
Parametric Polymorphism for XML

Haruo Hosoya
The University of Tokyo

hahosoya@is.s.u-tokyo.ac.jp

Alain Frisch
INRIA

Alain.Frisch@inria.fr

Giuseppe Castagna
École Normale Supérieure de Paris

Giuseppe.Castagna@ens.fr

ABSTRACT
Despite the extensiveness of recent investigations on static
typing for XML, parametric polymorphism has rarely been
treated. This well-established typing discipline can also be
useful in XML processing in particular for programs involv-
ing “parametric schemas,” i.e., schemas parameterized over
other schemas (e.g., SOAP). The difficulty in treating poly-
morphism for XML lies in how to extend the “semantic” ap-
proach used in the mainstream (monomorphic) XML type
systems. A naive extension would be “semantic” quantifi-
cation over all substitutions for type variables. However,
this approach reduces to an NEXPTIME-complete prob-
lem for which no practical algorithm is known. In this
paper, we propose a different method that smoothly ex-
tends the semantic approach yet is algorithmically easier.
In this, we devise a novel and simple marking technique,
where we interpret a polymorphic type as a set of values
with annotations of which subparts are parameterized. We
exploit this interpretation in every ingredient of our poly-
morphic type system such as subtyping, inference of type
arguments, and so on. As a result, we achieve a sensible
system that directly represents a usual expected behavior
of polymorphic type systems—“values of variable types are
never reconstructed”—in a reminiscence of Reynold’s para-
metricity theory. Also, we obtain a set of practical algo-
rithms for typechecking by local modifications to existing
ones for a monomorphic system.

Categories and Subject Descriptors: D.3.3 [Program-
ming Languages]: Language Constructs and Features —
Polymorphism; Data types and structure; F.3.3 [Logics and
Meanings of Programs]: Studies of Program Constructs —
Type structure

General Terms: Algorithms, Design, Language, Theory

Keywords: XML, polymorphism, subtyping, tree automata

1. INTRODUCTION
Recently, static typing for XML processing has actively

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
POPL’05, January 12–14, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-58113-830-X/05/0001 ...$5.00.

been investigated in the contexts both of concrete language
designs [18; 11; 3; 21, etc] and of theoretical frameworks
[23; 22, etc]. All these works lack an important typing
facility, namely the parametric polymorphism. This typ-
ing discipline—for parameterizing program fragments over
types—has been exploited in many programming languages,
such as ML [20, 2], Haskell [24], C++ [9], and GJ [4],
and already established as an important ingredient for code
reusability. Not surprisingly, this usefulness can be extended
to XML processing, not only because one may use, in XML,
operations such as map and fold that are standard in func-
tional languages, but also because some types for XML data
(usually called schemas) are not stand-alone but defined
in terms of other schemas given as parameters; it is nat-
ural to want to write programs involving such “parametric
schemas” and typecheck them. A typical example is SOAP
[10], which provides a generic type for “envelopes” for en-
closing “content” data whose type is parameterized.1 Con-
cretely, suppose that we want to write a generic function for
wrapping a given data d in a SOAP envelope as follows:

<envelope>

<header> example envelope </header>

<body> d </body>

</envelope>

We do not know the type of d at the moment of writing this
function. In other words, the function must work for any
type. Therefore an appropriate type for this function must
be polymorphic:

∀X. X → SoapEnv(X)

Here, SoapEnv(X) is the parameterized type for SOAP en-
velopes and may be defined by

SoapEnv(X) = envelope[header[String], body[X]]

in the notation of regular expression types [19]. (The form
tag[...] corresponds to the XML structure <tag>...</tag>

and the comma is a concatenation operation. See Section 2.1
for more details on types.)

The need of polymorphism for XML is quite clear, and
also certified by the fact that this feature has repeatedly
been requested to and discussed in various working groups
of standards (e.g., RELAX NG [7] and XQuery [11]). De-
spite that, it has almost never been studied formally. This

1The specification of SOAP itself does not define types at
all (probably because parametric types are not supported
by any schema language), but the above requirement is de-
scribed informally in a natural language.

is probably because the “semantic” approach—the one used
by most of current research on type systems for XML—is not
trivial to extend with polymorphism. To see the difficulty,
let us look more closely at the definition of subtyping, which
is a crucial part in XML typechecking. In the monomorphic
case, we first give the semantics [[T]] of each type T as a set of
documents conforming to the type, and then define the sub-
type relation by the subset relation between the semantics
of two given types:

T 6 U ⇐⇒ [[T]] ⊆ [[U]]

Although the subtype relation, which is equivalent to the
tree automata containment problem [19], has a high worst-
case complexity (EXPTIME-complete), several algorithms
are known to work in practice [19, 28]. In the polymorphic
case, on the other hand, a naive extension of the semantic
approach is to allow type variables to be embedded in types
and then quantify the subset relation over all substitutions
for the type variables:

T 6 U ⇐⇒ ∀S. [[[X 7→ S] T]] ⊆ [[[X 7→ S] U]]

However, the subtype relation defined in this way is substan-
tially more difficult than the monomorphic case. This prob-
lem can be reduced to the satisfiability problem for set con-
straint systems with negative constraints [1, 13]; this prob-
lem is known to be NEXPTIME-complete [27] and, so far,
no practical algorithm is known. It still is an open question
whether the above subtype problem can be reduced to an
easier problem. However, we have noticed some tricky be-
havior that makes us believe that the problem is not easy
to solve. For example, with the definition given above, the
following relation holds:

l[a[]], X 6 l[a[]], A | l[X], a[]

Here, a[] denotes a type representing the singleton set con-
sisting of the value <a>. We assume the type A to
represent the complement of the type a[] (which is possible
to define since types are essentially regular). We can prove
that this relation holds by a set-theoretical analysis of cases
on the type S to be substituted for X. (We defer a con-
crete proof to Appendix A.) Note that the example above
is “strange” since the type variable X occurs in irrelevant
positions on both sides, and such a behavior appears to be
the hard core in the algorithmics. (This example can further
be generalized to a “finite” type rather than a “singleton”
type. See Appendix A.)

In this paper, we propose a different method for construct-
ing a polymorphic type system that (1) retains the original
spirit of the semantic approach, (2) eliminates tricky cases
observed in the above-mentioned naive extension, and (3)
yields practical typechecking algorithms. The key idea in
our approach is to interpret type variables not as “place
holders” for performing substitutions, but as markings in
documents for indicating their parameterized subparts. For
example, we interpret the polymorphic type SoapEnv(X) as
a set of documents of the form

<envelope>

<header> ... </header>

<body> d </body>

</envelope>

where the subpart d (which itself can be any fragment of
documents) is marked by X. Using this interpretation of

types, we define the subtype relation essentially by the sub-
set relation, without involving quantification. (We actually
need to add a little more flexibility, as we will discuss in Sec-
tion 2.2.) This indeed removes tricky cases observed above,
and thus allows us to reduce the problem simply to a slight
variation of the tree automata containment problem (Sec-
tion 4.2) and to obtain a reasonably efficient algorithm by
incorporating various known algorithmic techniques [19, 28].

We use the marking technique not only as a simple tweak
to make the algorithmics easier, but we push forward this
technique to designing a whole type system with a sensi-
ble meaning. We will present a minimal XDuce-style cal-
culus with an operational semantics where run-time values
carry around explicit markings to indicate parameterized
subparts and a type system that captures the flow of such
markings. Since we do not allow a new marking to be cre-
ated during evaluation, any parameterized subpart in a re-
sult value of a function must come from some parameter-
ized subpart in the input value. In other words, the type
system directly represents a usual expected behavior of a
polymorphic type system—“a value of a variable type is
never reconstructed”—in a reminiscence of Reynold’s para-
metricity theory [25]. Note that we would not have such a
property if we adopted the “placeholder” subtyping since,
by using the example relation given above, a value that that
has the concrete type a[] could be given the variable type
X and viceversa.

Another by-product from our interpretation of polymor-
phic types is that their semantics is mathematically identical
to pattern matches since what both of these do is, given a
tree value, first to check conformance and then to return an
association of (term or type) variables to subtrees. This co-
incidence provides us two additional benefits. First, we can
economize the language specification involving both poly-
morphic types and pattern matches by sharing many defini-
tions related to these two. Second (and more importantly),
we can transfer previously known techniques for pattern
matches to similar problems related to polymorphic types.
Specifically, at applications of polymorphic functions, type-
checker needs to infer type arguments to the applications
for avoiding verbose and obvious type annotations. And
relevantly, we need to perform a form of ambiguity check
on formal parameter types for ensuring the existence of a
minimum solution when inferring type arguments. Both of
these can be obtained by slight modifications to existing al-
gorithms [14], as shown in Section 4.3 and 4.4.

The rest of the paper is organized as follows. In the next
section, we illustrate basic ideas for constructing our poly-
morphic type system. Section 3 formalizes the type system
and Section 4 describes a set of algorithms needed for type-
checking. Section 5 discusses related work and Section 6
concludes this paper and hints at future work. Appendix A
discusses in more detail the above-mentioned tricky example
allowed in the “place-holder” subtyping. For space limita-
tion, all proofs of the presented theorems are elided from
this paper. They can be found in the full version of this
paper [15].

2. BASIC IDEAS
In this section, we explain our polymorphic type system

by example, starting with a monomorphic system and then
describing our ideas for adding polymorphism.

2.1 Monomorphic system
We start with considering a minimal, functional language

designed for XML processing, in the notation of XDuce [18].
The language basically provides values as fragments of XML
documents (they are the only values to be manipulated at
run time), types based on XML’s schemas for describing
structures of values, and pattern matching as a main pro-
gramming feature for analyzing and deconstructing values.
This paper aims at formalizing the core idea for dealing with
polymorphism and concentrates only on the treatment of el-
ement structures of XML data. We leave other extensional
features, such as XML attributes and higher-order functions,
for future work.

For example, consider the following XDuce program for
searching a database for a data entry that has a specified
key.

type BibDB = db[BibEntry*]
type BibEntry = entry[key[String], content[Bib]]

type BibResult = found[Bib] | notfound[]

fun search (String as key1)(BibDB as d) : BibResult =
match d with
db[BibEntry* as l] -> iter(key1)(l)

fun iter (String as key1)(BibEntry* as l) : BibResult =
match l with
() -> notfound[]

| entry[key[String as key2], content[Any as c]],
Any as rest

-> if key1 = key2 then found[c]
else iter(key1)(rest)

We first define the type BibDB to be values of label db

that contains a repetition of data of type BibEntry. The
BibEntry type is in turn defined as values of label entry

including a key with a string and a content with a value of
type Bib. We assume the type Bib to be defined somewhere
else. We then define the type BibResult to be either a label
found with a Bib value or a label notfound with no content.

The type definitions are followed by two definitions of
functions search and iter. The function search takes a
string key1 and a value d of type BibDB as arguments and
returns a value of type BibResult. The body is a pattern
match on d. It matches any value of type db[BibEntry*]

and binds the variable l to the subpart of the input value
corresponding to BibEntry*, i.e., the content of db. When
the matching succeeds, the function proceeds to evaluate the
corresponding body, where it calls the function iter with ar-
guments key1 and l. The function iter takes a string key1

and a value l of type BibEntry* as arguments and returns
a value of type BibResult. The body is a pattern match
on l with two clauses. The first clause matches an empty
sequence value () and returns a value notfound[]. The sec-
ond clause matches a non-empty sequence that begins with
an entry containing a key and a content labels. We ex-
tract the content key2 of the key label, the content c of the
content label, and the remainder sequence rest after the
first entry label. In the corresponding body, if the user-
specified key1 and the extracted key2 are equal, then we
return c enclosed by a found label; otherwise we continue
with the remainder sequence.

In general, XDuce values (written v) are sequences of la-
beled values (l[v]), or string values. Types (written T)
are regular expressions over labeled types (l[T]) or String

type. Thus, types can also be concatenations (T1,T2), unions

(T1|T2), repetitions (T*), and the empty sequence type (()).
We also allow Any to denote any value. We abbreviate l[()]
by l[]. As usual, types can be defined as type names and,
in particular, they can be defined recursively for describing
arbitrarily nested structures. (For guaranteeing regularity
of types, we require recursive occurrences of type names to
be enclosed by labels. See [19, 14] for more details.)

The main part of a program is a set of (recursively de-
fined) functions with an explicit declaration of argument
types and a result type. Each defined function contains a
body expression, where expressions (written e) can be vari-
ables (x), function calls (f(e)), value constructors (label-
ing l[e], concatenation e1,e2, the empty sequence (), and
string constants), and pattern matches of the form:

match e with P1 -> e1 | ... | Pn -> en

(We omit here describing other standard expressions such
as if.) A pattern match form first tries matching the input
value e against the patterns P1 through Pn in this order,
and then evaluates the body expression corresponding to
the first matching pattern under the bindings resulted from
the matching.

Patterns have exactly the same structure as types except
that variable binders of the form ... as x can be inserted
in their subparts. A pattern is matched by values that have
the type of the pattern (that is, the type obtained after
eliminating all the binders from the pattern). The matching
operation returns bindings of each pattern variable to the
value’s subpart corresponding to the binder of the variable.
We restrict patterns by usual “linearity” requirement to en-
sure them to yield bindings of exactly the same set of vari-
ables for any input value. Also, we take a nondeterministic
semantics of patterns, where we choose an arbitrary match
when a pattern can have more than one possible match for
a given input value. (More discussions on pattern matching
can be found in [14, 17, 12].)

Typechecking XDuce programs is mostly straightforward.
We basically construct types of expressions, in a bottom-up,
syntax-directed way. For example, the expression () has
type (); if e has type T, then l[e] has type l[T]; if e1 and
e2 have type T1 and T2 respectively, then e1,e2 has type
T1,T2; and so on. For some important places, we check sub-
typing. Those places include function calls (subtype check
between the actual argument type and the formal parame-
ter type), function bodies (between the body’s type and the
declared result type), and pattern matches (between the in-
put’s type and the union of the types of the patterns, a.k.a.
exhaustiveness check). As mentioned in the introduction,
we define subtyping in a semantic way. That is, using the
standard “conformance” relation of types (i.e., “a value v

has type T”), we say that a type S is a subtype of T if and
only if every value of type S is also of type T. This way of
defining subtyping is quite powerful, and known to be useful
in particular for exploiting flexibilities of XML data in pro-
cessing programs. Moreover, the feasibility is guaranteed by
the exact correspondence to finite tree automata, whose con-
tainment problem is known to be decidable. (More details
are given in [19].)

It remains to explain how we obtain types for the vari-
ables bound in patterns. For this, we employ a mechanism
for inferring those types from the input type and the pat-
terns. (For example, iter function given above has a pat-
tern match and we infer types for the variables key2, c, and

rest using the type of the input l.) The inference is guar-
anteed to have a property called local precision. That is, for
each bound variable x appearing in a pattern P, the type in-
ferred for x contains all and only values that may be bound
to x, with the assumption that all and only values from the
input type may be matched against the pattern. As one
can see, this typing is not syntactic. And indeed, we use a
slightly involved algorithm for constructing types assigned
for pattern variables. More discussions on the type inference
algorithm can be found in [17, 14, 12]. As we will describe
in Section 3.4, this inference scheme for patterns turns out
to be reusable for the inference of type arguments (types to
be passed to polymorphic functions at application).

2.2 Polymorphic system
In order to add polymorphism to the system described

above, we first need to extend the syntax. First, types can
contain type variables, and, accordingly, type names can
take type parameters. Second, each function definition can
declare type parameters, to which the parameter types and
the result type can refer. In principle, function applications
also take type arguments to instantiate those type variables.
However, we automatically infer them, as we will describe
later.

As an example, let us write a program that generalizes
the above example so that it now works with any type for
data contents.

type DB{X} = db[Entry{X}*]
type Entry{X} = entry[key[String], content[X]]

type Result{X} = found[X] | notfound[]

fun search {X}(String as key1)(DB{X} as d) : Result{X} =
match d with
db[Entry{X}* as l] -> iter{X}(key1)(l)

fun iter {X}(String as key1)(Entry{X}* as l) : Result{X} =
match l with
() -> notfound[]

| entry[key[String as key2], content[Any as c]],
Any as rest

-> if key1 = key2 then found[c]
else iter{X}(key1)(rest)

Changes from the previous program are that what used
to be Content is now replaced by the type variable X, that
all the definitions of type names and functions now take the
type parameters, written {X}, and that all the references to
type names are now added type arguments, also written {X}.
For the sake of explanation, we also show type arguments
to polymorphic functions, but they actually need not be
written explicitly. As a result of parameterizing the program
in this way, we can now search databases with any types of
data contents.

val contactDB : DB{Contact} = ...
(* load a contact database file *)

val result1 : Result{Contact} =
search{Contact}("HosoyaHome")(contactDB)

val bibDB : DB{Bib} = ...
(* load a bibliography database file *)

val result2 : Result{Bib} =
search{Bib}("HosoyaPierce00")(bibDB)

Note that the types for the results retain the information
that their data contents have specific types (Contact or Bib).
If we did not use polymorphism and instead gave the Any

type for data contents, we would not get such precise type
information for the results.

Now, the question is: how can we typecheck such a poly-
morphic program? Or, more fundamentally, what property
should we prove about a polymorphic program? For the
monomorphic case, given a function of type, for example,

BibEntry* → BibResult

the typechecking scheme described in Section 2.1 tries to
prove that, whenever the input value has type BibEntry*,
the result (if any) has type BibResult. In the polymorphic
case, given a function of type like

∀X. Entry{X}* → Result{X}

we would naturally like to prove that, for any type S, when-
ever the input value has type Entry{S}*, the result has type
Result{S}. Although we certainly want this property, this
would tempt us to construct a type system that requires
overly ambitious algorithmics, e.g., subtyping defined by
quantification over all substitutions, as discussed in the in-
troduction.

Instead, we adopt a stronger condition as an intended
property that the type system should try to prove. This
consists of two parts:

1. whenever the input value has type Entry{Any}*, the
result has type Result{Any}, and

2. any subpart corresponding to X in the result value (i.e.,
the content of the found) must come from some sub-
part corresponding to X in the input value (i.e., the
content of some content).

Let us call these conditions “safety property” from now on.
These conditions will remind many readers of the well-

known parametricty property of the polymorphic lambda
calculus [25]. While a usual treatment is to define a calculus
and prove this property as a theorem, ours is to formalize a
system that directly embodies the property. Our key idea is
to employ a “marking” semantics outlined as follows. First,
each value carries a marking, that is, some subparts of the
value are marked by type variables. Accordingly, we inter-
pret a polymorphic type (which contains type variables) by a
set of values whose subparts corresponding to the type vari-
ables are marked with those type variables. For example,
the input type Entry{X}* of the function iter represents a
set of marked values of the following form.

entry[key["..."], content[v1]],

...

entry[key["..."], content[vn]]

where each vi is marked X. Similarly, the result type Result{X}
denotes a set of marked values that have either the form
found[v] where v is marked X or the form notfound[] with
no mark.

The operational semantics of programs is defined in such
a way that operations in those programs manipulate marked
values, preserving all markings from the inputs to the out-
put. For example, a labeling expression l[e] adds the label
l to the marked value resulted from evaluating e, preserving
the original markings in e’s result; likewise, a concatenation
expression e1,e2 combines two marked values resulted from
evaluating e1 and e2. A pattern match takes a marked
value and extracts its subparts for forming bindings, pre-
serving the markings that were present in those subparts of
the input marked value.

Then, the job of the type system is to guarantee that
our operational semantics “respects” our interpretation of
types. That is, for a function, we verify that, whenever the
function body starts with a marked value inhabiting in the
input type and performs operations as specified by the body
expression, it results in a marked value that conforms to the
declared result type (if it terminates). Since each operation
never modifies a subpart marked with X if its result preserves
this marking, the whole function body never modifies any
subpart whose marking is preserved in the final result. Thus,
we attain the above-mentioned safety property.

The construction of our polymorphic type system is mostly
similar to the monomorphic one. First, we use exactly the
same typing rules for value construction expressions. For
example, if e has type T, then l[e] has type l[T]. This
rule works since all markings in the values of type T are
also present in the corresponding subparts of the values
of type l[T]. Also, for pattern matches, we use the same
specification as before for the inference of types for pattern
variables except that all values mentioned there now carry
markings. Non-trivial changes from the monomorphic sys-
tem are in subtyping and in checking polymorphic function
applications; we describe these below.

It would be ideal if we could define subtyping exactly in
the same way as before: S is a subtype of T iff any value of
type S is also of type T. However, this definition turns out to
be too strong. For example, consider the following function

fun f {X} (a[X] as x) : a[Any] = x

which simply returns the input value without performing
any operation. However, the content of the label a has type
Any for the output, whereas it has type X for the input. With
the above simple definition of subtyping, this function does
not typecheck since the subtype relation a[X] 6 a[Any] does
not hold (the right hand side requires that no marking is
present). Nevertheless, this function is reasonable to accept
since it fulfills our safety conditions. That is, each subpart
of the result corresponding to X must be identical to some
subpart of the input corresponding to X. But such a subpart
corresponding to X does not exist in the result; hence, the
safety property vacuously holds.

Therefore we need to slightly relax the definition of sub-
typing. What is observed in the last paragraph is that sub-
typing transfers a marked value from one context to an-
other, where if the latter context requires fewer markings,
the transfer is still safe. From this, we obtain the following
new definition: S is a subtype of T iff, for any marked value
v of type S, there exists a marked value w of type T such
that v and w are identical except that some of the marks in
v can be absent in w. This relaxation of definition is some-
what analogous to the standard “promotion” rule of a type
variable to its least non-variable upper bounds, which often
appears in type checking algorithms of systems that combine
subtyping and polymorphism (cf. F 6 [6]).

The typing rule for polymorphic function applications is as
usual. That is, we check that the argument type is a subtype
of the parameter type with the type parameters replaced by
the type arguments. Then, the whole function application
is given the declared result type with the type parameters
replaced by the type arguments. For example, consider the
definition of search function shown in the beginning of this
subsection

fun search {X} (String as key) (DB{X} as d)

: Result{X} = ...

and one of its applications:

search{Contact}("HosoyaHome")(contactDB)

We perform the above-mentioned check for both arguments,
where, in particular, the second argument’s type DB{Contact}
is a subtype of [X 7→ Contact] DB{X} = DB{Contact} (since
they are identical). We then give the type [X 7→ Contact]
Result{X} = Result{Contact} to the result of the applica-
tion. This standard typing rule fits well with our semantic
view to polymorphism. First, according to our safety prop-
erty, the definition of search function declares that, for any
input value (as the second argument) of the form

db[entry[key["..."], content[v1]],

...

entry[key["..."], content[vn]]]

the result (if any) has the form found[vi] for some 1 ≤
i ≤ n, or the form notfound[]. Therefore, since the value
contactDB has the above form of db where each vi has type
Contact, the result of the function search returns for this
input has type either found[Contact] or notfound[], i.e.,
type Result{Contact}.

As in our example, type arguments given to polymor-
phic function applications are usually obvious and tedious
to write. Therefore we provide an automatic scheme that
infers type arguments from argument types and parameter
types. The inference is specified to compute a minimum
type argument that fulfills the above-described requirement
between the argument type and the parameter type. For
the same example, we compute a minimum type T such that

DB{Contact} 6 [X 7→ T] DB{X}.

Hence, we obtain T = Contact. (Note that, with no func-
tion types, the minimum type argument always minimizes
the result type since type parameters occur only in positive
positions. We would need to change this if we supported
higher-order functions. See [15] for a related discussion.)

A question that may arise here is: does such a minimum
type always exist? The answer is no, with only the specifi-
cation above. For example, there does not exists a minimum
T such that

a[c[]],b[d[]] 6 [X 7→ T] (a[Any],b[X] | a[X],b[Any]).

indeed both c[] and d[] are minimal solutions, but neither
is smaller than the other. The problem here is that the pa-
rameter type (a[Any],b[X]|a[X],b[Any]) allows two ways
of marking X on subparts of the value of the argument type
a[c[]],b[d[]]. Our approach to this issue is to reject such
an ambiguous parameter type. Then, under this restriction,
we can prove that a minimum type argument specified be-
fore always exists (Section 3.4).

In our type system, we additionally support type vari-
ables with type constraints of the form T as X. This form
of type denotes values of type T with a marking of X at the
top. Thus, a bare type variable X now can be rewritten
by Any as X. Such type constraints have an effect some-
what similar to bounded quantification, which often appears
in type systems with both subtyping and polymorphism. For
example, a function of type usually written ∀X 6 T. a[X] → b[X],
where the type parameter is constrained to be a subtype of
T, can be simulated by:

fun f {X} (a[T as X] as x) : b[T as X] = ...

Of course, both are not exactly the same. For example,
different occurrences of type variables may have different
“bounds.” Also, type arguments passed to the function are
not required to be a subtype of T, but substitution of any
type for X is ensured to be a subtype of T. In fact, what is
closer to our as notation is intersection types. See [15] for
more details.

3. FORMAL SYSTEM
The subsequent two sections formulate our polymorphic

type system outlined in the previous section. In this section,
we focus on the semantic aspect of the formal system, and,
in the next section, we address algorithmic problems.

The surface language that we have seen, which we call ex-
ternal language, would be quite complicated to directly deal
with. Therefore, in the formalization, we instead treat an
internal language where two major simplifications are made.
First, instead of sequence values and regular-expression-based
types, we use a binary representation of values and types in
the style of [19, 12]. Second, as mentioned before, the be-
haviors of polymorphic types and patterns are almost the
same (while polymorphic types give markings of type vari-
ables to subparts of values, patterns yield bindings of term
variables to subparts of values). Therefore we share many
definitions related to these two.

3.1 Values and marking
External values are sequences of labeled values or string

values. Internally, we represent those values by using only
labels and pairs. We assume a set of labels, ranged over by
a, that contains at least a special label ν. (Internal) values
are then defined by:

v ::= a | (v, v)

We translate external values to internal ones in a way similar
to Lisp’s encoding of lists by cons and nil. Each external
value v that is not an empty sequence is translated to a
pair (vh, vt) where vh and vt are the translation of v’s first
element and that of the remainder sequence, respectively.
If the first element is a labeled value, then vh is another
pair (a, vc) where a is the label of the element and vc is the
translation of its content. If the first element is a string,
then vh is the label representing the string. An external
value that is an empty sequence is translated to ν.

As external ones do, internal values carry marks of vari-
ables on their subparts. We formalize a marked value by
an (unmarked) value with separate information that indi-
cates which intermediate node is given a mark. We assume
a set X of variables, ranged over by x. Variables are divided
into two sets, term variables and type variables. Paths are
defined by:

π ::= 1π | 2π | ǫ

We take a path to be a function that maps a value to its
subnode locating at the path from the root: inductively,
ǫ(v) = v and (iπ)(v1, v2) = πvi for i = 1, 2. A marking V is
a relation between variables and paths, written {(x : π), . . .}
and a marked value is a pair (v, V) of a value and a marking.
For example, the external value

entry[key["abc"], content["ABC"]]

where the part "ABC" is marked x is translated to the inter-
nal value

((entry, ((key, (abc, ν)), ((content, (ABC, ν)), ν))), ν)

with the marking {x : 122121} (pointing to the subpart ABC).
We let X range over finite sets of variables. We define the
restriction V |X of V by X as {(x : π) ∈ V | x ∈ X}. We
write dom(V) = {x | x : π ∈ V }.

When we compose two marked values in a pair, the orig-
inal marks sink down to deeper places. To express this, we
define push-down of V by π, written πV , to be {y : ππ′ |
y : π′ ∈ V } (where ππ′ is the concatenation of the paths π

and π′). Then, the pairing (v1, V1)⊗ (v2, V2) of two marked
values is defined as ((v1, v2), (1V1∪2V2)). Likewise, when we
extract a subnode from a marked value, the original marks
float up to shallower places. For this, we define pull-up of
V by a path π, written π−1V , to be {y : π′ | y : ππ′ ∈ V }.
Then, the extraction π(u, U) of a marked value from a path
π is defined as (πu, π−1U). Note that we never lose any
marks by push-down, whereas we may by pull-up. Hence,
it is always that π−1(πV) = V and π(π−1V) ⊆ V , but not
necessarily π(π−1V) = V .

3.2 Types
External types are regular expressions on labeled values,

with recursive top-level type definitions. We encode those
types by internal types also based on labels and pairs. We
assume a set of type names ranged over by s. A type defi-
nition ∆ is a finite mapping from type names to (internal)
types, where types are defined by the following.

p ::= a | (p, p) | p | p | x : p | 1 | 0 | s

That is, a type can be a label, a pair, a union, a variable
with a type constraint, a universal type, an empty type, or
a type name. We write var(p) to be the set of variables
appearing in p and all types associated with the type names
reachable from p. We make two restrictions on types. First,
any recursive use of type name must go through a pair.
Second, for any occurrence of x : p, we require that x 6∈
var(p). This ensures that a type never generates a marking
where two marks of the same variable occur in the same
path, i.e., both x : π1 and x : π1π2 are in V for some x, π1,
and π2. (Allowing the same variable in the same path would
correspond to F-bounded polymorphism [5], but we do not
further pursue this direction in this paper.)

Under a fixed type definition ∆, the semantics of types is
described by the matching relation, written (v, V) ⊳ p, read
“marked value (v, V) matches p” or “value v matches p and
yields a marking V .” The matching relation is defined by
the following set of rules.

MCon

(a, ∅) ⊳ a

MPair
(vi, Vi) ⊳ pi for i = 1, 2

(v1, V1) ⊗ (v2, V2) ⊳ (p1, p2)

MAlt
(v, V) ⊳ pi i = 1 or 2

(v, V) ⊳ p1|p2

MVar
(v, V) ⊳ p

(v, V ∪ {x : ǫ}) ⊳ x : p

MAll

(v, ∅) ⊳ 1

MName
(v, V) ⊳ ∆(s)

(v, V) ⊳ s

Translation from external types to internal types is anal-

ogous to the encoding of values. Roughly, each type rep-
resenting non-empty sequences is translated to a pair type
(ph, pt), where ph and pt are the translation of the type for
the first element and that for the remainder sequence, re-
spectively. If the first element is a labeled type, then ph

is (a, pc) where pc corresponds to the content type. If the
first element is a String type, then ph is 1. The empty
sequence type is translated to ν. The other external con-
structs are translated in a straightforward manner using the
corresponding internal constructs: an alternation translates
to an alternation, a repetition to a recursion, a variable to a
variable, Any type to 1, and so on. For example, the external
type

db[entry[key[String], content[X]]*]

can be translated to the internal type

((db, s1), ν)

with definitions

s1 7→ ν | ((entry, s2), s1)
s2 7→ ((key, s3), ((content, X : 1), ν))
s3 7→ (1, ν)

(Note that the bare variable X is encoded by X : 1 since
X is an abbreviation for Any as X.) We refer the reader to
the literature (e.g., [19]) for a formalization of a general
translation scheme.

We call types containing only term variables pattern and
those containing only type variables polymorphic type or
polytype. Note that we do not allow patterns to contain any
type variables. One would consider that this might be a lit-
tle inconvenient since, in the monomorphic system, patterns
are a superset of types and one can freely embed types in-
side patterns. However, allowing type variables in patterns
adds a substantial complexity to the type and run-time sys-
tem since behaviors of pattern matches could now depend
on the types to be passed at run time. Although such a fea-
ture would be interesting by itself, we focus, in this paper,
on the simplest case, which still has a lot to study.

Another difference between patterns and polymorphic types
is that it makes sense for polymorphic types to yield a mark-
ing with an arbitrary number of marks of the same variable,
whereas it does not for patterns. Thus, whenever we use a
type p as a pattern, we require that p is linear: (v, V) ⊳ p

implies that dom(V) = var(p) and V is a function (i.e.,
π = π′ for any x : π, x : π′ ∈ V). See the full version of this
paper [15] for an algorithm for checking linearity.

Note that our internal representation allows a mark to be
put only on a single node. A consequence of this is that
the external representation has the restriction that values
can have a mark only on a tail-sequence, i.e., a sequence
that ends at the tail of the whole sequence. For example,
in the value a[b[],c[],d[]], we can put a mark on the
sequence c[],d[] but cannot on b[],c[]. We consider that
this restriction is rather undesirable and therefore better
to be eliminated by a cleverer encoding of variables. In
the case of patterns, we can use known encoding techniques
relying on the linearity condition [19, 14], but in the case of
polytypes, we would need a different technique. We leave
this issue for future work. (The “tail-variable” restriction
on polytypes might actually be acceptable in many cases
since the subpart of a value to be parameterized is typically

on the whole content of a label, as in the examples in the
introduction and in Section 2.)

The subtype relation, written p 6 q, is defined as, for all v

and V , if (v, V) ⊳ p, then (v, W) ⊳ q for some W ⊆ V . We
present an algorithm for checking subtyping in Section 4.2.

3.3 Substitution
Later, we will formalize our inference scheme in a way

that obtains a substitution of types for variables. An X-
substitution σ is a mapping from a set X of variables to
types.

In the definition of the application σp of a substitution σ

to a type p, we do not use a usual syntactic way, but instead
adopt a “semantic” way. This is because we have type con-
straints on variables for which we need to perform an inter-
section operation rather than a simple replacement. For ex-
ample, when we have a type p = (x : 1, 1) and a substitution
σ = {x 7→ (y : 1, a)}, we can easily obtain σp = ((y : b, a), 1)
by replacing x : 1 with (y : 1, a). However, in the case
that we have a constraint on x as in p = (x : (b, 1), 1),
this interacts with (y : 1, a); in this example, we need to
take an intersection between (b, 1) and the type (y : 1, a),
which results in σp = ((y : b, a), 1). This situation is even
more complicated when the type constraint contains other
variables and we need to do a simultaneous substitution for
multiple variables. (Another complication would also arise
when the type p is recursively defined.)

Thus, we define an application σp of a substitution σ by
what the type σp should satisfy semantically. Let us first
see an example: p = (x : (b, 1), 1) and σ = {x 7→ (y : 1, a)}.
The type σp satisfies the following. For each marked value
in p, which has the form ((b, v), w) where v and w are any
values and (b, v) is marked x, if the x-marked subpart (b, v)
matches σ(x) = (y : 1, a) with a marking U , then the type
σp contains a marked value ((b, v), w) where the mark x is
replaced by the new marking U ; the type σp contains only
such marked values. Therefore each marked value in σp has
the form ((b, a), w) where w is any value and b is marked y.
Syntactically, σp can be written ((y : b, a), 1) as in the last
paragraph.

Below, we generalize the above notion of substitution for
the case where X contains an arbitrary number of vari-
ables and p may contain extra variables not in X. An X-
substitution σ applied to a type p, written σp, is a type
satisfying the following.

(v, V) ⊳ σp

iff

∃W,U1, . . . , Un. (v,W) ⊳ p

V = W |X ∪
S

i=1..n
πiUi

where {(x1 : π1), . . . , (xn : πn)} = W |X
(πi(v), Ui) ⊳ σ(xi) (i = 1, . . . , n).

That is, for each marked value (v, W) in p, if each xi-marked
subpart πi(v) (where xi ∈ X) matches the type σ(xi) with
a marking Ui, then σp contains the marked value (v, V)
where V contains the marking after replacing each xi-mark
by the new marking Ui pushed down by πi; the type σp

contains only such marked values. Though the definition
does not tell, such σp always exists and can be computed
algorithmically. A concrete algorithm can be found in the
full version of the paper [15]. Also, though the definition
does not specify such σp in a syntactically unique way, we

assume some strategy that picks up one of types satisfying
the above condition (e.g., the algorithm in [15]).

We extend the subtype relation between types to that
between substitutions: σ 6 σ′ means dom(σ) = dom(σ′)
and σ(x) 6 σ′(x) for any x ∈ dom(σ).

3.4 Type Inference
At each application of polymorphic function and each pat-

tern match, we perform a form of type inference. Although
the inference may appear different for these two cases, it can
actually be formalized in a uniform way. Both cases involve
a “domain” type p and a “target” type q, and a set X of
variables. For a function application, the domain p is the
actual argument’s type, the target q is the formal parame-
ter’s type, and X is the set of type parameters, where q may
contain type variables in X. For a pattern match, the do-
main p is the input value’s type, the target q is the pattern,
and X is the set of pattern variables, where q may contain
term variables in X. Below, we describe our inference in two
steps: (1) a relationship among the domain, the target, and
the inferred types, and (2) two restrictions on the domain
and the target. The first part will directly yield the specifi-
cation of the inference for patterns, whereas combining both
parts will yield that of the inference for type arguments.

An X-inference of a (target) type q with respect to a (do-
main) type p is an X-substitution, written p ⊳X q, satisfying
the following for each x ∈ X.

(u, U) ⊳ (p ⊳X q)(x)

iff

∃v, V, W,π. (v, V) ⊳ p

(v, W ∪ {x : π}) ⊳ q

(u, U) = π−1(v, V)

That is, for each marked value (v, V) in p, if v matches q

with (at least) a marking of x on a subnode π(v), then the
inferred type (p ⊳X q)(x) for x contains the subnode with
all the original marks V pulled up by π (note that we lose
marks on the nodes that are not descendents of π(v)); the
inferred type (p ⊳X q)(x) contains only such marked values.
Section 4.3 proves that such p ⊳X q always exists and can
be found deterministically.

For example, let the domain p = ((y : 1, a), 1) and the
target q = (x : (b, 1), 1), and let us infer a type for x. Each
marked value in p has the form ((v, a), w) where v and w are
any values and v is marked y. Values of the form ((v, a), w)
match q when v = b and yield a marking of x on the subnode
(b, a). Therefore the inferred type for x contains (b, a) where
b is marked y (since it is marked so in the original marked
value). Syntactically, the type can be written (y : b, a).

We use the above definition directly as the specification
of the inference for patterns. For the inference of type ar-
guments, however, we want to use a different specification
as outlined in Section 2.2: a minimum X-substitution σ

such that p 6 σq. Let us call an X-substitution σ satisfying
p 6 σq solution. Our intention is to use the same infer-
ence algorithm both for patterns and for type arguments.
However, the first inference specification given above does
not necessarily yield a solution. For example, in the pre-
vious paragraph, from the domain p = ((y : 1, a), 1) and
the target q = (x : (b, 1), 1), the inference has yielded the
{x}-substitution σ = {x 7→ (y : b, a)}, which does not sat-
isfy p 6 σq. Moreover, even when the inference result is a
solution, it is not necessarily minimum nor even minimal.

For example, consider the domain p = (a, b) and the target
q = (x : 1, b)|(a, x : 1) (similar to an example used in Sec-
tion 2.2). The inference yields {x 7→ (a|b)} because there
are two possible ways of matching the value in p with q and
the type inferred for x captures both values that can be
bound to x. This result is not minimal since there are other
solutions smaller than this: {x 7→ a} and {x 7→ b}. Fur-
thermore, since these two are actually minimal and neither
is smaller than the other, there is no minimum substitution.
The non-minimality is reasonable in the inference for pat-
tern variables since we do not know which case of (x : 1, b)
and (a, x : 1) would be taken at run time and therefore the
type for x should conservatively include information on both
cases. In the inference for type parameters, however, the in-
ferred substitution is more desirable to be minimal so as to
make the result type of the application of polymorphic func-
tion as small as possible and thereby make the remaining
program code as typable as possible. Further, the minimum
one is even more desirable since it makes the result type of
the application unique and thereby makes the specification
of the inference easy to understand (the existence of several
minimal solutions would complicate it).

Fortunately, by imposing two restrictions on the domain
and the target, we can ensure that the inference always com-
putes a minimum solution. The first is for ensuring that the
inference result is a solution: we require that p is a sub-
type of q ignoring variables in X, that is, for all v and V , if
(v, V) ⊳ p, then (v, W) ⊳ q and W |X ⊆ V for some W . We
write this requirement p 6X q. The second restriction is for
ensuring that the inference result is equal or smaller than
any solution: we require that q yields a unique marking for
any value, formally, for all value v, we have that (v, V) ⊳ q

and (v, V ′) ⊳ q imply V |X = V ′|X . When this holds, we
say that q is X-unambiguous. We will show an algorithm
for ambiguity check in Section 4.4.

Note that the unambiguity requirement is a sufficient con-
dition but not a necessary one: there is an ambiguous pa-
rameter type for which a minimum type argument always
exists. For example, a parameter type (x : 1)|1 is ambiguous
but, for any type argument, the solution {x 7→ 0} is always
minimum. If one considers that our requirement is too re-
strictive, an alternative design might be to require explicit
type arguments when the parameter types are ambiguous.

The above claims are summarized by the following propo-
sition.

Proposition 1. Let p 6X q and q be X-unambiguous.
Then, (p ⊳X q) is the minimum X-substitution σ satisfying
p 6 σq.

3.5 Type system
With the definitions given above, we can describe our type

system in a relatively straightforward way. A program con-
sists of a set Φ of (top-level) functions, ranged over by φ, of
the form

fun f{X}(x : p1) : p2 = e

(where p1 and p2 are polytypes) and an entry-point term e0,
where terms are defined by the following syntax.

e ::= x | a | (e, e) | f(e) |
match e with p1→e1 | . . . | pn→en

That is, a term is either a variable, a label, a pair, a func-
tion call, or a pattern match (where each pi is a pattern).

Note that a function call may be to a polymorphic one,
but we do not provide a form to explicitly supply type
arguments—they are always inferred. In any match expres-
sion match e with p1→e1 | . . . | pn→en, we assume that
var(pi) ∩ var(pj) = ∅ for i 6= j (for convenience), and that
each pattern pi is linear. For a function fun f{X}(x : p1) :
p2 = e, we require that var(p1) ∪ var(p2) ⊆ X. Also, we
assume a fixed set Φ of functions from now on, and no two
different functions of the same name are declared in Φ. Fi-
nally, we adopt the usual α-renaming convention of bound
variables.

The type system is described by the typing relations of
the form Γ ⊢ e ∈ p (“under type environment Γ, term
e has polytype p”) and of the form ⊢ φ for a function
φ = (fun f{X}(x : p) : q = e) (“function φ is well-typed”)
where a type environment Γ is a mapping from term variables
to polytypes (hence a substitution of polytypes for term vari-
ables). We write ⊢ Φ (“all functions are well-typed”) for ⊢ φ

for all φ ∈ Φ. The typing relations are defined by the fol-
lowing set of rules.

TCon

Γ ⊢ a ∈ a

TVar

Γ ⊢ x ∈ Γ(x)

TPair
Γ ⊢ ei ∈ pi for i = 1, 2

Γ ⊢ (e1, e2) ∈ (p1, p2)

TApp
fun f{X}(x : p) : q = e2 ∈ Φ Γ ⊢ e1 ∈ r r 6X p

Γ ⊢ f(e1) ∈ (r ⊳X p)q

TMatch
Γ ⊢ e0 ∈ p X = var(p1 | . . . | pn) p 6X p1 | . . . | pn

Γ, (p ⊳X pi) ⊢ ei ∈ ri for i = 1, . . . , n

Γ ⊢ match e0 with p1→e1 | . . . | pn→en ∈ r1 | . . . | rn

TFun
x : p ⊢ e ∈ r r 6 q p is X-unambiguous

⊢ fun f{X}(x : p) : q = e

These rules are quite standard except for TApp, TMatch,
and TFun. In TApp, we first infer the substitution (r ⊳X p)
for the type parameters X from the actual argument type r

and the formal parameter type p, as described in Section 3.4.
As already stated, in order to ensure that the result of the
inference is minimum, we require that the actual argument
type r is a subtype of the formal parameter type p, ignor-
ing the type parameters X (checked in TApp), and that
the formal parameter type p is X-unambiguous (checked
in TFun). In TMatch, we first ensure exhaustiveness of
the pattern match with respect to the domain type p. For
this, we check that p is a subtype of the union of the pat-
terns p1, . . . , pn, ignoring all the term variables appearing in
these patterns. Then, for each pattern pi, we calculate the
X-inference (p ⊳X pi) of the pattern pi with respect to the
domain type p and, under the current type environment aug-
mented with the obtained substitution [p ⊳X pi] (recall that
[p ⊳X pi] can be seen as a type environment), we typecheck
the corresponding body ei. The type of the whole match
expression is the union of the types ri of all the bodies.

3.6 Evaluation semantics
The evaluation semantics is fairly straightforward except

for its handling of marking. We describe the semantics by
the evaluation relation E ⊢ e ⇓ (v, V) (“under value environ-

ment E, term e evaluates to marked value (v, V)”) where a
value environment E is a mapping from term variables to
marked values. The evaluation relation is defined by the
following set of rules.

SVar

E ⊢ x ⇓ E(x)

SCon

E ⊢ a ⇓ (a, ∅)

SPair
E ⊢ ei ⇓ (vi, Vi) for i = 1, 2

E ⊢ (e1, e2) ⇓ (v1, V1) ⊗ (v2, V2)

SApp
fun f{X}(x : p) : q = e2 ∈ Φ

E ⊢ e1 ⇓ (v, V) x : (v, V) ⊢ e2 ⇓ (w, W)

E ⊢ f(e1) ⇓ (w, W)

SMatch
E ⊢ e0 ⇓ (v, V)

(v, V
′) ⊳ pi E, {x : π(v, V) | x : π ∈ V

′} ⊢ ei ⇓ (w, W)

E ⊢ match e0 with p1→e1 | . . . | pn→en ⇓ (w, W)

In SCon, a label expression a produces a value a with no
mark. In SPair, two marked values yielded by e1 and e2

are paired by ⊗. In SApp, a function call to f simply passes
the marked value of the argument expression to the function
and yields the marked value returned from the function. In
SMatch, after evaluating the input as (v, V), we try match-
ing the “bare” value v against each pattern. If some pattern
pi matches with a marking V ′, then we form a binding of
each pattern variable x to the marked value π(v, V) (i.e.,
the extraction of (v, V) by the path π) where π is the path
for the mark x in V ′. (Note that, since each pattern is lin-
ear, there is always exactly one x : π in V ′ for each variable
appearing in the pattern.) With the obtained bindings, we
evaluate the corresponding body ei. Note that the semantics
of pattern matching chooses an arbitrary clause when mul-
tiple clauses can match, unlike the usual semantics choosing
the first clause in such a case. This design choice is just
for simplifying the formalization. Changing the semantics
to the first match should be straightforward, except that
the type system would require taking “difference” between
types. See [15] for further discussions.

Finally, note that no construct “creates” marks. There-
fore, when we start from an entry-point expression and pro-
ceed evaluation, we will never see any marking at all during
execution. This means that we actually do not need marked
values and all run-time mechanisms related to marking in an
actual implementation—bare values are enough. Then, why
should we nevertheless care about the evaluation seman-
tics with marked values? The answer is: for understanding
our polymorphic type system. That is, the intuition behind
what the type system is trying to prove—“each parameter-
ized subpart in the result value comes from some parameter-
ized subpart in the input value”—is best explained in terms
of our evaluation semantics.

3.7 Correctness
The correctness of our type system consists of two main

theorems, type preservation (“the result of a well-typed ex-
pression always has the specified type”) and progress (“no
well-typed expression goes wrong”).

Type preservation can be proved by standard induction on
the derivation of the evaluation relation. We write Γ ⊢ E if

dom(Γ) = dom(E), and E(x) = (v, V) implies (v, V ′) ⊳ Γ(x)
for some V ′ ⊆ V . Note that the values in the value envi-
ronment may contain extra marks not specified by the cor-
responding types in the type environment.

Theorem 1 (Type preservation). Let ⊢ Φ. If Γ ⊢
e ∈ p and E ⊢ e ⇓ (w, W) with Γ ⊢ E, then (w, W ′) ⊳ p for
some W ′ ⊆ W .

In order to state the progress theorem, we first clarify
what we mean by “go wrong.” Since just saying E 6⊢ e ⇓ (v, V)
can mean “either e goes wrong or e diverges,” we need to
define the additional failure relation E ⊢ e ⇓ ⊥ to explic-
itly state that e encounters a run-time error. We omit the
rules for the failure relation from this paper (the definition
is straightforward: E ⊢ e ⇓ ⊥ when one of the necessary
premises fails), but these can be found in the full version
[15].

Theorem 2 (Progress). Let ⊢ Φ. If Γ ⊢ E and Γ ⊢
e ∈ p, then E ⊢ e ⇓ ⊥ never holds.

4. ALGORITHMS
This section describes algorithms necessary for implement-

ing the type system defined in the previous section. The
algorithms presented here are subtype checking, inference,
and ambiguity checking. For space limitation, algorithms
for checking linearity of patterns and for substitution are
omitted here, but can be found in [15].

4.1 Marking automata
For describing our algorithms, we use a model called “mark-

ing automata,” which can be seen as a slight variation of
types in the binary representation given in the previous sec-
tion.

Let us assume a finite set Σ of labels, which may be ob-
tained by collecting all labels appearing in a given program.
A marking automaton A is a tuple (S, I, δ, Ξ) where

• S is a finite set of states,

• I is a set of initial states (I ⊆ S),

• δ is a set of transition rules of the form either s →
(s1, s2) or s → a where s, s1, s2 ∈ S and a ∈ Σ, and

• Ξ is a mapping from states to sets of variables (Ξ :
S → P(X)).

Given a marking automaton A = (S, I, δ, Ξ), we define the
set, written πAs, of reachable states from a given state s by
a given path π as follows.

ǫAs = {s}
(jπ)As =

S

{πAsj | s → (s1, s2) ∈ δ}

We define πAS =
S

{πAs | s ∈ S} for a set S of states.
We simply say that a state s is reachable from s′ when
s is reachable from s′ by some path. We write varA(s)
for the set of variables at the states reachable from s, and
varA(S) =

S

{varA(s) | s ∈ S}. We also require that
Ξ(s)∩ (varA(s1)∪ varA(s2)) = ∅ whenever s → (s1, s2) ∈ δ

(this is to ensure that any accepted marked value does not
contain two markings of the same variable in the same path).
In the sequel, we omit the subscript A appearing in these
definitions whenever it is clear from the context.

The semantics of a marking automaton A = (S, I, δ, Ξ)
is described by the matching relation A ⊢ (v, V) ⊳ s, read
“marking automaton A accepts marked value (v, V) at state
s.” The matching relation is defined by the following set of
rules.

ACon
s → a ∈ δ

A ⊢ (a, Ξ(s) × {ǫ}) ⊳ s

APair
s → (s1, s2) ∈ δ A ⊢ (vi, Vi) ⊳ si for i = 1, 2

A ⊢ ((v1, v2), 1V1 ∪ 2V2 ∪ Ξ(s) × {ǫ}) ⊳ s

When there is no ambiguity about which marking automa-
ton we talk about, we write (v, V) ⊳ s instead of A ⊢ (v, V) ⊳ s.
Also, we write (v, V) ⊳ A when A ⊢ (v, V) ⊳ s for some
s ∈ I . Note that each state is associated with a set of
variables rather than a single variable. This is for encod-
ing types like x : y : (1, 1) that may mark the same node
with several variables. Any type (with a type definition)
can be encoded by a marking automaton in a straightfor-
ward way. A concrete encoding procedure can be found in
[15]. (Note that a marking automaton can trivially be en-
coded by a type with a type definition.) We transfer all the
type-related definitions (linearity, substitution, subtyping,
inference, and ambiguity) to marking automata. (Thus, we
write in a way like A 6 B.)

Some of the algorithms shown later use an “empty elimi-
nation” operation on a given marking automaton A =
(S, I, δ,Ξ). This operation yields another marking automa-
ton A′ = (S′, I ′, δ′, Ξ′) with S′ ⊆ S such that

• A ⊢ (v, V) ⊳ s iff A′ ⊢ (v, V) ⊳ s for any (v, V) and
s ∈ S′ (A and A′ behave exactly the same at the same
state),

• A′ ⊢ (v, V) ⊳ s for some (v, V) for any s ∈ S′ (any
state in A′ accepts some marked value),

• I ′ = {s ∈ I | A ⊢ (v, V) ⊳ s for some (v, V)} (A′’s
initial states are A’s non-empty initial states), and

• s ∈ πI ′ for some π for any s ∈ S′ (all states in A′ are
reachable from an initial state).

We do not describe a concrete procedure for empty elimina-
tion, but linear time algorithms can be found in the litera-
ture, e.g., [8].

4.2 Subtyping
The goal here is, given marking automata A and B, to

check whether, whenever (v, V) ⊳ A, we have (v, W) ⊳ B

for some W ⊆ V . Let A = (SA, IA, δA, ΞA) and B =
(SB , IB, δB , ΞB). Then, our subtyping algorithm is as fol-
lows.

1. Construct C = (SC , IC , δC , ΞC) such that

SC = SA × P(SB)
IC = IA × {IB}

ΞC((s, T)) = ∅

and

(S1) (s, T) → ((s1, T1), (s2, T2)) ∈ δC iff

• s → (s1, s2) ∈ δA and

• for each t ∈ T where ΞB(t) ⊆ ΞA(s), if t →
(t1, t2) ∈ δB , then either t1 ∈ T1 or t2 ∈ T2

(S2) (s, T) → a ∈ δC iff

• s → a ∈ δA and

• for each t ∈ T where ΞB(t) ⊆ ΞA(s), we have
t → a 6∈ δB.

2. Return “yes” iff C is empty (i.e., 6 ∃(v, V). (v, V) ⊳ C).

That is, we first construct a marking automaton C that
accepts marked values (v, ∅) such that A accepts (v, V) for
some V , but B does not accept (v, W) for any W ⊆ V .
Then, we check whether the automaton C is empty. The
automaton C contains states of the form (s, {t1, . . . , tn})
such that s ∈ SA and each ti ∈ SB . Intuitively, the state
(s, {t1, . . . , tn}) accepts (v, ∅) where s accepts (v, V) for some
V , but any ti does not accept (v, W) for any W ⊆ V . Hence,
we set IA × {IB} as C’s initial states. Rules (S1) and (S2)
for constructing C’s transition rules can be understood as
follows. For rule (S1), consider a state (s, T) and a value
(v1, v2). Suppose that (1) s accepts ((v1, v2), V), but (2)
any t ∈ T does not accept ((v1, v2), W) for any W ⊆ V .
Condition (1) means that a transition rule s → (s1, s2) is
in δA where sj accepts (vj , Vj) for some Vj for j = 1, 2 and
V = 1V1 ∪ 2V2 ∪ΞA(s)×{ǫ}. Condition (2) means that, for
any t → (t1, t2) in δB where t ∈ T , either ΞB(t) 6⊆ ΞA(s) (in
which case, W 6⊆ V whenever t accepts ((v1, v2), W)), or t1
does not accept (v1, W1) for any W1 ⊆ V1, or t2 does not
accept (v2, W2) for any W2 ⊆ V2. Rule (S2) is analogous.

The above presentation does not directly give an efficient
algorithm for subtyping. One way of obtaining a practical
algorithm is to adapt a subtyping algorithm for monomor-
phic types proposed in Hosoya, Vouillon, and Pierce [19].
Their algorithm computes essentially what our algorithm
above does minus the treatment of variables, but is elabo-
rated with various techniques for efficiency, including a lazy,
top-down strategy for state exploration and a “working set”
data structure for avoiding repeated computations. Thus,
we can easily obtain an efficient subtyping algorithm for
polymorphic types by just augmenting their algorithm with
a rule for treating variables.2

Proposition 2. The subtyping algorithm returns “yes”
iff A 6 B.

4.3 Inference
Consider marking automata A and B and a set X =

{x1, . . . , xn} of variables. Our purpose here is to obtain
an X-inference of B with respect to A, that is, a mapping
{x1 7→ Dx1

, . . . , xn 7→ Dxn
} such that A accepts (v, V) and

B accepts (v, W) with a mark xi : π ∈ W if and only if Dxi

accepts π(v, V) (i.e., the extraction of (v, V) by the path π).
Let A = (SA, IA, δA, ΞA) and B = (SB, IB , δB , ΞB). We

assume X ⊆ var(B) and var(IA) ∩ var(IB) = ∅. Then, the
inference algorithm is as follows.

2For readers familiar with the algorithm in [19], the addi-
tional rule would look like:

ΞB(t1) 6⊆ ΞA(s) s 6 t2| . . . |tn

s 6 t1|t2| . . . |tn

1. Construct C = (SC , IC , δC , ΞC) such that

SC = SA × SB

IC = IA × IB

ΞC(s, t) = ΞA(s) ∪ ΞB(t)

and

(I1) (s, t) → ((s1, t1), (s2, t2)) ∈ δC iff s → (s1, s2) ∈
δA and t → (t1, t2) ∈ δB

(I2) (s, t) → a ∈ δC iff s → a ∈ δA and s → a ∈ δB.

2. Empty-eliminate C

3. For each x ∈ X, construct Dx = (SDx
, IDx

, δDx
, ΞDx

)
such that

SDx
= SC

IDx
= {s | x ∈ ΞC(s)}

δDx
= δC

ΞDx
((s, t)) = ΞC(s, t) ∩ var(IA).

That is, we first compute a product of A and B to obtain
a specialization C of the “target” B with respect to the
“domain” A. Thus, the automaton C behaves exactly the
same as B except that it accepts only marked values that
are also accepted by A. Therefore, whenever B matches a
marked value (v, V) accepted by A and yields a binding of
x to another marked value (u, U), the automaton C accepts
the marked value (u, U) at some state (s, t) that marks x.
Each result automaton Dx is essentially a copy of C where
Dx starts from C’s states that have x in their variable sets.
The empty elimination performed in the second step is nec-
essary to guarantee that each Dx accepts no more than the
appropriate marked values. To see this, note first that, after
the empty elimination of C, each state (s, t) is non-empty
and reachable from an initial state. Therefore, whenever Dx

has an initial state (s, t), or equivalently (empty-eliminated)
C has a state (s, t) that marks x, there is some marked
value (v, V) that is accepted by (empty-eliminated) C and
produces a binding of x to another marked value (u, U) at
the state (s, t). This means that both A and B accept the
marked value (v, V) and B yields (u, U) at the state t.

The algorithm above can be seen as a straightforward
adaptation of (monomorphic) type inference algorithms for
patterns presented in [17, 14]. Those previous algorithms
have treated features not considered here (such as first-
match patterns and non-tail variables) whereas the present
one treats polymorphic types (which is achieved just by al-
lowing variables in the domain type).

Proposition 3. {x1 7→ Dx1
, . . . , xn 7→ Dxn

} is an X-
inference of B with respect to A.

4.4 Ambiguity
The ambiguity check aims to find whether, given a mark-

ing automaton A, any value matched by A is marked in a
unique way, that is, V = W whenever A accepts (v, V) and
(v, W). Let A = (SA, IA, δA, ΞA). The ambiguity check
algorithm is as follows.

1. Construct C = (SC , IC , δC , ΞC) such that

SC = SA × SA

IC = IA × IA

ΞC((s, t)) = (ΞA(s) \ ΞA(t)) ∪ (ΞA(t) \ ΞA(s))

and

(A1) (s, t) → ((s1, t1), (s2, t2)) ∈ δC iff s → (s1, s2) ∈
δA and t → (t1, t2) ∈ δA

(A2) (s, t) → a ∈ δC iff s → a ∈ δA and s → a ∈ δA.

2. Empty-eliminate C; let D = (SD, ID, δD, ΞD) be the
result.

3. Return “unambiguous” iff ΞD(s, t) = ∅ for each (s, t) ∈
SD.

That is, we first take the self-product C of A, where we
set the variables ΞC((s, t)) of each state (s, t) such that
ΞC((s, t)) = ∅ if and only if ΞA(s) = ΞA(t). The second
and third steps can be understood as follows. For the empty
elimination D of C, suppose ΞD((s, t)) = ∅ for all the states
(s, t) and A accepts (v, V) and (v, W). Then, the first step
ensures that, for each subnode of v, the states s′ and t′ as-
signed to this node in these two cases have the same set of
variables: ΞA(s′) = ΞA(t′). Therefore the whole markings V

and W must also be the same. On the other hand, suppose
ΞD((s, t)) 6= ∅ for some state (s, t), that is, ΞA(s) 6= ΞB(t).
Then, since D is empty-eliminated, there is some value v

that is matched by D and produces a marking at the state
(s, t). This means that A has two ways of matching the
value v that put different marks on the same subnode at the
states s and t.

Proposition 4. The ambiguity-checking algorithm returns
“unambiguous” iff A is X-unambiguous.

5. RELATED WORK
There have been very few work on static type systems for

XML that support parametric polymorphism. In particu-
lar, we are not aware of any attempt to extend the semantic
approach. However, polymorphism can trivially be treated
by adopting so-called the data-binding approach. This ap-
proach, in general, is a handy method to attain, to some ex-
tent, static typing by mapping XML types and data values
into the structure of an existing programming language. So,
if the chosen programming language already supports para-
metric polymorphism, then we automatically achieve the
goal. One such work is HaXML [29], which maps DTDs to
Haskell’s polymorphic type system [24]. Another work close
to this is XMLambda [21, 26], which adds a more flexibility
to the usual data-binding approach by using a novel typing
discipline called type-index rows and parametric polymor-
phism adapted to this. Both their and our approaches can
express a simple polymorphism as in a type (A|X) repre-
senting “at least choice A” or a type (A, X) representing
“at least field A.” However, our approach provides far more
flexibilities with the use of our semantic subtyping. For ex-
ample, consider a type ((A|B), X) representing “either A

or B, then followed by X.” Our approach can regard this
type as (A, X)|(B, X) thanks to our subtyping and therefore
can treat the type (A,C)|(B, C) as an instance of this type.
Their approach, however, cannot do the same because their
encoding of regular expressions by disjoint union, tuples,
lists, and so on does not allow such flexible type equivalence
or subtyping.

6. CONCLUSIONS
In this paper, we have presented a series of theoretical

studies on parametric polymorphism for XML. Our type sys-
tem smoothly extends the semantic approach that is already

standard in monomorphic type systems for XML languages.
The crucial part is to introduce markings so as to give a sen-
sible interpretation to type variables and, at the same time,
obtain practical typechecking algorithms.

The present work is only a first step toward a full-fledged
polymorphic type system for XML and various additional in-
vestigations are in order. In particular, we have not treated
type variables in non-tail positions for a technical reason.
We consider that the restriction can be eliminated by im-
proving the current naive encoding of types in automata.
Another important extension is for XML attributes. For
this, we plan to investigate whether we can combine exist-
ing ideas treating attributes for the monomorphic case [16,
12].

7. REFERENCES
[1] A. Aiken, D. Kozen, and E. L. Wimmers. Decidability

of systems of set constraints with negative constraints.
Information and Computation, 122(1):30–44, 1995.

[2] A. W. Appel and D. B. MacQueen. Standard ML of
New Jersey. In Third Int’l Symp. on Prog. Lang.
Implementation and Logic Programming, pages 1–13.
Springer-Verlag, Aug. 1991.

[3] V. Benzaken, G. Castagna, and A. Frisch. CDuce: An
XML-centric general-purpose language. In Proceedings
of the International Conference on Functional
Programming (ICFP), pages 51–63, 2003.

[4] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler.
Making the future safe for the past: Adding genericity
to the Java programming language. In C. Chambers,
editor, ACM Symposium on Object Oriented
Programming: Systems, Languages, and Applications
(OOPSLA), pages 183–200, Vancouver, BC, 1998.

[5] P. S. Canning, W. R. Cook, W. L. Hill, W. G. Olthoff,
and J. C. Mitchell. F-bounded polymorphism for
object-oriented programming. In Conference on
Functional Programming Languages and Computer
Architecture (FPCA), pages 273–280, 1989.

[6] L. Cardelli, S. Martini, J. C. Mitchell, and A. Scedrov.
An extension of System F with subtyping.
Information and Computation, 109(1–2):4–56, 1994.

[7] J. Clark and M. Murata. RELAX NG. http://
www.relaxng.org, 2001.

[8] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree automata
techniques and applications. Draft book; available
electronically on http://

www.grappa.univ-lille3.fr/tata, 1999.

[9] M. A. Ellis and B. Stroustrup. The Annotated C++
Reference Manual. Addison-Wesley, 1990.

[10] D. Fallside and Y. Lafon. XML protocol working
group. http://www.w3.org/2000/xp/Group/, 2004.

[11] P. Fankhauser, M. Fernández, A. Malhotra, M. Rys,
J. Siméon, and P. Wadler. XQuery 1.0 Formal
Semantics. http://www.w3.org/TR/
query-semantics/, 2001.

[12] A. Frisch, G. Castagna, and V. Benzaken. Semantic
subtyping. In Seventeenth Annual IEEE Symposium
on Logic In Computer Science, pages 137–146, 2002.

[13] R. Gilleron, S. Tison, and M. Tommasi. Set
constraints and automata. Information and
Computation, 149(1):1–41, 1999.

[14] H. Hosoya. Regular expression pattern matching — a
simpler design. Technical Report 1397, RIMS, Kyoto
University, 2003.

[15] H. Hosoya, A. Frisch, and G. Castagna. Parametric
polymorphism for XML. http://
arbre.is.s.u-tokyo.ac.jp/~hahosoya/papers/

polyx.ps, 2004. Full version.

[16] H. Hosoya and M. Murata. Boolean operations and
inclusion test for attribute-element constraints. In
Eighth International Conference on Implementation
and Application of Automata, volume 2759 of Lecture
Notes in Computer Science, pages 201–212.
Springer-Verlag, 2003.

[17] H. Hosoya and B. C. Pierce. Regular expression
pattern matching for XML. Journal of Functional
Programming, 13(6):961–1004, 2002. Short version
appeared in Proceedings of The 25th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 67–80, 2001.

[18] H. Hosoya and B. C. Pierce. XDuce: A typed XML
processing language. ACM Transactions on Internet
Technology, 3(2):117–148, 2003. Short version
appeared in Proceedings of Third International
Workshop on the Web and Databases (WebDB2000),
volume 1997 of Lecture Notes in Computer Science,
pp. 226–244, Springer-Verlag.

[19] H. Hosoya, J. Vouillon, and B. C. Pierce. Regular
expression types for XML. ACM Transactions on
Programming Languages and Systems, 2004. Short
version appeared in Proceedings of the International
Conference on Functional Programming (ICFP),
pp.11-22, 2000.

[20] X. Leroy, D. Doligez, J. Garrigue, J. Vouillon, and
D. Rémy. The Objective Caml system. Software and
documentation available on the Web, http://
pauillac.inria.fr/ocaml/, 1996.

[21] E. Meijer and M. Shields. XMλ: A functional
programming language for constructing and
manipulating XML documents. Manuscript, 1999.

[22] T. Milo, D. Suciu, and V. Vianu. Typechecking for
XML transformers. In Proceedings of the Nineteenth
ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, pages 11–22. ACM,
May 2000.

[23] M. Murata. Extended path expressions for XML. In
Proceedings of Symposium on Principles of Database
Systems (PODS), pages 126–137, 2001.

[24] S. L. Peyton Jones, C. V. Hall, K. Hammond,
W. Partain, and P. Wadler. The Glasgow Haskell
compiler: a technical overview. In Proc. UK Joint
Framework for Information Technology (JFIT)
Technical Conference, July 1993.

[25] J. C. Reynolds. Types, abstraction, and parametric
polymorphism. Information Processing, 83:513–523,
1983.

[26] M. Shields and E. Meijer. Type-indexed rows. In The
25th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 261–275,
London, Jan 2001.

[27] K. Stefénsson. Systems of set constraints with
negative constraints are nexptime-complete. In
Proceedings of Ninth Annual IEEE Symposium on

Logic in Computer Science, pages 137–141, 1994.

[28] A. Tozawa and M. Hagiya. XML schema containment
checking based on semi-implicit techniques. In 8th
International Conference on Implementation and
Application of Automata, volume 2759 of Lecture
Notes in Computer Science, pages 213–225.
Springer-Verlag, 2003.

[29] M. Wallace and C. Runciman. Haskell and XML:
Generic combinators or type-based translation? In
Proceedings of the Fourth ACM SIGPLAN
International Conference on Functional Programming
(ICFP‘99), volume 34-9 of ACM Sigplan Notices,
pages 148–159, N.Y., Sept. 27–29 1999. ACM Press.

APPENDIX

A. TRICKY SUBTYPING EXAMPLE
This section gives a bit more details on the tricky subtyp-

ing example shown in the introduction. The example is not
allowed by our marking-based subtyping but is allowed by
the placeholder-based subtyping, i.e., defined by “the subset
relation holds for all substitutions.”

The example was: for any type X,

(a,X) ⊆ (a, a) ∪ (X, a).

Here, a is a type representing the complement of a, which
can easily be defined by using recursion. (We assume here
that there are only a finite number of labels. To allow an
infinite number of labels, we need to extend the type lan-
guage.) Indeed, if X does not contain a, then the left hand
side is included by the first clause on the right. If X does
contain a, then all the values on the left except (a, a) is in-
cluded by the first clause on the right and the value (a, a) is
included by the second clause.

Our definition of subtyping does not permit the above
example since no occurrence of X on the right corresponds
to the occurrence of X on the left.

We can generalize the above example for any number of
singletons as follows (we use (n+1)-ary tuples for simplicity
but they can of course be encoded by pairs).

(a1, . . . , an, X) ⊆ (a1, . . . , an, a1| . . . |an)
∪

Sn

i=1
(a1, . . . , ai1 , X, ai+1, . . . , an, ai)

Acknowledgments
We would like to express our best gratitude to Jérôme Vouil-
lon, Benjamin Pierce, Vladimir Gapeyev, and Naoki Kobayashi
for precious comments and useful discussions. We thank
anonymous referees of POPL’05 whose comments and sug-
gestions have greatly improved the presentation of this pa-
per. This work was partly supported by The Inamori Foun-
dation, Japan Society for the Promotion of Science, and the
European FET contract ”MyThS”, IST-2001-32617.

