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Université Paris 7
Paris, France

Nils Gesbert
LRI (CNRS)

Université Paris-Sud
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Abstract
Contracts are behavioural descriptions of Web services. Wedevise
a theory of contracts that formalises the compatibility of aclient to a
service, and the safe replacement of a service with another service.
The use of contracts statically ensures the successful completion of
every possible interaction between compatible clients andservices.

The technical device that underlies the theory is the definition of
filters, which are explicit coercions that prevent some possible be-
haviours of services and, in doing so, they make services compati-
ble with different usage scenarios. We show that filters can be seen
as proofs of a sound and complete subcontracting deduction system
which simultaneously refines and extends Hennessy’s classical ax-
iomatisation of the must testing preorder. The relation is decidable
and the decision algorithm is obtained via a cut-elimination process
that proves the coherence of subcontracting as a logical system.

Despite the richness of the technical development, the resulting
approach is based on simple ideas and basic intuitions. Remark-
ably, its application is mostly independent of the languageused to
program the services or the clients. We also outline the possible
practical impact of such a work and the perspectives of future re-
search it opens.

Categories and Subject Descriptors F.1.2 [Computation by Ab-
stract Devices]: Modes of Computation—Parallelism and con-
currency; F.3.3 [Logics and Meanings of Programs]: Studies of
Program Constructs—Type structure; H.3.5 [Information Storage
and Retrieval]: Online Information Services—Web-based services;
H.5.3 [Information Interfaces and Presentation]: Group and Orga-
nization Interfaces—Theory and models, Web-based interaction

General Terms Languages, Standardization, Theory

Keywords Web services, contracts, concurrency theory,CCS,
must testing, type theory, subtyping, explicit coercions.

1. Introduction
Web services are distributed components that clients can connect
to and communicate with by means of standard communication
protocols and platform-neutral message formats. Remarkably, Web
services are equipped with machine-understandable descriptions of
their interface. This aspect permits Web services to be discovered
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according to the information encoded in their interface. Among the
capabilities that can be used as search keys are the operations pro-
vided by the service, the format orschema(Fallside and Walm-
sley 2004) of the exchanged messages, and thecontract required
to interact successfully with the service. By contract we mean the
description of the external, observable behaviour of a service.

The Web Service Description Language (WSDL) (Chinnici et al.
2007a,b) is a standard technology for describing the interface ex-
posed by a service. InWSDL, contracts are basically limited to one-
way (asynchronous) and request/response (synchronous) interac-
tions. The Web Service Conversation Language (WSCL) (Banerji
et al. 2002) extendsWSDL contracts by allowing the description
of arbitrary, possibly cyclic sequences of exchanged messages be-
tween communicating parties. Other languages, such as the Ab-
stract Web Service Business Execution Language (Alves et al.
2007), provide even more detailed descriptions of servicesby defin-
ing the subprocess structure and more specific details regarding the
service’s internals. Such descriptions, which are excessively con-
crete and verbose to directly serve as interfaces, can be approxi-
mated and compared in terms of contracts.

Standard technologies are also available for building reposito-
ries of Web services descriptions (Bellwood et al. 2005), making it
possible to perform queries for services according to theircontract.
Searching immediately calls for a notion of contract equivalence
to perform service discovery in the same way as, say, type isomor-
phisms are used to perform library searches (Rittri 1993; DiCosmo
1995). Without a formal characterisation of contracts, however, one
is left with excessively demanding equivalences such as syntactical
or structural equality. In fact, clients will be equally satisfied to
interact with services that providemorecapabilities than those ac-
tually required, so that it makes sense to relax the equivalence into
a subcontract preorder(denoted by� in this paper).

In this work we develop a formal theory of contracts that defines
a very general subcontract preorder. Along the lines of (Carpineti
et al. 2006) we describe contracts by simpleCCS-like terms built
with just three operators: prefixing, denoted by a dot, and two infix
choice operators+ (external choice) and⊕ (internal choice). The
contractα.σ describes a service that is capable of performing an
actionα, and then continues asσ. The contractσ + τ describes
a service that lets the client decide whether to continue asσ or as
τ . The contractσ ⊕ τ describes a service that internally decides
whether to continue asσ or τ . Following CCSnotation, actions are
either write or read actions, the former being topped by a bar, and
one being theco-actionof the other. Actions can either represent
operationsor message types. As a matter of facts, contracts are
behavioural types of processes that do not manifest internal moves
and the parallel structure.

Contracts are then to be used to ensure that interactions between
clients and services will always succeed. Intuitively, this happens if
whenever a service offers some set of actions, the client either syn-



chronises with one of them (that is, it performs the corresponding
co-action) or it terminates. The service contract will thenallow us
to determine the set of clients thatcomplywith it, that is that will
successfully terminate any session of interaction with theservice.

Of course the client will probably be satisfied to interact with
services that offer more than what the searched contract specifies.
Intuitively we want to define an order relation on contractsσ � τ
such that every client complying with services implementing σ will
also comply with services of contractτ . In particular, we would like
the� preorder to enjoy some basic properties. The first one is that
it should be safe to replace (the service exposing) a contract with a
“more deterministic” one. For instance, we expecta ⊕ b.c � a,
since every client that terminates with a service that may offer
eithera or b.c will also terminate with a service that systematically
offers a. The second desirable property is that it should be safe
to replace (the service exposing) a contract with another one that
offers more capabilities. For instance, we expecta � a + b.d since
a client that terminates with services that implementa will also
terminate with services that leave the client the choice between
a and b.d. If taken together, these two examples show the main
problem of this intuition: it is easy to see that a client thatcomplies
with a ⊕ b.c does not necessarily comply witha + b.d: if client
and service synchronise onb, then the client will try to write on
c while the service expects to read fromd. Therefore, under this
interpretation,� looks as not being transitive:

a ⊕ b.c � a ∧ a � a + b.d Y=⇒ a ⊕ b.c � a + b.d .

The problem can be solved by resorting to the theory ofexplicit co-
ercions(Bruce and Longo 1990; Chen 2004; Soloviev et al. 1996).
The flawed assumption of the approach described so far, which
is the one proposed in (Carpineti et al. 2006), is that services are
used carelessly “as they are”. Note indeed that what we are doing
here is to use a service of “type”a + b.d where a service of type
a ⊕ b.c is expected. The knowledgeable reader will have recog-
nised that we are using� as aninversesubtyping relation for ser-
vices.1 If we denote by:> the subtyping relation for services, then
a ⊕ b.c :> a + b.d and so what we implicitly did is to apply
subsumption (Cardelli 1988) and consider that a service that has
typea + b.d has also typea ⊕ b.c. The problem is not that� (or,
equivalently,:>) is not transitive. It rather resides in the use of sub-
sumption, since this corresponds to the use ofimplicit coercions.
Coercions have many distinct characterisations in the literature, but
they all share the same underlying intuition that coercionsare func-
tions that embed objects of a smaller type into a larger type “with-
out adding new computation” (Chen 2004). For instance it is well
known that for record types one has{a:s} :> {a:s; b:t}. This is so
because the coercion functionc = λx{a:s;b:t}.{a = x.a} embeds
values of the smaller type into the larger one.2 In order to use a term
of type{a:s; b:t} where one of type{a:s} is expected we first have
to embed it in the right type by the coercion functionc above, which
erases (masks/shields) theb field so that it cannot interfere with the
computation. Most programming languages do not require thepro-
grammer to write coercions, either because they do not have any
actual effect (as in the case of the functionc since the type system

1 The inversion is due to the fact that we are considering the client per-
spective: a contract can be interpreted as the set of clientsthat comply with
services implementing the contract. We decided to keep thisnotation rather
than the inverse one for historical reasons, since it is the same sense as used
by De Nicola and Hennessy for the may and must preorders (De Nicola and
Hennessy 1984). This inversion corresponds to the duality between simula-
tion and subtyping, viz. between observers and observed behaviours.
2 In typed lambda calculus coercions are formally characterised by the fact
that their type erasure isη-equivalent to the identity function, but in general
coercions may be different from the identity function (Chen2004).

already ensures that theb field will never be used) or because they
are inserted by the compiler (as when converting an integer into the
corresponding float). In this case we speak ofimplicit coercions.
However some programming languages (e.g. OCaml) resort toex-
plicit coercions because they have a visible effect and, for instance,
they cannot be inferred by the compiler.

Coercions for contracts have an observable effect, therefore we
develop their meta-theory in terms of explicit coercions. However,
coercions can be inferred so they can be kept implicit in the lan-
guage and automatically computed at static time. Coming back to
our example, the embedding of a service of typea into a⊕b.c is the
identity, since we do not have to mask/shield any action of a service
of the former type in order to use it in a context where a service of
the latter type is expected. On the contrary, to embed a service of
typea + b.d into a we have to mask (at least) theb action of the
service. In order to use it in a context that expects aa service we
apply to it afilter that will block all b messages. Transitivity being
a logical cut, the coercion froma+b.d to a⊕b.c is the composition
of the two coercions, that is the filter that blocksb messages. So if
we have a client that complies witha⊕b.c, then it can be used with
a service that implementsa + b.d by applying to this service the
filter that blocks itsb messages. This filter will make the previous
problematic synchronisation onb impossible, so the client can do
nothing but terminate.

Filters thus reconcile two requirements that were hithertoin-
compatible: On the one hand we wish to replace an old service by
a new service that offers more choices (that iswidth subtyping, e.g.
σ :> σ+ τ ) and/or longer interaction patterns (that isdepth subtyp-
ing, e.g.a :> a.σ) and/or is more deterministic (e.g.σ ⊕ τ :> σ).
On the other hand we want clients of the old service to seamlessly
work with the new one.

Two observations to conclude this brief overview. First, the fact
that we apply filters to services rather than to clients is just a presen-
tational convenience: the same effect can be obtained by applying
client the filter that blocks the corresponding co-actions.Second,
filters must be more fine grained in blocking actions than restriction
operators as defined forCCS or π. These are “permanent” blocks,
while filters are required to be able to modulate blocks alongthe
computation. For instance the filter that embeds(a.(a + b)) + b.c
into a.b must blockb only at the first step of the interaction anda
only at the second step of the interaction.

1.1 Outline of the presentation

We start by presenting the syntax of our contracts (§2.1), by show-
ing how to use them to expressWSDL and WSCL descriptions
(§2.2), and by defining their semantics (§2.3). We then characterise
the set of all clients that are strongly compliant with a service—that
is, clients that successfully complete every direct interaction ses-
sion with the service—and argue that subcontract relationswhose
definitions are naively based on strong compliance are either too
strict or suffer the aforementioned problem of transitivity (§2.4).
We argue that subcontracting should not be defined on all possi-
ble interactions, but focus only on interactions based on actions
that a client expects from the services: all the other possible ac-
tions should not interfere with the interaction. We formalise this
concept by giving a coinductive definition of a subcontract relation
that focuses on this kind of actions, we study its propertiesand de-
scribe the relation with the must preorder (§3.1). This subcontract
relation induces a notion of weak compliance which suggeststhat
non-interference of unexpected actions can be ensured by coercion
functions, which we dubfilters. By shielding the actions at issue, a
filter embeds a service into the “world” of its expected clients. We
prove that our subcontract relation can be expressed in terms of fil-
ters and of the must preorder and we provide a sound and complete
deduction system for the subcontract relation where filtersplay the



role of “proofs” (§3.2). The subcontract relation is shown to be de-
cidable via the definition of a sound and complete algorithmic de-
duction system (§3.3). Finally, we relate our contract language with
a suitably typed process language. The soundness of our theory of
contracts is proved by showing that a client that is weakly com-
pliant with a service via a given filter will successfully terminate
every interaction with the service mediated by the filter (§3.4). A
conclusion recaps our work and hints at possible tracks of future
research (§4).

Proofs of lemmas and theorems have been omitted because of
space limits. They can be found in the full version of the paper
available at the authors’ web pages.

1.2 Related work

The contracts used in this presentation draw their inspiration from
De Nicola and Hennessy’s seminal work “CCS without τ’s” (De
Nicola and Hennessy 1987), as well as from acceptance trees (Hen-
nessy 1985, 1988) of which they can be considered an alternative
representation. The works that are most closely related to ours are
by Carpineti et al. (2006) and those onsession types, especially the
one by Gay and Hole (2005). In (Carpineti et al. 2006) the subcon-
tract relation exhibits all of the desirable properties illustrated in the
introduction, but subcontracting essentially stopped at the problem
of transitivity. In that work compliance was a syntactic notion and
contracts lacked a semantic characterisation.

Session types were introduced in the context of theπ-calculus
(Honda 1993; Takeuchi et al. 1994; Honda et al. 1998). These
are used to type special channels through which several different
messages may be exchanged in sequence according to a given
protocol. Such a session channel can be seen as a client-service
connection, and the session type is the analogous of our contract
as it describes which actions the processes may perform through
this channel. However, session types have the important restriction,
if compared with contracts, that only one part has the floor ata
given time: whenever a process performs an internal choice it has
to indicate explicitly which path of interaction it has chosen, and the
other process has to be waiting for this indication. Thus there is no
way of mixing internal and external choices, and two processes like
a+b anda+b do not interact successfully (because nobody has the
floor, so no communication can happen). Subtyping for the session
types has been studied by Gay and Hole (2005), but because of the
aforementioned restriction, the transitivity problem we address in
this paper does not exist for them: internal and external choices can
never be related, hencea ⊕ b � a + b doesnot hold. However,
this looks like a reasonable relation, inasmuch asa ⊕ b models a
scenario where exactly one of two resourcesa and b is available
(and the client does not knowwhich one), which can be safely
related with (and replaced by) a scenario where botha andb are
available and the client can choose whether to usea or b.

Carbone et al. (2007a,b) describe choreographies of Web ser-
vices by means of a global calculus, and descriptions of individ-
ual processes are obtained as projections of the global description.
Both the global description and the projections are based onses-
sion types. In our approach, the typical application is searching for
a service compatible with a given protocolfrom the client point of
view: in particular, we want depth subtyping (a service that tries to
pursue the interaction after that the client has successfully termi-
nated is compatible with this client), which does not hold for ses-
sion types. We believe that our theory is more basic than the theory
of session types and that it can be fruitfully used to enrich the latter.

Fournet et al. (2004) define aconformancepreorder onCCSpro-
cesses with the property that a process isstuck-free(i.e., it success-
fully terminates) in every context in which smaller processes are
stuck-free. Theconformancerelation of Fournet et al. (2004) re-
sembles our subcontract relation, with some important differences.

For example, in (Fournet et al. 2004)a ⊕ 0 � 0, buta ⊕ 0 6� a.
This essentially derives from the fact that stuck-free conformance
is defined without using an explicit action (denoted bye in this
work) expressing in an observationally visible way the successful
termination of a party, but instead by requiring that the party must
eventually reduce to the idle process0. Doing so prevents the spec-
ification of clients of the forme + a.e, which attemptto do an
action, but that can succeed even if the action is not available. The
lack of the explicit actione has overall important consequences on
the precongruence properties of�. A more important point is that
the conformance relation of Fournet et al. is not complete with re-
spect to stuck-freedom, in the sense that there are processes that
are stuck-free exactly in the same contexts but are not related by
conformance: for instance,a.(b ⊕ c) anda.b + a.c are stuck-free
equivalent but are not conformance equivalent. In our theory the
two processes above are equivalent and, more generally, oursub-
contracting provides,mutatis mutandis(cf. actions for successful
termination), a complete characterisation of stuck-freedom. Finally,
stuck-freedom does not allow either width or depth subtyping.

Bravetti and Zavattaro (2007) propose a contract language
equipped with a refinement relation. The language is constrained
so that output actions can only occur in the context of an internal
choice. This restriction somehow resembles the design choice of
session types and, not surprisingly, the refinement relation for this
language allows width extensions of contracts without any inter-
vening filtering. However, the refinement relation is determined in
a symmetric way for all the participants of a system, whereasour
notion of compliance is asymmetric (in favour of the client). This
makes the refinement relation more demanding than ours. In partic-
ular, all the participants must successfully terminate, meaning that
depth extensions are not entailed by refinement.

A preliminary version of this work was presented at PLAN -
X 2007 workshop (Castagna et al. 2007). Although the work-
shop has just informal proceedings, these are available on the web.
Therefore it seems worth discussing the differences with PLAN -X
version. While the overall presentation and structure of both works
is the same, this paper improves over the PLAN -X one in several
points. Here we consider a slightly different version of strong com-
pliance relation which now coincides with the must testing pre-
order, while in PLAN -X strong compliance differed from must test-
ing for some (uninteresting) pathological cases that involved the
empty contract. The deduction system has been reworked in favour
of elegance and simplicity. The resulting algebraic theoryof filters
is also cleaner. We present better results for language neutrality. Fi-
nally, an important part of this work is devoted to the study of the
algorithmic version of the deduction system, of its logicalinterpre-
tation, and of the decidability of the containment relation, all topics
that were completely absent from the PLAN -X version.

Starting from the PLAN -X work the third author and Cosimo
Laneve have recently proposed a simplification where contracts
are “statically” filtered (Laneve and Padovani 2007): each contract
is associated with astatic interface(in the sense that it does not
change over the time) declaring the only visible actions of the
contract and blocks all the other ones whenever they happen.As
stated in (Laneve and Padovani 2007), the resulting approach is less
general than ours and consequently it yields a stricter subcontract
relation. For instance, the relationa.b � (a.(a + b)) + b.c, which
we commentated in the previous page just before§1.1, does not
hold in the interface approach (for a practical example of relation
that does not hold for interfaces see the contractsσ andσ′ in §2.2.2
and the explanation given at the end of§3.2.1). On the other hand,
interfaces allow for simpler algorithmic treatment.

Several works on the testing framework and (Laneve and
Padovani 2007) itself have shown that the subcontract relation is
not affected in its essence by recursion: the desirable properties we



mentioned in the introduction and formalised later in the deduction
systems still hold. For the sake of brevity, in this paper we only
consider finite contracts without recursion, but the extension of
our contracts and filters to the non-finite case, although it involves
significant technicalities, is conceptually straightforward.

2. Contracts
2.1 Syntax

Let N be a set of names, we defineΣ to be the set of contracts
generated by the following grammar.

α ::= a | a a ∈ N

σ ::= 0 | α.σ | σ ⊕ σ | σ + σ

where0 is the contract of services that do not perform any action
(the other constructions were already explained in the introduc-
tion). We follow the standard convention of omitting trailing0’s.

2.2 Examples

In this section we relate our contract language to existing technolo-
gies for specifying service protocols.

2.2.1 Message exchange patterns inWSDL

The Web Service Description Language (Chinnici et al. 2007a,b)
permits to describe and publish abstract and concrete descriptions
of Web services. Such descriptions include the schema of messages
exchanged between client and server, the name and type ofopera-
tionsthat the service exposes, as well as the locations (URLs) where
the service can be contacted. In addition, it defines interaction pat-
terns (calledmessage exchange patternsor MEPs in version 2.0 of
WSDL) determining the order and direction of the exchanged mes-
sages. In particular,WSDL 2.0 predefines four message exchange
patterns for describing services where the interaction is initiated by
clients. Let us shortly discuss how the informal plain English se-
mantics of these patterns can be formally defined in our contract
language. When theMEP is inOnly or robustInOnly, commu-
nication is basicallyasynchronous: the client can only send anIn
message containing the request. If the pattern isrobustInOnly the
service may optionally send back aFault message indicating that
an error has occurred. When theMEP is inOut or inOptOut, com-
munication is basicallysynchronous: the client sends anIn mes-
sage containing the request and the service sends back either an
Out message containing the response or aFault message. If the
pattern isinOptOut, then theOut message is optional. These four
patterns can be encoded in our contract language as follows:

inOnly = In

robustInOnly = In.(0 ⊕ Fault)
inOut = In.(Out⊕ Fault)

inOptOut = In.(0 ⊕ Out⊕ Fault)

It is worth noticing that, intuitively, a client that is capable of
invoking a service whoseMEP is robustInOnly will also interact
successfully with a service whoseMEP is inOnly (depth subtyp-
ing). Indeed, such client must be able to handle both a commu-
nication that terminatesand a Fault message. Similarly, a client
that is capable of invoking a service whoseMEP inOptOut will
also interact successfully with services whoseMEP is eitherinOut,
or robustInOnly (since they are more deterministic), or even
inOnly. On the other hand, a client that interacts with a service
whoseMEP is inOut will not (always) interact successfully with
a service whoseMEP is inOptOut. The client assumes that it will
always receive either anOut or a Fault message, butinOptOut
does not give this guarantee.
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in: Query

out: Catalog

in: Buy

[Valid]

[Invalid]

[Valid]

[Invalid]

in: CreditCard
out: Valid
out: Invalid

[InvalidLogin]

[ValidLogin]

in: Buy

in: Logout

out: InvalidLogin
out: ValidLogin
in: Login

in: AddToCart

in: BankTransfer
out: Valid
out: Invalid

Figure 1. Contract of an e-commerce service as aWSCL diagram.

2.2.2 Conversations inWSCL

The WSDL message exchange patterns cover only the simplest
forms of interaction between a client and a service. More involved
forms of interactions, in particular stateful interactions, cannot be
captured if not as informal annotations within theWSDL interface.
The Web service conversation languageWSCL (Banerji et al. 2002)
provides a more general specification language for describing com-
plex conversationsbetween two communicating parties, by means
of an activity diagram. The diagram is basically made ofinterac-
tionswhich are connected with each other by means oftransitions.
An interaction is a basic one-way or two-way communication be-
tween the client and the server. Two-way communications arejust a
shorthand for two sequential one-way interactions. Each interaction
has anameand a list ofdocument typesthat can be exchanged dur-
ing its execution. A transition connects asourceinteraction with a
destinationinteraction. A transition may belabelledby a document
type if it is active only when a message of that specific document
type was exchanged during the previous interaction.

Below we encode the contractσ of a simplified e-commerce
service (Figure 1) where the client is required to login before it can
issue a query and thus receive a catalog. Then, the client canadd an
item from the catalog into the shopping cart and subsequently buy
the item using one of two payment methods, either with creditcard
or with a bank transfer. At any time, the client can choose to logout
and leave the store. In case of purchase, the service reportsthat
the purchase was either valid or not. We can represent the contract
of Figure 1 (without the dashed part, which represent an extension
discussed later), as the following term:

σ
def
= Login.(InvalidLogin ⊕ ValidLogin.Query.

Catalog.(Logout + AddToCart.(Logout + Buy.(
Logout + CreditCard.(Valid ⊕ Invalid)
+ BankTransfer.(Valid ⊕ Invalid)))))



Notice that unlabelled transitions in Figure 1 correspond to
external choices inσ, whereas labelled transitions correspond to
internal choices.

Let us recast in this setting the three forms of subtyping we
described in the introduction. First, it is clear that clients com-
pliant with the service above will always be happy with more
deterministic servers that, for instance, never deny the access
(InvalidLogin ⊕ ValidLogin � ValidLogin) as well as with
servers that offer longer interactions, such as the fact of proposing
an invoice after the payment (Valid � Valid.Invoice). Now
assume that the service is extended (by width subtyping) with
“1-click ordering” capability, so that after looking at thecatalog
the client may buy an item without adding it to the shopping cart
(dashed part in Figure 1). The contract of the service would change
to σ′ as follows:

σ′ def
= . . . Logout + Buy.σB + AddToCart.(. . . )

It would be desirable for clients that are compliant with theformer
service to be compliant with this service as well. After all,the ex-
tended service offersmorethan the old one. However, the transitiv-
ity problem we pointed out in the introduction might arise. Indeed,
assume to have a client that does actually account for aBuy mes-
sage right after receiving a catalog from the service and that such
a client is compliant with the former service for the simple reason
that, since the former service did not provide a “1-click ordering”
capability, whatever contractρB the client provided after theBuy
action was irrelevant to establish compliance. In the extended ser-
vice this is no longer the case and, since theρB may be incompati-
ble withσB, the client can safely interact with the extended service
only if the newBuy action is filtered out (see§3.2.1).

2.3 Semantics

Contracts describe the behaviour of the processes that implement
them. This behaviour is defined by describing the actions that are
offered by a process and the way in which they are offered. This is
formally stated by the two definitions given below.

DEFINITION 2.1 (TRANSITION). Let σ X
α

7−→ be the least relation
such that:

0 X
α

7−→

β.σ X
α

7−→ if α 6= β

σ ⊕ τ X
α

7−→ if σ X
α

7−→ andτ X
α

7−→

σ + τ X
α

7−→ if σ X
α

7−→ andτ X
α

7−→

Thetransition relationof contracts, noted
α

7−→, is the least relation
satisfying the rules:

α.σ
α

7−→ σ

σ
α

7−→ σ′ τ
α

7−→ τ ′

σ + τ
α

7−→ σ′ ⊕ τ ′

σ
α

7−→ σ′ τ X
α

7−→

σ + τ
α

7−→ σ′

σ
α

7−→ σ′ τ
α

7−→ τ ′

σ ⊕ τ
α

7−→ σ′ ⊕ τ ′

σ
α

7−→ σ′ τ X
α

7−→

σ ⊕ τ
α

7−→ σ′

and closed under mirror cases for the external and internal choices.
We writeσ

α
7−→ if there existsσ′ such thatσ

α
7−→ σ′.

The relation
α

7−→ is different from standard transition relations for
CCSprocesses (Milner 1982). For example, there is always at most
one contractσ′ such thatσ

α
7−→ σ′, while this is not the case inCCS

(the processa.b + a.c has two differenta-successor states:b and
c). This mismatch is due to the fact that contract transitionsdefine
the evolution of conversation protocolsfrom the perspective of an

external communicating party. Thusa.b + a.c
a

7−→ b ⊕ c because,
once the actiona has been performed, the communicating party is
not aware of which branch has been chosen. On the contrary,CCS
transitions define the evolution of processesfrom the perspective of
the process itself.

NOTATION 2.2. We writeσ(α) for the unique continuation ofσ
afterα, that is, the contractσ′ such thatσ

α
7−→ σ′.

The labelled transition system above describes the actionsoffered
by (a service implementing) a contract, but does not showhow
these actions are offered. In particular the actions offered by an
external choice are all available at once while the actions offered by
different components of an internal choice are mutually exclusive.
Such a description is given by theready setsthat are observable for
a given contract:

DEFINITION 2.3 (OBSERVABLE READY SETS). LetPf (N ∪N )
be the set of finite parts ofN ∪N , calledready sets. Let alsoσ ⇓ R
be the least relation between contractsσ in Σ and ready setsR in
Pf (N ∪ N ) such that:

0 ⇓ ∅
α.σ ⇓ {α}
(σ + τ ) ⇓ R ∪ S if σ ⇓ R andτ ⇓ S
(σ ⊕ τ ) ⇓ R if eitherσ ⇓ R or τ ⇓ R

NOTATION 2.4. We use the convention that the bar operation is
an involution,a = a, and for a given ready setR we define its
complementary ready set asco(R) = {α | α ∈ R}.

2.4 The problem

We now possess all the technical instruments to formally state the
problem we described in the introduction and recalled at theend
of §2.2. This first requires the precise definition ofcompliance.
Recall that, intuitively, the behaviour of a client complies with the
behaviour of a service if for every set of actions that the service
may offer, the client either synchronises with one of them, or it
terminates successfully. The behaviour of clients, as wellas the one
of services, is described by contracts. Therefore we need todefine
when a contractρ describing the behaviour of a client complies
with a contractσ describing the behaviour of a service. For this
we reserve a special actione (for “end”) that can occur in client
contracts and that represents the ability of the client to successfully
terminate. Then we require that, whenever no further interaction is
possible between the client and the service, the client be ina state
where this action is available.

DEFINITION 2.5 (STRONG COMPLIANCE). C is a strong compli-
ance relationif (ρ, σ) ∈ C implies that:

1. ρ ⇓ R andσ ⇓ S implies eithere ∈ R or co(R) ∩ S 6= ∅, and

2. ρ
α

7−→ ρ′ andσ
α

7−→ σ′ implies(ρ′, σ′) ∈ C .

We use⊣ to denote the largest strong compliance relation.

In words the definition above states that a client of contractρ
is compliant with a service of contractσ if (1) for every possible
combinationS and R of the independent choices of the service
and the client, either there is an action in the client choicethat
can synchronise with an action among those offered by the service
(co(R) ∩ S 6= ∅) or the client terminates successfully (e ∈ R),
and (2) whenever a synchronisation happens, the continuation of
the client after it is compliant with the continuation of theservice
((ρ′, σ′) ∈ C ).

Once we have such a definition it is natural to define the subcon-
tract relation in terms of compliance. Intuitively, (client) contracts
are seen as “tests” for comparing (service) contracts. Two (service)



contracts are related if so are the sets of (client) contracts compliant
with them (De Nicola and Hennessy 1984).

DEFINITION 2.6 (STRONG SUBCONTRACT). The contractσ is a
strong subcontractof the contractτ , writtenσ ⊑ τ , if and only if
for all ρ we haveρ ⊣ σ impliesρ ⊣ τ . We writeσ ≃ τ if σ ⊑ τ
andτ ⊑ σ.

This definition corresponds to giving a set theoretic semantics to
service contracts which are thus interpreted as the set of their
compliant clients. Thus⊑ is interpreted as set-theoretic inclusion.

As usual with testing semantics, it is hard to establish a rela-
tionship between two contracts because the set of clients that are
strongly compliant is infinite. A direct definition of the preorder is
therefore preferred:

DEFINITION 2.7. S is a coinductive strong subcontract relation
if (σ, τ ) ∈ S implies that

1. τ ⇓ R implies that there existsS ⊆ R such thatσ ⇓ S, and
2. τ

α
7−→ τ ′ impliesσ

α
7−→ σ′ and(σ′, τ ′) ∈ S .

THEOREM2.8. ⊑ is the largest coinductive strong subcontract
relation.

It turns out that the relation⊑ is the must testing preorder
as defined by De Nicola and Hennessy (1984) (a proof can be
found in (Laneve and Padovani 2007), where a different albeit
equivalent notion of strong compliance is used). This relation is
well studied and it enjoys interesting properties, in particular it
is a precongruence with respect to prefixing, internal and external
choices, and alsoa⊕b ⊑ a, which is one of the desirable properties
for �, holds. However⊑ is stronger than� since, for example,
a 6⊑ a + b. Indeeda.e + b ⊣ a but a.e + b 6⊣ a + b. In general,
the must preorder allows neither width nor depth extensionsof
contracts.

In previous work (Carpineti et al. 2006) an attempt was made
to directly relate two contractsσ andτ depending on their form,
rather than on the sets of their clients. Letdual(σ) denote the
dual contract ofσ which, roughly, is obtained by replacing inσ
every action by its coaction,0 by e, every internal choice by an
external one, and viceversa (the formal definition is slightly more
involved and requires first to transformσ into the normal form of
Definition 3.10 and then apply the transformation describedabove;
see (Carpineti et al. 2006) for details). Intuitivelydual(σ) denotes
the contract of a “canonical” client complying withσ services.
Then one can define a new relation on service contracts as:

σ ⋉ τ
def

⇐⇒ dual(σ) ⊣ τ (1)

In words, a contractσ is a subcontract ofτ if and only if its
canonical client complies withτ .

This relation isnearly what we are looking for. For instance
now we havea⊕ b.c ⋉ a anda ⋉ a + b.d, sincedual(a⊕ b.c) =
a.e + b.c.e ⊣ a anddual(a) = a.e ⊣ a + b.d.

Unfortunately,⋉ is not a preorder since transitivity does not
hold: a.e + b.c.e 6⊣ a + b.d implies thata ⊕ b.c 6⋉ a + b.d.
The reason for such a failure is essentially due to the fact that in
establishinga ⊕ b.c ⋉ a and a ⋉ a + b.d we are restricting
compliance to conversations in which no synchronisation onthe
nameb happens. While contracts account for non-determinism that
is internal to each process—being it a client or a service—, they
cannot handle the “system” non-determinism that springs from
process synchronisation. In the example above, the failureresults
from the interaction of two external choices,a.e+b.c.e anda+b.d,
which yields non-determinism at system level and which doesnot
preventa priori a synchronisation on theb name. By preventing the

synchronisation on the nameb, the clienta.e+ b.c.e can terminate
successfully.

In summary, the strong subcontract relation implements a safe
substitutability relation for services thatare compatible, but is ex-
cessively demanding because it takes into account every possible
synchronisation. Our theory of contracts will define a safe substi-
tutability relation for services thatcan be madecompatible.

3. A theory of contracts
At the end of the previous section we said that we wanted a sub-
contract relationσ � τ such that a service with contractτ can be
madecompatible with a service with contractσ. The keypoint of
the discussion is the “can be made”.

Of course we do not want to consider arbitrary transformations
of the service, e.g. transformations that alter the semantics of the
service. In fact, we cannot hope to affect in any way the internal
non-determinism of a service as the service is typically considered
as an unmodifiable black box. Instead we look for transformations
that embed aτ service in a world ofσ clients so that such clients
will perceive their interaction as being carried over a service with
contractσ (or possibly a more deterministic one). Roughly speak-
ing we want to filter out all behaviours of theτ contract that do not
belong to the possible behaviours ofσ world, and leave the others
unchanged. This is, precisely, the characterisation of an explicit co-
ercion fromτ to σ (recall that the subcontract relation is the inverse
of a service subtyping relation;cf.Footnote 1): an embedding func-
tion that maps possible behaviours ofτ into the same behaviours of
σ (thus, it does not add new computation).

3.1 Weak subcontract relation

The idea is thatσ � τ if there exists some (possibly empty) set of
actions belonging to the world ofτ that, if shielded, can make aτ
service appear as aσ service. This is formalised by the following
definition:

DEFINITION 3.1 (WEAK SUBCONTRACT). W is a weak subcon-
tract relationif (σ, τ ) ∈ W implies that ifτ ⇓ R, then there exists
SR ⊆ R such that (1)σ ⇓ SR and (2) for all α ∈ SR we have
(σ(α), τ (α)) ∈ W .

We denote by� the largest weak subcontract relation.

The basic intuition about the weak subcontract relation is that
a client that interacts successfully with a service with contract σ
must be able to complete whatever ready set is chosen fromσ. If
we want to replace the service with another one whose contract is
τ , we require that whatever ready setR is chosen fromτ there is
a smaller oneSR ⊆ R in σ such that all of the continuations with
respect to the actions inSR are in the weak subcontract relation.
However, in order to avoid interferences we might need to filter out
the actions inR \ SR.

First of all notice that the weak subcontract relation includes the
strong one (condition (1) is essentially the same and condition (2)
is weaker), so that, for example,a ⊕ b.c � a holds. Additionally,
we also havea � a + b.d since a service with contracta + b.d can
be made to behave as a service with contracta by filtering out the
b action. On the other hand,a 6� a ⊕ b.c since there is no way to
makea ⊕ b.c behave asa by simply filtering out actions (filtering
out theb action froma ⊕ b.c yieldsa ⊕ 0, nota). Finally, we also
havea ⊕ b.c � a + b.d, again by filtering out theb action. In this
case, the filtered service (a + b.d) is not made equivalent to the
smaller service (a⊕ b.c) but rather to one of its more deterministic
behaviours (a).

3.1.1 Weak compliance

In contrast with the “strong” case, for the weak subcontractrelation
it was more intuitive to provide its coinductive characterisation



first. We now face the problem of understanding which notion of
compliance induces the weak subcontract relation. As we will see,
this is an essential intermediate step as it provides the necessary
insight for devising the practical solution to the problemsdescribed
in §2.4.

DEFINITION 3.2 (WEAK COMPLIANCE). D is aweak compliance
relationif (ρ, σ) ∈ D implies that there exists a finite set of actions
A ⊆ N ∪ N such that:

1. ρ ⇓ R andσ ⇓ S impliese ∈ R or co(R) ∩ A ∩ S 6= ∅, and

2. α ∈ A, ρ
α

7−→ ρ′ andσ
α

7−→ σ′ implies(ρ′, σ′) ∈ D .

We denote by⊣⊣ the largest weak compliance relation.

Note how the existence of the setA in the above definition must be
independentof the ready sets of the client and of the service. This
reflects the fact that the internal non-determinism of the interacting
parties cannot be affected.

The following theorem proves that⊣⊣ is the compliance relation
inducing�.

THEOREM3.3. σ � τ if and only if for allρ, ρ ⊣⊣ σ impliesρ ⊣⊣ τ .

3.1.2 Comparison with other relations

In §2.4 we said that the relation⋉ defined by equation (1) was
nearly what we sought for, but for the lack of transitivity itwas
not a preorder. The following theorem shows that� obviates this
problem.

THEOREM3.4. The subcontract relation� is the transitive clo-
sure of⋉.

For what concerns the inclusion of the strong relation in the
weak one note that if we compare Definition 3.1 with Defini-
tion 2.7, we see that they differ on the set ofα’s considered in con-
dition (2). The latter requires that whatever interaction may happen
between a client and a server, the relation must be satisfied by the
continuations. The former instead requires this to happen only for
interactions on actions that are expected for the smaller contract.
This means that with the weak subcontract relation all the actions
that are not expected by the smaller contractmust nottake part in
the client-server interaction. If we want to replace a server by a dif-
ferent server with a (weak) super-contract, then we must ensure that
the client is shielded from these unexpected actions. The technical
instrument to ensure it are thefilters we define next.

3.2 Filters

A filter is the specification of a set of actions that are allowed at
a certain time, along with the continuation filters that are applied
after an action has occurred:

f ::=
‘

α∈A
α.fα

By convention we use0 for denoting theempty filter, that is the
filter that allows no action (A = ∅). Filters have a simple transition
relation, as follows:

‘

α∈A
α.fα

β
7−→ fβ if β ∈ A

As usual we writef X
α

7−→ if there is nof ′ such thatf
α

7−→ f ′.
The application of a filterf to a contractσ, writtenf(σ), produces
another contract where only the allowed actions are visible:

f(0) = 0

f(α.σ) = 0 if f X
α

7−→

f(α.σ) = α.fα(σ) if f
α

7−→ fα

f(σ + τ ) = f(σ) + f(τ )
f(σ ⊕ τ ) = f(σ) ⊕ f(τ )

Filter application is monotone with respect to the strong sub-
contract preorder. This property, which is fundamental in proving
most of the results that follow, guarantees that equivalentcontracts
remain equivalent if filtered in the same way.

PROPOSITION3.5. σ ⊑ τ impliesf(σ) ⊑ f(τ ).

Filters allow us to express the weak subcontract relation interms
of the strong one:

THEOREM3.6. σ � τ if and only if there exists a filterf such that
σ ⊑ f(τ ).

3.2.1 Examples of filters

Let us consider again our example ofa ⊕ b.c anda + b.d. These
contracts are not related by the strong subcontract relation, but any
client complying with the first one has to be ready to read ona
and then terminate. Then, we see that the second onecan be made
compliant with any such client, because it is ready to write on a:
so we are sure that synchronisation ona is possible, and that if it
occurs the client will terminate. The point is then to ensurethat this
synchronisation will indeed occur and that the channelb will not
be selected instead, which would lead to deadlock. This is done by
applying toa + b.d the filterf = a, which lets the sole actiona
pass. Formally, we have thatf(a + b.d) = a, anda ⊕ b.c ⊑ a
holds.

We have already hinted in the introduction that to prove an
inclusion such asa.b � (a.(a + b)) + b.c filters must be able
to selectively block along the computation, asb must be blocked
only at the first step of the interaction anda only at the second step
of the interaction. In this case the sought behaviour is obtained by
the single-threaded filterf = a.b which applied to the contract on
the right yields the one on the left. It is worth noticing thatsuch
fine-grainedness of filters is useful also in practice. Consider again
the last example of§2.2.2, where we extended the service by a “1-
click ordering” capability. We said that backward compatibility can
be obtained by filtering out the newly addedBuy action. But if we
slightly expand the resulting contractσ′

...Catalog.(Logout+Buy.σB+AddToCart.(Logout+Buy.(...)))

we notice that there is also aBuy action afterAddToCart. In order
to make a service of contractσ′ implement the contractσ defined
in §2.2.2, one must block theBuy action offered right after the
Catalog action, but allow the oldBuy action in the continuation of
AddToCart to pass through. This is performed by the filter obtained
from σ by replacing

‘

for every sum (either internal or external)
occurring in it.

3.2.2 Deduction system for�

Filters can also be used as proofs (in the sense of the Curry-Howard
isomorphism) for the weak subcontract relation. More specifically,
the idea is to devise a deduction system within which a derivable
judgement of the formf : σ ≤ τ implies thatσ � τ , andf is
a filter that embeds services with contractτ into the world ofσ-
compliant clients.

The definition of such deduction system requires a few auxiliary
notions. First we have to define the “identity” filter, that isthe one
that proves isomorphic (with respect to an interpretation of filters
as morphisms) contracts.

DEFINITION 3.7. The identity filter for a contractσ, denoted by
Iσ, is defined as

Iσ
def
=

‘

σ
α

7−→σ′
α.Iσ′

It is easy to see thatIσ(σ) = σ.
Next, we define two basic operations for combining filters.

Intuitively, given a derivation tree for the judgementf : σ ≤ τ ,



σ + σ = σ σ ⊕ σ = σ
σ + τ = τ + σ σ ⊕ τ = τ ⊕ σ

σ + (σ′ + σ′′) = (σ + σ′) + σ′′ σ ⊕ (σ′ ⊕ σ′′) = (σ ⊕ σ′) ⊕ σ′′

σ + (σ′ ⊕ σ′′) = (σ + σ′) ⊕ (σ + σ′′) σ ⊕ (σ′ + σ′′) = (σ ⊕ σ′) + (σ ⊕ σ′′)

σ + 0 = σ α.σ + α.τ = α.(σ ⊕ τ ) α.σ ⊕ α.τ = α.(σ ⊕ τ )

(MUST)

Iσ ∨ Iτ : σ ⊕ τ ≤ σ
(DEPTHEXT)

0 : 0 ≤ σ

(WEAKENING)

f : σ ≤ τ g ∧ Iτ 6 f

f ∨ g : σ ≤ τ

(TRANSITIVITY )

f : σ ≤ σ′ g : σ′ ≤ σ′′

f ∧ g : σ ≤ σ′′

(PREFIX)

f : σ ≤ τ

α.f : α.σ ≤ α.τ

(INTCHOICE)

f : σ ≤ σ′ f : τ ≤ τ ′

f : σ ⊕ τ ≤ σ′ ⊕ τ ′

(EXTCHOICE)

f : σ ≤ σ′ f : τ ≤ τ ′

f : σ + τ ≤ σ′ + τ ′

Table 1. Deduction system for the weak subcontract relation.

such operations allow us to show how the filterf is built step-by-
step, according to the structure of the derivation.

DEFINITION 3.8. Let f and g denote the filters
‘

α∈A
α.fα and

‘

α∈B
α.gα respectively. Then theconjunctionand disjunctionof

f andg are respectively defined as follows:

f ∧ g
def
=

‘

α∈A∩B
α.(fα ∧ gα)

f ∨ g
def
=

‘

α∈A∪B
α.

8

<

:

fα ∨ gα, α ∈ A ∩ B
fα, α ∈ A \ B
gα, α ∈ B \ A

Finally, we need a way for comparing filters. Filters can be com-
pared according to the actions that they let pass. In the deduction
system the need for comparing filters arises naturally in theweak-
ening rule, where we want to replace a filter with a “larger” one (a
filter that allows more actions). This can be done safely onlyif the
larger filter does not thwart the functionality of the original filter by
re-introducing actions that must be kept hidden. The filter pre-order
will also be fundamental in§3.3, in order to define the “best” filter
that provesσ � τ .

DEFINITION 3.9. The ordering relation on filtersf 6 g is the least
relation such that

‘

α∈A
α.fα 6

‘

β∈B
β.gβ impliesA ⊆ B and

for everyα ∈ A, fα 6 gα.

Filters can be seen asn-ary trees with edges labelled by actions,
each node having at most one outgoing edge labelled by a givenac-
tion. The ordering we just introduced is nothing but tree inclusion
where we consider that all trees share the same root. It is useful to
notice that the syntactical “conjunction” and “disjunction” in Def-
inition 3.8 can be alternatively defined in a natural way using the
ordering: the conjunction of two filters is the largest part common
to both trees, that is, their greatest lower bound:

f1 > g andf2 > g ⇐⇒ (f1 ∧ f2) > g (2)

Similarly, the disjunction of two filters is the tree obtained by
merging the two initial trees, that is their least upper bound:

f1 6 g andf2 6 g ⇐⇒ (f1 ∨ f2) 6 g (3)

A further interpretation of filters is as prefix-closed regular lan-
guages of strings of actions. Then, filter conjunction and disjunc-
tion correspond to language intersection and union, respectively,
whereas the filter ordering is set inclusion (notice that theintersec-
tion and the union of prefix-closed sets is again prefix-closed).

Table 1 defines the deduction system for�. In the table we use
a single axiomσ = τ as a shorthand for two axiomsIσ : σ ≤ τ
andIτ : τ ≤ σ. The equalities and rule (MUST) are well known
since they fully characterise the strong compliance relation, which
coincides with the must preorder (see (De Nicola and Hennessy
1984; Hennessy 1988)). Notice that in the rule (MUST) no action
needs to be filtered out. In fact, this is the only axiom for safely
enlarging a contract without the intervention of any filter (which is
expected since this axiom characterises strong compliance, where
filters are not needed). Rule (DEPTHEXT ) formalisesdepthexten-
sion of contracts, where a contract can be prolonged if no action
is made visible from the continuation. Rule (WEAKENING) shows
how to safely enlarge a filterf to f ∨ g: the premiseg ∧ Iτ 6 f
states thatg may allow actions not allowed byf , provided that
such actions are not those that have been hidden for the purposes
of proving f : σ ≤ τ . Rule (TRANSITIVITY ) is standard and
the resulting filter is the composition filter. Three forms of(lim-
ited) pre-congruence follow. Rule (PREFIX) is standard and poses
no constraints. Rules (INTCHOICE) and (EXTCHOICE) state the
limited precongruence property for internal and external choices,
respectively. The fundamental constraint is that two contracts com-
bined by means of⊕ or + can be enlarged, provided that they can
be filtered in the same way. This requirement has an intuitiveex-
planation: the filter that mediates the interaction of a client with a
service is unaware of the internal choices that have been taken by
the parties at a branching point. So, it must be possible to use the
samefilter that works equally well in all branches in order for the
branches to be enlarged.

By combining the rules (DEPTHEXT ), (WEAKENING), and
(EXTCHOICE) it is easy to derive a further rule, which formalises
widthextension of contracts:

(WIDTHEXT )

Iσ ∧ Iτ 6 0

Iσ : σ ≤ σ + τ

Basically (WIDTHEXT ) states that a service can be extended so
that it provides more capabilities, provided that such capabilities
are disjoint from those that were available before the extension.

3.2.3 Properties

The deduction system we devised in the previous section is sound
and complete with respect to� and the set of filters, in the sense



that it proves all and only the pairs of contracts that are related
according to Definition 3.1, and for any such pair it deduces all and
only the filters that validate the pair according to Theorem 3.6.

While the soundness of the deduction system can be easily
established, its completeness is less immediate, but the proof of
this fact follows a standard pattern: completeness is proved for a
restricted class of contracts which are said to be in some normal
form and then it is shown that it is always possible to transform an
arbitrary contract to an equivalent one which is in normal form by
using the axioms. Although in this version of the paper the proofs
of theorems are omitted, we nevertheless introduce here thenormal
form of contracts. The same normal form will be necessary anyway
in §3.3 for defining the algorithmic version of the deduction system.

As regards the actual definition of the normal form, we can
notice that it is always possible to add new ready sets to a given
contractσ without altering its semantics (according to≃), so long
asIσ does not change and the new ready sets contain older ones:
for example,σ ⊕ τ ≃ σ ⊕ τ ⊕ (σ + τ ). Now we can see that,
if we saturate the set of ready sets of a contract by adding to it
every possible ready set meeting the conditions above, we can build
a unique (up to commutativity and associativity) normal form for
each equivalence class. This normal form is defined as follows:

DEFINITION 3.10 (NORMAL FORM (HENNESSY1988)).For any
contractσ, we define its saturated set of ready sets:

R(σ)
def
= {R ⊆

S

σ⇓S
S | ∃S, σ ⇓ S∧ S ⊆ R}

The normal form ofσ is then defined up to associativity and
commutativity of the choices by the following recursive expression:

nf(σ)
def
=

L

R∈R(σ)

P

α∈R
α.nf(σ(α))

the empty external choice being defined as0 (it is not necessary to
define the empty internal choice, because any contract has atleast
one ready set).

Normal forms can be used as the canonical representations of
classes of the equivalence relation≃:

PROPOSITION3.11. σ ≃ nf(σ).

The normal form enjoys also the following important properties:
(1) In a given mix of internal and external choices (either attop-
level or under a given sequence of prefixes), a prefixα is always
followed by the exact same continuation. (2) Ifσ and τ are two
normal form contracts such thatσ ⊑ τ , condition (1) of the
strong subcontract relation holds if and only if every readyset
of τ is also a ready set ofσ. These two properties lead to the
fact that two equivalent normal forms are syntactically equal up
to commutativity and associativity of the choice operators.

We now possess all the technical tools to prove that the deduc-
tion system shown in Table 1 is sound and complete for� and the
sets of filters that prove it.

THEOREM3.12. f : σ ≤ τ if and only ifσ ⊑ f(τ ).

As we did for the weak subcontract relation, the weak com-
pliance relation can be decomposed in terms of filters and strong
relation:

COROLLARY 3.13.

ρ ⊣⊣ σ ⇐⇒ ∃τ � σ, ρ ⊣ τ (4)

⇐⇒ ∃f, ρ ⊣ f(σ) (5)

Finally filters have an operational meaning, since they allow
us to state the soundness of our type system. This can be roughly
expressed as the fact that given a service and a weakly compliant
client, every interaction between them mediated by the filter that

proves the weak compliance (Corollary 3.13 (5)) will be successful
(the client terminates). This will be formally stated in§3.4.

3.3 Algorithmic deduction system

We introduced a device, filters, that allows us to transform aweak
subcontract or compliance relation into a strong one by shielding
the incompatible actions. The next step is to infer filters algorith-
mically, so that the weak relations can be used in practice.

As usual the process of finding a decision algorithm for a con-
tainment relation corresponds to a cut-elimination process (the cut
here being the (TRANSITIVITY ) rule in Table 1), which amounts to
finding a canonical proof for each provable relation. In other terms,
we have to associate every provable weak subcontracting relation
with a canonical filter that represents all other possible proofs. In
order to choose a canonical filter, we have to solve two potential
problems. First, there usually are several filters that workwith a
given relation. For example, to show thata ⊕ b � a + b, we can
either let pass onlya, only b, or both. The best solution here is to let
pass both, because we do not want to shield out actions that cannot
cause any harm. This example suggests the definition of a notion
of “better filter”, that is, of a partial order on filters that determines
which filter is better to use, and such partial order is exactly 6

(Definition 3.9). The second problem is that in the example above a
filter that letsa, b, and, say,c pass will work as well. The intuition
here is that the filter that letsjust a andb pass is better since allow-
ing any action besidesa andb to pass is useless. This suggests the
definitions of a notion of “filter relevance”, to single out filters that
do not contain useless actions.

The subcontracting algorithm will pick up, among all the possi-
ble filters for a given relation, the “best relevant” filter that proves
it.

3.3.1 Filter relevance

In order to determine the property of “relevance” we have to better
understand the role played by the identity filters. It may be noted
that the identity filter of a given contract is exactly the tree of
all possible sequences of actions that the contract can do before
reducing to0, without distinguishing between internal and external
choices. This is embodied by the∨ operator on filters which is a
unique choice operator representing both kinds of choice, as the
following relation shows:

Iσ⊕τ = Iσ+τ = Iσ ∨ Iτ (6)

Note that ifσ andτ share common actions in their outermost pre-
fixes, the continuations of both filters after this action arecorrectly
merged by the disjunction operator.

The tree of an identity filter accurately represents the ideawe
mentioned in the introduction of a contract’s “world”: the sets of
actions the contract knows of at each step of an interaction.A
filter f : σ ≤ τ embedsτ services into the “world” ofσ: then
the intuition is that to be relevantf must be defined (only) on the
“world” of τ , world that is represented byIτ . Indeed, applying toτ
the filterf or the filterf ∧Iτ give the same result, thus the part off
that is not inf ∧Iτ is irrelevant (and this is why there is no greatest
filter corresponding to a given relation in the absolute). Thus we
will say that a filterf is relevantwith respect to a relationσ � τ if
it is smaller thanIτ .

Now if we restrict ourselves to relevant filters we can have
another interesting upper bound: if we look at condition (2)of
the strong subcontract relation, we see that, at each step, every
action available to the greater contract has to be availablealso to
the smaller one. This exactly means that the greater contract has a
smaller tree, and thus we have (by noticing thatIf(σ) = f ∧ Iσ):

if σ ⊑ f(τ ) andf 6 Iτ thenf 6 Iσ (7)



Thus relevant filters that prove a relation have to be smallerthan
the identity filters ofbothcontracts.

We now would like to find the greatest relevant filter that proves
a given relation. Note that projecting onIσ ∧ Iτ itself is not
necessarily enough to make the relation work, because of ready
sets: it might be necessary to project on something smaller to
prevent a wrong branch to be taken, for example ina⊕ b.(a+ b) �
a + b.(a ⊕ b), the initial b has to be filtered out even if the trees
are the same, because its continuation in the right contracthas
incompatible ready sets. However, the following importantrelation
holds:

if σ ⊑ f(τ ) andσ ⊑ g(τ ) thenσ ⊑ (f ∨ g)(τ ) (8)

meaning that if we can make the relation work either by selecting
some branches or by selecting some other branches, then it will
still work if we take all these branches at once. This shows that, if
σ � τ holds, there will be a greatestsubtreeof τ that makes the
relation work: even if there is no greatest filter in the absolute, we
can take the disjunction of all filters less thanIτ that work (there
are a finitely many). This filter, which is the least upper bound of all
relevant filters that proveσ � τ , is the one we choose as canonical.

3.3.2 Algorithm

The last step is to define an algorithm for building the canonical
filter of a relation. The monotonicity of filters (Proposition 3.5) and
the soundness and completeness of the deduction system (Theo-
rem 3.12) ensure that filters prove subcontracting modulo equiva-
lence, that is iff : σ ≤ τ , thenf : σ′ ≤ τ ′, for any σ′ ≃ σ,
τ ′ ≃ τ . Since a contract is equivalent to its normal form (Propo-
sition 3.11), then the set of filters that proveσ � τ is the same as
the set of those that provenf(σ) � nf(τ ). Therefore in order to
choose in this set a canonical filter forσ � τ , it suffices to choose it
for their normal forms. Hence, we define the following algorithm:

DEFINITION 3.14. We define the ternary relationf : σ P τ
between a filter and two contracts in normal form by the inference
rule

A = {α ∈ (
S

R∈R
R) ∩ (

S

S∈S
S) | ∃fα, fα : σα P τα}

A = {A′ ⊆ A | ∀S ∈ S , S∩ A′ ∈ R} A 6= ∅
W

A′∈A

‘

α∈A′

α.fα :
L

R∈R

P

α∈R

α.σα P
L

S∈S

P

α∈S

α.τα

We then extend the relation to arbitrary contracts by the follow-
ing definition:

f : σ P τ
def

⇐⇒ f : nf(σ) P nf(τ ) .

Although it is not immediate, the definition above describesan
algorithm to check whether two contracts are in relation: first the
two contracts are put in normal form; then for every actionα that
can be immediately emitted by both normal forms, the algorithm is
recursively called on the two continuations of the action. The setA
represents the largest set of actions leading to continuations which
are in the relation and the recursion basis occurs whenA = ∅. The
setA contains the subsetsA′ ⊆ A such that, by restricting each
ready set of the larger contract to the actions inA′, this is a ready
set of the smaller contract (recall that for any two contractsσ andτ
in normal form such thatσ ⊑ τ , every ready set ofτ is also a ready
set ofσ). If there is at least one suchA′ set of actions (A 6= ∅), then
σ andτ can be related. The filter defined in the conclusion is the
disjunction of the filters corresponding to all these sets ofactions:
it uses Equation (8) to compute the greatest relevant filter.

3.3.3 Properties

The algorithm described in Definition 3.14 enjoys fundamental
properties, namely(i) it proves only (soundness) and all (complete-

ness) weak subcontract relations,(ii) in case of success it returns
the largest relevant filter that proves the relation and(iii) it always
terminates, which implies the decidability of the weak subcontract
relation.

LEMMA 3.15 (FILTER RELEVANCE). If f : σ P τ , thenf 6 Iτ .

THEOREM3.16 (SOUNDNESS). If f : σ P τ thenσ ⊑ f(τ ).

THEOREM3.17 (COMPLETENESS). If σ ⊑ g(τ ), then there exists
a filter f such thatf : σ P τ , andf > g ∧ Iτ .

COROLLARY 3.18. If σ and τ are two contracts, there exists at
most one filterf such thatf : σ P τ . Furthermore, iff : σ P τ ,
then

f = max{g 6 Iτ | σ ⊑ g(τ )} = max{g 6 Iτ | g : σ ≤ τ} .

The corollary above describes the logical interpretation of the al-
gorithm as the result of a cut-elimination process. The “cut” in the
system of Table 1 is given by the rule (TRANSITIVITY ). This rule
intersects filters, that is it minimises the proofs: therefore in order
to eliminate cuts we have to find a proof with a maximum filter.
However we have also to avoid useless applications of the (WEAK-
ENING) rule, which instead maximises proofs: therefore we have to
set an upper bound to filter maximisation, upper bound embodied
by the definition of relevance (therefore it would be more precise
to speak of a cut-weakening-elimination process).

PROPOSITION3.19 (DECIDABILITY ). Given two contractsσ and
τ , we can decide whether there exists a filterf such thatf : σ P τ
and compute this filter.

3.4 Language

The final step of our investigation is to relate contracts (which
are behavioural types) with processes that implement clients and
services. We do not consider any particular process language, nor
do we require that clients and services be implemented usingthe
same language. We just require that the observable behaviour of
such language(s) be described by a labelled transition system and
abstracted by a static type system, so that we can reason about their
programs. More precisely we assume that a process language is
equipped with a labelled transition system so that

P
µ

−→ P
′

describes the evolution of a processP that performs aµ action
thus becoming the processP ′. Here, µ can either be a visible
action of the forma or a, which is meant to synchronise with
the corresponding co-action in the processP is interacting with,
or it can be an internal, invisible actionτ (not to be confused
with τ that we used to range over contracts) that the processP

executes autonomously. It is understood that the relation
µ

−→ is
not necessarily deterministic. As usual, we letα range over visible
actions and we writeP

µ
−→ if P

µ
−→ P ′ for some processP ′.

DEFINITION 3.20 (STRONG PROCESS COMPLIANCE). Let
P ‖Q −→ P ′ ‖Q′ be the least relation defined by the rules:

P
τ

−→ P ′

P ‖Q −→ P ′ ‖Q

Q
τ

−→ Q′

P ‖Q −→ P ‖Q′

P
α

−→ P ′ Q
α

−→ Q′

P ‖Q −→ P ′ ‖Q′

We write=⇒ for the reflexive, transitive closure of−→; we write
P ‖Q −→ if P ‖Q −→ P ′ ‖Q′ for someP ′ and Q′; we write
P ‖Q X−→ if not P ‖Q −→.



The clientP is strongly compliantwith the serviceQ, written
P ⊣ Q, if wheneverP ‖Q =⇒ P ′ ‖Q′

X−→ we haveP ′ e
−→.

The intuition of this definition is thatP ‖Q represents a client
P and a serviceQ interacting with each other. WhenP ⊣ Q every
interaction betweenP andQ terminates withP being able to emit
e, denoting the successful completion ofP ’s task.

We also assume that a type system is given to check that a
processP implementsthe contractσ. This is expressed by the
judgement

⊢ P : σ

While we do not give details on the particular typing rules, we
require typing and the reduction relation to satisfy some basic
properties: essentially, contracts must describe the observational
behaviour of processes and the reduction must decrease non-
determinism (entropy must always increase). In this respect, it
makes sense to be able to apply the strong subcontract relation
to client contracts too, where the actione is treated like any other
action (recall that, according to Theorem 2.8, the relation⊑ can be
defined without any notion of “successful action”e).

DEFINITION 3.21. The type system isconsistentif, whenever ⊢
P : σ and P

µ
−→ P ′, then ⊢ P ′ : σ′ and (1) if µ = τ, then

σ ⊑ σ′; (2) if µ = α, thenσ
α

7−→ andσ(α) ⊑ σ′. The type system
is informativeif, whenever⊢ P : σ andσ

α
7−→, thenP

α
−→.

Condition (1) states that a process performing internal actions
can only make its contract more deterministic. Condition (2) states
that if a process performs a visible actionα, then its contract must
account for that action and the contract of the resulting process
P ′ is (more deterministic than) the contractσ(α), which accounts
for all the possible behaviours ofP after α. An informative type
system does not deduce capabilities that a process does not have.

The soundness of a consistent and informative type system is
ensured by the following result, stating that if the contracts of two
processes comply, the corresponding processes comply as well,
guaranteeing termination on the client side.

THEOREM3.22. If ⊢ P : ρ and ⊢ Q : σ andρ ⊣ σ thenP ⊣ Q.

Notice that the soundness theorem holds when the client’s con-
tract and the service’s contract are strongly compliant. Tobe able
to use a service for which we only have a weakly compliant client,
we need to shield potentially dangerous service actions by means
of a filter. Thus, we enrich the process language with an operator

f [P ]

that applies a filterf to a processP , the idea being that the filter
constraints the set of visible actions ofP , that is its capabilities to
interact with the environment, still not altering its behaviour. The
labelled transition system of the language is consequentlyenriched
with the following two inference rules:

(FILTER1)

P
α

−→ P ′ f
α

7−→ f ′

f [P ]
α

−→ f ′[P ′]

(FILTER2)

P
τ

−→ P ′

f [P ]
τ

−→ f [P ′]

The introduction of filters into the process language has conse-
quences on the type system as well. Since our discussion is para-
metric in the process language and in the type system, we onlyneed
to show that the typing rule

(TYPEFILTER)

⊢ P : σ

⊢ f [P ] : f(σ)

does not jeopardise the type system.

PROPOSITION3.23. A consistent and informative type system en-
riched with rule(TYPEFILTER) results in another consistent and
informative type system.

The following result summarises the contribution of our work:
the adoption of filters enlarges the number of possible services that
can be used to let a client terminate.

COROLLARY 3.24. If ⊢ P : ρ, ⊢ Q : σ, andρ ⊣ f(σ), then
P ⊣ f [Q].

4. Conclusion and Future Work
This paper provides a foundation for behavioural typing of Web
services and it promotes service reuse and/or redefinition by the
introduction of a subcontract relation.

Our approach reconciles two hitherto apparently incompatible
requirements. On the one hand a subcontract relation must allow
a service to be replaced or upgraded by offering more operations
(width subtyping), longer interaction patterns (depth subtyping)
and/or more deterministic ones. On the other hand this must be
done without disrupting the behaviour of clients.

Filters provide the technical device that makes it possible. Al-
though we initially defined filters essentially as technicalmecha-
nism to couple clients and services, filters turn out to have an el-
egant logical justification: they are explicit coercions between re-
lated contracts. Following the Curry-Howard isomorphism filters
can be interpreted as proofs of a sound and complete deduction
system for the subcontract relation. Such deduction systemsimul-
taneously refines and extends Hennessy’s classical axiomatisation
of the must testing preorder. Its algorithmic counterpart is obtained
as a cut elimination process, which proves the coherence of subcon-
tracting as a logical system. The canonical proof, the one produced
by the algorithmic deduction system, is characterised in terms of an
order relation on filters, and the algorithmic presentationallows us
to show the decidability both of the subcontracting relation and of
filter inference.

The theory of subcontracting is independent of the language
used to implement services and clients. We do not rely on a par-
ticular language nor on a particular paradigm (objects, process al-
gebrae, functions, . . . ). By defining some minimal requirements on
the language (in a nut-shell, the observable behaviour of its pro-
grams must be faithfully captured by contracts), we establish the
soundness of our contract system: clients always terminateinterac-
tions with any, possibly filtered, compliant service.

Filters thus play the double role of a proof tool and of pro-
gramming glue between clients and services. As an aside it isnice
to notice that filters can encodeCCS and π-calculus restrictions:
(νa)P = faP [P ] where

faP =
‘

α∈(fn(P )∪co(fn(P ))\{a,a} α.faP .

Even if in this presentation we applied filters to services, in prac-
tice it is the client’s responsibility to apply them. A client searching
for a service with a given contract will receive as answer to its query
the reference of a service together with a filter that allows the client
to use the service. Thus the filter must be computed by the query
engine, which is why the algorithmic inference of filters is crucial
for a practical application.

Actually, it is more realistic to imagine that a query will be
answered with several different contracts requiring filters that
may be unrelated one to each other. Therefore a second use of
filters could be that of refining the search space, by specifying
in a query a minimum acceptable filter. In this way the client
could specify which of the possible behaviours of its “canon-
ical” service are considered mandatory and not to be filtered
out. For instance when searching for services implementingthe



behavior described in Figure 1 we can specify, along with the
query, the filterLogin.ValidLogin.Query.Catalog.AddToCart.
Buy.(CreditCard.Valid

‘

BankTransfer.Valid) thus obtain-
ing only services that may complete a sale, avoiding uselessser-
vices such as those with contractLogin.InvalidLogin.

Several future research directions stem from this work. The
following is a non-exhaustive list:

Recursion and higher-order: The contracts and filters we dis-
cussed in this work are finite. The next step of this research is
the introduction of recursion both in contracts and, consequently,
in filters. Actually, most of the proofs (which are availablein the
full version) use coinduction and they can be applied with minor
changes to the recursive case. Also, for the time being synchroni-
sation does not carry any information. Thus a further natural step is
the introduction of higher order channelsà la π-calculus.

Asymmetric choices:The choice operators are commutative. We
could try to relax this property in order to give the summands
different priorities, which is impossible with the currentdefinitions.
For instance, there is no way for a client that has to use a service
with contract(a + b) ⊕ a to specify that it wants to connect with
b if this action is available, and witha otherwise (in order to be
compliant it must accept a possible synchronisation witha). It is
unclear to which extent such constructs would affect the� preorder
over contracts.

Contract isomorphisms: The only morphisms between contracts
we have considered are filters. Since filters are coercions, then by
definition they essentially do not alter the semantics of objects. One
could try to consider more expressive morphisms (e.g. renaming
and/or reordering of actions) and to completely characterise the
isomorphisms of contracts. This would allow us to perform service
discovery modulo isomorphisms: when searching for services of a
given contract a client could be returned a service and two conver-
sion functions, one to call the service, the other to convertresults
(see (Rittri 1993; Di Cosmo 1995)).

This could later be extended to richer query/discovery lan-
guages obtained by adding union, intersection and negationtypes
on the basis of the set-theoretic interpretation presentedhere and
of the work on semantic subtyping (Castagna and Frisch 2005).

Relation with other formalisms: Finally, connection with other
formalisms such as linear logic, session types, and game seman-
tics must surely be deeply investigated. In particular, as regards the
semantic aspects, it is interesting to notice that clients and services
introduce a notion of orthogonality which suggests that a realisabil-
ity semantics for contracts is worth to be explored.
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