from dom(𝐸) to T⊥ ∪ R such that ∀𝑋 ∈ dom(𝜎). var(𝜎 (𝑋)) ∩ dom(𝜎) = ∅ and

∀𝑋 = 𝑇 ∈ 𝐸.𝜎 (𝑋) ≃ 𝑇𝜎 holds.

Definition C.15 (Eqivalent substitutions). Let 𝜎, 𝜎 ′
be two substitutions. We say 𝜎 ≃ 𝜎 ′

if

and only if ∀𝑋 .𝜎 (𝑋) ≃ 𝜎 ′ (𝑋).
Proposition C.21. Let 𝐸 be a well-ordered equation system. LetUnify(𝐸) be the procedure described

by Castagna et al. [2015] to build a substitution.

Soundness If 𝜎 = Unify(𝐸), then 𝜎 ⊩ 𝐸.
Completeness For all substitution 𝜎 , if 𝜎 ⊩ 𝐸, then there exist 𝜎0 and 𝜎

′
such that 𝜎0 = Unify(𝐸)

and 𝜎 ≃ 𝜎 ′ ◦ 𝜎0.

Termination The algorithm Unify(𝐸) terminates.

The last property we verified is well-formedness. As in [Castagna et al. 2015], a type is well-

formed if and only if the recursion traverses a constructor, and this property is guaranteed thanks

to the order on variables.

Proposition C.22 (Well-formedness). If 𝜎 = Unify(𝐸), then for all 𝑋 ∈ dom(𝜎), 𝜎 (𝑋) is
well-formed.

Proof. Assume that there exists an ill-formed 𝜎 (𝑋). That is, 𝜎 (𝑋) = 𝜇𝑥 .𝑡 where 𝑥 occurs

at the top-level of 𝑡 . According to the algorithm Unify(), there exists a sequence of equations

(𝑋 =)𝑋0 = 𝑇𝑋0
, . . . , 𝑋𝑛 = 𝑇𝑋𝑛

such that 𝑋𝑖 is at top-level in 𝑇𝑋𝑖−1
and 𝑋0 is at top-level in 𝑇𝑋𝑛

and

where 𝑖 ∈ {1, . . . , 𝑛} and 𝑛 ≥ 0. We must necessarily have all the 𝑋𝑖 of the same kind. Indeed, for

type (resp. row) variables only types (resp. row) variables can appear at top-level. Now, if𝑋0 is a field

variable, there can be a type variable 𝑋𝑖 at top-level in the field type 𝑇𝑖−1. But then, 𝑋0 cannot be at

top-level in 𝑋𝑛 since𝑇𝑖 is a type, and field variables cannot appear at top-level in a type. Since all 𝑋

and 𝑇 must be of the same kind and according to Definition C.13, we have 𝑂 (𝑋𝑖−1) < 𝑂 (𝑋𝑖) and
𝑂 (𝑋𝑛) < 𝑂 (𝑋0). Therefore, we have 𝑂 (𝑋0) < 𝑂 (𝑋1) < · · · < 𝑂 (𝑋𝑛) < 𝑂 (𝑋0), which is impossible.

Thus the result follows. □

C.9 The complete algorithm
The procedure SolΔ (𝐶) to solve type tallying of a constraint-set 𝐶 proceeds as follows.

(1) 𝐶 is normalized into a finite set S of well-ordered normalized constraint-sets (Section 4.1).

(2) Each constraint-set 𝐶𝑖 ∈ S is merged and saturated into a finite set S𝐶𝑖
of well-ordered

constraint-sets. Then, all these sets are collected into another set S′
(i.e., S′ =

⊔
𝐶𝑖 ∈S S𝐶𝑖

)

(Appendix C.5).

59

(3) Each constraint-set 𝐶′
𝑖 ∈ S′

is harmonized into a finite set S𝐶′
𝑖
of well-ordered harmonized

constraint-sets. Then, all these sets are collected into another set S′′
(i.e., S′′ =

⊔
𝐶′
𝑖
∈S′ S𝐶′

𝑖
)

(Appendix C.6). This step is specific to row variables.

(4) For each constraint-set 𝐶′′
𝑖 ∈ S′′

, we transform 𝐶′′
𝑖 into an equation system 𝐸𝑖 and then

construct a general solution 𝜎𝑖 from 𝐸𝑖 (Appendix C.7).

(5) Finally, we collect all the solutions 𝜎𝑖 , yielding a set Θ of solutions to 𝐶 (Appendix C.8).

In the original algorithm for type variables, failing at the step of normalization means that there is

no solution overall, even when increasing the cardinality of the substitution sets sought by dove-tail

order in the general algorithm described in the beginning of Section 4 (see [Castagna et al. 2015,

§3.2.3]). Whether here a failure in the step of normalization or harmonization means the absence

of a solution overall is still an open question.

We write SolΔ (𝐶) ⇝ Θ if SolΔ (𝐶) terminates with Θ, and we call Θ the solution of the type

tallying problem for 𝐶 .

Theorem 4.6 (Soundness). Let 𝐶 be a constraint-set. If SolΔ (𝐶) ⇝ Θ, then for all 𝜎 ∈ Θ, 𝜎 ⊩ 𝐶 .

Proof. Consequence of Lemma C.8, soundness of merging, Lemma C.13, Lemma C.18 and

soundness of Unify (Proposition C.21). □

Theorem 4.7 (Termination). Let 𝐶 be a constraint-set. Then SolΔ (𝐶) terminates.

Proof. Consequence of Lemma C.9, termination of merging, Lemma C.14, finiteness of the

constraint-sets and termination of Unify (Proposition C.21). □

Proposition 4.8. Let 𝐶 be a constraint-set and SolΔ (𝐶) ⇝ Θ. Then (1) Θ is finite and (2) for all

𝜎 ∈ Θ and for all 𝑋 ∈ dom(𝜎), the types in 𝜎 (𝑋) are contractive.

Proof. The first item is a consequence of Lemma C.11, Lemma C.15 and finiteness of the

constraints after merging. The second one is a consequence of Lemma C.12, well-orderedness of

merging, Lemma C.17, Lemma C.20 and well-orderedness of Unify (Proposition C.21). □

	Abstract
	1 Introduction
	1.1 A motivating example
	1.2 The need for row polymorphism
	1.3 Overview
	1.4 Contributions and limitations

	2 Types
	2.1 Syntax of Types
	2.2 Subtyping relation
	2.3 Deciding subtyping
	2.4 Substitutions

	3 Language
	3.1 Syntax and Semantics
	3.2 Algorithmic type system

	4 Tallying
	4.1 Constraint normalization
	4.2 Other Steps
	4.3 Properties of the algorithm

	5 Related work
	6 Conclusion
	A Appendix for types
	A.1 Example of a presence polymorphic type
	A.2 Models
	A.3 Subtyping relation
	A.4 Subtyping algorithm
	A.5 Substitutions

	B Appendix for language
	B.1 Syntax and semantics
	B.2 Algorithmic type system

	C Appendix for tallying
	C.1 Examples regarding the restriction of solutions to atomic rows
	C.2 General decomposition of rows
	C.3 Normalization of fields and tails
	C.4 Constraint normalization
	C.5 Constraint merging and saturation
	C.6 Harmonization
	C.7 From constraints to equations
	C.8 Solution of equation systems
	C.9 The complete algorithm

