
16

Gradual Typing: A New Perspective

GIUSEPPE CASTAGNA, CNRS - Université Paris Diderot, France
VICTOR LANVIN, Université Paris Diderot, France
TOMMASO PETRUCCIANI, Università degli Studi di Genova, Italy and Université Paris Diderot, France

JEREMY G. SIEK, University of Indiana, USA

We define a new, more semantic interpretation of gradual types and use it to “gradualize” two forms of

polymorphism: subtyping polymorphism and implicit parametric polymorphism. In particular, we use the new

interpretation to define three gradual type systems —Hindley-Milner, with subtyping, and with union and

intersection types— in terms of two preorders, subtyping and materialization. These systems are defined both

declaratively and algorithmically. The declarative presentation consists in adding two subsumption-like rules,

one for each preorder, to the standard rules of each type system. This yields more intelligible and streamlined

definitions and shows a direct correlation between cast insertion and materialization. For the algorithmic

presentation, we show how it can be defined by reusing existing techniques such as unification and tallying.

CCS Concepts: • Software and its engineering→ Polymorphism;

Additional Key Words and Phrases: Subtyping, Gradual Typing, Union Types, Intersection Types, Semantic

Subtyping, Let-Polymorphism, Hindley-Milner.

ACM Reference Format:
Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek. 2019. Gradual Typing: A New

Perspective. Proc. ACM Program. Lang. 3, POPL, Article 16 (January 2019), 112 pages. https://doi.org/10.1145/

3290329

1 INTRODUCTION
The goal of this work was to endow gradual typing, as defined by Siek and Taha [2006], with the

semantic interpretation of types and subtyping introduced by Frisch et al. [2008]. To that end we

explore a new idea, that is, to interpret gradual types using polymorphic type variables. This leads

to revisiting the existing definitions of gradually-typed languages (with implicit parametric and/or

subtyping polymorphism) and yields a streamlined and declarative way to define existing systems,

as well as a way to extend them with subtyping and set-theoretic types. But let us proceed in order.

Semantic subtyping is a technique by Frisch et al. [2008] to define a type theory for union,

intersection, and negation types, in the presence of higher-order functions. It gives a semantic

interpretation to types as sets (e.g., sets of values of some language) and then defines the subtyp-

ing relation as set-containment of the interpretations, whence the name set-theoretic types. The
advantage of such a technique is that, by definition, types satisfy natural distribution laws (e.g.,

(t × s1) ∨ (t × s2) and t × (s1∨s2) are equivalent, and so are (s → t1) ∧ (s → t2) and s → (t1 ∧ t2)).
Gradual typing is an approach that combines the safety guarantees of static typing with the

flexibility of dynamic typing [Siek and Taha 2006]. The idea is to introduce an unknown type,

Authors’ addresses: Giuseppe Castagna, CNRS - Université Paris Diderot, France; Victor Lanvin, Université Paris Diderot,

France; Tommaso Petrucciani, Università degli Studi di Genova, Italy , Université Paris Diderot, France; Jeremy G. Siek,

University of Indiana, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).

2475-1421/2019/1-ART16

https://doi.org/10.1145/3290329

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

https://doi.org/10.1145/3290329
https://doi.org/10.1145/3290329
https://doi.org/10.1145/3290329

16:2 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

denoted by “?”, used to inform the compiler that additional type checks may be needed at run

time. Programmers can add type annotations to a program gradually and control precisely how

much checking is done statically versus dynamically. The type-checker ensures that the parts of

the program that are typed with static types—i.e., types that do not contain ?—enjoy the type safety

guarantees of static typing (well-typed expressions never get stuck), while the parts annotated with

gradual types—i.e., types in which the dynamic type ? occurs—enjoy the same property modulo the

possibility to fail on some dynamic type check inserted by the type-driven compilation.

Some practical benefits of combining gradual typing with union and intersection types were

presented by Castagna and Lanvin [2017] in a monomorphic setting. In this work we extend such

benefits to a polymorphic setting. For an aperçu of what can be done in this setting, consider the

following ML-like code snippet adapted from Siek and Vachharajani [2008a]:

let mymap (condition) (f) (x : ?) =
if condition then Array.map f x else List.map f x

According to the value of the argument condition, the function mymap applies either the array

version or the list version of map to the other two arguments. This example cannot be typed using

only simple types: the type of x and the return type of mymap change depending on the value of

condition. By annotating x with the gradual type ?, the type reconstruction system for gradual

types of Siek and Vachharajani [2008a] can type this piece of code with Bool → (α → β) → ? → ?.
That is, type reconstruction recognizes that the parameter condition must be bound to a Boolean

value, and the compilation process adds dynamic checks to ensure that the value bound to x will
be, according to the case, either an array or a list whose elements are of a type compatible with the

actual input type of f. This type however is still imprecise. For example, if we pass a value that is

neither an array nor a list (e.g., an integer) as the last argument to mymap, then this application is

well-typed, even though the execution will always fail, independently of the value of condition.
Likewise, the type gives no useful information about the result of mymap, even though it will clearly

be either a β-list or a β-array. These problems can be remedied by using set-theoretic types:

let mymap (condition) (f) (x : (α array | α list) & ?) =
if condition then Array.map f x else List.map f x

where “|” denotes union and “&” denotes intersection. The union indicates that a value of this

type is either an array or a list, both of α-elements. The intersection indicates that x has both type

(α array |α list) and type ?. Intuitively, this type annotation means that the function mymap
accepts for x a value of any type (which is indicated by ?), as long as this value is also either an

array or a list of α elements, with α being the domain of the f argument. The use of the intersection

of a union type with “?” to type a parameter corresponds to a programming style in which the

programmer asks the system to statically enforce that the function will be applied only to arguments

in the union type and delegates to the system any dynamic check regarding the use of the parameter

in the body of the function. The system presented in Section 4 deduces for this definition the type:

Bool → (α → β) → ((α array |α list) & ?) → (β array | β list)

This type forces the last argument of mymap to be either an array or a list of elements whose type is

the input type of the argument bound to f. Note that the return type of mymap is no longer gradual

(as it was with the previous definition), since the union type allows us to define it without any loss

of precision, as well as to capture the correlation with the return type of the argument bound to

f. The derivation of this type is used by the compiler to insert dynamic type-checks that ensure

type soundness. In particular, the compilation process described in Section 2.2.4 inserts in the body

of mymap the casts that dynamically check that the first occurrence of x is bound to an array of

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:3

elements of the appropriate type, and that the second occurrence of x is bound to a list of such

elements, producing a code like the following:

let mymap (condition) (f) (x : (α array | α list) & ?) =
if condition then Array.map f (x<α array>) else List.map f (x<α list>)

where e<t> is a type-cast expression that dynamically checks whether the result of e has type t .
This kind of type discipline is out of reach of current systems. To obtain it we explore a new

idea to interpret gradual types, namely, that the unknown type ? acts like a type variable, but a
peculiar one since each occurrence of ? in a typing constraint can be considered as a placeholder

for a possibly distinct type variable. This idea is the essence of our approach to gradual typing and

we formalize it by defining an operation of discrimination which replaces each occurrence of ? in a

gradual type by a type variable.

Discrimination is the cornerstone of our semantics for gradual types: by applying discrimination

we map a polymorphic gradual type into a set of polymorphic static types (one for each possible

replacement of occurrences of the dynamic type by a type variable); then we use the semantic

subtyping interpretation of static types, to interpret, indirectly, our initial gradual type. We use this

semantic interpretation to revisit some notions from the gradual typing literature: we restate some

of them switching from syntactic to semantic definitions, make new connections, and introduce

new concepts. In particular, we use discrimination to define two preorders on gradual types: the

subtyping relation (by which τ1 ≤ τ2 implies that an expression of type τ1 can be safely used

wherever one of type τ2 is expected) and the materialization relation (τ1 ≼ τ2 if and only if τ2 is

more precise than τ1—i.e., it was obtained from τ1 by replacing some occurrences of ? by types).
1

These two preorders are at the core of our approach and, we claim, of gradual typing as well, since

they can be combined to replace consistency and consistent subtyping, two notions that current

systems rely on. This is particularly important because the materialization relation is a preorder

(transitivity is what matters here); therefore it can be used in a subsumption-like rule that we call

materialize. As we show in Section 2, adding gradual typing to ML then essentially amounts to

adding this materialize rule to the standard set of rules for Hindley-Milner systems. Further, adding

set-theoretic types is then just a matter of adding the regular subsumption rule for subtyping. The

simplicity of this extension contrasts with current literature where gradual typing is obtained by

embedding checks for consistency or for consistent subtyping (two non-transitive relations) in

elimination rules.

Finally, our approach sheds some light on the logical meaning of gradual typing. It is well-

known that there is a strong correspondence between systems with subtyping and systems without

subtyping but with explicit coercions: every usage of the subsumption rule in the former corresponds

to the insertion of an explicit coercion in the latter. Our definition of materialization yields an

analogous correspondence between a gradually-typed language and the cast calculus in which the

language is compiled: every usage of the materialize rule in the former corresponds to the insertion

of an explicit cast in the latter. As such, the cast language looks like an important ingredient for a

Curry-Howard isomorphism for gradual typing disciplines. An intriguing direction for future work

is to study the logic associated with these expressions.

Overview and Contributions. We present our system gradually (pun intended) in three steps of

increasing complexity.

The first step is to add gradual typing to ML-like languages: we do it in Section 2. We start

by giving the definition of materialization and use it to give a declarative static semantics for a

1
The fourth author prefers to call materialization the precision relation, using the terminology of Garcia [2013] but with ?
at the bottom, as in the work of Siek and Vachharajani [2008b].

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:4 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

gradually-typed version of ML (§2.1). As customary for gradually-typed languages, we give the

dynamic semantics by compiling well-typed terms into a cast calculus and we prove its soundness

(§2.2). We conclude the section by studying the algorithmic aspects of typing, that is, we define a

constraint-based type inference algorithm that we prove to be sound and complete (§2.3).

The second step, in Section 3, shows how to extend the system with subtyping. We define a

subtyping relation and add a subsumption rule both to the type system of the gradual language

and to the one of the cast calculus (§3.1). The presence of subsumption makes type inference more

difficult since, in particular, constraint resolution involves computing intersections and unions of

types (§3.2). Therefore, we postpone the development of the algorithmic aspects of this part to the

following section, in which we add first-class union and intersection types to the systems.

The third and last step, presented in Section 4, is the addition of unions and intersections, which

we achieve by applying the approach of semantic subtyping. This involves the addition of union

and negation types (intersections are encoded by De Morgan’s laws) as well as of recursive types

(which are needed to solve type reconstruction with polymorphic types). We use a set-theoretic

interpretation of types to define subtyping for static types. Using our interpretation of ? as type
variables, we extend this subtyping relation and the previous materialization relation to gradual

types (§4.1). We extend the cast calculus with set-theoretic types: this notably requires a non-trivial

modification of the semantics to reduce composition of casts involving unions and intersections; we

prove the extension to be conservative besides enjoying the usual safety properties (§4.2). Finally,

we define a type inference algorithm and prove its soundness (§4.3).

A discussion on related (§5) and future (§6) work and a conclusion (§7) end this presentation.

For space reasons, some auxiliary definitions and results and all proofs are moved into the

appendix.

The main contributions of this work are:

(1) A new interpretation of gradual types in which every occurrence of the unknown type “?” is
considered a placeholder for some type variable.

(2) The definition of gradual type systems in terms of two preorders, subtyping and materializa-

tion. The definition of these preorders is based on the new interpretation of types; it yields

semantic-oriented definitions that are syntax independent and, as such, more resilient to

language extensions or modifications.

(3) The first declarative definition of gradual type systems obtained by adding two subsumption-

like rules, yielding a clearer and more streamlined definition of the type system.

(4) A better correspondence between type derivations and compilation, obtained by showing a

one-to-one correspondence between cast insertions and the use of the materialize rule.
(5) A direct correlation between the safety of a cast and the polarity of its blame label —a

consequence of the correspondence in (4)—, allowing for a simpler statement of blame safety
for the cast calculus. We show in particular that our system never blames the context.

(6) The reformulation of the type inference problem for gradual type systems in terms of static

type systems via the new interpretation. In particular, our two inference algorithms reuse

existing algorithms such as unification and tallying.

(7) The extension of gradual typing to polymorphic type systems with set-theoretic types. In

particular, the definition of the operational semantics for casts in the presence of unions and

intersections is an important and far-from-obvious result.

2 GRADUAL TYPING FOR HINDLEY-MILNER SYSTEMS
In this section, we use our new approach to add gradual typing to a language with ML-style

polymorphism. We describe the syntax of types and of the source language, the declarative type

system, the cast language and how to compile expressions, and the type inference system.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:5

2.1 Source Language
2.1.1 Types and Expressions. Let α, β , and γ range over a countable set Vα

of type variables. Let b
range over a set B of basic types (e.g., B = {Int,Bool}). Let c range over a set C of constants. Types
and expressions are then defined as follows and explained in the following paragraphs.

static types Tt ∋ t ::= α | b | t × t | t → t

gradual types Tτ ∋ τ ::= ? | α | b | τ × τ | τ → τ

source language expressions e ::= x | c | λx . e | λx : τ . e | e e | (e, e) | πi e | let ®α x = e in e

Static types Tt (ranged over by t) are the types of an ML-like language: type variables, basic

types, products, and arrows. Gradual types Tτ (ranged over by τ) add the unknown type ? to them.

The source language is a fairly standard λ-calculus with constants, pairs (e, e), projections for the
elements of a pair πi e (where i ∈ {1, 2}), plus a let construct. There are two aspects to point out.

One is that there are two forms of λ-abstraction: λx . e and λx : τ . e . In the latter, the annotation

τ fixes the type of the argument, whereas in the former the type can be chosen during typing (and

will in practice be computed by inference). Furthermore, the type τ in the annotation is gradual,

while in λx . e we require that the inferred type of the parameter be a static type t (cf. Figure 1, rule
[Abstr]). This is the same restriction imposed by Garcia and Cimini [2015] to properly reject some

ill-typed programs. For example, without this restriction we can type λx .(x + 1,¬x) since it would
be possible to infer the type ? for x so as to deduce for λx .(x + 1,¬x) the type ? → Int × Bool. But
λx .(x + 1,¬x) is not a well-typed term in ML, therefore by the principles of gradual typing (see

Theorem 1 of Siek et al. [2015b]) it must be rejected unless its parameter is explicitly annotated by

a type in which ? occurs (here, annotated by ? itself).

The second non-standard element of this syntax is that the let binding is decorated with a

vector ®α of type variables, as in let ®α x = e1 in e2. This decoration (we reserve the word annotation
for types annotating parameters in λ-abstractions) serves as a binder for the type variables that
appear in annotations occurring in e1. For instance, let α z = λx : α . x in e and let z = λx . x in e are
equivalent, while let z = λx : α . x in e implies that α was introduced in an outer expressions such as

λy : α . let z = λx : α . x in e . The normal let from ML can be recovered as the case where ®α is empty

(which would always be the case if, as in ML, function parameters never had type annotations).

As customary, we consider expressions modulo α-renaming of bound variables. In λx . e and

λx : τ . e , x is bound in e ; in let ®α x = e1 in e2, x is bound in e2 and the ®α variables are bound in e1. It

is also customary that we may refer to the source language as the gradually-typed language.

2.1.2 Type System. We describe the declarative type system of the source language.

We use the standard notion for type schemes and type environments. A type scheme has the

form ∀®α . τ , where ®α is a vector of distinct variables. We identify type schemes with an empty ®α
with gradual types. A type environment Γ is a finite function from variables to type schemes.

The type system is defined by the rules in Figure 1.

The first eight rules are almost those of a standard Hindley-Milner type system. In [Const], we

use bc to denote the basic type for a constant c (e.g., b3 = Int). One important aspect to note is that

the types used to instantiate the type scheme in [Var] and the type used for the domain in [Abstr]

must all be static types, as forced by the use of the metavariable t .
The other non-standard aspect is the rule for [Let]. To type let ®α x = e1 in e2, we type e1 with

some type τ1; then, we type e2 in the expanded environment in which x has type ∀®α, ®β . τ1. The

first side condition (®α, ®β ♯ Γ) asks that all the variables we generalize do not occur free in Γ; this is

standard. The second condition (
®β ♯ e1) states that the type variables

®β must not occur free in e1.

This means that the type variables that are explicitly introduced by the programmer (by using them

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:6 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

[Var]

Γ ⊢ x : τ { ®α B ®t}
Γ(x) = ∀®α . τ [Const]

Γ ⊢ c : bc
[Proj]

Γ ⊢ e : τ1 × τ2

Γ ⊢ πi e : τi

[Pair]

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ (e1, e2) : τ1 × τ2

[App]

Γ ⊢ e1 : τ ′ → τ Γ ⊢ e2 : τ ′

Γ ⊢ e1 e2 : τ

[Abstr]

Γ, x : t ⊢ e : τ

Γ ⊢ (λx . e) : t → τ
[AAbstr]

Γ, x : τ ′ ⊢ e : τ

Γ ⊢ (λx : τ ′. e) : τ ′ → τ

[Let]

Γ ⊢ e1 : τ1 Γ, x : ∀®α, ®β . τ1 ⊢ e2 : τ

Γ ⊢ (let ®α x = e1 in e2) : τ
®α, ®β ♯ Γ and

®β ♯ e1

[Materialize]

Γ ⊢ e : τ ′

Γ ⊢ e : τ
τ ′ ≼ τ

Fig. 1. Declarative type system of the source language.

in annotations) can only be generalized at the level of a let binding by explicitly specifying them in

the decoration. In contrast, type variables introduced by the type system (i.e., the fresh variables in

the t type in the [Abstr] rule) can be generalized at any let (implicitly, that is, by the type system),

provided they do not occur in the environment. Note that we recover the standard Hindley-Milner

rule for let bindings when expressions do not contain annotations and decorations are empty.

As anticipated, the type system does not need to deal with gradual types explicitly except in one

rule. Indeed, the first eight rules do not check anything regarding gradual types (they only impose

restrictions that some types must be static). The last rule, [Materialize], is a subsumption-like rule

that allows us to make any gradual type more precise by replacing occurrences of ? with arbitrary

gradual types. This is accomplished by the materialization relation ≼ defined below.

Materialization. Intuitively, τ1 ≼ τ2 holds when τ2 can be obtained from τ1 by replacing some

occurrences of ? with arbitrary gradual types, possibly different for every occurrence. This relation

can be easily defined by the following inductive rules, which add the reflexive case for type variables

to the rules of Siek and Vachharajani [2008b]:
2

? ≼ τ α ≼ α b ≼ b

τ1 ≼ τ ′
1

τ2 ≼ τ ′
2

τ1 × τ2 ≼ τ ′
1
× τ ′

2

τ1 ≼ τ ′
1

τ2 ≼ τ ′
2

τ1 → τ2 ≼ τ ′
1
→ τ ′

2

However, this definition is intrinsically tied to the syntax of types. Instead, we want the definition

of materialization to remain valid also when we extend the language of types we use. Therefore,

we give a definition based on our view, anticipated earlier, of occurrences of ? as type variables.

First, let us define a new sort of types, type frames, as follows:

TT ∋ T ::= X | α | b | T ×T | T → T

where X ranges over a setVX
of frame variables disjoint fromVα

. Type frames are like gradual

types except that, instead of ?, they have frame variables. We write TT for the set of all type frames.

Given a type frame T , we write T †
for the gradual type obtained by replacing all frame variables

in T with ?. The reverse operation, which we call discrimination, is defined as follows.

2
Henglein [1994] defines an equivalent relation for monomorphic types (called “subtyping”) but with different rules.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:7

Definition 2.1 (Discrimination of a gradual type). Given a gradual type τ , the set ⋆(τ) of its
discriminations is defined as: ⋆(τ) =def {T ∈ TT | T † = τ } .

The definition of materialization, stated formally below, says that τ2 materializes τ1 if it can be

obtained from τ1 by first replacing all occurrences of ? with arbitrary variables inVX
, and then

applying a substitution which replaces those variables with gradual types.

Definition 2.2 (Materialization). We define the materialization relation on gradual types
τ1 ≼ τ2 (“τ2 materializes τ1”) as follows: τ1 ≼ τ2 ⇐⇒

def

∃T ∈ ⋆(τ1), θ : VX → Tτ .Tθ = τ2 .

In the above, θ : VX → Tτ is a type substitution (i.e., a mapping that is the identity on a cofinite

set of variables) from frame variables to gradual types. We use dom(θ) to denote the set of variables
for which θ is not the identity (i.e., dom(θ) = {X | Xθ , X }).

It is not difficult to prove that the materialization relation of Definition 2.2 and the one deduced

by the inductive rules that we have given in the previous page are equivalent, and that they are

inverses of the precision relation [Garcia 2013] and of naive subtyping [Wadler and Findler 2009].

The presence of [Materialize] yields the static gradual guarantee

property of Siek et al. [2015b] for free. We lift the materialization rela-

τ ≼ τ ′ e ≼ e ′

λx : τ . e ≼ λx : τ ′. e ′
tion to terms as usual by relating type annotations via materialization.

On the right is the rule for annotated λ-abstractions. The remaining rules are straightforward.

Proposition 2.3 (Static gradual guarantee). If ∅ ⊢ e : τ and e ′ ≼ e , then ∅ ⊢ e ′ : τ .

We said that our type system is declarative. This is because all auxiliary relations (here material-

ization) are handled by structural rules (here [Materialize]) added to an existing set of logical and

identity rules.
3
In a declarative system, every term may have different types and derivations; re-

moving the structural rules corresponds to finding an algorithmic system that for every well-typed

term chooses one particular derivation and, thus, one type of the declarative system. This is usually

obtained by moving the checks of the auxiliary relations into the elimination rules: this yields a

system that is easier to implement but less understandable. And this is exactly what current gradual

type systems do. It is possible to show that the set of typable terms of our declarative system is the

same as the set of typable terms of the existing gradual type systems that use consistency.

In particular, the relation between our system and the gradual type system of Siek and Taha

[2006] can be stated formally. Let ⊢ST denote the typing judgments of Siek and Taha [2006] and

let ⊢1 denote the monomorphic restriction of the implicative fragment of our system (i.e., our

gradual types without type variables and the typing rules of the simply-typed λ-calculus plus
materialization: see Figure 7 in the appendix). Then we have the following result:

Proposition 2.4. If Γ ⊢ST e : τ then Γ ⊢1 e : τ . Conversely, if Γ ⊢1 e : τ , then there exists a type τ ′

such that Γ ⊢ST e : τ ′ and τ ′ ≼ τ .

The most enlightening case in the proof of the forward direction is for the rule [GApp2] of Siek

and Taha [2006] here on the right. This rule is derivable

in our system because τ2 ∼ τ ′ implies that there is some

[GApp2]

Γ ⊢ e1 : τ ′ → τ Γ ⊢ e2 : τ2 τ2 ∼ τ ′

Γ ⊢ e1 e2 : τ
τ3 such that τ2 ≼ τ3 and τ

′ ≼ τ3 [Siek and Vachharajani

2008a], then we have Γ ⊢ e1 : τ3 → τ and Γ ⊢ e2 : τ3 by

two uses of [Materialize]. Conversely, materialization can always be pushed to applications.

The (polymorphic) implicative fragment of our system (i.e., our systemwithout products), denoted

by ⊢→ , is yet another well-known gradual type system, because it coincides with the ITGL type

system of Garcia and Cimini [2015], denoted by ⊢GC , as stated by the following result:

Proposition 2.5. If Γ ⊢GC e : τ then Γ ⊢→ e : τ . Conversely, if Γ ⊢→ e : τ , then there exists a type
τ ′ such that Γ ⊢GC e : τ ′ and τ ′ ≼ τ .
3
In logic, logical rules refer to a particular connective (here, a type constructor, that is, either →, or ×, or b), while identity
rules (e.g., axioms and cuts) and structural rules (e.g., weakening and contraction) do not.

16:8 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

[Var]

Γ ⊢ x : ∀®α . τ
Γ(x) = ∀®α . τ [TAbstr]

Γ ⊢ E : τ

Γ ⊢ Λ ®α . E : ∀®α . τ
®α ♯ Γ [TApp]

Γ ⊢ E : ∀®α . τ

Γ ⊢ E [®t] : τ { ®α B ®t}

[Cast
⊕
]

Γ ⊢ E : τ ′

Γ ⊢ E⟨τ ′ ⇒
ℓ
τ ⟩ : τ

τ ′ ≼ τ [Cast
⊖
]

Γ ⊢ E : τ ′

Γ ⊢ E⟨τ ′ ⇒
¯ℓ
τ ⟩ : τ

τ ≼ τ ′

Fig. 2. Main Typing Rules for the Cast Language

In otherwords, the relationship between our new declarative approach (i.e., with the [Materialize]

rule) and the standard ones that use consistency (e.g., Siek and Taha [2006] and Garcia and Cimini

[2015]) is analogous to the usual relationship between a declarative type system with subtyping

(i.e., with a subsumption rule) and an algorithmic type system.

We conclude this section by stressing that our new interpretation of gradual types only concerns

the relations on types, but it does not apply directly to the terms of the language. In particular, it

does not apply to the occurrences of ? in the type annotations of a program: indeed, it can be that

an occurrence of ? in a program cannot be replaced by a static type while maintaining typability.

2.2 Cast Language
As customary with gradual typing, the semantics of the gradually-typed language is given by

translating its well-typed expressions into a cast language, which we define next.

2.2.1 Syntax. The syntax of the cast language is defined as follows:

E ::= x | c | λτ→τx . E | E E | (E, E) | πi E | let x = E in E | Λ ®α . E | E [®t] | E⟨τ ⇒
p
τ ⟩

This is an explicitly-typed λ-calculus similar to the source language with a few differences and the

addition of explicit casts.

There is now just one kind of λ-abstraction, which is annotated with its arrow type. Let-

expressions no longer bind type variables; instead, there are explicit type abstractions Λ ®α . E and

applications E [®t]. For example, the source language expression let α z = λx : α . λy. x in z 42, of type
β → Int, is translated into the cast calculus as let z = Λαβ . λα→β→αx . λβ→αy. x in z [Int, β] 42. De-
spite the presence of type abstractions, the cast calculus does not support first-class polymorphism;

the syntax of types remains unchanged from Section 2.1.1 and does not include universally quanti-

fied types. Finally, the important additions to the calculus are explicit casts of the form E⟨τ ⇒
p
τ ′⟩

where, as usual, p ranges over a set of blame labels. Such an expression dynamically checks whether

E, of static type τ , produces a value of type τ ′; if the cast fails, then the label p is used to blame the

cast. These casts are inserted during compilation to perform runtime checks in dynamically-typed

code: for instance, the function λx : ?. x + 1 will be compiled into λ?→Intx . x ⟨? ⇒
p
Int⟩ + 1, which

checks at runtime whether the function parameter is bound to an integer value (and if not blames

the label p). As customary blame labels have a polarity and we follow the standard convention of

using ℓ to range over positive labels and
¯ℓ for negative ones.

2.2.2 Type System. The main typing rules for the cast language are presented in Figure 2. Type

environments associate variables to type schemes of the form ∀®α .τ (rule [Var]) and we use the

standard rules for the introduction [TAbstr] and elimination [TApp] of type abstractions. Our

typing rules for casts are more precise than the current literature, since they capture invariants

that are typically captured by a separate safe-for relation that is used to establish the Blame

Theorem [Wadler and Findler 2009]. Our casts are well-typed if they go from the type of the casted

expression τ ′ to either a more precise (positive label) or a less precise (negative label) gradual

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:9

Cast Reductions.
[ExpandL] V ⟨τ ⇒

p
?⟩ ↪→ V ⟨τ ⇒

p τ /?⟩⟨τ /? ⇒
p
?⟩ if τ /? , τ and τ , ?

[ExpandR] V ⟨? ⇒
p
τ ⟩ ↪→ V ⟨? ⇒

p τ /?⟩⟨τ /? ⇒
p
τ ⟩ if τ /? , τ and τ , ?

[CastId] V ⟨τ ⇒
p
τ ⟩ ↪→ V

[Collapse] V ⟨ρ ⇒
p
?⟩⟨? ⇒

q
ρ⟩ ↪→ V

[Blame] V ⟨ρ ⇒
p
?⟩⟨? ⇒

q
ρ ′⟩ ↪→ blame q if ρ , ρ ′

Standard Reductions.
[CastApp] V ⟨τ1 → τ2 ⇒

p
τ ′

1
→ τ ′

2
⟩V ′ ↪→ V (V ′⟨τ ′

1
⇒
p̄
τ1⟩)⟨τ2 ⇒

p
τ ′

2
⟩

[App] (λτ1→τ2x . E)V ↪→ E{x B V }

[ProjCast] πi (V ⟨τ1 × τ2 ⇒
p
τ ′

1
× τ ′

2
⟩) ↪→ (πi V)⟨τi ⇒

p
τ ′i ⟩

[Proj] πi (V1,V2) ↪→ Vi
[TypeApp] (Λ ®α . E) [®t] ↪→ E{ ®α B ®t}

[Let] let x = V in E ↪→ E{x B V }

[Context] E[E] ↪→ E[E ′] if E ↪→ E ′

[CtxBlame] E[E] ↪→ blame p if E ↪→ blame p

Fig. 3. Semantics of the Cast Calculus

type τ (rules [Cast
⊕
] and [Cast

⊖
], respectively). Blame safety usually involves two subtyping

relations, called positive subtyping (written ≤+) and negative subtyping (written ≤−
), characterizing

respectively casts that cannot yield positive blame and casts that cannot yield negative blame. By

the factoring theorem for naive subtyping [Wadler and Findler 2009], τ ′ ≼ τ implies τ ′ <:
+ τ , so

a cast that satisfies rule [Cast
⊕
] is safe for ℓ. Conversely, τ ≼ τ ′ implies τ ′ <:

− τ , so a cast that

satisfies rule [Cast
⊖
] is also safe for ℓ. The remaining rules are standard (Figure 9 of the appendix).

2.2.3 Semantics. The cast calculus has a strict reduction semantics defined by the reduction rules

in Figure 3. The semantics is defined in terms of values (ranged over by V), evaluation contexts

(ranged over by E), and ground types (ranged over by ρ). The first two are defined as follows:

V ::= c | λτ→τx . E | (V ,V) | V ⟨τ1 → τ2 ⇒
p
τ ′

1
→ τ ′

2
⟩ | V ⟨τ1 × τ2 ⇒

p
τ ′

1
× τ ′

2
⟩ | V ⟨ρ ⇒

p
?⟩

E ::= □ | E E | E V | E [®t] | (E, E) | (E,V) | πi E | let x = E in E | E⟨τ ⇒
p
τ ⟩

As usual there are three value forms with casts [Siek et al. 2015a].

The notion of ground type was introduced by Wadler and Findler [2009] to compare types in

casts, with the idea that incompatibility between ground types is the source of all blame. We next give

a definition of ground types equivalent to the one of Wadler and Findler [2009], but which uses a

different notation that is more convenient when we extend the system to set-theoretic types (§4).

Definition 2.6 (Grounding and Ground Types). For every type τ ∈ Tτ , we define the grounding
of τ with respect to ?, noted τ /?, as follows:

b/? = b α /? = α ?/? = ?
τ1 → τ2/? = ? → ? τ1 × τ2/? = ? × ?

Types τ such that τ , ? and that verify τ /? = τ are called ground types and are ranged over by ρ.

The reduction rules of Figure 3 closely follow the presentation of Siek et al. [2015a]. They are

divided into two groups, the reductions for the application of casts to a value and the reductions cor-

responding to the elimination of type constructors. For the former we use the technique by Wadler

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:10 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

and Findler [2009] which consists in checking whether a cast is performed between two types

with the same toplevel constructor and failing when this is not the case. This amounts to check-

ing whether grounding the two types (by the rules [Expand_]) yields the same ground type (rule

[Collapse]) or not (rule [Blame]). In regards to an implementation, the [ExpandL] rule corresponds

to tagging a value with its type constructor (as done in Lisp implementations) and the [Collapse]

rule corresponds to untagging a value. Most of the rules of the standard reductions group are

taken from Siek et al. [2015a] too: we added the rules for type abstractions and applications, for

projections, and for let bindings (all absent in the cited work). As usual, the function .̄ is involutory,
that is, ¯̄p = p.

The soundness of the cast calculus is proved via progress and subject reduction. We do not give a

direct proof of these properties. They follow from the corresponding properties of the cast calculus

of Section 4 (Lemmas 4.9, 4.10) and the conservativity of the extension (Theorem 4.13). The same

holds true for the property of blame safety (Corollary 4.12).

2.2.4 Compilation. The final ingredient of the declarative definition of the system is to show

how to compile a well-typed expression of the source language into an expression of the cast

calculus and prove that compilation preserves types. This result, combined with the soundness of

the cast language, implies the soundness of the gradually-typed language: a well-typed expression

is compiled into an expression that can only either return a value of the same type, or return a cast

error, or diverge.

Compilation is driven by the derivation of the type for the source language expression. Concep-

tually, compilation is straightforward: every time the derivation uses the [Materialize] rule on

some subexpression for a relation τ1 ≼ τ2, a cast ⟨τ1 ⇒
ℓ
τ2⟩ must be added to that subexpression.

Technically, we achieve this by enriching the judgements of typing derivations with a compilation

part: Γ ⊢ e { E : τ means that the source language expression e of type τ compiles to the cast

language expression E. These judgements are derived by the same rules as those given for the

source language in Figure 1 to whose judgements we add the compilation part. The only rules that

need non-trivial modifications are the following ones:

[Var]

Γ ⊢ x { x[®t] : τ { ®α B ®t}
Γ(x) = ∀®α . τ [Abstr]

Γ, x : t ⊢ e { E : τ

Γ ⊢ (λx . e) { (λt→τx . E) : t → τ

[Let]

Γ ⊢ e1 { E1 : τ1 Γ, x : ∀®α, ®β . τ1 ⊢ e2 { E2 : τ

Γ ⊢ let ®α x = e1 in e2 { let x = Λ ®α, ®β . E1 in E2 : τ
®α, ®β ♯ Γ and

®β ♯ e1

[Materialize]

Γ ⊢ e { E : τ ′

Γ ⊢ e { E⟨τ ′ ⇒
ℓ
τ ⟩ : τ

τ ′ ≼ τ

[Var] compiles occurrences of polymorphic variables by instantiating them with the needed types.

[Abstr] explicitly annotates the function with the type deduced by inference. The compilation of

a let-construct abstracts the type variables that are generalized. Finally, the core of compilation

is given by the [Materialize] rule, which corresponds to the insertion of an explicit cast (with

a positive fresh label ℓ). All the remaining rules are straightforward modifications of the rules in

Figure 1 insofar as their conclusions simply compose the compiled expressions in the premisses.

Compilation is defined for all well-typed expressions and preserves well-typing:

Theorem 2.7. If Γ ⊢ e : τ , then there exists an E such that Γ ⊢ e { E : τ and Γ ⊢ E : τ .

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:11

2.3 Type Inference
In this section we show how to decide whether a given term is well-typed or not: we define a type

inference algorithm that is sound and complete with respect to the system of the previous section.

The algorithm is mostly based on the work of Pottier and Rémy [2005] and of Castagna et al. [2016],

adapted for gradual typing. Our algorithm differs from that of Garcia and Cimini [2015] in that

ours literally reduces the inference problem to unification. To infer the type of an expression, we

generate constraints that specify the conditions that must hold for the expression to be well-typed;

then, we solve these constraints via unification to obtain a solution (a type substitution).

Our presentation proceeds as follows. We first introduce type constraints (§2.3.1) and show how

to solve sets of type constraints using standard unification (§2.3.2). Then we show how to generate

constraints for a given expression (§2.3.3). To keep constraint generation separated from solving,

generation uses more complex structured constraints (this is essentially due to the presence of

let-polymorphism) which are then solved by simplifying them into the simpler type constraints
(§2.3.4). Finally, we present our soundness and completeness results for type inference.

2.3.1 Type Constraints and Solutions. A type constraint has either the form (t1 Û≤ t2) or the form
(τ Û≼ α), whose meaning we give below. Type constraint sets (ranged over by the metavariable D)
are finite sets of type constraints. We write var(D) for the set of type variables appearing in the

type constraints in D. We write var Û≼(D) for the set of type variables appearing in the gradual types

in materialization constraints in D: that is, var Û≼(D) =
⋃

(τ Û≼α)∈D var(τ). When α ⊆ Vα
is a set of

type variables and θ is a type substitution, we define αθ =
⋃

α ∈α var(αθ).
We say that a type substitution θ : Vα → Tτ is a solution of a type constraint set D (with respect

to a finite set ∆ ⊆ Vα
), and we write θ ⊩∆ D, if:

• for every (t1 Û≤ t2) ∈ D, we have t1θ = t2θ ;
• for every (τ Û≼ α) ∈ D, we have τθ ≼ αθ and, for all β ∈ var(τ), βθ is a static type;

• dom(θ) ∩ ∆ = ∅.

A subtyping type constraint (t1 Û≤ t2) forces the substitution to unify t1 and t2. We use Û≤ instead of,

say Û=, to have uniform syntax with the later section on subtyping.

A materialization type constraint (τ Û≼ α) imposes two distinct requirements: the solution must

make α a materialization of τ and must map all variables in τ to static types. These two conditions

might be separated but in practice they must always be imposed together, and their combination

simplifies the description of constraint solving. Note that the constraint (α Û≼ α) forces αθ to be

static (since the other requirement, αθ ≼ αθ , is trivial).
Finally, the set ∆ is used to force the solution not to instantiate certain type variables.

2.3.2 Type Constraint Solving. We solve a type constraint set in three steps: we convert the type

constraints to unification constraints between type frames (notably, by changing every occurrence

of ? into a different frame variable); then we compute a unifier; finally, we convert the unifier into

a solution (by renaming some variables and then changing frame variables back to ?).
We define this process as an algorithm solve(·)(·) which, given a type constraint set D and a finite

set ∆ ⊆ Vα
, computes a set of type substitutions solve∆(D). This set is either empty, indicating

failure, or a singleton set containing the solution (which is unique up to variable renaming).
4

We do not describe a unification algorithm explicitly; rather, we rely on properties satisfied

by standard implementations (e.g., that by Martelli and Montanari [1982]). We use unification on

type frames: its input is a finite set T 1 Û= T 2
of equality constraints of the form T 1 Û= T 2

. We also

include as input a finite set ∆ ⊆ Vα
that specifies the variables that unification must not instantiate

4
We use a set because, in the extension with subtyping, constraint solving can produce multiple incomparable solutions.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:12 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

(i.e., that should be treated as constants). We write unify∆(T 1 Û= T 2) for the result of the algorithm,

which is either fail or a type substitution θ : Vα ∪VX → TT . We assume that unify satisfies the

usual soundness and completeness properties and that it computes idempotent substitutions.

Unification is the main ingredient of our type constraint solving algorithm, but we need some

extra steps to handle materialization constraints.

Let D be of the form { (t1

i Û≤ t2

i) | i ∈ I } ∪ { (τj Û≼ α j) | j ∈ J }: then solve∆(D) is defined as follows.

(1) Let T 1 Û= T 2
be { (t1

i Û= t2

i) | i ∈ I } ∪ { (Tj Û= α j) | j ∈ J } where the Tj are chosen to ensure:

(a) for each j ∈ J , T †
j = τj ;

(b) every frame variable X occurs in at most one of the Tj , at most once.

(2) Compute unify∆(T 1 Û= T 2):

(a) if unify∆(T 1 Û= T 2) = fail, return ∅;

(b) if unify∆(T 1 Û= T 2) = θ0, return {(θ0θ
′
0
)† |Vα } where:

(i) θ ′
0
= { ®X B ®α ′} ∪ { ®α B ®X ′}

(ii) ®X = VX ∩ var Û≼(D)θ0 and ®α = var(D) \ (∆ ∪ dom(θ0) ∪ var Û≼(D)θ0)

(iii) ®α ′
and ®X ′

are vectors of fresh variables

In step 1, we convert D to a set of type frame equality constraints. To do so, we convert all

gradual types in materialization constraints by replacing each occurrence of ?with a different frame

variable. In step 2, we compute a unifier for these constraints. If a unifier θ0 exists (step 2b), we use

it to build our solution: however, we need a post-processing step to ensure that α and X variables

are treated correctly. For example, a unifier could map α B X when (α Û≼ α) ∈ D: then, converting
type frames back to gradual types would yield α B ?, which is not a solution because α is mapped

to a gradual type, but a static type is required. Therefore, to obtain the result we first compose θ0

with a renaming substitution θ ′
0
; then, we apply † to change type frames back to gradual types,

and we restrict the domain to Vα
. The renaming introduces fresh variables to replace some frame

variables with type variables ({ ®X B ®α ′}) and some type variables with frame variables ({ ®α B ®X ′}).

It has two purposes. One is to ensure that the variables in var Û≼(D) are mapped to static types,

which we need for θ ⊩∆ D to hold. The other is to have the substitution introduce as few type

variables as possible.

solve(·)(·) satisfies the following properties.

• Soundness: if θ ∈ solve∆(D), then θ ⊩∆ D.
• Completeness: if θ ⊩∆ D, then there exist two substitutions θ ′ and θ ′′ such that

– θ ′ ∈ solve∆(D);
– for every α , αθ ′(θ ∪ θ ′′) ≼ α(θ ∪ θ ′′) and, if αθ ′ is static, αθ ′(θ ∪ θ ′′) = α(θ ∪ θ ′′).

• If θ ∈ solve∆(D), then var(D)θ ⊆ ∆ ∪ var Û≼(D)θ .

The last property states that a solution θ returned by solve introduces as few variables as possible.

In particular, the variables it introduces in D are only those in ∆ and those that appear in the

solutions of variables in var Û≼(D) (whose solutions must be static). To ensure this, we perform the

substitution { ®α B ®X ′}. This property implies that we avoid useless materializations of ? to type
variables (and thus the insertion of useless casts at compilation): for example, it ensures that, in

let y = x in e , if x has type ?, then y is given type ? too. In the declarative system, it can be typed

also as ∀α . α , but then the compiled expression has a cast: let y = Λα . x ⟨? ⇒
ℓ
α⟩ in E. We prefer the

compilation without this cast, which is why we replace as many α variables as possible with ?.

2.3.3 Structured Constraints and Constraint Generation. In the absence of let-polymorphism, the

type constraints we presented suffice to describe the conditions for a program to be well-typed

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:13

⟨⟨x : t⟩⟩ = ∃α . (x Û≼ α) ∧ (α Û≤ t) α ♯ t

⟨⟨c : t⟩⟩ = (bc Û≤ t)

⟨⟨(λx . e) : t⟩⟩ = ∃α1,α2. (def x : α1 in ⟨⟨e : α2⟩⟩) ∧ (α1
Û≼ α1) ∧ (α1→α2

Û≤ t) α1,α2 ♯ t, e

⟨⟨(λx : τ . e) : t⟩⟩ = ∃α1,α2. (def x : τ in ⟨⟨e : α2⟩⟩) ∧ (τ Û≼ α1) ∧ (α1→α2
Û≤ t) α1,α2 ♯ t, τ , e

⟨⟨e1 e2 : t⟩⟩ = ∃α . ⟨⟨e1 : α → t⟩⟩ ∧ ⟨⟨e2 : α⟩⟩ α ♯ t, e1, e2

⟨⟨(e1, e2) : t⟩⟩ = ∃α1,α2. ⟨⟨e1 : α1⟩⟩ ∧ ⟨⟨e2 : α2⟩⟩ ∧ (α1 × α2
Û≤ t) α1,α2 ♯ t, e1, e2

⟨⟨πi e : t⟩⟩ = ∃α1,α2. ⟨⟨e : α1 × α2⟩⟩ ∧ (αi Û≤ t) α1,α2 ♯ t, e

⟨⟨let ®α x = e1 in e2 : t⟩⟩ = let x : ∀®α ;α[⟨⟨e1 : α⟩⟩]var(e1)\ ®α . α in ⟨⟨e2 : t⟩⟩ α ♯ ®α, e1

Fig. 4. Constraint generation.

(following the approach of Wand [1987], augmented with materialization constraints). With let-

polymorphism, instead, we would need either to mix constraint generation and solving or to copy

constraints for let-bound expressions multiple times. To avoid this, we use a kind of constraint that

includes binding, following Pottier and Rémy [2005].

A structured constraint is a term generated by the following grammar:

C ::= (t Û≤ t) | (τ Û≼ α) | (x Û≼ α) | def x : τ in C | ∃ ®α .C | C ∧C | let x : ∀®α ;α[C] ®α . α in C

Structured constraints are considered equal up to α-renaming of bound variables. In ∃®α .C , the ®α
variables are bound in C . In let x : ∀®α ;α[C1]

®α ′

. α in C2, α and the ®α variables are bound in C1.

Structured constraints include type constraints and five other forms. A constraint (x Û≼ α)
asks that the type scheme for x has an instance that materializes to the solution of α . Existential
constraints ∃®α .C bind the type variables ®α occurring in C; this simplifies freshness conditions, as

in Pottier and Rémy [2005]. C ∧C is simply the conjunction of two constraints, while def and let
constraints are generated to type λ-abstractions and let-expressions, as explained below.

Figure 4 defines a function ⟨⟨(·) : (·)⟩⟩ such that, for every expression e and every static type t ,
⟨⟨e : t⟩⟩ expresses the conditions that must hold for e to have type tθ for some substitution θ .
We point out some peculiarities of the rules. For variables, we generate a constraint combining

materialization and subtyping. This allows us to use the form (x Û≼ α) instead of (x Û≼ t); more

importantly, it means the same definition for constraint generation can be reused when we add

subtyping. For a λ-abstraction, constraint generation wraps the constraint for the body in a def
constraint to introduce the type of the parameter. In the absence of annotations, the constraint

(α1
Û≼ α1) is used to ensure that the parameter will have a static type. For annotated functions,

the constraint (τ Û≼ α1) allows the domain of the function to be materialized. This is needed,

for example, to obtain solvable constraints for the abstraction (λx : ?. x) in a context expecting

Int → Int. For let, we build a let constraint including the constraints of the two expressions and

recording the variables that must be generalized (®α) and those that must not (var(e1) \ ®α)5. In all

rules, the side conditions force the choice of fresh variables.

2.3.4 Constraint Solving. While our definition of constraints is mostly based on the work of Pottier

and Rémy [2005], we describe constraint solving differently, following Castagna et al. [2016]. We

solve structured constraints in two steps: we convert a structured constraint to a type constraint

set with the constraint simplification system of Figure 5; then, we compute a solution using the type

constraint solving algorithm of §2.3.2. Because of let-polymorphism, constraint simplification also

uses type constraint solving internally to compute partial solutions.

5
We include the latter for convenience: actually, they can be recomputed from the rest since var(e1) = var(⟨⟨e1 : α ⟩⟩) \ {α }.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:14 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

Γ;∆ ⊢ (t1 Û≤ t2) { {t1 Û≤ t2} Γ;∆ ⊢ (τ Û≼ α) { {τ Û≼ α }

Γ;∆ ⊢ (x Û≼ α) { {τ { ®α B ®β} Û≼ α }

Γ(x) = ∀®α . τ
®β fresh

(Γ, x : τ);∆ ⊢ C { D

Γ;∆ ⊢ def x : τ in C { D

Γ;∆ ⊢ C { D

Γ;∆ ⊢ (∃ ®α .C) { D
®α fresh

Γ;∆ ⊢ C1 { D1 Γ;∆ ⊢ C2 { D2

Γ;∆ ⊢ C1 ∧C2 { D1 ∪ D2

Γ;∆ ∪ ®α ⊢ C1 { D1 (Γ, x : ∀®α, ®β . αθ1);∆ ⊢ C2 { D2

Γ;∆ ⊢ let x : ∀®α ;α[C1]
®α ′

. α in C2 { D2 ∪ equiv(θ1,D1)

θ1 ∈ solve∆∪ ®α (D1)

®α ♯ Γθ1

®β = var(αθ1) \ (var(Γθ1) ∪ ®α ∪ ®α ′)

®α,α fresh

where equiv(θ,D) =def
{
(α Û≼ α)

�� α ∈ var Û≼(D) ∪ var(D)θ
}
∪

⋃
α ∈ dom(θ)
αθ static

{
(α Û≤ αθ), (αθ Û≤ α)

}
Fig. 5. Constraint simplification.

Constraint simplification is a relation Γ;∆ ⊢ C { D. The Γ is a type environment used to assign

types to the variables in constraints of the form (x Û≼ α). ∆ is a finite subset of Vα
and is used to

record variables that must not be instantiated. When simplifying constraints for a whole program,

we take Γ to be empty and ∆ to be the set of free type variables in the program (presumably empty

as well). Finally, C is the constraint to be simplified and ∆ the result of simplification.

The rules are syntax-directed and deterministic (modulo the choice of fresh variables). Subtyping

and materialization constraints are left unchanged. Variable constraints (x Û≼ α) are converted to

materialization constraints by replacing x with a fresh instance of its type scheme. To simplify a def
constraint, we update the environment and simplify the inner constraint. For ∃®α .C , we simplify C
after performing α-renaming, if needed, to ensure that ®α is fresh. To simplify C1 ∧C2, we simplify

C1 and C2 and take the union of the resulting sets.

Finally, the rule for let constraints is of course the most complicated. To simplify a constraint

let x : ∀®α ;α[C1]
®α ′

. α in C2, we perform five steps:

(1) we simplify the constraint C1 to obtain a set D1;

(2) we apply the solve algorithm to D1 to obtain a solution θ1, if one exists;

(3) we compute the type scheme for x by generalizing the type given by the solution;

(4) we simplify the constraint C2 in the expanded environment to obtain a set D2;

(5) finally, we add to D2 the set equiv(θ1,D1), whose purpose is to constrain the solution to be

an instantiation of θ1 and to yield static types where needed.

In steps (1) and (2), we add ®α to ∆ to ensure that the ®α variables are not instantiated while solving

C1, otherwise we could not generalize them later. The type αθ1 for x is generalized by quantifying

over the ®α variables (checking that they are not introduced in the environment by θ1) as well as

over
®β , which contains all variables in αθ1 that do not appear in any of Γθ1, ®α , or ®α ′

. Recall that

we record in ®α ′
the variables that cannot be generalized (typically because they appeared in the

expression but not in the decoration of the let construct).
We use the set equiv(θ1,D1) to constrain a solution θ to adhere to θ1 in two ways. First, θ must

map to static types all variables in var Û≼(D1) (which θ1 had to map to static types) and all variables

introduced by θ1. Also, θ must satisfy αθ1θ = αθ whenever αθ1 is a static type. To ensure the latter,

we add the two subtyping constraints (α Û≤ αθ1) and (αθ1
Û≤ α). Adding both is redundant here

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:15

(both require equality), but they are needed when we add subtyping. The freshness conditions are

stated informally here. In the Appendix, we give a definition where we track explicitly the variables

we introduce and state the conditions precisely (Figure 11).

The results of type inference can also be used to compile expressions. In particular, when e is an
expression, D is a derivation of Γ;∆ ⊢ ⟨⟨e : t⟩⟩ { D, and θ ⊩∆ D, we can compute a cast language

expression LeMDθ . For reasons of space, the (straightforward) definition of LeMDθ is in the Appendix.

The following results hold.

Theorem 2.8 (Soundness of type inference). Let D be a derivation of Γ; var(e) ⊢ ⟨⟨e : t⟩⟩ { D.
Let θ be a type substitution such that θ ⊩var(e) D. Then, we have Γθ ⊢ e { LeMDθ : tθ .

Theorem 2.9 (Completeness of type inference). If Γ ⊢ e : τ , then, for every fresh type variable
α , there exist D and θ such that Γ; var(e) ⊢ ⟨⟨e : α⟩⟩ { D and {α B τ } ∪ θ ⊩var(e) D.

The latter result, combined with completeness of solve, ensures that inference can compute most

general types for all expressions. In particular, starting from a program (i.e., a closed expression)

e , we pick a fresh variable α and generate ⟨⟨e : α⟩⟩. Theorem 2.9 ensures that, if the program is

well-typed, we can find a derivation D for ∅;∅ ⊢ ⟨⟨e : α⟩⟩ { D and D has a solution. Since solve
is complete, we can compute the principal solution θ of D. Then, αθ is the most general type for

the program and LeMDθ is its compilation driven by the derivation D.

2.3.5 An Example of Type Inference. Let e be the term let α x = (λy : α .y) in 1 +
(
x ((λz : ?. z) 3)

)
(we assume to have a + operator in the language). Since x ((λz : ?. z) 3) is used as a number, to be

well-typed it should be given type Int. In the declarative system, λz : ?. z has type ? → ?, which can

be materialized to Int → Int; then its application to 3 has type Int; therefore applying the identity

function x , we also get type Int. Inference can find this solution, as follows. We use a type variable

β as the expected type, and we generate the constraints below. We have:

C = ⟨⟨e : β⟩⟩ = ⟨⟨let α x = (λy : α .y) in 1 +
(
x ((λz : ?. z) 3)

)
: β⟩⟩ = let x : ∀α ;α1[C1]

ϵ . α1 in C2

C1 = ⟨⟨(λy : α .y) : α1⟩⟩

= ∃α2,α3.
(
def y : α in ⟨⟨y : α3⟩⟩

)
∧ (α Û≼ α2) ∧ (α2 → α3

Û≤ α1)

C2 = ⟨⟨1 +
(
x ((λz : ?. z) 3)

)
: β⟩⟩ = (Int Û≤ β) ∧ ⟨⟨x ((λz : ?. z) 3) : Int⟩⟩

= (Int Û≤ β) ∧
(
∃α4. ⟨⟨x : α4 → Int⟩⟩

∧
(
∃α5. ⟨⟨(λz : ?. z) : α5 → α4⟩⟩ ∧ (b3 Û≤ α5)

))
⟨⟨y : α3⟩⟩ = ∃α6. (y Û≼ α6) ∧ (α6

Û≤ α3)

⟨⟨x : α4 → Int⟩⟩ = ∃α7. (x Û≼ α7) ∧ (α7
Û≤ α4 → Int)

⟨⟨(λz : ?. z) : α5 → α4⟩⟩ = ∃α8,α9.
(
def z : ? in ∃α10. (z Û≼ α10) ∧ (α10

Û≤ α9)
)

∧ (? Û≼ α8) ∧ (α8 → α9
Û≤ α5 → α4)

We simplify C in the empty environment with ∆ = ∅. To do this, we first simplify C1: we have

∅; {α } ⊢ C1 {
{
(α Û≼ α6), (α6

Û≤ α3), (α Û≼ α2), (α2 → α3
Û≤ α1)

}
. Then, through unification we

can obtain the solution θ1 = {α1 B (α → α),α2 B α,α3 B α,α6 B α }. We obtain the expanded

environment x : ∀α . α → α . Then, we simplify C2. We have (x : ∀α . α → α);∅ ⊢ C2 { D2 with

D2 =
{
(γ→γ Û≼ α7), (α7

Û≤ α4→Int), (? Û≼ α10), (α10
Û≤ α9), (? Û≼ α8), (α8→α9

Û≤ α5→α4), (b3 Û≤ α5)
}
.

The final constraint set is D = D2 ∪ equiv(θ1,D1), with

equiv(θ1,D1) = {(α Û≼ α), (α1
Û≤ α → α), (α → α Û≤ α1),

(α2
Û≤ α), (α Û≤ α2), (α3

Û≤ α), (α Û≤ α3), (α6
Û≤ α), (α Û≤ α6)} .

A solution to D is

θ = θ1 ∪ {α4 B Int,α5 B Int,α7 B (Int → Int),α8 B Int,α9 B Int,α10 B Int, β B Int,γ B Int} .

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:16 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

Let D be the derivation of constraint simplification that we have described. Then, the compiled

expression LeMDθ is (omitting identity casts)

let x = (Λα . λα→αy.y) in
(
x [Int]

) (
(λ?→Intz. z⟨? ⇒

ℓ1 Int⟩)⟨? → Int ⇒
ℓ2 Int → Int⟩ 3

)
.

3 GRADUAL TYPINGWITH SUBTYPING
In this section, we add subtyping to the system of the previous section. We just outline the main

differences and the necessary additions without giving the details. In particular, we present only the

declarative systems since developing the algorithmic counterpart requires set-theoretic operations

on types, a topic that we thoroughly deal with in Section 4. For this section we prioritize simplicity,

which is why we give a simple syntactic definition for subtyping instead of the more complex but

extension-robust semantic definition of it, that is postponed to Section 4.

3.1 Declarative System
3.1.1 Subtyping. We suppose to start from a predefined subtyping preorder relation ≤ on B (e.g.,

Odd ≤ Int ≤ Real) and we extend it to the set Tτ of gradual types by the inductive application of

the following inference rules:

? ≤ ? α ≤ α

τ1 ≤ τ ′
1

τ2 ≤ τ ′
2

τ1 × τ2 ≤ τ ′
1
× τ ′

2

τ ′
1
≤ τ1 τ2 ≤ τ ′

2

τ1 → τ2 ≤ τ ′
1
→ τ ′

2

These rules are standard: covariance for products, co-contravariance for arrows. Just notice that,

from the point of view of subtyping, the dynamic type ? is only related to itself, just like a type

variable (cf. [Siek and Taha 2007]).

3.1.2 Type System. The extension of the source gradual language with subtyping could not be

simpler: it suffices to add the standard subsumption rule to the declarative typing rules of Figure 1:

[Subsume]

Γ ⊢ e : τ ′

Γ ⊢ e : τ
τ ′ ≤ τ

The definition of the dynamic semantics does not require any essential change, either. The cast

calculus is the same as in Section 2.2, except that the [Subsume] rule above must be added to

its typing rules and the two cast reduction rules that use type equality must be generalized to

subtyping (again, type soundness will be a consequence of the conservativity of the system in

Section 4), namely:

[Collapse] V ⟨ρ ⇒
p
?⟩⟨? ⇒

q
ρ ′⟩ ↪→ V if ρ ≤ ρ ′

[Blame] V ⟨ρ ⇒
p
?⟩⟨? ⇒

q
ρ ′⟩ ↪→ blame q if ρ ≰ ρ ′

The definition of the compilation of the source language into the “new” cast calculus does not

change either (subsumption is neutral for compilation). The proof that compilation preserves types

stays essentially the same, since we have just added the subsumption rule to both systems.

3.2 Type Inference
The changes required to add subtyping to the declarative system are minimal: define the subtyping

relation, add the subsumption rule, and recheck the proofs since they need slight modifications. On

the contrary, defining algorithms to decide the relations we just defined is more complicated. As

we saw in Section 2.3, this amounts to (1) generating a set of constraints and (2) solving it.

Constraint generation is not problematic. The form of the constraints and the generation algo-

rithm given in Section 2.3 already account for the extension with subtyping: hence, they do not

need to be changed, neither here nor in the next section. Constraint resolution, instead, is a different

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:17

matter. In the previous section, constraints of the form α Û≤ t were actually equality constraints

(i.e., α Û= t) that could be solved by unification. The same constraints now denote subtyping, and

their resolution requires the computation of intersections and unions. To see why, consider the

following OCaml code snippet (that does not involve any gradual typing):

fun x -> if (fst x) then (1 + snd x) else x

We want our system to deduce for this definition the following type:

(Bool×Int) → (Int | (Bool×Int))

To that end, a constraint generation system like the one we present in the next section would

assign to the function the type α → β and generate the following set of four constraints: {(α Û≤

Bool×1), (α Û≤ 1×Int), (Int Û≤ β), (α Û≤ β)}, where 1 denotes the top type (that is, the supertype of

all types). The first constraint is generated because fst x is used in a position where a Boolean is

expected; the second comes from the use of snd x in an integer position; the last two constraints

are produced to type the result of an if_then_else expression (with a supertype of the types of

both branches). To compute the solution of two constraints of the form α Û≤ t1 and α Û≤ t2, the
resolution algorithm must compute the greatest lower bound of t1 and t2 (or an approximation

thereof); likewise for two constraints of the form s1
Û≤ β and s2

Û≤ β the best solution is the least

upper bound of s1 and s2. This yields Bool × Int for the domain —i.e., the intersection of the upper

bounds for α— and (Int | (Bool×Int)) for the codomain—i.e., the union of the lower bounds for β .
In summary, to perform type reconstruction in the presence of subtyping, one must be able to

compute unions and intersections of types. In some cases, as for the domain in the example above,

the solution of these operations is a type of ML (or of the language at issue): then the operations

can be meta-operators computed by the type-checker but not exposed to the programmer. In other

cases, as for the codomain in the example, the solution is a type which might not already exist in the

language: therefore, the only solution to type the expression precisely is to add the corresponding

set-theoretic operations to the types of the language.

The full range of these options can be found in the literature. For instance, Pottier [2001] defines

intersection and union as meta-operations, and it is not possible to simplify the constraints to derive

a type like the one above. Hosoya et al. [2000] implement a hybrid solution in which intersections

are meta-operations while full-fledged unions —which are necessary to encode XML types— are

included in types. Other systems include both intersections and unions in the types, starting from

the earliest work by Aiken and Wimmers [1993] to more recent work by Dolan and Mycroft [2017].

Union and intersection types are the most expressive solution but also the one that is technically

most challenging; this is why the cited works impose some restrictions on the use of unions and

intersections (e.g., no unions in covariant position and no intersections in contravariant ones).

In the next section, we embrace unrestricted union and intersection types, adding them to both

static and gradual types. In particular, we follow the approach of semantic subtyping by Frisch et al.

[2008], which also requires the addition of negation and recursive types.

4 GRADUAL TYPINGWITH SET-THEORETIC TYPES
In this section we add set-theoretic types to our system. From a syntactic viewpoint, this means

we add union and negation type connectives, plus the empty (or bottom) type, to all the previous

categories of types; intersection and the top type are encoded. We also introduce recursive types:

besides the interest of recursive types per se, we need them to solve subtyping constraints following

a technique introduced by Courcelle [1983]. Instead of using explicit recursion, say, by a µ-binder,
we define types coinductively as infinite trees satisfying regularity and contractivity conditions.

Such a definition is equivalent to one using µ-binders, but it fits our framework better.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:18 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

Definition 4.1 (Type syntax). The sets Tt , Tτ , and TT are the sets of terms t , τ , and T produced
coinductively by the following grammars

static types t ::= α | b | t × t | t → t | t ∨ t | ¬t | 0
gradual types τ ::= ? | α | b | τ × τ | τ → τ | τ ∨ τ | ¬τ | 0
type frames T ::= X | α | b | T ×T | T → T | T ∨T | ¬T | 0

and that satisfy the following conditions:
• (regularity) the term has a finite number of different sub-terms;
• (contractivity) every infinite branch of a type contains an infinite number of occurrences of the
product or arrow type constructors.

We introduce the following abbreviations for types: τ1 ∧ τ2 =
def

¬(¬τ1 ∨ ¬τ2), τ1 \ τ2 =
def τ1 ∧ ¬τ2,

1 =def ¬0, and likewise for type frames. We refer to b, ×, and → as type constructors and to ∨, ∧, ¬,

and \ as type connectives.
The contractivity condition is crucial because it removes ill-formed types such as τ = τ ∨ τ

(which does not carry any information about the set denoted by the type) or τ = ¬τ (which cannot

represent any set). It also ensures that the binary relation ▷ ⊆ T 2

τ defined by τ1 ∨ τ2 ▷ τi , ¬τ ▷ τ is

Noetherian (that is, strongly normalizing). This gives an induction principle on Tτ that we will use

without any further reference to the relation.
6
The same applies to type frames. Regularity is only

necessary to ensure the decidability of the subtyping relation.

The semantics of the new types and connectives is given in terms of the subtyping relation:

union and intersection are, respectively, the least upper bound and the greatest lower bound of the

relation, while 0 and 1 are the extrema of the lattice. Therefore, to give meaning to this extension,

we extend the subtyping relation of Section 3. We come here to the limits of the syntactic approach:

not only is giving inference rules for set-theoretic types hard, but it also yields a system that is

hardly intelligible. Therefore we follow the semantic subtyping approach of Frisch et al. [2008]:

we give an interpretation of types as sets and then use this interpretation to define the subtyping

relation in terms of set containment. We would like to view a type as the set of the values that have

that type. However, values cannot be used directly to define the interpretation because of a problem

of circularity. Indeed, in a higher-order language, values include well-typed λ-abstractions; hence
to know which values inhabit a type —and thus define the interpretation— we need to have already

defined the type system (to type λ-abstractions, in particular their bodies), which depends on the

subtyping relation, which in turn depends on the interpretation of types. To break this circularity,

types are instead interpreted as subsets of an interpretation domain, written D and defined below.

Definition 4.2 (Interpretation domain). The interpretation domain D is produced inductively
by the following grammar

D ∋ d ::= cL | (d,d)L | {(d,dΩ), . . . , (d,dΩ)}
L dΩ ::= d | Ω

where L ranges over Pfin(V
α∪VX) (i.e., on finite sets of variables), c ∈ C, and Ω is a symbol not in C.

The elements of D correspond, intuitively, to the results of evaluating expressions. Expressions

can produce constants or pairs of results, so we include both in D. In a higher-order language,

the result of a computation can also be a function. Functions are represented by finite relations

of the form {(d1,d1

Ω), . . . , (d
n,dnΩ)}, where Ω (which is a constant not in D) can appear in second

components to signify that the function fails (i.e., evaluation is stuck) on the corresponding input.

6
The induction principle derived from the relation “▷” states that we can use induction on type connectives but not on type

constructors. This is well-founded because contractivity ensures that there are finitely many type connectives between two

type constructors. For instances of applications of this principle, see Definition B.3 and the proof of Proposition B.10 in the

appendix. All formal details can be found in Appendix B.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:19

The restriction to finite relations is standard in semantic subtyping [Frisch et al. 2008]: intuitively,

one wants the domain to represent all function values; but the use of infinite relations is not possible

for cardinality reasons (since D cannot contain its function space), therefore we include in D all

finite approximations of the computable functions
7
in D, which reproduces the construction of

Scott’s domains. Finally, the elements of D are tagged by finite sets of type variables. As explained

later, these tags are used to define the set-theoretic interpretation of type variables. In particular,

we write tags(d) for the outermost set of variables labeling d , that is, tags(cL) = tags((d1,d2)
L) =

tags({(d1,d
′
1
), . . . , (dn,d

′
n)}

L) = L. The next step is to define the interpretation of types into subsets

of D. We do it for type frames and, thus, for static types as well.

Definition 4.3 (Set-theoretic interpretation). We define the set-theoretic interpretation of
type frames J · K : TT → P(D) as follows:

JαK = {d | α ∈ tags(d) } JT1 ∨T2K = JT1K ∪ JT2K
JX K = {d | X ∈ tags(d) } J¬T K = D \ JT K
JbK = { cL | c ∈ B(b) } J0K = ∅

JT1 ×T2K = { (d1,d2)
L | d1 ∈ JT1K ∧ d2 ∈ JT2K }

JT1 → T2K = { {(d1,d
′
1
), . . . , (dn,d

′
n)}

L | ∀i . di ∈ JT1K =⇒ d ′
i ∈ JT2K }

Strictly speaking the definition above is for inductive types. The reader will find in the appendix

(Definition B.3) a formal definition that handles the coinductive definition of types and such that

the equalities given in Definition 4.3 hold.

The interpretation of type connectives in semantic subtyping is mandatory: the interpretation of

a union type is the union of the interpretations, negation is set-theoretic complementation, and 0
is the empty set. The interpretation of type constructors, instead, is not a priori fixed: it depends on
the characteristics of the language we want to use the types for. This dependence is hardly visible

in the interpretation of basic and product types: for basic types, we assume that a function B(·)
maps each basic type to a set of constants, while products are interpreted as Cartesian products.

The interpretation of arrow types instead is more open-ended and has a more important impact

on the definition of the subtyping relation. In particular, in Definition 4.3 the arrow typeT1 → T2 is

interpreted as the set of (finite) graphs that map elements inT1 only to elements inT2. For instance,

Int → Bool contains all the functions that when applied to an integer either diverge or return a

Boolean value; Int → 0 is the set of all functions that diverge on integer arguments (if they do

not diverge, they must return a value in the empty set, which is impossible); 0 → 1 is the set

of all functions. The type systems assigns a type to an expression only if the expression returns

values only in that type; this implies that all expressions of the empty type 0 are diverging. This

particular interpretation of function spaces fits languages that are: (1) non-deterministic: since the
definition does not prevent the interpretation of a function space to contain a relation with two pairs

(d,d1) and (d,d2) with d1 , d2; (2) non-terminating since the definition does not force a relation in

JT1 → T2K to have as first projection the whole JT1K; (3) with overloaded functions: since it does not
make the two types (T1∨T2) → (T ′

1
∧T ′

2
) and (T1 → T ′

1
)∧(T2 → T ′

2
) equivalent (see Castagna [2005,

§4.5] for details); and (4) strict: since the interpretation identifies divergence and type emptiness

(see Petrucciani et al. [2018, §5] for a thorough discussion of this point). Languages with different

characteristics may then require a different interpretation for arrows.

Finally, notice that the elements of D are labeled by finite sets of variables and that the interpre-

tation of a variable is the set of all the elements it tags. This is a technique proposed by Gesbert et al.

[2015] to let type variables range over arbitrary subsets of D, implementing the idea of convex

model defined by Castagna and Xu [2011]. We refer the reader to the cited papers for more details.

7
A computable function f can be approximated by the set of finite graph functions д such that ∀x . д(x)⇓ ⇒ д(x)= f (x).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:20 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

Definition 4.4 (Subtyping). The subtyping relation ≤T between type frames is defined by

T1 ≤T T2 ⇐⇒
def JT1K ⊆ JT2K

We write ≃T for the subtype equivalence relation defined asT1 ≃T T2 ⇐⇒
def

(T1 ≤T T2) ∧ (T2 ≤T T1).

The subtyping relation is decidable. We invite the reader to peruse Castagna and Frisch [2005]

for a simple introduction to semantic subtyping which shows how to derive a subtyping algorithm

from the set-theoretic interpretation. A detailed description of the implementation of the subtyping

algorithm can be found in Castagna [2018]. For the extension of subtyping to type variables the

reader can refer to Castagna and Xu [2011] and Gesbert et al. [2015].

4.1 Materialization and Subtyping for Set-Theoretic Types
In the previous section we have defined subtyping on type frames (and static types, which are a

subset of type frames), but not on gradual types. This section shows how to define the two relations

we need for the type system: materialization and subtyping on gradual types.

For materialization, nothing needs to change. Definition 2.2, based on discrimination and type

substitutions, is equally valid here though we have changed the syntax of types. Conversely, an

inductive definition would no longer work because types are defined coinductively.

As for subtyping, in Section 3 we treated ? exactly like a type variable. We might be tempted to

do the same here: τ1 ≤ τ2 would hold if and only if T1 ≤T T2 holds, where Ti is τi in which every

occurrence of ? is replaced by a distinguished frame variable X ◦
. This relation is not satisfactory.

Indeed, note that it would validate ? \ ? ≤ 0 (because X ◦ \ X ◦ ≤T 0). As a consequence, combined

with materialization, it would imply that the declarative type system would type every program,

even fully static and nonsensical ones (it would insert casts that always fail).
8
Therefore to define

subtyping, the idea of replacing ? with type variables requires some care: we must distinguish

occurrences that appear below negation from those that do not.

We say that an occurrence of a frame variable X in a type frame T is positive if it is below an

even number of negations and negative otherwise. A type frame is polarized if no frame variable

has both positive and negative occurrences in it.
9
We write T

pol
T for the set of polarized type frames.

The polarized discriminations of a gradual type are defined as ⋆pol(τ) =def ⋆ (τ) ∩ T
pol

T .

Using polarized discrimination, we can define subtyping as follows.

Definition 4.5 (Subtyping on gradual types). The subtyping relation ≤ between gradual types
is defined by

τ1 ≤ τ2 ⇐⇒
def

∃T1 ∈ ⋆pol(τ1),T2 ∈ ⋆pol(τ2).T1 ≤T T2

We write ≃ for the subtype equivalence relation defined as τ1 ≃ τ2 ⇐⇒
def

(τ1 ≤ τ2) ∧ (τ2 ≤ τ1).

It is easy to check that this is a conservative extension of the definition in Section 3: if τ1 and τ2

are non-recursive and do not contain union, negation, or 0, then τ1 ≤ τ2 holds if and only if it can

be derived by those inductive rules.

This definition of subtyping could be computationally problematic because of the existential

quantification. However, it turns out that we do not need to check every discrimination. It is enough

to use the discrimination in which just two frame variables appear (thus eliminating the existential

quantification): one (say, X 1
) to replace all positive occurrences of ? and another (say, X 0

) for all

negative ones. Given τ , we denote this discrimination as τ ⊕
. The following result holds.

Proposition 4.6. Let τ1 and τ2 be gradual types. Then, τ1 ≤ τ2 holds if and only if τ ⊕
1

≤T τ ⊕
2
.

8
This is because any type could then be converted to any other type: for example, Int ≤ Int\(?\?) ≼ Int\(Int\?) ≤ 0 ≤ Bool.

9
The notion of polarized type frame is not directly related to the polarity of blame labels.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:21

This only holds for subtyping: for materialization, we must consider discriminations using more

variables to replace positive occurrences of ? (to allow, for instance, ? → ? ≼ Int → Bool).
This result proves not only that subtyping on gradual types is decidable, but also that it reduces

in linear time to subtyping on static types (clearly, τ ⊕
can be computed from τ in linear time).

Note that we have defined positive and negative occurrences based solely on negation. They

do not coincide with covariant and contravariant occurrences: in X → Y , X is contravariant but

positive; in (¬X) → Y , it is covariant but negative. However, using variance instead of polarity to

define ⋆pol and τ ⊕
gives exactly the same relation (we elaborate on this in Appendix B.4 and B.5.)

The following result shows that we can commute subtyping and materialization so that material-

ization always occurs first, which is useful for type inference.

Proposition 4.7. If τ1 ≤ τ2 ≼ τ3, then there exists a τ ′
2
such that τ1 ≼ τ ′

2
≤ τ3.

4.2 Cast Calculus
We extend the cast language of Section 2 to support set-theoretic types. Expressions and typing

rules remain as in Section 2.2, except that we use the new definition of gradual types for casts,

annotations and type applications, and that we add the typing rule [Subsume] as in §3.1.1.

The operational semantics must be redefined insofar as it depends on the syntax of types. The

first definition we extend is that of grounding. The idea is the same as in §2.2.3: to compute an

intermediate type between two types that are in the materialization relation. However, in §2.2.3

one of these two types was always ? for non-trivial materializations (so that [Collapse] and

[Blame] could then eliminate it); but now, because of type connectives, both endpoints may be

different from ?. For example, the cast ⟨(Int → Int) ∧ (Bool → Bool) ⇒
p
(Int → Int) ∧ ?⟩ makes

a transition between Bool → Bool and ?, which can be decomposed by first transitioning to the

intermediate type ? → ?, as done in Section 2. The intermediate type for this cast would therefore

be (Int → Int) ∧ (? → ?) and the endpoint (Int → Int) ∧ ?. The intuition to generalize this idea is

to apply the grounding operation of Section 2 recursively under type connectives, as formalized in

the following definition.

Definition 4.8 (Grounding and Relative Ground Types). For all types τ , τ ′ ∈ Tτ such that
τ ′ ≼ τ , we define the grounding of τ with respect to τ ′, noted τ /τ ′, as follows:

(τ1 ∨ τ2)/(τ ′
1
∨ τ ′

2
) = (τ1/τ ′

1

) ∨ (τ2/τ ′
2

) ¬τ /¬τ ′ = ¬(τ /τ ′)
(τ1 ∨ τ2)/? = (τ1/?) ∨ (τ2/?) ¬τ /? = ¬(τ /?)
(τ1 → τ2)/? = ? → ? (τ1 × τ2)/? = ? × ?

b/? = b 0/? = 0
α /? = α τ /τ ′ = τ ′ otherwise

A type τ is ground with respect to τ ′ if and only if τ /τ ′ = τ .

Note that τ ′ ≼ τ is a precondition to computing τ /τ ′. Therefore to ease the presentation any

further reference to τ /τ ′ will implicitly imply that τ ′ ≼ τ .
In Section 2, ground types are types ρ such that ρ/? = ρ. They are “skeletons” of types whose

only information is the top-level constructor. The values of the form V ⟨ρ ⇒
p
?⟩ record the essence

of the loss of information induced by materialization. We extend this definition to match the new

definition of grounding by saying that a type τ is ground with respect to τ ′ if τ /τ ′ = τ . Then, the

expressions of the form V ⟨τ ⇒
p
τ ′⟩ are values whenever τ is ground with respect to τ ′. Intuitively,

casts of this form lose information about the top-level constructors of a type: an example is the

cast ⟨(Int → Int) ∧ (? → ?) ⇒
p
(Int → Int) ∧ ?⟩, where we lose information about the ? → ? part,

which becomes ?. Once again, this kind of cast records the essence of this loss.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:22 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

Cast Reductions.

[ExpandL] V ⟨τ1 ⇒
p
τ2⟩ ↪→ V ⟨τ1 ⇒

p τ1/τ2
⟩⟨τ1/τ2

⇒
p
τ2⟩ if τ1/τ2

, τ1,
τ1/τ2

, τ2

[ExpandR] V ⟨τ1 ⇒
p
τ2⟩ ↪→ V ⟨τ1 ⇒

p τ2/τ1
⟩⟨τ2/τ1

⇒
p
τ2⟩ if τ2/τ1

, τ1,
τ2/τ1

, τ2

[CastId] V ⟨τ ⇒
p
τ ⟩ ↪→ V

[Collapse] V ⟨τ1 ⇒
p
τ2⟩⟨τ

′
1
⇒
q
τ ′

2
⟩ ↪→ V if τ1 ≤ τ ′

2

with τ
′
2/τ ′

1

= τ ′
2
and (τ1/τ2

= τ1 or
τ2/τ1

= τ1)

[Blame] V ⟨τ1 ⇒
p
τ2⟩⟨τ

′
1
⇒
q
τ ′

2
⟩ ↪→ blame q if τ1 ≰ τ ′

2

with τ
′
2/τ ′

1

= τ ′
2
and (τ1/τ2

= τ1 or
τ2/τ1

= τ1)

[UpSimpl] V ⟨τ1 ⇒
p
τ2⟩⟨τ

′
1
⇒
q
τ ′

2
⟩ ↪→ V ⟨τ1 ⇒

p
τ2⟩ if τ2 ≤ τ ′

2
, τ1/τ2

= τ2,
τ ′

2/τ ′
1

= τ ′
2

[UpBlame] V ⟨τ1 ⇒
p
τ2⟩⟨τ

′
1
⇒
q
τ ′

2
⟩ ↪→ blame q if τ2 ≰ τ ′

2
, τ1/τ2

= τ2,
τ ′

2/τ ′
1

= τ ′
2

[UnboxSimpl] V ⟨τ1 ⇒
p
τ2⟩ ↪→ V if type(V) ≤ τ2,

τ2/τ1
= τ2, V is unboxed

[UnboxBlame] V ⟨τ1 ⇒
p
τ2⟩ ↪→ blame p if type(V) ≰ τ2,

τ2/τ1
= τ2, V is unboxed

Standard Reductions.

[CastApp] V ⟨τ ⇒
p
τ ′⟩V ′ ↪→ (V V ′⟨τ ′

1
⇒
p̄
τ1⟩)⟨τ2 ⇒

p
τ ′

2
⟩ if τ

′
/τ = τ or τ /τ ′ = τ ′

where ⟨τ ⇒
p
τ ′⟩ ◦ type(V ′) = ⟨τ1 → τ2 ⇒

p
τ ′

1
→ τ ′

2
⟩

[CastProj] πi (V ⟨τ ⇒
p
τ ′⟩) ↪→ (πi V)⟨τi ⇒

p
τ ′i ⟩ if τ

′
/τ = τ or τ /τ ′ = τ ′

where πi (⟨τ ⇒
p
τ ′⟩) = ⟨τi ⇒

p
τ ′i ⟩

[SimplApp] V ⟨τ ⇒
p
τ ′⟩V ′ ↪→ V V ′

if τ /τ ′ = τ

[SimplProj] πi (V ⟨τ ⇒
p
τ ′⟩) ↪→ πi V if τ /τ ′ = τ

[FailApp] V ⟨τ ⇒
p
τ ′⟩V ′ ↪→ blame p if ⟨τ ⇒

p
τ ′⟩ ◦ type(V ′) undef.

[FailProj] πi (V ⟨τ ⇒
p
τ ′⟩) ↪→ blame p if πi (⟨τ ⇒

p
τ ′⟩) undef.

Fig. 6. Cast Reductions for the Cast Calculus

We have accounted for one kind of cast value, but we also need to update the definition of cast

values of the form V ⟨τ1 → τ2 ⇒
p
τ ′

1
→ τ ′

2
⟩ (and similarly for pairs), because function types are

not necessarily syntactic arrows anymore (they can be unions and/or intersections thereof). This

can be done by considering the opposite case of the previous definition, that is, types such that

τ /τ ′ = τ ′. Intuitively, a cast ⟨τ ⇒
p
τ ′⟩ where τ /τ ′ = τ ′ does not lose or gain information about the

top-level constructors of a type: it only acts below the top constructors. That is, both the origin and

target of such a cast have the same syntactic structure “above” constructors, the same “skeleton”.

For example, ⟨(Int → Int) ∧ (? → ?) ⇒
p
(Int → Int) ∧ (Bool → Bool)⟩ is such a cast.

Putting everything together, we obtain the following new definition of values:

V ::= c | λτ→τx . E | (V ,V) | Λ ®α . E

| V ⟨τ1 ⇒
p
τ2⟩ where τ1 , τ2 and where τ1/τ2

= τ1 or
τ1/τ2

= τ2 or
τ2/τ1

= τ1

We say that a value is unboxed if it is not of the form V ⟨τ1 ⇒
p
τ2⟩. We next need to define a new

operator “type” on values (except type abstractions) to resolve particular casts:

type(c) = bc type(λτ1→τ2x . E) = τ1 → τ2

type((V1,V2)) = type(V1) × type(V2) type(V ⟨τ1 ⇒
p
τ2⟩) = τ2

The semantics of the cast calculus for set-theoretic types is given in Figure 6. We only include

the rules that are different from Section 2; the other rules (for let, non-cast applications, type

applications, etc.) are unchanged.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:23

The rules [ExpandL] and [ExpandR] are the immediate counterparts of the rules of the same

name presented in Section 2, adapted for the new grounding operator. The other rules of this

group use the information provided by the grounding operator to reduce to types that can be

easily compared. For example, consider V ⟨τ1 ⇒
p
τ2⟩⟨τ

′
1
⇒
q
τ ′

2
⟩. If τ1/τ2

= τ1, then τ1 contains all the

information about type constructors which the cast lost by going into τ2. Likewise, if
τ ′

2/τ ′
1

= τ ′
2
,

then all the information about type constructors is in τ ′
2
, so the second cast adds constructor

information. Therefore, to simplify the expressions, it suffices to compare τ1 and τ
′
2
, which is what

is done in the rules [Collapse] and [Blame] (the set-theoretic counterparts of their namesakes

in Section 2.2.3). The remaining rules for cast reductions follow the same idea, but handle cases

that only arise because of set-theoretic types. For example, we can give a constant a dynamic type

by subtyping (e.g., Int ≤ Int∨? implies 3 : Int∨?), and thus we can immediately cast the type

of a constant to a more precise type, as in the expression 3⟨Int ∨ ? ⇒
p
Int ∨ (? → ?)⟩. The rules

[UnboxSimpl] and [UnboxBlame] handle such cases by checking if the cast can be removed. The

intuition is that the dynamic part of such casts is useless since it has been introduced by subtyping.

The rules for applications and projections also need to be updated because function and product

types can now be unions and intersections of arrows or products. For applications, we define a

new operator, written ◦, which, given a function cast and the type of the argument, computes an

approximation of the cast such that both its origin and target types are arrows, so that the usual rule

for cast applications defined in Section 2 can be applied. More formally, the operation ⟨τ ⇒
p
τ ′⟩ ◦ τv

computes a cast ⟨τ1 → τ2 ⇒
p
τ ′

1
→ τ ′

2
⟩ such that τv ≤ τ ′

1
, τ ′

2
= min{τ | τ ′ ≤ τv → τ }, τ ≤ τ1 → τ2,

and such that the materialization relation between the two parts of the cast is preserved. This

ensures that the resulting approximation is still well-typed. The definition of this operator is quite

involved, so we relegate it to the appendix (see Definition B.68). The most important point of

this definition is that it requires both types of the cast to be syntactically identical above their

constructors, which explains the presence of the grounding condition in [CastApp]. Moreover, this

operator can also be undefined in some cases, such as if the origin type of the cast is not an arrow

type or if the second type is empty (e.g. ⟨(? → ?) ∧ ¬(Int → Int) ⇒
p
(Int → Int) ∧ ¬(Int → Int)⟩).

Such ill-formed casts are handled by [FailApp]. We apply the same idea to projections and define

an operator, written πi , that computes an approximation of the first or second component of

a cast between two product types. This yields the rules [CastProj] and [FailProj]. The two

remaining rules, [SimplApp] and [SimplProj], handle cases that only appear due to the presence of

set-theoretic types. For instance, it is now possible to apply (or project) a value that has a dynamic

type: V ⟨(Int → Int) ∧ (? → ?) ⇒
p
(Int → Int) ∧ ?⟩V ′

. Here, by subtyping, the function has both

type Int → Int and ?, so it can be applied but it is also dynamic. We show that such casts are

unnecessary and can be harmlessly removed; the rules [SimplApp] and [SimplProj] do just that.

We next state the usual type soundness lemmas and theorems for this cast calculus.

Lemma 4.9 (Progress). For every term E such that ∅ ⊢ E : ∀®α .τ , either there exists a value V
such that E = V , or there exists a term E ′ such that E ↪→ E ′, or there exists a label p such that
E ↪→ blame p.

Lemma 4.10 (Subject Reduction). For all terms E, E ′ and every context Γ, if Γ ⊢ E : ∀®α .τ and
E ↪→ E ′, then Γ ⊢ E ′

: ∀®α .τ .

Theorem 4.11 (Soundness). For every term E such that ∅ ⊢ E : ∀®α .τ , either there exists a valueV
such that E ↪→∗ V , or there exists a label p such that E ↪→∗ blame p, or E diverges.

Another important result for our calculus is Blame Safety, introduced by Wadler and Findler

[2009], which guarantees that the statically typed part of a program cannot be blamed. In our

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:24 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

system, recall that the typing rules that we presented in Section 2.2 enforce the correspondence

between the polarity of the label of a cast and the direction of materialization. That is, we only have

casts of the form ⟨τ ⇒
p
τ ′⟩ where τ ′ ≼ τ (i.e., τ ≤n τ ′) for a negative p and τ ≼ τ ′ (i.e., τ ′ ≤n τ) for

a positive p. Since all this information is encoded in the typing rules, blame safety is a corollary of

Lemma 4.10, and can be stated without resorting to positive and negative subtyping:

Corollary 4.12 (Blame Safety). For every term E such that ∅ ⊢ E : ∀®α .τ , and every blame label
ℓ, E ↪̸→∗ blame ¯ℓ.

Lastly, an important aspect of the cast language defined in this section is that it is a conservative

extension of the cast calculus defined in Section 3; this justifies the choice of the reduction rules.

Denoting by Sub the system defined in Section 3 and by Set the system defined in this section,

there is a strong bisimulation relation between Set and Sub, as stated by the following result.

Theorem 4.13 (Conservativity). For every term E such that ∅ ⊢SUB E : τ , E ↪→
Sub

E ′ ⇐⇒

E ↪→
Set

E ′ and E ↪→
Sub

blame p ⇐⇒ E ↪→
Set

blame p.

4.3 Type Inference
To add set-theoretic types to the source language, we do not need to change the syntax, except, of

course, by allowing set-theoretic types in annotations. The typing rules remain as in Section 2.1,

plus the rule [Subsume] from Section 3.1 which now uses the subtyping relation of Definition 4.4;

likewise for compilation, which is the same as in §2.2.4 plus a rule for subsumption that acts as the

identity on the compiled expressions. Type inference requires adaptation, though. In Section 2.3, we

have described it for the system without subtyping. That description was intended to be extended

here; this motivated some design choices, such as the use of subtyping constraints. Now we describe

what must be changed to adapt the system to set-theoretic types.

4.3.1 Type Constraints and Solutions. We keep the same definition for type constraints except, of

course, for the different definition of types. However, the conditions for a type substitution θ to be

a solution of a constraint D in ∆ must be changed: subtyping constraints now require subtyping

instead of equality. So we write θ ⊩∆ D when:

• for every (t1 Û≤ t2) ∈ D, we have t1θ ≤ t2θ ;
• for every (τ Û≼ α) ∈ D, we have τθ ≼ αθ and, for all β ∈ var(τ), βθ is a static type;

• dom(θ) ∩ ∆ = ∅.

4.3.2 Type Constraint Solving. To solve type constraint sets, we replace unification with an algo-

rithm designed for set-theoretic types and semantic subtyping.

In particular, we use the tallying algorithm of Castagna et al. [2015]. Given a set t1 Û≤ t2
of

subtyping constraints, tallying computes a finite set Θ of type substitutions such that, for all θ ∈ Θ

and (t1 Û≤ t2) ∈ t1 Û≤ t2
, we have t1θ ≤T t2θ . The set computed by tallying can contain multiple

incomparable substitutions (unlike unification, where the principal solution to the problem is a

unique substitution). For example, the constraint (α × β) Û≤ (Int × Int) ∨ (Bool × Bool) has two
solutions, {α B Int, β B Int} and {α B Bool, β B Bool}, which are not comparable. Nevertheless,

the tallying algorithm of Castagna et al. [2015] is sound and complete with respect to the tallying

problem (i.e., checking whether there exists a substitution solving a set t1 Û≤ t2
of subtyping

constraints) insofar as the set of substitutions computed by the algorithm is principal: any other

solution is an instance of one in the set.

We want to use tallying to define an algorithm to solve type constraints. Previously, we converted

materialization constraints (τ Û≼ α) to equality constraints (T Û= α) and used unification. To do the

same here, we first need to extend tallying to handle such equality constraints. This is easy to do in

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:25

our case by adding simple pre- and post-processing steps.
10
The resulting algorithm tally Û=

(·)
(·) is

defined in the appendix. It satisfies the following property:

∀θ ∈ tally Û=
∆

(
t1 Û≤ t2 ∪T Û= α

)
.

∀(t1 Û≤ t2) ∈ t1 Û≤ t2. t1θ ≤T t2θ
∀(T Û= α) ∈ T Û= α . Tθ = αθ

dom(θ) ⊆ var
(
t1 Û≤ t2 ∪T Û= α

)
\ ∆

Using tally Û=
, we can define the version of solve for set-theoretic types following the same

approach as before. However, there are two difficulties.

The main difficulty is the presence of recursive types and their behaviour with respect to

materialization. Consider the recursive type defined by the equation τ = (? × τ) ∨ b, where b is

some basic type. It corresponds to the type of lists of elements of type ?, terminated by a constant

in b. Since recursive types in our definition are infinite regular trees (and not finite trees with

explicit binders), τ = (?×τ) ∨b and τ ′ = (?× ((?×τ ′) ∨b)) ∨b denote exactly the same type. What

types can τ materialize to? Clearly, both τ1 = (Int× τ2) ∨b and τ2 = (Int× ((Bool× τ2) ∨b)) ∨b are

possible. Indeed, ? occurs infinitely many times in τ . Materialization could in principle allow us

to change each occurrence to a different type. However, since types must be regular trees, only a

finite number of occurrences can be replaced with different types (otherwise, the resulting tree

would not be a gradual type). While finite, this number is unbounded.

Recall that step 1 of solve picked a discrimination Tj of each τj such that no frame variable

appeared more than once in Tj . If we consider the recursive type τ above, there is no T such that

T † = τ and that T has no repeated frame variables: it would need to have infinitely many frame

variables and thus be non-regular. While we will never need infinitely many variables, we do not

know in advance (in this pre-processing step) how many we will need.

A solution to this would be to change the tallying algorithm so that discrimination is performed

during tallying. Then, it could be done lazily, introducing as many frame variables as needed.

However, this sacrifices some of the modularity of our current approach.

Currently, we give a definition where no constraint is placed on how many frame variables are

used to replace ?. Of course, a sensible choice is to use different variables as much as possible except

for the infinitely many occurrences of ? in a recursive loop.

There is a second difficulty. For a subtyping constraint (t1 Û≤ t2), a substitution θ computed

by tallying ensures t1θ ≤T t2θ . However, what we want is rather (t1θ)
† ≤ (t2θ)

†
. This does not

necessarily hold unless the type frames t1θ and t2θ are polarized. For example, if the constraint is

(α Û≤ 0) and the substitution is {α B X \X }, we have X \X ≤T 0 but ? \ ? ≰ 0. We define solve so
that it ensures polarization in these cases by tweaking the variable renaming step we already had.

Having described these differences, we can give the definition of the algorithm. Let D be of the

form { (t1

i Û≤ t2

i) | i ∈ I } ∪ { (τj Û≼ α j) | j ∈ J }: then solve∆(D) is defined as follows.

(1) Let T Û= α be { (Tj Û= α j) | j ∈ J , τj , α j } where, for each j ∈ J , T †
j = τj ;

(2) Compute Θ = tally Û=
∆

(
{ (t1

i Û≤ t2

i) | i ∈ I } ∪T Û= α
)
;

(3) Return { (θ0θ
′
0
)† |Vα | θ0 ∈ Θ }, where, for every θ0 ∈ Θ, θ ′

0
is computed as follows:

(a) θ ′
0
= { ®X B ®α ′} ∪ { ®α B ®X ′}

(b) A = var Û≼(D)θ0 ∪
⋃

i ∈I
(
var±(t1

i θ0) ∪ var±(t2

i θ0)
)

(c) ®X = VX ∩A and ®α = var(D) \ (∆ ∪ dom(θ0) ∪A)

(d) ®α ′
and ®X ′

are vectors of fresh variables

In step 3b, we write var±(T) to denote the set of all variables (both α and X) that have both
positive and negative occurrences in T . A type frame T is polarized when var±(T) ∩ VX = ∅: the

10
We rely on some properties of the constraints we generate: e.g., we never have both (T1 Û= α) and (T2 Û= α) with T1 , T2.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:26 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

renaming substitution θ ′
0
is constructed to ensure this for all type frames t1

i θ0θ
′
0
and t2

i θ0θ
′
0
. This

algorithm is sound, though not complete: if θ ∈ solve∆(D), then θ ⊩∆ D.

4.3.3 Structured Constraints, Generation, and Simplification. The syntax of structured constraints

can be kept unchanged except for the change in the syntax of types. Constraint generation is

also unchanged. Constraint simplification still uses the same rules, but it relies on the new solve
algorithm. Soundness still holds, with the same statement as Theorem 2.8.

Theorem 4.14 (Soundness of type inference). LetD be a derivation of Γ; var(e) ⊢ ⟨⟨e : t⟩⟩ { D.
Let θ be a type substitution such that θ ⊩var(e) D. Then, we have Γθ ⊢ e { LeMDθ : tθ .

However, completeness no longer holds, mainly as a consequence of the possible materializations

of ? in recursive types. Therefore, the first step to attempt to recover completeness for inference

would be to study how to change the solve algorithm to make it complete.

Note also that type constraint solving can now produce more than one incomparable solution. So

constraint simplification is non-deterministic: in the rule for let constraints, there can be multiple

solutions to try. Soundness ensures that any solution will give a type and a compiled expression

that are sound with respect to the declarative system.

We conclude the technical presentation of this work with a word about decidability. Althought

we did not always explicitly state it, all the algorithms we presented in this paper terminate, either

because we reduce them to existing typing and subtyping problems that are known to be decidable

(e.g., subtyping and materialization for gradual types) or because of some obvious decreasing

measure (e.g., constraint simplification). This, combined with the soundness and completeness

results implies the decidability of all properties (or just the semi-decidability when, like in the case

of type inference for set-theoretic polymorphic gradual types, only soundness holds).

5 RELATEDWORK
The contributions of this paper include the replacement of consistency with the materialization

rule and the integration of gradual typing with set-theoretic types (intersection, union, negation,

recursive) and Hindley-Milner polymorphism (with inference). The integration of all of these

features is novel, but prior work has studied the combination of subsets of these features.

Castagna and Lanvin [2017] study the combination of gradual typing with set-theoretic types,

but without polymorphism. They employ the approach of Garcia et al. [2016] that uses abstract

interpretation to guide the design of the operations on types. Compared to the work of Castagna

and Lanvin [2017], the present paper adds Hindley-Milner polymorphism with type inference and

gives a new operational semantics that includes blame tracking and better lines up with the prior

work on gradual typing. Ortin and García [2011] also investigate the combination of intersection

and union types with gradual typing, but without higher-order functions and polymorphism. Toro

and Tanter [2017] introduce a new kind of union type inspired by gradual typing, that provides

implicit downcasts from a union to any of its constituent types. There is some overlap in the

intended use-cases of these gradual union types and our design, though there are considerable

differences as well, given that our work handles polymorphism and the full range of set-theoretic

types. A similar overlap exists with the work by Jafery and Dunfield [2017] who introduce gradual

sum types, yet, with the same kind of limitations as Toro and Tanter [2017]. Ângelo and Florido

[2018] study the combination of gradual typing and intersection types, but in a somewhat limited

form, as the design does not support subtyping or the other set-theoretic types.

As discussed in the introduction, Siek and Vachharajani [2008a] showed how to do unification-

based inference in a gradually typed language. Garcia and Cimini [2015] took this a step further

and provide inference for Hindley-Milner polymorphism and prove that their algorithm yields

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:27

principal types. The present paper builds on this prior work and contributes the additional insight

that a special-purpose constraint solver is not needed to handle gradual typing, but an off-the-shelf

unification algorithm can be used in combination of some pre and post-processing of the solution.

In another line of work, Rastogi et al. [2012] develop a flow-based type inference algorithm for

ActionScript to facilitate type specialization and the removal of runtime checks as part of their

optimizing compiler. Campora et al. [2017] improve the support for migrating from dynamic to

static typing by integrating gradual typing with variational types. They define a constraint-based

type inference algorithm that accounts for the combination of these two features.

The combination of gradual typing with subtyping has been studied by many authors in the

context of object-oriented languages. Siek and Taha [2007] showed how to augment an object

calculus with gradual typing. Their declarative type system uses consistency in the elimination

rules and has a subsumption rule to support subtyping. Their algorithmic type system combines

consistency and subtyping into a single relation, consistent-subtyping. Many subsequent works

adapted consistent-subtyping to different settings [Bierman et al. 2014; Garcia et al. 2016; Ina and

Igarashi 2011; Lehmann and Tanter 2017; Maidl et al. 2014; Swamy et al. 2014; Xie et al. 2018].

There is a long history of type inference with intersection types [Kfoury and Wells 2004; Ronchi

Della Rocca 1988]. The style of type inference known as soft typing employed union types [Aiken

et al. 1994; Cartwright and Fagan 1991]. The set-constraints of Aiken andWimmers [1993] employed

both intersection and union types. Our work builds on recent results by Castagna et al. [2016]

regarding type inference for languages with set-theoretic types and Hindley-Milner inference. Our

work extends their approach to handle gradual typing. The addition of subtyping to a language

presents a significant challenge for type inference, and there is a long line of work on this prob-

lem [Aiken and Wimmers 1993; Dolan and Mycroft 2017; Fuh and Mishra 1988; Mitchell 1991;

Pottier 2001]. This challenge is intertwined with that of inference with intersection and union

types, as we discussed in Section 3.2.

Ours is not the first line of work that tries to attack the syntactic hegemony currently ruling the

gradual types community. The first and, alas hitherto unique, other example of this is the already

cited work of Garcia et al. [2016] on “Abstracting Gradual Typing” (AGT) (and its several follow-ups)

which was a source of inspiration both for our work and for Castagna and Lanvin [2017]. AGT uses

abstract interpretation to relate gradual types to sets of static types. This is done via two functions:

a concretization function that maps a gradual type τ into the set of static types obtained by replacing

static types for all occurrences of ? in τ ; an abstraction function that maps a set of static types to

the gradual type whose concretization best approximates the set. Like AGT, we map gradual types

into sets of static types, although they are different from those obtained by concretization, since

we use type variables rather than generic static types. As long as only concretization is involved,

we can follow and reproduce the AGT approach in ours: (1) AGT concretizations of a type τ can be

defined in our system as the set of static types to which τ can materialize; (2) this definition can

then be used to give a different characterization of the AGT’s consistency relation; and (3) by using

that characterization we can show consistency to be decidable, define consistent subtyping, and

show that the problem of deciding consistent subtyping in AGT reduces in linear time to deciding

semantic subtyping.

But then it is not possible to follow the approach further since the AGT definition of the

abstraction function is inherently syntactic and, thus, is unfit to handle type connectives whose

definition is fundamentally of semantic nature. In other terms, we have no idea about whether —let

alone how— AGT could handle set-theoretic types and this is why we had to find a new semantic

characterizations of constructions that in AGT are smoothly obtained by a simple application of

the abstraction function.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:28 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

On the topic of gradual typing and polymorphism, there has been considerable work on explicit

parametric polymorphism, in the context of System F [Ahmed et al. 2011, 2017; Igarashi et al.

2017] and Java Generics [Ina and Igarashi 2011]. The presence of first-class polymorphism, as in

System F, requires considerable care in the operational semantics of a cast calculus. In contrast,

the second-class polymorphism (in the sense of Harper [2006]) in this paper does not significantly

impact the operational semantics because casts do not need to handle the universal type.

The operational semantics for cast calculi are informed by research on runtime contract enforce-

ment, especially regarding blame tracking [Findler and Felleisen 2002]. There is a large body of

research on contracts; the most closely related to this paper are the intersection and union contracts

of Keil and Thiemann [2015] and the polymorphic contracts of Sekiyama et al. [2017].

6 FUTUREWORK
This work lays a foundation for integrating gradual typing and full set-theoretic types and, as such,

it opens many new questions and issues. There are in particular two practical issues that we want

to address in the near future.

The first is to address a restriction we imposed to our system: namely, that it is not possible

to assign intersection types to a function. Forbidding that (other than by subsumption) was an

early design choice of this work, motivated by several reasons: its absence would complicate the

dynamic semantics of the cast calculus (see Castagna and Lanvin [2017], where this restriction is

not present); it would make type reconstruction and constraint solving much more difficult, and

it would have probably hindered completeness even for simple systems; a system without this

restriction would have been interesting only if the language had a type-case construct, which we

wanted to avoid for simplicity and for sticking as close as possible to ML. The drawback is that we

have function types that are less expressive than they could be. For instance, as noted by one of the

referees of POPL, the type deduced for mymap in Section 1 is not completely satisfactory insofar

as it does not capture the precise correlation between input and output. As a matter of fact, the

following program (which transforms lists into arrays and viceversa) would get the same type:

let mymap2 (condition) (f) (x : (α array | α list) & ?) =
if condition then Array.to_list(Array.map f x) else Array.of_list(List.map f x)

We plan to remove this restriction in future, so as to allow the system to check that (the unannotated

version of) mymap has the type

Bool → (α → β) → (((α array & ?) → β array) & ((α list & ?) → β list))

and that the new mymap2 function has instead type

Bool → (α → β) → (((α array & ?) → β list) & ((α list & ?) → β array))

two types where the correlation between the input and the output is more precisely described. In

the long term not only we would like to check the types above, but also we plan to develop flow

analyses that are able to infer such types for code without any type annotation.

The second practical issue we want to address is the implementation of the cast calculus. While it

is still subject of a lively debate whether the insertion of casts significantly penalizes performances

or not (see Takikawa et al. [2016] vs. Bauman et al. [2017]), it is clear that a naive implementation

of the semantics of Figure 6 would be impractical. Therefore, we plan to study how to improve

the performance of the compiled code. For that we will follow a two-pronged approach: on the

one hand, we will try to define abstract machines and suitable restrictions of the cast calculus

with set-theoretic types to target performance; on the other hand, we plan to use the fact that the

declarative semantics of our gradual language provides a choice of different compilation strategies

(corresponding to different ways of using the [Materialize] rule) that can be selected according

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:29

to some code analysis. We hope that by coupling the two we can achieve important performance

gains in the compiled code.

7 CONCLUSIONS
The original goal of this work was to combine polymorphic gradual typing and set-theoretic types.

We soon realized that the task was hard, because the systems were intrinsically different: gradual

typing is of syntactic nature (“?” is a syntactic placeholder), while set-theoretic types rely on a

semantic-based definition of subtyping. To overcome this discrepancy, the only feasible option

seemed to be to give a semantic-oriented interpretation of gradual types: dealing syntactically with

set-theoretic types is unfeasible. This had to be done from scratch, since all existing formalizations

of gradual typing were essentially syntax-based, even the remarkable AGT approach of Garcia et al.

[2016]: although it gives an interpretation of gradual types via a “concretization” function, it relies

on an “abstraction” function whose definition is syntax-based.

The solution we found to this impasse was to give a semantic interpretation of gradual types

indirectly, by mapping them into sets of types that already had a semantic interpretation, namely

those of Castagna and Xu [2011]. Switching to a more semantic-oriented formalization makes all

the chickens come home to roost. We realized that gradual typing, which was hitherto blurred

in the typing rules, could be neatly perceived and captured by a subsumption-like rule using the

preorder on types that we refer to as materialization. We also realized that the materialization

preorder was orthogonal to the much more common preorder on types that is subtyping and that,

therefore, the two preorders could be coupled without much interference (but a lot of interplay).

More than that: when, for pedagogical purposes, we studied a restricted version of our system

(no set-theoretic types and no subtyping, that is, the system of Section 2) we realized that the

restriction of materialization to non set-theoretic types yielded a well-known relation with many

names (precision, less-or-equally-informative, and, ouch, naive subtyping). While the relation was

well known, it had never been singled out in a dedicated, structural rule of the type system. We did

so, and thereby we demonstrated how adding the [Materialize] rule alone is enough to endow a

declarative type system with graduality. We believe that this declarative formulation is a valuable

contribution to the understanding of gradual typing and complements the algorithmic systems on

which previous work has focused. As an example, materialization gives a new meaning to the cast

calculus: its expressions encode the proofs of the declarative systems, and casts, in particular, spot

the places where [Materialize] was used. Casts thus satisfy much stronger invariants than by

using consistency, allowing for a simpler statement of blame safety.

That said, it is not all a bed of roses. While materialization may enlighten the cast calculus

by a previously unseen logical meaning, to define its reduction rules we had to go back to the

down-and-dirty syntax of types, which is not so easy (as witnessed by the 80-page appendix).

Nevertheless, we believe that our declarative formalization makes graduality more intelligible and

that our work raises new questions and opens fresh, unforeseen perspectives such as: what is the

logical meaning of gradual types, what is a complete inference system for gradual set-theoretic

types, what is a denotational semantics of the cast calculus and could it be used to simplify, revise,

and, above all, understand the operational one, how can all of this be transposed to real-world

programming languages. We plan to explore all these issues in future work.

ACKNOWLEDGMENTS
We wish to thank the anonymous POPL reviewers for their detailed comments. This work was

partially supported by a Google PhD Fellowship Program for Victor Lanvin and is partially based

upon work supported by the National Science Foundation under Grant No. 1518844 and 1763922.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:30 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

REFERENCES
Amal Ahmed, Robert Bruce Findler, Jeremy G. Siek, and Philip Wadler. 2011. Blame for all. ACM SIGPLAN Notices 46, 1

(2011), 201–214.

Amal Ahmed, Dustin Jamner, Jeremy G. Siek, and Philip Wadler. 2017. Theorems for Free for Free: Parametricity, With and

Without Types. In International Conference on Functional Programming (ICFP).
Alexander Aiken and Edward L. Wimmers. 1993. Type Inclusion Constraints and Type Inference. In Proceedings of the

Conference on Functional Programming Languages and Computer Architecture (FPCA ’93). ACM, New York, NY, USA,

31–41. https://doi.org/10.1145/165180.165188

Alexander Aiken, Edward L. Wimmers, and T. K. Lakshman. 1994. Soft typing with conditional types. In POPL ’94: Proceedings
of the 21st ACM SIGPLAN-SIGACT symposium on Principles of programming languages. ACM Press, New York, NY, USA,

163–173.

Pedro Ângelo and Mário Florido. 2018. Gradual Intersection Types. In Workshop on Intersection Types and Related Systems.
Spenser Bauman, Carl Friedrich Bolz-Tereick, Jeremy Siek, and Sam Tobin-Hochstadt. 2017. Sound Gradual Typing: Only

Mostly Dead. Proc. ACM Program. Lang. 1, OOPSLA, Article 54 (Oct. 2017), 24 pages. https://doi.org/10.1145/3133878

Gavin Bierman, Martín Abadi, and Mads Torgersen. 2014. Understanding TypeScript. In ECOOP 2014 – Object-Oriented
Programming, Richard Jones (Ed.). Lecture Notes in Computer Science, Vol. 8586. Springer Berlin Heidelberg, 257–281.

John Peter Campora, Sheng Chen, Martin Erwig, and Eric Walkingshaw. 2017. Migrating Gradual Types. Proc. ACM Program.
Lang. 2, POPL (Dec. 2017), 15:1–15:29.

Robert Cartwright and Mike Fagan. 1991. Soft typing. In Conference on Programming Language Design and Implementation
(PLDI). ACM Press, 278–292.

Giuseppe Castagna. 2005. Semantic subtyping: challenges, perspectives, and open problems. In ICTCS 2005, Italian Conference
on Theoretical Computer Science (Lecture Notes in Computer Science). Springer, 1–20.

Giuseppe Castagna. 2018. Covariance and Contravariance: a fresh look at an old issue (a primer in advanced type systems

for learning functional programmers). (2018). First version: 02/2013, last revision: 09/2018. Unpublished manuscript.

Giuseppe Castagna and Alain Frisch. 2005. A gentle introduction to semantic subtyping. In Proceedings of PPDP ’05, the
7th ACM SIGPLAN International Symposium on Principles and Practice of Declarative Programming, pages 198-208, ACM
Press (full version) and ICALP ’05, 32nd International Colloquium on Automata, Languages and Programming, Lecture
Notes in Computer Science n. 3580, pages 30-34, Springer (summary). Lisboa, Portugal. Joint ICALP-PPDP keynote talk.

Giuseppe Castagna and Victor Lanvin. 2017. Gradual Typing with Union and Intersection Types. Proc. ACM Program. Lang.
1, ICFP ’17, Article 41 (Sept. 2017).

Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, and Pietro Abate. 2015. Polymorphic Functions with Set-Theoretic Types.

Part 2: Local Type Inference and Type Reconstruction. In Proceedings of the 42nd ACM Symposium on Principles of
Programming Languages (POPL ’15). ACM, 289–302.

Giuseppe Castagna, Tommaso Petrucciani, and Kim Nguyen. 2016. Set-theoretic Types for Polymorphic Variants. In

Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming (ICFP 2016). ACM, New York,

NY, USA, 378–391. https://doi.org/10.1145/2951913.2951928

Giuseppe Castagna and Zhiwu Xu. 2011. Set-theoretic Foundation of Parametric Polymorphism and Subtyping. In ICFP ’11:
16th ACM-SIGPLAN International Conference on Functional Programming. 94–106.

Bruno Courcelle. 1983. Fundamental properties of infinite trees. Theoretical Computer Science 25 (1983), 95–169.
Stephen Dolan and Alan Mycroft. 2017. Polymorphism, Subtyping, and Type Inference in MLsub. In Proceedings of the

44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2017). ACM, New York, NY, USA, 60–72.

https://doi.org/10.1145/3009837.3009882

Robert Bruce Findler and Matthias Felleisen. 2002. Contracts for Higher-Order Functions. Technical Report NU-CCS-02-05.
Northeastern University.

Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. 2008. Semantic Subtyping: dealing set-theoretically with

function, union, intersection, and negation types. J. ACM 55, 4 (2008), 1–64.

You-Chin Fuh and Prateek Mishra. 1988. Type inference with subtypes. In ESOP ’88, H. Ganzinger (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 94–114.

Ronald Garcia. 2013. Calculating Threesomes, with Blame. In ICFP ’13: Proceedings of the International Conference on
Functional Programming.

Ronald Garcia and Matteo Cimini. 2015. Principal Type Schemes for Gradual Programs. In Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’15). ACM, 303–315.

Ronald Garcia, Alison M Clark, and Éric Tanter. 2016. Abstracting gradual typing. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’16). ACM, 429–442.

Nils Gesbert, Pierre Genevès, and Nabil Layaïda. 2015. A Logical Approach to Deciding Semantic Subtyping. ACM Trans.
Program. Lang. Syst. 38, 1 (2015), 3. https://doi.org/10.1145/2812805

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

https://doi.org/10.1145/165180.165188
https://doi.org/10.1145/3133878
https://doi.org/10.1145/2951913.2951928
https://doi.org/10.1145/3009837.3009882
https://doi.org/10.1145/2812805

Gradual Typing: A New Perspective 16:31

Robert Harper. 2006. Programming Languages: Theory and Practice. Carnegie Mellon University. Available on the web:

http://fpl.cs.depaul.edu/jriely/547/extras/online.pdf.

Fritz Henglein. 1994. Dynamic typing: syntax and proof theory. Science of Computer Programming 22, 3 (June 1994), 197–230.
Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. 2000. Regular Expression Types for XML. In ICFP ’00 (SIGPLAN

Notices), Vol. 35(9). http://www.cis.upenn.edu/~hahosoya/papers/regsub.ps

Yuu Igarashi, Taro Sekiyama, and Atsushi Igarashi. 2017. On Polymorphic Gradual Typing. In International Conference on
Functional Programming (ICFP). ACM.

Lintaro Ina and Atsushi Igarashi. 2011. Gradual typing for generics. In Proceedings of the 2011 ACM international conference
on Object oriented programming systems languages and applications (OOPSLA ’11).

Khurram A. Jafery and Joshua Dunfield. 2017. Sums of Uncertainty: Refinements go gradual. In Symposium on Principles of
Programming Languages (POPL).

Matthias Keil and Peter Thiemann. 2015. Blame Assignment for Higher-order Contracts with Intersection and Union. In

Proceedings of the 20th ACM SIGPLAN International Conference on Functional Programming (ICFP 2015). ACM, New York,

NY, USA, 375–386.

Assaf J. Kfoury and Joe B. Wells. 2004. Principality and type inference for intersection types using expansion variables.

Theoretical Computer Science 311, 1 (2004), 1 – 70.

Nicolás Lehmann and Éric Tanter. 2017. Gradual Refinement Types. In Symposium on Principles of Programming Languages
(POPL).

André Murbach Maidl, Fabio Mascarenhas, and Roberto Ierusalimschy. 2014. Typed Lua: An Optional Type System for Lua.

In Proceedings of the Workshop on Dynamic Languages and Applications (Dyla’14). ACM, New York, NY, USA, Article 3,

10 pages.

Alberto Martelli and Ugo Montanari. 1982. An Efficient Unification Algorithm. ACM Trans. Program. Lang. Syst. 4, 2 (1982),
258–282.

John C. Mitchell. 1991. Type inference with simple subtypes. Journal of Functional Programming 1, 3 (1991), 245–285.

https://doi.org/10.1017/S0956796800000113

Francisco Ortin and Miguel García. 2011. Union and intersection types to support both dynamic and static typing. Inform.
Process. Lett. 111, 6 (2011), 278 – 286. https://doi.org/10.1016/j.ipl.2010.12.006

Tommaso Petrucciani, Giuseppe Castagna, Davide Ancona, and Elena Zucca. 2018. Semantic subtyping for non-strict
languages. Technical Report. https://arxiv.org/abs/1810.05555.

François Pottier. 2001. Simplifying subtyping constraints: a theory. Inf. Comput. 170, 2 (2001), 153–183.
François Pottier and Didier Rémy. 2005. The essence of ML type inference. In Advanced Topics in Types and Programming

Languages, Benjamin C. Pierce (Ed.). MIT Press, Chapter 10, 389–489.

Aseem Rastogi, Avik Chaudhuri, and Basil Hosmer. 2012. The ins and outs of gradual type inference. In Symposium on
Principles of Programming Languages (POPL). 481–494.

Simona Ronchi Della Rocca. 1988. Principal type scheme and unification for intersection type discipline. Theor. Comput. Sci.
59, 1-2 (1988), 181–209.

Taro Sekiyama, Atsushi Igarashi, and Michael Greenberg. 2017. Polymorphic Manifest Contracts, Revised and Resolved.

ACM Trans. Program. Lang. Syst. 39, 1 (Feb. 2017), 3:1–3:36.
Jeremy G. Siek and Walid Taha. 2006. Gradual Typing for Functional Languages. In Proceedings of Scheme and Functional

Programming Workshop. ACM, 81–92.

Jeremy G. Siek and Walid Taha. 2007. Gradual Typing for Objects. In European Conference on Object-Oriented Programming
(LCNS), Vol. 4609. 2–27.

Jeremy G. Siek, Peter Thiemann, and Philip Wadler. 2015a. Blame and coercion: together again for the first time. In ACM
SIGPLAN Notices, Vol. 50. ACM, 425–435.

Jeremy G. Siek and Manish Vachharajani. 2008a. Gradual typing with unification-based inference. In Proceedings of the 2008
Symposium on Dynamic languages. ACM, 7.

Jeremy G. Siek and Manish Vachharajani. 2008b. Gradual Typing with Unification-based Inference. Technical Report

CU-CS-1039-08. University of Colorado at Boulder.

Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. 2015b. Refined criteria for gradual typing. In

LIPIcs-Leibniz International Proceedings in Informatics, Vol. 32. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Nikhil Swamy, Cédric Fournet, Aseem Rastogi, Karthikeyan Bhargavan, Juan Chen, Pierre-Yves Strub, and Gavin Bierman.

2014. Gradual Typing Embedded Securely in JavaScript. In ACM Conference on Principles of Programming Languages
(POPL).

Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and Matthias Felleisen. 2016. Is Sound Gradual

Typing Dead?. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’16). ACM, 456–468. https://doi.org/10.1145/2837614.2837630

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

http://fpl.cs.depaul.edu/jriely/547/extras/online.pdf
http://www.cis.upenn.edu/~hahosoya/papers/regsub.ps
https://doi.org/10.1017/S0956796800000113
https://doi.org/10.1016/j.ipl.2010.12.006
https://arxiv.org/abs/1810.05555
https://doi.org/10.1145/2837614.2837630

16:32 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

Matías Toro and Éric Tanter. 2017. A Gradual Interpretation of Union Types. In Proceedings of the 24th Static Analysis
Symposium (SAS 2017) (Lecture Notes in Computer Science), Vol. 10422. Springer-Verlag, New York City, NY, USA, 382–404.

PhilipWadler and Robert Bruce Findler. 2009. Well-typed programs can’t be blamed. In European Symposium on Programming.
Springer, 1–16.

Mitchell Wand. 1987. A simple algorithm and proof for type inference. Fundamenta Informaticae 10 (1987), 115–122.
Ningning Xie, Xuan Bi, and Bruno C. d. S. Oliveira. 2018. Consistent Subtyping for All. In Programming Languages and

Systems, Amal Ahmed (Ed.). Springer International Publishing, Cham, 3–30.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:33

A GRADUAL TYPING FOR HINDLEY-MILNER SYSTEMS: RESULTS
A.1 Type System of the Source Language
We use the symbol ♯ throughout to denote disjointness of sets (usually, sets of type or frame

variables). We write A ♯ B for A∩ B = ∅, when A and B are sets. When multiple sets appear on the

left- or on the right-hand side of ♯ it is intended that their union should be disjoint from what is on

the other side. When a type, a type scheme, a type environment, or an expression appears, we take

the set of its type variables (var(·)). For type frames, we take both type and frame variables. For

vectors, we take their elements (or the variables in their elements). When a substitution θ appears,

we take dom(θ) ∪ var(θ). We write ♯ {A1, . . . ,An} to mean that A1, . . . , An are pairwise disjoint.

We writeV forVα ∪VX
. We use the metavariable A to range over it.

We say that a type substitution θ is static if it maps type variables to static types. When α is a

set of variables, we say that θ is static on α , and we write static(θ,α), to mean that αθ is static for

every α ∈ α .
We show a weakening property which will be needed in the proof of completeness of type

inference. First, we give some preliminary definitions and results.

Given two type schemes S1 = ∀®α1. τ1 and S2 = ∀®α2. τ2, we write S1 ⊑≺ S2 when, for every instance

τ2{ ®α2 B ®t2} of S2, there exists an instance τ1{ ®α1 B ®t1} such that τ1{ ®α1 B ®t1} ≼ τ2{ ®α2 B ®t2}. We

extend this definition to type environments: when Γ1 and Γ2 are two environments with the same

domain, we write Γ1 ⊑≺ Γ2 when, for every x ∈ dom(Γ1), Γ1(x) ⊑≺ Γ2(x).
We have the following results.

Lemma A.1. Let S = ∀®α . τ . The following hold:

• for every instance τ { ®α B ®t} of S , var(S) ⊆ var(τ { ®α B ®t});
• there exists an instance τ { ®α B ®t} of S such that var(S) = var(τ { ®α B ®t});

Proof. For the first point, just observe that var(τ { ®α B ®t}) ⊆ var(τ) \ ®α = var(S).
For the second point, we take any instance in which ®t is a vector of ground types. □

Lemma A.2. If τ1 ≼ τ2, then var(τ1) ⊆ var(τ2).

Proof. Since τ1 ≼ τ2, we have T1θ = τ2 with T1 such that T †
1
= τ1 and with θ : VX → Tτ . Since

θ only maps frame variables, every type variable α ∈ var(τ1), which occurs in T1, must also occur

in T1θ . □

Lemma A.3. If S1 ⊑≺ S2, then var(S1) ⊆ var(S2). If Γ1 ⊑≺ Γ2, then var(Γ1) ⊆ var(Γ2).

Proof. Let S1 = ∀®α1. τ1 and S2 = ∀®α2. τ2 be such that S1 ⊑≺ S2. By Lemma A.1, we can find an

instance τ2{ ®α2 B ®t2} of S2 such that var(τ2{ ®α2 B ®t2}) = var(S2). By definition of S1 ⊑≺ S2, there

exists an instance τ1{ ®α1 B ®t1} of S1 such that τ1{ ®α1 B ®t1} ≼ τ2{ ®α2 B ®t2}. By Lemma A.1, we have

var(S1) ⊆ var(τ1{ ®α1 B ®t1}). By Lemma A.2, we have var(τ1{ ®α1 B ®t1}) ⊆ var(τ2{ ®α2 B ®t2}). Hence,
var(S1) ⊆ var(S2).

The result on type environments is a straightforward corollary. □

The following weakening lemma holds.

Lemma A.4.

Γ2 ⊢ e : τ

Γ1 ⊑≺ Γ2

}
=⇒ Γ1 ⊢ e : τ

Proof. By induction on the derivation of Γ2 ⊢ e : τ and by case on the last rule applied.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:34 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

Case: [Var]

We have e = x . By inversion of [Var], we have:

Γ2(x) = ∀®α2. τ2

τ = τ2{ ®α2 B ®t2}

By definition of Γ1 ⊑ Γ2, we have Γ1(x) ⊑ Γ2(x). Let ∀®α1. τ1 be Γ1(x). Then we can find an

instance τ1{ ®α1 B ®t1} of Γ1(x) such that τ1{ ®α1 B ®t1} ≼ τ . We have:

Γ1 ⊢ x : τ1{ ®α1 B ®t1} by [Var]

Γ1 ⊢ x : τ by [Materialize]

Case: [Const] Straightforward.

Case: [Abstr], [AAbstr], [App], [Pair], [Proj], [Materialize]

By direct application of the induction hypothesis.

For [Abstr] and [AAbstr], note that, for every τ , τ ⊑≺ τ and therefore (Γ1, x : τ) ⊑≺ (Γ2, x : τ).
Case: [Let]

We have derived Γ2 ⊢ (let ®α x = e1 in e2) : τ from the premises:

Γ2 ⊢ e1 : τ1

Γ2, x : ∀®α, ®β . τ1 ⊢ e2 : τ

®α, ®β ♯ Γ2 and
®β ♯ Γ2

We have

(1) Γ1 ⊢ e1 : τ1 by IH

Γ1, x : ∀®α, ®β . τ1 ⊑ Γ2, x : ∀®α, ®β . τ1 because S ⊑≺ S for every type scheme S

(2) Γ1, x : ∀®α, ®β . τ1 ⊢ e2 : τ by IH

(3) var(Γ1) ⊆ var(Γ2) by Lemma A.3

(4) ®α, ®β ♯ Γ1 from (3)

Γ1 ⊢ (let ®α x = e1 in e2) : τ from (1), (2), (4), and
®β ♯ e1 □

Proposition A.5. For every types τ1, τ2,

τ1 ∼ τ2 ⇐⇒ ∃τ0 such that

{
τ1 ≼ τ0

τ2 ≼ τ0

Proof. • We first prove the implication from left to right. Let us first remark that if τ1 = ?
then it is sufficient to take τ0 = τ2 since τ1 = ? ≼ τ2 and τ2 ≼ τ2. Similarly, if τ2 = ? then we

can take τ0 = τ1 for the same reason. We then prove the result by induction on τ1, for the

cases where both τ1 and τ2 are not ?.
– τ1 = α . Then we necessarily have τ2 = α . Thus we can take τ0 = τ1 = τ2.

– τ1 = b. Then we necessarily have τ2 = b. Thus we can take τ0 = τ1 = τ2.

– τ1 = σ1 × σ ′
1
. By consistency, we have τ2 = σ2 × σ ′

2
where σ1 ∼ σ2 and σ ′

1
∼ σ ′

2
. Thus,

by induction, there exists two types σ0 and σ ′
0
such that σi ≼ σ0 and σ ′

i ≼ σ ′
0
for every

i ∈ {1, 2}. We then deduce that σi × σ ′
i ≼ σ0 × σ ′

0
for every i ∈ {1, 2}, hence the result.

– τ1 = σ1 → σ ′
1
. This case is proved in the same way as the previous one.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:35

Gradual types Tτ ∋ τ ::= ? | b | τ → τ

Expressions e ::= x | c | λx : τ . e | e e

[Var]

Γ ⊢ x : Γ(x)
[Const]

Γ ⊢ c : bc
[App]

Γ ⊢ e1 : τ ′ → τ Γ ⊢ e2 : τ ′

Γ ⊢ e1 e2 : τ

[AAbstr]

Γ, x : τ ′ ⊢ e : τ

Γ ⊢ (λx : τ ′. e) : τ ′ → τ
[Materialize]

Γ ⊢ e : τ ′

Γ ⊢ e : τ
τ ′ ≼ τ

Fig. 7. Monomorphic restriction of the implicative fragment

• We now prove the other direction. We first remark that, as before, if τ1 = ? or τ2 = ? then the

result is immediate. Thus, we reason by induction over τ0 for the cases where both τ1 and τ2

are not ?.
– τ0 = ?. Necessarily, τ1 = τ2 = ? in this case, which is forbidden.

– τ0 = α . Then necessarily τ1 = τ2 = α , and the result is immediate.

– τ0 = b. Same as before.

– τ0 = σ0 → σ ′
0
. By materialization, we have τi = σi → σ ′

i where σi ≼ σ0 and σ ′
i ≼ σ ′

0
for

every i ∈ {1, 2}. By induction, we then have σ1 ∼ σ2 and σ
′
1
∼ σ ′

2
and the result follows by

definition of consistency.

– τ0 = σ0 × σ ′
0
. This case is proved in the same way as the previous one.

□

Denoting by ⊢ST the typing judgments obtained in the system of Siek and Taha [2006], and by ⊢1

the typing judgments obtained in the monomorphic implicative restriction of our system shown in

Figure 7, we have the following result:

Proposition A.6. If Γ ⊢ST e : τ then Γ ⊢1 e : τ . Conversely, if Γ ⊢1 e : τ then there exists a type τ ′

such that Γ ⊢ST e : τ ′ and τ ′ ≼ τ .

Proof. We prove the two results by induction over e and the last rule used in the typing

derivation.

• Γ ⊢ST e : τ .
– [GVar] Γ ⊢ST x : τ . By hypothesis, Γ(x) = τ . We immediately conclude by rule [Var] that

Γ ⊢1 x : τ .
– [GConst]. Γ ⊢ST c : τ . By hypothesis, ∆c : τ , which is equivalent to bc = τ in our system.

Thus, we conclude by rule [Const] that Γ ⊢1 c : τ .
– [GLam]. This rule is identical to [AAbstr].

– [GApp1] Γ ⊢ST e1 e2 : ?, when Γ ⊢ST e1 : ? and Γ ⊢ST e2 : τ2. By induction, we have

Γ ⊢1 e1 : ? and Γ ⊢1 e2 : τ2. Then, by [Materialize] we obtain Γ ⊢1 e1 : τ2 → ? since

? ≼ τ2 → ?. We can then apply rule [App] to deduce that Γ ⊢1 e1 e2 : ?.
– [GApp2] Γ ⊢ST e1 e2 : τ ′, when Γ ⊢ST e1 : τ → τ ′ and Γ ⊢ST e2 : τ2 and τ ∼ τ2. By induction,

we have Γ ⊢1 e1 : τ → τ ′ and Γ ⊢1 e2 : τ2. Moreover, by Proposition A.5, we know that

there exists a type τ0 such that τ ≼ τ0 and τ2 ≼ τ0. Therefore, by applying [Materialize]

we deduce that Γ ⊢1 e1 : τ0 → τ ′ and Γ ⊢1 e2 : τ0. We then conclude by applying [App] to

deduce that Γ ⊢ST e1 e2 : τ ′.
• Γ ⊢1 e : τ .
– [Var] Γ ⊢1 x : τ . By hypothesis, Γ(x) = τ . Thus we can immediately conclude by rule

[GVar].

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:36 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

Gradual types Tτ ∋ τ ::= ? | α | b | τ → τ

Expressions e ::= x | c | λx . e | λx : τ . e | e e

[Var]

Γ ⊢ x : Γ(x)
[Const]

Γ ⊢ c : bc
[App]

Γ ⊢ e1 : τ ′ → τ Γ ⊢ e2 : τ ′

Γ ⊢ e1 e2 : τ

[Abstr]

Γ, x : t ⊢ e : τ

Γ ⊢ (λx . e) : t → τ
[AAbstr]

Γ, x : τ ′ ⊢ e : τ

Γ ⊢ (λx : τ ′. e) : τ ′ → τ

[Materialize]

Γ ⊢ e : τ ′

Γ ⊢ e : τ
τ ′ ≼ τ

Fig. 8. Polymorphic restriction of the implicative fragment

– [Const] Γ ⊢1 c : bc . bc = ∆c in the system of Siek and Taha [2006]. Thus we can conclude

by rule [GConst].

– [App] Γ ⊢1 e1 e2 : τ when Γ ⊢1 e1 : τ ′ → τ and Γ ⊢1 e2 : τ ′. By induction, we have

Γ ⊢ST e1 : τ1 and Γ ⊢ST e2 : τ2 where τ1 ≼ τ ′ → τ and τ2 ≼ τ ′. Then, if τ1 = ? then we

deduce by rule [GApp1] that Γ ⊢ST e1 e2 : ? and ? ≼ τ , hence the result. Otherwise, we have
τ1 = σ ′ → σ where σ ′ ≼ τ ′ and σ ≼ τ . Since τ2 ≼ τ ′, we deduce by Proposition A.5 that

σ ′ ∼ τ2. Therefore, we deduce by rule [GApp2] that Γ ⊢ST e1 e2 : σ and the result follows

from the fact that σ ≼ τ .
– [AAbstr] Γ ⊢1 λx : τ ′.e : τ ′ → τ when Γ, x : τ ′ ⊢1 e : τ . By induction, Γ, x : τ ′ ⊢ST e : σ
where σ ≼ τ . Thus, by rule [GLam], we obtain Γ ⊢ST λx : τ ′.e : τ ′ → σ , and the result

follows from the fact that τ ′ → σ ≼ τ ′ → τ .
– [Materialize] Γ ⊢1 e : τ when Γ ⊢1 e : τ ′ and τ ′ ≼ τ . By induction, we have Γ ⊢ST e : τ ′′

where τ ′′ ≼ τ ′. By transitivity of the materialization, τ ′′ ≼ τ and the result follows.

□

Now, denoting by ⊢GC the typing judgments obtained in the system of Garcia and Cimini [2015],

and by ⊢→ the typing judgments obtained in the polymorphic implicative restriction of our system

shown in Figure 8, we have the following result:

Proposition A.7. If Γ ⊢GC e : τ then Γ ⊢→ e : τ . Conversely, if Γ ⊢→ e : τ then there exists a type
τ ′ such that Γ ⊢GC e : τ ′ and τ ′ ≼ τ .

Proof. The proof is mostly identical to the proof of Proposition A.6. The main difference is the

presence of the rule for untyped lambda-abstractions [Abstr], which is however identical to the

rule [Uλ] of Garcia and Cimini [2015]. □

A.2 Compilation
Figures 9 and 10 give, respectively, the typing rules of the cast language and the compilation rules.

Proposition A.8. If Γ ⊢ e : τ , then there exists an E such that Γ ⊢ e { E : τ .

Proof. By induction on the derivation of Γ ⊢ e : τ . □

Proposition A.9. If Γ ⊢ e { E : τ , then Γ ⊢ e : τ and Γ ⊢ E : τ .

Proof. By induction on the derivation of Γ ⊢ e { E : τ and by case on last rule applied. Showing

Γ ⊢ e : τ is trivial.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:37

[Var]

Γ ⊢ x : ∀®α . τ
Γ(x) = ∀®α . τ [Const]

Γ ⊢ c : bc

[Abstr]

Γ, x : τ ′ ⊢ E : τ

Γ ⊢ (λτ
′→τx . E) : τ ′ → τ

[App]

Γ ⊢ E1 : τ ′ → τ Γ ⊢ E2 : τ ′

Γ ⊢ E1 E2 : τ

[Pair]

Γ ⊢ E1 : τ1 Γ ⊢ E2 : τ2

Γ ⊢ (E1, E2) : τ1 × τ2

[Proj]

Γ ⊢ E : τ1 × τ2

Γ ⊢ πi E : τi

[Let]

Γ ⊢ E1 : ∀®α . τ1 Γ, x : ∀®α . τ1 ⊢ E2 : τ

Γ ⊢ (let x = E1 in E2) : τ

[TAbstr]

Γ ⊢ E : τ

Γ ⊢ Λ ®α . E : ∀®α . τ
®α ♯ Γ [TApp]

Γ ⊢ E : ∀®α . τ

Γ ⊢ E [®t] : τ { ®α B ®t}

[Cast
⊕
]

Γ ⊢ E : τ ′

Γ ⊢ E⟨τ ′ ⇒
ℓ
τ ⟩ : τ

τ ′ ≼ τ [Cast
⊖
]

Γ ⊢ E : τ ′

Γ ⊢ E⟨τ ′ ⇒
¯ℓ
τ ⟩ : τ

τ ≼ τ ′

Fig. 9. Typing rules of the cast language.

[Var]

Γ ⊢ x { x [®t] : τ { ®α B ®t}
Γ(x) = ∀®α . τ [Const]

Γ ⊢ c { c : bc

[Abstr]

Γ, x : t ⊢ e { E : τ

Γ ⊢ (λx . e) { (λt→τx . E) : t → τ
[AAbstr]

Γ, x : τ ′ ⊢ e { E : τ

Γ ⊢ (λx : τ ′. e) { (λτ
′→τx . E) : τ ′ → τ

[App]

Γ ⊢ e1 { E1 : τ ′ → τ Γ ⊢ e2 { E2 : τ ′

Γ ⊢ e1 e2 { E1 E2 : τ

[Pair]

Γ ⊢ e1 { E1 : τ1 Γ ⊢ e2 { E2 : τ2

Γ ⊢ (e1, e2) { (E1, E2) : τ1 × τ2

[Proj]

Γ ⊢ e { E : τ1 × τ2

Γ ⊢ πi e { πi E : τi

[Let]

Γ ⊢ e1 { E1 : τ1 Γ, x : ∀®α, ®β . τ1 ⊢ e2 { E2 : τ

Γ ⊢ (let ®α x = e1 in e2) { (let x = Λ ®α, ®β . E1 in E2) : τ
®α, ®β ♯ Γ and

®β ♯ e1

[Materialize]

Γ ⊢ e { E : τ ′

Γ ⊢ e { E⟨τ ′ ⇒
ℓ
τ ⟩ : τ

τ ′ ≼ τ

Fig. 10. Compilation from the source language to the cast language.

Showing Γ ⊢ E : τ is also straightforward. If the last rule is [Var], we use [Var] and [TApp]. If

the last rule is [Const], [App], [Pair], or [Proj], we use the same rule. If is is [Abstr] or [AAbstr],

we use [Abstr]. If it is [Materialize], we use [Cast
⊕
].

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:38 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

Finally, if the last rule is [Let], from the premise Γ ⊢ e1 { E1 : τ1 we get, by IH, Γ ⊢ E1 : τ1. Then

(since ®α, ®β ♯ Γ) we get Γ ⊢ Λ ®α, ®β . E1 : ∀®α, ®β . τ1 by [TAbstr]. From the premise Γ, x : ∀®α, ®β . τ1 ⊢ e2 {

E2 : τ we get, by IH, Γ, x : ∀®α, ®β . τ1 ⊢ E2 : τ . We apply [Let] to conclude. □

Corollary A.10. If Γ ⊢ e : τ , then there exists an E such that Γ ⊢ e { E : τ and Γ ⊢ E : τ .

Proof. Corollary of Propositions A.8 and A.9. □

A.3 Type Inference
A.3.1 Type Constraint Solving. We assume that unify(·)(·) satisfies the following properties:

• if unify∆(T 1 Û= T 2) = θ , then dom(θ) ⊆ var(T 1 Û= T 2) \ ∆ and var(θ) ⊆ var(T 1 Û= T 2) \ dom(θ)

and, for every (T 1 Û= T 2) ∈ T 1 Û= T 2
, we have T 1θ = T 2θ ;

• if θ ′ is a unifier for T 1 Û= T 2
and dom(θ ′) ∩ ∆ = ∅, then unify∆(T 1 Û= T 2) = θ and θ ′ = θθ ′.

(We use var(θ) to denote

⋃
A∈dom(θ) var(Aθ), where A ranges over both type and frame variables.)

Proposition A.11. If θ ∈ solve∆(D), then all of the following hold:
• θ ⊩∆ D;
• dom(θ) ⊆ var(D);
• var(D)θ ⊆ var Û≼(D)θ ∪ ∆.

Proof. Let θ be in solve∆(D), where D = { (t1

i Û≤ t2

i) | i ∈ I } ∪ { (τj Û≤ α j) | j ∈ J }. Then, we have:

θ = (θ0θ
′
0
)† |Vα θ0 = unify∆(T 1 Û= T 2) θ ′

0
= { ®X B ®α ′} ∪ { ®α B ®X ′}

T 1 Û= T 2 = { (t1

i Û= t2

i) | i ∈ I } ∪ { (Tj Û= α j) | j ∈ J }

®X = VX ∩ var Û≼(D)θ0 ®α = var(D) \ (∆ ∪ dom(θ0) ∪ var Û≼(D)θ0) ®α ′, ®X ′
fresh

We first prove θ ⊩∆ D. First, we show that, for every i ∈ I , we have t1

i θ = t2

i θ . Note that, since

var(t1

i)∪var(t
2

i) ⊆ Vα
, we have t1

i θ = (t1

i θ0θ
′
0
)† and t2

i θ = (t2

i θ0θ
′
0
)†. By the properties of unification,

we have t1

i θ0 = t2

i θ0. Then, we also have t1

i θ0θ
′
0
= t2

i θ0θ
′
0
and finally t1

i θ = t2

i θ .

Now, we show that, for every j ∈ J , we have τjθ ≼ α jθ . We have τjθ = (τjθ0θ
′
0
)† and α jθ =

(α jθ0θ
′
0
)†. By the properties of unification, we haveTjθ0 = α jθ0 and therefore (Tjθ0θ

′
0
)† = (α jθ0θ

′
0
)†.

Therefore, we must show (τjθ0θ
′
0
)† ≼ (Tjθ0θ

′
0
)†, which holds trivially since τj = T

†
j .

Now, we show that, for every j ∈ J and every β ∈ var(τj), βθ is a static type. Note that

β ∈ var Û≼(D). We have βθ = (βθ0θ
′
0
)†. If βθ were not static, there would be an X ∈ var(βθ0θ

′
0
): we

show that this cannot happen. If there were anX ∈ var(βθ0θ
′
0
), then there would be anA ∈ Vα∪VX

such that A ∈ var(βθ0) and X ∈ var(Aθ ′
0
). We would have A ∈ var Û≼(D)θ0. Therefore, if A ∈ VX

,

then A ∈ ®X and it would be mapped to a static type variable; if A ∈ Vα
, then it could not be in

dom(θ ′
0
), so it could not be mapped to a type containing frame variables.

Finally, we show that dom(θ) ∩ ∆ = ∅. Let α ∈ ∆. We show α < dom(θ), that is, αθ = α . We

have αθ = (αθ0θ
′
0
)†. By the properties of unification, since α ∈ ∆, we have αθ0 = α . We also have

αθ ′
0
= α because α < ®α .

To prove dom(θ) ⊆ var(D), consider α < var(D). We prove α < dom(θ), that is, αθ = α . We have

αθ = (αθ0θ
′
0
)†. By the properties of unification, since α < var(D), αθ0 = α . Then, since α < var(D),

we have α < ®α ; hence, αθ ′
0
= α .

To prove var(D)θ ⊆ var Û≼(D)θ∪∆, consider an arbitrary α ∈ var(D)θ . We show α ∈ var Û≼(D)θ∪∆.
By definition of var(D)θ , theremust exist a β ∈ var(D) such thatα ∈ var(βθ).We have βθ = (βθ0θ

′
0
)†.

Either α ∈ var(βθ0) \ dom(θ ′
0
) or α ∈ var(θ ′

0
).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:39

• If α ∈ var(βθ0) \ dom(θ ′
0
), then α ∈ var(D) (because β ∈ var(D) and because solutions of

unification do not introduce new variables). Then, α ∈ ∆ ∪ dom(θ0) ∪ var Û≼(D)θ0. The case

α ∈ dom(θ0) is impossible because θ0 is idempotent. Therefore, α ∈ ∆∪ var Û≼(D)θ0 and (since

α < dom(θ ′
0
)) α ∈ ∆ ∪ var Û≼(D)θ .

• If α ∈ var(θ ′
0
), then α ∈ ®Xθ ′

0
. Therefore, there exists anX ∈ var Û≼(D)θ0 such that α ∈ var(Xθ ′

0
).

Hence, α ∈ var Û≼(D)θ . □

Lemma A.12. Let θ : Vα → Tτ and θ ′ : V → TT be such that ∀α ∈ Vα . (αθ ′)† = αθ . Then, for
every T , we have T †θ ≼ (Tθ ′)†.

Proof. We choose
ˆθ : Vα → TT such that:

∀α ∈ Vα . (α ˆθ)† = αθ varX (ˆθ) ♯ dom(θ ′), varX (T) .

We define
ˇθ : VX → Tτ as

ˇθ = {X B (Xθ ′)†}X ∈dom(θ ′) ∪ {X B ?}X ∈varX (T ˆθ)\dom(θ ′)
.

We have (T ˆθ)† = T †θ because:

• for every α ∈ var(T), we have (α ˆθ)† = αθ = α†θ ;

• for every X ∈ var(T), we have (X ˆθ)† = X † = ? = ?θ = X †θ .

We have T ˆθ ˇθ = (Tθ ′)† because:

• for every α ∈ var(T)∩dom(ˆθ), since varX (ˆθ) ♯ dom(ˇθ), we have α ˆθ ˇθ = α ˆθ and α(ˆθ ∪ ˇθ) = α ˆθ ;

• for every α ∈ var(T) \ dom(θ), since αθ = α , also α ˆθ = α and αθ ′ = α : then we have

α ˆθ ˇθ = α = (αθ ′)†;
• for every X ∈ var(T) ∩ dom(θ ′), we have X ˆθ ˇθ = X ˇθ = (Xθ ′)†;

• for every X ∈ var(T) \dom(θ ′), we have X ∈ var(T ˆθ) \dom(θ ′): then, X ˆθ ˇθ = X ˇθ = ? = X † =

(Xθ ′)†.

Therefore, we have T ˆθ ∈ ⋆(T †θ) and T ˆθ ˇθ = (Tθ ′)† with ˇθ : VX → Tτ : hence, T
†θ ≼ (Tθ ′)†. □

Proposition A.13. If θ ⊩∆ D, then there exist two substitutions θ ′ and θ ′′ such that:
• θ ′ ∈ solve∆(D);
• dom(θ ′′) ⊆ var(θ ′) \ var(D);
• for every α , αθ ′(θ ∪ θ ′′) ≼ α(θ ∪ θ ′′);
• for every α such that αθ ′ is static, αθ ′(θ ∪ θ ′′) ≼ α(θ ∪ θ ′′);

Proof. Let D = { (t1

i Û≤ t2

i) | i ∈ I } ∪ { (τj Û≤ α j) | j ∈ J } and let θ : Vα → Tτ be such that

θ ⊩∆ D. The first step of computing solve∆(D) is to construct

T 1 Û= T 2 = { (t1

i Û= t2

i) | i ∈ I } ∪ { (Tj Û= α j) | j ∈ J }

with each Tj such that T †
j = τj and with unique frame variables.

First, we show that from θ we can obtain a substitution
ˇθ : V → TT which is a unifier forT 1 Û= T 2

.

For every j ∈ J , we have τjθ ≼ α jθ ; furthermore, θ is static on all variables of τj . By definition of

materialization, there exist a type frame T ′
j ∈ ⋆(τjθ) and a substitution θ j : VX → Tτ such that

T ′
j θ j = α jθ . In particular, we can choose T ′

j = Tjθ (because Tjθ ∈ ⋆(τjθ) and because it has unique

frame variables) and we can assume dom(θ j) = varX (Tj). Let ˆθ = θ ∪
⋃

j ∈J θ j : ˆθ is well-defined

since the frame variables in every Tj are distinct. We choose an arbitrary frame variable X̌ . Let
ˇθ : V → TT be such that ∀A ∈ V . (A ˇθ)† = A ˆθ and that varX (ˇθ) ⊆ {X̌ }. We have dom(ˇθ) ∩ ∆ = ∅,

since dom(θ) ∩ ∆ = ∅, dom(ˇθ) \ dom(θ) ⊆ VX
, and ∆ ⊆ Vα

. Moreover,
ˇθ is a unifier for T 1 Û= T 2

.

By the properties of unification, we have unify∆(T 1 Û= T 2) = θ0 and
ˇθ = θ0

ˇθ .

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:40 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

By definition of solve, we have:

θ ′ ∈ solve∆(D) θ ′ = (θ0θ
′
0
)† |Vα θ ′

0
= { ®X B ®α ′} ∪ { ®α B ®X ′}

®X = VX ∩ var Û≼(D)θ0 ®α = var(D) \ (∆ ∪ dom(θ0) ∪ var Û≼(D)θ0) ®α ′, ®X ′
fresh

Since ®α ′
and ®X ′

are fresh, we can assume they are outside dom(ˇθ) and var(ˇθ).

We choose θ ′′ = { ®α ′ B (®X ˇθ)†}. Since ®α ′
is chosen fresh by solve, it is outside of var(D): therefore,

it is in var(θ ′) \ var(D).
We must show:

∀α . αθ ′(θ ∪ θ ′′) ≼ α(θ ∪ θ ′′) ∀α . αθ ′ =⇒ αθ ′(θ ∪ θ ′′) = α(θ ∪ θ ′′)

If α < dom(θ ′), the results hold trivially.

We consider the case α ∈ dom(θ ′). Then, we have α < ®α ′
.

We have:

α(θ ∪ θ ′′) = αθ = (α ˇθ)† = (αθ0
ˇθ)†

We have:

αθ ′(θ ∪ θ ′′) = (αθ0θ
′
0
)†(θ ∪ θ ′′)

≼ (αθ0θ
′
0
(ˇθ ∪ { ®α ′ B ®X ˇθ }))† by Lemma A.12

= (αθ0({ ®X B ®α ′} ∪ { ®α B ®X ′})(ˇθ ∪ { ®α ′ B ®X ˇθ }))†

= (αθ0(ˇθ |dom(ˇθ)\ ®α ∪ { ®α B ®X ′}))†

≼ (αθ0
ˇθ)†

If αθ ′ is static, then varX (αθ0θ
′
0
) = ∅ and therefore var(αθ0) ♯ ®α and varX (αθ0) ⊆ ®X . Then:

αθ ′(θ ∪ θ ′′) = (αθ0θ
′
0
)†(θ ∪ θ ′′)

= αθ0θ
′
0
(θ ∪ θ ′′)

= αθ0{ ®X B ®α ′}(θ ∪ { ®α ′ B (®X ˇθ)†}

= αθ0(θ ∪ { ®X B (®X ˇθ)†}

= (αθ0
ˇθ)† □

A.3.2 Constraint Simplification. Figure 11 presents the constraint simplification rules in a form in

which we track explicitly the variables we introduce and state precise freshness conditions. In a

derivation Γ;∆ ⊢ C { D | α , the set α is the set of fresh variables introduced by simplification. We

will still write Γ;∆ ⊢ C { D when we are not interested in what variables are introduced (notably,

in the soundness proof).

Figure 12 defines the compilation algorithm that, given an expression e , a derivation D of

Γ;∆ ⊢ ⟨⟨e : t⟩⟩ { D, and a substitution θ such that θ ⊩var(e) D, produces a cast language expression

LeMDθ . It is defined by induction on e . For each case, we deconstruct the derivationD to obtain the sub-

derivations used to compile the sub-expressions of e ; we write the derivation in a compressed form

where we collapse applications of the rules for definition, existential, and conjunctive constraints.

We write D :: Γ;∆ ⊢ C { D to denote a derivation of Γ;∆ ⊢ C { D that we name D.

Lemma A.14 (Stability of typing under type substitution). If Γ ⊢ e { E : τ , then, for every
static type substitution θ , we have Γθ ⊢ eθ { Eθ : τθ .

Proof. By induction on the derivation of Γ ⊢ e { E : τ and by case on the last rule applied.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:41

Γ;∆ ⊢ (t1 Û≤ t2) { {t1 Û≤ t2} | ∅ Γ;∆ ⊢ (τ Û≼ α) { {τ Û≼ α } | ∅

Γ;∆ ⊢ (x Û≼ α) { {τ { ®α B ®β} Û≼ α } | ®β

Γ(x) = ∀®α . τ
®β ♯ Γ

(Γ, x : τ);∆ ⊢ C { D | α

Γ;∆ ⊢ def x : τ in C { D | α

Γ;∆ ⊢ C { D | α

Γ;∆ ⊢ (∃ ®α .C) { D | α ∪ ®α
®α ♯ Γ,α

Γ;∆ ⊢ C1 { D1 | α1 Γ;∆ ⊢ C2 { D2 | α2

Γ;∆ ⊢ C1 ∧C2 { D1 ∪ D2 | α1 ∪ α2

α1 ♯ α2

Γ;∆ ∪ ®α ⊢ C1 { D1 | α1

(Γ, x : ∀®α, ®β . αθ1);∆ ⊢ C2 { D2 | α2

Γ;∆ ⊢ let x : ∀®α ;α[C1]
®α ′

. α in C2 { D2 ∪ equiv(θ1,D1) | α

θ1 ∈ solve∆∪ ®α (D1)

®α ♯ Γθ1

®β = var(αθ1) \ (var(Γθ1) ∪ ®α ∪ ®α ′)

♯
{
{α }, ®α,α1,α2, (var(θ1) \ var(D1))

}
α, ®α ♯ Γ,∆
α = {α } ∪ ®α ∪ α1 ∪ α2 ∪ (var(θ1) \ var(D1))

where equiv(θ,D) =def
{
(α Û≼ α)

�� α ∈ var Û≼(D) ∪ var(D)θ
}

∪
⋃

α ∈dom(θ),αθ static

{
(α Û≤ αθ), (αθ Û≤ α)

}
Fig. 11. Constraint simplification rules with explicit variable introduction.

Case: [Var]

Γ ⊢ x { x [®t] : τ { ®α B ®t} Given

Γ(x) = ∀®α . τ Given

(Γθ)(x) = ∀®α . τθ since, by α-renaming, ®α ♯ θ

(1) Γθ ⊢ x { x [®tθ] : τθ { ®α B ®tθ } by [Var], since the ®tθ are all static

(2) τθ { ®α B ®tθ } = τ { ®α B ®t}θ since ®α ♯ θ , ∀α ∈ var(τ). αθ { ®α B ®tθ } = α { ®α B ®t}θ

Γθ ⊢ x { x [®t]θ : τ { ®α B ®t}θ by (1) and (2)

Case: [Const]

Straightforward, since bcθ = bc .
Case: [Abstr], [AAbstr], [App], [Pair], [Proj]

Direct application of the induction hypothesis. For [Abstr], note that tθ is always static.

Case: [Materialize]

τ ′ ≼ τ implies τ ′θ ≼ τθ for any type substitution θ .
Case: [Let]

Γ ⊢ (let ®α x = e1 in e2) { (let x = Λ ®α, ®β . E1 in E2) : τ Given

By inversion of [Let]:

(1) Γ ⊢ e1 { E1 : τ1

(2) Γ, x : ∀®α, ®β . τ1 ⊢ e2 { E2 : τ

(3) ®α, ®β ♯ Γ and
®β ♯ e1

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:42 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

LxMDθ = x [®βθ]⟨τ { ®α B ®β}θ ⇒
ℓ
αθ⟩

with ℓ fresh

where D =
Γ;∆ ⊢ ⟨⟨x : t⟩⟩ { {(τ { ®α B ®β} Û≼ α), (α Û≤ t)}

LcMDθ = c

Lλx . eMDθ = λ(α1→α2)θx . LeMD
′

θ

where D =
D ′

:: (Γ, x : α1);∆ ⊢ ⟨⟨e : α2⟩⟩ { D ′

Γ;∆ ⊢ ⟨⟨(λx . e) : t⟩⟩ { D ′ ∪ {(α1
Û≼ α1), (α1 → α2

Û≤ t)}

Lλx : τ . eMDθ = (λ(τ→α2)θx . LeMD
′

θ)⟨(τ → α2)θ ⇒
ℓ
(α1 → α2)θ⟩

with ℓ fresh

where D =
D ′

:: (Γ, x : τ);∆ ⊢ ⟨⟨e : α2⟩⟩ { D ′

Γ;∆ ⊢ ⟨⟨(λx : τ . e) : t⟩⟩ { D ′ ∪ {(τ Û≼ α1), (α1 → α2
Û≤ t)}

Le1 e2MDθ = Le1MD1

θ Le2MD2

θ

where D =
D1 :: Γ;∆ ⊢ ⟨⟨e1 : α → t⟩⟩ { D1 D2 :: Γ;∆ ⊢ ⟨⟨e2 : α⟩⟩ { D2

Γ;∆ ⊢ ⟨⟨e1 e2 : t⟩⟩ { D1 ∪ D2

L(e1, e2)MDθ = (Le1MD1

θ , Le2MD2

θ)

where D =
D1 :: Γ;∆ ⊢ ⟨⟨e1 : α1⟩⟩ { D1 D2 :: Γ;∆ ⊢ ⟨⟨e2 : α2⟩⟩ { D2

Γ;∆ ⊢ ⟨⟨(e1, e2) : t⟩⟩ { D1 ∪ D2 ∪ {α1 × α2
Û≤ t}

Lπi eMDθ = πi LeMD
′

θ

where D =
D ′

:: Γ;∆ ⊢ ⟨⟨e : α1 × α2⟩⟩ { D ′

Γ;∆ ⊢ ⟨⟨πi e : t⟩⟩ { D ′ ∪ {αi Û≤ t}

Llet ®α x = e1 in e2MDθ = let x = Λ ®α1, ®β1. Le1MD1

θ1

ρθ in Le2MD2

θ

where D =
D1 :: Γ;∆ ∪ ®α ⊢ C1 { D1 D2 :: (Γ, x : ∀®α, ®β . αθ1);∆ ⊢ C2 { D2

Γ;∆ ⊢ ⟨⟨let ®α x = e1 in e2 : t⟩⟩ { D2 ∪ equiv(θ1,D1)

and θ1 ∈ solve∆∪ ®α (D1) ®α1, ®β1 fresh ρ = { ®α B ®α1} ∪ { ®β B ®β1}

Fig. 12. Algorithmic compilation.

Let ®α1 and
®β1 be vectors of distinct variables chosen outside var(Γ), var(e1), dom(θ), and

var(θ). Let ρ = { ®α B ®α1} ∪ { ®β B ®β1}.

Γρ ⊢ e1ρ { E1ρ : τ1ρ by IH from (1), since ρ is static

(4) Γ ⊢ e1{ ®α B ®α1} { E1ρ : τ1ρ by (3)

(5) Γθ ⊢ e1{ ®α B ®α1}θ { E1ρθ : τ1ρθ by IH from (4)

(6) Γθ, x : (∀®α, ®β . τ1)θ ⊢ e2θ { E2θ : τθ by IH from (2)

(7) Γθ, x : (∀®α1, ®β1. τ1ρ)θ ⊢ e2θ { E2θ : τθ by α-renaming from (6)

(8) Γθ, x : (∀®α1, ®β1. τ1ρθ) ⊢ e2θ { E2θ : τθ from (7) since ®α1, ®β1 ♯ θ

Γθ ⊢ (let ®α1 x = e1{ ®α B ®α1}θ in e2θ) {

(let x = Λ ®α1, ®β1. E1ρθ in E2θ) : τθ by [Let] from (5) and (8)
Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:43

This concludes the proof because let ®α1 x = e1{ ®α B ®α1}θ in e2θ and (let ®α x = e1 in e2)θ are

equivalent by α-renaming, as are let x = Λ ®α1, ®β1. E1ρθ in E2θ and (let x = Λ ®α, ®β . E1 in E2)θ .
□

Lemma A.15. Let D be a derivation of Γ;∆ ⊢ ⟨⟨e : t⟩⟩ { D. Then:

• if e = x , then Γ(x) = ∀®α . τ and D = {(τ { ®α B ®β} Û≼ α), (α Û≤ t)} (for some τ , α , ®α , ®β);
• if e = c , then D = {bc Û≤ t};
• if e = λx . e ′, then D contains a sub-derivation of (Γ, x : α1);∆ ⊢ ⟨⟨e ′ : α2⟩⟩ { D ′, and D =
D ′ ∪ {(α1

Û≼ α1), (α1 → α2
Û≤ t)};

• if e = λx : τ . e ′, then D contains a sub-derivation of (Γ, x : τ);∆ ⊢ ⟨⟨e ′ : α2⟩⟩ { D ′, and
D = D ′ ∪ {(τ Û≼ α1), (α1 → α2

Û≤ t)};
• if e = e1 e2, then D contains two sub-derivations of Γ;∆ ⊢ ⟨⟨e1 : α → t⟩⟩ { D1 and Γ;∆ ⊢

⟨⟨e2 : α⟩⟩ { D2 (for some α , D1, and D2), and D = D1 ∪ D2;
• if e = (e1, e2), then D contains two sub-derivations of Γ;∆ ⊢ ⟨⟨e1 : α1⟩⟩ { D1 and Γ;∆ ⊢

⟨⟨e2 : α2⟩⟩ { D2 (for some α1, α2, D1, and D2), and D = D1 ∪ D2 ∪ {α1 × α2
Û≤ t};

• if e = πi e
′, thenD contains a sub-derivation of Γ;∆ ⊢ ⟨⟨e ′ : α1×α2⟩⟩ { D ′, andD = D ′∪{αi Û≤

t};
• if e = (let ®α x = e1 in e2), then D contains two sub-derivations of Γ;∆ ∪ ®α ⊢ ⟨⟨e1 : α⟩⟩ { D1

and (Γ, x : ∀®α, ®β . αθ1);∆ ⊢ ⟨⟨e2 : t⟩⟩ { D2, and the following hold:

D = D2 ∪ equiv(θ1,D1) θ1 ∈ solve∆∪ ®α (D1)

®α ♯ var(Γθ1) ®β = var(αθ1) \ (var(Γθ1) ∪ ®α ∪ var(e1))

Proof. Straightforward, since the constraint simplification rules are syntax-directed. □

Lemma A.16. If Γ;∆ ⊢ C { D, then var(Γ) ∩ var(D) ⊆ var(C) ∪ var Û≼(D).

Proof. By induction on C (the form of C determines the derivation).

Case: C = (t1 Û≤ t2) or C = (τ Û≼ α) We have var(D) ⊆ var(C).
Case: C = (τ Û≼ α) We have var(D) ⊆ var Û≼(D) ∪ {α } and α ∈ var(C).
Case: C = (def x : τ in C ′) By IH, var(Γ, x : τ) ∩ var(D) ⊆ var(C ′) ∪ var Û≼(D). This directly

yields the result since var(C ′) ⊆ var(C).
Case: C = (∃ ®α . C ′) By IH, var(Γ) ∩ var(D) ⊆ var(C ′) ∪ var Û≼(D). The side condition on the

rule imposes ®α ♯ Γ. Then, var(Γ) ∩ var(D) ⊆ var(C) ∪ var Û≼(D) since var(C) = var(C ′) \ ®α .
Case: C = (C1 ∧C2) By IH, for both i , var(Γ) ∩ var(Di) ⊆ var(Ci) ∪ var Û≼(Di). This directly

implies var(Γ) ∩ var(D1 ∪ D2) ⊆ var(C1 ∧C2) ∪ var Û≼(D1 ∪ D2).

Case: C = (let x : ∀®α ;α[C1]
®α1 . α in C2) By IH,

var(Γ) ∩ var(D1) ⊆ var(C1) ∪ var Û≼(D1)

var(Γ, x : ∀®α, ®β . αθ1) ∩ var(D2) ⊆ var(C2) ∪ var Û≼(D2)

We have

D = D2 ∪ equiv(θ1,D1)

var(D) = var(D2) ∪ var(D1)θ1 ∪ var Û≼(D1) ∪ S ∪ Sθ1

var Û≼(D) = var Û≼(D2) ∪ var(D1)θ1 ∪ var Û≼(D1)

var(C) = (var(C1) \ (®α ∪ {α })) ∪ var(C2)

where S = { α ∈ dom(θ1) | αθ1 static }.

Consider an arbitrary β ∈ var(Γ) ∩ var(D).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:44 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

Case: β ∈ var(D2) Then β ∈ var(C2) ∪ var Û≼(D2) and hence β ∈ var(C) ∪ var Û≼(D).
Case: β ∈ var(D1)θ1 ∪ var Û≼(D1) Then β ∈ var Û≼(D).
Case: β ∈ S

Then β ∈ dom(θ1). By Proposition A.11, β ∈ var(D1).

Since β ∈ var(Γ) ∩ var(D1), we have β ∈ var(C1) ∪ var Û≼(D1). Since β ∈ var(Γ), by the side

conditions of the rule we know β , α and β < ®α . Therefore, β ∈ var(C) ∪ var Û≼(D).
Case: β ∈ Sθ1

Then β ∈ var(γθ1) for some γ ∈ dom(θ1) such that γθ1 is static.

By Proposition A.11, γ ∈ var(D1). Then β ∈ var(D1)θ1 ⊆ var Û≼(D). □

Lemma A.17. Let θ and θ ′ be two type substitutions such that θ ⊩∆ D and static(θ ′, var(D)θ). If
(t1 Û≤ t2) ∈ D, then t1θθ ′ = t2θθ

′.

Proof. By definition of θ ⊩∆ D, we have t1θ = t2θ . Then, t1θθ
′ = t2θθ

′
. □

Lemma A.18. Let θ and θ ′ be two type substitutions such that θ ⊩∆ D and static(θ ′, var(D)θ). If
(τ Û≼ α) ∈ D, then τθθ ′ ≼ αθθ ′.

Proof. By definition of θ ⊩∆ D, we have τθ ≼ αθ . Then, τθθ ′ ≼ αθθ ′
. □

Lemma A.19.

∀Γ,∆, e,α,D, θ .

Γ;∆ ⊢ ⟨⟨e : α⟩⟩ { D

θ ∈ solve∆(D)

var(e) ⊆ ∆

α < var(Γ)

=⇒ static(θ , var(Γ))

Proof. Consider an arbitrary β ∈ var(Γ). We show that βθ is static.

Case: β < dom(θ) Then βθ = β , which is static.

Case: β ∈ dom(θ) Then β ∈ var(D) (by Proposition A.11), and therefore β ∈ var(Γ) ∩ var(D).
By Lemma A.16, β ∈ var(⟨⟨e : α⟩⟩) ∪ var Û≼(D).
Case: β ∈ var(⟨⟨e : α⟩⟩) This case is impossible because var(⟨⟨e : α⟩⟩) = var(e) ∪ {α },

dom(θ) ♯ var(e) (because var(e) ⊆ ∆), and α < var(Γ).
Case: β ∈ var Û≼(D) Since θ ⊩∆ D, βθ must be static. □

Lemma A.20.

∀Γ,∆,D1, θ1, ρ, θ, θ
′.

θ ⊩∆ equiv(θ1,D1)

dom(ρ) ♯ Γθ1

static(θ ′, var(equiv(θ1,D1))θ)

static(θ1, var(Γ))

=⇒ Γθθ ′ = Γθ1ρθθ

′

Proof. Consider an arbitrary x ∈ dom(Γ). We have Γ(x) = ∀®α . τ . We assume by α-renaming

that ®α ♯ θ1, ρ, θ, θ
′
; then, (Γθθ ′)(x) = ∀®α . τθθ ′ and (Γθ1ρθθ

′)(x) = ∀®α . τθ1ρθθ
′
. We must show

τθθ ′ = τθ1ρθθ
′
. We show ∀α ∈ var(τ). αθθ ′ = αθ1ρθθ

′
. Consider an arbitrary α ∈ var(τ).

Case: α ∈ ®α Then (by our choice of naming) αθθ ′ = α and αθ1ρθθ
′ = α .

Case: α < ®α Then α ∈ var(Γ) and hence: var(αθ1) ⊆ var(Γθ1), and αθ1ρ = αθ1, and αθ1 is

static.

Case: α < dom(θ1) Then αθ1 = α , αθ1ρ = α , and αθ1ρθθ
′ = αθθ ′

.

Case: α ∈ dom(θ1)

Then {(α Û≤ αθ1), (αθ1
Û≤ α)} ⊆ equiv(θ1,D1).

Therefore, we have αθ1θ = αθ and αθ1θθ
′ = αθθ ′

. □

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:45

Theorem A.21. Let D be a derivation of Γ; var(e) ⊢ ⟨⟨e : t⟩⟩ { D. Let θ be a type substitution such
that θ ⊩var(e) D. Then, we have Γθ ⊢ e { LeMDθ : tθ .

Proof. We show the following, stronger result (for all D, Γ, ∆, e , t , D, θ , and θ ′
):

D is a derivation of Γ;∆ ⊢ ⟨⟨e : t⟩⟩ { D

θ ⊩∆ D

static(θ ′, var(D)θ)

var(e) ⊆ ∆

=⇒ Γθθ ′ ⊢ eθ ′ { LeMDθ θ ′ : tθθ ′

This result implies the statement: we take ∆ = var(e) and θ ′ = { } (the identity substitution).

The proof is by structural induction on e .

Case: e = x

(1) D :: Γ;∆ ⊢ ⟨⟨x : t⟩⟩ { D Given

(2) θ ⊩∆ D Given

(3) static(θ ′, var(D)θ) Given

By Lemma A.15 from (1):

Γ(x) = ∀®α . τ

D = {(τ { ®α B ®β} Û≼ α), (α Û≤ t)}

Then:

(Γθθ ′)(x) = ∀®α . τθθ ′ assuming ®α ♯ θ, θ ′ by α-renaming

the types
®βθθ ′ are static by (2) and (3)

∀α ∈ var(τ). αθθ ′{ ®α B ®βθθ ′} = α { ®α B ®β}θθ ′ since ®α ♯ θ, θ ′

τθθ ′{ ®α B ®βθθ ′} = τ { ®α B ®β}θθ ′

τ { ®α B ®β}θθ ′ ≼ αθθ ′ by Lemma A.18

αθθ ′ = tθθ ′
by Lemma A.17

Γθθ ′ ⊢ x { x [®βθθ ′] : τθθ ′{ ®α B ®βθθ ′} by [Var]

Γθθ ′ ⊢ x { x [®βθθ ′]⟨τ { ®α B ®β}θθ ′ ⇒
ℓ
αθθ ′⟩ : tθθ ′ by [Materialize]

This concludes this case since LxMDθ θ ′ = x [®βθθ ′]⟨τ { ®α B ®β}θθ ′ ⇒
ℓ
αθθ ′⟩.

Case: e = c

D :: Γ;∆ ⊢ ⟨⟨c : t⟩⟩ { D Given

D = {bc Û≤ t} by Lemma A.15

bcθθ
′ = tθθ ′ by Lemma A.17

Γθθ ′ ⊢ cθθ ′ { c : tθθ ′ by [Const]

LcMDθ θ ′ = c

Case: e = λx . e ′

D :: Γ;∆ ⊢ ⟨⟨λx . e ′ : t⟩⟩ { D Given

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:46 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

By Lemma A.15:

D ′
:: (Γ, x : α1);∆ ⊢ ⟨⟨e ′ : α2⟩⟩ { D ′

D = D ′ ∪ {(α1
Û≼ α1), (α1 → α2

Û≤ t)}

Then:

α1θθ
′
is static

(α1 → α2)θθ
′ = tθθ ′ by Lemma A.17

Γθθ ′, x : α1θθ
′ ⊢ e ′θθ ′ { Le ′MD

′

θ θ ′ : α2θθ
′

by IH

Γθθ ′ ⊢ (λx . e ′θθ ′) { λ(α1→α2)θθ ′

x . Le ′MD
′

θ θ ′ : (α1 → α2)θθ
′

by [Abstr]

Γθθ ′ ⊢ (λx . e ′θθ ′) { λ(α1→α2)θθ ′

x . Le ′MD
′

θ θ ′ : tθθ ′

Lλx . eMDθ θ ′ = λ(α1→α2)θθ ′

x . Le ′MD
′

θ θ ′

Case: e = λx : τ . e ′

D :: Γ;∆ ⊢ ⟨⟨λx : τ . e ′ : t⟩⟩ { D Given

By Lemma A.15:

D ′
:: (Γ, x : τ);∆ ⊢ ⟨⟨e ′ : α2⟩⟩ { D ′

D = D ′ ∪ {(τ Û≼ α1), (α1 → α2
Û≤ t)}

Then:

τθθ ′ ≼ α1θθ
′

by Lemma A.18

(α1 → α2)θθ
′ = tθθ ′ by Lemma A.17

Γθθ ′, x : τθθ ′ ⊢ e ′θθ ′ { Le ′MD
′

θ θ ′ : α2θθ
′

by IH

Γθθ ′ ⊢ (λx : τ . e ′)θθ ′ { λ(τ→α2)θθ ′

x . Le ′MD
′

θ θ ′
: (τ → α2)θθ

′
by [AAbstr]

Γθθ ′ ⊢ (λx : τ . e ′)θθ ′ {(
λ(τ→α2)θθ ′

x . Le ′MD
′

θ θ ′
)
⟨(τ → α2)θθ

′ ⇒
ℓ
(α1 → α2)θθ

′⟩ :

(α1 → α2)θθ
′

by [Materialize]

Γθθ ′ ⊢ (λx : τ . e ′)θθ ′ {(
λ(τ→α2)θθ ′

x . Le ′MD
′

θ θ ′
)
⟨(τ → α2)θθ

′ ⇒
ℓ
(α1 → α2)θθ

′⟩ :

tθθ ′

Lλx : τ . eMDθ θ ′ =(
λ(τ→α2)θθ ′

x . Le ′MD
′

θ θ ′
)
⟨(τ → α2)θθ

′ ⇒
ℓ
(α1 → α2)θθ

′⟩

Case: e = e1 e2

D :: Γ;∆ ⊢ ⟨⟨e1 e2 : t⟩⟩ { D Given

By Lemma A.15:

D1 :: Γ;∆ ⊢ ⟨⟨e1 : α → t⟩⟩ { D1

D2 :: Γ;∆ ⊢ ⟨⟨e2 : α⟩⟩ { D2

D = D1 ∪ D2

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:47

Then:

Γθθ ′ ⊢ e1θθ
′ { Le1MD1

θ θ ′ : (α → t)θθ ′
by IH

Γθθ ′ ⊢ e2θθ
′ { Le2MD2

θ θ ′ : αθθ ′
by IH

Γθθ ′ ⊢ (e1 e2)θθ
′ { Le1MD1

θ θ ′ Le2MD2

θ θ ′ : tθθ ′ by [Appl]

Le1 e2MDθ θ ′ = Le1MD1

θ θ ′ Le2MD2

θ θ ′

Case: e = (e1, e2)

D :: Γ;∆ ⊢ ⟨⟨(e1, e2) : t⟩⟩ { D Given

By Lemma A.15:

D1 :: Γ;∆ ⊢ ⟨⟨e1 : α1⟩⟩ { D1

D2 :: Γ;∆ ⊢ ⟨⟨e2 : α2⟩⟩ { D2

D = D1 ∪ D2 ∪ {α1 × α2
Û≤ t}

Then:

(α1 × α2)θθ
′ = tθθ ′ by Lemma A.17

Γθθ ′ ⊢ e1θθ
′ { Le1MD1

θ θ ′ : α1θθ
′

by IH

Γθθ ′ ⊢ e2θθ
′ { Le2MD2

θ θ ′ : α2θθ
′

by IH

Γθθ ′ ⊢ (e1, e2)θθ
′ {

(
Le1MD1

θ θ ′, Le2MD2

θ θ ′
)
: tθθ ′ by [Pair]

L(e1, e2)MDθ θ ′ =
(
Le1MD1

θ θ ′, Le2MD2

θ θ ′
)

Case: e = πi e
′

D :: Γ;∆ ⊢ ⟨⟨πi e
′
: t⟩⟩ { D Given

By Lemma A.15:

D ′
:: Γ;∆ ⊢ ⟨⟨e ′ : α1 × α2⟩⟩ { D ′

D = D ′ ∪ {αi Û≤ t}

Then:

αiθθ
′ = tθθ ′

by Lemma A.17

Γθθ ′ ⊢ e ′θθ ′ { Le ′MD
′

θ θ ′ : (α1 × α2)θθ
′

by IH

Γθθ ′ ⊢ (πi e
′)θθ ′ { πi (Le ′MD

′

θ θ ′) : tθθ ′ by [Proj]

Lπi e ′MDθ θ ′ = (πi Le ′MD
′

θ)θ ′

Case: e = (let ®α x = e1 in e2)

D :: Γ;∆ ⊢ ⟨⟨let ®α x = e1 in e2 : t⟩⟩ { D Given

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:48 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

By Lemma A.15:

D1 :: Γ;∆ ∪ ®α ⊢ ⟨⟨e1 : α⟩⟩ { D1

D2 :: (Γ, x : ∀®α, ®β . αθ1);∆ ⊢ ⟨⟨e2 : t⟩⟩ { D2

D = D2 ∪ equiv(θ1,D1)

θ1 ∈ solve∆∪ ®α (D1)

®α ♯ var(Γθ1)

®β = var(αθ1) \ (var(Γθ1) ∪ ®α ∪ var(e1))

Let ®α1 and
®β1 be vectors of distinct variables chosen outside var(e1), dom(θ), var(θ), dom(θ ′),

and var(θ ′). Let ρ = { ®α B ®α1} ∪ { ®β B ®β1}. Then:

eθ ′ = (let ®α1 x = e1ρθ
′ in e2θ

′) since
®β ♯ e1 and ®α1 ♯ θ

′

LeMDθ =
(
let x = (Λ ®α1, ®β1. Le1MD1

θ1

ρθ) in Le2MD2

θ

)
LeMDθ θ ′ =

(
let x = (Λ ®α1, ®β1. Le1MD1

θ1

ρθθ ′) in Le2MD2

θ θ ′
)

since ®α1, ®β1 ♯ θ
′

For e1:

θ1 ⊩∆∪ ®α D1

static(ρθθ ′, var(D1)θ1) proven below

var(e1) ⊆ ∆ ∪ ®α

Γθ1ρθθ
′ ⊢ e1ρθθ

′ { Le1MD1

θ1

ρθθ ′ : αθ1ρθθ
′

by IH

e1ρθθ
′ = e1ρθ

′
since dom(θ) ∩ var(e1ρ) = ∅

α < var(Γ) by inversion

static(θ1, var(Γ)) by Lemma A.19

Γθθ ′ = Γθ1ρθθ
′

by Lemma A.20

Γθθ ′ ⊢ e1ρθ
′ { Le1MD1

θ1

ρθθ ′ : αθ1ρθθ
′

For e2:

θ ⊩∆ D2

static(θ ′, var(D2)θ)

var(e2) ⊆ ∆

Γθθ ′, x : (∀®α, ®β . αθ1)θθ
′ ⊢ e2θ

′ { Le2MD2

θ θ ′ : tθθ ′ by IH

(∀®α, ®β . αθ1)θθ
′ = (∀®α1, ®β1. αθ1ρθθ

′) since ®α1, ®β1 ♯ θ , θ
′

Γθθ ′, x : (∀®α1, ®β1. αθ1ρθθ
′) ⊢ e2θ

′ { Le2MD2

θ θ ′
: tθθ ′

®α1, ®β1 ♯ Γθθ
′
and

®β1 ♯ e1ρθ
′

Finally:

Γθθ ′ ⊢ eθ ′ { LeMDθ θ ′
: tθθ ′ by [Let]

To check static(ρθθ ′, var(D1)θ1), take an arbitrary α ∈ var(D1)θ1.

• If α ∈ dom(ρ), then αρ is a variable in ®α1, ®β1 and αρ = αρθθ ′ (because ®α1, ®β1 ♯ θ , θ
′
): hence

αρθθ ′ is static.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:49

• If α < dom(ρ), then αρθθ ′ = αθθ ′
. We have (α Û≼ α) ∈ equiv(θ1,D1). Since equiv(θ1,D1) ⊆

D, αθ is static. Furthermore, var(αθ) ⊆ var(D)θ ; hence, αθθ ′ is static too. □

Lemma A.22. Let Γ ⊢ e : τ . Then:
• if e = x then Γ(x) = ∀®α . τx and τx { ®α B ®t} ≼ τ ;
• if e = c , then τ = bc ;
• if e = λx . e1 then τ = t → τ1 and Γ, x : t ⊢ e1 : τ1;
• if e = λx : τ ′. e1 then τ = τ ′1 → τ1, τ ′ ≼ τ ′

1
, and Γ, x : τ ′ ⊢ e1 : τ1;

• if e = e1 e2, then Γ ⊢ e1 : τ ′ → τ and Γ ⊢ e2 : τ ′;
• if e = (e1, e2), then τ = τ1 × τ2, Γ ⊢ e1 : τ1, and Γ ⊢ e2 : τ2;
• if e = πi e

′, then Γ ⊢ e ′ : τ1 × τ2 and τ = τi ;
• if e = (let ®α x = e1 in e2), then Γ ⊢ e1 : τ1, Γ, x : ∀®α, ®β . τ1 ⊢ e2 : τ , ®α, ®β ♯ Γ, and ®β ♯ e1.

Proof. The derivation of Γ ⊢ e : τ must end with the rule corresponding to the shape of e ,
possibly followed by applications of [Materialize]. We proceed by case on the derivation, possibly

applying [Materialize] to the derivations in the premises to obtain the needed results. □

We say that a set U ⊆ V is a variable pool if both U ∩Vα
and U ∩VX

are countably infinite.

Throughout the proof of completeness, we will use variable pools to choose new fresh variables, and

we will partition variable pools to obtain new pools. For example, we will write U = {α } ⊎U1 ⊎U2

to mean that we partition U into three sets: a singleton set α and two variable pools U1 and U2.

Lemma A.23. Let θ and θ1, . . . , θn be type substitutions, such that the θi are pairwise disjoint
and every θi is disjoint from θ . Let D1, . . . ,Dn be type constraint sets such that, for every i1 , i2,
θi1 ♯ var(Di2).

If, for every i ∈ {1, . . . ,n}, we have θ ∪ θi ⊩∆ Di , then θ ∪
⋃n

i=1
θi ⊩∆

⋃n
i=1

Di .

Proof. Straightforward since, because of the disjointness conditions, for every i0 and every

α ∈ var(Di0), we have α(θ ∪
⋃n

i=1
θi) = α(θ ∪ θi0). □

Lemma A.24. If Γ;∆ ⊢ C { D | α , then var(D) ⊆ var(Γ) ∪ var(C) ∪ α .

Proof. By induction on the derivation of Γ;∆ ⊢ C { D | α . All cases are straightforward except
that of let constraints.
Let C = let x : ∀®α ;α[C1]

®α ′

. α in C2. Assume Γ;∆ ⊢ C { D2 ∪ equiv(θ1,D1) | α . Consider an
arbitrary β ∈ var(D2) ∪ equiv(θ1,D1). We must show β ∈ var(Γ) ∪ var(C) ∪ α .

Case: β ∈ var(D2)

By IH, we have β ∈ var(Γ) ∪ var(∀®α, ®β . αθ1) ∪ var(C2) ∪ α2.

If β ∈ var(Γ) ∪ var(C2) ∪ α2, then β ∈ var(Γ) ∪ var(C) ∪ α .

If β ∈ var(∀®α, ®β . αθ1), then either β = α or β ∈ var(θ1).

• If β = α , then β ∈ α .
• If β ∈ var(θ1), either β ∈ var(D1) or not.

In the latter case, β ∈ α .
In the former, by IH, we have β ∈ var(Γ)∪var(C1)∪α1. Note that var(C1) ⊆ var(C)∪{α }∪ ®α .
Then, β ∈ var(Γ) ∪ var(C) ∪ α .

Case: β ∈ var(equiv(θ1,D1)) By Proposition A.11, dom(θ1) ⊆ var(D1). Then, β ∈ var(D1) ∪

var(θ1). Both cases have already been treated above. □

Lemma A.25. If Γ;∆ ⊢ ⟨⟨e : t⟩⟩ { D | α , then var(t) ⊆ var(D).

Proof. We define a functionv mapping structured constraints to sets of type variables. We show

these two results, which together imply the statement:

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:50 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

• for every t and e , var(t) ⊆ v(⟨⟨e : t⟩⟩);
• for every Γ, ∆, C , D, and α , if Γ;∆ ⊢ C { D | α , then v(C) ⊆ var(D).

The function v is defined by induction on the structured constraint as follows:

v(t1 Û≤ t2) = var(t2) v(τ Û≼ α) = ∅ v(x Û≼ α) = ∅
v(def x : τ in C) = v(C) v(∃ ®α .C) = v(C) \ ®α v(C1 ∧C2) = v(C1) ∪v(C2)

v(let x : ∀®α ;α[C1]
®α ′

. α in C2) = v(C2)

The two results are proven easily by induction, respectively on e and on the derivation of

Γ;∆ ⊢ C { D | α . □

Theorem A.26 (Completeness of type inference). If Γ ⊢ e : τ , then, for every fresh type variable
α , there exist D and θ such that Γ; var(e) ⊢ ⟨⟨e : α⟩⟩ { D and {α B τ } ∪ θ ⊩var(e) D.

Proof. We show the following, stronger result (for all Γ, θ , e , t , ∆, and U):

Γθ ⊢ e : tθ

static(θ, Γ)

dom(θ) ♯ ∆ ⊇ var(e)

U ♯ ∆, t, Γ, dom(θ)

=⇒ ∃D,α, θ ′.

Γ;∆ ⊢ ⟨⟨e : t⟩⟩ { D | α

θ ∪ θ ′ ⊩∆ D

dom(θ ′) ⊆ α ⊆ U

This result implies the statement: take t = α (with α ♯ Γ, var(e)), θ = {α B τ }, and ∆ = var(e).
The proof is by structural induction on e .

Case: e = x
We have Γθ ⊢ x : tθ . Therefore, x ∈ dom(Γ).
Let Γ(x) be ∀®α . τ and assume, by α-renaming, ®α ♯ θ . Then, (Γθ)(x) = ∀®α . τθ .
By inversion of the typing rules, there exists an instance τθ { ®α B ®t} of (Γθ)(x) such that

τθ { ®α B ®t} ≼ tθ .
We take α ∈ U. Then, ⟨⟨x : t⟩⟩ = ∃α . (x Û≼ α) ∧ (α Û≤ t) (since α ♯ t).

We take
®β ∈ U (with

®β ♯ α). We have

Γ;∆ ⊢ (x Û≼ α) { {τ { ®α B ®β} Û≼ α } | ®β Γ;∆ ⊢ (α Û≤ t) { {α Û≤ t} | ∅

and therefore (since α ♯ Γ, ®β)

Γ;∆ ⊢ ⟨⟨x : t⟩⟩ { {(τ { ®α B ®β} Û≼ α), (α Û≤ t)} | ®β ∪ {α }

We take θ ′ = {α B tθ } ∪ {β B ®t} and show θ ∪ θ ′ ⊩∆ {(τ { ®α B ®β} Û≼ α), (α Û≤ t)}:
• α(θ ∪ θ ′) = tθ and t(θ ∪ θ ′) = tθ ;

• τ { ®α B ®β}(θ ∪ θ ′) = τθ { ®α B ®t} (because var(τ) \ ®α ⊆ var(Γ) ♯ dom(θ ′));

• θ ∪ θ ′ is static on var(τ { ®α B ®β}), because θ is static on var(Γ) and θ ′ is static on ®β .
Case: e = c We have:

tθ = bc by Lemma A.22

⟨⟨c : t⟩⟩ = (bc Û≤ t)

Γ;∆ ⊢ ⟨⟨c : t⟩⟩ { (bc Û≤ t) | ∅

We take θ ′ = { }. Then, θ ∪ θ ′ ⊩∆ (bc Û≤ t) holds since bc = tθ and dom(θ) ♯ ∆.
Case: e = (λx . e1)

By Lemma A.22:

tθ = t1 → τ1 Γθ, x : t1 ⊢ e1 : τ1

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:51

We partition the variable pool as U = {α1,α2} ⊎ U1. Let
ˆθ = θ ∪ {α1 B t1} ∪ {α2 B τ1}.

We have

⟨⟨(λx . e1) : t⟩⟩ = ∃α1,α2. (def x : α1 in ⟨⟨e1 : α2⟩⟩) ∧ (α1
Û≼ α1) ∧ (α1 → α2

Û≤ t)

since α1,α2 ♯ t, e1.

We have:

Γθ = Γ ˆθ and tθ = t ˆθ since α1,α2 ♯ t, Γ

static(ˆθ , (Γ, x : α1))

(Γ, x : α1) ˆθ ⊢ e1 : α2
ˆθ

By IH:

(Γ, x : α1);∆ ⊢ ⟨⟨e1 : α2⟩⟩ { D1 | α1
ˆθ ∪ θ ′

1
⊩∆ D1 dom(θ ′

1
) ⊆ α1 ⊆ U1

Then we have

Γ;∆ ⊢ ⟨⟨(λx . e1) : t⟩⟩ { D1 ∪ {(α1
Û≼ α1), (α1 → α2

Û≤ t)} | α1 ∪ {α1,α2}

since α1,α2 ♯ Γ,α1.

We take θ ′ = {α1 B t1} ∪ {α2 B τ1} ∪ θ ′
1
. Note that θ ∪ θ ′ = ˆθ ∪ θ ′

1
.

We have θ ∪ θ ′ ⊩∆ D1 ∪ {(α1
Û≼ α1), (α1 → α2

Û≤ t)} because α1(θ ∪ θ ′) = t1 is static and
because (α1 → α2)(θ ∪ θ ′) = t1 → τ1 = tθ = t(θ ∪ θ ′).

Case: e = (λx : τ . e1)

By Lemma A.22:

tθ = τ ′ → τ1 τ ≼ τ ′ Γθ, x : τ ⊢ e1 : τ1

We partition the variable pool as U = {α1,α2} ⊎ U1. Let
ˆθ = θ ∪ {α1 B τ ′} ∪ {α2 B τ1}.

We have

⟨⟨(λx : τ . e1) : t⟩⟩ = ∃α1,α2. (def x : τ in ⟨⟨e1 : α2⟩⟩) ∧ (τ Û≼ α1) ∧ (α1 → α2
Û≤ t)

since α1,α2 ♯ t, τ , e1.

We have:

Γθ = Γ ˆθ and tθ = t ˆθ since α1,α2 ♯ t, Γ

τ ˆθ = τθ = τ since α1,α2 ♯ τ and var(τ) ⊆ ∆

static(ˆθ, (Γ, x : τ))

(Γ, x : τ) ˆθ ⊢ e1 : α2
ˆθ

By IH:

(Γ, x : τ);∆ ⊢ ⟨⟨e1 : α2⟩⟩ { D1 | α1
ˆθ ∪ θ ′

1
⊩∆ D1 dom(θ ′

1
) ⊆ α1 ⊆ U1

Then we have

Γ;∆ ⊢ ⟨⟨(λx : τ . e1) : t⟩⟩ { D1 ∪ {(τ Û≼ α1), (α1 → α2
Û≤ t)} | α1 ∪ {α1,α2}

since α1,α2 ♯ Γ,α1.

We take θ ′ = {α1 B τ ′} ∪ {α2 B τ1} ∪ θ ′
1
. Note that θ ∪ θ ′ = ˆθ ∪ θ ′

1
.

We have θ ∪ θ ′ ⊩∆ D1 ∪ {(τ Û≼ α1), (α1 → α2
Û≤ t)} because τ (θ ∪ θ ′) = τ ≼ τ ′ = α1(θ ∪ θ ′),

because θ ∪ θ ′ is static on τ (since it is the identity), and because (α1 → α2)(θ ∪ θ ′) = τ ′ →
τ1 = tθ = t(θ ∪ θ ′).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:52 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

Case: e = e1 e2

By Lemma A.22:

Γθ ⊢ e1 : τ → tθ

Γθ ⊢ e2 : τ

We partition the variable pool as U = {α } ⊎ U1 ⊎ U2. Let
ˆθ = θ ∪ {α B τ }. We have:

⟨⟨e1 e2 : t⟩⟩ = ∃α . ⟨⟨e1 : α → t⟩⟩ ∧ ⟨⟨e2 : α⟩⟩ since α ♯ t, e1, e2

Γθ = Γ ˆθ and tθ = t ˆθ since α ♯ t, Γ

static(ˆθ, Γ)

Γ ˆθ ⊢ e1 : (α → t) ˆθ

Γ ˆθ ⊢ e2 : α ˆθ

By IH:

Γ;∆ ⊢ ⟨⟨e1 : α → t⟩⟩ { D1 | α1
ˆθ ∪ θ ′

1
⊩∆ D1 dom(θ ′

1
) ⊆ α1 ⊆ U1

Γ;∆ ⊢ ⟨⟨e2 : α⟩⟩ { D2 | α2
ˆθ ∪ θ ′

2
⊩∆ D2 dom(θ ′

2
) ⊆ α2 ⊆ U2

Then:

Γ;∆ ⊢ ⟨⟨e1 e2 : t⟩⟩ { D1 ∪ D2 | α1 ∪ α2 ∪ {α } since α1 ♯ α2 and α ♯ Γ, (α1 ∪ α2)

We take θ ′ = {α B τ } ∪ θ ′
1
∪ θ ′

2
.

By Lemma A.24, we have that θ ′
1
♯ var(D2) and θ

′
2
♯ var(D1).

Then, by Lemma A.23, θ ∪ θ ′ ⊩∆ D1 ∪ D2.

Case: e = (let ®α x = e1 in e2)

By Lemma A.22:

Γθ ⊢ e1 : τ1 Γθ , x : ∀®α, ®β . τ1 ⊢ e2 : tθ ®α, ®β ♯ Γθ ®β ♯ e1

By α-renaming, we can assume ®α ⊆ U. We partition the variable pool as U = {α } ⊎ ®α ⊎U1 ⊎

U2 ⊎ U3. Let
ˆθ = θ ∪ {α B τ1}. We have:

⟨⟨e : t⟩⟩ = let x : ∀®α ;α[⟨⟨e1 : α⟩⟩]var(e1)\ ®α . α in ⟨⟨e2 : t⟩⟩

Γθ = Γ ˆθ and tθ = t ˆθ

static(ˆθ, Γ)

Γ ˆθ ⊢ e1 : α ˆθ

By IH (using ∆ ∪ ®α instead of ∆):

Γ;∆ ∪ ®α ⊢ ⟨⟨e1 : α⟩⟩ { D1 | α1
ˆθ ∪ θ ′

1
⊩∆∪ ®α D1 dom(θ ′

1
) ⊆ α1 ⊆ U1

Since
ˆθ ∪ θ ′

1
⊩∆∪ ®α D1, by Proposition A.13, there exist two substitutions θ1 and

˜θ1 such that

θ1 ∈ solve∆∪ ®α (D1) dom(˜θ1) ⊆ var(θ1) \ var(D1)

∀α . αθ1(ˆθ ∪ θ ′
1
∪ ˜θ1) ≼ α(ˆθ ∪ θ ′

1
∪ ˜θ1)

∀α . αθ1 static =⇒ αθ1(ˆθ ∪ θ ′
1
∪ ˜θ1) = α(ˆθ ∪ θ ′

1
∪ ˜θ1)

We can choose the variables in var(θ1) \ var(D1) freely from a set of fresh variables: we take

them from U3.

Let
ˇθ = θ ∪ {α B τ1} ∪ θ ′

1
∪ ˜θ1.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:53

We have Γθ = Γ ˇθ and tθ = t ˇθ .
Let ®γ = var(αθ1) \ (var(Γθ1) ∪ ®α ∪ (var(e1) \ ®α)) = var(αθ1) \ (var(Γθ1) ∪ ®α ∪ var(e1)). Let

Γ′ = (Γ, x : ∀®α,®γ . αθ1).

We show static(θ1, Γ). Take β ∈ var(Γ). If β < var(D1), then βθ1 = β , which is static. Otherwise,
by Lemma A.16, we have β ∈ var(⟨⟨e1 : α⟩⟩)∩var Û≼(D1). We have var(⟨⟨e1 : α⟩⟩) = var(e1)∩{α }.
The case β = α is impossible because α < var(Γ). If β ∈ var(e1), then βθ1 = β . If β ∈ var Û≼(D1),

then βθ1 is static.

Note that
ˇθ = ˆθ ∪ θ ′

1
∪ ˜θ1. Therefore we have:

∀α . αθ1
ˇθ ≼ α ˇθ ∀α . αθ1 static =⇒ αθ1

ˇθ = α ˇθ

We have Γ ˇθ = Γθ1
ˇθ because, for every α ∈ var(Γ), αθ1 is static.

We show U2 ♯ Γ
′
. We already have U2 ♯ Γ. It remains to show that the variables of ∀®α,®γ . αθ1

are not in U2, which is true because all these variables are either α or variables in var(θ1),

and var(θ1) ⊆ var(D1) ∪ U3.

We show static(ˇθ, Γ′). We have static(ˇθ, Γ) since ˇθ and θ are equal on var(Γ). We must show

that, for every variable β ∈ var(∀®α,®γ . αθ1), β ˇθ is a static type. We have β ∈ var(αθ1) \ (®α ∪ ®γ).
By definition of ®γ , we have β ∈ var(Γθ1) ∪ var(e1). If β ∈ var(Γθ1), then there exists a

γ ∈ var(Γ) such that β ∈ var(γθ1); since γ ˇθ is static and γ ˇθ = γθ1
ˇθ , γθ1

ˇθ is static; therefore,

β ˇθ is static as well. If β ∈ var(e1), then β ∈ ∆ and β ˇθ = β .
We show static(ˇθ , var(D1)θ1). Consider γ ∈ var(D1)θ1. By Proposition A.11, γ ∈ var Û≼(D1)θ1∪

∆ ∪ ®α . If γ ∈ ∆ ∪ ®α , we have γ ˇθ = γ . If γ ∈ var Û≼(D1)θ1, there exists γ
′ ∈ var Û≼(D1) such that

γ ∈ var(γ ′θ1). We know that γ ′ ˇθ is static. Since γ ′θ1 is static too, we have γ
′θ1

ˇθ = γ ′ ˇθ . This
implies that γ ˇθ must be static.

Now we show Γ′ ˇθ ⊢ e2 : t ˇθ . We apply Lemma A.4 by showing Γ′ ˇθ ⊑≺ (Γθ , x : ∀®α, ®β . τ1). Since

Γ ˇθ = Γθ , we must only show (∀®α,®γ . αθ1) ˇθ ⊑≺ ∀®α, ®β . τ1. Note that α ˇθ = τ1 and αθ1
ˇθ ≼ α ˇθ .

Therefore, we have ∀®α, ®β . αθ1
ˇθ ⊑≺ ∀®α, ®β . τ1. Since ⊑≺ is transitive, we can conclude by showing

(∀®α,®γ . αθ1) ˇθ ⊑≺ ∀®α, ®β . αθ1
ˇθ . We choose fresh variables ®α1,®γ1 (ensuring ®α1,®γ1 ♯ ˇθ) and let

ρ = { ®α B ®α1} ∪ {®γ B ®γ1}; then (∀®α,®γ . αθ1) ˇθ = ∀®α1,®γ1. αθ1ρ ˇθ . To show ∀®α1,®γ1. αθ1ρ ˇθ ⊑≺

∀®α, ®β . αθ1
ˇθ , we consider an arbitrary instance αθ1

ˇθ ˜θ of ∀®α, ®β . αθ1
ˇθ , with ˜θ : ®α, ®β → Tt . We

choose the instance αθ1ρ ˇθ ˜θ ′ of ∀®α1,®γ1. αθ1ρ ˇθ , with ˜θ ′ = { ®α1 B ®α ˜θ } ∪ {®γ1 B ®γ ˇθ ˜θ }. We must

show that
˜θ ′ is a valid instantiation. It has the correct domain, but it remains to show that ®α ˜θ

and ®γ ˇθ ˜θ are static. For ®α ˜θ , the result is immediate. If γ ∈ ®γ , instead, we must show that γ ˇθ ˜θ
is static. We have γ ∈ var(αθ1). By Lemma A.25, we have α ∈ var(D1). Hence, γ ∈ var(D1)θ1.

We have already shown static(ˇθ, var(D1)θ1). Hence, γ ˇθ is static; since
˜θ is static, γ ˇθ ˜θ is static

too. Now, we must show αθ1ρ ˇθ ˜θ ′ ≼ αθ1
ˇθ ˜θ ; actually, we show that the two types are equal.

Consider β ∈ var(αθ1): we must show βρ ˇθ ˜θ ′ = β ˇθ ˜θ .

• If β ∈ dom(ρ), then βρ ˇθ ˜θ ′ = βρ ˜θ ′. In particular, if β ∈ ®α , then βρ ˇθ ˜θ ′ = β ˜θ = β ˇθ ˜θ (because

β ˇθ = β since
ˇθ is not defined on ®α). If β ∈ ®γ , then βρ ˇθ ˜θ ′ = β ˇθ ˜θ .

• If β < dom(ρ), then βρ ˇθ ˜θ ′ = β ˇθ . Since β ∈ var(αθ1), necessarily β ∈ var(Γθ1) ∪ var(e1). If

β ∈ var(Γθ1), then var(β ˇθ) ⊆ var(βθ1
ˇθ) = var(Γθ); but then, since dom(˜θ) ♯ Γθ , we have

β ˇθ ˜θ = β ˇθ . If β ∈ var(e1), since β < α , we have β ∈ ∆ and therefore β ˇθθ = β = β ˇθ .
We apply the IH using the premises:

Γ′ ˇθ ⊢ e2 : t ˇθ static(ˇθ, Γ′) dom(ˇθ) ♯ ∆ ⊇ var(e2) U2 ♯ ∆, t, Γ
′, dom(ˇθ)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:54 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

We derive:

Γ′;∆ ⊢ ⟨⟨e2 : t⟩⟩ { D2 | α2
ˇθ ∪ θ ′

2
⊩∆ D2 dom(θ ′

2
) ⊆ α2 ⊆ U2

We show ®α ♯ Γθ1 by contradiction. Assume that there exists an α ∈ ®α such that α ∈ var(Γθ1).

Then, since
ˇθ is not defined on ®α , we would have α ∈ var(Γθ1

ˇθ). But Γθ1
ˇθ = Γ ˇθ = Γθ . Then,

we would have α ∈ var(Γθ), which is impossible.

From the premises

Γ;∆ ∪ ®α ⊢ ⟨⟨e1 : α⟩⟩ { D1 | α1 (Γ, x : ∀®α,®γ . αθ1);∆ ⊢ ⟨⟨e2 : t⟩⟩ { D2 | α2

θ1 ∈ solve∆∪ ®α (D1) ®α ♯ Γθ1 ®γ = var(αθ1) \ (var(Γθ1) ∪ ®α ∪ (var(e1) \ ®α))

we derive

Γ;∆ ⊢ ⟨⟨e : t⟩⟩ { D2 ∪ equiv(θ1,D1) | α

where α = {α } ∪ ®α ∪ α1 ∪ α2 ∪ (var(θ1) \ var(D1)) ⊆ U.

Let θ ′ = {α B τ1} ∪ θ ′
1
∪ ˜θ1 ∪ θ ′

2
. We have dom(θ ′) ⊆ α ⊆ U.

It remains to prove that θ ∪ θ ′ ⊩∆ D2 ∪ equiv(θ1,D1). Note that θ ∪ θ ′ = ˇθ ∪ θ ′
2
. Therefore,

we have θ ∪ θ ′ ⊩∆ D2. We show that θ ∪ θ ′ solves equiv(θ1,D1).

• When β ∈ var Û≼(D1), wemust show that β(θ∪θ ′) is a static type. Note that, since ˆθ∪θ ′
1
⊩∆∪ ®α

D1, we know β(ˆθ∪θ ′
1
) is static. This gives the result we need since θ∪θ ′ = (ˆθ∪θ ′

1
)∪(˜θ1∪θ

′
2
)

and dom(˜θ1 ∪ θ ′
2
) ♯ var(D1).

• When β ∈ var(D1)θ1, we must show that β(θ ∪ θ ′) is a static type. We have shown

static(ˇθ, var(D1)θ1). This is sufficient because θ∪θ ′ = ˇθ∪θ ′
2
and dom(θ ′

2
) ♯ var(D1)∪var(θ1).

• When β ∈ dom(θ1) and βθ1 is static, we must show β(θ ∪ θ ′) = βθ1(θ ∪ θ ′). We have

β ˇθ = βθ1
ˇθ , which gives the result we need since

ˇθ and θ ∪ θ ′ differ only on variables

outside dom(θ1) and var(θ1). □

B FULL DEFINITIONS AND RESULTS
B.1 Type Frames
Let V be a countable set of type variables, which we partition into two sets Vα

(ranged over by α)
and VX

(ranged over by X). In this section, α and X variables are treated identically; we introduce

two separate metavariables because we will need to distinguish them later.

Let C be a set of language constants (ranged over by c) and B a set of basic types (ranged over by

b). We assume that there exists a function B : B → P(C). For two basic types b1 , b2, B(b1) and

B(b2) might have a non-empty intersection. We assume that there exists a basic type 1B ∈ B such

that B(1B) = C. We also assume that there exists a function b(·) : C → B which assigns a basic

type bc to every constant c , such that c ∈ B(bc).

Definition B.1 (Type frames). The set TT of type frames is the set of terms T produced coinduc-
tively by the following grammar

T ::= α | X | b | T ×T | T → T | T ∨T | ¬T | 0

and that satisfy the following conditions:
• (regularity) the term must have a finite number of different sub-terms;
• (contractivity) every infinite branch of a type must contain an infinite number of occurrences of
the product or arrow type constructors.

We introduce the following abbreviations:

T1 ∧T2 =
def

¬(¬T1 ∨ ¬T2) T1 \T2 =
def T1 ∧ (¬T2) 1 =def ¬0 .

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:55

We refer to type frames also as types when no ambiguity is possible. We refer to b, ×, and → as

type constructors and to ∨, ∧, ¬, and \ as type connectives.
The condition on infinite branches bars out ill-formed types such as T = T ∨T (which does not

carry any information about the set denoted by the type) or T = ¬T (which cannot represent any

set). It also ensures that the binary relation ▷ ⊆ T 2

T defined by T1 ∨T2 ▷Ti , ¬T ▷T is Noetherian

(that is, strongly normalizing). This gives an induction principle on TT that we will use without

any further reference to the relation.

LetT be a type frame. We use var(T) to denote the set of type variables (both α and X) occurring

in T . We write varα (T) for var(T) ∩ Vα
and varX (T) for var(T) ∩ VX

. We say that T is ground or

closed if and only if var(T) is empty.

B.2 Semantic Subtyping for Type Frames
Let Ω be a symbol that is not in C.

Definition B.2 (Interpretation domain). The interpretation domainD is the set of finite terms
d produced inductively by the following grammar

d ::= cL | (d,d)L | {(d,dΩ), . . . , (d,dΩ)}
L

dΩ ::= d | Ω

where L ranges over Pfin(V) (that is, on finite sets of type variables).

We write tags(d) for the outermost set of labels in d , that is,

tags(cL) = tags((d1,d2)
L) = tags({(d1,d

′
1
), . . . , (dn,d

′
n)}

L) = L .

Definition B.3 (Set-theoretic interpretation). We define a binary predicate (d : T), where
d ∈ D and T ∈ TT , by induction on the pair (d,T) ordered lexicographically (we use the induction
principle on types mentioned earlier). The predicate is defined as follows:

(d : α) = α ∈ tags(d)

(d : X) = X ∈ tags(d)

(cL : b) = c ∈ B(b)

((d1,d2)
L

: T1 ×T2) = (d1 : T1) ∧ (d2 : T2)

({(d1,d
′
1
), . . . , (dn,d

′
n)}

L
: T1 → T2) = ∀i ∈ {1, . . . ,n}. (di : T1) =⇒ (d ′

i : T2)

(d : T1 ∨T2) = (d : T1) ∨ (d : T2)

(d : ¬T) = ¬(d : T)

(d : T) = false otherwise

We define the set-theoretic interpretation of type frames J · K : TT → P(D) as

JT K =def {d ∈ D | (d : T) } .

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:56 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

We have the following equalities:

JαK = {d | α ∈ tags(d) }

JX K = {d | X ∈ tags(d) }

JbK = { cL | c ∈ B(b) }

JT1 ×T2K = { (d1,d2)
L | (d1 ∈ JT1K) ∧ (d2 ∈ JT2K) }

JT1 → T2K = { {(d1,d
′
1
), . . . , (dn,d

′
n)}

L | ∀i . (di ∈ JT1K) =⇒ (d ′
i ∈ JT2K) }

JT1 ∨T2K = JT1K ∪ JT2K
J¬T K = D \ JT K

J0K = ∅

Definition B.4 (Subtyping). The subtyping relation ≤T between types is defined by

T1 ≤T T2 ⇐⇒
def JT1K ⊆ JT2K .

We write ≃T for the subtype equivalence relation defined as

T1 ≃T T2 ⇐⇒
def

(T1 ≤T T2) ∧ (T2 ≤T T1) .

Definition B.5 (Type substitutions). A type substitution θ is a mapping from type variables to
type frames. We write {α B T } or {X B T } for the type substitution mapping α or X , respectively, to
T . We write dom(θ) for the domain of the substitution θ .

We write Tθ for the application of the substitution θ to the type frame T , which is defined coinduc-
tively by the following equations.

αθ =

{
θ (α) if α ∈ dom(θ)

α otherwise

Xθ =

{
θ (X) if X ∈ dom(θ)

X otherwise

bθ = b

(T1 ×T2)θ = (T1θ) × (T2θ)

(T1 → T2)θ = (T1θ) → (T2θ)

(T1 ∨T2)θ = (T1θ) ∨ (T2θ)

(¬T)θ = ¬(Tθ)

0θ = 0

Proposition B.6. If T1 ≤T T2, then T1θ ≤T T2θ for every type substitution θ .

We refer to a type frame of the form b, T1 ×T2, or T1 → T2 as an atom. We write Abasic, Aprod,

and Afun for the set of type frames of the forms b, T1 ×T2, and T1 → T2, respectively.

Lemma B.7. Let P , N be two finite subsets of Aprod. Then:∧
T1×T2∈P

T1 ×T2 ≤T

∨
T1×T2∈N

T1 ×T2 ⇐⇒

∀N ′ ⊆ N .
(∧
T1×T2∈P

T1 ≤T

∨
T1×T2∈N ′

T1

)
∨

(∧
T1×T2∈P

T2 ≤T

∨
T1×T2∈N \N ′

T2

)
(with the convention

∧
T ∈∅T = 1 × 1).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:57

Lemma B.8. Let P , N be two finite subsets of Afun. Then:∧
T1→T2∈P

T1 → T2 ≤T

∨
T1→T2∈N

T1 → T2 ⇐⇒ ∃(T 1 → T 2) ∈ N .

(
T 1 ≤T

∨
T1→T2∈P

T1

)
∧

(
∀P ′ ⊊ P .

(
T 1 ≤T

∨
T1→T2∈P ′

T1

)
∨

(∧
T1→T2∈P\P ′

T2 ≤T T 2

))
(with the convention

∧
T ∈∅T = 0 → 1).

Lemma B.9. Let P , N be two finite subsets ofAbasic ∪Aprod ∪Afun and P ′, N ′ be two finite subsets
ofV . If P ′ ∩ N ′ = ∅, then∧

a∈P

a ∧
∧
a∈N

¬a ∧
∧
a∈P ′

a ∧
∧
a∈N ′

¬a ≤T 0 ⇐⇒
∧
a∈P

a ∧
∧
a∈N

¬a ≤T 0

Proof. The implication ⇐ is trivial. We prove the other direction by contrapositive. Assume

that the subtyping relation on the right does not hold. Then, we have

d ∈ J
∧

a∈P a ∧
∧

a∈N ¬aK .

Therefore d ∈ JaK holds for all a ∈ P and d ∈ D \ JN K holds for all a ∈ N .

Note that every a ∈ P ∪ N is of the forms b, T1 ×T2, or T1 → T2. For such types, if d ∈ JaK, then
every d ′

that differs from d only for its outermost set of tags satisfies d ′ ∈ JaK.
We consider the domain element d which is d changed to have tags(d) = P ′

. By construction, it

is in the interpretation of all variables in P ′
and in none of the interpretations of the variables in

N ′
. Hence, we have

d ∈ J
∧

a∈P a ∧
∧

a∈N ¬a ∧
∧

a∈P ′ a ∧
∧

a∈N ′ ¬aK . □

Given two type substitutions θ1 and θ2, we write θ1 ≤T θ2 when, for every A, Aθ1 ≤T Aθ2.

When A ⊆ V , we define θ |A as the type substitution such that Aθ |A = Aθ if A ∈ A and Aθ |A = A
otherwise.

Proposition B.10.

∀T , θ1, θ2.
θ1 |varcov(T) ≤T θ2 |varcov(T)

θ2 |varcnt(T) ≤T θ1 |varcnt(T)

}
=⇒ Tθ1 ≤T Tθ2

Proof. We define

P(T , θ1, θ2) ⇐⇒
def

(
θ1 |varcov(T) ≤T θ2 |varcov(T)

)
and

(
θ2 |varcnt(T) ≤T θ1 |varcnt(T)

)
and note that the following hold

P(A, θ1, θ2) =⇒ Aθ1 ≤T Aθ2

P(T1 ×T2, θ1, θ2) =⇒ P(T1, θ1, θ2) and P(T2, θ1, θ2)

P(T1 → T2, θ1, θ2) =⇒ P(T1, θ2, θ1) and P(T2, θ1, θ2)

P(T1 ∨T2, θ1, θ2) =⇒ P(T1, θ1, θ2) and P(T2, θ1, θ2)

P(¬T ′, θ1, θ2) =⇒ P(T ′, θ2, θ1)

We show the following result (which implies the statement)

∀θ1, θ2,d,T .
P(T , θ1, θ2)

(d : Tθ1)

}
=⇒ (d : Tθ2)

by induction on (d,T).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:58 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

Case: T = b or T = 0 Trivial, since Tθ1 = T = Tθ2.

Case: T = A We have Aθ1 ≤T Aθ2 and (d : Aθ1), which implies (d : Aθ2).

Case: T = T1 ×T2

We have Tθ1 = (T1θ1) × (T2θ1) and Tθ2 = (T1θ2) × (T2θ2).

Since (d : Tθ1), we have d = (d1,d2) and (di : Tiθ1).

Since P(Ti , θ1, θ2) holds for both i , by IH we have (di : Tiθ2). Then, (d : Tθ2).

Case: T = T1 → T2

We have Tθ1 = (T1θ1) → (T2θ1) and Tθ2 = (T1θ2) → (T2θ2).

Since (d : Tθ1), we have d = { (di ,d
′
i) | i ∈ I } and ∀i ∈ I . (di : T1θ1) =⇒ (d ′

i : T2θ1).

We have P(T1, θ2, θ1) and P(T2, θ1, θ2).

For every di such that (di : T1θ2), by IH we have (di : T1θ1), therefore (d
′
i : T2θ1), and, by IH,

(d ′
i : T2θ2). Therefore, ∀i ∈ I . (di : T1θ2) =⇒ (d ′

i : T2θ2), and hence (d : Tθ2).

Case: T = T1 ∨T2

We have either (d : T1θ1) or (d : T2θ1). Therefore, since P(Ti , θ1, θ2) holds for both i , by IH we

have either (d : T1θ2) or (d : T2θ2), and hence (d : Tθ2).

Case: T = ¬T ′

We have ¬(d : T ′θ1). Since P(T ′, θ2, θ1), by IH (d : T ′θ2) =⇒ (d : T ′θ1). Therefore, by

contrapositive, we have ¬(d : T ′θ2), hence (d : ¬T ′θ2). □

B.3 Static and Gradual Types
We define the set of static types Tt , ranged over by t , as

Tt = {T ∈ TT | varX (T) = ∅ }

that is, the set ofT containing noX variable. The types in Tt are therefore generated by the grammar

t ::= α | b | t × t | t → t | t ∨ t | ¬t | 0

interpreted coinductively, with the same regularity and contractivity conditions as in Definition B.1.

Definition B.11 (Gradual types). The set Tτ of gradual types is the set of terms τ produced
coinductively by the following grammar

τ ::= ? | α | b | τ × τ | τ → τ | τ ∨ τ | ¬τ | 0

and that satisfy the following conditions:
• (regularity) the term must have a finite number of different sub-terms;
• (contractivity) every infinite branch of a type must contain an infinite number of occurrences of
the product or arrow type constructors.

For both static and gradual types we use the same abbreviations and the same notation introduced

for type frames in general. On static types, we have the relations ≤T and ≃T since static types are

just a subset of type frames.

We extend the definition of application of a type substitution to gradual types by defining ?θ = ?.
When V is a set of type variables and T a set of types, we write θ : V → T to mean dom(θ) = V

and to restrict which types can be in the range of θ . For instance, we write θ1 : VX → Tt if θ maps

X variables to static types and θ2 : VX → Tτ if θ2 maps X variables to gradual types.

B.4 Discriminations of Gradual Types
Polarity. Given a type frame and an occurrence of a variable in it, we speak of that occurrence as

being either in positive or in negative position, and we refer to this property of the occurrence as

its polarity. Polarity is defined as follows. The root of the type frame is in positive position. In a

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:59

type frame T of the form T1 ×T2, T1 ∨T2 or T1 → T2, both T1 and T2 have the same polarity as T . In
a type frame T = ¬T ′

, T ′
has opposite polarity with respect to T .

We write var+X (T) for the set of variables in VX
that have an occurrence in positive position in

T and var−X (T) for the set of variables inVX
that have an occurrence in negative position in T .

We say that T is polarized if each variable X ∈ VX
occurs in T always with the same polarity;

that is, if var+X (T) ∩ var−X (T) = ∅. We write T
pol

T for the set of polarized type frames.

We also use these notions for type variables as well as for frame variables. We write var+(T)
and var−(T) for the set of type and frame variables that have, respectively, positive or negative

occurrences in T . We write var±(T) for the set of type and frame variables that have both positive

and negative occurrences in T .

Variance. Similarly, given a type frame and an occurrence of a variable in it, we also speak of

that occurrence as being either in covariant or in contravariant position. The definition is identical

to the definition of polarity, except that in a type frameT = T1 → T2,T1 has opposite variance with

respect to T , and T2 has the same variance as T .
We write varcovX (T) for the set of variables in VX

that have an occurrence in covariant position

in T and varcntX (T) for the set of variables in VX
that have an occurrence in contravariant position

in T .
We say thatT is variance-polarized if each variableX ∈ VX

occurs inT always with the same vari-

ance; that is, if varcovX (T)∩varcntX (T) = ∅. We write T var
T for the set of variance-polarized type frames.

Parity.We also speak of the parity of an occurrence of a variable in a type frame. An occurrence

is even if it appears to the left of an even number of arrows; it is odd otherwise. That is, the root

of a type is even; in T1 → T2, parity is flipped for T1. We write varevenX (·) and varoddX (·) for frame

variables with even and off occurrences.

Note that any two of polarity, variance, and parity of an occurrence determine the third. Notably,

covariant occurrences are either positive and even or negative and odd. Contravariant occurrences

are either negative and even or positive and odd.

Given a type frame T , we write T †
for the gradual type τ obtained from T by replacing all

variables in VX
with ?.

Definition B.12 (Discrimination of a gradual type). Given a gradual type τ , the set ⋆(τ) of
the discriminations of τ is defined by

⋆(τ) = {T ∈ T
pol

T | T † = τ } .

In the following, we assume that X 1
and X 0

are two variables inVX
. We will define subtyping

on gradual types by replacing these variables for positive and negative occurrences (respectively)

of ? in a gradual type in order to obtain a type frame.

We say that a type frame T is strongly polarized if varX (T) ⊆ {X 1,X 0}, var+X (T) ⊆ {X 1}, and

var−X (T) ⊆ {X 0}. We say that it is strongly negatively polarized if varX (T) ⊆ {X 1,X 0}, var+X (T) ⊆

{X 0}, and var−X (T) ⊆ {X 1}. We write T
pol1

T and T
pol0

T for the sets of strongly polarized type frames

and of strongly negatively polarized type frames, respectively.

Similarly, we define and write T var1
T and T var0

T for variance-polarized type frames verifying the

same conditions.

Given a gradual type τ , we define its positive discrimination τ ⊕
as the unique element of ⋆(τ) ∩

T
pol1

T and its negative discrimination τ ⊖
as the unique element of⋆(τ)∩T

pol0
T . We have the following

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:60 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

equalities:

?⊕ = X 1 α ⊖ = X 0

α ⊕ = α α ⊖ = α
b⊕ = b b⊖ = b

(τ1 × τ2)
⊕ = τ ⊕

1
× τ ⊕

2
(τ1 × τ2)

⊖ = τ ⊖
1
× τ ⊖

2

(τ1 → τ2)
⊕ = τ ⊕

1
→ τ ⊕

2
(τ1 → τ2)

⊖ = τ ⊖
1
→ τ ⊖

2

(τ1 ∨ τ2)
⊕ = τ ⊕

1
∨ τ ⊕

2
(τ1 ∨ τ2)

⊖ = τ ⊖
1
∨ τ ⊖

2

0⊕ = 0 0⊖ = 0
(¬τ)⊕ = τ ⊖ (¬τ)⊖ = τ ⊕

When T ∈ T
pol1

T , we have (T †)⊕ = T . When T ∈ T
pol0

T , we have (T †)⊖ = T .
Moreover, given a gradual type τ , we define its covariant polarization τ ∧⃝

as the unique element

T ∈ T var1
T such that T † = τ , and its contravariant polarization τ ∨⃝

as the unique element T ∈ T var0
T

verifying T † = τ . We have the following equalities:

?∧⃝ = X 1 α ∨⃝ = X 0

α ∧⃝ = α α ∨⃝ = α
b ∧⃝ = b b ∨⃝ = b

(τ1 × τ2)
∧⃝ = τ ∧⃝

1
× τ ∧⃝

2
(τ1 × τ2)

∨⃝ = τ ∨⃝

1
× τ ∨⃝

2

(τ1 → τ2)
∧⃝ = τ ∧⃝

1
→ τ ∨⃝

2
(τ1 → τ2)

∨⃝ = τ ∧⃝

1
→ τ ∨⃝

2

(τ1 ∨ τ2)
∧⃝ = τ ∧⃝

1
∨ τ ∧⃝

2
(τ1 ∨ τ2)

∨⃝ = τ ∨⃝

1
∨ τ ∨⃝

2

0∧⃝ = 0 0∨⃝ = 0
(¬τ)∧⃝ = τ ∨⃝ (¬τ)∨⃝ = τ ∧⃝

We write var+covX (T) to denote the set of frame variables that have an occurrence inT that is both

positive and covariant. Similarly, we use the notations var+cntX (T) ⊆ {X+∨}, var−covX (T) ⊆ {X−∧},

and var−cntX (T) ⊆ {X−∨}.

In the following, we assume thatX+∧,X+∨,X−∧
, andX−∨

are four distinguished variables inVX
.

Given a gradual type τ , we define τ • as the unique type frameT such thatT † = τ , that var+covX (T) ⊆
{X+∧}, that var+cntX (T) ⊆ {X+∨}, that var−covX (T) ⊆ {X−∧}, and that var−cntX (T) ⊆ {X−∨}.

B.5 Relations on Gradual Types

The polarized discriminations of a gradual type are defined as ⋆pol(τ) =def ⋆ (τ) ∩ T
pol

T .

Definition B.13 (Subtyping on gradual types). The subtyping relation ≤ between gradual
types is defined by

τ1 ≤ τ2 ⇐⇒
def

∃T1 ∈ ⋆pol(τ1),T2 ∈ ⋆pol(τ2).T1 ≤T T2

We write ≃ for the subtype equivalence relation defined as τ1 ≃ τ2 ⇐⇒
def

(τ1 ≤ τ2) ∧ (τ2 ≤ τ1).

We write var(T1, . . . ,Tn) for var(T1) ∪ · · · ∪ var(Tn) (and similarly for varX , var+X , etc.).

Lemma B.14. Let T be a type frame with var(T) = {Ai | i ∈ I }. There exists a type frame T ′ such
that the four sets

var+cov(T ′) ⊆ {A+∧i | i ∈ I } var+cnt(T ′) ⊆ {A+∨i | i ∈ I }

var−cov(T ′) ⊆ {A−∧
i | i ∈ I } var−cnt(T ′) ⊆ {A−∨

i | i ∈ I }

are pairwise disjoint and that

T = T ′
(
{A+∧i B Ai }i ∈I ∪ {A+∨i B Ai }i ∈I ∪ {A−∧

i B Ai }i ∈I ∪ {A−∨
i B Ai }i ∈I

)
.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:61

Proof. Clearly, T ′
is definable as a tree: it is the tree that coincides with T except on variables,

and that, where T has a variable Ai , has one of A
+∧
i , A+∨i , A−∧

i , or A−∨
i depending on the position of

that occurrence of Ai . The tree T
′
is also clearly contractive and the sets of variables in different

positions are disjoint.

ForT ′
to be a type frame, it must also be regular. SinceT is regular, it can be described by a finite

system of equations
x1 = T̄1

...

xn = T̄n

such that every T̄i is an inductively generated term of the grammar

T̄ ::= x | X | α | b | T̄ × T̄ | T̄ → T̄ | T̄ ∨ T̄ | ¬T̄ | 0

(x serves as a recursion variable) and that (reading the equations as a tree) T = x1.

Then, T ′
can be defined as x+∧

1
where

x+∧
1
= f +∧(T̄1)

x+∨
1
= f +∨(T̄1)

x−∧
1
= f −∧(T̄1)

x−∨
1
= f −∨(T̄1)

...

x−∨n = f −∨(T̄n)

and where (defining + = −, − = +, ∧ = ∨, and ∨ = ∧) f pv (T̄) is defined inductively as:

f pv (x) = xpv f pv (X) = Xpv f pv (α) = αpv

f pv (b) = b f pv (T̄1 × T̄2) = f pv (T̄1) × f pv (T̄2) f pv (T̄1 → T̄2) = f pv (T̄1) → f pv (T̄2)

f pv (T̄1 ∨ T̄2) = f pv (T̄1) ∨ f pv (T̄2) f pv (¬T̄ ′) = ¬f pv (T ′) f pv (0) = 0

At most 4n equations are needed to define T ′
(they could be less, since some x

pv
i could be

unreachable from x+∧
1

). Therefore, T ′
is regular. □

Corollary B.15. Let T be a type frame with varX (T) = {X1, . . . ,Xn}. There exists a type frame
T ′, with varcovX (T ′) ⊆ {X1, . . . ,Xn} disjoint from varcntX (T ′) ⊆ {X ′

1
, . . . ,X ′

n}, such that T = T ′{X ′
i B

Xi }
n
i=1

.

Proof. Consequence of Lemma B.14. We apply the lemma to find a type where type and frame

variables are renamed according to their position (polarity and variance); then, we apply a substitu-

tion to unify the positions we do not want to distinguish. □

Corollary B.16. LetT be a type frame with varX (T) = {X1, . . . ,Xn}. There exists a type frameT ′,
with varevenX (T ′) ⊆ {X1, . . . ,Xn} disjoint from varoddX (T ′) ⊆ {X ′

1
, . . . ,X ′

n}, such that T = T ′{X ′
i B

Xi }
n
i=1

.

Proof. Consequence of Lemma B.14, similarly to Corollary B.15. □

Corollary B.17. Let τ be a gradual type with var(τ) = {α1, . . . ,αn}. There exists a gradual type τ ′,
with var+(τ ′) ⊆ {α1, . . . ,αn} disjoint from var−(τ ′) ⊆ {α ′

1
, . . . ,α ′

n}, such that τ = τ ′{α ′
i B αi }

n
i=1

.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:62 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

Proof. Consequence of Lemma B.14, similarly to Corollary B.15. We first choose a T such that

T † = τ ; then, we apply the lemma and a substitution to unify the positions that we do not need to

distinguish; finally, we apply † to obtain a gradual type. □

Lemma B.18.

T ≰T 0

either {X ,Y } ♯ var−X (T) or {X ,Y } ♯ var
+
X (T)

}
=⇒ T {Y B X } ≰T 0

Proof. We first give some auxiliary definitions.

Let σ range over the two symbols ⊞ and ⊟. We define σ as follows: ⊞ =def ⊟ and ⊟ =def ⊞.

Given a type frame T ′
, we write T ′ ⊨ ⊞ if {X ,Y } ♯ var−X (T) and T

′ ⊨ ⊟ if {X ,Y } ♯ var+X (T).
Note that, for all T ′

, T1, and T2, we have:

(¬T ′ ⊨ σ) =⇒ (T ′ ⊨ σ)

(T1 ∨T2 ⊨ σ) =⇒ (T1 ⊨ σ) ∧ (T2 ⊨ σ)

(T1 ×T2 ⊨ σ) =⇒ (T1 ⊨ σ) ∧ (T2 ⊨ σ)

(T1 → T2 ⊨ σ) =⇒ (T1 ⊨ σ) ∧ (T2 ⊨ σ)

We define a function Fσ on domain element tags (finite sets of variables) as:

F⊞(L) =

{
L ∪ {X ,Y } if X ∈ L or Y ∈ L

L otherwise

F⊟(L) =

{
L \ {X ,Y } if X < L or Y < L

L otherwise

We also define F on domain elements as follows:

Fσ (cL) = cF
σ (L)

Fσ ((d1,d2)
L) = (Fσ (d1), F

σ (d2))
F σ (L)

Fσ ({(d1,d
′
1
), . . . , (dn,d

′
n)}

L) = {(Fσ (d1), F
σ (d ′

1
)), . . . , (Fσ (dn), F

σ (d ′
n))}

F σ (L)

Fσ (Ω) = Ω

We must show:

T ≰T 0

either {X ,Y } ♯ var−X (T) or {X ,Y } ♯ var
+
X (T)

}
=⇒ T {Y B X } ≰T 0

This can be restated as:

∃d ∈ D . (d : T)

∃σ .T ⊨ σ

}
=⇒ ∃d ′ ∈ D . (d ′

: T {Y B X })

We prove the following, stronger claim:

∀d,T ,σ . T ⊨ σ =⇒

{
(d : T) =⇒ (Fσ (d) : T {Y B X })

¬(d : T) =⇒ ¬(Fσ (d) : T {Y B X })

by induction on the pair (d,T), ordered lexicographically. For a given d ,T , and σ , we assumeT ⊨ σ
and proceed by case analysis on T and d .
Let θ = {Y B X }.

Case: T = α
Since αθ = α , we must show

(d : α) =⇒ (Fσ (d) : α) ¬(d : α) =⇒ ¬(Fσ (d) : α) .

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:63

If (d : α), then α ∈ tags(d) and also α ∈ tags(Fσ (d)). Likewise, if d < JαK, then α < tags(d)
and also α < tags(Fσ (d)).

Case: T = Z , with Z , X and Z , Y
Like the previous case.

Case: T = X
Since X ∈ var+X (X), we have σ = ⊞.

We must show

(d : X) =⇒ (F⊞(d) : X) ¬(d : X) =⇒ ¬(F⊟(d) : X) .

If (d : X), then X ∈ tags(d) and X ∈ tags(F⊞(d)). If ¬(d : X), then X < tags(d) and
X < tags(F⊟(d)).

Case: T = Y
Since Y ∈ var+X (Y), we have σ = ⊞.

We must show

(d : Y) =⇒ (F⊞(d) : X) ¬(d : Y) =⇒ ¬(F⊟(d) : X) .

If (d : Y), then Y ∈ tags(d) and X ∈ tags(F⊞(d)). If ¬(d : Y), then Y < tags(d) and then

X < tags(F⊟(d)).
Case: T = b

Since bθ = b, we must show

(d : b) =⇒ (Fσ (d) : b) ¬(d : b) =⇒ (Fσ (d) : b) .

If (d : b), then d = cL with c ∈ B(b). Then, Fσ (d) = cF
σ (L)

and (Fσ (d) : b).
If ¬(d : b) and d is of the form cL , then c < B(b): then, Fσ (d) < JbK. If d is not of the form cL ,
then Fσ (d) is not either and we have Fσ (d) < JbK.

Case: T = T1 ×T2

Since T ⊨ σ , we have T1 ⊨ σ and T2 ⊨ σ .
We must show

(d : T1 ×T2) =⇒ (Fσ (d) : T1θ ×T2θ)

¬(d : T1 ×T2) =⇒ ¬(Fσ (d) : T1θ ×T2θ) .

If (d : T1 × T2), then d is of the form (d1,d2)
L
and, for both i , (di : T1). We have Fσ (d) =

(Fσ (d1), F
σ (d2))

F σ (L)
. By IH, (d1 : T1) implies (Fσ (d1) : T1θ); likewise for d2. Therefore,

(Fσ (d) : T1θ ×T2θ).
If ¬(d : T1 × T2) and d = (d1,d2)

L
, then either ¬(d1 : T1) or ¬(d2 : T2). Then, by IH, either

¬(Fσ (d1) : T1θ) or ¬(F
σ (d2) : T2θ). Therefore, ¬(F

σ (d) : T1θ ×T2θ). If d is of another form,

then the result is immediate.

Case: T = T1 → T2

Since T ⊨ σ , we have T1 ⊨ σ and T2 ⊨ σ .
We must show

(d : T1 → T2) =⇒ (Fσ (d) : T1θ → T2θ)

¬(d : T1 → T2) =⇒ ¬(Fσ (d) : T1θ → T2θ) .

If (d : T1 → T2), then d is of the form { (dj ,d
′
j) | j ∈ J }L and, for all j ∈ J , we have:

(dj : T1) =⇒ (d ′
j : T2) .

We have Fσ (d) = { (Fσ (dj), F
σ (d ′

j)) | j ∈ J }F
σ (L)

.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:64 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

For every j, by the induction hypothesis applied to T1 and dj , and to T2 and d
′
j , we get

(dj : T1) =⇒ (Fσ (dj) : T1θ) ¬(dj : T1) =⇒ ¬(Fσ (dj) : T1θ)

(d ′
j : T2) =⇒ (Fσ (d ′

j) : T2θ) ¬(d ′
j : T2) =⇒ ¬(Fσ (d ′

j) : T2θ) .

We must show, for all j ∈ J :

(Fσ (dj) : T1θ) =⇒ (Fσ (d ′
j) : T2θ)

which we prove using the induction hypothesis (in particular, using the contrapositive of the

second implication derived by induction).

If ¬(d : T1 → T2) and d is of the form { (dj ,d
′
j) | j ∈ J }L , then there exists a j0 ∈ J such that

(dj0 : T1) ¬(d ′
j0 ∈ T2) .

We have Fσ (d) = { (Fσ (dj), F
σ (d ′

j)) | j ∈ J }F
σ (L)

. By IH, we show

(Fσ (dj0) : T1θ) ¬(Fσ (dj0) : T2θ) .

If d is of another form, we have the result directly. then we get the result directly.

Case: T = T1 ∨T2

Since T ⊨ σ , we have T1 ⊨ σ and T2 ⊨ σ .
By the induction hypothesis applied to d and Ti , we get

(d : Ti) =⇒ (Fσ (d) : Tiθ) ¬(d : Ti) =⇒ ¬(Fσ (d) : Tiθ) .

We must show

(d : T1 ∨T2) =⇒ (Fσ (d) : T1θ ∨T2θ) ¬(d : T1 ∨T2) =⇒ (Fσ (d) : T1θ ∨T2θ) .

To show the first implication, assume (d : T1 ∨ T2): then either (d : T1) or (d : T2); then

either (Fσ (d) : T1θ) or (F
σ (d) : T2θ); then (Fσ (d) : T1θ ∨T2θ). To show the second, assume

¬(d : T1 ∨ T2): then ¬(d : T1) and ¬(d : T2); then ¬(Fσ (d) : T1) and ¬(Fσ (d) : T2); then

¬(Fσ (d) : T1 ∨T2).

Case: T = ¬T ′

Since T ⊨ σ , T ′ ⊨ σ .
By applying the induction hypothesis to d and T ′

, we get

(d : T ′) =⇒ (Fσ (d) : T ′θ) ¬(d : T ′) =⇒ ¬(Fσ (d) : T ′θ) .

We must show

(d : ¬T ′) =⇒ (Fσ (d) : ¬(T ′θ)) ¬(d : ¬T ′) =⇒ ¬(Fσ (d) : ¬(T ′θ)) .

For the first implication, assume (d : ¬T ′): then¬(d : T ′),¬(Fσ (d) : T ′θ), and (Fσ (d) : ¬(T ′θ)).
For the second, assume ¬(d : ¬T ′): then ¬¬(d : T ′), that is, (d : T ′); hence (Fσ (d) : T ′θ), and
¬(Fσ (d) : ¬(T ′θ)).

Case: T = 0
Both implications are trivial. □

Lemma B.19.

T1 ≤T T2

X ∈ var+X (T1) =⇒ X < var+X (T2)

X ∈ var−X (T1) =⇒ X < var−X (T2)

Y ♯ T1,T2,X

=⇒ T1{X B Y } ≤T T2

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:65

Proof. If X < varX (T1), the result is immediate because T1{X B Y } = T1. If X < varX (T2), then

we have T2 = T2{X B Y } and the result can be derived by Lemma B.6. We consider the case

X ∈ varX (T1) ∩ varX (T2). In this case, we have X < var+X (T1) ∩ var−X (T1): otherwise, X could not

occur in T2. Therefore, X occurs only positively or only negatively in T1.

Given T1, T2, X , and Y satisfying

X ∈ var+X (T1) =⇒ X < var+X (T2) X ∈ var−X (T1) =⇒ X < var−X (T2) Y ♯ T1,T2,X ,

we must show T1 ≤T T2 =⇒ T1{X B Y } ≤T T2.

We show the contrapositive: T1{X B Y } ≰T T2 =⇒ T1 ≰T T2. Assume T1{X B Y } ≰T T2.

We have T1 = T1{X B Y }{Y B X } and T2 = T2{Y B X }. Let T = T1{X B Y } \ T2. We have

T ≰T 0 by definition of subtyping.

We show that either {X ,Y } ♯ var−X (T) or {X ,Y } ♯ var
+
X (T) holds. Note that

var+X (T) = var+X (T1{X B Y }) ∪ var−X (T2) var−X (T) = var−X (T1{X B Y }) ∪ var+X (T2) .

If X ∈ var+X (T1), then X < var−X (T1) and X < var+X (T2): therefore, {X ,Y } ♯ var−X (T). If X ∈ var−X (T1),

then X < var+X (T1) and X < var−X (T2): therefore, {X ,Y } ♯ var+X (T).
By Lemma B.18, we have T {Y B X } ≰T 0: that is, (T1{X B Y } \ T2){Y B X } ≰T 0; that is,

T1{X B Y }{Y B X } ≰T T2{Y B X }, which is T1 ≰T T2. □

Lemma B.20.

T1 ≤T T2

∀X ∈ ®X .

{
X ∈ var+X (T1) =⇒ X < var+X (T2)

X ∈ var−X (T1) =⇒ X < var−X (T2)

®Y ♯ T1,T2, ®X

=⇒ T1{ ®X B ®Y } ≤T T2

Proof. By induction on ®X . If ®X is empty, there is nothing to prove.

Otherwise, we have ®X = X0
®X ′

and ®Y = Y0
®Y ′
. By Lemma B.19, we haveT1{X0 B Y0} ≤T T2. Then,

by IH, we have T1{X0 B Y0}{ ®X
′ B ®Y ′} ≤T T2 and we conclude since T1{X0 B Y0}{ ®X

′ B ®Y ′} =

T1{ ®X B ®Y }. □

Lemma B.21.

T ≰T 0

X < varevenX (T)

Y < varoddX (T)

 =⇒ T {Y B X } ≰T 0

Proof. We first give some auxiliary definitions.

Let σ range over the two symbols △ and ▽. We define σ as follows: △ =
def ▽ and ▽ =def △.

Given a type frame T ′
, we write T ′ ⊨ △ if X < varoddX (T ′) and Y < varevenX (T ′); we write T ′ ⊨ ▽ if

X < varevenX (T ′) and Y < varoddX (T ′).

Note that, for all T ′
, T1, and T2, we have:

(¬T ′ ⊨ σ) =⇒ (T ′ ⊨ σ)

(T1 ∨T2 ⊨ σ) =⇒ (T1 ⊨ σ) ∧ (T2 ⊨ σ)

(T1 ×T2 ⊨ σ) =⇒ (T1 ⊨ σ) ∧ (T2 ⊨ σ)

(T1 → T2 ⊨ σ) =⇒ (T1 ⊨ σ) ∧ (T2 ⊨ σ)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:66 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

We define a function Fσ on domain element tags (finite sets of variables) as:

F △(L) = L F▽(L) =

{
L ∪ {X } if Y ∈ L

L \ {X } if Y < L

We also define F on domain elements as follows:

Fσ (cL) = cF
σ (L)

Fσ ((d1,d2)
L) = (Fσ (d1), F

σ (d2))
F σ (L)

Fσ ({(d1,d
′
1
), . . . , (dn,d

′
n)}

L) = {(Fσ (d1), F
σ (d ′

1
)), . . . , (Fσ (dn), F

σ (d ′
n))}

F σ (L)

Fσ (Ω) = Ω

We must show:

T ≰T 0

X < varevenX (T)

Y < varoddX (T)

 =⇒ T {Y B X } ≰T 0

This can be restated as:

∃d ∈ D . (d : T)

T ⊨ ▽

}
=⇒ ∃d ′ ∈ D . (d ′

: T {Y B X })

We prove the following, stronger claim:

∀d,T ,σ . T ⊨ σ =⇒
(
(d : T) ⇐⇒ (Fσ (d) : T {Y B X })

)
by induction on the pair (d,T), ordered lexicographically. For a given d ,T , and σ , we assumeT ⊨ σ
and proceed by case analysis on T and d .
Let θ = {Y B X }.

Case: T = α
Note that αθ = α .

(d : α) ⇐⇒ α ∈ tags(d)

⇐⇒ α ∈ tags(Fσ (d)) neither F △
nor F▽ affect variables other than X

⇐⇒ (Fσ (d) : α)

Case: T = Z , with Z , X and Z , Y
Like the previous case.

Case: T = X
Note that we must have T ⊨ △ because X ∈ varevenX (X) and X < varoddX (X).

Note that Xθ = X .

(d : X) ⇐⇒ X ∈ tags(d)

⇐⇒ X ∈ tags(F △(d))

⇐⇒ (F △(d) : X)

Case: T = Y
Note that we must have T ⊨ ▽ because Y ∈ varevenX (Y) and Y < varoddX (Y).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:67

Note that Yθ = X .

(d : Y) ⇐⇒ Y ∈ tags(d)

⇐⇒ X ∈ tags(F▽(d))

⇐⇒ (F▽(d) : X)

Case: T = b
Note that bθ = b.
If (d : b), then d must be of the form cL with c ∈ B(b). Then, Fσ (d) = cF

σ (L)
and (Fσ (d) : b).

If (Fσ (d) : b), then Fσ (d) must be of the form cL with c ∈ B(b). Then, d = cL
′

and (d : b).
Case: T = T1 ×T2

If (d : T1×T2), thend = (d1,d2)
L
, (d1 : T1), and (d2 : T2). We have Fσ (d) = (Fσ (d1), F

σ (d2))
F σ (L)

.

By IH we have, for i ∈ {1, 2}, (di : Ti) ⇐⇒ (Fσ (di) : Tiθ); hence, (F
σ (d) : T1θ ×T2θ).

If (Fσ (d) : T1θ × T2θ), then Fσ (d) = (d1,d2)
L
, (d1 : T1θ), and (d2 : T2θ). Then, we have

d = (d ′
1
,d ′

2
)L

′

, with d1 = Fσ (d ′
1
) and d2 = Fσ (d ′

2
). By IH we have, for i ∈ {1, 2}, (d ′

i : Ti) ⇐⇒

(di : Tiθ); hence, (d : T1 ×T2).

Case: T = T1 → T2

Note that, since T ⊨ σ , we have T1 ⊨ σ and T2 ⊨ σ .
If (d : T1 → T2), then d = { (dj ,d

′
j) | j ∈ J }L and

∀j ∈ J . (dj : T1) =⇒ (d ′
j : T2) .

Then, Fσ (d) = { (Fσ (dj), F
σ (d ′

j)) | j ∈ J }F
σ (L)

. By IH, for every j ∈ J ,

(dj : T1) ⇐⇒ (Fσ (dj) : T1θ) (d ′
j : T2) ⇐⇒ (Fσ (d ′

j) : T2θ) .

Therefore, we have

∀j ∈ J . (Fσ (dj) : T1θ) =⇒ (Fσ (d ′
j) : T2θ)

and hence (Fσ (d) : T1θ → T2θ).
If (Fσ (d) : T1θ → T2θ), then Fσ (d) = { (dj ,d

′
j) | j ∈ J }L and

∀j ∈ J . (dj : T1θ) =⇒ (d ′
j : T2θ) .

Then, d = { (¯dj , ¯d ′
j) | j ∈ J }L

′

, with, for every j ∈ J , Fσ (¯dj) = dj and Fσ (¯d ′
j) = d ′

j . By IH, for

every j ∈ J ,

(¯dj : T1) ⇐⇒ (dj : T1θ) (¯d ′
j : T2) ⇐⇒ (d ′

j : T2θ) .

Therefore, we have

∀j ∈ J . (¯dj : T1) =⇒ (¯d ′
j : T2)

and hence (d : T1 → T2).

Case: T = T1 ∨T2

(d : T1 ∨T2) ⇐⇒ (d : T1) ∨ (d : T2)

⇐⇒ (Fσ (d) : T1θ) ∨ (Fσ (d) : T2θ) by IH

⇐⇒ (Fσ (d) : T1θ ∨T2θ)

Case: T = ¬T ′

(d : ¬T ′) ⇐⇒ ¬(d : T ′)

⇐⇒ ¬(Fσ (d) : T ′θ) by IH

⇐⇒ (Fσ (d) : ¬(T ′θ))

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:68 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

Case: T = 0
Trivial, since (d : 0) never holds for any d and since 0θ = 0. □

Lemma B.22.

T ≰T 0

®X ♯ varevenX (T)

®Y ♯ varoddX (T), ®X

 =⇒ T { ®Y B ®X } ≰T 0

Proof. By induction on ®X . If ®X is empty, there is nothing to prove.

Otherwise, we have ®X = X0
®X ′

and ®Y = Y0
®Y ′
. By Lemma B.21, we have T {Y0 B X0} ≰T 0. Then,

by IH, we have T {Y0 B X0}{ ®Y
′ B ®X ′} ≰T 0 and we conclude since T {Y0 B X0}{ ®Y

′ B ®X ′} =

T { ®Y B ®X }. □

Lemma B.23.

T ≤T 0 =⇒ ∃T ′, ®X , ®Y .

T ′ ≤T 0

T = T ′{ ®Y B ®X }

varevenX (T ′) ♯ varoddX (T ′)

Proof. Assume that varX (T) = {X1, . . . ,Xn}.

By Corollary B.16, we can findT ′
such that varevenX (T ′) ⊆ {X1, . . . ,Xn} is disjoint from varoddX (T ′) ⊆

{X ′
1
, . . . ,X ′

n} and that T = T ′{X ′
i B Xi }

n
i=1

.

We must prove T ′ ≤T 0. We have T ≤T 0, which is T ′{X ′
i B Xi }

n
i=1

≤T 0. Therefore, we also
have T ′{X ′

i B Xi }
n
i=1

{Xi B X ′
i }

n
i=1

≤T 0 (by Proposition B.6), which is T ′{Xi B X ′
i }

n
i=1

≤T 0.

Let ®X be the vector X1 . . .Xn and ®X ′
be the vector X ′

1
. . .X ′

n . We have ®X ♯ varoddX (T ′) and

®X ′ ♯ varevenX (T ′). We also have ®X ♯ ®Y .
By Lemma B.22, we have

T ′ ≰T 0 =⇒ T ′{ ®X B ®X ′} ≰T 0

and, by contrapositive,

T ′{ ®X B ®X ′} ≤T 0 =⇒ T ′ ≤T 0

which yields T ′ ≤T 0. □

Lemma B.24.

T1 ≤T T2 =⇒ ∃T ′
1
,T ′

2
, ®X , ®Y .

T ′

1
≤T T ′

2

T1 = T
′
1
{ ®Y B ®X }

T2 = T
′
2
{ ®Y B ®X }

varevenX (T ′
1
,T ′

2
) ♯ varoddX (T ′

1
,T ′

2
)

Proof. Let T = T1 \T2. We have T ≤T 0 by definition of subtyping.

By Lemma B.23, we find T ′
, ®X , and ®Y such that

T ′ ≤T 0 T = T ′{ ®Y B ®X } varevenX (T ′) ♯ varoddX (T ′) .

SinceT ′
is empty, it cannot be a type variable or a frame variable. Then, we must haveT ′ = T ′

1
\T ′

2

for two types such that T1 = T
′
1
{ ®Y B ®X } and T2 = T

′
2
{ ®Y B ®X }.

We have T ′
1
≤T T ′

2
by definition of subtyping.

We have varevenX (T ′
1
,T ′

2
) = varevenX (T ′) and varoddX (T ′

1
,T ′

2
) = varoddX (T ′), therefore the two sets are

disjoint. □

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:69

Lemma B.25.

T1 ≤T T2

T †
1
= τ1 and T

†
2
= τ2

var+covX (T1,T2), var+cntX (T1,T2), var−covX (T1,T2),

and var−cntX (T1,T2) are pairwise disjoint

=⇒ τ •

1
≤T τ •

2

Proof. We define

θ = {X B X+∧}X ∈var+covX (T1,T2) ∪ {X B X+∨}X ∈var+cntX (T1,T2)

∪ {X B X−∨}X ∈var−covX (T1,T2) ∪ {X B X−∧}X ∈var−cntX (T1,T2)
.

θ is well-defined because the four sets are disjoint. We have T1θ = τ •
1
and T2θ = τ •

2
. We have

T1θ ≤T T2θ by Proposition B.6. □

Lemma B.26. If τ1 ≤ τ2, then τ •1 ≤T τ •
2
.

Proof. By definition of τ1 ≤ τ2, there exist T1 and T2 such that:

T †
1
= τ1 and T

†
2
= τ2 var+X (T1) ♯ var−X (T1) and var+X (T2) ♯ var−X (T2) T1 ≤T T2 .

Let ®X =
(
var+X (T1) ∩ var−X (T2)

)
∪

(
var−X (T1) ∩ var+X (T2)

)
and let ®Y be a vector of variables outside

T1 and T2. Since T1 and T2 are polarized, we have

∀X ∈ ®X .

{
X ∈ var+X (T1) =⇒ X < var+X (T2)

X ∈ var−X (T1) =⇒ X < var−X (T2)

and we can apply Lemma B.20 to derive T1{ ®X B ®Y } ≤T T2.

We have

var+X (T1{ ®X B ®Y },T2) ♯ var−X (T1{ ®X B ®Y },T2) .

We apply Lemma B.24 to T1{ ®X B ®Y } and T2 to find T ′
1
, T ′

2
, ®X ′

, and ®Y ′
such that:

T ′
1
≤T T ′

2
T1{ ®X B ®Y } = T ′

1
{ ®Y ′ B ®X ′} and T2 = T

′
2
{ ®Y ′ B ®X ′} varevenX (T ′

1
,T ′

2
) ♯ varoddX (T ′

1
,T ′

2
).

We have

τ1 = T
†
1
= (T1{ ®X B ®Y })† = (T ′

1
{ ®Y ′ B ®X ′})† = (T ′

1
)†

τ2 = T
†
2
= (T ′

2
{ ®Y ′ B ®X ′})† = (T ′

2
)† .

We also have

var+X (T
′
1
,T ′

2
) ♯ var−X (T

′
1
,T ′

2
) varevenX (T ′

1
,T ′

2
) ♯ varoddX (T ′

1
,T ′

2
)

and therefore the following four sets are disjoint

var+covX (T ′
1
,T ′

2
) var+cntX (T ′

1
,T ′

2
) var−covX (T ′

1
,T ′

2
) var−cntX (T ′

1
,T ′

2
) .

Then, by Lemma B.25, we have τ •
1
≤T τ •

2
. □

Lemma B.27. Let τ1 and τ2 be two gradual types. Assume that there exist T1 ∈ ⋆(τ1) and T2 ∈ ⋆(τ2)

such that T1 and T2 are variance-polarized and that T1 ≤T T2. Then, τ •1 ≤T τ •
2
.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:70 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

Proof. We have

T †
1
= τ1 and T

†
2
= τ2 varcovX (T1) ♯ varcntX (T1) and varcovX (T2) ♯ varcntX (T2) T1 ≤T T2 .

We apply Lemma B.24 to T1 and T2 to find T ′
1
, T ′

2
, ®X , and ®Y such that:

T ′
1
≤T T ′

2
T1 = T

′
1
{ ®Y B ®X } and T2 = T

′
2
{ ®Y B ®X } varevenX (T ′

1
,T ′

2
) ♯ varoddX (T ′

1
,T ′

2
) .

Since we have

varcovX (T ′
1
) ♯ varcntX (T ′

1
) and varcovX (T ′

2
) ♯ varcntX (T ′

2
) varevenX (T ′

1
,T ′

2
) ♯ varoddX (T ′

1
,T ′

2
) ,

we also have

var+X (T
′
1
) ♯ var−X (T

′
1
) and var+X (T

′
2
) ♯ var−X (T

′
2
) .

Let ®X ′ =
(
var+X (T

′
1
)∩var−X (T

′
2
)
)
∪

(
var−X (T

′
1
)∩var+X (T

′
2
)
)
and let ®Y ′

be a vector of variables outside

T ′
1
and T ′

2
. We have

∀X ∈ ®X ′.

{
X ∈ var+X (T

′
1
) =⇒ X < var+X (T

′
2
)

X ∈ var−X (T
′
1
) =⇒ X < var−X (T

′
2
)

and we can apply Lemma B.20 to derive T ′
1
{ ®X ′ B ®Y ′} ≤T T ′

2
.

We have

τ1 = T
†
1
= (T ′

1
{ ®Y B ®X })† = (T ′

1
)† = (T ′

1
{ ®X ′ B ®Y ′})†

τ2 = T
†
2
= (T ′

2
{ ®Y B ®X })† = (T ′

2
)† .

Let T ′′
1
= T ′

1
{ ®X ′ B ®Y ′}.

We also have

var+X (T
′′
1
,T ′

2
) ♯ var−X (T

′′
1
,T ′

2
) varevenX (T ′′

1
,T ′

2
) ♯ varoddX (T ′′

1
,T ′

2
)

and therefore the following four sets are disjoint

var+covX (T ′′
1
,T ′

2
) var+cntX (T ′′

1
,T ′

2
) var−covX (T ′′

1
,T ′

2
) var−cntX (T ′′

1
,T ′

2
) .

Then, by Lemma B.25, we have τ •
1
≤T τ •

2
. □

Proposition B.28. Let τ1 and τ2 be two gradual types. The following statements are all equivalent:
(1) τ1 ≤ τ2;
(2) τ ⊕

1
≤T τ ⊕

2
;

(3) τ ⊖
1

≤T τ ⊖
2
;

(4) there exist T1 ∈ ⋆(τ1) and T2 ∈ ⋆(τ2) such that T1 and T2 are variance-polarized and that
T1 ≤T T2;

(5) τ ∧⃝

1
≤T τ ∧⃝

2
;

(6) τ ∨⃝

1
≤T τ ∨⃝

2
;

(7) τ •
1
≤T τ •

2
.

Proof. We have (1) =⇒ (7) by Lemma B.26 and (4) =⇒ (7) by Lemma B.27.

The equivalences (2) ⇐⇒ (3) and (5) ⇐⇒ (6) are shown trivially by Proposition B.6 since,

for every τ , we have τ ⊕ = τ ⊖{X 0 B X 1,X 1 B X 0} and similarly for the others.

We can show (7) =⇒ (2) ∧ (5) by Proposition B.6. If τ •
1
≤T τ •

2
, then τ •

1
θ ≤T τ •

2
θ holds for every

type substitution θ . To show (2), we choose θ = {X+∧ B X 1,X+∨ B X 1,X−∧ B X 0,X−∨ B X 0}

and have τ •
1
θ = τ ⊕

1
and τ •

2
θ = τ ⊕

2
. We prooced analogously to show (5).

The implication (2) =⇒ (1) holds because, for any τ , τ ⊕ ∈ ⋆pol(τ). Likewise for the implication

(5) =⇒ (4). □

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:71

Definition B.29 (Consistency). We define the consistency relation ∼ on gradual types as follows:

τ1 ∼ τ2 ⇐⇒
def

∃T1 ∈ ⋆(τ1),T2 ∈ ⋆(τ2), θ : VX → Tt .T1θ ≃T T2θ

Definition B.30 (Consistent subtyping). The consistent subtyping relation ≤̃ between types is
defined by

τ1 ≤̃ τ2 ⇐⇒
def

∃T1 ∈ ⋆(τ1),T2 ∈ ⋆(τ2), θ : VX → Tt .T1θ ≤T T2θ

Definition B.31 (Materialization). We define the materialization relation on gradual types
τ1 ≼ τ2 (“τ2 materializes τ1”) as follows:

τ1 ≼ τ2 ⇐⇒
def

∃T1 ∈ ⋆(τ1), ∃θ : VX → Tτ .T1θ = τ2

Proposition B.32. If τ1 ≤ τ2, then, for any static type substitution θ , we have τ1θ ≤ τ2θ .

Proof. If τ1 ≤ τ2, then by Proposition B.28 we have τ ⊕
1

≤T τ ⊕
2
. Then, τ ⊕

1
θ ≤T τ ⊕

2
θ by Proposi-

tion B.6. We have τ ⊕
1
θ = (τ1θ)

⊕
because (τ ⊕

1
)† = τ1θ and because τ ⊕

1
θ is strongly polarized (since θ

does not introduce frame variables). Similarly, we have τ ⊕
2
θ = (τ2θ)

⊕
. Therefore, τ1θ ≤ τ2θ . □

We write ≤≺ for the reflexive and transitive relation on gradual types that combines subtyping

and materialization, defined inductively by:

τ ≤≺ τ

τ1 ≤ τ2 τ2 ≤≺ τ3

τ1 ≤≺ τ3

τ1 ≼ τ2 τ2 ≤≺ τ3

τ1 ≤≺ τ3

Lemma B.33. If τ1 ≼ τ2, then there exist a T and a θ : varX (T) → Tτ such that T † = τ1, that
Tθ = τ2, and that varcovX (T) ∩ varcntX (T) = ∅.

Proof. By definition of τ1 ≼ τ2, there exist a T1 and a θ1 : VX → Tτ such that T †
1
= τ1 and that

T1θ1 = τ2. Let varX (T1) = {X1, . . . ,Xn}.

By Corollary B.15, we can find aT such that varcovX (T) ⊆ {X1, . . . ,Xn} is disjoint from varcntX (T) ⊆

{X ′
1
, . . . ,X ′

n} and such that T1 = T {X
′
i B Xi }

n
i=1

. Clearly, T † = T †
1
= τ1.

We take θ to be {Xi B Xiθ1}
n
i=1

∪ {X ′
i B Xiθ1}

n
i=1

restricted to varX (T). We have:

Tθ = T ({Xi B Xiθ1}
n
i=1

∪ {X ′
i B Xiθ1}

n
i=1

) = T {X ′
i B Xi }

n
i=1

θ1 = T1θ1 = τ2 . □

Proposition B.34. If τ1 ≤ τ2 ≼ τ3, then there exists a τ ′
2
such that τ1 ≼ τ ′

2
≤ τ3.

Proof. By Lemma B.33, since τ2 ≼ τ3, there exist T2 and θ : varX (T2) → Tτ such that T †
2
= τ2,

that T2θ = τ3, and that varcovX (T2) ∩ varcntX (T2) = ∅. Assume that varcovX = {X1, . . . ,Xn} and

varcntX = {Y1, . . . ,Ym}.

Let
¯θ = {Xi B (Xiθ)

∧⃝}ni=1
∪ {Yi B (Yiθ)

∨⃝}ni=1
. We have (T2

¯θ)† = T2θ = τ3.

Let
ˆθ = {Xi B

∧n
j=1

X j ¯θ }ni=1
∪ {Yi B

∨m
j=1

Yj ¯θ }mi=1
and

ˇθ = {X 1 B
∧n

j=1
X j ¯θ,X 0 B

∨m
j=1

Yj ¯θ }.
We have:

∀i = 1, . . . ,n. Xi ˆθ ≤T Xi ¯θ ∀i = 1, . . . ,m. Yi ¯θ ≤T Yiθ

We take τ ′
2
= (τ ∧⃝

1

ˇθ)†. We must show:

τ1 ≼ (τ ∧⃝

1

ˇθ)† (τ ∧⃝

1

ˇθ)† ≤ τ3

The former holds because (τ ∧⃝

1

ˇθ)† = τ ∧⃝

1
{X 1 B

∧n
j=1

X jθ,X
0 B

∨m
j=1

Yjθ } and τ
∧⃝

1
∈ ⋆(τ1).

To show the latter, we show:

(τ ∧⃝

1

ˇθ)† ≤ (τ ∧⃝

2

ˇθ)† τ ∧⃝

2

ˇθ = T2
ˆθ (T2

ˆθ)† ≤ (T2
¯θ)†

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:72 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

We show (τ ∧⃝

1

ˇθ)† ≤ (τ ∧⃝

2

ˇθ)†. By Proposition B.28, τ1 ≤ τ2 implies τ ∧⃝

1
≤T τ ∧⃝

2
. By Proposition B.6,

τ ∧⃝

1

ˇθ ≤T τ ∧⃝

2

ˇθ . Both τ ∧⃝

1

ˇθ and τ ∧⃝

2

ˇθ are strongly polarized according to variance; therefore, (τ ∧⃝

1

ˇθ)†
∧⃝
=

τ ∧⃝

1

ˇθ and (τ ∧⃝

2

ˇθ)†
∧⃝
= τ ∧⃝

2

ˇθ . Hence, (τ ∧⃝

1

ˇθ)† ≤ (τ ∧⃝

2

ˇθ)†.

To show τ ∧⃝

2

ˇθ = T2
ˆθ , just note that τ ∧⃝

2
= T2({Xi B X 1}ni=1

∪ {Yi B X 0}mi=1
).

Nowwe show (T2
ˆθ)† ≤ (T2

¯θ)†. First, note that ˆθ |varcov(T2) ≤T
¯θ |varcov(T2) and

¯θ |varcnt(T2)
≤T ˆθ |varcnt(T2)

.

Hence, by Proposition B.10, we have T2
ˆθ ≤T T2

¯θ . Since both T2
ˆθ and T2

¯θ are strongly polarized

according to variance, we have T2
ˆθ = ((T2

ˆθ)†)∧⃝ and T2
¯θ = ((T2

¯θ)†)∧⃝ . This yields the result we
need. □

Corollary B.35. If τ1 ≤≺ τ2, then there exists a type τ such that τ1 ≼ τ ≤ τ2.

Proof. By induction on the derivation of τ1 ≤≺ τ2.

If τ1 = τ2, then τ1 ≼ τ1 ≤ τ2.

If τ1 ≤ τ ′ ≤≺ τ2, then by IH we find τ ′′ such that τ ′ ≼ τ ′′ ≤ τ2, by Proposition B.34 we find τ
such that τ1 ≼ τ ≤ τ ′′, and finally (by transitivity of ≤) we have τ1 ≼ τ ≤ τ2.

If τ1 ≼ τ ′ ≤≺ τ2, then by IH we find τ ′′ such that τ ′ ≼ τ ′′ ≤ τ2, and (by transitivity of≼) we have

τ1 ≼ τ ′′ ≤ τ2. □

Proposition B.36. If τ1 ≼ τ2, then, for any type substitution θ , we have τ1θ ≼ τ2θ .

Proof. By definition of τ1 ≼ τ2, we haveT1θ1 = τ2 for aT1 such thatT
†
1
= τ1 and a θ1 : VX → Tτ .

Choose a θ ′ : Vα → TT such that, for every α , (αθ ′)† = αθ and that varX (θ ′) ∩ dom(θ1) = ∅.

Then we have (T1θ
′)† = τ1θ and therefore T1θ

′ ∈ ⋆(τ1θ).
Consider θ ′

1
= {X B Xθ1θ }X ∈dom(θ1) ∪ {X B ?}X ∈varX (θ ′).

We have T1θ
′θ ′

1
= T1θ1θ because:

• for every α ∈ var(T1), if α ∈ dom(θ), then αθ ′θ ′
1
= (αθ ′)† = αθ = αθ1θ , and, if α < dom(θ),

then αθ ′θ ′
1
= α = αθ1θ ;

• for every X ∈ var(T1), we must have X ∈ dom(θ1) (otherwise, T1θ1 would not be a gradual

type): then Xθ ′θ ′
1
= Xθ ′

1
= Xθ1θ .

Since T1θ1θ = τ2θ , we have τ1θ ≼ τ2θ . □

Proposition B.37. Let τ be a gradual type and θ1 and θ2 two substitutions such that ∀α ∈

var(τ). αθ1 ≃ αθ2. Then, τθ1 ≃ τθ2.

Proof. Let var(τ) = {α1, . . . ,αn}. By Corollary B.17, we find τ
′
such that var+(τ ′) ⊆ {α1, . . . ,αn}

is disjoint from var−(τ ′) ⊆ {α ′
1
, . . . ,α ′

n} and that τ = τ ′{α ′
i B αi }

n
i=1

.

Now, we define

ˆθ1 = {αi B (αiθ1)
⊕}ni=1

∪ {α ′
i B (αiθ1)

⊖}ni=1

ˆθ2 = {αi B (αiθ2)
⊕}ni=1

∪ {α ′
i B (αiθ2)

⊖}ni=1
.

Let T = τ ′⊕ .
We show that, for every A, A ˆθ1 ≃T A ˆθ2. Note that, for every i ∈ I , we have αiθ1 ≃ αiθ2 and

therefore, by Proposition B.28, (αiθ1)
⊕ ≃T (αiθ2)

⊕
and (αiθ1)

⊖ ≃T (αiθ2)
⊖
. IfA < { αi | i ∈ I }∪{ αi |

i ∈ I }, then A ˆθ1 = A = A ˆθ2. If A = αi for some i ∈ I , then A ˆθ1 = (αiθ1)
⊕ ≃T (αiθ2)

⊕ = A ˆθ2. If

A = α ′
i for some i ∈ I , then A ˆθ1 = (αiθ1)

⊖ ≃T (αiθ2)
⊖ = A ˆθ2.

Since, for every A, A ˆθ1 ≃T A ˆθ2, we have
ˆθ1 |varcov(T) ≤T ˆθ2 |varcov(T), ˆθ2 |varcnt(T) ≤T ˆθ1 |varcnt(T),

ˆθ2 |varcov(T) ≤T ˆθ1 |varcov(T), and ˆθ1 |varcnt(T) ≤T
ˆθ2 |varcnt(T). By Proposition B.10, we have T ˆθ1 ≃T T ˆθ2.

We have:

T ˆθ1 = τ
′⊕ ˆθ1 = (τθ1)

⊕ T ˆθ2 = τ
′⊕ ˆθ2 = (τθ2)

⊕

Therefore, we have (τθ1)
⊕ ≃T (τθ2)

⊕
. Hence, τθ1 ≃ τθ2. □

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:73

B.6 Normal Forms and Decompositions for Type Frames
In the following, we use the metavariable a to range over the set Abasic ∪ Aprod ∪ Afun ∪V .

Definition B.38 (Uniform normal form). A uniform (disjunctive) normal form (UDNF) is a
type frame T of the form ∨

i ∈I

(∧
a∈Pi

a ∧
∧
a∈Ni

¬a

)
such that, for all i ∈ I , one of the following three condition holds:

• Pi ∩ Abasic , ∅ and (Pi ∪ Ni) ∩ (Aprod ∪ Afun) = ∅;
• Pi ∩ Aprod , ∅ and (Pi ∪ Ni) ∩ (Abasic ∪ Afun) = ∅;
• Pi ∩ Afun , ∅ and (Pi ∪ Ni) ∩ (Abasic ∪ Aprod) = ∅;

We define here a function UDNF(T) which, given a type frame T , produces a uniform normal

form that is equivalent to T .
We first define two mutually recursive functions N and N ′

on type frames. These are inductive

definitions as no recursive uses of the functions occur below type constructors.

N(a) = a

N(T1 ∨T2) = N(T1) ∨ N(T2)

N(¬T) = N ′(T)

N(0) = 0

N ′(a) = ¬a

N ′(T1 ∨T2) =
∨

i ∈I , j ∈J

(∧
a∈Pi∪Pj

a ∧
∧

a∈Ni∪Nj

¬a
)

where N ′(T1) =
∨
i ∈I

(∧
a∈Pi

a ∧
∧
a∈Ni

¬a
)
and N ′(T2) =

∨
j ∈J

(∧
a∈Pj

a ∧
∧
a∈Nj

¬a
)

N ′(¬T) = N(T)

N ′(0) = 1

In the definition above, we see 0 as the empty union

∨
i ∈∅Ti and 1 as the singleton union of the

empty intersection

∨
i ∈{i0 }

∧
a∈∅ a.

The first step in the computation of UDNF(T) is to compute N(T). Then, assuming

N(T) =
∨
i ∈I

(∧
a∈Pi

a ∧
∧
a∈Ni

¬a︸ ︷︷ ︸
Ii

)

we define

UDNF(T) =def
∨
i ∈I

Ibasic
i ∨

∨
i ∈I

I
prod
i ∨

∨
i ∈I

Ifun
i

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:74 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

where

Ibasic
i =

def 1B ∧
∧

a∈Pi∩(Abasic∪V)

a ∧
∧

a∈Ni∩(Abasic∪V)

¬a

I
prod
i =

def

(1 × 1) ∧
∧

a∈Pi∩(Aprod∪V)

a ∧
∧

a∈Ni∩(Aprod∪V)

¬a

Ifun
i =

def

(0 → 1) ∧
∧

a∈Pi∩(Afun∪V)

a ∧
∧

a∈Ni∩(Afun∪V)

¬a

Lemma B.39. Given any type frame T , UDNF(T) is a uniform normal form and UDNF(T) ≃T T .
Moreover, if T is strongly polarized, then UDNF(T) is strongly polarized.

Proof. Let T be a type frame. We can check on the definition ofN and N ′
that N(T) is a union

of intersection of atoms, assuming that we see 0 and 1 as described above and that atoms are

interpreted as singleton unions of singleton intersections. We can check by induction on T that

JT K = JN(T)K = J¬N ′(T)K .

Moreover, when T is strongly polarized, N(T) is strongly polarized too, because every atom of T
appears in N(T) with the same polarity.

We now consider UDNF(T). It is trivial to check that it is always in disjunctive normal form.

Preservation of strong polarization is also ensured by the fact that we are maintaining the polarity

every atom had in N(T). The conditions that every intersection contains at least one positive atom

and that the intersections are uniform are ensured by construction.

It remains to check UDNF(T) ≃T N(T). Note that 1 ≃T 1B ∨ (1 × 1) ∨ (0 → 1). We have the

following equivalences.

Ii ≃T 1 ∧ Ii

≃T
(
1B ∨ (1 × 1) ∨ (0 → 1)

)
∧ Ii

≃T
(
1B ∧ Ii

)
∨

(
(1 × 1) ∧ Ii

)
∨

(
(0 → 1) ∧ Ii

)
We show the following three results.

1B ∧ Ii ≃T Ibasic
i

(1 × 1) ∧ Ii ≃T I
prod
i

(0 → 1) ∧ Ii ≃T Ifun
i

For the first implication, we have

1B ∧ Ii = 1B ∧
∧

a∈Pi a ∧
∧

a∈Ni
¬a

≃T 1B ∧
∧

a∈Pi∩(Abasic∪V) a ∧
∧

a∈Ni∩(Abasic∪V) ¬a ∧∧
a∈Pi∩(Aprod∪Afun)

a ∧
∧

a∈Ni∩(Aprod∪Afun)
¬a

≃T 1B ∧
∧

a∈Pi∩(Abasic∪V) a ∧
∧

a∈Ni∩(Abasic∪V) ¬a ∧
∧

a∈Ni∩(Aprod∪Afun)
¬a

(because Pi ∩ (Aprod ∪ Afun) = ∅: otherwise the intersection would be empty because, when

a ∈ Aprod ∪ Afun, JaK ∩ J1BK = ∅)

≃T 1B ∧
∧

a∈Pi∩(Abasic∪V) a ∧
∧

a∈Ni∩(Abasic∪V) ¬a

(because, when a ∈ Aprod ∪ Afun, since JaK ∩ J1BK = ∅, we have J1BK ⊆ J¬aK). The other two
implications are shown identically.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:75

To conclude, we observe the following equivalence.∨
i ∈I

Ii ≃T

∨
i ∈I

((
1B ∧ Ii

)
∨

(
(1 × 1) ∧ Ii

)
∨

(
(0 → 1) ∧ Ii

))
≃T

∨
i ∈I

(
1B ∧ Ii

)
∨

∨
i ∈I

(
(1 × 1) ∧ Ii

)
∨

∨
i ∈I

(
(0 → 1) ∧ Ii

)
≃T

∨
i ∈I I

basic
i ∨

∨
i ∈I I

prod
i ∨

∨
i ∈I I

fun
i

□

Definition B.40 (Product decomposition and projections). Given a type frame T ≤T 1 × 1,
we define its decomposition π (T) as

π (T) =def
⋃

i ∈I ,Ii≰T 0

{(∧
T1×T2∈P i

T1 ∧
∧

T1×T2∈N ′

¬T1︸ ︷︷ ︸
T 1

,
∧

T1×T2∈P i

T2 ∧
∧

T1×T2∈N i \N ′

¬T2︸ ︷︷ ︸
T 2

)
���N ′ ⊆ N i ,T 1 ≰T 0,T 2 ≰T 0

}
and its i-th projection πi (T) as

πi (T) =
def

∨
(T1,T2)∈π (T)

Ti

where

UDNF(T) =
∨
i ∈I

(∧
a∈Pi

a ∧
∧
a∈Ni

¬a

)
︸ ︷︷ ︸

Ii

and where P i = Pi ∩ Aprod and N i = Ni ∩ Aprod.

Lemma B.41. Let T be a type frame such that T ≤T 1 × 1. Then, for all type frames T1 and T2,

T ≤T T1 ×T2 ⇐⇒
∨

(T ′
1
,T ′

2
)∈π (T)

T ′
1
×T ′

2
≤T T1 ×T2 .

Proof. Given T , we have

UDNF(T) =
∨

i ∈I
(∧

a∈Pi a ∧
∧

a∈Ni
¬a

)︸ ︷︷ ︸
Ii

and, by Lemma B.39, T ≃T UDNF(T). Then, since T ≤T 1 × 1, we have

∀i ∈ I . Ii =
∧

a∈Pi a ∧
∧

a∈Ni
¬a ≤T 1 × 1 .

Consider a i such that Ii ≰T 0. Since each Pi must contain an atom, we have that Pi contains a type
frame of the form T1 ×T2. Hence, since intersections are uniform, Pi ∪ Ni ⊆ Aprod ∪V . Moreover,

V ∩ Pi ∩ Ni = ∅, otherwise Ii would be empty.

We have

T ≤T T1 ×T2 ⇐⇒
∨

i ∈I
(∧

a∈Pi a ∧
∧

a∈Ni
¬a

)
≤T T1 ×T2

⇐⇒
∨

i ∈I ,Ii≰T 0

(∧
a∈Pi a ∧

∧
a∈Ni

¬a
)
≤T T1 ×T2

⇐⇒ ∀i ∈ I ,Ii ≰T 0.
∧

a∈Pi a ∧
∧

a∈Ni
¬a ∧ ¬(T1 ×T2) ≤T 0

⇐⇒ ∀i ∈ I ,Ii ≰T 0.
∧

a∈Pi∩Aprod
a ∧

∧
a∈Ni∩Aprod

¬a ∧ ¬(T1 ×T2) ≤T 0

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:76 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

(by Lemma B.9, since Pi ∩V and Ni ∩V are disjoint; let P i = Pi ∩ Aprod and N i = Ni ∩ Aprod)

⇐⇒ ∀i ∈ I ,Ii ≰T 0.
∧

T ′
1
×T ′

2
∈P i T

′
1
×T ′

2
∧

∧
T ′

1
×T ′

2
∈N i

¬(T ′
1
×T ′

2
) ∧ ¬(T1 ×T2) ≤T 0

⇐⇒ ∀i ∈ I ,Ii ≰T 0.
∧

T ′
1
×T ′

2
∈P i T

′
1
×T ′

2
≤T

(∨
T ′

1
×T ′

2
∈N i

T ′
1
×T ′

2

)
∨ (T1 ×T2)

We now apply Lemma B.7 to the above to derive the following equivalence.

T ≤T T1 ×T2 ⇐⇒ ∀i ∈ I ,Ii ≰T 0.(
∀N ′ ⊆ N i .

(∧
T ′

1
×T ′

2
∈P i T

′
1
≤T

∨
T ′

1
×T ′

2
∈N ′ T ′

1

)
∨

(∧
T ′

1
×T ′

2
∈P i T

′
2
≤T

(∨
T ′

1
×T ′

2
∈N i \N ′ T ′

2

)
∨T2

))
∧(

∀N ′ ⊆ N i .
(∧

T ′
1
×T ′

2
∈P i T

′
1
≤T

(∨
T ′

1
×T ′

2
∈N ′ T ′

1

)
∨T1

)
∨

(∧
T ′

1
×T ′

2
∈P i T

′
2
≤T

∨
T ′

1
×T ′

2
∈N i \N ′ T ′

2

))
We have split the quantification over all N ′

into two: we consider the type T1 ×T2 in the second

case and not in the first.

We also have∨
(T ′′

1
,T ′′

2
)∈π (T)T

′′
1
×T ′′

2
≤T T1 ×T2 ⇐⇒ ∀(T ′′

1
,T ′′

2
) ∈ π (T).T ′′

1
×T ′′

2
≤T T1 ×T2

⇐⇒ ∀(T ′′
1
,T ′′

2
) ∈ π (T). (T ′′

1
≤T T1) ∧ (T ′′

2
≤T T2)

with

π (T) =
⋃

i ∈I ,Ii≰T 0

{(∧
T ′

1
×T ′

2
∈P i

T ′
1
∧

∧
T ′

1
×T ′

2
∈N ′

¬T ′
1︸ ︷︷ ︸

T 1

,
∧

T ′
1
×T ′

2
∈P i

T ′
2
∧

∧
T ′

1
×T ′

2
∈N i \N ′

¬T ′
2︸ ︷︷ ︸

T 2

)
���N ′ ⊆ N i ,T 1 ≰T 0,T 2 ≰T 0

}
To show

T ≤T T1 ×T2 ⇐⇒
∨

(T ′′
1
,T ′′

2
)∈π (T)T

′′
1
×T ′′

2
≤T T1 ×T2

we first show the implication from left to right. Let (T ′′
1
,T ′′

2
) ∈ π (T). Since π (T) is a union, (T ′′

1
,T ′′

2
)

must be in at least one set in the union; we assume it is the set indexed by i0 ∈ I . We must show

T ′′
1

≤T T1 and T
′′
2

≤T T2.

By definition, (T ′′
1
,T ′′

2
) is a pair corresponding to some N ′ ⊆ N i0 . In that case, we must check∧

T ′
1
×T ′

2
∈P i

0

T ′
1
∧

∧
T ′

1
×T ′

2
∈N ′ ¬T ′

1
≤T T1

∧
T ′

1
×T ′

2
∈P i

0

T ′
2
∧

∧
T ′

1
×T ′

2
∈N i

0
\N ′ ¬T ′

2
≤T T2 ,

which is∧
T ′

1
×T ′

2
∈P i

0

T ′
1
≤T

(∨
T ′

1
×T ′

2
∈N ′ T ′

1

)
∨T1

∧
T ′

1
×T ′

2
∈P i

0

T ′
2
≤T

(∨
T ′

1
×T ′

2
∈N i

0
\N ′ T ′

2

)
∨T2 .

We know from the condition on the set that∧
T ′

1
×T ′

2
∈P i

0

T ′
1
≰T

∨
T ′

1
×T ′

2
∈N ′ T ′

1

∧
T ′

1
×T ′

2
∈P i

0

T ′
2
≰T

∨
T ′

1
×T ′

2
∈N i

0
\N ′ T ′

2
.

We can check the two relations in the decomposition above obtained by Lemma B.7 using the

relations that do not hold to eliminate one case in the disjunction.

To check the other direction of the implication, we assume that, for all (T ′′
1
,T ′′

2
) ∈ π (T), we

have (T ′′
1

≤T T1) ∧ (T ′′
2

≤T T2). We prove that the conditions obtained from the decomposition of

subtyping hold. Consider an arbitrary i ∈ I . As π (T) is a union, we will consider the set indexed by

the same i . For the first condition, we take an arbitrary N ′
. If there is a pair corresponding to the

same N ′
in π (T), then we show the second disjunct. If there is no such pair, it is because T 1 or T 2

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:77

is empty, which also allows us to conclude. For the second condition, we consider an arbitrary N ′

and proceed analogously. □

Lemma B.42. Let T be a type frame such that T ≤T 1 × 1. Then T ≤T π1(T) × π2(T). Moreover, if
T ≤T T1 ×T2, then π1(T) ≤T T1 and π2(T) ≤T T2.

Proof. We have

∨
(T ′

1
,T ′

2
)∈π (T)T

′
1
×T ′

2
≤T (

∨
(T ′

1
,T ′

2
)∈π (T)T

′
1
) × (

∨
(T ′

1
,T ′

2
)∈π (T)T

′
2
) = π1(T) × π2(T).

Hence, by Lemma B.42, we have T ≤T π1(T) × π2(T).
If T ≤T T1 × T2, again by Lemma B.42, we have

∨
(T ′

1
,T ′

2
)∈π (T)T

′
1
× T ′

2
≤T T1 × T2. Hence, for

every (T ′
1
,T ′

2
) ∈ π (T), we have T ′

1
× T ′

2
≤T T1 × T2 and, by the definition of subtyping, T ′

1
≤T T1

and T ′
2
≤T T2, since T

′
1
and T ′

2
are not empty. As a result, we also have

∨
(T ′

1
,T ′

2
)∈π (T)T

′
1
≤T T1 and∨

(T ′
1
,T ′

2
)∈π (T)T

′
2
≤T T2, that is, π1(T) ≤T T1 and π2(T) ≤T T2. □

Lemma B.43. LetT be a type frame such thatT ≤T 1× 1. IfT is strongly polarized, then π1(T) and
π2(T) are strongly polarized.

Proof. If T is strongly polarized, then, by Lemma B.39, UDNF(T) is strongly polarized too. We

can check on the definition of π (T) that, in every (T1,T2) ∈ π (T), subterms of UDNF(T) appear in
Ti with the same polarity as in UDNF(T). Then, πi (T) also preserves polarity. □

Definition B.44 (Function domain and decomposition). Given a type frameT ≤T 0 → 1, we
define its domain dom(T) as

dom(T) =def
∧

i ∈I ,Ii≰T 0

∨
T1→T2∈P i

T1

and its decomposition ϕ(T) as

ϕ(T) =def
⋃

i ∈I ,Ii≰T 0

{ (∨
T1→T2∈P ′

T1,
∧

T1→T2∈P i \P ′

T2

) ����� P ′ ⊊ P i

}
where

UDNF(T) =
∨
i ∈I

(∧
a∈Pi

a ∧
∧
a∈Ni

¬a

)
︸ ︷︷ ︸

Ii

and where P i = Pi ∩ Afun and N i = Ni ∩ Afun.

Definition B.45 (Application result type). Given two type frames T and T ′ such that T ≤T
0 → 1 and T ′ ≤T dom(T), we define the application result type T ◦T ′ as

T ◦T ′ =
def

∨
(T1,T2)∈ϕ(T)
T ′≰TT1

T2 .

Lemma B.46. Let T be a type frame such that T ≤T 0 → 1. Then, for all type frames T ′ and T ′′,

T ≤T T ′ → T ′′ ⇐⇒

∀(T ′

1
,T ′

2
) ∈ ϕ(T). (T ′ ≤T T ′

1
) ∨ (T ′

2
≤T T ′′)

∧

T ′ ≤T dom(T)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:78 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

Proof. Given T , we have

UDNF(T) =
∨

i ∈I
(∧

a∈Pi a ∧
∧

a∈Ni
¬a

)
and, by Lemma B.39, T ≃T UDNF(T). Then, since T ≤T 0 → 1, we have

∀i ∈ I .
∧

a∈Pi a ∧
∧

a∈Ni
¬a ≤T 0 → 1 .

For every non-empty intersection Ii , since each Pi must contain an atom, we have that Pi contains
a type frame of the form T1 → T2. Hence, since intersections are uniform, Pi ∪ Ni ⊆ Afun ∪ V .

Moreover,V ∩ Pi ∩ Ni = ∅ otherwise Ii would be empty.

We have

T ≤T T ′ → T ′′ ⇐⇒
∨

i ∈I
(∧

a∈Pi a ∧
∧

a∈Ni
¬a

)
≤T T ′ → T ′′

⇐⇒
∨

i ∈I ,Ii≰T 0

(∧
a∈Pi a ∧

∧
a∈Ni

¬a
)
≤T T ′ → T ′′

⇐⇒ ∀i ∈ I ,Ii ≰T 0.
∧

a∈Pi a ∧
∧

a∈Ni
¬a ∧ ¬(T ′ → T ′′) ≤T 0

⇐⇒ ∀i ∈ I ,Ii ≰T 0.
∧

a∈Pi∩Afun
a ∧

∧
a∈Ni∩Afun

¬a ∧ ¬(T ′ → T ′′) ≤T 0

(by Lemma B.9, since Pi ∩V and Ni ∩V are disjoint; let P i = Pi ∩ Afun and N i = Ni ∩ Afun)

⇐⇒ ∀i ∈ I ,Ii ≰T 0.
∧

T1→T2∈P i T1 → T2 ∧
∧

T1→T2∈N i
¬(T1 → T2) ∧ ¬(T ′ → T ′′) ≤T 0

⇐⇒ ∀i ∈ I ,Ii ≰T 0.
∧

T1→T2∈P i T1 → T2 ≤T
(∨

T1→T2∈N i
T1 → T2

)
∨ (T ′ → T ′′)

Now consider the statement of Lemma B.8. Let Pi (T 1,T 2) be the proposition(
T 1 ≤T

∨
T1→T2∈P i T1

)
∧

(
∀P ′ ⊊ P i .

(
T 1 ≤T

∨
T1→T2∈P ′ T1

)
∨

(∧
T1→T2∈P i \P ′ T2 ≤T T 2

))
By Lemma B.8, we have∧

T1→T2∈P i T1 → T2 ≤T
∨

T1→T2∈N i
T1 → T2 ⇐⇒ ∃(T 1 → T 2) ∈ N i . Pi (T 1,T 2)

and, since for all i such that Ii ≰T 0 the subtyping relation on the left does not hold, we know that

Pi (T 1,T 2) is false for all such i and all T1 → T2 ∈ N i .

We apply Lemma B.8 again to derive∧
T1→T2∈P i T1 → T2 ≤T

(∨
T1→T2∈N i

T1 → T2

)
∨ (T ′ → T ′′) ⇐⇒(

∃(T 1 → T 2) ∈ N i . Pi (T 1,T 2)
)
∨ Pi (T

′,T ′′)

and hence Pi (T
′,T ′′) must be true for all i verifying Ii ≰T 0 in order for subtyping to hold.

We have therefore shown

T ≤T T ′ → T ′′ ⇐⇒ ∀i ∈ I ,Ii ≰T 0. Pi (T
′,T ′′)

⇐⇒ ∀i ∈ I ,Ii ≰T 0.
(
T ′ ≤T

∨
T1→T2∈P i T1

)
∧(

∀P ′ ⊊ P i .
(
T ′ ≤T

∨
T1→T2∈P ′ T1

)
∨

(∧
T1→T2∈P i \P ′ T2 ≤T T ′′

))
Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:79

and we must now show

∀i ∈ I ,Ii ≰T 0.
(
T ′ ≤T

∨
T1→T2∈P i T1

)
∧(

∀P ′ ⊊ P i .
(
T ′ ≤T

∨
T1→T2∈P ′ T1

)
∨

(∧
T1→T2∈P i \P ′ T2 ≤T T ′′

))
⇐⇒

∀(T ′

1
,T ′

2
) ∈ ϕ(T). (T ′ ≤T T ′

1
) ∨ (T ′

2
≤T T ′′)

∧

T ′ ≤T dom(T)

where

dom(T) =
∧

i ∈I ,Ii≰T 0

∨
T1→T2∈P i T1

ϕ(T) =
⋃

i ∈I ,Ii≰T 0

{ (∨
T1→T2∈P ′ T1,

∧
T1→T2∈P i \P ′ T2

) ����� P ′ ⊊ P i

}
We first prove the implication from left to right. To prove T ′ ≤T dom(T), note that(

∀i ∈ I ,Ii ≰T 0.T ′ ≤T
∨

T1→T2∈P i T1

)
=⇒ T ′ ≤T

∧
i ∈I ,Ii≰T 0

∨
T1→T2∈P i T1 .

To prove the first condition, consider an arbitrary (T ′
1
,T ′

2
) ∈ ϕ(T). We have, for some i ∈ I and

P ′ ⊊ P i (verifying Ii ≰T 0),

(T ′
1
,T ′

2
) =

(∨
T1→T2∈P ′ T1,

∧
T1→T2∈P i \P ′ T2

)
.

P ′
is necessarily also one of the P ′

considered in the premise of the implication, so the result follows.

To prove the reverse implication, consider an arbitrary i ∈ I . The first condition follows from

T ′ ≤T dom(T). Moreover, for every P ′
, a pair exists inϕ(T) such that the second condition holds. □

Lemma B.47. Let T be a type frame such that T ≤T 0 → 1. Then, T ≤T dom(T) → 1. Moreover, if
T ≤T T ′ → 1, then T ′ ≤T dom(T).

Proof. Consider the equivalence of Lemma B.46, with T ′ = dom(T) and T ′′ = 1. The three
conditions on the right-hand side are all verified, the first two since 1 is the top element of subtyping

and the third by reflexivity. Hence, T ≤T dom(T) → 1.
When T ≤T T ′ → 1, again by Lemma B.46 we have T ′ ≤T dom(T). □

Lemma B.48. Let T be a type frame such that T ≤T 0 → 1. If T is strongly polarized, then dom(T)
is strongly negatively polarized.

Proof. If T is strongly polarized, then, by Lemma B.39, UDNF(T) is strongly polarized too.

We just check on the definition of dom(T) that every T1 appears in positive position, whereas it

appeared in negative position in UDNF(T) (because it appeared on the left on an arrow T1 → T2 in

positive position). □

Lemma B.49. Let T and T ′ be type frames such that T ≤T 0 → 1 and T ′ ≤T dom(T). Then,
T ≤T T ′ → (T ◦T ′). Moreover, if T ≤T T ′ → T ′′, then T ◦T ′ ≤T T ′′.

Proof. We prove T ≤T T ′ → (T ◦T ′) by Lemma B.46. We must show the two conditions

∀(T ′
1
,T ′

2
) ∈ ϕ(T). (T ′ ≤T T ′

1
) ∨ (T ′

2
≤T (T ◦T ′)) T ′ ≤T dom(T)

the second of which holds by hypothesis. To show the first condition, we take an arbitrary (T ′
1
,T ′

2
) ∈

ϕ(T). Either T ′ ≤T T ′
1
holds or not. If it does not hold, then T ′

2
≤T T ◦ T ′

holds because T2 is a

summand in the union of T ◦T ′
.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:80 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

Now, assuming T ≤T T ′ → T ′′
, we must show T ◦T ′ ≤T T ′′

. By Lemma B.46, we have

∀(T ′
1
,T ′

2
) ∈ ϕ(T). (T ′ ≤T T ′

1
) ∨ (T ′

2
≤T T ′′)

Hence, for every (T ′
1
,T ′

2
) ∈ ϕ(T) such that T ′ ≰T T ′

1
, we have T ′

2
≤T T ′′

. Then the union of all such

T ′
2
is also a subtype of T ′′

, which shows that T ◦T ′
s a subtype of T ′′

as well. □

Lemma B.50. Let T and T ′ be type frames such that T ≤T 0 → 1 and T ′ ≤T dom(T). If T is
strongly polarized and T ′ is strongly negatively polarized, then T ◦T ′ is strongly polarized.

Proof. If T is strongly polarized, then, by Lemma B.39, UDNF(T) is strongly polarized too. We

can check on the definition ofT ◦T ′
that subterms of UDNF(T) in it are all in positive position and

they were in positive position also in UDNF(T). □

B.7 Normal Forms and Operators on Gradual Types
Definition B.51 (Grounding). For every types τ , τ ′ ∈ Tτ such that τ ′ ≼ τ , we define the

grounding of τ with respect to τ ′, noted τ /τ ′ as follows:
τ1 ∨ τ2/τ ′

1
∨ τ ′

2

= τ1/τ ′
1

∨ τ2/τ ′
2

¬τ /¬τ ′ = ¬(τ /τ ′)
τ1 ∨ τ2/? = τ1/? ∨ τ2/? ¬τ /? = ¬(τ /?)
τ1 → τ2/? = ? → ? τ1 × τ2/? = ? × ?

b/? = b 0/? = 0
α /? = α τ /τ ′ = τ ′ otherwise

Proposition B.52. For all types τ , τ ′ such that τ ′ ≼ τ , it holds that τ ′ ≼ τ /τ ′ ≼ τ .

Proof. By induction on the pair (τ ′, τ), and by cases on τ ′.

• τ ′ = ?. Note that τ ′ ≼ τ /τ ′ always holds. We then reason by cases on τ to prove the second

materialization.

– τ = ?. The result is immediate since τ = τ /τ ′ = ?.
– τ = α . Once again, τ = τ /τ ′ = α .
– τ = b. Once again, τ = τ /τ ′ = b.
– τ = τ1 × τ2. Then

τ /τ ′ = ? × ?, and it holds that ? × ? ≼ τ1 × τ2.

– τ = τ1 → τ2. Then
τ /τ ′ = ? → ?, and it holds that ? → ? ≼ τ1 → τ2.

– τ = τ1 ∨τ2. Then
τ /τ ′ = τ1/?∨τ2/?. For every i ∈ {1, 2}, we have ? ≼ τi thus by induction

hypothesis, τi /? ≼ τi . Finally, τ1/? ∨ τ2/? ≼ τ1 ∨ τ2.

– τ = ¬τ0. Then
τ /? = ¬(τ0/?). By induction hypothesis, τ0/? ≼ τ0 thus ¬(τ0/?) ≼ ¬τ0.

– τ = 0. Then τ /τ ′ = 0 and the result is immediate.

• τ ′ = τ ′
1
∨ τ ′

2
. Then necessarily τ = τ1 ∨ τ2, with τ ′i ≼ τi for every i ∈ {1, 2}. By induction

hypothesis, τ ′i ≼ τi /τ ′i ≼ τi , and the result follows.

• τ ′ = ¬τ ′
0
. Then necessarily τ = ¬τ0 with τ ′

0
≼ τ0. By induction hypothesis, τ ′

0
≼ τ0/τ ′

0

≼ τ0

and the result follows.

• Otherwise, τ /τ ′ = τ ′ and since τ ′ ≼ τ the result is immediate.

□

Lemma B.53. For all types τ , τ ′ that do not contain type connectives, if τ ≼ τ ′ and τ ′/τ , τ then
τ = ?.

Proof. Eliminating all cases involving connectives in Definition B.51 as well as the case τ
′
/τ = τ ,

the only remaining cases are those were τ = ?. □

Lemma B.54. For all types τ , τ ′ that do not contain type connectives such that τ ′/τ = τ ′, then
τ ′ = τ or τ = ?.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:81

Proof. Suppose that τ , ?. Eliminating all cases involving connectives or where τ = ? in

Definition B.51, the only remaining case is τ
′
/τ = τ . However, by hypothesis, τ

′
/τ = τ ′ therefore

τ = τ ′. □

Lemma B.55. For all types τ , τ ′ such that τ ′/τ = τ ′, the following holds:

∀dL ∈ Jτ ′∧⃝K,dL∪{X1 }\{X0 } ∈ Jτ ∧⃝K

∀dL < Jτ ′∨⃝K,dL∪{X1 }\{X0 } < Jτ ∨⃝K

Proof. The two results are proved simultaneously by induction over the pair (dL, τ).

• τ = ?. Since X1 ∈ tags(dL∪{X1 }\{X0 }), it is immediate that dL∪{X1 }\{X0 } ∈ Jτ ∧⃝K. Moreover,

X0 < tags(dL∪{X1 }\{X0 }) hence dL∪{X1 }\{X0 } < Jτ ∨⃝K.
• τ = α . By hypothesis, we have τ = τ ′ = α . Therefore, for every dL ∈ Jτ ′∧⃝K, it holds that
α ∈ L. Thus α ∈ tags(dL∪{X1 }\{X0 }), hence the first result. The second result is proved using

the same reasoning.

• τ = b. By hypothesis, since τ
′
/τ = τ ′, we have τ = τ ′ = b, and the result is immediate since

the interpretation of a constant contains all possible sets of labels.

• τ = τ1 × τ2. Since
τ ′/τ = τ ′, necessarily τ = τ ′ and the result is immediate for the same

reason as the previous case.

• τ = τ1 → τ2. Once again, necessarily τ = τ
′
and the result is immediate.

• τ = τ1 ∨ τ2. Let d
L ∈ Jτ ∧⃝K. There exists i ∈ {1, 2} such that dL ∈ Jτ ∧⃝

i K. Thus, by induction

hypothesis, it holds thatdL∪{X1 }\{X0 } ∈ Jτ ∧⃝

i K. Therefore, we havedL∪{X1 }\{X0 } ∈ Jτ ∧⃝K, which
is the result. The same reasoning can be done for the second case.

• τ = ¬τ ′. Let dL ∈ Jτ ∧⃝K. By definition, dL < Jτ ′∨⃝K. By induction hypothesis, we therefore

have dL∪{X1 }\{X0 } < Jτ ′∨⃝K. Thus, dL∪{X1 }\{X0 } ∈ Jτ ∧⃝K. The same reasoning can be done for

the second result.

□

Corollary B.56. For all types τ , τ ′ such that τ ′/τ = τ ′, and all types τl , τr such that τ ≤ τl → τr ,
then τ ′ ≤ τl → τr .

Proof. Let dL ∈ Jτ ′∧⃝K. By Lemma B.55, we know that dL∪{X1 }\{X0 } ∈ Jτ ∧⃝K. Moreover, by

hypothesis, τ ≤ τl → τr , thus, by Proposition B.28, dL∪{X1 }\{X0 } ∈ J(τl → τr)
∧⃝K. However, the fact

that an element of D belongs to J(τl → τr)
∧⃝K is independent of its set of labels, therefore dL ∈

J(τl → τr)
∧⃝K. Thus, we obtain that τ ′∧⃝ ≤T (τl → τr)

∧⃝
and the result follows by Proposition B.28.

□

Corollary B.57. For all types τ , τ ′ such that τ ′/τ = τ ′, and all types τl , τr such that τ ≤ τl × τr ,
then τ ′ ≤ τl × τr .

Proof. Let dL ∈ Jτ ′∧⃝K. By Lemma B.55, we know that dL∪{X1 }\{X0 } ∈ Jτ ∧⃝K. Moreover, by

hypothesis, τ ≤ τl ×τr , thus, by Proposition B.28, dL∪{X1 }\{X0 } ∈ J(τl ×τr)∧⃝K. However, the fact that
an element ofD belongs to J(τl ×τr)∧⃝K is independent of its set of labels, therefore dL ∈ J(τl ×τr)∧⃝K.
Thus, we obtain that τ ′∧⃝ ≤T (τl × τr)

∧⃝
and the result follows by Proposition B.28. □

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:82 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

Definition B.58. We define the functionm recursively on D as follows:

m : D ∪ {Ω} → D ∪ {Ω}

m(Ω) = Ω

m(cL) = cL∪{X0 }\{X1 }

m((dl ,dr)
L) = (m(dl),m(dr))

L∪{X0 }\{X1 }

m((d1,d
′
1
), . . . , (dn,d

′
n)

L
) = (m(d1),m(d ′

1
)), . . . , (m(dn),m(d ′

n))
L∪{X0 }\{X1 }

Lemma B.59. For all types τ , τ ′ such that τ ≼ τ ′, the following holds:

∀d ∈ Jτ ′∧⃝K,m(d) ∈ Jτ ∧⃝K

∀d < Jτ ′∨⃝K,m(d) < Jτ ∨⃝K

Proof. The two results are proved simultaneously by induction on the pair (d, τ).

• τ = ?. For every d ∈ D, X0 ∈ tags(m(d)) by Definition B.58. Thereforem(d) ∈ JX0K = Jτ ∧⃝K.
Similarly, X1 < tags(m(d)), thusm(d) < JX1K = Jτ ∨⃝K.

• τ = α . Immediate since, by hypothesis, τ ≼ τ ′ therefore τ = τ ′ = α .
• τ = b. Immediate since, by hypothesis, τ ≼ τ ′ therefore τ = τ ′ = b.
• τ = τ1 × τ2. By hypothesis, τ ′ = τ ′

1
× τ ′

2
with τ1 ≼ τ ′

1
and τ2 ≼ τ ′

2
. Let d ∈ Jτ ′∧⃝K. Since

Jτ ′∧⃝K = Jτ ′∧⃝
1

×τ ′∧⃝
2

K, d = (d1,d2)
L
for some d1,d2 ∈ D, where di ∈ Jτ ′∧⃝i K, for every i ∈ {1, 2}.

By induction, it holds thatm(di) ∈ Jτ ∧⃝

i K, thus (m(d1),m(d2))
L′ ∈ Jτ ∧⃝

1
× τ ∧⃝

2
K for every set of

tags L′. Hencem(d) ∈ Jτ ∧⃝K.
Similarly, let d < Jτ ′∨⃝K. If d , (d1,d2)

L
for some d1,d2 ∈ D, then it is immediate that

m(d) < Jτ ∨⃝K since it only contains pairs. Otherwise, if d = (d1,d2)
L
for some d1,d2 ∈ D,

then di < Jτ ′∨⃝i K for some i ∈ {1, 2}. By induction, it holds that m(di) < Jτ ∨⃝

i K. Therefore,
(m(d1),m(d2))

L′ < Jτ ∨⃝

1
× τ ∨⃝

2
K for every set of tags L′, hence the result.

• τ = τ1 → τ2. By hypothesis, τ ′ = τ ′
1
→ τ ′

2
with τ1 ≼ τ ′

1
and τ2 ≼ τ ′

2
. For every d ∈ Jτ ′∧⃝K, d

is a relation (d1,d
′
1
), . . . , (dn,d

′
n)

L
. Let i ∈ {1,n} such thatm(di) ∈ Jτ ∨⃝

1
K. According to the

contrapositive of the second induction hypothesis, di ∈ Jτ ′∨⃝
1

K. Therefore, by definition of

Jτ ′∧⃝K, d ′
i ∈ Jτ ′∧⃝

2
K. Applying the first induction hypothesis,m(d ′

i) ∈ Jτ ∧⃝

2
K.

To summarize,m(di) ∈ Jτ ∨⃝

1
K =⇒ m(d ′

i) ∈ Jτ ∧⃝

2
K.

Therefore, (m(d1),m(d ′
1
)), . . . , (m(dn),m(d ′

n))
L′ ∈ Jτ ∧⃝K for every set of tags L, hence the first

result.

Similarly, for every d < Jτ ′∨⃝K, if d is not a relation then it is immediate that m(d) <
Jτ ∨⃝K since m(d) is also not a relation and Jτ ∨⃝K only contains relations. Otherwise, if

d = (d1,d
′
1
), . . . , (dn,d

′
n)

L
, then, by definition of Jτ ′∨⃝K, there exists a i ∈ {1,n} such that

di ∈ τ ′∧⃝
1

and d ′
i < τ

′∨⃝

2
. The induction hypothesis yieldsm(di) ∈ τ ∧⃝

1
andm(d ′

i) < τ
∨⃝

2
. Thus,

d < Jτ ∨⃝K independently of its set of tags, hence the result.

• τ = τ1 ∨ τ2. By hypothesis, τ ′ = τ ′
1
∨ τ ′

2
with τ1 ≼ τ ′

1
and τ2 ≼ τ ′

2
. For every d ∈ Jτ ′∧⃝K,

d ∈ Jτ ′∧⃝i K for some i ∈ {1, 2}. Thus, by induction hypothesis,m(d) ∈ Jτ ∧⃝

i K ⊂ Jτ ∧⃝K, hence
the result.

Similarly, for every d < Jτ ′∨⃝K, d < Jτ ′∨⃝i K for every i ∈ {1, 2}. Thus, by induction hypothesis,

m(d) < Jτ ∨⃝

i K for every i ∈ {1, 2}, hence the result.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:83

• τ = ¬τ0. By hypothesis, τ ′ = ¬τ ′
0
with τ0 ≼ τ ′

0
. Let d ∈ Jτ ′∧⃝K. By definition, d < Jτ ′∨⃝

0
K. By

induction, we have m(d) < Jτ ∨⃝

0
K, hence m(d) ∈ Jτ ∧⃝K. We can do the same reasoning for

d < Jτ ′∨⃝K, which concludes this proof.

□

Corollary B.60. For all types τ , τ ′ such that τ ≼ τ ′, if τ ≤ 0 → 1 then τ ′ ≤ 0 → 1.

Proof. Let d ∈ Jτ ′∧⃝K. By Lemma B.59, it holds thatm(d) ∈ Jτ ∧⃝K. Since τ ≤ 0 → 1, Lemma B.28

yields τ ∧⃝ ≤T 0 → 1. Thus,m(d) ∈ J0 → 1K, which implies thatm(d) = RL for some relation

R ⊂ D × D ∪ {Ω}.

By inversion of Definition B.58, d = R′L
for some relation R′ ⊂ D ×D∪ {Ω}. Thus d ∈ J0 → 1K,

which yields that τ ′∧⃝ ≤T 0 → 1. Lemma B.28 then gives the result. □

Corollary B.61. For all types τ , τ ′ such that τ ≼ τ ′, if τ ≤ 1 × 1 then τ ′ ≤ 1 × 1.

Proof. Let d ∈ Jτ ′∧⃝K. By Lemma B.59, it holds thatm(d) ∈ Jτ ∧⃝K. Since τ ≤ 1 × 1, Lemma B.28

yields τ ∧⃝ ≤T 1 × 1. Thus,m(d) ∈ J1 × 1K, which implies thatm(d) = (dl ,dr)
L
for some dl ,dr ∈ D.

By inversion of Definition B.58, d = (d ′
l ,d

′
r)
L
for some d ′

l ,d
′
r ∈ D. Thus d ∈ J1× 1K, which yields

that τ ′∧⃝ ≤T 1 × 1. Lemma B.28 then gives the result. □

Corollary B.62. For all types τ , τ ′ such that τ ≼ τ ′, if τ ′ ≰ 0 then τ ≰ 0.

Proof. Since τ ′ ≰ 0, by Lemma B.28, it holds that τ ′∧⃝ ≰T 0. Thus, there exists d ∈ Jτ ′∧⃝K.
Applying Lemma B.59 yields m(d) ∈ Jτ ∧⃝K, therefore τ ∧⃝ ≰T 0. Lemma B.28, then yields the

result. □

We now extend the previous definition of atoms to gradual types. That is, we refer to a gradual

type of the form b, τ1 × τ2, or τ1 → τ2 as an atom. We write A?
basic, A

?
prod, and A?

fun for the set of

gradual types of the forms b, τ1 × τ2, and τ1 → τ2, respectively.

In the following, the metavariable a ranges over the set A?
basic ∪ A?

prod ∪ A?
fun ∪V ∪ {?}.

Definition B.63 (Uniform gradual normal form). A uniform gradual (disjunctive) normal

form (UGDNF) is a gradual type τ of the form∨
i ∈I

(∧
a∈Pi

a ∧
∧
a∈Ni

¬a

)
such that, for all i ∈ I , one of the following three condition holds:

• Pi ∩ A?
basic , ∅ and (Pi ∪ Ni) ∩ (A?

prod ∪ A?
fun) = ∅;

• Pi ∩ A?
prod , ∅ and (Pi ∪ Ni) ∩ (A?

basic ∪ A?
fun) = ∅;

• Pi ∩ A?
fun , ∅ and (Pi ∪ Ni) ∩ (A?

basic ∪ A?
prod) = ∅;

For every type τ , we define UGDNF(τ) = (UDNF(τ ⊕))
†
.

Lemma B.64. For every type τ , UGDNF(τ) is in uniform gradual normal form and UGDNF(τ) ≃ τ .

Proof. We define τ ′ = UGDNF(τ). From the definition of UGDNF, it is immediate that τ ′ is in
uniform gradual normal form.

Lemma B.39 ensures that UDNF(τ ⊕) ≃T τ ⊕
. Moreover, since UDNF preserves the strong polar-

ization, UDNF(τ ⊕) is strongly polarized. By unicity of the strong polarization, ((UDNF(τ ⊕))
†
)⊕ =

UDNF(τ ⊕) ≃T τ ⊕
. Lemma B.28 then yields that (UDNF(τ ⊕))

†
≃ τ , that is, τ ′ ≃ τ . □

Lemma B.65. For every pair of types τ , τ ′ such that τ /τ ′ = τ ′, the following results hold:

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:84 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

• τ ′ ∈ A?
basic ⇐⇒ τ ∈ A?

basic
• τ ′ ∈ A?

fun ⇐⇒ τ ∈ A?
fun

• τ ′ ∈ A?
prod ⇐⇒ τ ∈ A?

prod
• τ ′ = ? ⇐⇒ τ = ?
• τ ′ ∈ V ⇐⇒ τ ∈ V

Proof. The result follows immediately from the definition of τ /τ ′. □

We now prove the following lemma about the function N defined in Subsection B.6.

Lemma B.66. For every pair of type frames T ,T ′ such that T †
/T ′† = T ′†, the following holds:

N(T)†/N(T ′)† = N(T ′)
†

N ′(T)†/N ′(T ′)† = N ′(T ′)
†

Proof. By induction on the pair (T ,T ′), and by cases on T ′
. Since ¬τ /¬τ ′ = ¬(τ /τ ′), most of

the cases are proved similarly for N and N ′
, and may be omitted.

• T ′ = X ′
. Then T ′† = ?. Thus, by hypothesis, T † = ? and therefore T = X . In this case

N(T) = X and N(T ′) = X ′
, and the result follows.

• T ′ = α . Then necessarilyT = α andN leavesT andT ′
unchanged, and the result is immediate.

• T ′ = b. Same as previous case.

• T ′ = T ′
1
×T ′

2
. By hypothesis, T is of the form T1 ×T2. Thus N leaves T and T ′

unchanged,

and the result follows.

• T ′ = T ′
1
→ T ′

2
. Same as previous case.

• T ′ = T ′
1
∨T ′

2
. By hypothesis, T is of the form T1 ∨T2 where for every i ∈ {1, 2}, Ti /T ′

i = T
′
i .

By induction and definition of N , the first result is immediate.

For the second result, consider k ∈ {1, 2}. We haveN ′(Tk) =
∨

i ∈Ik

(∧
p∈Pi ap ∧

∧
n∈Ni

¬an
)
.

The induction hypothesis ensures that we also haveN ′(T ′
k) =

∨
i ∈Ik

(∧
p∈Pi a

′
p∧

∧
n∈Ni

¬a′n

)
where for every i ∈ Ik , for every p ∈ Pi , a

†
p /a′p

† = a′p
†
and similarly for every n ∈ Ni .

Thus, for every pair (i1, i2) ∈ (I1 × I2), noting TI =
∧

p∈Pi
1
∪Pi

2

ap ∧
∧

n∈Ni
1
∪Ni

2

¬an and

T ′
I =

∧
p∈Pi

1
∪Pi

2

a′p ∧
∧

n∈Ni
1
∪Ni

2

¬a′n , we have T
†

I /T ′
I
† = T ′

I
†
. Taking the union over all pairs

(i1, i2) ∈ (I1 × I2) yields the result.

• T ′ = ¬T ′
0
. By hypothesis,T is of the form ¬T0, where

T †
0 /T ′

0

† = T ′
0

†
. By induction hypothesis,

N ′(T0)
†
/N ′(T ′

0
)† = N ′(T ′

0
)†. Thus N(¬T0)

†
/N(¬T ′

0
)† = N(¬T ′

0
)†, which yields the result.

The same reasoning can be done with N ′
.

• T ′ = 0. Necessarily T = 0, thus N leaves T and T ′
unchanged, and the result follows.

□

Proposition B.67. For every pair of types τ , τ ′ such that τ /τ ′ = τ ′, UGDNF(τ)/UGDNF(τ ′) =
UGDNF(τ ′).

Proof. Let τ , τ ′ be two types such that τ /τ ′ = τ ′. Then applying Lemma B.66 to τ ⊕
and τ ′⊕

immediately yields that N(τ ⊕)
†
/N(τ ′⊕)† = N(τ ′⊕)†.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:85

Now, assuming that

N(τ ′⊕) =
∨
i ∈I

(∧
p∈Pi

a′p ∧
∧
n∈Ni

¬a′n︸ ︷︷ ︸
I′
i

)

By definition of the grounding operation, we have

N(τ ⊕) =
∨
i ∈I

(∧
p∈Pi

ap ∧
∧
n∈Ni

¬an︸ ︷︷ ︸
Ii

)

where for every i ∈ I , for every (p,n) ∈ Pi × Ni , a
†
p /a′p

† = a′p
†
and a

†
n /a′n

† = a′n
†
.

Lemma B.65 then guarantees that for every i ∈ I , ap ∈ Pi ∩(Abasic∪V) ⇐⇒ a′p ∈ Pi ∩(Abasic∪

V). Therefore, following the definitions of Subsection B.6, posing T1 = Ibasic

i and T2 = I ′basic
i , it

holds thatT
†
1 /T †

2

= T †
2
. The same reasoning can be done for the product and function intersections,

yielding UDNF(τ ⊕)
†
/UDNF(τ ′⊕)† = UDNF(τ ′⊕)†, and the result follows by definition of UGDNF.

□

Definition B.68 (Function Cast Approximation). For every pair of types τ , τ ′ such that
τ ′ ≤ 0 → 1, and every type σ , if

UGDNF(τ) =
∨
i ∈I

∧
p∈Pi

ap ∧
∧
n∈Ni

¬an︸ ︷︷ ︸
Ii

UGDNF(τ ′) =
∨
i ∈I

∧
p∈Pi

a′p ∧
∧
n∈Ni

¬a′n︸ ︷︷ ︸
I′
i

∀i ∈ I ,Ii ≰ 0 =⇒ I ′
i ≰ 0

∀i ∈ I ,∀p ∈ Pi ,ap ∈ A?
fun ⇐⇒ a′p ∈ A?

fun

then we define the approximation of ⟨τ ⇒
p
τ ′⟩ applied to σ , noted ⟨τ ⇒

p
τ ′⟩ ◦ σ as follows.

⟨τ ⇒
p
τ ′⟩ ◦ σ =

〈 ∧
i ∈I
I′
i ≰0

∧
S ⊆P̄i

σ ≤
∨
p∈S σ ′

p

∨
p∈S

σp →
∨
i ∈I
I′
i ≰0

∨
S⊊P̄i

σ≰
∨
p∈S σ ′

p

∧
p∈P̄i \S

τp

p
=⇒∧

i ∈I
I′
i ≰0

∧
S ⊆P̄i

σ ≤
∨
p∈S σ ′

p

∨
p∈S

σ ′
p →

∨
i ∈I
I′
i ≰0

∨
S⊊P̄i

σ≰
∨
p∈S σ ′

p

∧
p∈P̄i \S

τ ′p

〉
where, to ease the notation, we pose P̄i = {p ∈ Pi | ap ∈ A?

fun} = {p ∈ Pi | a
′
p ∈ A?

fun} and for every
p ∈ P̄i , ap = σp → τp and a′p = σ ′

p → τ ′p .
Otherwise, ⟨τ ⇒

p
τ ′⟩ ◦ σ is undefined.

In the future, we use Pi ∩ A?
fun as a shorthand for both {p ∈ Pi | ap ∈ A?

fun} and {p ∈ Pi | a
′
p ∈

A?
fun}, provided the fourth condition of the above definition holds.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:86 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

Lemma B.69. For every pair of types τ , τ ′, and every type σ , if ⟨τ ⇒
p
τ ′⟩ ◦σ = ⟨τ1 → τ2 ⇒

p
τ ′

1
→ τ ′

2
⟩

then the following holds:

τ /τ ′ = τ
′ =⇒ ∀i, τi /τ ′i = τ

′
i

τ ′/τ = τ =⇒ ∀i, τ
′
i /τi = τi

Proof. Given two types τ , τ ′ such that τ /τ ′ = τ ′, and any type σ , Proposition B.67 ensures that

UGDNF(τ) =
∨
i ∈I

∧
p∈Pi

ap ∧
∧
n∈Ni

¬an

and

UGDNF(τ ′) =
∨
i ∈I

∧
p∈Pi

a′p ∧
∧
n∈Ni

¬a′n

where, for every i ∈ I and every p ∈ Pi , ap /a′p = a′p . Therefore, for every p ∈ Pi ∩ A?
fun, we

know that ap = σp → τp and a′p = σ ′
p → τ ′p , and we have by definition of the grounding operator

τp /τ ′p = τ
′
p and σp /σ ′

p = σ ′
p . The result then immediately follows from Definition B.68, and from

the definition of the grounding operator. The same reasoning can be done for τ
′
/τ = τ . □

Lemma B.70. For every pair of types τ , τ ′, and every type σ , if τ /τ ′ = τ ′ and τ ′ ≤ 0 → 1, then
⟨τ ⇒

p
τ ′⟩ ◦ σ is well-defined.

Proof. Since τ ′ ≤ 0 → 1 and τ ′ ≼ τ , Corollary B.60 yields that τ ≤ 0 → 1. Proposition B.67

then immediately ensures that

UGDNF(τ) =
∨
i ∈I

∧
p∈Pi

ap ∧
∧
n∈Ni

¬an︸ ︷︷ ︸
Ii

and

UGDNF(τ ′) =
∨
i ∈I

∧
p∈Pi

a′p ∧
∧
n∈Ni

¬a′n︸ ︷︷ ︸
I′
i

We now prove the third condition of Definition B.68, that is,

∀i ∈ I ,Ii ≰ 0 =⇒ I ′
i ≰ 0

Let i ∈ I . By hypothesis, Ii /I ′
i = I ′

i , which implies that I ′
i ≼ Ii . Applying Corollary B.62 then

yields the result.

For the fourth condition of Definition B.68, knowing that τ /τ ′ = τ ′, we have for every i ∈ I and
every p ∈ Pi , ap /a′p = a′p . The result then follows by definition of the grounding operator. □

Lemma B.71. For every pair of types τ , τ ′, and every type σ , if ⟨τ ⇒
p
τ ′⟩ ◦σ = ⟨τ1 → τ2 ⇒

p
τ ′

1
→ τ ′

2
⟩

then the following holds:

(1) σ ≤ τ ′
1

(2) τ ′
2
= min{τ | τ ′ ≤ σ → τ }

(3) τ ≤ τ1 → τ2

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:87

Proof. In all the following, we pose

UGDNF(τ) =
∨
i ∈I

∧
p∈Pi

ap ∧
∧
n∈Ni

¬an︸ ︷︷ ︸
Ii

and

UGDNF(τ ′) =
∨
i ∈I

∧
p∈Pi

a′p ∧
∧
n∈Ni

¬a′n︸ ︷︷ ︸
I′
i

as well as P̄i = Pi ∩ A?
fun and for every p ∈ P̄i , ap = σp → τp and a′p = σ ′

p → τ ′p .
Moreover, we know that, by hypothesis,

∀i ∈ I ,Ii ≰ 0 =⇒ I ′
i ≰ 0

(1) Immediate by definition of τ ′
1
, since it is an intersection of supertypes of σ .

(2) Let τ0 a type such that τ ′ ≤ σ → τ0. By Proposition B.28, we have τ ′⊕ ≤T σ ⊖ → τ ⊕
0
. By

Lemma B.49, this implies that τ ′⊕ ◦ σ ⊖ ≤T τ ⊕
0
. Plugging in the definition of the result type,

this gives: ∨
i ∈I

I′
i ≰T 0

∨
S⊊P̄i

σ ⊖≰T
∨
p∈S σ

′⊖
p

∧
p∈P̄i \S

τ ′⊕p ≤T τ ⊕
0

According to Proposition B.28, the condition σ ⊖ ≰T
∨

p∈S σ
′⊖
p is equivalent to σ ≰

∨
p∈S σ

′
p .

Applying Proposition B.28 a second time to the whole inequality then yields∨
i ∈I
I′
i ≰0

∨
S⊊P̄i

σ≰
∨
p∈S σ ′

p

∧
p∈P̄i \S

τ ′p ≤ τ0

that is, τ ′
2
≤ τ0, hence the result.

(3) • We first prove that τ ≤ τ1 → 1. Let i ∈ I and S ⊆ P̄i . It holds that
∨

p∈S σp ≤
∨

p∈P̄i σp
since the union in the left hand side contains fewer elements. This implies that∧

S ⊆P̄i
σ ≤

∨
p∈S σ ′

p

∨
p∈S

σp ≤
∨
p∈P̄i

σp

Thus taking the intersection for all i ∈ I where I ′
i ≰ 0,∧

i ∈I
I′
i ≰0

∧
S ⊆P̄i

σ ≤
∨
p∈S σ ′

p

∨
p∈S

σp ≤
∧
i ∈I
I′
i ≰0

∨
p∈P̄i

σp

which is

τ1 ≤
∧
i ∈I
I′
i ≰0

∨
p∈P̄i

σp

Moreover, since ∀i ∈ I ,Ii ≰ 0 =⇒ I ′
i ≰ 0, we have

τ1 ≤
∧
i ∈I
I′
i ≰0

∨
p∈P̄i

σp ≤
∧
i ∈I
Ii≰0

∨
p∈P̄i

σp

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:88 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

since the intersection on the left hand side contains more elements. Now applying Proposi-

tion B.28 and remarking that the right hand side of the previous inequality corresponds

to the definition of the domain operator, we get τ ⊖
1

≤T dom(τ ⊕). Lemma B.47 then yields

τ ⊕ ≤T τ ⊖
1
→ 1, and the result follows from Proposition B.28.

• We then show that, for every i ∈ I , and every S ⊊ P̄i ,

τ1 ≰
∨
p∈S

σp =⇒ σ ≰
∨
p∈S

σ ′
p (∗)

Suppose that the left hand side holds. Plugging in the definition of τ1, we have∧
i ∈I
I′
i ≰0

∧
S ⊆P̄i

σ ≤
∨
p∈S σ ′

p

∨
p∈S

σp ≰
∨
p∈S

σp

This inequality must also hold for every term of the intersections on the left hand side, and

in particular for i and S :

σ ≤
∨
p∈S

σ ′
p =⇒

∨
p∈S

σp ≰
∨
p∈S

σp

Since the right hand side is always false, the left hand side cannot hold thus σ ≰
∨

p∈S σ
′
p .

• Now consider i ∈ I . It holds that∨
S⊊P̄i

τ1≰
∨
p∈S σp

∧
p∈P̄i \S

τp ≤
∨
S⊊P̄i

σ≰
∨
p∈S σ ′

p

∧
p∈P̄i \S

τp

since, according to (∗), the union on the right contains more elements. Now, taking the

union on both sides for every i ∈ I such that I ′
i ≰ 0,∨

i ∈I
I′
i ≰0

∨
S⊊P̄i

τ1≰
∨
p∈S σp

∧
p∈P̄i \S

τp ≤
∨
i ∈I
I′
i ≰0

∨
S⊊P̄i

σ≰
∨
p∈S σ ′

p

∧
p∈P̄i \S

τp = τ2

Using the condition ∀i ∈ I ,Ii ≰ 0 =⇒ I ′
i ≰ 0, the union on the left contains more

elements than the same union on Ii ≰ 0, yielding∨
i ∈I
Ii≰0

∨
S⊊P̄i

τ1≰
∨
p∈S σp

∧
p∈P̄i \S

τp ≤ τ2

Using Proposition B.28 and remarking that the left hand side corresponds to the definition of

the result operator, we deduce that τ ⊕ ◦τ ⊖
1

≤T τ ⊕
2
, thus τ ⊕ ≤T τ ⊖

1
→ τ ⊕ ◦τ ⊖

1
≤T τ ⊖

1
→ τ ⊕

2
,

and applying Proposition B.28 yields the result.

□

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:89

Definition B.72 (Cast Projection). For every pair of types τ , τ ′ such that τ ′ ≤ 1 × 1 if

(1) UGDNF(τ) =
∨
i ∈I

∧
p∈Pi

ap ∧
∧
n∈Ni

¬an︸ ︷︷ ︸
Ii

(2) UGDNF(τ ′) =
∨
i ∈I

∧
p∈Pi

a′p ∧
∧
n∈Ni

¬a′n︸ ︷︷ ︸
I′
i

(3) ∀i ∈ I ,Ii ≰ 0 =⇒ I ′
i ≰ 0

(4) ∀j ∈ I ,∀N ⊆ N̄j ,∀i ∈ {1, 2}, πi (τ
j
N) ≰ 0 =⇒ πi (τ

′j
N) ≰ 0

(5) ∀i ∈ I ,∀p ∈ Pi ,ap ∈ A?
prod ⇐⇒ a′p ∈ A?

prod

(6) ∀i ∈ I ,∀n ∈ Ni ,an ∈ A?
prod ⇐⇒ a′n ∈ A?

prod

then we define the i-th projection of ⟨τ ⇒
p
τ ′⟩, noted πi (⟨τ ⇒

p
τ ′⟩) as follows.

πi (⟨τ ⇒
p
τ ′⟩) =

〈 ∨
j ∈I
I′
j≰0

∨
N ⊆N̄j

π1 (τ
′j
N)≰0

π2 (τ
′j
N)≰0

πi (τ
j
N)

p
=⇒

∨
j ∈I
I′
j≰0

∨
N ⊆N̄j

π1 (τ
′j
N)≰0

π2 (τ
′j
N)≰0

πi (τ
′j
N)

〉

where
P̄i = {p ∈ Pi | ap ∈ A?

prod} = {p ∈ Pi | a
′
p ∈ A?

prod}

N̄i = {n ∈ Ni | an ∈ A?
prod} = {n ∈ Ni | a

′
n ∈ A?

prod}

τ iN =
(∧

p∈P̄i
ap=τ1×τ2

τ1 ∧
∧
n∈N

an=τ1×τ2

¬τ1,
∧
p∈P̄i

ap=τ1×τ2

τ2 ∧
∧

n∈Ni \N
an=τ1×τ2

¬τ2

)
τ ′iN =

(∧
p∈Pi

a′p=τ
′
1
×τ ′

2

τ ′
1
∧

∧
n∈N

a′n=τ
′
1
×τ ′

2

¬τ ′
1
,

∧
p∈Pi

a′p=τ
′
1
×τ ′

2

τ ′
2
∧

∧
n∈Ni \N
a′n=τ

′
1
×τ ′

2

¬τ ′
2

)
otherwise, πi (⟨τ ⇒

p
τ ′⟩) is undefined.

In the future, we use Pi ∩A?
prod as a shorthand for both {p ∈ Pi | ap ∈ A?

prod} and {p ∈ Pi | a
′
p ∈

A?
prod}, provided the fourth condition of the above definition holds; and similarly for Ni ∩ A?

prod
provided the fifth condition above holds.

Lemma B.73. For every pair of types τ , τ ′, if πi ⟨τ ⇒
p
τ ′⟩ = ⟨τi ⇒

p
τ ′i ⟩ then the following holds:

τ /τ ′ = τ
′ =⇒ τi /τ ′i = τ

′
i

τ ′/τ = τ =⇒ τ ′i /τi = τi

Proof. Given two types τ , τ ′ such that τ /τ ′ = τ ′, Proposition B.67 ensures that

UGDNF(τ) =
∨
i ∈I

∧
p∈Pi

ap ∧
∧
n∈Ni

¬an

and

UGDNF(τ ′) =
∨
i ∈I

∧
p∈Pi

a′p ∧
∧
n∈Ni

¬a′n

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:90 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

where, for every i ∈ I and every p ∈ Pi , ap /a′p = a′p , and for every n ∈ Ni , an /a′n = a′n .

Therefore, for every p ∈ Pi ∩A?
prod, we know that ap = τ1 ×τ2 and a

′
p = τ

′
1
→ τ ′

2
, and we have by

definition of the grounding operator τ1/τ ′
1

= τ ′
1
and τ2/τ ′

2

= τ ′
2
. The result then immediately follows

from Definition B.72, and from the definition of the grounding operator. The same reasoning can

be done for τ
′
/τ = τ . □

Lemma B.74. For every pair of types τ , τ ′, if τ /τ ′ = τ ′ and τ ′ ≤ 1 × 1, then πi ⟨τ ⇒
p
τ ′⟩ is

well-defined.

Proof. Since τ ′ ≤ 1 × 1 and τ ′ ≼ τ , Corollary B.61 yields that τ ≤ 1 × 1. Proposition B.67 then

immediately ensures that

UGDNF(τ) =
∨
i ∈I

∧
p∈Pi

ap ∧
∧
n∈Ni

¬an︸ ︷︷ ︸
Ii

and

UGDNF(τ ′) =
∨
i ∈I

∧
p∈Pi

a′p ∧
∧
n∈Ni

¬a′n︸ ︷︷ ︸
I′
i

We now prove the third condition of Definition B.72, that is,

∀i ∈ I ,Ii ≰ 0 =⇒ I ′
i ≰ 0

Let i ∈ I . By hypothesis, Ii /I ′
i = I ′

i , which implies that I ′
i ≼ Ii . Applying Corollary B.62 then

yields the result.

The fourth condition is proven similarly, by remarking that for every j ∈ I and every N ⊆ N̄j ,

πi (τ
′j
N) ≼ πi (τ

j
N).

For the fifth condition of Definition B.68, knowing that τ /τ ′ = τ ′, we have for every i ∈ I and
every p ∈ Pi , ap /a′p = a′p . The result then follows by definition of the grounding operator.

The sixth condition can be proven using the same reasoning. □

Lemma B.75. For every pair of types τ , τ ′ such that τ ≤ 1 × 1, if π1 ⟨τ ⇒
p
τ ′⟩ = ⟨τ1 ⇒

p
τ ′

1
⟩ then the

following holds:

(1) τ ≤ (τ1 × 1)
(2) τ ′

1
= min{τ | τ ′ ≤ τ × 1}

Proof. In all the following, we pose

UGDNF(τ) =
∨
i ∈I

∧
p∈Pi

ap ∧
∧
n∈Ni

¬an︸ ︷︷ ︸
Ii

and

UGDNF(τ ′) =
∨
i ∈I

∧
p∈Pi

a′p ∧
∧
n∈Ni

¬a′n︸ ︷︷ ︸
I′
i

We also pose P̄i = Pi ∩ A?
prod and N̄i = Ni ∩ A?

prod.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:91

Finally, as in Definition B.72, we pose, for every i ∈ I and every set N ⊆ Ni :

τ iN =
(∧

p∈P̄i
ap=τ1×τ2

τ1 ∧
∧
n∈N

an=τ1×τ2

¬τ1,
∧
p∈P̄i

ap=τ1×τ2

τ2 ∧
∧

n∈Ni \N
an=τ1×τ2

¬τ2

)
τ ′iN =

(∧
p∈Pi

a′p=τ
′
1
×τ ′

2

τ ′
1
∧

∧
n∈N

a′n=τ
′
1
×τ ′

2

¬τ ′
1
,

∧
p∈Pi

a′p=τ
′
1
×τ ′

2

τ ′
2
∧

∧
n∈Ni \N
a′n=τ

′
1
×τ ′

2

¬τ ′
2

)
(1) Since τ ≤ 1×1, Proposition B.28 yields τ ⊕ ≤T 1×1. Thus, Lemma B.42 gives τ ⊕ ≤T π1(τ

⊕)×1.
Plugging in the definition of π1 on type frames, we obtain:

τ ⊕ ≤T

(∨
i ∈I
Ii≰0

∨
N ⊆N̄i

π1 (τ ⊕i
N)≰T 0

π2 (τ ⊕i
N)≰T 0

π1 (τ
⊕i
N)

)
× 1

Now, remarking that π1 (τ
⊕i
N) = (π1 (τ

i
N))

⊕
and applying Proposition B.28, we obtain that

π1 (τ
⊕i
N) ≰T 0 ⇐⇒ π1 (τ

i
N) ≰ 0. Condition (4) of Definition B.72 then yields π1 (τ

⊕i
N) ≰T

0 =⇒ π1 (τ
′i
N) ≰ 0. The same reasoning for the second projection yields π2 (τ

⊕i
N) ≰T 0 =⇒

π2 (τ
′i
N) ≰ 0. Using this and Condition (3) of Definition B.72, we deduce(∨

i ∈I
Ii≰0

∨
N ⊆N̄i

π1 (τ ⊕i
N)≰T 0

π2 (τ ⊕i
N)≰T 0

π1 (τ
⊕i
N)

)
≤T

(∨
i ∈I
I′
i ≰0

∨
N ⊆N̄i

π1 (τ ′iN)≰0

π2 (τ ′iN)≰0

(π1 (τ
i
N))

⊕
)

Since the unions on the right contain more elements than the unions on the left. Finally, we

have

τ ⊕ ≤T

(∨
i ∈I
I′
i ≰0

∨
N ⊆N̄i

π1 (τ ′iN)≰0

π2 (τ ′iN)≰0

(π1 (τ
i
N))

⊕
)
× 1

And applying Proposition B.28 yields

τ ≤

(∨
i ∈I
I′
i ≰0

∨
N ⊆N̄i

π1 (τ ′iN)≰0

π2 (τ ′iN)≰0

π1 (τ
i
N)

)
× 1

which is the result.

(2) Let τ0 such that τ ′ ≤ τ0 × 1. We show that τ ′
1
≤ τ0.

By Proposition B.28, we have τ ′⊕ ≤T τ ⊕
0
×1. Thus, by Lemma B.42, we have π1 ((τ

′)⊕) ≤T τ ⊕
0
.

Plugging in the definition of the projection of a type frame yields:∨
i ∈I
I′
i ≰0

∨
N ⊆N̄i

π1 (τ ′⊕iN)≰T 0

π2 (τ ′⊕iN)≰T 0

π1 (τ
′⊕i
N) ≤T τ ⊕

0

Remarking that, for every i ∈ {1, 2} and every j ∈ I , πi (τ
′⊕j
N) = (πi (τ

′j
N))

⊕
, and applying

Proposition B.28, we obtain

πi (τ
′⊕j
N) ≰T 0 ⇐⇒ (πi (τ

′j
N))

⊕ ≰T 0 ⇐⇒ πi (τ
′j
N) ≰ 0

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:92 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

[Var]

Γ ⊢ x : ∀®α . τ
Γ(x) = ∀®α . τ [Const]

Γ ⊢ c : bc

[Abstr]

Γ, x : τ ′ ⊢ E : τ

Γ ⊢ (λτ
′→τx . E) : τ ′ → τ

[App]

Γ ⊢ E1 : τ ′ → τ Γ ⊢ E2 : τ ′

Γ ⊢ E1 E2 : τ

[Pair]

Γ ⊢ E1 : τ1 Γ ⊢ E2 : τ2

Γ ⊢ (E1, E2) : τ1 × τ2

[Proj]

Γ ⊢ E : τ1 × τ2

Γ ⊢ πi E : τi

[Let]

Γ ⊢ E1 : ∀®α . τ1 Γ, x : ∀®α . τ1 ⊢ E2 : τ

Γ ⊢ (let x = E1 in E2) : τ

[TAbstr]

Γ ⊢ E : τ

Γ ⊢ Λ ®α . E : ∀®α . τ
®α ♯ Γ [TApp]

Γ ⊢ E : ∀®α . τ

Γ ⊢ E [®t] : τ { ®α B ®t}

[Cast]

Γ ⊢ E : τ ′

Γ ⊢ E⟨τ ′ ⇒
p
τ ⟩ : τ

{
p = l =⇒ τ ′ ≼ τ

p = ¯l =⇒ τ ≼ τ ′
[Subsume]

Γ ⊢ e : τ ′

Γ ⊢ e : τ
τ ′ ≤ τ

Fig. 13. Full Typing Rules for the Set-Theoretic Cast Calculus

Thus we have: ∨
i ∈I
I′
i ≰0

∨
N ⊆N̄i

π1 (τ ′iN)≰0

π2 (τ ′iN)≰0

(π1 (τ
′i
N))

⊕ ≤T τ ⊕
0

Then, applying Proposition B.28 yields∨
i ∈I
I′
i ≰0

∨
N ⊆N̄i

π1 (τ ′iN)≰0

π2 (τ ′iN)≰0

π1 (τ
′i
N) ≤ τ0

Remarking that the left hand side corresponds to the definition of τ ′
1
yields the result: τ ′

1
≤ τ0.

□

Lemma B.76. For every pair of types τ , τ ′, if τ ≤ 1 × 1 and π2 ⟨τ ⇒
p
τ ′⟩ = ⟨τ2 ⇒

p
τ ′

2
⟩ then the

following holds:
(1) τ ≤ (1 × τ2)

(2) τ ′
2
= min{τ | τ ′ ≤ 1 × τ }

Proof. Same proof as Lemma B.75. □

B.8 Cast Calculus with Set-Theoretic Types
The full typing rules for the cast calculus with set-theoretic types are defined in Figure 13.

The values of the cast language are defined by the following grammar.

V ::= c | λτ→τx . E | (V ,V) | Λ ®α . E

| V ⟨τ1 ⇒
p
τ2⟩ where τ1 , τ2 and where τ1/τ2

= τ1 or
τ1/τ2

= τ2 or
τ2/τ1

= τ1

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:93

Definition B.77 (Value Type Operator). We define the operator type on values of the cast
language (except type abstractions) as follows:

type(c) = bc type(λτ1→τ2x . E) = τ1 → τ2

type(V1,V2) = type(V1) × type(V2) type(V ⟨τ1 ⇒
p
τ2⟩) = τ2

Lemma B.78. For every value V that is not a type abstraction, ∅ ⊢ V : type(V).

Proof. By cases on V .

• V = c . type(V) = bc . By typing rule [Const], ∅ ⊢ V : bc .
• V = λτ1→τ2x . E. type(V) = τ1 → τ2. By typing rule [Abstr], ∅ ⊢ V : τ1 → τ2.

• V = (V1,V2). type(V) = type(V1) × type(V2). By induction, for every i ∈ {1, 2}, ∅ ⊢ Vi :

type(Vi). Then by typing rule [Pair], ∅ ⊢ V : type(V1) × type(V2).

• V = V ′⟨τ1 ⇒
p
τ2⟩. type(V) = τ2. By typing rule [Cast], ∅ ⊢ V : τ2.

□

Lemma B.79 (Progress for Cast Values). For every value V , every label p, and all types τ1, τ2, if
∅ ⊢ V ⟨τ1 ⇒

p
τ2⟩ : τ2, then one of the following cases holds:

• V ⟨τ1 ⇒
p
τ2⟩ is a value

• there exists a term E such that V ⟨τ1 ⇒
p
τ2⟩ ↪→ E

• V ⟨τ1 ⇒
p
τ2⟩ ↪→ blame p

Proof. By hypothesis, ∅ ⊢ V ⟨τ1 ⇒
p
τ2⟩ : τ2. Therefore, by inversion of the typing rules, it holds

that ∅ ⊢ V : τ1 and we distinguish two main cases: τ1 ≼ τ2 or τ2 ≼ τ1. The proof is then done by

subcases over τ2/τ1
or τ1/τ2

. The case where τ1 = τ2 is a particular case that is handled separately.

• τ1 = τ2. In this case, V ⟨τ1 ⇒
p
τ2⟩ ↪→ V by rule [CastId].

• τ1 ≼ τ2 and τ1 , τ2. We distinguish the following subcases:

– τ2/τ1
= τ1. Then V ⟨τ1 ⇒

p
τ2⟩ is a value.

– τ2/τ1
= τ2. We proceed by case disjunction over V :

∗ V = V ′⟨τ ′
1
⇒
q
τ ′

2
⟩ where τ

′
1/τ ′

2

= τ ′
1
. If τ ′

1
≤ τ2 thenV ⟨τ1 ⇒

p
τ2⟩ ↪→ V ′

by rule [Collapse].

Otherwise, if τ ′
1
≰ τ2 then V ⟨τ1 ⇒

p
τ2⟩ ↪→ blame p by rule [Blame].

∗ V = V ′⟨τ ′
1
⇒
q
τ ′

2
⟩ where τ

′
2/τ ′

1

= τ ′
1
. This case is identical to the previous one. If τ ′

1
≤ τ2

then V ⟨τ1 ⇒
p
τ2⟩ ↪→ V ′

by rule [Collapse]. Otherwise, if τ ′
1
≰ τ2 then V ⟨τ1 ⇒

p
τ2⟩ ↪→

blame p by rule [Blame].

∗ V = V ′⟨τ ′
1
⇒
q
τ ′

2
⟩ where τ

′
1/τ ′

2

= τ ′
2
. If τ ′

2
≤ τ2 then V ⟨τ1 ⇒

p
τ2⟩ ↪→ V by rule [UpSimpl].

Otherwise, if τ ′
2
≰ τ2 then V ⟨τ1 ⇒

p
τ2⟩ ↪→ blame p by rule [UpBlame].

∗ V is unboxed. If type(V) ≤ τ2 then V ⟨τ1 ⇒
p
τ2⟩ ↪→ V by rule [UnboxSimpl]. Otherwise,

V ⟨τ1 ⇒
p
τ2⟩ ↪→ blame p by rule [UnboxBlame].

– ∀i ∈ {1, 2}, τ2/τ1
, τi . In this case, V ⟨τ1 ⇒

p
τ2⟩ ↪→ V ⟨τ1 ⇒

p τ2/τ1
⟩⟨τ2/τ1

⇒
p
τ2⟩ by rule

[ExpandR].

• τ2 ≼ τ1 and τ1 , τ2. We distinguish the following subcases:

– τ1/τ2
= τ1. In this case, V ⟨τ1 ⇒

p
τ2⟩ is a value.

– τ1/τ2
= τ2. In this case, V ⟨τ1 ⇒

p
τ2⟩ is a value.

– ∀i, τ1/τ2
, τi . In this case, V ⟨τ1 ⇒

p
τ2⟩ ↪→ V ⟨τ1 ⇒

p τ1/τ2
⟩⟨τ1/τ2

⇒
p
τ2⟩ by rule [ExpandL].

□

Lemma B.80 (Progress). For every term E such that ∅ ⊢ E : S , one of the following cases holds:

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:94 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

Cast Reductions.

[ExpandL] V ⟨τ1 ⇒
p
τ2⟩ ↪→ V ⟨τ1 ⇒

p τ1/τ2
⟩⟨τ1/τ2

⇒
p
τ2⟩ if τ1/τ2

, τ1,
τ1/τ2

, τ2

[ExpandR] V ⟨τ1 ⇒
p
τ2⟩ ↪→ V ⟨τ1 ⇒

p τ2/τ1
⟩⟨τ2/τ1

⇒
p
τ2⟩ if τ2/τ1

, τ1,
τ2/τ1

, τ2

[CastId] V ⟨τ ⇒
p
τ ⟩ ↪→ V (∗)

[Collapse] V ⟨τ1 ⇒
p
τ2⟩⟨τ

′
1
⇒
q
τ ′

2
⟩ ↪→ V if τ1 ≤ τ ′

2
, τ ′

2/τ ′
1

= τ ′
2

and τ1/τ2
= τ1 or

τ2/τ1
= τ1

[Blame] V ⟨τ1 ⇒
p
τ2⟩⟨τ

′
1
⇒
q
τ ′

2
⟩ ↪→ blame q if τ1 ≰ τ ′

2
, τ ′

2/τ ′
1

= τ ′
2

and τ1/τ2
= τ1 or

τ2/τ1
= τ1

[UpSimpl] V ⟨τ1 ⇒
p
τ2⟩⟨τ

′
1
⇒
q
τ ′

2
⟩ ↪→ V ⟨τ1 ⇒

p
τ2⟩ if τ2 ≤ τ ′

2
, τ1/τ2

= τ2,
τ ′

2/τ ′
1

= τ ′
2

[UpBlame] V ⟨τ1 ⇒
p
τ2⟩⟨τ

′
1
⇒
q
τ ′

2
⟩ ↪→ blame q if τ2 ≰ τ ′

2
, τ1/τ2

= τ2,
τ ′

2/τ ′
1

= τ ′
2

[UnboxSimpl] V ⟨τ1 ⇒
p
τ2⟩ ↪→ V if type(V) ≤ τ2,

τ2/τ1
= τ2, V is unboxed

[UnboxBlame] V ⟨τ1 ⇒
p
τ2⟩ ↪→ blame p if type(V) ≰ τ2,

τ2/τ1
= τ2, V is unboxed

(∗) to ease the notation and to avoid redundant conditions, the rule [CastId] takes precedence

over the following ones. All other casts are therefore considered to be non-identity casts.

Standard Reductions.

[CastApp] V ⟨τ ⇒
p
τ ′⟩V ′ ↪→ (V V ′⟨τ ′

1
⇒
p̄
τ1⟩)⟨τ2 ⇒

p
τ ′

2
⟩ if τ

′
/τ = τ or τ /τ ′ = τ ′

where ⟨τ ⇒
p
τ ′⟩ ◦ type(V ′) = ⟨τ1 → τ2 ⇒

p
τ ′

1
→ τ ′

2
⟩

[CastProj] πi (V ⟨τ ⇒
p
τ ′⟩) ↪→ (πi V)⟨τi ⇒

p
τ ′i ⟩ if τ

′
/τ = τ or τ /τ ′ = τ ′

where ⟨τi ⇒
p
τ ′i ⟩ = πi (⟨τ ⇒

p
τ ′⟩)

[FailApp] V ⟨τ ⇒
p
τ ′⟩V ′ ↪→ blame p if ⟨τ ⇒

p
τ ′⟩ ◦ type(V ′) undef.

[FailProj] πi (V ⟨τ ⇒
p
τ ′⟩) ↪→ blame p if πi (⟨τ ⇒

p
τ ′⟩) undef.

[SimplApp] V ⟨τ ⇒
p
τ ′⟩V ′ ↪→ V V ′

if τ /τ ′ = τ

[SimplProj] πi (V ⟨τ ⇒
p
τ ′⟩) ↪→ πi V if τ /τ ′ = τ

[App] (λτ1→τ2x . E)V ↪→ E{x B V }

[Proj] πi (V1,V2) ↪→ Vi
[TypeApp] (Λ ®α . E) [®t] ↪→ E{ ®α B ®t}

[Let] let x = V in E ↪→ E{x B V }

[Context] E[E] ↪→ E[E ′] if E ↪→ E ′

[CtxBlame] E[E] ↪→ blame p if E ↪→ blame p

Fig. 14. Full Reductions for the Cast Calculus

• there exists a value V such that E = V
• there exists a term E ′ such that E ↪→ E ′

• there exists a label p such that E ↪→ blame p

Proof. By complete induction over the expression E.

• Case x . Impossible by hypothesis since a single variable cannot be well-typed in the empty

environment.

• Case c . Immediate since c is a value.
• Case λτ1→τ2x . E. Immediate since λτ1→τ2x . E is a value.

• Case E1 E2. By inversion of the typing rules, we deduce that ∅ ⊢ E1 : τ1 → τ2 and ∅ ⊢ E2 : τ1.

We can thus apply the induction hypothesis on both E1 and E2, which yields the following

subcases.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:95

– ∃E ′
2
such that E2 ↪→ E ′

2
. By rule [Context] and since E1 □ is a valid reduction context,

E1 E2 ↪→ E1 E
′
2
.

– E2 ↪→ blame p. By rule [CtxBlame] and since E1 □ is a valid reduction context, E1 E2 ↪→
blame p.

– E2 is a value and ∃E ′
1
such that E1 ↪→ E ′

1
. Since E2 is a value, □ E2 is a valid reduction

context, thus E1 E2 ↪→ E ′
1
E2 by rule [Context].

– E2 is a value and E1 ↪→ blame p. Since E2 is a value, □ E2 is a valid reduction context, thus

E1 E2 ↪→ blame p by rule [CtxBlame].

– Both E1 and E2 are values. Reasoning by case analysis on E1 and not considering ill-typed

cases:

∗ E1 = λτ
′
1
→τ ′

2x . E ′
1
where τ ′

1
→ τ ′

2
≤ τ1 → τ2. In this case, E1 E2 reduces to E

′
1
{x B E2} by

rule [App].

∗ E1 = V ⟨τ ′
1
⇒
p
τ ′

2
⟩ where τ ′

2
≤ τ1 → τ2 and

τ ′
2/τ ′

1

= τ ′
1
or τ

′
1/τ ′

2

= τ ′
2
. If τ ′

1
≤ 0 → 1 then

E1E2 reduces to (V E2⟨τ
′
l ⇒

p̄
τl ⟩)⟨τr ⇒

p
τ ′r ⟩ where ⟨τ

′
1
⇒
p
τ ′

2
⟩◦type(E2) = ⟨τl → τr ⇒

p
τ ′l →

τ ′r ⟩ by rule [CastApp].

Otherwise, if τ ′
1
≰ 0 → 1, then E1 E2 ↪→ blame p by rule [FailApp].

∗ E1 = V ⟨τ ′
1
⇒
p
τ ′

2
⟩ where τ ′

2
≤ τ1 → τ2 and τ ′

1/τ ′
2

= τ ′
1
. Then E1 E2 ↪→ V E2 by rule

[SimplApp].

• Case Λ ®α . E. Immediate since Λ ®α . E is a value.

• Case E [®t]. By inversion of the typing rule [TApp], we deduce that ∅ ⊢ E : ∀®α .τ . We can thus

apply the induction hypothesis on E which yields the following subcases:

– E ↪→ E ′
. Since □ [®t] is a valid reduction context, E [®t] reduces to E ′ [®t] by [Context].

– E ↪→ blame p. Since □ [®t] is a valid reduction context, E [®t] also reduces to blame p by

[CtxBlame].

– E is a value. In this case, by inversion of the typing rules, E is necessarily of the form Λ ®α . E ′
.

Therefore, E [®t] ↪→ E ′{ ®α B ®t} by [TypeApp], concluding this case.

• Case (E1, E2). By inversion of the typing rule [Pair], we deduce that ∅ ⊢ Ei : τi , for i ∈ {1, 2}.
Thus, we can apply the induction hypothesis on both E1 and E2, yielding the following

subcases:

– E2 ↪→ E ′
2
. Since (E1,□) is a valid reduction context, (E1, E2) ↪→ (E1, E

′
2
) by rule [Context].

– E2 ↪→ blame p. Since (E1,□) is a valid reduction context, (E1, E2) ↪→ blame p by rule

[CtxBlame].

– E2 is a value and E1 ↪→ E ′
1
. Since E2 is a value, (□, E2) is a valid reduction context, thus

(E1, E2) ↪→ (E ′
1
, E2) by rule [Context].

– E2 is a value and E1 ↪→ blame p. Since E2 is a value, (□, E2) is a valid reduction context,

thus (E1, E2) ↪→ blame p by rule [CtxBlame].

– Both E1 and E2 are values. In this case, (E1, E2) is itself a value, concluding this case.

• Case πi E. By inversion of the typing rule [Proj], we deduce that ∅ ⊢ E : τ1 × τ2. Thus, we

can apply the induction hypothesis to E, yielding the following subcases:

– E ↪→ E ′
. Since πi □ is a valid reduction context, πi E ↪→ πi E

′
by rule [Context].

– E ↪→ blame p. Since πi □ is a valid reduction context, πi E reduces to blame p by rule

[CtxBlame].

– E is a value. By cases on E, not considering the ill-typed cases:

∗ E = (V1,V2). In this case, πi E reduces to Vi by rule [Proj].

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:96 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

∗ E = V ⟨τ ′
1
⇒
p
τ ′

2
⟩ where τ ′

2
≤ τ1 ×τ2 and

τ ′
2/τ ′

1

= τ ′
1
or τ

′
1/τ ′

2

= τ ′
2
. In this case, if τ ′

1
≤ 1×1

then πiE reduces to (πiV)⟨τp ⇒
p
τ ′p⟩ where ⟨τp ⇒

p
τ ′p⟩ = πi (⟨τ

′
1
⇒
p
τ ′

2
⟩) by rule [CastProj].

Otherwise, if τ ′
1
≰ 1 × 1, then πi E ↪→ blame p by rule [FailProj].

∗ E = V ⟨τ ′
1
⇒
p
τ ′

2
⟩ where τ ′

2
≤ τ1 × τ2 and

τ ′
1/τ ′

2

= τ ′
1
. Then E ↪→ πi V by rule [SimplProj].

• Case let x = E1 in E2. By inversion of the typing rule [Let], we deduce that ∅ ⊢ E1 : τ1.

Therefore, we can apply the induction hypothesis to E1, yielding the following subcases:

– E1 ↪→ E ′
1
. Since let x = □ in E2 is a valid reduction context, let x = E1 in E2 ↪→ let x =

E ′
1
in E2 by rule [Context].

– E1 ↪→ blame p. Since let x = □ in E2 is a valid reduction context, let x = E1 in E2 ↪→
blame p by rule [CtxBlame].

– E1 is a value. We immediately deduce that let x = E1 in E2 ↪→ E2{x B E1} by rule [Let].

• Case E⟨τ1 ⇒
p
τ2⟩. By inversion of the typing rule [Cast], we deduce that∅ ⊢ E : τ1. Therefore,

we can apply the induction hypothesis to E, yielding the following subcases:

– E ↪→ E ′
. Since □⟨τ1 ⇒

p
τ2⟩ is a valid reduction context, E⟨τ1 ⇒

p
τ2⟩ ↪→ E ′⟨τ1 ⇒

p
τ2⟩ by rule

[Context].

– E ↪→ blame p. Since □⟨τ1 ⇒
p
τ2⟩ is a valid reduction context, E⟨τ1 ⇒

p
τ2⟩ ↪→ blame p by

rule [CtxBlame].

– E is a value. In this case, we can apply Lemma B.79 to E⟨τ1 ⇒
p
τ2⟩ which yields the result

and concludes the proof.

□

Lemma B.81. If Γ, x : S ′ ⊢ E : S , then for every expression E ′ such that Γ ⊢ E ′
: S ′, we have

Γ ⊢ E{x B E ′} : S .

Proof. By induction on E.

• x . We have S = S ′ and the result follows from Γ ⊢ E ′
: S ′ since E{x B E ′} = E ′

.

• y. Immediate since E{x B E ′} = E.
• c . Immediate since E{x B E ′} = E.
• λτ1→τ2y. Ey . By inversion of the typing rules, we have τ1 → τ2 ≤ S , and Γ, x : S ′,y :

τ1 ⊢ Ey : τ2. Thus, by induction hypothesis, Γ,y : τ1 ⊢ Ey {x B E ′} : τ2. This implies

that Γ ⊢ λτ1→τ2y. (Ey {x B E ′}) : τ1 → τ2 by rule [Abstr], and the result follows since

E{x B E ′} = λτ1→τ2y. (Ey {x B E ′}).

• E1 E2. By hypothesis, we have Γ, x : S ′ ⊢ E1 : τ1 → S and Γ, x : S ′ ⊢ E2 : τ1. By induction

hypothesis, we deduce that Γ ⊢ E1{x B E ′} : τ1 → S and Γ ⊢ E2{x B E ′} : τ1. Therefore,

Γ ⊢ (E1{x B E ′})(E2{x B E ′}) : S by rule [App], hence the result.

• (E1, E2). By hypothesis, we have Γ, x : S ′ ⊢ E1 : τ1 and Γ, x : S ′ ⊢ E2 : τ2, where τ1 × τ2 ≤ S . By
induction hypothesis, we deduce that Γ ⊢ E1{x B E ′} : τ1 and Γ ⊢ E2{x B E ′} : τ2. Therefore,

Γ ⊢ (E1{x B E ′}, E2{x B E ′}) : τ1 × τ2 by rule [Pair], and the result follows.

• πi Ep . By hypothesis, we have Γ, x : S ′ ⊢ Ep : (τ1 × τ2), where τi ≤ S . By induction hypothesis,

we deduce that Γ ⊢ Ep {x B E ′} : (τ1 × τ2). Therefore, Γ ⊢ πi (Ep {x B E ′}) : τi by rule [Proj],

and the result follows.

• let y = E1 in E2. By hypothesis, we have Γ, x : S ′ ⊢ E1 : ∀®α .τ1 and Γ, x : S ′,y : ∀®α .τ1 ⊢ E2 : S .
Therefore, by induction hypothesis, we deduce Γ ⊢ E1{x B E ′} : ∀®α .τ1 and Γ,y : ∀®α .τ1 ⊢

E2{x B E ′} : S . This yields Γ ⊢ let y = E1{x B E ′} in E2{x B E ′} : S by rule [Let], hence

the result.

• Λ ®α . E. By hypothesis, Γ, x : S ′ ⊢ E : τ where ∀®α .τ ≤ S . By induction hypothesis, we deduce

Γ ⊢ E{x B E ′} : τ . Hence, rule [TAbstr] yields Γ ⊢ Λ ®α . E{x B E ′} : ∀®α .τ , hence the result.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:97

• E [®t]. By hypothesis, Γ, x : S ′ ⊢ E : ∀®α .τ , and τ { ®α B ®t} ≤ S . The induction hypothesis then

yields Γ ⊢ E{x B E ′} : ∀®α .τ . Applying rule [TApp] yields Γ ⊢ (E{x B E ′}) [®t] : τ { ®α B ®t},
hence the result.

• E⟨τ1 ⇒
p
τ2⟩. By hypothesis, Γ, x : S ′ ⊢ E : τ1, and τ2 ≤ S . The induction hypothesis then yields

Γ ⊢ E{x B E ′} : τ1. Applying rule [Cast] gives Γ ⊢ (E{x B E ′})⟨τ1 ⇒
p
τ2⟩ : τ2 and the result

follows.

□

Lemma B.82. If Γ ⊢ E : S and Γ ⊢ E[E] : S ′ then for every expression E ′ such that Γ ⊢ E ′
: S , we

have Γ ⊢ E[E ′] : S ′.

Proof. By complete induction over E.

• □. Immediate with S = S ′.
• Ef E. By hypothesis and inversion of rule [App], we have Γ ⊢ Ef : τ → S ′ and Γ ⊢ E[E] : τ .
By induction hypothesis, it holds that Γ ⊢ E[E ′] : τ . Therefore, by [App], Γ ⊢ Ef E[E

′] : S ′.
• E V . By hypothesis and inversion of rule [App], we have Γ ⊢ E[E] : τ → S ′ and Γ ⊢ V : τ . By
induction hypothesis, it holds that Γ ⊢ E[E ′] : τ → S ′. Therefore, by [App], Γ ⊢ E[E ′]V : S ′.

• E [®t]. By hypothesis and inversion of [TApp], we have Γ ⊢ E[E] : ∀®α .τ where τ { ®α B ®t} ≤ S ′.
By IH, it holds that Γ ⊢ E[E ′] : ∀®α .τ . Therefore, by rule [TApp], we have Γ ⊢ E[E ′] [®t] : τ { ®α B
®t} and the result follows by [Subsume].

• (El , E). By hypothesis and inversion of [Pair], we have Γ ⊢ El : τ1 and Γ ⊢ E[E] : τ2

where τ1 × τ2 ≤ S ′. By IH, we deduce Γ ⊢ E[E ′] : τ2. Therefore, it holds by rule [Pair] that

Γ ⊢ (El , E[E
′]) : τ1 × τ2 and the result follows by rule [Subsume].

• (E,V). By hypothesis and inversion of [Pair], we have Γ ⊢ E[E] : τ1 and Γ ⊢ V : τ2 where

τ1 × τ2 ≤ S ′. By IH, we deduce Γ ⊢ E[E ′] : τ1. Therefore, it holds by rule [Pair] that

Γ ⊢ (E[E ′],V) : τ1 × τ2 and the result follows by rule [Subsume].

• πi E. By hypothesis and inversion of [Proj], we have Γ ⊢ E[E] : τ1 × τ2 where τi ≤ S ′. By
IH, we deduce Γ ⊢ E[E ′] : τ1 × τ2 thus [Proj] yields that Γ ⊢ πi (E[E

′]) : τi , and the result

follows by subsumption.

• let x = E in El . By hypothesis and inversion of [Let], we have Γ ⊢ E[E] : ∀®α .τ and Γ, x :

∀®α .τ ⊢ El : S ′. By IH, we deduce Γ ⊢ E[E ′] : ∀®α .τ . Therefore, it holds by rule [Let] that

Γ ⊢ let x = E[E ′] in El : S ′.

• E⟨τ1 ⇒
p
τ2⟩. By hypothesis and inversion of [Cast], we have Γ ⊢ E[E] : τ1 and τ2 ≤ S ′. By IH,

it holds that Γ ⊢ E[E ′] : τ1. Therefore, by rule [Cast], we have Γ ⊢ E[E ′]⟨τ1 ⇒
p
τ2⟩ : τ2, and

the result follows by [Subsume].

□

Lemma B.83. If Γ ⊢ E : τ , then for every type substitution θ , Γθ ⊢ Eθ : τθ .

Proof. By induction on the derivation of Γ ⊢ E : τ and by case on the last rule applied.

• [Var]. We have Γ ⊢ x : ∀®α . τ and Γ(x) = ∀®α . τ . We deduce (Γθ)(x) = ∀®α . τθ . Since xθ = x , we
apply [Var] to deduce the result: Γθ ⊢ x : ∀®α . τθ .

• [Const]. Immediate since bcθ = bc .
• [Abstr], [App], [Pair], [Proj], [TAbstr], [TApp], [Let]. Direct application of the induction

hypothesis.

• [Subsume]. By Proposition B.32, τ ′ ≤ τ implies τ ′θ ≤ τθ for any static type substitution θ ,
and the result follows.

• [Cast]. By Proposition B.36, τ ′ ≼ τ implies τ ′θ ≼ τθ for any type substitution θ , and the

result follows.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:98 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

□

Lemma B.84 (Subject Reduction). For every terms E, E ′ and every context Γ, if Γ ⊢ E : S and
E ↪→ E ′ then Γ ⊢ E ′

: S .

Proof. By case disjunction over the rule used in the reduction E ↪→ E ′
.

• [ExpandL] V ⟨τ1 ⇒
p
τ2⟩ ↪→ V ⟨τ1 ⇒

p τ1/τ2
⟩⟨τ1/τ2

⇒
p
τ2⟩. By inversion of the typing rules,

τ2 ≤ S . By hypothesis of the reduction rule, τ2 ≼ τ1. By inversion of the typing rule [Cast],

we deduce that Γ ⊢ V : τ1 and p = ¯l . By Proposition B.52, we have τ2 ≼ τ1/τ2
≼ τ1.

Therefore, applying the typing rule [Cast] twice yields Γ ⊢ V ⟨τ1 ⇒
p τ1/τ2

⟩ : τ1/τ2
and then

Γ ⊢ V ⟨τ1 ⇒
p τ1/τ2

⟩⟨τ1/τ2
⇒
p
τ2⟩ : τ2. Since τ2 ≤ S , applying [Subsume] yields the result.

• [ExpandR]. V ⟨τ1 ⇒
p
τ2⟩ ↪→ V ⟨τ1 ⇒

p τ2/τ1
⟩⟨τ2/τ1

⇒
p
τ2⟩. By inversion of the typing rules,

τ2 ≤ S . By hypothesis of the reduction rule, τ1 ≼ τ2. By inversion of the typing rule [Cast],

we deduce that Γ ⊢ V : τ1 and p = l . By Proposition B.52, we have τ1 ≼ τ2/τ1
≼ τ2.

Therefore, applying the typing rule [Cast] twice yields Γ ⊢ V ⟨τ1 ⇒
p τ2/τ1

⟩ : τ2/τ1
and then

Γ ⊢ V ⟨τ1 ⇒
p τ2/τ1

⟩⟨τ2/τ1
⇒
p
τ2⟩ : τ2. Since τ2 ≤ S , applying [Subsume] yields the result.

• [CastId] V ⟨τ ⇒
p
τ ⟩ ↪→ V . By inversion of the typing rules, τ ≤ S . By inversion of the typing

rule [Cast], Γ ⊢ V : τ . Applying [Subsume] yields Γ ⊢ V : S .

• [Collapse]V ⟨τ1 ⇒
p
τ2⟩⟨τ

′
1
⇒
q
τ ′

2
⟩ ↪→ V . By inversion of the typing rules, τ ′

2
≤ S . Inversing the

typing rule [Cast] twice yields Γ ⊢ V : τ1. Since, by hypothesis of [Collapse], τ1 ≤ τ ′
2
≤ S ,

applying [Subsume] yields Γ ⊢ V : S .

• [UpSimpl] V ⟨τ1 ⇒
p
τ2⟩⟨τ

′
1
⇒
q
τ ′

2
⟩ ↪→ V ⟨τ1 ⇒

p
τ2⟩. By inversion of the typing rules, τ ′

2
≤ S .

Inversing the typing rule [Cast] yields Γ ⊢ V ⟨τ1 ⇒
p
τ2⟩ : τ2. By hypothesis of the reduction

rule, τ2 ≤ τ ′
2
≤ S . Therefore, applying [Subsume] yields Γ ⊢ V ⟨τ1 ⇒

p
τ2⟩ : S .

• [UnboxSimpl] V ⟨τ1 ⇒
p
τ2⟩ ↪→ V . By inversion of the typing rules, τ2 ≤ S . By Lemma B.78,

Γ ⊢ V : type(V). By hypothesis of [UnboxSimpl], type(V) ≤ τ2 ≤ S , thus applying [Subsume]
yields Γ ⊢ V : S .

• [CastApp] V ⟨τ ⇒
p
τ ′⟩V ′ ↪→ (V V ′⟨τ ′

1
⇒
p̄
τ1⟩)⟨τ2 ⇒

p
τ ′

2
⟩ where ⟨τ ⇒

p
τ ′⟩ ◦ type(V ′) = ⟨τ1 →

τ2 ⇒
p
τ ′

1
→ τ ′

2
⟩.

First of all, Lemma B.69 ensures that the casts ⟨τ ′
1
⇒
p̄
τ1⟩ and ⟨τ2 ⇒

p
τ ′

2
⟩ are well-formed and

respect the materialization conditions present in the typing rule [Cast]. Lemma B.71 then

ensures type(V ′) ≤ τ ′
1
, thus Γ ⊢ V ′⟨τ ′

1
⇒
p̄
τ1⟩ : τ1 by rule [Cast].

Inversing the typing rules yields Γ ⊢ V : τ and Lemma B.71 gives τ ≤ τ1 → τ2. Therefore

Γ ⊢ V : τ1 → τ2 by rule [Subsume], and Γ ⊢ V V ′⟨τ ′
1
⇒
p̄
τ1⟩ : τ2 by rule [App].

Finally, we obtain Γ ⊢ (V V ′⟨τ ′
1
⇒
p̄
τ1⟩)⟨τ2 ⇒

p
τ ′

2
⟩ : τ ′

2
by rule [Cast]. The last thing we

need to prove is τ ′
2
≤ S . By inversing the typing rules, and using Lemma B.78, we have

τ ′ ≤ type(V ′) → S . The result follows by applying Lemma B.71.

• [CastProj] πi (V ⟨τ ⇒
p
τ ′⟩) ↪→ (πi V)⟨τi ⇒

p
τ ′i ⟩ where πi (⟨τ ⇒

p
τ ′⟩) = ⟨τi ⇒

p
τ ′i ⟩. First of all,

Lemma B.73 ensures that the cast ⟨τi ⇒
p
τ ′i ⟩ is well-formed and respect the materialization

conditions present in the typing rule [Cast].

Now consider i = 1 (the case i = 2 is proved in the same way). Lemma B.75 then ensures

τ ≤ (τi × 1). And, by hypothesis and inversion of the typing rules, we know that Γ ⊢ V : τ .
Therefore, by rule [Subsume], we have Γ ⊢ V : τi × 1. Then, by rule [Proj], we deduce

Γ ⊢ π1 V : τi . Finally, the rule [Cast] allows us to conclude that Γ ⊢ (π1 V)⟨τi ⇒
p
τ ′i ⟩ : τ ′i .

Now, by hypothesis, we have Γ ⊢ π1 (V ⟨τ ⇒
p
τ ′⟩) : S . Thus, by inversion of the typing rules and

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:99

subsumption, we deduce Γ ⊢ V ⟨τ ⇒
p
τ ′⟩ : (S × 1). That is, by inversion of [Cast], τ ′ ≤ S × 1.

Now, the second part of Lemma B.75 yields τ ′i = min{τ0 | τ ′ ≤ τ0 × 1}. From this, we can

deduce τ ′i ≤ S , and we conclude that Γ ⊢ (π1 V)⟨τi ⇒
p
τ ′i ⟩ : S by subsumption.

• [SimplApp] V ⟨τ ⇒
p
τ ′⟩V ′ ↪→ V V ′

. By inversion of the typing rules, and using Lemma B.78,

we have τ ′ ≤ type(V ′) → S . By hypothesis of the reduction rule, we also have τ /τ ′ = τ .
Applying Corollary B.56 therefore yields τ ≤ type(V ′) → S . Since Γ ⊢ V : τ by inversion

of the typing rules, we deduce that Γ ⊢ V : type(V ′) → S by rule [Subsume]. We can then

conclude by applying rule [App].

• [SimplProj] πi (V ⟨τ ⇒
p
τ ′⟩) ↪→ πi V . By inversion of the typing rules, we have τ ′ ≤ τ1 ×

τ2 where τi ≤ S . By hypothesis of the reduction rule, we also have τ /τ ′ = τ . Applying
Corollary B.56 therefore yields τ ≤ τ1 × τ2. Since Γ ⊢ V : τ by inversion of the typing rules,

we deduce that Γ ⊢ V : τ1 × τ2 by rule [Subsume]. We can then conclude by applying rule

[Proj] and [Subsume].

• [App] (λτ1→τ2x . E)V ↪→ E{x B V }. By inversion of the typing rules, we have Γ ⊢ V : τ1,

τ2 ≤ S , as well as Γ, x : τ1 ⊢ E : τ2. Lemma B.81 immediately yields that Γ ⊢ E{x B V } : τ2,

and the result follows by [Subsume].

• [Proj] πi (V1,V2) ↪→ Vi . By inversion of the typing rules, we have Γ ⊢ (V1,V2) : τ1 × τ2 and

τi ≤ S . Inversing the typing rules a second time yields Γ ⊢ V1 : τ1 and Γ ⊢ V2 : τ2, therefore,

by [Subsume] we obtain Γ ⊢ Vi : S .
• [TypeApp] (Λ ®α . E) [®t] ↪→ E{ ®α B ®t}. We have, by hypothesis, Γ ⊢ Λ ®α . E : ∀®α .τ where

Γ ⊢ E : τ and τ { ®α B ®t} ≤ S . Applying Lemma B.83 yields Γ{ ®α B ®t} ⊢ E{ ®α B ®t} : τ { ®α B ®t}.
However, by hypothesis of the typing rules, ®α ♯ Γ. Therefore, Γ{ ®α B ®t} = Γ, and we have

Γ ⊢ E{ ®α B ®t} : τ { ®α B ®t}, which is the result.

• [Let] let x = V in E ↪→ E{x B V }. By hypothesis, we have Γ ⊢ V : ∀®α .τ , and Γ, x : ∀®α .τ ⊢

E : τ ′ where τ ′ ≤ S . Lemma B.81 immediately yields that Γ ⊢ E{x B V } : τ ′, and the result

follows by [Subsume].

• [Context] E[E] ↪→ E[E ′] where E ↪→ E ′
. Immediate by Lemma B.82.

□

Theorem B.85 (Soundness). For every term E such that∅ ⊢ E : S , one of the following cases holds:
• there exists a value V such that E ↪→∗ V
• there exists a label p such that E ↪→∗ blame p
• E diverges

Proof. Immediate corollary of Lemma B.84 and Lemma B.80. □

Theorem B.86 (Blame Safety). For every term E such that ∅ ⊢ E : S , and every blame label l ,
E ↪̸→∗ blame ¯l .

Proof. Given Lemma B.84, and by induction over E, it is sufficient to prove the result for

reductions of length one. The proof is then done by case disjunction over the reduction rules that

can produce a blame.

• [Blame] V ⟨τ1 ⇒
p
τ2⟩⟨τ

′
1
⇒
q
τ ′

2
⟩ ↪→ blame q. By hypothesis of the reduction rule, τ ′

1
≼ τ ′

2
.

Thus, by inversion of the typing rule [Cast], q is a positive label.

• [UpBlame] V ⟨τ1 ⇒
p
τ2⟩⟨τ

′
1
⇒
q
τ ′

2
⟩ ↪→ blame q. By hypothesis of the reduction rule, τ ′

1
≼ τ ′

2
.

Thus, by inversion of the typing rule [Cast], q is a positive label.

• [UnboxBlame] V ⟨τ1 ⇒
p
τ2⟩ ↪→ blame p. By hypothesis of the reduction rule, τ1 ≼ τ2. Thus,

by inversion of the typing rule [Cast], p is a positive label.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:100 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

• [FailApp] V ⟨τ ⇒
p
τ ′⟩V ′ ↪→ blame p. By hypothesis of the reduction rule, the two possible

cases are τ
′
/τ = τ and τ /τ ′ = τ ′. Moreover, by inversion of the typing rules, τ ′ ≤ 0 → 1.

Thus, by contradiction, if τ /τ ′ = τ ′, then ⟨τ ⇒
p
τ ′⟩◦type(V ′)would be well-defined according

to Lemma B.70. Therefore, we necessarily have τ
′
/τ = τ , and by inversion of the typing rule

[Cast], p is a positive label.

• [FailProj] πi (V ⟨τ ⇒
p
τ ′⟩) ↪→ blame p. By hypothesis of the reduction rule, the two possible

cases are τ
′
/τ = τ and τ /τ ′ = τ ′. Moreover, by inversion of the typing rules, τ ′ ≤ 1 → 1.

Thus, by contradiction, if τ /τ ′ = τ ′, then πi (⟨τ ⇒
p
τ ′⟩) would be well-defined according to

Lemma B.74. Therefore, we necessarily have τ
′
/τ = τ , and by inversion of the typing rule

[Cast], p is a positive label.

• [CtxBlame] E[E] ↪→ blame p. Immediate by induction.

□

Theorem B.87 (Conservativity). For every term E such that ∅ ⊢
Sub

E : τ , E ↪→
Sub

E ′ ⇐⇒

E ↪→
Set

E ′ and E ↪→
Sub

blame p ⇐⇒ E ↪→
Set

blame p.

Proof. By cases over the rule used in the reduction of E, and induction on E.

(1) First implication, (Sub) =⇒ (Set).

• [ExpandL] V ⟨τ ⇒
p
?⟩ ↪→

Sub
V ⟨τ ⇒

p τ /?⟩⟨τ /? ⇒
p
?⟩. By hypothesis of the reduction rule,

τ /? , τ , and τ , ?. Therefore, τ /? , ? (since only ?/? = ?). Thus, the rule [ExpandL] can

be applied in Set to yield V ⟨τ ⇒
p
?⟩ ↪→

Set
V ⟨τ ⇒

p τ /?⟩⟨τ /? ⇒
p
?⟩.

• [ExpandR] V ⟨? ⇒
p
τ ⟩ ↪→

Sub
V ⟨? ⇒

p τ /?⟩⟨τ /? ⇒
p
τ ⟩. By hypothesis of the reduction rule,

τ /? , τ , and τ , ?. Therefore, τ /? , ? for the same reason as before. Thus, rule [ExpandR]

can be applied in Set to yield V ⟨? ⇒
p
τ ⟩ ↪→

Sub
V ⟨? ⇒

p τ /?⟩⟨τ /? ⇒
p
τ ⟩.

• [CastId] V ⟨τ ⇒
p
τ ⟩ ↪→

Sub
V . Immediate since [CastId] is unchanged in Set.

• [Collapse] V ⟨ρ ⇒
p
?⟩⟨? ⇒

q
ρ ′⟩ ↪→

Sub
V . By hypothesis, ρ ≤ ρ ′. Moreover, by definition of

ground types, we have ρ/? = ρ and ρ ′/? = ρ ′. All the hypothesis of rule [Collapse] in

Set are therefore valid, and the rule can be applied to deduce V ⟨ρ ⇒
p
?⟩⟨? ⇒

q
ρ ′⟩ ↪→

Set
V .

• [Blame]V ⟨ρ ⇒
p
?⟩⟨? ⇒

q
ρ ′⟩ ↪→

Sub
blame q. We have the same hypothesis as before except

ρ ≰ ρ ′. Therefore, we can apply rule [Blame] in Set to deduce V ⟨ρ ⇒
p
?⟩⟨? ⇒

q
ρ ′⟩ ↪→

Set

blame q.

• [CastApp]V ⟨τ1 → τ2 ⇒
p
τ ′

1
→ τ ′

2
⟩V ′ ↪→

Sub
V (V ′⟨τ ′

1
⇒
p̄
τ1⟩)⟨τ2 ⇒

p
τ ′

2
⟩. We pose τ = τ1 → τ2

and τ ′ = τ ′
1
→ τ ′

2
. τ and τ ′ are trivially in disjunctive normal form, and both are not empty

(since an arrow cannot be empty). Thus, the cast ⟨τ ⇒
p
τ ′⟩◦type(V ′) is well-defined (satisfies

the conditions of Definition B.68). Moreover, by hypothesis, we know that either τ ≼ τ ′ or
τ ′ ≼ τ . By definition of the grounding operator, we then either have τ

′
/τ = τ or τ /τ ′ = τ ′.

Thus, all the hypothesis of the rule [CastApp] in Set are valid.

Finally, by inversion of the typing rule [App], we deduce that type(V ′) ≤ τ ′
1
. A simple

application of Definition B.68 (case were I and Pi are singletons) shows that ⟨τ ⇒
p
τ ′⟩ ◦

type(V ′) = ⟨τ ⇒
p
τ ′⟩, hence the result.

• [App] (λτ1→τ2x . E)V ↪→
Sub

E{x B V }. Immediate since [App] is unchanged in Set.

• [ProjCast] πi (V ⟨τ1 × τ2 ⇒
p
τ ′

1
× τ ′

2
⟩) ↪→

Sub
(πi V)⟨τi ⇒

p
τ ′i ⟩. Let τ = τ1 × τ2 and τ

′ = τ ′
1
× τ ′

2
.

τ and τ ′ are trivially in disjunctive normal form, and both are not empty (since a product

cannot be empty in Sub, as both sides cannot be empty). Thus, the cast πi (⟨τ ⇒
p
τ ′⟩) is

well-defined as it satisfies all the conditions of Definition B.72. Moreover, by hypothesis

(inversion of typing rule [Cast]), we know that either τ ≼ τ ′ or τ ′ ≼ τ . By definition of

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:101

the grounding operator, this yields that either τ
′
/τ = τ or τ /τ ′ = τ ′ respectively. Thus, all

the hypothesis of [CastProj] in Set are verified.

Finally, a simple application of Definition B.72 (case were I and Pi are singletons, and

Ni = ∅) shows that πi (⟨τ ⇒
p
τ ′⟩) = ⟨τi ⇒

p
τ ′i ⟩, hence the result.

• [Proj] πi (V1,V2) ↪→Sub
Vi . Immediate since [Proj] is unchanged in Set.

• [TypeApp] (Λ ®α . E) [®t] ↪→
Sub

E{ ®α B ®t}. Immediate since [TypeApp] is unchanged in Set.

• [Let] let x = V in E ↪→
Sub

E{x B V }. Immediate since [Let] is unchanged in Set.

• [Context] E[E] ↪→
Sub

E[E ′] where E ↪→
Sub

E ′
. By induction hypothesis, E ↪→

Set
E ′
. Thus,

by rule [Context] in the Set system, E[E] ↪→
Set

E[E ′].

• [CtxBlame] E[E] ↪→
Sub

blame p where E ↪→
Sub

blame p. By induction hypothesis,

E ↪→
Set

blame p. Thus, by rule [CtxBlame] in the Set system, E[E] ↪→
Set

blame p.
(2) Second implication, (Set) =⇒ (Sub). We omit the trivial cases where the same rule is present

in both systems.

• [ExpandL]V ⟨τ1 ⇒
p
τ2⟩ ↪→ V ⟨τ1 ⇒

p τ1/τ2
⟩⟨τ1/τ2

⇒
p
τ2⟩. By hypothesis of the reduction rule,

τ2 ≼ τ1 and
τ1/τ2

, τ2. Therefore, by Lemma B.53, we deduce that τ2 = ?. Since τ1/τ2
, τ2,

we have τ1 , ?, and by hypothesis of [ExpandL] τ1/τ2
, τ1 therefore all the conditions of

[ExpandL] in Sub are verified, and the result follows.

• [ExpandR]V ⟨τ1 ⇒
p
τ2⟩ ↪→ V ⟨τ1 ⇒

p τ2/τ1
⟩⟨τ2/τ1

⇒
p
τ2⟩. By hypothesis of the reduction rule,

τ1 ≼ τ2 and
τ2/τ1

, τ1. Therefore, by Lemma B.53, we deduce that τ1 = ?. Since τ2/τ1
, τ1,

we have τ2 , ?, and by hypothesis of [ExpandR] τ2/τ1
, τ2 therefore all the conditions of

[ExpandR] in Sub are verified, and the result follows.

• [Collapse] V ⟨τ1 ⇒
p
τ2⟩⟨τ

′
1
⇒
q
τ ′

2
⟩ ↪→ V . By hypothesis of the reduction rule, τ

′
2/τ ′

1

= τ ′
2

and τ ′
2
, τ ′

1
(by precedence of [CastId]). Thus, by Lemma B.54, we have τ ′

1
= ?. By typing

hypothesis, we also have τ2 ≤ τ ′
1
. By definition of subtyping on non-set-theoretic types,

we deduce τ2 = ?. And by hypothesis of the reduction rule, we finally have τ1 ≤ τ ′
2
and

τ1/τ2
= τ1 (the case

τ2/τ1
= τ1 being only possible if τ2 = τ1 = ?). Thus, all the conditions

for the rule [Collapse] in Sub are verified, and the result follows.

• [Blame] V ⟨τ1 ⇒
p
τ2⟩⟨τ

′
1
⇒
q
τ ′

2
⟩ ↪→ blame q. Same reasoning as before, except this time

τ1 ≰ τ ′
2
which allows us to apply rule [Blame] in Sub.

• [UpSimpl] V ⟨τ1 ⇒
p
τ2⟩⟨τ

′
1
⇒
q
τ ′

2
⟩ ↪→ V ⟨τ1 ⇒

p
τ2⟩. By hypothesis, τ

′
2/τ ′

1

= τ ′
2
and τ ′

1
, τ ′

2
. By

Lemma B.54, τ ′
1
= ?. Moreover, by typing hypothesis, τ2 ≤ τ ′

1
thus τ2 = ? by definition

of subtyping. By hypothesis, τ1/τ2
= τ2 but since τ2 = ?, we necessarily have τ1 = ? by

Definition B.51. Thus, we have a contradiction since τ1 , τ2 by hypothesis, and this rule

cannot be applied.

• [UpBlame] V ⟨τ1 ⇒
p
τ2⟩⟨τ

′
1
⇒
q
τ ′

2
⟩ ↪→ blame q. Same reasoning as before, this rule cannot

be applied.

• [UnboxSimpl] V ⟨τ1 ⇒
p
τ2⟩ ↪→ V . By hypothesis, τ2/τ1

= τ2 and τ1 , τ2. Applying

Lemma B.54 yields τ1 = ?. However, by hypothesis, ∅ ⊢ V : τ1. A simple case disjunction

on V shows that this cannot hold, thus we have a contradiction and this rule cannot be

applied.

• [UnboxBlame] V ⟨τ1 ⇒
p
τ2⟩ ↪→ blame p. Same reasoning as before, this rule cannot be

applied.

• [CastApp]V ⟨τ ⇒
p
τ ′⟩V ′ ↪→ (V V ′⟨τ ′

1
⇒
p̄
τ1⟩)⟨τ2 ⇒

p
τ ′

2
⟩ where ⟨τ ⇒

p
τ ′⟩ ◦ type(V ′) = ⟨τ1 →

τ2 ⇒
p
τ ′

1
→ τ ′

2
⟩. By hypothesis and inversion of rule [App], τ ′ ≤ 0 → 1. Since τ ′ does not

contain connectives, τ ′ = σ ′
1
→ σ ′

2
for someσ ′

1
,σ ′

2
. Moreover, by hypothesis of the reduction

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:102 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

we either have τ /τ ′ = τ ′ or τ
′
/τ = τ , thus necessarily τ = σ1 → σ2 for some σ1,σ2 by Defi-

nition B.51. Moreover, by hypothesis, we have type(V ′) ≤ σ ′
1
. A simple application of Defini-

tion B.68 then yields ⟨τ ⇒
p
τ ′⟩ ◦ type(V ′) = ⟨σ1 → σ2 ⇒

p
σ ′

1
→ σ ′

2
⟩ = ⟨τ1 → τ2 ⇒

p
τ ′

1
→ τ ′

2
⟩.

Applying rule [App] in Sub yields V ⟨τ ⇒
p
τ ′⟩V ′ ↪→ (V V ′⟨σ ′

1
⇒
p̄
σ1⟩)⟨σ2 ⇒

p
σ ′

2
⟩, hence the

result.

• [CastProj] πi (V ⟨τ ⇒
p
τ ′⟩) ↪→ (πi V)⟨τi ⇒

p
τ ′i ⟩ where ⟨τi ⇒

p
τ ′i ⟩ = πi (⟨τ ⇒

p
τ ′⟩). Same

reasoning with product types and Definition B.72.

• [FailApp] V ⟨τ ⇒
p
τ ′⟩V ′ ↪→ blame p. Using the same reasoning as for [CastApp], we

deduce τ = τ1 → τ2 and τ
′ = τ ′

1
→ τ ′

2
. In particular, both τ and τ ′ are trivially in disjunctive

normal form and are non-empty, and thus verify all the conditions of Definition B.68.

Therefore, this rule cannot be applied.

• [FailProj] πi (V ⟨τ ⇒
p
τ ′⟩) ↪→ blame p. Same reasoning as before but with product types.

This rule cannot be applied.

• [SimplApp] V ⟨τ ⇒
p
τ ′⟩V ′ ↪→ V V ′

. By hypothesis, τ /τ ′ = τ , and τ , τ ′. Therefore, by
Lemma B.54, we have τ ′ = ?. But ? ≰ τ1 → τ2 for every τ1 and τ2, therefore the reducee

cannot be well-typed, and this rule cannot be applied.

• [SimplProj] πi (V ⟨τ ⇒
p
τ ′⟩) ↪→ πi V . Same reasoning as before, this rule cannot be applied.

□

B.9 Type Inference with Set-Theoretic Types
Lemma B.88 (Stability of typing under type substitution). If Γ ⊢ e { E : τ , then, for every

static type substitution θ , we have Γθ ⊢ eθ { Eθ : τθ .

Proof. By induction on the derivation of Γ ⊢ e { E : τ and by case on the last rule applied.

Case: [Var]

Γ ⊢ x { x [®t] : τ { ®α B ®t} Given

Γ(x) = ∀®α . τ Given

(Γθ)(x) = ∀®α . τθ since, by α-renaming, ®α ♯ θ

(1) Γθ ⊢ x { x [®tθ] : τθ { ®α B ®tθ } by [Var], since the ®tθ are all static

(2) τθ { ®α B ®tθ } = τ { ®α B ®t}θ since ®α ♯ θ , ∀α ∈ var(τ). αθ { ®α B ®tθ } = α { ®α B ®t}θ

Γθ ⊢ x { x [®t]θ : τ { ®α B ®t}θ by (1) and (2)

Case: [Const]

Straightforward, since bcθ = bc .
Case: [Abstr], [AAbstr], [App], [Pair], [Proj]

Direct application of the induction hypothesis. For [Abstr], note that tθ is always static.

Case: [Subsume]

By Proposition B.32, τ ′ ≤ τ implies τ ′θ ≤ τθ for any static type substitution θ .
Case: [Materialize]

By Proposition B.36, τ ′ ≼ τ implies τ ′θ ≼ τθ for any type substitution θ .
Case: [Let]

Γ ⊢ (let ®α x = e1 in e2) { (let x = Λ ®α, ®β . E1 in E2) : τ Given

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:103

By inversion of [Let]:

(1) Γ ⊢ e1 { E1 : τ1

(2) Γ, x : ∀®α, ®β . τ1 ⊢ e2 { E2 : τ

(3) ®α, ®β ♯ Γ and
®β ♯ e1

Let ®α1 and
®β1 be vectors of distinct variables chosen outside var(Γ), var(e1), dom(θ), and

var(θ). Let ρ = { ®α B ®α1} ∪ { ®β B ®β1}.

Γρ ⊢ e1ρ { E1ρ : τ1ρ by IH from (1), since ρ is static

(4) Γ ⊢ e1{ ®α B ®α1} { E1ρ : τ1ρ by (3)

(5) Γθ ⊢ e1{ ®α B ®α1}θ { E1ρθ : τ1ρθ by IH from (4)

(6) Γθ, x : (∀®α, ®β . τ1)θ ⊢ e2θ { E2θ : τθ by IH from (2)

(7) Γθ, x : (∀®α1, ®β1. τ1ρ)θ ⊢ e2θ { E2θ : τθ by α-renaming from (6)

(8) Γθ, x : (∀®α1, ®β1. τ1ρθ) ⊢ e2θ { E2θ : τθ from (7) since ®α1, ®β1 ♯ θ

Γθ ⊢ (let ®α1 x = e1{ ®α B ®α1}θ in e2θ) {

(let x = Λ ®α1, ®β1. E1ρθ in E2θ) : τθ by [Let] from (5) and (8)

This concludes the proof because let ®α1 x = e1{ ®α B ®α1}θ in e2θ and (let ®α x = e1 in e2)θ are

equivalent by α-renaming, as are let x = Λ ®α1, ®β1. E1ρθ in E2θ and (let x = Λ ®α, ®β . E1 in E2)θ .
□

Given two type schemes S1 and S2, we write S1 ≤ S2 when the schemes have the same quantified

variables and their types are in the subtyping relation: that is, ∀®α . τ1 ≤ ∀®α . τ2 if and only if τ1 ≤ τ2.

We write Γ1 ≤ Γ2 when dom(Γ1) = dom(Γ2) and, for all x ∈ dom(Γ1), Γ1(x) ≤ Γ2(x).

Lemma B.89 (Weakening). If Γ2 ⊢ e { E : τ and Γ1 ≤ Γ2, then Γ1 ⊢ e { E : τ .

Proof. By induction on the derivation of Γ2 ⊢ e { E : τ and by case on the last rule applied.

• [Var]: we have Γ2 ⊢ x { x [®t] : τ { ®α B ®t}, where Γ2(x) = ∀®α . τ . By definition of Γ1 ≤ Γ2,

we have Γ1(x) ≤ Γ2(x), therefore Γ1(x) = ∀®α . τ ′ and τ ′ ≤ τ . By [Var] we derive Γ1 ⊢ x {
x [®t] : τ ′{ ®α B ®t}; then by [Subsume] we derive Γ1 ⊢ x { x [®t] : τ { ®α B ®t} since τ ′{ ®α B ®t} ≤
τ { ®α B ®t} (by Proposition B.32, subtyping is preserved by static type substitutions).

• [Const]: straightforward.

• [Abstr], [AAbstr], [App], [Pair], [Proj], [Subsume], [Materialize]: we conclude by direct

application of the induction hypothesis. For [Abstr] and [AAbstr], note that Γ1 ≤ Γ2 implies

(Γ1, x : τ) ≤ (Γ2, x : τ) for every τ .

• [Let]: we have derived Γ2 ⊢ (let ®α x = e1 in e2) { (let x = Λ ®α, ®β . E1 in E2) : τ from the

premises

Γ2 ⊢ e1 { E1 : τ1 Γ2, x : ∀®α, ®β . τ1 ⊢ e2 { E2 : τ ®α, ®β ♯ Γ2 and
®β ♯ e1 .

Let ®α1 and
®β1 be vectors of variables chosen outside var(Γ1) and var(e1). Let ρ = { ®α B

®α1} ∪ { ®β B ®β1}. Since ρ is a static type substitution, we can apply Lemma B.88 to derive

Γ2ρ ⊢ e1ρ { E1ρ : τ1ρ, which is Γ2 ⊢ e1ρ { E1ρ : τ1ρ because the ®α and
®β variables do not

occur in Γ2.

By induction, we derive Γ1 ⊢ e1ρ { E1ρ : τ1ρ and Γ1, x : ∀®α, ®β . τ1 ⊢ e2 { E2 : τ . By α-

renaming, ∀®α, ®β . τ1 is equivalent to ∀®α1, ®β1. τ1ρ. Note that the ®β1 variables do not occur in

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:104 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

e1ρ, because they do not occur in e1 and they are introduced by ρ only on variables which

themselves do not occur in e1. Therefore, we have

Γ1 ⊢ e1ρ { E1ρ : τ1ρ Γ1, x : ∀®α1, ®β1. τ1ρ ⊢ e2 { E2 : τ ®α1, ®β1 ♯ Γ1 and
®β1 ♯ e1ρ

from which we derive Γ1 ⊢ (let ®α1 x = e1ρ in e2) { (let x = Λ ®α1, ®β1. E1ρ in E2) : τ , which
is the result we need since, by α-renaming, let ®α x = e1 in e2 and let ®α1 x = e1ρ in e2 are

equivalent, as are (let x = Λ ®α, ®β . E1 in E2) and (let x = Λ ®α1, ®β1. E1ρ in E2). □

We assume that there exists a function tally(·)(·) such that, when t1 Û≤ t2
is a set of constraints

of the form t1 Û≤ t2
and ∆ is a finite subset of Vα

, tally∆(t1 Û≤ t2) is a finite (possibly empty) set of

type substitutions mapping both α and X variables to type frames.

When θ ∈ tally∆(t1 Û≤ t2), we have:

• for every (t1 Û≤ t2) ∈ t1 Û≤ t2
, t1θ ≤T t2θ ;

• dom(θ) ⊆ var(t1 Û≤ t2) \ ∆.

Tallying generates some fresh variables, so var(θ) ⊈ var(t1 Û≤ t2). We can assume that the

variables in var(θ) \ var(t1 Û≤ t2
are drawn from any given set of fresh variables (e.g., we can assume

that they are disjoint from ∆).
Tallying also has a completeness property. We omit it because the type constraint solving

algorithm we build using it is incomplete anyway.

We define an algorithm based on tallying that also handles equality constraints between type

frames and variables, of the form (T Û= α). We are only interested in using this when the equality

constraints are those we will generate from materialization constraints. Therefore, we give an

algorithm tailored to this situation, which fails unless certain conditions are satisfied. In practice,

these conditions should never occur when solving the constraints we generate in our system.

However, we do not prove this: proving would only be needed to show completeness of the solving

algorithm, but completeness does not hold for the algorithm anyway.

We define as follows the algorithm tally Û=
∆({ (t

1

i Û≤ t2

i) | i ∈ I } ∪ { (Tj Û≤ α j) | j ∈ J }):

(1) If any of the following conditions holds, return ∅:

• there exist j1 and j2 in J such that α j1 = α j2 and Tj1 , Tj2 ;
• there exist j1 and j2 in J such that α j1 ∈ var(Tj2);
• there exists j ∈ J such that α j ∈ ∆.

(2) Compute Θ = tally∆({ (t
1

i {α j B Tj }j ∈J Û≤ t2

i {α j B Tj }j ∈J) | i ∈ I }).
(3) Return { θ0 ∪ {α j B Tjθ0}j ∈J | θ0 ∈ Θ }.

As anticipated, in step (1) the algorithm fails if some conditions are met. These never occur in the

way we use the algorithm, because α in a constraint (τ Û≼ α) (which will become (T Û= α)) is always
chosen fresh. We do not prove this because it would only be needed for a proof of completeness of

solve, which fails for the difficulties in dealing with recursive types.

In step (3), the union of the two substitutions is well-defined because θ0 is not defined on the α j ,
since they do not appear in the constraints given to tally.

The algorithm satisfies the following property.

Proposition B.90.

∀θ ∈ tally Û=
∆

(
t1 Û≤ t2 ∪T Û= α

)
.

∀(t1 Û≤ t2) ∈ t1 Û≤ t2. t1θ ≤T t2θ

∀(T Û= α) ∈ T Û= α . Tθ = αθ

dom(θ) ⊆ var
(
t1 Û≤ t2 ∪T Û= α

)
\ ∆

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:105

Proof. Let θ ∈ tally Û=
∆

(
t1 Û≤ t2 ∪T Û= α

)
, with

t1 Û≤ t2 = { (t1

i Û≤ t2

i) | i ∈ I } T Û= α = { (Tj Û= α j) | j ∈ J }

By definition of tally Û=
, we have:

θ0 ∈ tally∆
({

(t1

i {α j B Tj }j ∈J Û≤ t2

i {α j B Tj }j ∈J)
�� i ∈ I

})
θ = θ0 ∪ {α j B Tjθ0}j ∈J

Let i ∈ I . We must show t1

i θ ≤T t2

i θ .
By the properties of tallying, t1

i {α j B Tj }j ∈Jθ0 ≤T t2

i {α j B Tj }j ∈Jθ0. We have

t1

i {α j B Tj }j ∈Jθ0 = t1

i θ t2

i {α j B Tj }j ∈Jθ0 = t2

i θ

and therefore t1

i θ ≤T t2

i θ .
Let j ∈ J . We must show Tjθ = α jθ . We have α jθ = Tjθ0. We also have Tjθ = Tjθ0 because

var(Tj) ∩ { α j | j ∈ J } = ∅ (this is checked in step (1) of the algorithm).

Finally, by the properties of tallying,

dom(θ0) ⊆ var
({

(t1

i {α j B Tj }j ∈J Û≤ t2

i {α j B Tj }j ∈J)
�� i ∈ I

})
\ ∆

and, as a consequence,

dom(θ) ⊆ dom(θ0) ∪ { α j | j ∈ J } ⊆ var
(
t1 Û≤ t2 ∪T Û= α

)
\ ∆ . □

Constraint solving is then defined as shown in the main text.

Proposition B.91. If θ ∈ solve∆(D), then θ ⊩∆ D and dom(θ) ⊆ var(D).

Proof. Let

D = { (t1

i Û≤ t2

i) | i ∈ I } ∪ { (τj Û≼ α j) | j ∈ J } ∪ { (αk Û≼ αk) | k ∈ K }

(where we assume, for all j ∈ J , that τj , α j).
Let θ ∈ solve∆(D). Then, by definition of solve, we have the following:

θ = (θ0θ
′
0
)† |Vα θ0 ∈ tally Û=

∆({ (t
1

i Û≤ t2

i) | i ∈ I } ∪T Û= α) θ ′
0
= { ®X B ®α ′} ∪ { ®α B ®X }

T Û= α = { (Tj Û= α j) | j ∈ J } ∀j ∈ J .T †
j = τj

A = var Û≼(D)θ0 ∪
⋃

i ∈I (var
±(t1

i θ0) ∪ var±(t2

i θ0))

®X = VX ∩A ®α = var(D) \ (∆ ∪ dom(θ0) ∪A) ®α ′
and ®X fresh

We must show the following results:

∀i ∈ I . t1

i θ ≤ t2

i θ ∀j ∈ J . τjθ ≼ α jθ

static(θ ,
⋃

j ∈J var(τj) ∪ { α j | j ∈ J }) dom(θ) ⊆ var(D) \ ∆

To show ∀i ∈ I . t1

i θ ≤ t2

i θ , consider an arbitrary i ∈ I . By Proposition B.90, we have t1

i θ0 ≤T t2

i θ0.

Then, by Proposition B.6, we have t1

i θ0θ
′
0
≤T t2

i θ0θ
′
0
. We show that t1

i θ0θ
′
0
and t2

i θ0θ
′
0
are polarized,

which implies that (t1

i θ0θ
′
0
)† ≤ (t2

i θ0θ
′
0
)† since every polarized type frameT is such thatT ∈ ⋆pol(T †).

Consider an arbitrary j ∈ {1, 2}: we must show var+X (t
j
i θ0θ

′
0
) ∩ var−X (t

j
i θ0θ

′
0
) = ∅. By contradiction,

assume X ∈ var+X (t
j
i θ0θ

′
0
) ∩ var−X (t

j
i θ0θ

′
0
). Since the variables in ®α ′

and ®X ′
are all distinct, θ ′

0
does

not map different variables to the same variable. Moreover, note that var(θ ′
0
) ♯ var(t ji). Therefore,

there are two cases:

• X ∈ var+X (t
j
i θ0) ∩ var−X (t

j
i θ0) and X < dom(θ ′

0
);

• there exists an A ∈ var+(t ji θ0) ∩ var−(t ji θ0) such that Aθ ′
0
= X .

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:106 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

In the first case, the first condition impliesX ∈ A: but thenX < dom(θ ′
0
) is impossible. In the second

case, we would have A ∈ A: therefore, Aθ ′
0
= X is impossible. Finally, (t1

i θ0θ
′
0
)† ≤ (t2

i θ0θ
′
0
)† implies

t1

i θ Û≤ t2

i θ because var(t1

i) ∪ var(t2

i) ⊆ Vα
.

To show ∀j ∈ J . τjθ ≼ α jθ , consider an arbitrary j ∈ J . By Proposition B.90, we haveTjθ0 = α jθ0.

Moreover,

τjθ = (τjθ0θ
′
0
)† = (T †

j θ0θ
′
0
)† α jθ = (α jθ0θ

′
0
)† = (Tjθ0θ

′
0
)†

We have θ jθ ≼ α jθ because, for every α ∈ varα (Tj), (α†θ0θ
′
0
)† = (αθ0θ

′
0
)†.

To show dom(θ) ⊆ var(D) \ ∆, consider α < var(D) \ ∆: we show αθ = α . (Note that, trivially,
Xθ = X for every X .) By Proposition B.90, we have

dom(θ0) ⊆ var
(
{ (t1

i Û≤ t2

i) | i ∈ I } ∪T Û= α
)
\ ∆

Since varα
(
{ (t1

i Û≤ t2

i) | i ∈ I } ∪ T Û= α
)
⊆ var(D), we have αθ0 = α . Then, αθ ′

0
= α since

dom(θ ′
0
) ∩ Vα ⊆ var(D).

Finally, to show static(θ,
⋃

j ∈J var(τj)∪{ α j | j ∈ J }), consider an arbitrary α ∈
⋃

j ∈J var(τj)∪{ α j |
j ∈ J }: we show that αθ is static, that is, that varX (αθ0θ

′
0
) = ∅. Note that α ∈ var Û≼(D). We

have var(αθ0) ⊆ var Û≼(D)θ0 and var(αθ0θ
′
0
) =

⋃
A∈var(αθ0)

var(Aθ ′
0
). Therefore, if there existed

X ∈ var(αθ0θ
′
0
), there should exist A ∈ var(αθ0) such that X ∈ var(Aθ ′

0
). By definition of θ ′

0
, we

would need A ∈ ®α or A ∈ VX \ dom(θ ′
0
): but ®α is disjoint from var Û≼(D)θ0, andV

X ∩ var Û≼(D)θ0 ⊆

dom(θ ′
0
). □

Lemma B.92. Let D be a derivation of Γ;∆ ⊢ ⟨⟨e : t⟩⟩ { D. Then:

• if e = x , then Γ(x) = ∀®α . τ and D = {(τ { ®α B ®β} Û≼ α), (α Û≤ t)} (for some τ , α , ®α , ®β);
• if e = c , then D = {bc Û≤ t};
• if e = λx . e ′, then D contains a sub-derivation of (Γ, x : α1);∆ ⊢ ⟨⟨e ′ : α2⟩⟩ { D ′, and D =
D ′ ∪ {(α1

Û≼ α1), (α1 → α2
Û≤ t)};

• if e = λx : τ . e ′, then D contains a sub-derivation of (Γ, x : τ);∆ ⊢ ⟨⟨e ′ : α2⟩⟩ { D ′, and
D = D ′ ∪ {(τ Û≼ α1), (α1 → α2

Û≤ t)};
• if e = e1 e2, then D contains two sub-derivations of Γ;∆ ⊢ ⟨⟨e1 : α → t⟩⟩ { D1 and Γ;∆ ⊢

⟨⟨e2 : α⟩⟩ { D2 (for some α , D1, and D2), and D = D1 ∪ D2;
• if e = (e1, e2), then D contains two sub-derivations of Γ;∆ ⊢ ⟨⟨e1 : α1⟩⟩ { D1 and Γ;∆ ⊢

⟨⟨e2 : α2⟩⟩ { D2 (for some α1, α2, D1, and D2), and D = D1 ∪ D2 ∪ {α1 × α2
Û≤ t};

• if e = πi e
′, thenD contains a sub-derivation of Γ;∆ ⊢ ⟨⟨e ′ : α1×α2⟩⟩ { D ′, andD = D ′∪{αi Û≤

t};
• if e = (let ®α x = e1 in e2), then D contains two sub-derivations of Γ;∆ ∪ ®α ⊢ ⟨⟨e1 : α⟩⟩ { D1

and (Γ, x : ∀®α, ®β . αθ1);∆ ⊢ ⟨⟨e2 : t⟩⟩ { D2, and the following hold:

D = D2 ∪ equiv(θ1,D1) θ1 ∈ solve∆∪ ®α (D1)

®α ♯ var(Γθ1) ®β = var(αθ1) \ (var(Γθ1) ∪ ®α ∪ var(e1))

Proof. Straightforward, since the constraint simplification rules are syntax-directed. □

Lemma B.93. If Γ;∆ ⊢ C { D, then var(Γ) ∩ var(D) ⊆ var(C) ∪ var Û≼(D).

Proof. By induction on C (the form of C determines the derivation).

Case: C = (t1 Û≤ t2) or C = (τ Û≼ α) We have var(D) ⊆ var(C).
Case: C = (τ Û≼ α) We have var(D) ⊆ var Û≼(D) ∪ {α } and α ∈ var(C).
Case: C = (def x : τ in C ′) By IH, var(Γ, x : τ) ∩ var(D) ⊆ var(C ′) ∪ var Û≼(D). This directly

yields the result since var(C ′) ⊆ var(C).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:107

Case: C = (∃ ®α . C ′) By IH, var(Γ) ∩ var(D) ⊆ var(C ′) ∪ var Û≼(D). The side condition on the

rule imposes ®α ♯ Γ. Then, var(Γ) ∩ var(D) ⊆ var(C) ∪ var Û≼(D) since var(C) = var(C ′) \ ®α .
Case: C = (C1 ∧C2) By IH, for both i , var(Γ) ∩ var(Di) ⊆ var(Ci) ∪ var Û≼(Di). This directly

implies var(Γ) ∩ var(D1 ∪ D2) ⊆ var(C1 ∧C2) ∪ var Û≼(D1 ∪ D2).

Case: C = (let x : ∀®α ;α[C1]
®α1 . α in C2) By IH,

var(Γ) ∩ var(D1) ⊆ var(C1) ∪ var Û≼(D1)

var(Γ, x : ∀®α, ®β . αθ1) ∩ var(D2) ⊆ var(C2) ∪ var Û≼(D2)

We have

D = D2 ∪ equiv(θ1,D1)

var(D) = var(D2) ∪ var(D1)θ1 ∪ var Û≼(D1) ∪ S ∪ Sθ1

var Û≼(D) = var Û≼(D2) ∪ var(D1)θ1 ∪ var Û≼(D1)

var(C) = (var(C1) \ (®α ∪ {α })) ∪ var(C2)

where S = { α ∈ dom(θ1) | αθ1 static }.

Consider an arbitrary β ∈ var(Γ) ∩ var(D).
Case: β ∈ var(D2) Then β ∈ var(C2) ∪ var Û≼(D2) and hence β ∈ var(C) ∪ var Û≼(D).
Case: β ∈ var(D1)θ1 ∪ var Û≼(D1) Then β ∈ var Û≼(D).
Case: β ∈ S

Then β ∈ dom(θ1). By Proposition B.91, β ∈ var(D1).

Since β ∈ var(Γ) ∩ var(D1), we have β ∈ var(C1) ∪ var Û≼(D1). Since β ∈ var(Γ), by the side

conditions of the rule we know β , α and β < ®α . Therefore, β ∈ var(C) ∪ var Û≼(D).
Case: β ∈ Sθ1

Then β ∈ var(γθ1) for some γ ∈ dom(θ1) such that γθ1 is static.

By Proposition B.91, γ ∈ var(D1). Then β ∈ var(D1)θ1 ⊆ var Û≼(D). □

Lemma B.94. Let θ and θ ′ be two type substitutions such that θ ⊩∆ D and static(θ ′, var(D)θ). If
(t1 Û≤ t2) ∈ D, then t1θθ ′ ≤ t2θθ

′.

Proof. By definition of θ ⊩∆ D, we have t1θ ≤ t2θ . Since var(t1) ∪ var(t2) ⊆ var(D), we have
var(t1θ)∪ var(t2θ) ⊆ var(D)θ . Because static(θ ′, var(D)θ), the restriction of θ ′ to var(t1θ)∪ var(t2θ)
is a static substitution. By Proposition B.32, t1θθ

′ ≤ t2θθ
′
. □

Lemma B.95. Let θ and θ ′ be two type substitutions such that θ ⊩∆ D and static(θ ′, var(D)θ). If
(τ Û≼ α) ∈ D, then τθθ ′ ≼ αθθ ′.

Proof. By definition of θ ⊩∆ D, we have τθ ≼ αθ . Then, τθθ ′ ≼ αθθ ′
follows by Proposi-

tion B.36. □

Lemma B.96.

∀Γ,∆, e,α,D, θ .

Γ;∆ ⊢ ⟨⟨e : α⟩⟩ { D

θ ∈ solve∆(D)

var(e) ⊆ ∆

α < var(Γ)

=⇒ static(θ , var(Γ))

Proof. Consider an arbitrary β ∈ var(Γ). We show that βθ is static.

Case: β < dom(θ) Then βθ = β , which is static.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:108 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

Case: β ∈ dom(θ) Then β ∈ var(D) (by Proposition B.91), and therefore β ∈ var(Γ) ∩ var(D).
By Lemma B.93, β ∈ var(⟨⟨e : α⟩⟩) ∪ var Û≼(D).
Case: β ∈ var(⟨⟨e : α⟩⟩) This case is impossible because var(⟨⟨e : α⟩⟩) = var(e) ∪ {α },

dom(θ) ♯ var(e) (because var(e) ⊆ ∆), and α < var(Γ).
Case: β ∈ var Û≼(D) Since θ ⊩∆ D, βθ must be static. □

Lemma B.97.

∀Γ,∆,D1, θ1, ρ, θ , θ
′.

θ ⊩∆ equiv(θ1,D1)

dom(ρ) ♯ Γθ1

static(θ ′, var(equiv(θ1,D1))θ)

static(θ1, var(Γ))

=⇒ Γθθ ′ ≤ Γθ1ρθθ

′

Proof. Consider an arbitrary x ∈ dom(Γ). We have Γ(x) = ∀®α . τ . We assume by α-renaming

that ®α ♯ θ1, ρ, θ, θ
′
; then, (Γθθ ′)(x) = ∀®α . τθθ ′ and (Γθ1ρθθ

′)(x) = ∀®α . τθ1ρθθ
′
. We must show

τθθ ′ ≤ τθ1ρθθ
′
. We show ∀α ∈ var(τ). αθθ ′ ≃ αθ1ρθθ

′
, which implies τθθ ′ ≃ τθ1ρθθ

′
by

Lemma B.37.

To show ∀α ∈ var(τ). αθθ ′ ≃ αθ1ρθθ
′
, consider an arbitrary α ∈ var(τ).

Case: α ∈ ®α Then (by our choice of naming) αθθ ′ = α and αθ1ρθθ
′ = α .

Case: α < ®α Then α ∈ var(Γ) and hence: var(αθ1) ⊆ var(Γθ1), and αθ1ρ = αθ1, and αθ1 is

static.

Case: α < dom(θ1) Then αθ1 = α , αθ1ρ = α , and αθ1ρθθ
′ = αθθ ′

.

Case: α ∈ dom(θ1)

Then {(α Û≤ αθ1), (αθ1
Û≤ α)} ⊆ equiv(θ1,D1). Therefore, we have αθ1θ ≃ αθ and

static(θ ′, var(αθ) ∪ var(αθ1θ)). By Proposition B.32, αθ1θθ
′ ≃ αθθ ′. □

Theorem B.98. Let D be a derivation of Γ; var(e) ⊢ ⟨⟨e : t⟩⟩ { D. Let θ be a type substitution such
that θ ⊩var(e) D. Then, we have Γθ ⊢ e { LeMDθ : tθ .

Proof. We show the following, stronger result (for all D, Γ, ∆, e , t , D, θ , and θ ′
):

D is a derivation of Γ;∆ ⊢ ⟨⟨e : t⟩⟩ { D

θ ⊩∆ D

static(θ ′, var(D)θ)

var(e) ⊆ ∆

=⇒ Γθθ ′ ⊢ eθ ′ { LeMDθ θ ′ : tθθ ′

This result implies the statement: we take ∆ = var(e) and θ ′ = { } (the identity substitution).

The proof is by structural induction on e .

Case: e = x

(1) D :: Γ;∆ ⊢ ⟨⟨x : t⟩⟩ { D Given

(2) θ ⊩∆ D Given

(3) static(θ ′, var(D)θ) Given

By Lemma B.92 from (1):

Γ(x) = ∀®α . τ

D = {(τ { ®α B ®β} Û≼ α), (α Û≤ t)}

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:109

Then:

(Γθθ ′)(x) = ∀®α . τθθ ′ assuming ®α ♯ θ , θ ′ by α-renaming

the types
®βθθ ′ are static by (2) and (3)

∀α ∈ var(τ). αθθ ′{ ®α B ®βθθ ′} = α { ®α B ®β}θθ ′ since ®α ♯ θ , θ ′

τθθ ′{ ®α B ®βθθ ′} = τ { ®α B ®β}θθ ′

τ { ®α B ®β}θθ ′ ≼ αθθ ′
by Lemma B.95

αθθ ′ ≤ tθθ ′
by Lemma B.94

Γθθ ′ ⊢ x { x [®βθθ ′] : τθθ ′{ ®α B ®βθθ ′} by [Var]

Γθθ ′ ⊢ x { x [®βθθ ′]⟨τ { ®α B ®β}θθ ′ ⇒
ℓ
αθθ ′⟩ : tθθ ′ by [Materialize] and [Subsume]

This concludes this case since LxMDθ θ ′ = x [®βθθ ′]⟨τ { ®α B ®β}θθ ′ ⇒
ℓ
αθθ ′⟩.

Case: e = c

D :: Γ;∆ ⊢ ⟨⟨c : t⟩⟩ { D Given

D = {bc Û≤ t} by Lemma B.92

bcθθ
′ ≤ tθθ ′ by Lemma B.94

Γθθ ′ ⊢ cθθ ′ { c : tθθ ′ by [Const] and [Subsume]

LcMDθ θ ′ = c

Case: e = λx . e ′

D :: Γ;∆ ⊢ ⟨⟨λx . e ′ : t⟩⟩ { D Given

By Lemma B.92:

D ′
:: (Γ, x : α1);∆ ⊢ ⟨⟨e ′ : α2⟩⟩ { D ′

D = D ′ ∪ {(α1
Û≼ α1), (α1 → α2

Û≤ t)}

Then:

α1θθ
′
is static

(α1 → α2)θθ
′ ≤ tθθ ′ by Lemma B.94

Γθθ ′, x : α1θθ
′ ⊢ e ′θθ ′ { Le ′MD

′

θ θ ′ : α2θθ
′

by IH

Γθθ ′ ⊢ (λx . e ′θθ ′) { λ(α1→α2)θθ ′

x . Le ′MD
′

θ θ ′ : (α1 → α2)θθ
′

by [Abstr]

Γθθ ′ ⊢ (λx . e ′θθ ′) { λ(α1→α2)θθ ′

x . Le ′MD
′

θ θ ′ : tθθ ′ by [Subsume]

Lλx . eMDθ θ ′ = λ(α1→α2)θθ ′

x . Le ′MD
′

θ θ ′

Case: e = λx : τ . e ′

D :: Γ;∆ ⊢ ⟨⟨λx : τ . e ′ : t⟩⟩ { D Given

By Lemma B.92:

D ′
:: (Γ, x : τ);∆ ⊢ ⟨⟨e ′ : α2⟩⟩ { D ′

D = D ′ ∪ {(τ Û≼ α1), (α1 → α2
Û≤ t)}

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:110 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

Then:

τθθ ′ ≼ α1θθ
′

by Lemma B.95

(α1 → α2)θθ
′ ≤ tθθ ′ by Lemma B.94

Γθθ ′, x : τθθ ′ ⊢ e ′θθ ′ { Le ′MD
′

θ θ ′
: α2θθ

′
by IH

Γθθ ′ ⊢ (λx : τ . e ′)θθ ′ { λ(τ→α2)θθ ′

x . Le ′MD
′

θ θ ′ : (τ → α2)θθ
′

by [AAbstr]

Γθθ ′ ⊢ (λx : τ . e ′)θθ ′ {(
λ(τ→α2)θθ ′

x . Le ′MD
′

θ θ ′
)
⟨(τ → α2)θθ

′ ⇒
ℓ
(α1 → α2)θθ

′⟩ :

(α1 → α2)θθ
′

by [Materialize]

Γθθ ′ ⊢ (λx : τ . e ′)θθ ′ {(
λ(τ→α2)θθ ′

x . Le ′MD
′

θ θ ′
)
⟨(τ → α2)θθ

′ ⇒
ℓ
(α1 → α2)θθ

′⟩ :

tθθ ′
by [Subsume]

Lλx : τ . eMDθ θ ′ =(
λ(τ→α2)θθ ′

x . Le ′MD
′

θ θ ′
)
⟨(τ → α2)θθ

′ ⇒
ℓ
(α1 → α2)θθ

′⟩

Case: e = e1 e2

D :: Γ;∆ ⊢ ⟨⟨e1 e2 : t⟩⟩ { D Given

By Lemma B.92:

D1 :: Γ;∆ ⊢ ⟨⟨e1 : α → t⟩⟩ { D1

D2 :: Γ;∆ ⊢ ⟨⟨e2 : α⟩⟩ { D2

D = D1 ∪ D2

Then:

Γθθ ′ ⊢ e1θθ
′ { Le1MD1

θ θ ′
: (α → t)θθ ′ by IH

Γθθ ′ ⊢ e2θθ
′ { Le2MD2

θ θ ′
: αθθ ′ by IH

Γθθ ′ ⊢ (e1 e2)θθ
′ { Le1MD1

θ θ ′ Le2MD2

θ θ ′ : tθθ ′ by [Appl]

Le1 e2MDθ θ ′ = Le1MD1

θ θ ′ Le2MD2

θ θ ′

Case: e = (e1, e2)

D :: Γ;∆ ⊢ ⟨⟨(e1, e2) : t⟩⟩ { D Given

By Lemma B.92:

D1 :: Γ;∆ ⊢ ⟨⟨e1 : α1⟩⟩ { D1

D2 :: Γ;∆ ⊢ ⟨⟨e2 : α2⟩⟩ { D2

D = D1 ∪ D2 ∪ {α1 × α2
Û≤ t}

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:111

Then:

(α1 × α2)θθ
′ ≤ tθθ ′ by Lemma B.94

Γθθ ′ ⊢ e1θθ
′ { Le1MD1

θ θ ′ : α1θθ
′

by IH

Γθθ ′ ⊢ e2θθ
′ { Le2MD2

θ θ ′ : α2θθ
′

by IH

Γθθ ′ ⊢ (e1, e2)θθ
′ {

(
Le1MD1

θ θ ′, Le2MD2

θ θ ′
)
: tθθ ′

by [Pair] and [Subsume]

L(e1, e2)MDθ θ ′ =
(
Le1MD1

θ θ ′, Le2MD2

θ θ ′
)

Case: e = πi e
′

D :: Γ;∆ ⊢ ⟨⟨πi e
′
: t⟩⟩ { D Given

By Lemma B.92:

D ′
:: Γ;∆ ⊢ ⟨⟨e ′ : α1 × α2⟩⟩ { D ′

D = D ′ ∪ {αi Û≤ t}

Then:

αiθθ
′ ≤ tθθ ′ by Lemma B.94

Γθθ ′ ⊢ e ′θθ ′ { Le ′MD
′

θ θ ′ : (α1 × α2)θθ
′

by IH

Γθθ ′ ⊢ (πi e
′)θθ ′ { πi (Le ′MD

′

θ θ ′) : tθθ ′ by [Proj] and [Subsume]

Lπi e ′MDθ θ ′ = (πi Le ′MD
′

θ)θ ′

Case: e = (let ®α x = e1 in e2)

D :: Γ;∆ ⊢ ⟨⟨let ®α x = e1 in e2 : t⟩⟩ { D Given

By Lemma B.92:

D1 :: Γ;∆ ∪ ®α ⊢ ⟨⟨e1 : α⟩⟩ { D1

D2 :: (Γ, x : ∀®α, ®β . αθ1);∆ ⊢ ⟨⟨e2 : t⟩⟩ { D2

D = D2 ∪ equiv(θ1,D1)

θ1 ∈ solve∆∪ ®α (D1)

®α ♯ var(Γθ1)

®β = var(αθ1) \ (var(Γθ1) ∪ ®α ∪ var(e1))

Let ®α1 and
®β1 be vectors of distinct variables chosen outside var(e1), dom(θ), var(θ), dom(θ ′),

and var(θ ′). Let ρ = { ®α B ®α1} ∪ { ®β B ®β1}. Then:

eθ ′ = (let ®α1 x = e1ρθ
′ in e2θ

′) since
®β ♯ e1 and ®α1 ♯ θ

′

LeMDθ =
(
let x = (Λ ®α1, ®β1. Le1MD1

θ1

ρθ) in Le2MD2

θ

)
LeMDθ θ ′ =

(
let x = (Λ ®α1, ®β1. Le1MD1

θ1

ρθθ ′) in Le2MD2

θ θ ′
)

since ®α1, ®β1 ♯ θ
′

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:112 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

For e1:

θ1 ⊩∆∪ ®α D1

static(ρθθ ′, var(D1)θ1) proven below

var(e1) ⊆ ∆ ∪ ®α

Γθ1ρθθ
′ ⊢ e1ρθθ

′ { Le1MD1

θ1

ρθθ ′ : αθ1ρθθ
′

by IH

e1ρθθ
′ = e1ρθ

′
since dom(θ) ∩ var(e1ρ) = ∅

α < var(Γ) by inversion

static(θ1, var(Γ)) by Lemma B.96

Γθθ ′ ≤ Γθ1ρθθ
′

by Lemma B.97

Γθθ ′ ⊢ e1ρθ
′ { Le1MD1

θ1

ρθθ ′ : αθ1ρθθ
′

by Lemma B.89

For e2:

θ ⊩∆ D2

static(θ ′, var(D2)θ)

var(e2) ⊆ ∆

Γθθ ′, x : (∀®α, ®β . αθ1)θθ
′ ⊢ e2θ

′ { Le2MD2

θ θ ′
: tθθ ′ by IH

(∀®α, ®β . αθ1)θθ
′ = (∀®α1, ®β1. αθ1ρθθ

′) since ®α1, ®β1 ♯ θ, θ
′

Γθθ ′, x : (∀®α1, ®β1. αθ1ρθθ
′) ⊢ e2θ

′ { Le2MD2

θ θ ′
: tθθ ′

®α1, ®β1 ♯ Γθθ
′
and

®β1 ♯ e1ρθ
′

Finally:

Γθθ ′ ⊢ eθ ′ { LeMDθ θ ′
: tθθ ′ by [Let]

To check static(ρθθ ′, var(D1)θ1), take an arbitrary α ∈ var(D1)θ1.

• If α ∈ dom(ρ), then αρ is a variable in ®α1, ®β1 and αρ = αρθθ ′ (because ®α1, ®β1 ♯ θ , θ
′
): hence

αρθθ ′ is static.
• If α < dom(ρ), then αρθθ ′ = αθθ ′

. We have (α Û≼ α) ∈ equiv(θ1,D1). Since equiv(θ1,D1) ⊆

D, αθ is static. Furthermore, var(αθ) ⊆ var(D)θ ; hence, αθθ ′ is static too. □

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

	Abstract
	1 Introduction
	2 Gradual typing for Hindley-Milner systems
	2.1 Source Language
	2.2 Cast Language
	2.3 Type Inference

	3 Gradual typing with subtyping
	3.1 Declarative System
	3.2 Type Inference

	4 Gradual typing with set-theoretic types
	4.1 Materialization and Subtyping for Set-Theoretic Types
	4.2 Cast Calculus
	4.3 Type Inference

	5 Related work
	6 Future work
	7 Conclusions
	Acknowledgments
	References
	A Gradual typing for Hindley-Milner systems: results
	A.1 Type System of the Source Language
	A.2 Compilation
	A.3 Type Inference

	B Full definitions and results
	B.1 Type Frames
	B.2 Semantic Subtyping for Type Frames
	B.3 Static and Gradual Types
	B.4 Discriminations of Gradual Types
	B.5 Relations on Gradual Types
	B.6 Normal Forms and Decompositions for Type Frames
	B.7 Normal Forms and Operators on Gradual Types
	B.8 Cast Calculus with Set-Theoretic Types
	B.9 Type Inference with Set-Theoretic Types

