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1. INTRODUCTION

Many recent type systems rely on a subtyping relation. Its definition generally
depends on the type algebra, and on its intended use. We can distinguish two main
approaches for defining subtyping: the syntactic approach and the semantic one.
The syntactic approach—by far the more used—consists in defining the subtyp-
ing relation by axiomatising it in a formal deduction system (a set of inductive or
co-inductive rules); in the semantic approach (for instance, [Aiken and Wimmers
93; Damm 1994a]), instead, one starts with a model of the language and an inter-
pretation of types as subsets of the model, then defines the subtyping relation as
the inclusion of denoted sets, and, finally, when the relation is decidable, derives a
subtyping algorithm from the semantic definition.

The semantic approach has several advantages but it is also more constraining.
Finding an interpretation in which types can be interpreted as subsets of a model
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2 · 1 INTRODUCTION

may be a hard task. A solution to this problem was given by Haruo Hosoya and
Benjamin Pierce [Hosoya and Pierce 2001; Hosoya 2001; Hosoya and Pierce. 2003]
with the work on XDuce. The key idea is that in order to define the subtyping rela-
tion semantically one does not need to start from a model of the whole language: a
model of the types suffices. In particular Hosoya and Pierce take as their model of
types the set of values of the language. Their notion of model cannot capture func-
tional values (their sets of values are regular languages which, as it is well known,
are not closed with respect to functional spaces). On the one hand, the resulting
type system is poor since it lacks function types. On the other hand, it manages to
integrate union, product and recursive types and still keep the presentation of the
subtyping relation and of the whole type system quite simple.

In a previous work [Frisch et al. 2002; Frisch 2004] we extended the work on
XDuce and re-framed it in a more general setting: we showed a technique to define
semantic subtyping in the presence of a rich type system including function types,
but also arbitrary Boolean combinations (union, intersection, and negation types)
and in the presence of lately bound overloaded functions and type-based pattern
matching. The aim of [Frisch et al. 2002; Frisch 2004] was to provide a theoretical
foundation on the top of which to build the language CDuce [Benzaken et al. 2003],
an XML-oriented transformation language. The key theoretical contribution of the
work is a new approach to define semantic subtyping when straightforward set-
theoretic interpretation does not work, in particular for arrow types. Here we focus
and expand on this aspect of the work and we get rid of many features (e.g. pattern
matching and pattern variable type inference) which are not directly related to the
treatment of subtyping.

The description of a general technique to extend semantic subtyping to general
types systems with arrow and complete Boolean combinator types is just one way
to read our work, and it is the one we decided to emphasise in this presentation.
However it is worth mentioning that there exist at least two other readings for the
results and techniques presented here.

A first alternative reading is to consider this work as a research on the definition of
a general purpose higher-order XML transformation language: indeed, this was the
initial motivation of [Frisch et al. 2002; Frisch 2004] and the theoretical work done
there constitutes the fundamental basis for the definition and the implementation
of the XML transformation language CDuce.

A second way of understanding this work is as a quest for the generalisation of
lately bound overloaded functions to intersection types. The intuition that over-
loaded functions should be typed by intersection types was always felt but never
fully formalised or understood. On the one hand we had the longstanding re-
search on intersection types with the seminal works by the Turin research group
on Curry-style typed lambda calculus [Barendregt et al. 1983; Coppo and Dezani-
Ciancaglini 1980] (and later pursued in Church-style by John Reynolds’ work on
coherent overloading and the language Forsythe [Reynolds 1991; Reynolds 1996]).
However functions with intersection types had a uniform behaviour, in the sense
that even if they worked on arguments of different types they always executed the
same code for all of these types. So functions with intersection types looked closer
to finitely parametric (in the sense of Reynolds [Reynolds 1983]) polymorphic func-
Journal of the ACM, Vol. 55, No. 4, September 2008.
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tions (in which we enumerate the possible input types) that cannot reconstruct
values of the (intuitive) finite range parametric type1, rather than overloaded func-
tions which are able to discriminate on the type of the argument, execute a different
code for each different type and, as such, (re-)construct values of the type at is-
sue. On the other hand there was the research on overloaded functions as used in
programming languages which accounted for functions formed by different pieces
of code selected according to the type of the argument the function is applied to.
However, even if the types of these functions are apparently close to intersection
types, they never had the set-theoretic intuition of intersections. So for example
in the λ&-calculus [Castagna et al. 1995] overloaded functions have types that are
characterised by the same subtyping relation as intersection types, but they dif-
fer from the latter by the need of special formation rules that have no reasonable
counterpart in intersection types. The overloaded functions defined here and, even
more, those defined in [Frisch et al. 2002] finally reconcile the two approaches: they
are typed by intersection types (with a classical/set-theoretic interpretation) and
their definitions may intermingle code shared by all possible input types (paramet-
ric code) with pieces of code that are specific to only some particular input types
(ad hoc code). Therefore they nicely integrate both programming styles.

Finally it is important to stress that although here we deploy our construction
for a λ-calculus with higher-order functions, the technique is quite general and can
be used mostly unchanged for quite different paradigms, as for instance it is done
in [Castagna et al. 2005; Castagna et al. 2007] for the π-calculus.

Plan of the article.. The presentation is structured in four parts:

(1) In the first part (Section 2) we lengthy discuss the main ideas, the underlying
intuitions, and the logical entailment of the whole approach.

(2) In the second part (Sections 3–5) we succinctly and precisely define the sys-
tem: the calculus and its typing relation (Section 3), the subtyping relation
(Section 4), and their properties (Section 5).

(3) The third part (Section 6) presents the technical details of the properties stated
in the second part. It can be skipped in the first reading.

(4) The last part (Sections 7–9) explains those intuitions and details that could
not be given in the first part since their explanation required the technical
development (Section 7), it discusses related work (Section 8), and hints to
other work based on the material presented here together with some results
that confirm the robustness of our approach (Section 9).

2. OVERVIEW OF THE APPROACH

When dealing with syntactic subtyping one usually proceeds as follows. First, one
defines a language, then, somewhat independently, the set of (syntactic) types and a
subtyping relation on this set. This relation is defined axiomatically, in an inductive
(or co-inductive, in case of recursive types) way. The type system, consisting of

1As a universally quantified second order type can be interpreted as a mapping from types to types,
so a finite intersection of arrow types can be seen as point-wise definition of a finite mapping from
types to types. This is just an intuitive analogy: this particular use of intersection types evokes
the perfume of parametricity but must not be taken strictu senso.
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the set of types and of the subtyping relation, is coupled to the language by a
typing relation, usually defined via some typing rules by induction on the terms
of the language and possibly a subsumption rule that accounts for subtyping. The
meaning of types is only given by the rules defining the subtyping and the typing
relations.

The semantic subtyping approach described here diverges from the above only
for the definition of the subtyping relation. Instead of using a set of deduction rules,
this relation is defined semantically: we do it by defining a set-theoretic model of
the types and by stating that one type is subtype of another if the interpretation of
the former is a subset of the interpretation of the latter. As for syntactic subtyping,
the definition is parametric in the set of base types and their subtyping relation (in
our case, their interpretation).

2.1 A five steps recipe

In principle, the process of defining semantic subtyping can be roughly summarised
in the following five steps:

(1) Take a bunch of type constructors (e.g., →, ×, ch , . . . ) and extend the type
algebra with the following Boolean combinators: union ∨∨∨, intersection ∧∧∧, and
negation ¬¬¬, yielding a type algebra T .

(2) Give a set-theoretic model of the type algebra, namely define a function J KD :
T →P(D), for some domain D (where P(D) denotes the power-set of D). In
such a model, the combinators must be interpreted in a set-theoretic way (that
is, Js∧∧∧tKD = JsKD ∩ JtKD, Js∨∨∨tKD = JsKD ∪ JtKD, and J¬¬¬tKD = D \ JtKD), and
the definition of the model must capture the essence of the type constructors.
There might be several models, and each of them induces a specific subtyping
relation on the type algebra. We only need to prove that there exists at least
one model and then pick one that we call the bootstrap model . If its associated
interpretation function is J KB, then it induces the following subtyping relation:

s ≤B t
def⇐⇒ JsKB ⊆ JtKB (1)

(3) Now that we defined a subtyping relation for our types, find a subtyping algo-
rithm that decides (or semi-decides) the relation. This step is not mandatory
but highly advisable if we want to use our types in practice.

(4) Now that we have a (hopefully) suitable subtyping relation available, we can
focus on the language itself, consider its typing rules, use the new subtyping
relation to type the terms of the language, and deduce Γ `B e : t. In particular
this means to use in the subsumption rule the bootstrap subtyping relation ≤B

we defined in step 2.
(5) The typing judgement for the language now allows us to define a new natu-

ral set-theoretic interpretation of types, the one based on values JtKV = {v ∈
V | `B v : t}, and then define a “new” subtyping relation as we did in (1),
namely s ≤V t

def⇔ JsKV ⊆ JtKV . The new relation ≤V might be different from
≤B we started from. However, if the definitions of the model, of the language,
and of the typing rules have been carefully chosen, then the two subtyping re-
lations coincide
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2.2 Advantages of semantic subtyping · 5

s ≤B t ⇐⇒ s ≤V t

and this closes the circularity. Of course, this does not imply that the defini-
tions are “valid” in any formal sense, only that they are mutually coherent. We
still need to check type soundness. In this paper, we do this with standard
syntactical techniques (subject reduction and progress).

While the five steps above outline a nice framework in which to fit and understand
what follows, in practice, however, the starting point never is the model of types but
the calculus: in particular one always starts from the calculus and its values, and
tries to slightly modify these so that the values outline some model that can then
be formalised. This is what we also do here: while we follow the five-steps process
above to give, in the rest of this section, an overview of the approach, in Section 3 we
introduce a λ-calculus with overloaded functions and dynamic dispatch, in Section 4
we introduce a model to semantically define a subtyping relation inspired from the
previous calculus, and in Section 5 discuss the main results, namely, the soundness
of the typing relation, the correspondence between the values of Section 3 and the
model of Section 4, and the decidability of the various relations.

2.2 Advantages of semantic subtyping

The semantic approach is more technical and constraining, and this may explain
why it has obtained less attention than syntactic subtyping. However it presents
several advantages:

(1) When type constructors have a natural interpretation in the model, the subtyp-
ing relation is by definition complete with respect to its intuitive interpretation
as set inclusion: when t ≤ s does not hold, it is possible to exhibit an element
of the model which is in the interpretation of t and not of s, even in pres-
ence of arrow types (this property is used in CDuce to return informative error
messages to the programmer); in the syntactic approach one can just say that
the formal system does not prove t ≤ s, and there may be no clear criterion
to assert that some meaningful additional rules would not allow the system
to prove it. This argument is particularly important with a rich type alge-
bra, where type constructors interact in non trivial ways; for instance, when
considering arrow, intersection and union types, one must take into account
—i.e., introduce rules for— many distributivity relations such as, for instance2,
(t1 ∨ t2)→ s ' (t1 → s) ∧ (t2 → s). Forgetting any of these rules yields a type
system that, although sound, does not match (that is, it is not complete with
respect to) the intuitive semantics of types.

(2) In the syntactic approach deriving a subtyping algorithm requires a strong
intuition of the relation defined by the formal system, while in the semantic
approach it is a simple matter of “arithmetic”: it simply suffices to use the
interpretation of types and well-know Boolean algebra laws to decompose sub-
typing on simpler types (as we show in Section 6.2). Furthermore, as most
of the formal effort is done with the semantic definition of subtyping, studying
variations of the algorithm (e.g., optimisations or different rules) turns out to be

2We write s ' t as a shorthand for s ≤ t and s ≥ t.
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6 · 2 OVERVIEW OF THE APPROACH

much simpler (this is common practice in database theory where, for example,
optimisations are derived directly from the algebraic model of data).

(3) While the syntactic approach requires tedious and error-prone proofs of formal
properties, in the semantic approach many of them come for free: for instance,
the transitivity of the subtyping relation is trivial (as set-containment is tran-
sitive), and this makes proofs such as cut elimination or transitivity admissi-
bility pointless. Other examples of properties that come easily from a semantic
definition are the variance of type constructors, and distributivity laws (e.g.
t1×××(t2∨∨∨t3) ' (t1×××t2)∨∨∨(t1×××t3)).

Although these properties look quite appealing, the technical details of the approach
hinder its development: in the semantic approach, one must be very careful not
to introduce any circularity in the definitions. For instance, if the type system
depends on the subtyping relation—as this is generally the case—one cannot use it
to define the semantic interpretation which must thus be given independently from
the typing relation; also, usually the model corresponds to an untyped denotational
semantics, where types are interpreted by structures in which negative types either
do not have an immediate interpretation (for instance, the complement of ideals is
not an ideal, therefore one should consider to mix ideals with co-ideals), or simply
are never considered (one of the JACM reviewers suggests that this may be for
“ideological reasons coming from proof theory and intuitionism” rather than for
technical problems). For these reasons all the semantic approaches to subtyping
previous to our work presented some limitations: no higher-order functions, no
complement types, and so on. The main contribution of our work is the development
of a formal framework that overcomes these limitations.

Excursus. The reader should not confuse our research with the long-
standing research on set-theoretic models of subtyping. In that case
one starts from a syntactically (i.e. axiomatically) defined subtyping
relation and seeks a set-theoretic model where this relation is interpreted
as inclusion. Our approach is the opposite: instead of starting from a
subtyping relation to arrive to a model, we start by defining a model in
order to arrive at a subtyping relation (and eventually verify that this
relation is consistent with our language). Thus in our approach types
have a strong substance even before introducing the typing relation.

2.3 A model of types

To define semantic subtyping we need a set-theoretic model of types. The source
of most of (if not all) the problems comes from the fact that this model is usually
defined by starting from a model of the terms of the language. That is, we con-
sider a denotational interpretation function that maps each term of the language
into an element of a semantic domain and we use this interpretation to define the
interpretation of the types (typically—but not necessary, e.g. PER models [Asperti
and Longo 1991]—as the image of the interpretation of all terms of a given type).
If we consider functional types then in order to interpret functional term appli-
cation we have to interpret the duality of functions as terms and as functions on
terms. This yields the need to solve complicated recursive domain equations that
Journal of the ACM, Vol. 55, No. 4, September 2008.



2.4 Types as sets of values · 7

hardly combines with a set-theoretic interpretation of types, whence the introduc-
tion of restrictions in the definition of semantic subtyping (e.g. no function types,
no negation types, etc . . . ).

Note however that in order to define semantic subtyping all we need is a set-
theoretic model of types. The construction works even if we do not have a model
of terms. To push it to the extreme, in order to define subtyping we do not need
terms at all, since we could imagine to define type inclusion for types independently
from the language we want to use these types for. More plainly, the definition of a
semantic subtyping relation needs neither an interpretation for applications (that
is an applicative model) nor, thus, the solution of complicated domain equations.

The key idea to generalise semantic subtyping is then to dissociate the model of
types from the model of terms and define the former independently from the latter.
In other words, the interpretation of types must not forcedly be based on, or related
to an interpretation of terms (and actually in the same concrete examples we will
give we interpret types in structures that cannot be used for an interpretation of
terms), and as a matter of fact we do not need an interpretation of terms even to
exist for the semantic subtyping construction to go through3.

2.4 Types as sets of values

Nevertheless, to ensure type safety (i.e. well-typed programs cannot go wrong) the
meaning of types has to be somewhat correlated with the language. A classical
solution, that belongs to the types folklore4 is to interpret types as sets of values,
that is, as the results of well-typed computations in the language. More formally,
the values of a typed language are all the terms that are well-typed, closed, and in
weak head-normal form. So the idea is that in order to provide an interpretation
of types we do not need an interpretation of all terms of the language (or of just
the well-typed ones): the interpretation of the values of the language suffices to
define an interpretation of types. This is much an easier task: since a closed
application usually denotes a redex, then by restricting to the sole values we avoid
the need to interpret application and, therefore, also the need to solve complicated
domain equations. This is the solution adopted by XDuce, where values are XML
documents and types are sets of documents (more precisely, regular languages of
documents).

But if we consider a language with arrow types, that is a language with higher
order functions, then the applications come back again: arrow types must be in-
terpreted as sets of function values, that is, as sets of well-typed closed lambda
abstractions, and applications may occur in the body of these abstractions. Here
is where XDuce stops and it is the reason why it does not include arrow types.

3As Pierre-Louis Curien suggested, the construction we propose is a pied de nez to (it cocks a
snook at) denotational semantics, as it uses a semantic construction to define a language for which,
possibly, no denotational semantics is known.
4A survey on the “Types” mailing list traces this solution back to Bertrand Russell and Alfred
Whitehead’s Principia Mathematica. Closer to our interests it seems that the idea independently
appeared in the late sixties early seventies and later back again in seminal works by Roger Hindley,
Per Martin-Löf, Ed Lowry, John Reynolds, Niklaus Wirth and probably others (many thanks to
the many “typers” who answered to our survey).
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8 · 2 OVERVIEW OF THE APPROACH

2.5 A circularity to break

Introducing arrow types is then problematic because it slips applications back again
in the interpretation of types. However this does not mean that we need a semantic
interpretation for application, it just implies that we must define how application is
typed . Indeed, functional values are well-typed lambda abstractions, so to interpret
functional types we must be able to type lambda abstractions and in particular to
type the applications that occur in their body. Now this is not an easy task in our
context: in the absence of higher order functions the set of values inhabiting type
constructors such as products or records can be inductively defined from basic types
without resorting to any typing relation (this is why the XDuce approach works
smoothly). With the arrow type constructor, instead, this can be done only by using
a typing relation, and this yields to the circularity we hinted at in the introduction
and that is shown in Figure 1: in order to define the subtyping relation we need
an interpretation of the types of the language; for this we have to define which
are the values of an arrow type; this needs that we define the typing relation for
applications, which in turns needs the definition of the subtyping relation.

Typing

relationvalues

Well−typed

Subtyping

relation

Fig. 1. Circularity

Thus, if we want to define the semantic subtyping of ar-
row types we must find a way the avoid this circularity.
The simplest way to avoid it is to break it, and the de-
velopment we did so far clearly suggests where to do so.
We always said that to define (semantic) subtyping we
must have a model of types; it is also clear that the typ-
ing relation must use subtyping; but, on the contrary,
it is not strictly necessary for our model to be based on
the interpretation of values, this is just convenient as it
ties the types with the language the types are intended
for. This is therefore the weakest link and we can break
it. So the idea is to start from a model (of the types)
defined independently (but not too much) from the lan-

guage the types are intended for (and therefore independently from its values), and
then from that define the rest: subtyping, typing, set of values. We will then show
how to relate the initial model to the obtained language and recover the initial
“types as set of values” interpretation: namely, we will “close the circle”.

2.6 Set-theoretic models

Let us then show with more details how we shall proceed. We do not need to define
a particular language, the definition of types will suffice. Here, we assume that
types are defined by the following syntax:

t ::= 0 | 1 | t→→→t | t×××t | ¬¬¬t | t∨∨∨t | t∧∧∧t

where 0 and 1 respectively correspond to the empty and universal types (these are
sometimes denoted by the pair ⊥, > or Bottom, Top). The formal definition of
the type algebra, which includes recursive types and basic types, will be given in
Section 3.1.

The second step is to define precisely what a set-theoretic model for these types
is. As Hindley and Longo [Hindley and Longo 1980] give some general conditions
Journal of the ACM, Vol. 55, No. 4, September 2008.



2.6 Set-theoretic models · 9

that characterise models of λ-calculus, so here we want to give the conditions that
an interpretation function must satisfy in order to characterise a set-theoretic model
of our types. So let T be the set of types, D some set, and J_K an interpretation
function from T to P(D). The conditions that J_K must satisfy to define a set-
theoretic model are mostly straightforward, namely:

(1) Jt1∨∨∨t2K = Jt1K ∪ Jt2K
(2) Jt1∧∧∧t2K = Jt1K ∩ Jt2K
(3) J¬¬¬tK = D\JtK
(4) J1K = D

(5) J0K = ∅
(6) Jt×××sK = JtK× JsK
(7∗) Jt→→→sK = ???

The first six conditions convey the intuition that our model is set theoretic:
so the intersection of types must be interpreted as set intersection, the union of
types as set-theoretic union and so on (the sixth condition requires some closure
properties onD but we prefer not to enter in such a level of detail at this point of our
presentation). But the definition is not complete yet as we still have to establish the
seventh condition (highlighted by a ∗) that constrains the interpretation of arrow
types. This condition is more complicated. Again it must convey the intuition that
the interpretation is set-theoretic, but while the first six conditions are language
independent, this condition strongly depends on the language and in particular on
the kind of functions we want to implement in our language. We give detailed
examples of this in [Frisch 2004]. The set-theoretic intuition we have of function
spaces is that a function is of type t→→→s if whenever applied to a value of type t it
returns a result of type s. Intuitively, if we interpret functions as binary relations on
D, then Jt→→→sK is the set of binary relations in which if the first projection is in (the
interpretation of) t, then the second projection is in s, namely {f ⊆ D2 | ∀(d1, d2) ∈
f. d1 ∈ JtK⇒ d2 ∈ JsK }. Note that this set can also be written P(JtK× JsK), where
the overline denotes set complement (with respect to D or D2). If the language is
expressive enough, we can do as if every binary relation in this set was an element
of Jt→→→sK; thus, we would like to say that the seventh condition is:

Jt→→→sK = P(JtK× JsK) (2)

But this is completely meaningless. First, technically, this would imply that
P(D2) ⊆ D, which is impossible for cardinality reasons. Also, remember that we
want eventually to re-interpret types as sets of values of the language, and functions
in the language are not binary relations (they are syntactic objects). However what
really matters is not the exact mathematical nature of the elements of D, but only
the relations they create between types. The idea then is to do as if the above
condition held.

Since this point is central to our model, let us explain it differently. Recall
that the only reason why we want to accurately state what the set-theoretic model
of types is, is to precisely define the subtyping relation for syntactic types. In
other words, we do not define an interpretation of types in order to formally and
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10 · 2 OVERVIEW OF THE APPROACH

mathematically state what the syntactic types mean but, more simply, we define it
in order to state how they are related. So, even if we would like to say that a type
t→→→s must be interpreted in the model as P(JtK× JsK) as stated by (2), for what
it concerns the goal we are aiming at, it is enough to require that a model must
interpret functional types so that the induced subtyping relation is the same as the
one the condition (2) would induce, that is:

Jt1→→→s1K ⊆ Jt2→→→s2K ⇐⇒ P(Jt1K× Js1K) ⊆P(Jt2K× Js2K)

and similarly for any Boolean combination of arrow types.
Formally, we associate (see Definition 4.3 in Section 4.2) to J_K an extensional

interpretation E(_) that behaves as J_K except for arrow types, for which we use
the condition above as definition:

E(t→→→s) = P(JtK× JsK)

Note that we use J_K in the right-hand side of this equation, that is, we only
re-interpret top-level arrow types. Now we can express the fact that J_K behaves
(from the point of view of subtyping) as if functions were binary relations. This is
obtained by writing the missing seventh condition, not in the form of (7∗), but as
follows:

(7) JtK = ∅ ⇐⇒ E(t) = ∅
or, equivalently, Jt1K ⊆ Jt2K ⇐⇒ E(t1) ⊆ E(t2).5

To put it otherwise, if we wanted an interpretation J_K of the types that were
faithful with respect to the semantics of the language, then we should require for
all t that JtK = E(t). But for cardinality reasons this is impossible in a set-theoretic
framework. However we do not need such a strong constraint on the definition of
J_K since all we ask to J_K is to characterise the containment of types, and to that
end it suffices to characterise the zeros of J_K, since

s ≤ t ⇐⇒ JsK ⊆ JtK ⇐⇒ JsK ∩ JtK = ∅ ⇐⇒ Js∧∧∧¬¬¬tK = ∅

Therefore, instead of asking that J_K and E(_) coincide on all points, we require a
weaker constraint, namely that they have the same zeros:

JtK = ∅ ⇐⇒ E(t) = ∅

This is the essence of our definition of models of the type algebra (Definition 4.4 in
Section 4.2).

We said that the above seventh condition (actually, the definition of the exten-
sional interpretation) depends on the language the type system is intended for.
Previous work [Frisch 2004] shows different variations of this conditions to match
different sets of definable transformations. However, we can already see that the
condition above accounts for languages in which functions possibly are

(1) Non-deterministic: since the condition does not prevent the interpretation of
a function space to contain a relation with two pairs (d, d1) and (d, d2) with
d1 6= d2.

5Indeed, Jt1K ⊆ Jt2K ⇐⇒ Jt1K \ Jt2K = ∅ ⇐⇒ Jt1∧∧∧¬¬¬t2K = ∅ ⇐⇒ E(t1∧∧∧¬¬¬t2) = ∅ ⇐⇒
E(t1) \ E(t2) = ∅ ⇐⇒ E(t1) ⊆ E(t2).
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2.7 Bootstrapping the definition · 11

(2) Non-terminating : since the condition does not force a relation in Jt→→→sK to have
as first projection the whole JtK. A different reason for this is that every arrow
type is inhabited (note indeed that the empty set belongs to the interpretation
of every arrow type), so in particular are all the types of the form t→→→0; now,
all the functions in such types must be always non-terminating on their domain
(if they returned a value this would inhabit 0).

(3) Overloaded : here, by overloading, we mean functions that can be applied to
many different types, and whose results’ type can depend on the type of the
argument.6 This is subtler than the two previous cases as it is a consequence
of the fact that condition does not force J(t1∨∨∨t2)→→→(s1∧∧∧s2)K to be equal to
J(t1→→→s1)∧∧∧(t2→→→s2)K, (the equality instead holds in λ-calculus with union and
intersection types [Barbanera et al. 1995]), but just the former to be included
in the latter. Imagine indeed that the language at issue does not allow the
programmer to define overloaded functions. Then it may not be possible to
define functions that distinguish the types of their argument, and in particular
to have a function that when applied to an argument of type t1 returns a result
in s1 while returning a (possibly different) s2 result for t2 arguments. Therefore
the only functions in (t1→→→s1)∧∧∧(t2→→→s2) are those in (t1∨∨∨t2)→→→(s1∧∧∧s2) (this point
is discussed thoroughly in Section 4.5 of our related survey [Castagna 2005]).

2.7 Bootstrapping the definition

Now that we have defined what a set-theoretic model for our types is, we can choose
a particular one that we use to define the rest of the system. Suppose that there
exists at least one pair (D, J_K) that satisfies the conditions of set-theoretic model,
and choose any such pair, no matter which one. Let us call this model the bootstrap
model . This bootstrap model defines a particular subtyping relation on our set of
types T :

s ≤ t ⇐⇒ JsK ⊆ JtK

We can then pick any language that uses the types in T (and whose semantics
conforms with the intuition underlying the model condition on function types),
define its typing rules and use in the subsumption rule the subtyping relation ≤
we have just defined. We write Γ ` e : t for the typing judgement of the language.
In this paper, we will consider a λ-calculus with overloaded functions and dynamic
type-dispatch. See Section 3.1 for the syntax of the calculus, Section 3.3 for its
type system and Section 3.2 for its semantics (which depends on the type system
because of the dynamic type-dispatch construction).

2.8 Closing the circle

In order to obtain type-safety for our calculus, we want the type system to enjoy
properties such as subject reduction (Theorem 5.1) and progress (Theorem 5.2)
stated in Section 5.1. Because of the subsumption rule in the type system, this can
only be obtained if our definition of set-theoretic models is meaningful with respect

6This use of the term “overloading” is pretty wide since it includes for instance polymorphic
functions. In this discussion, a non-overloaded function should be thought as a function that
comes with explicit input and output types.
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to the operational semantics of our calculus. This is a first sanity-check for our
notion of model.

But, once type-safety has been established, there is another important question:
what are the relations between the bootstrap model and the calculus? And in
particular, what is the relation between the bootstrap model and the values of the
calculus? Have we lost all the intuition underlying the “types as sets of values”
interpretation?

To answer these questions, we consider a new interpretation of types as sets of
values in the calculus:

JtKV = {v | ` v : t}

A second sanity-check for our notion of model is then to require that this in-
terpretation J_KV is a model. If this is the case, we can use it to define a new
subtyping relation on T :

s ≤V t ⇐⇒ JsKV ⊆ JtKV

We could imagine to start again the process, that is to use this subtyping relation
in the subsumption rule of our language, and use the resulting sets of values to
define yet another subtyping relation and so on. But this is not necessary as the
process has already converged. This is stated by one of the central results of our
work (Theorem 5.5 in Section 5.2):

s ≤ t ⇐⇒ s ≤V t

that is, the subtyping relation induced by the bootstrap model already defines the
subtyping relation of the “types as sets of values” model of the resulting calculus.
We have closed the circle we broke.

3. THE CALCULUS

In this section, we define formally the syntax of types and expressions in our cal-
culus (Section 3.1), the operational semantics (Section 3.2) and the type system
(Section 3.3). A type-checking algorithm will be presented in Section 6.12.

The semantics actually depends on the type-system, which in turn depends on a
subtyping relation to be defined (next section). As a consequence, we consider here
the subtyping relation as a parameter of the definitions of the type system and of
the semantics.

3.1 Syntax

Expressions. To define the calculus, we choose a set of constants C ranged by
the meta-variable c (they will be elements of basic types).

The terms of the calculus are called expressions and are defined by the following
Journal of the ACM, Vol. 55, No. 4, September 2008.
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grammar.

e ::= c constant
| x variable
| (e, e) pair
| πi(e) projection (i ∈ {1, 2})
| µf(t→→→t; . . . ; t→→→t).λx.e abstraction
| e e application
| (x = e ∈ t ? e|e) dynamic type dispatch
| rnd(t) non-deterministic choice

where t ranges over types, defined in the next paragraph.
We write E for the set of expressions. The syntax for the calculus deserves few

comments. We introduce an explicit construction for recursive functions, which
combines λ-abstraction and a fix-point operator. The reason is that we want to
express non-terminating expressions, but still restrict recursion to functions only.
The identifiers f and x act as binders in the body of the function. The λ-abstraction
comes with an non-empty sequence of function types (we call it the interface of the
function): if more than one type is given, we are in the presence of an overloaded
function. As we will see later in the type system, we adopt prescriptive Church-
style for λ-abstractions: the types assigned to such expressions can be read from
their signature, without considering their body. The reason, besides making type-
checking feasible, is that because (closed and well-typed) λ-abstractions are values,
they can be subject to dynamic type dispatch and we do not want to rely on the
whole type system to decide whether a λ-abstraction has some type or not.

The non-deterministic choice construction rnd(t) picks an arbitrary expression of
type t. We introduced this operator in the calculus in order to demonstrate subtle
typing issues coming from non-determinism. This operator can be used to model
internal or external non determinism such as inputs or side effects.

The only data constructor in the calculus is the pair. General tuples and tagged
values can be encoded by nested pairs and constants. Similarly, Appendix A.1
shows how to encode disjoint sums with pairs and constants.

Types. Types are essentially those introduced in Section 2.6 (modulo Boolean
equivalence) to which we add basic types (the types of constant expressions). In
order to simplify the presentation of recursive types, we are going to consider po-
tentially infinite regular terms produced by the following signature:

t ::= b basic type
| t×××t product type
| t→→→t function type
| t∨∨∨t union type
| ¬¬¬t complement type
| 0 empty type

By regular, we mean that terms have only but a finite number of different sub-
terms. The meta-variable b ranges over a fixed set of basic types. We write t1\\\t2
as an abbreviation for t1∧∧∧¬¬¬t2, t1∧∧∧t2 as an abbreviation for ¬¬¬(¬¬¬t1 ∨ ¬¬¬t2), and 1
as an abbreviation for ¬¬¬0. We will call atom the immediate applications of type
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constructors: basic types, product types, function types (these are the “atoms” for
Boolean combinators). Since we want types to denote sets, we need to impose some
constraints to avoid ill-formed types such as a solution to t = t∨∨∨t (which does not
carry any information about the set denoted by the type) or to t = ¬¬¬t (which cannot
represent any set). Namely, we say that a term is a type if it does not contain any
infinite branch without an atom. Let us call T the set of types.

The conditions above say that the binary relation . ⊆ T 2 defined by t1∨∨∨t2 . ti,
¬¬¬t.t is Noetherian (that is, strongly normalizing). This gives an induction principle
on T that we will use without any further explicit reference to the relation ..

3.2 Operational semantics

Because of the dynamic type dispatch, the semantics of the calculus depends on its
type system. For now, we simply assume that a relation between expressions and
types, written ` e : t is given. It will be defined in the next section.

Definition 3.1. An expression e is a value if it is closed (no free variable),
well-typed (` e : t for some type t), and produced by the following grammar:

v ::= c | (v, v) | µf(. . .).λx.e

We write V for the set of all values.
We define a small-step operational call-by-value semantics ; for the calculus.

There are four basic reduction rules (we write e[x1 := e1;x2 := e2; . . .] for the
expression obtained from e by a capture-avoiding simultaneous substitution of xi
by ei):

ev ; e[f := e′;x := v] if e = µf(. . .).λx.e′

(x = v ∈ t ? e1|e2) ;

{
e1[x := v] if ` v : t
e2[x := v] if ` v : ¬¬¬t

πi(v1, v2) ; vi
rnd(t) ; e if ` e : t

The relation ; is further extended by an inductive context rule:

C[e] ; C[e′] if e; e′

where the notion of (immediate) context is defined by:

C[] ::= ([], e) | (e, [])
| []e | e[]
| (x = [] ∈ t ? e|e) | (x = e ∈ t ? []|e) | (x = e ∈ t ? e|[])
| πi([])
| µf(. . .).λx.[]

As usual, a type safety result will be obtained by a combination of two lem-
mas: subject reduction (or type preservation) and progress (closed and well-typed
expressions which are not values can be reduced).

The reduction rule for application requires the argument to be a value (call-by-
value). In order to understand why, let us consider the application (µf(t→ t×××t; s→
s×××s).λx.(x, x))(rnd(t∨∨∨s)). The type system will assign to the abstraction the type
(t→→→t×××t)∧∧∧(s→→→s×××s). A set-theoretic reasoning shows that this type is a subtype of
(t∨∨∨s) → ((t×××t)∨∨∨(s×××s)). The type system also assigns to the argument rnd(t∨∨∨s)
Journal of the ACM, Vol. 55, No. 4, September 2008.
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the type t∨∨∨s. It will thus also assign the type (t×××t)∨∨∨(s×××s) to the application. If the
semantics permits to reduce this application, we would get as a result the expression
(rnd(t∨∨∨s), rnd(t∨∨∨s)) whose most precise static type is (t∨∨∨s)×××(t∨∨∨s). Clearly, this
type is (in general) a strict supertype of (t×××t)∨∨∨(s×××s). So, if the semantics does not
force the argument to be a value in order to reduce an application, we could not
obtain the subject reduction lemma.

Similarly, the reduction rule for projection requires its argument to be a value.
To understand why, consider the expression e = π1(e1, e2) where e1 is an expression
of type t1 and e2 is a looping expression of type 0 (e.g. (µf(1→ 0).λx.fx)c). The
type system will assign the type t1×××0 to e, but in our system t1×××0 is an empty type
because, intuitively, a set-theoretic Cartesian product with an empty component is
itself empty. If e could be reduced to e1, it would be a violation of type preservation.

The same argument applies to the dynamic type dispatch. If we allowed to reduce
(x = e ∈ t ? e1|e2) to e1[x := e] when ` e : t, even if e is not a value, we could
break type preservation. Consider for instance the case where ` e : 0. In this case,
the type system does not check anything about the branches e1 and e2 (the reason
for this is explained in details later on) and so e1 could be ill-typed. Note that
when e is a value, then the dynamic type dispatch can always be reduced. Indeed,
because our type connectives will be interpreted in a set-theoretic way, we always
have ` v : t or ` v : ¬¬¬t (for any value v and any type t).

3.3 Type system

The semantics we just introduced depends on the typing judgment Γ ` e : t where
Γ is a finite mapping from variables to types (we write ` e : t when Γ is empty).
This judgment, in turn, depends on a subtyping relation ≤ between types that we
are going to introduce later on. For now, we assume it is a parameter of the type
system.

For each constant c, we assume given a basic type bc. The rules are:

Γ ` e : t1 t1 ≤ t2
Γ ` e : t2

(subsum)
Γ ` c : bc

(const)
Γ ` x : Γ(x)

(var)

Γ ` e : t1×××t2
Γ ` πi(e) : ti

(proj)
Γ ` e1 : t1 → t2 Γ ` e2 : t1

Γ ` e1e2 : t2
(appl)

t =
∧∧∧

i=1..n

(ti→→→si)∧∧∧
∧∧∧

j=1..m

¬¬¬(t′j→→→s′j) t 6' 0

∀i = 1..n.Γ, (f : t), (x : ti) ` e : si

Γ ` µf(t1→→→s1; . . . ; tn→→→sn).λx.e : t
(abstr)

Γ ` e : t0

{
t0 6≤ ¬¬¬t ⇒ Γ, (x : t0∧∧∧t) ` e1 : s
t0 6≤ t ⇒ Γ, (x : t0\\\t) ` e2 : s

Γ ` (x = e ∈ t ? e1|e2) : s
(case)

The rule (subsum) causes the type system to depend on the subtyping relation to
Journal of the ACM, Vol. 55, No. 4, September 2008.
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be defined. The rules (const), (pair), (var), (proj), (rnd), and (appl) are standard
or straightforward.

The rule (abstr) is a little bit tricky. Each arrow type ti→→→si in the function
interface is interpreted as a constraint to be checked. The body of the abstraction is
thus type-checked once for each such constraint. When considering the type ti→→→si,
the variable x is assumed to have type ti and the body is checked against type si.
Also, the variable f is assumed to have type t, which is also the type given to the
whole function. Quite intuitively, this type is obtained by taking the intersection
of all the types ti→→→si. But we also add to this intersection any finite number of
complement of arrow types, provided the type t does not become empty. This might
sound surprising, but the reason is actually simple: we want types to be interpreted
as sets of values in such a way that Boolean connectives behave as their set-theoretic
counterpart. In particular, the union of t and ¬¬¬t must always be equivalent to 1,
that is, we need to have the following property: ∀v.∀t.(` v : t) or (` v : ¬¬¬t). In
particular, since a (closed and well-typed) abstraction is value, it must have type
(t→→→s) or type ¬¬¬(t→→→s) for any choice of t and s. If (t→→→s) is a supertype of the
intersection

∧
ti→→→si, the abstraction is known, thanks to the subsumption rule, to

have type (t→→→s). Otherwise, the abstraction must have type ¬¬¬(t→→→s), but since we
cannot use subsumption to prove it, then we need to provide a way to prove it has
type ¬¬¬(t→→→s). This is why we introduce such complements of arrow types in the
rule (abstr). More comments about this rule can be found in Section 7.3.

The rule (case) is easier to read. First, we need to find a type t0 for the expres-
sion whose result will be dynamically type-checked. If this type has a non-empty
intersection with t (t0 6≤ ¬¬¬t), then the first branch might be used. In this case, in
order for the whole expression to have type s, we need to check that e1 has also type
s, assuming that x has type t∧∧∧t0. Indeed, at runtime, the variable x will be bound
to a value resulting from the evaluation of e0. Because of subject reduction, this
value is necessarily of type t0. But in order to type-check e1, we can also assume
that the value has type t. If t0 ≤ ¬¬¬t, then the first branch cannot be used, and
we don’t need to type-check e1. Similarly for e2, replacing t with ¬¬¬t. The ability
to ignore e1 and/or e2 when computing the type for (e ∈ t ? e1 | e2) is impor-
tant to type-check overloaded function. As an example, consider the abstraction
µf(b1→→→b1; b2→→→b2).λx.(x ∈ b1 ? c1 | c2) where b1 and b2 are two non-intersecting
basic types and c1 (resp. c2) is a constant of type b1 (resp. b2). The rule (abstr),
when it considers the arrow type b1→→→b1, checks that the body has type b1 assuming
that x has type b1. Clearly, the typing rule for the dynamic type dispatch must
discard in this case the type of the second branch.

As an aside note that the use of the ex falso quodlibet rule (⊥) yields a simpler
formulation of the case rule:

Γ, x : 0 ` e : t
(⊥)

Γ ` e : t0 Γ, (x : t0∧∧∧t) ` e1 : s Γ, (x : t0\\\t) ` e2 : s

Γ ` (x = e ∈ t ? e1|e2) : s
(case)

The reason why we preferred the previous formulation is that it permits a stronger
and simpler substitution lemma. A second reason to prefer the previous formulation
is that simpler (case) rule above does not easily extend to the full version of CDuce
with general pattern matching, since it would need special treatment for patterns
without any capture variable (since these would not produce any x : 0 hypothesis
Journal of the ACM, Vol. 55, No. 4, September 2008.
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in the environment).

4. SUBTYPING

At this point, we have given the calculus, an operational semantics which depends
on its type system, which, in turn, depends on a subtyping relation still to be
defined. The last missing step to complete the definition of our system is the
subtyping relation. This will be defined by formalizing the ideas we outlined in
Sections 2.6-2.8.

4.1 Set-theoretic interpretations of types

Definition 4.1. A set-theoretic interpretation of T is given by a set D and a
function J_K : T →P(D) such that, for any types t1, t2, t:

—Jt1∨∨∨t2K = Jt1K ∪ Jt2K
—J¬¬¬tK = D\JtK
—J0K = ∅

(A consequence of the conditions is that Jt1∧∧∧t2K = Jt1K∩ Jt2K, Jt1\\\t2K = Jt1K\Jt2K,
and J1K = D.)

This definition does not say anything about the interpretation of atoms. Actually,
using an induction on types, we see that set-theoretic interpretations with domain
D correspond univocally to functions from atoms to P(D).

A set-theoretic interpretation J_K : T → P(D) induces a binary relation ≤JK⊆
T 2 defined by:

t ≤JK s ⇐⇒ JtK ⊆ JsK

This relation actually only depends on the set of empty types. Indeed, we have:
Jt1K ⊆ Jt2K ⇐⇒ Jt1K ∩ (D\Jt2K) = ∅ ⇐⇒ Jt1∧∧∧¬¬¬t2K = ∅. We also get properties
of the relation ≤JK « for free », such as its transitivity, or the monotonicity of the
∨∨∨ and ∧∧∧ constructors, and so on.

4.2 Models of types

We are going to define a notion of model of the type algebra. Intuitively, a model
is a set-theoretic interpretation such that type constructors are interpreted in such
as way that the induced relation ≤JK capture their essence (in the type system of
the calculus), at least as far as subtyping is concerned.

As we explained in Section 2.6, the way to formalize it consists in associating
to the interpretation J_K another interpretation E(_), called extensional, and then
to require, for J_K to be a model, that J_K and E(_) behave the same as long
as subtyping is concerned (that is: JtK ⊆ JsK ⇐⇒ E(t) ⊆ E(s) or, equivalently,
JtK = ∅ ⇐⇒ E(t) = ∅).

For each basic type b, we assume there is a fixed set of constants BJbK ⊆ C whose
elements are called constants of type b. Note that for two basic types b1, b2, the
sets BJbiK can have a non-empty intersection. For any constant c, we assume that
the type bc is a singleton: BJbcK = {c}.

A product type t1×××t2 will of course be interpreted extensionally as the Cartesian
product Jt1K×××Jt2K.
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Things are more complicated for a function type t1→→→t2. Its extensional inter-
pretation should be the set of set-theoretic functions (that is, functional graphs)
f such that ∀d. d ∈ Jt1K ⇒ f(d) ∈ Jt2K. However, the calculus we have in mind
can express non-terminating and/or non-deterministic functions as well. This sug-
gests to consider arbitrary binary relations instead of just functional graphs. Also,
the calculus has a notion of type error: it is not possible to apply an arbitrary
function to an arbitrary value. We are going to take Ω as a special element to
denote this type error. Following this discussion, we interpret the function type
t1→→→t2 as the set of binary relations f ⊆ D×DΩ (where DΩ = D+ {Ω}) such that
∀(d, d′) ∈ f. d ∈ Jt1K⇒ d′ ∈ Jt2K.

Definition 4.2. If D is a set and X,Y are subsets of D, we write DΩ for
D + {Ω} and define X → Y as:

X → Y = {f ⊆ D ×DΩ | ∀(d, d′) ∈ f. d ∈ X ⇒ d′ ∈ Y }

Note that if we replace DΩ with D in this definition, then X → Y is always a
subset of D → D. As we will see shortly, this would imply that any arrow type is
a subtype of 1→→→1. Thanks to the subsumption rule, the application of any well-
typed function to any well-typed argument would then be itself well-typed. Clearly,
this would break type-safety of the calculus. With Definition 4.2, instead, we have
X → Y ⊆ D → D if and only if D = X.

We can now give the formal definition of the extensional interpretation associated
to a set-theoretic interpretation.

Definition 4.3. Let J_K : T →P(D) be a set-theoretic interpretation. We de-
fine its associated extensional interpretation as the unique set-theoretic interpretation
E(_) : T →P(ED) (where ED = C +D2 + P(D ×DΩ)) such that:

E(b) = BJbK ⊆ C
E(t1×××t2) = Jt1K× Jt2K ⊆ D2

E(t1→→→t2) = Jt1K→ Jt2K ⊆P(D ×DΩ)

Finally, we can formalize the fact that a set-theoretic interpretation induces the
same subtyping relation as if the type constructors were interpreted in an exten-
sional way.

Definition 4.4. A set-theoretic interpretation J_K : T → P(D) is a model if
it induces the same subtyping relation as its associated extensional interpretation:

∀t1, t2 ∈ T . Jt1K ⊆ Jt2K ⇐⇒ E(t1) ⊆ E(t2)

Thanks to a remark in Section 4.1, the condition for a set-theoretic interpretation
to be a model can be reduced to:

∀t ∈ T . JtK = ∅ ⇐⇒ E(t) = ∅

At this point, we can derive many properties about ≤J_K which directly follow
from the fact that it is induced by a model. For instance, the co-/contra-variance of
the arrow type constructor, and equivalences such as (t1→→→s)∧∧∧(t2→→→s) ' (t1∨∨∨t2)→→→s,
can be immediately derived from the definition of the extensional interpretation.
The meta-theoretic study of the system relies in a crucial way on many of such
Journal of the ACM, Vol. 55, No. 4, September 2008.



4.3 Well-foundedness · 19

properties. With a more axiomatic approach for defining the subtyping relation,
e.g. by a system of inductive or coinductive rules, we would probably need much
more work to establish these properties, and we would not have the same level of
trust that we did not forget any rule.

4.3 Well-foundedness

The notion of model captures the intended local behavior of type constructors with
respect to subtyping. However, it fails to capture a global property of the calculus,
namely that values are finite binary trees (where leaves are either constants or
abstractions). For instance, let us consider the recursive type t = t×××t. Intuitively,
a value v has this type if and only if it is a pair (v1, v2) where v1 and v2 also have
type t. To build such a value, we would need to consider an infinite tree, which is
ruled out. As a consequence, the type t contains no value.

We will introduce a new criterion to capture this property of finite decomposition
of pairs.

Definition 4.5. A set-theoretic interpretation J_K : T → P(D) is structural
if:

—D2 ⊆ D;
—for any types t1,t2: Jt1×××t2K = Jt1K× Jt2K;
—the binary relation on D induced by (d1, d2) . di is Noetherian.

Definition 4.6. A model J_K : T → P(D) is well-founded if it induces the
same subtyping relation as a structural set-theoretic interpretation.

5. MAIN RESULTS

Let us fix an arbitrary model J_K : T →P(D), which we call the bootstrap model.
It induces a subtyping relation, which we simply write ≤. In turn, this subtyping
relation defines a typing judgment Γ ` e : t for the calculus and thus also a notion of
value and a reduction relation e; e′. We can now state four groups of theoretical
results about our system. This first group (Section 5.1) expresses the fact that
our notion of models implies that the type system and the semantics are mutually
coherent. The second group (Section 5.2) justifies our approach for defining the
subtyping relation with a detour through the notion of models: indeed, we can in
fine re-interpret types as sets of values, and this creates a new model equivalent to
the bootstrap model (if it is well-founded). The third group of results (Section 5.3)
shows that the notion of model is not void, by expressing the existence of (several
different) models satisfying the various conditions. Finally, we focus (Section 5.4) on
the effectiveness of the subtyping and typing relations and devise simple subtyping
algorithms.

5.1 Type soundness

As announced earlier, we have the two classical lemmas which entail type soundness
(proofs in Section 6.6).

Theorem 5.1 (Subject reduction). Let e be an expression and t a type. If
(Γ ` e : t) and (e; e′), then (Γ ` e′ : t).
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Theorem 5.2 (Progress). Let e be a well-typed closed expression. If e is not
a value, then there exists an expression e′ such that e; e′.

It is worth noticing that the proof of Theorem 5.2 (given in Section 6.6) does not
use reductions under abstractions or inside the branches of dynamic type dispatch,
therefore Progress still holds if we disallow such reductions. Of course, subject
reduction also holds in that case. This means that a weak reduction strategy (as
implemented typically in programming languages) enjoys type soundness, too. In
the setting of programming languages, proving the subject reduction property also
for a semantics that includes strong reduction rules is useful because these rules
correspond to possible compile-time optimizations.

Theorem 5.3. For every types t and t1 such that t ≤ t1→→→1, there exists a type
t2 such that, for every value v:

` v : t2 ⇐⇒ ∃vf , vx. (vfvx
?
; v) ∧ (` vf : t) ∧ (` vx : t1)

This type is the smallest solution to the equation t ≤ t1→→→s.
This result is proved in Section 6.11. The type t2 in the statement of the theorem
above represents exactly all the possible results (i.e. is the set of all values that)
we may get when applying a closed expression e1 of type t to a closed expression
e2 of type t1. Since t ≤ t1→→→t2, the type system allows us to derive type t2 for
the application e1e2. In other words, the typing rule (appl) is locally exact: it
does not introduce any new approximation to those already made when typing its
arguments.

5.2 Closing the loop

The type system naturally defines a new interpretation of types as sets of values:

J_KV : T →P(V ), t 7→ {v | ` v : t}

It turns out that this interpretation satisfies the conditions of Definitions 4.1
and 4.5 (proof in Section 6.4):

Theorem 5.4. The function J_KV is a structural set-theoretic interpretation.

A natural question is whether this set-theoretic interpretation is a model. If this
is the case, we would like to compare the subtyping relation it induces with the one
used to define the type system (which was induced by the bootstrap model). The
following theorem answers both questions (proof in Section 6.5):

Theorem 5.5. The following properties are equivalent:

(1 ) The interpretation J_KV is a model.
(2 ) The interpretations J_KV and J_K induce the same subtyping relation.
(3 ) The bootstrap model J_K is well-founded.

When the interpretation J_KV is a model, we could use it as a new bootstrap
model, define a new type system, and so on. The theorem says that this iteration
is, because the old and the new bootstrap model already induce the same subtyping
relation.

Note that the type soundness results do not depend on the fact that the interpre-
tation J_KV is a model. It holds even if the bootstrap model is not well-founded.
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5.3 Construction of models

All the results above would be void if we could not build a model. In this section,
we claim the existence of models with specific properties (proofs in Section 6.8 and
Section 6.10). Models can be compared by the amount of subtyping they allow. If
J_K1 and J_K2 are two models, we write J_K1 � J_K2 if:

∀t, s ∈ T .JtK1 ≤ JsK1 ⇒ JtK2 ≤ JsK2

A model J_K2 is universal if J_K1 � J_K2 for any other model J_K1. In other words,
a model is universal if the subtyping relation it induces is the largest possible one.
Clearly, two universal models induce the same subtyping relation.

Theorem 5.6. There exists a well-founded and universal model.

The next theorem shows that the notions of universality and well-foundedness
are not automatic.

Theorem 5.7. There exists a model which is not well-founded. There exists a
well-founded model which is not universal.

5.4 Decidability results

Finally, our system would be of little practical use if we were not able to decide
the subtyping and typing relations. Fortunately, the decidability of the inclusion
of basic types implies the following theorem.

Theorem 5.8. The subtyping relation induced by universal models is decidable.

The proof of decidability (Section 6.9) essentially relies on three components: (i)
the regularity of types, (ii) some algebraic properties of universal models, and (iii)
the equivalence between subtyping and type emptiness problems (remember that
s ≤ t ⇐⇒ s\t ' 0.). The algebraic properties of the model can be used to
decompose a type t into a set of types ti’s such that: (i) t ' 0 if and only if all
ti ' 0 and (ii) the ti’s are Boolean combinations of sub-terms of t (Section 6.2). We
also introduce the concept of simulation (Definition 6.9) which characterizes sets of
types that are closed with respect to the previous decomposition. By construction
a type is equivalent to 0 if and only if there exists a simulation containing it (in that
case, the simulation represents a co-inductive proof of its emptiness). A regular type
has only a finite number of unique sub-terms, therefore it suffices to enumerate all
the possible sets of Boolean combinations of its sub-terms and test whether any of
them is a simulation (which is decidable for finite sets, and more efficient algorithms
exist).

Decidability of subtyping does not immediately yield decidability of the typing
relation, the problem being that the use of the negated arrows in the typing rule
(abstr) makes the minimum typing property fail. Therefore we need to introduce a
new syntactic category, type schemes: a type-scheme represents the set of all valid
types for a well typed expression (Section 6.12). This technical construction allows
us to state the decidability of the type-checking problem.

Theorem 5.9. When the subtyping relation is decidable, the type checking prob-
lem (deciding whether Γ ` e : t for given Γ, e, t) is decidable.
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6. FORMAL DEVELOPMENT

In this section, we establish the theorems stated in the previous section and other
intermediate lemmas. It can be skipped in the first reading.

6.1 Disjunctive normal forms for types

We write A for atoms and we use the meta-variable a to range over atoms. There
are three kinds of atoms (and values), which we denote by the meta-variable u
ranging over the set U = {prod, fun,basic}.

We write Afun for atoms of the form t1→→→t2, Aprod for atoms of the form t1×××t2,
and Abasic for basic types. We have A = Afun + Aprod + Abasic. For what
concerns values, their kinding too is straightforward: values of the form c, (v1, v2),
and µf(. . .).λx.e have respectively kind basic,prod, and fun.

Every type can be seen as a finite Boolean combination of atoms. It is convenient
to work with disjunctive normal forms.

Definition 6.1. A (disjunctive) normal form τ is a finite set of pairs of finite
sets of atoms, that is, an element of Pf (Pf (A ) ×Pf (A )) (where Pf denotes the
finite powerset).
If J_K : T → P(D) is an arbitrary set-theoretic interpretation and τ a normal

form, we define JτK as:

JτK =
⋃

(P,N)∈τ

⋂
a∈P

JaK ∩
⋂
a∈N

(D\JaK)

(Note that, with the convention that an intersection over an empty set is taken to
be D, JτK ⊆ D.)

Lemma 6.2. For every type t ∈ T , it is possible to compute a normal form N (t)
such that for every set-theoretic interpretation J_K, JtK = JN (t)K.

Proof: We will actually define two functions N and N ′, both from types to
Pf (Pf (A )×Pf (A )), by mutual induction over types.

N (0) = ∅
N (a) = {({a},∅)}
N (t1∨∨∨t2) = N (t1) ∪N (t2)
N (¬¬¬t) = N ′(t)
N ′(0) = {(∅,∅)}
N ′(a) = {(∅, {a})}
N ′(t1∨∨∨t2) = {(P1 ∪ P2, N1 ∪N2) | (P1, N1) ∈ N ′(t1), (P2, N2) ∈ N ′(t2)}
N ′(¬¬¬t) = N (t)

We check by induction over the type t the following property:

JtK = JN (t)K = D\JN ′(t)K

As an example, consider the type t = a1∧∧∧(a2∨∨∨¬¬¬a3) where a1, a2, a3 are three
atoms. Then N (t) = {({a1, a2},∅), ({a1}, {a3})}. This corresponds to the fact
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that t and (a1∧∧∧a2)∨∨∨(a1∧∧∧¬¬¬a3) have the same interpretation for any set-theoretic
interpretation of the type algebra.

Note that the converse result is true as well: for any normal form τ , we can find
a type t such that JtK = JτK for any set-theoretic interpretation. Normal forms are
thus simply a different, but handy, syntax for types. In particular, we can rephrase
in Definition 4.4 the condition for a set-theoretic interpretation to be a model as:
for any normal form τ , JτK = ∅ ⇐⇒ E(τ) = ∅.

For these reason henceforth we will often confound the notions of types and
normal form, and we will often speak of the type τ , taking the latter as a canonical
representative of all the types in N −1(τ).

6.2 Study of the subtyping relation

Definition 4.4 is rather intensional. In this section, we establish a more extensional
criterion for a set-theoretic interpretation to be a model.

Let J_K be a set-theoretic interpretation. We are interested in comparing the
assertions E(τ) = ∅ and JτK = ∅, for a normal form τ . Clearly, E(τ) = ∅ is
equivalent to:

∀(P,N) ∈ τ.
⋂
a∈P

E(a) ⊆
⋃
a∈N

E(a) (3)

Let us write EbasicD = C , EprodD = D2, EfunD = P(D ×DΩ). We have ED =⋃
u∈U EuD where U = {prod, fun,basic}. We can thus rewrite (3) as:

∀u ∈ U.∀(P,N) ∈ τ.
⋂
a∈P

(E(a) ∩ EuD) ⊆
⋃
a∈N

(E(a) ∩ EuD) (4)

Since JaK ∩ EuD = ∅ if a 6∈ Au and JaK ∩ EuD = JaK if a ∈ Au, we can rewrite (4)
as:

∀u ∈ U.∀(P,N) ∈ τ.(P ⊆ Au)⇒

(⋂
a∈P

E(a) ⊆
⋃

a∈N∩Au

E(a)

)
(5)

(where the intersection is taken to be EuD when P = ∅.)
To further decompose these predicates, we will take advantage of the set-theoretic

interpretation of the semantic subtyping and rely on two set-theoretic facts, one for
product types, one for arrow types. Let us introduce some new notation that will
make formulae clearer, and then start with product types, following an argument
similar to the one used by Hosoya, Vouillon and Pierce [Hosoya et al. 2000].

Notation 6.3. Let S1, S2 denote two sets such that S1 ⊆ S2. We use S1
S2 to

denote the complement of S1 with respect to S2, that is S2\S1.

Lemma 6.4. Let (Xi)i∈P , (Xi)i∈N (resp. (Yi)i∈P , (Yi)i∈N ) be two families of
subsets of D1 (resp. D2). Then:(⋂
i∈P

Xi × Yi

)
\

(⋃
i∈N

Xi × Yi

)
=

⋃
N ′⊆N

(⋂
i∈P

Xi\
⋃
i∈N ′

Xi

)
×

⋂
i∈P

Yi\
⋃

i∈N\N ′

Yi


(with the conventions:

⋂
i∈∅Xi×Yi = D1×D2;

⋂
i∈∅Xi = D1 and

⋂
i∈∅ Yi = D2)
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Note that we use the same notation for elements in the families (Xi)i∈P and
(Xi)i∈N . This is not problematic since the sets P and N can be different.

Proof: First, we notice that:

Xi × Yi
D1×D2

=
(
Xi

D1 ×D2

)
∪
(
D1 × Yi

D2
)

By distributing intersections over unions, we get:⋂
i∈N

Xi × Yi
D1×D2

=

⋃
N ′⊆N

 ⋂
i∈N ′

(
Xi

D1 ×D2

)
∩

⋂
i∈N\N ′

(
D1 × Yi

D2
) =

⋃
N ′⊆N

 ⋂
i∈N ′

Xi
D1 ×

⋂
i∈N\N ′

Yi
D2


And finally:(⋂

i∈P
Xi × Yi

)
∩

(⋂
i∈N

Xi × Yi
D1×D2

)
=

⋃
N ′⊆N

(⋂
i∈P

Xi ∩
⋂
i∈N ′

Xi
D1

)
×

⋂
i∈P

Yi ∩
⋂

i∈N\N ′

Yi
D2


We get the expected result by applying De Morgan laws.

We get an immediate corollary.

Lemma 6.5. Let P,N be two finite subsets of Aprod. We have:⋂
a∈P

E(a) ⊆
⋃
a∈N

E(a) ⇐⇒

∀N ′ ⊆ N.

t ∧∧∧
t1×××t2∈P

t1∧∧∧
∧∧∧

t1×××t2∈N ′

¬¬¬t1

|

= ∅ ∨

u

v
∧∧∧

t1×××t2∈P
t2∧∧∧

∧∧∧
t1×××t2∈N\N ′

¬¬¬t2

}

~ = ∅

(with the convention
⋂
a∈∅ E(a) = EprodD).

We will now establish a similar result for arrow types. We first decompose the
set-theoretic → operator (Definition 4.2) into more primitive operators: powerset,
complement, Cartesian product.

Lemma 6.6. Let X,Y ⊆ D. Then:

X → Y = P

(
X × Y DΩ

D×DΩ
)

Proof: The result comes from a simple computation:

X → Y = {f ⊆ D ×DΩ | ∀(x, y) ∈ f. ¬(x ∈ X ∧ y 6∈ Y )}
= {f ⊆ D ×DΩ | f ∩X × Y

DΩ
= ∅}

= {f ⊆ D ×DΩ | f ⊆ X × Y
DΩ

D×DΩ
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Lemma 6.7. Let (Xi)i∈P and (Xi)i∈N be two families of subsets of D. Then:⋂
i∈P

P(Xi) ⊆
⋃
i∈N

P(Xi) ⇐⇒ ∃io ∈ N.
⋂
i∈P

Xi ⊆ Xi0

Proof: The ⇐ implication is simple: if
⋂
i∈P Xi ⊆ Xi0 with i0 ∈ N , then⋂

i∈P P(Xi) = P(
⋂
i∈P Xi) ⊆P(Xi0) ⊆

⋃
i∈N P(Xi). Let us prove the oppo-

site direction. We assume that
⋂
i∈P P(Xi) ⊆

⋃
i∈N P(Xi). The set

⋂
i∈P Xi

belongs to all the P(Xi) for i ∈ P . It is thus in the union of all the P(Xi)
for i ∈ N . We can thus find some i0 ∈ N such that

⋂
i∈P Xi ∈ P(Xi0), which

concludes the proof.

Lemma 6.8. Let P and N be two finite subsets of Afun. Then:⋂
a∈P

E(a) ⊆
⋃
a∈N

E(a)

⇐⇒

∃(t0→→→s0)∈N. ∀P ′ ⊆ P.

t

t0\\\

( ∨∨∨
t→→→s∈P ′

t

)|

= ∅ ∨


P 6= P ′

∧u

v

 ∧∧∧
t→→→s∈P\P ′

s

\\\s0

}

~ = ∅

(with the convention
⋂
a∈∅ E(a) = EfunD).

Proof: The result follows from Lemmas 6.6, 6.7, and 6.4, by noticing that in
the condition

⋂
t→→→s∈P\P ′ JsK ⊆ Js0K which appears, the convention is to interpret

the intersection as being DΩ if P = P ′, which makes the inclusion impossible.

Lemma 6.8 tells us how to decompose subtyping between arrow types. For in-
stance, we can deduce from the lemma that E((t1→→→s1)∧∧∧(t2→→→s2)) ⊆ E(t→→→s) holds
if and only if the four following properties are satisfied:

—JtK = ∅ or Js1∧∧∧s2K ⊆ JsK
—JtK ⊆ Jt1K or Js2K ⊆ JsK
—JtK ⊆ Jt2K or Js1K ⊆ JsK
—JtK ⊆ Jt1∨∨∨t2K

Lemmas 6.5 and 6.8, together with the property (5) suggest the following defini-
tion and give immediately the result of Theorem 6.10 below.

Definition 6.9 (Simulation). Let S be an arbitrary set of normal forms. We
define another set of normal forms ES by:

ES = {τ | ∀u ∈ U.∀(P,N) ∈ τ. (P ⊆ Au ⇒ CP,N∩Au
u )}

Journal of the ACM, Vol. 55, No. 4, September 2008.



26 · 6 FORMAL DEVELOPMENT

where:

CP,Nbasic ::= C ∩
⋂
b∈P

BJbK ⊆
⋃
b∈N

BJbK

CP,Nprod ::= ∀N ′ ⊆ N.



N

( ∧∧∧
t1×××t2∈P

t1∧∧∧
∧∧∧

t1×××t2∈N ′

¬¬¬t1

)
∈ S

∨

N

 ∧∧∧
t1×××t2∈P

t2∧∧∧
∧∧∧

t1×××t2∈N\N ′

¬¬¬t2

 ∈ S

CP,Nfun ::= ∃t0→→→s0 ∈ N. ∀P ′ ⊆ P.



N

(
t0∧∧∧

∧∧∧
t→→→s∈P ′

¬¬¬t

)
∈ S

∨

P 6= P ′

∧

N

(¬¬¬s0)∧∧∧
∧∧∧

t→→→s∈P\P ′

s

 ∈ S

We say that S is a simulation if:

S ⊆ ES

The intuition is that if we consider the statements of Lemmas 6.5 and 6.8 as if they
were rewriting rules (from right to left), then ES contains all the types that we can
deduce in one step reduction to be empty when we suppose that the types in S are
empty. A simulation is thus a set that is already saturated w.r.t. such a rewriting.
In particular, if we consider the statements of Lemmas 6.5 and 6.8 as inference
rules for determining when a type is equal to 0, then ES is the set of immediate
consequences of S , and a simulation is a self-justifying set, that is a co-inductive
proof of the fact that all its elements are equal to 0. Of course this latter property
will play a crucial role to decide the subtyping relation (see Section 6.9).

Theorem 6.10. Let J_K : T → P(D) be a set-theoretic interpretation. We
define a set of normal forms S by:

S = {τ | JτK = ∅}

Then:

ES = {τ | E(τ) = ∅}

Proof: Immediate consequence of Lemmas 6.5 and 6.8.

Corollary 6.11. Let J_K be a set-theoretic interpretation of types. We define
as above S = {τ | JτK = ∅}. Then J_K is a model if and only if S = ES .
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This Corollary implies that the condition for a set-theoretic interpretation to be a
model depends only on the subtyping relation it induces.

Corollary 6.12. Let J_K1 : T →P(D1) be a model and J_K2 : T →P(D2)
be a set-theoretic interpretation. Then the following assertions are equivalent:

—J_K2 is a model and it induces the same subtyping relation as J_K1.
—for any type t, JtK1 = ∅ ⇐⇒ JtK2 = ∅.

The following lemma, which is an immediate corollary of Lemma 6.8 gives sev-
eral properties about subtyping between arrow types in a model, which will be
needed to study the meta-theory of the type system (see the proofs of Lemma 6.15,
Lemma 6.21, Lemma 6.37).

Lemma 6.13 (Strong disjunction for arrows). Let ≤ be the subtyping re-
lation induced by a model, and P ,N two finite sets of arrow types. Then:∧∧∧

a∈P
a ≤

∨∨∨
a∈N

a ⇐⇒ ∃a0 ∈ N.
∧∧∧
a∈P

a ≤ a0

From this we immediately deduce that:

If P ,N are finite sets of arrow types and if a0 is an arrow type, if we define t as∧∧∧
a∈P a\\\

∨∨∨
a∈N a and if we assume that t 6' 0, then:

t ≤ a0 ⇐⇒
∧∧∧
a∈P

a ≤ a0

If P ,N1,N2 are finite sets of arrow types, then:∧∧∧
a∈P

a 6≤
∨∨∨
a∈N1

a

∧∧∧∧
a∈P

a 6≤
∨∨∨
a∈N2

a

 ⇐⇒
∧∧∧
a∈P

a 6≤
∨∨∨

a∈N1∪N2

a

6.3 Syntactical meta-theory of the type system

In this section and in the following one, we fix a bootstrap model J_K : T →P(D),
we write ≤ for the induced subtyping relation and ' for the associated equivalence
relation, and we study the resulting typing judgment Γ ` e : t.

Lemma 6.14 (Strengthening). Let Γ1 and Γ2 be two typing environments
such that for any x in the domain of Γ1, we have Γ2(x) ≤ Γ1(x). If Γ1 ` e : t, then
Γ2 ` e : t.

Proof: Induction on the derivation of Γ1 ` e : t. We simply introduce an
instance of the subsumption rule below each instance of the (var) rule.

Lemma 6.15 (Admissibility of the intersection rule). If Γ ` e : t1 and
Γ ` e : t2, then Γ ` e : t1∧∧∧t2.
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Proof: By induction on the structure of the two typing derivations.
Let us first consider the case when the last rule applied to one of the two deriva-
tions is (subsum), say:

. . .
Γ ` e : s1 s1 ≤ t1

Γ ` e : t1

. . .
Γ ` e : t2

The induction hypothesis gives Γ ` e : s1∧∧∧t2. But s1∧∧∧t2 ≤ t1∧∧∧t2 because s1 ≤ t1,
and a new application of (subsum) gives Γ ` e : t1∧∧∧t2 as expected.
In all the remaining cases, the two derivations end with an instance of the same
rule (which depends on the toplevel constructor of e).
Rules (const), (var), (rnd): Those rules give only one possible type t for e, and
t∧∧∧t ' t.
Rule (appl): The situation is as follows:

. . .
Γ ` e1 : t1→→→t2

. . .
Γ ` e2 : t1

Γ ` e1e2 : t2

. . .
Γ ` e1 : t′1→→→t′2

. . .
Γ ` e2 : t′1

Γ ` e1e2 : t′2

The induction hypothesis gives Γ ` e1 : (t1→→→t2)∧∧∧(t′1→→→t′2) and Γ ` e2 : t1∧∧∧t′1. To
conclude, it is enough to check that (t1→→→t2)∧∧∧(t′1→→→t′2) ≤ (t1∧∧∧t′1)→→→(t2∧∧∧t′2), which
can be proved as follows:

E((t1→→→t2)∧∧∧(t′1→→→t′2))
= (Jt1K→ Jt2K) ∩ (Jt′1K→ Jt′2K)
= {f ∈ EfunD | ∀(x, y) ∈ f.(x ∈ Jt1K⇒ y ∈ Jt2K) ∧ (x ∈ Jt′1K⇒ y ∈ Jt′2K)}
⊆ {f ∈ EfunD | ∀(x, y) ∈ f.(x ∈ Jt1K ∩ Jt′1K⇒ y ∈ (Jt2K ∩ Jt′2K)}
= E((t1∧∧∧t′1)→→→(t2∧∧∧t′2))

Rule (pair): The situation is as follows:
. . .

Γ ` e1 : t1

. . .
Γ ` e2 : t2

Γ ` (e1, e2) : t1×××t2

. . .
Γ ` e1 : t′1

. . .
Γ ` e2 : t′2

Γ ` (e1, e2) : t′1×××t′2
Let t′′1 = t1∧∧∧t′1 and t′′2 = t2∧∧∧t′2. By applying the induction hypothesis twice, we
get Γ ` e1 : t′′1 and Γ ` e2 : t′′2 . The rule (pair) gives Γ ` (e1, e2) : t′′1×××t′′2 . To
conclude, it is enough to see that t′′1×××t′′2 ' (t1×××t2)∧∧∧(t′1×××t′2). Indeed:

E(t′′1×××t′′2) = (Jt1K ∩ Jt′1K)× (Jt2K ∩ Jt′2K) = Jt1∧∧∧t2K ∩ Jt′1∧∧∧t′2K = E((t1×××t2)∧∧∧(t′1×××t′2))

Rule (case): Let us consider this situation:
. . .

Γ ` e : t0

. . .
(x : ti),Γ ` ei : s

Γ ` (x = e ∈ t ? e1|e2) : s

. . .
Γ ` e : t′0

. . .
(x : t′i),Γ ` ei : s′

Γ ` (x = e ∈ t ? e1|e2) : s′

with t1 = t0∧∧∧t, t2 = t0\\\t, t′1 = t′0∧∧∧t, t′2 = t′0\\\t. The induction hypothesis gives:
Γ ` e : t′′0 with t′′0 = t0∧∧∧t′0. Let us define t′′1 = t′′0∧∧∧t and t′′2 = t′′0\\\t. Let i ∈ {1, 2}.
We have t′′i ≤ ti and thus, according to Lemma 6.14, (x : t′′i ),Γ ` ei : s. Similarly,
we get (x : t′′i ),Γ ` ei : s′, and thus, applying again the induction hypothesis
(x : t′′i ),Γ ` ei : s′′ where s′′ = s∧∧∧s′. Then, with the (case) rule, we establish
Γ ` (x = e ∈ t ? e1|e2) : s′′ as expected.
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The special cases (where ti ' 0 or t′i ' 0) are similar.
Rule (abstr): Let us consider two applications of the rule (abstr) to the same
abstraction µf(t1→→→s1; . . . ; tn→→→sn).λx.e with the following types:

t =
∧∧∧

i=1..n

(ti→→→si)∧∧∧
∧∧∧

j=1..m

¬¬¬(t′j→→→s′j)

t′ =
∧∧∧

i=1..n

(ti→→→si)∧∧∧
∧∧∧

j=m+1..m′

¬¬¬(t′j→→→s′j)

where t 6' 0 and t′ 6' 0. We define:

t′′ =
∧∧∧

i=1..n

(ti→→→si)∧∧∧
∧∧∧

j=1..m′

¬¬¬(t′j→→→s′j)

We have t′′ ' t∧∧∧t′. We only need to verify that some instance of the rule (abstr)
allows us to deduce the type t′′ for the abstraction. For i = 1..n, we have,
by hypothesis (f : t), (x : ti),Γ ` e : si, and thus, according to Lemma 6.14,
(f : t′′), (x : ti),Γ ` e : si. Then, we check that t′′ 6' 0, which results immediately
from Lemma 6.13. In this case, we have not used the induction hypothesis.

Corollary 6.16. Let Γ be a typing environment and e an expression which is
well-typed under Γ. Then the set {t ∈ T | (Γ ` e : t)∨ (Γ ` e : ¬¬¬t)} contains 0 and
is closed under ∨∨∨ and ¬¬¬ (and thus ∧∧∧).

Proof: Let E be the set introduced in the statement. It is clearly closed under
¬¬¬ and invariant under the equivalence '. We have Γ ` e : 1 = ¬¬¬0 because
of the subsumption rule, and thus 0 ∈ E. What remains is to prove that E is
closed under ∨∨∨. So let us take two elements t1 and t2 in E. If Γ 6` e : t1∨∨∨t2,
then because of (subsum), we get Γ 6` e : t1 and Γ 6` e : t2. Because t1 and
t2 are in E, we thus have Γ ` e : ¬¬¬t1 and Γ ` e : ¬¬¬t2. Lemma 6.15 then
gives Γ ` e : ¬¬¬t1∧∧∧¬¬¬t2. And ¬¬¬t1∧∧∧¬¬¬t2 ' ¬¬¬(t1∨∨∨t2). We have thus proved that
Γ ` e : t1∨∨∨t2 or Γ ` e : ¬¬¬(t1∨∨∨t2).

Lemma 6.17 (Substitution). Let e, e1, . . . , en be expressions, x1, . . . , xn dis-
tinct variables, t, t1, . . . , tn types, and Γ a typing environment. Then:{

(x1 : t1), . . . , (xn : tn),Γ ` e : t
∀i = 1..n. Γ ` ei : ti

⇒ Γ ` e[x1 := e1; . . . ;xn := en] : t

Proof: By induction on the typing derivation for (x1 : t1), . . . , (xn : tn),Γ ` e : t.
We simply “plug” a copy of the derivation for Γ ` ei : ti wherever the rule (var)
is used for variable xi.

6.4 Interpreting types as sets of values

The syntactical properties obtained in the previous section are used here to prove
some properties about the interpretation of types as sets of values, as defined in
Section 5.2: JtKV = {v | ` v : t}
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Lemma 6.18. If t ≤ s, then JtKV ⊆ JsKV . In particular, if t ' s, then JtKV =
JsKV .

Proof: Consequence of the subsumption rule.

Lemma 6.19. J0KV = ∅.

Proof: We prove that (` v : t) ⇒ t 6' 0 by induction on the typing deriva-
tion. There are four cases to consider (one per value constructor, one for the
subsumption rule). All of them are trivial.

Lemma 6.20. Jt1∧∧∧t2KV = Jt1KV ∩ Jt2KV .

Proof: Lemma 6.18 gives Jt1∧∧∧t2KV ⊆ JtiKV for i ∈ {1, 2}, and thus Jt1∧∧∧t2KV ⊆
Jt1KV ∩ Jt2KV . Lemma 6.15 gives the opposite inclusion.

Lemma 6.21 (Inversion).

Jt1×××t2KV = {(v1, v2) | ` v1 : t1,` v2 : t2}
JbKV = {c | bc ≤ b}
Jt→→→sKV = {(µf(t1→→→s1; . . . ; tn→→→sn).λx.e) ∈ V . |

∧∧∧
i=1..n

ti→→→si ≤ t→→→s}

Moreover, if v is a value and a is an atom of a different kind, then ` v : ¬¬¬a.

Proof: For the three equalities, the ⊇ inclusion is straightforward.
To prove the three opposite inclusions, let us start with a general remark. A
derivation for ` v : t can always be described as an instance of the rule corre-
sponding to the kind of v (rule (const) for constants, (pair) for pairs, and (abstr)
for abstractions), followed by zero or more instance of (subsum). That is, we
can always find another type t′ ≤ t such that ` v : t′ is obtained by a direct
application of the typing rule corresponding to v. If t is an atom a, then v is
necessarily of the same kind as a. Indeed, if v is a pair, then t′ is a product type;
if v is a constant, t′ is a basic type; if v is an abstraction, t′ is an intersection of
one or more arrow types (and maybe of zero or more negation of arrow types).
In all cases, t′∩a ' 0 if a and v do not have the same kind, but since t′ ≤ a, this
means that t′ ' 0, which is impossible by Lemma 6.19. We also have proved the
final remark in the statement of the Lemma (because if a and v does not have
the same kind, then t′ ≤ ¬¬¬a, and thus ` v : ¬¬¬a).
Case ` v : t1×××t2:. The value is necessarily a pair (v1, v2) such that ` v1 : t′1,
` v2 : t′2, and t′1×××t′2 ≤ t1×××t2. But t′1 6' 0 and t′2 6' 0 because of Lemma 6.19, and
thus t′1 ≤ t1 and t′2 ≤ t2. By subsumption, we get ` v1 : t1 and ` v2 : t2.
Case ` v : b: The value is necessarily a constant c such that bc ≤ b.
Case ` v : t→→→s: The value is necessarily an abstraction
µf(t1→→→s1; . . . ; tn→→→sn).λx.e. Here, the type t′ has the form:∧∧∧

i=1..n

(ti→→→si)∧∧∧
∧∧∧

j=1..m

¬¬¬(t′j→→→s′j)
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with t′ 6' 0 and t′ ≤ t→→→s. We can therefore apply the second point of Lemma 6.13
and deduce: ∧∧∧

i=1..n

(ti→→→si) ≤ t→→→s

Lemma 6.22. J¬¬¬tKV = V \JtKV .

Proof:
We have (t∧∧∧¬¬¬t) ' 0 and, thus, JtKV ∩ J¬¬¬tKV = Jt∧∧∧¬¬¬tKV = J0KV = ∅. So it
remains to prove that JtKV ∪ J¬¬¬tKV = V , that is:

∀v.∀t. (` v : t) ∨ (` v : ¬¬¬t)

We proceed by induction over the pair (v, t). Thanks to Corollary 6.16, we can
assume that t is an atom a. Lemma 6.21 gives ` v : ¬¬¬a if a and v do not have
the same kind. Now, we assume they have the same kind.
Case v = c: We have ` c : bc. The set E(bc) is a singleton (namely {c}), and thus
E(bc) ⊆ E(a) or E(bc) ⊆ E(¬¬¬a), that is: bc ≤ a or bc ≤ ¬¬¬a. By subsumption, we
get ` bc : a or ` bc : ¬¬¬a.
Case v = (v1, v2), a = t1×××t2: If ` v1 : t1 and ` v2 : t2, we get ` v : a. Otherwise,
say 6` v1 : t1, we get ` v1 : ¬¬¬t1 by the induction hypothesis, and ` v2 : 1 always
holds, and thus we get ` v : (¬¬¬t1)×××1. We conclude this case by the observation
that (¬¬¬t1)×××1 ≤ ¬¬¬(t1×××t2).
Case v = µf(t1→→→s1; . . . ; tn→→→sn).λx.e, a = t→→→s: It is easy to see that ` v : a if∧∧∧
i=1..n ti→→→si ≤ a and ` v : ¬¬¬a otherwise.

Lemma 6.23. Jt1∨∨∨t2KV = Jt1KV ∪ Jt2KV .

Proof: Using Lemmas 6.22, 6.20 and 6.18, we get: Jt1∨∨∨t2KV =
J¬¬¬((¬¬¬t1)∧∧∧(¬¬¬t2))KV = V \(J¬¬¬t1KV ∩ J¬¬¬t2KV ) = V \(V \Jt1KV \Jt2KV ) = Jt1KV ∪
Jt2KV .

From Lemmas 6.22, 6.23 and 6.19, we get that J_KV is a set-theoretic interpre-
tation.

To conclude the proof of Theorem 5.4, we need to check that it is structural.
Clearly V 2 ⊆ V and Lemma 6.21 gives Jt1×××t2KV = Jt1KV × Jt2KV . Also, the
relation induced by (v1, v2) . vi is clearly Noetherian.

6.5 Closing the loop

In this section, we detail the proof of Theorem 5.5. We start with a lemma that
shows that for an arbitrary finite set of arrow types, we can always find a well-
typed and closed abstraction (hence a value) having exactly this set of types in its
interface. This fact will be used in the proof of Lemma 6.26.
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Lemma 6.24. For every non-empty and finite family of arrow types t1→→→s1, . . . , tn→→→sn,
the expression µf(t1→→→s1; . . . ; tn→→→sn).λx.fx is a value.

Proof: Direct application of the typing rules and from the definition of val-
ues.

Lemma 6.25. In every model, JtK = ∅ ⇐⇒ J1→ tK ⊆ J1→ 0K holds true.

Proof: Lemma 6.8 tells us that, in a model, J1→ tK ⊆ J1→ 0K is equivalent to
(J1K ⊆ J0K ∨ JtK ⊆ J0K) ∧ (J1K ⊆ J1K), which is itself equivalent to JtK = ∅.

Lemma 6.26. The set-theoretic interpretation J_KV is a model if and only if it
induces the same subtyping relation as J_K.

Proof: The ⇐ implication is given by Corollary 6.12. Let us assume that
J_KV is a model and prove that JtKV = ∅ ⇐⇒ t ' 0 for any type t. The
⇐ implication is given by Lemma 6.19. Let t be a type such that JtKV = ∅.
Because J_KV is a model, Lemma 6.25 gives: J1→ tKV ⊆ J1→ 0KV . Now we
consider the expression v = µf(1→ t).λx.fx. According to Lemma 6.24, it is a
value. According to Lemma 6.21, it is an element of J1→ tKV , and thus also of
J1→ 0KV , which means that 1 → t ≤ 1 → 0 (again Lemma 6.21), and finally
that t ' 0 (Lemma 6.25 for the model J_K).

Lemma 6.27. If the bootstrap model is well-founded, then J_KV is a model.

Proof: By definition of a well-founded model, there is a structural set-theoretic
interpretation which induces the same subtyping relation as the bootstrap model.
It is thus also a model. Since the type system and J_KV only depend on this sub-
typing relation, we can assume that the bootstrap model is not only well-founded
but also structural. We will use the Noetherian relation . from Definition 4.5.
We need to prove that, for every type t, JtKV = ∅ ⇐⇒ t ' 0. The ⇐
implication is given by Lemma 6.19 and Lemma 6.18. We actually prove by
induction (using the . relation) that for all d ∈ D, the following property holds:
(∀t ∈ T . d ∈ JtK⇒ JtKV 6= ∅).
Consider a type t such that d ∈ JtK. If d = (d1, d2) ∈ D2, then it is in the set

JtK ∩D2 =
⋃

(P,N)∈N (t)

(
D2 ∩

⋂
a∈P

JaK\
⋃
a∈N

JaK

)

We can thus find (P,N) ∈ N (t) such that d ∈ D2 ∩
⋂
a∈P JaK\

⋃
a∈N JaK. Note

that if a is an atom which is not a product type, then D2∩JaK = J1×××1K∩JaK = ∅,
because E(1×××1) ∩ E(a) = ∅. We can thus assume that P ⊆ Aprod, and we have
d ∈

⋂
t1×××t2∈P (Jt1K × Jt2K)\

⋃
t1×××t2∈N (Jt1K × Jt2K). If we write d = (d1, d2), then
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Lemma 6.4 gives some N ′ ⊆ N such that d1 ∈ Js1K and d2 ∈ Js2K for:
s1 =

∧∧∧
t1×××t2∈P

t1\\\
∨∨∨

t1×××t2∈N ′

t1

s2 =
∧∧∧

t1×××t2∈P
t2\\\

∨∨∨
t1×××t2∈N\N ′

t2

The induction hypothesis applied to d1 and d2 gives Js1KV 6= ∅ and Js2KV 6= ∅,
and thus Js1×××s2KV 6= ∅. To conclude this case, we observe that s1×××s2 ≤ t, using
again Lemma 6.4.
Now, we assume that d 6∈ D2 = J1×××1K. We thus have d ∈ Jt\\\1×××1K, which
implies that t\\\1×××1 6' 0. As a consequence E(t\\\1×××1) 6= ∅, and thus E(t) ∩
(ED\EprodD) 6= ∅. We are in at least one of the two cases:
E(t) ∩ C 6= ∅: let c ∈ E(t) ∩ C . We have E(bc) = {c} ⊆ E(t), and thus bc ≤ t.
We conclude that ` c : t.
E(t) ∩ EfunD 6= ∅: we have:

E(t) ∩ EfunD =
⋃

(P,N)∈N (t) s.t. P⊆Afun

(
EfunD ∩

⋂
a∈P

E(a)\
⋃
a∈N

E(a)

)

This set is not empty. We can thus find an element (P,N) in N (t) such
that P = {t1→→→s1, . . . , tn→→→sn}, N ∩ Afun = {t′1→→→s′1, . . . , t′m→→→s′m}, and t′ =∧∧∧
i=1..n ti→→→si\\\

∨∨∨
j=1..m t

′
j→→→s′j 6' 0. We have t′ ≤ t and the value v =

µf(t1→→→s1; . . . ; tn→→→sn).λx.fx has type t′ (direct application the typing rule for
abstractions). By subsumption, we get ` v : t.

Lemmas 6.27 and 6.26 entail Theorem 5.5.

6.6 Type soundness

Here is the proof of the subject reduction property, Theorem 5.1 in Section 5.

Proof: If (Γ ` e : t), then we prove by induction on the derivation for Γ ` e : t
that ∀e′.(e; e′)⇒ (Γ ` e′ : t). We consider the last rule used in the derivation
of Γ ` e : t.
Rule (subsum): we have Γ ` e : s ≤ t and e ; e′. The induction hypothesis
gives Γ ` e′ : s, and by subsumption we get Γ ` e′ : t.
Rules (const),(var): the expression e is a constant or a variable. It cannot be
reduced.
Rule (proj): we have e = πi(e0), t = ti, Γ ` e0 : t1×××t2. If e′ is obtained by
reducing e0, that is, e0 ; e′0 and e′ = πi(e

′
0), we get, by the induction hypothesis:

Γ ` e′0 : t1×××t2 and thus Γ ` e′ : ti. If e′ is obtained by reducing the toplevel πi in
e, then necessarily e0 is a value (v1, v2) (and thus, by Lemma 6.21: Γ ` vi : ti),
and e′ = vi. We get Γ ` e′ : ti.
Rule (rnd): we have e = rnd(t). The reduction rule for this expression gives
` e′ : t, which implies Γ ` e′ : t by Lemma 6.14.
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Rule (pair): we have e = (e1, e2), t = t1×××t2, and Γ ` ei : ti for i = 1..2. The
only possible way to reduce e is to reduce one of the ei, say e′ = (e′1, e2) where
e1 ; e′1. The induction hypothesis gives Γ ` e′1 : t1, and we get Γ ` e′ : t1×××t2.
Rule (appl): we have e = e1e2, Γ ` e1 : s → t and Γ ` e2 : s. If e′ is obtained
by reducing e1 or e2, we proceed as in the case for the (pair) rule. Otherwise,
we have necessarily e1 = µf(s1→→→t1; . . . ; sn→→→tn).λx.e0, e′ = e0[f := e1;x := e2]
and e2 is a value v2. We have

∧∧∧
i∈I si→→→ti ≤ s → t, where I = {1, . . . , n}

(Lemma 6.21). According to Lemma 6.8, this means that s ≤
∨∨∨
i∈I si and that

for any non-empty I ′ ⊆ I such that s 6≤
∨∨∨
i∈I\I′ si, we have

∧∧∧
i∈I′ ti ≤ t. We

take I ′ = {i ∈ I | ` v2 : si}. This set is not empty. Indeed, since ` v2 : s
and s ≤

∨∨∨
i∈I si, we have at least one i such that ` v2 : si (Lemma 6.23).

Now, we claim that s 6≤
∨∨∨
i∈I\I′ si. Otherwise, we would find some i 6∈ I ′ such

that ` v2 : si, which contradicts the definition for I ′. As a consequence, we
get

∧∧∧
i∈I′ ti ≤ t. We claim that Γ ` e′ :

∧∧∧
i∈I′ ti (which by subsumption yields

Γ ` e′ : t i.e. the result). To prove our claim we show that for every i ∈ I ′ we have
Γ ` e′ : ti, which thanks to Lemma 6.15 yields our claim. So, let us consider any
i ∈ I ′, that is, any i such that ` v2 : si. The abstraction e1 is well-typed under
Γ therefore in its derivation there is an instance of the (abstr) rule (possibly
followed by several applications of the subsumption rule) which infers for e1 a
type t′ under Γ. One of the premises of this rule is (f : t′), (x : ti),Γ ` e0 : ti.
We also have Γ ` e1 : t′ and Γ ` v2 : si (Lemma 6.14), and thus Γ ` e′ : ti
(Lemma 6.17) as expected.
Rule (abstr): the expression e is an abstraction, and the reduction can only occur
within its body. We proceed as in the case for the (pair) rule.
Rule (case): we have e = (x = e0 ∈ s ? e1 | e2). If the reduction occurs within
one of the sub-expressions e0,e1,e2, we proceed as in the case for the (pair)
rule. Otherwise, the expression e0 is necessarily a value v, and we have either
(` v : s) ∧ (e′ = e1[x := v]) or (` v : ¬¬¬s) ∧ (e′ = e2[x := v]). Let us consider for
instance the first case. The typing rule gives: Γ ` v : s0. Thanks to Lemma 6.15,
we get Γ ` v : s0∧∧∧s. Because of Lemma 6.19, we know that s0∧∧∧s 6' 0, that is
s0 6≤ ¬¬¬s. So the typing rule (case) under consideration has a premise for e1,
namely (x : s0∧∧∧s),Γ ` e1 : t. Lemma 6.17 gives Γ ` e′ : t as expected.

And here is the proof of the progress property, Theorem 5.2 in Section 5. Note
that this proof is relatively standard.

Proof: We write e 6; if e cannot be reduced ( 6 ∃e′.e; e′). Suppose that ` e : t;
we prove on induction on the derivation of ` e : t that either e is a value or it
can be reduced. We consider the last rule used in this derivation.
Rule (subsum): straightforward application of the induction hypothesis.
Rule (var): a variable cannot be well-typed in an empty environment. This case
is thus impossible.
Rule (const): the expression e is a constant. It is thus a value.
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Rule (abstr): the expression e is an abstraction which is well-typed under the
empty environment. It is thus a value.
Rule (proj): we have e = πi(e0), t = ti, ` e0 : t1×××t2. If e0 can be reduced to,
say, e′0, then e ; πi(e

′
0). Otherwise, if e0 6;, then by the induction hypothesis

e0 is a value. By Lemma 6.21, we get e0 = (v1, v2), and thus e; vi.
Rule (rnd): we have e = rnd(t) and thus e; e′ for any e′ of type t (for instance,
we can take for e′ an expression of type 0, which exists).
Rule (pair): we have e = (e1, e2), t = t1×××t2, and ` ei : ti for i = 1..2. If one of
the ei can be reduced, then e can also be reduced. Otherwise, by the induction
hypothesis, we obtain that both e1 and e2 are values, and so is e.
Rule (appl): we have e = e1e2, ` e1 : s → t and ` e2 : s. If one of the
ei can be reduced, then e can also be reduced. Otherwise, by the induction
hypothesis, we obtain that both e1 and e2 are values. By Lemma 6.21, we get
e1 = µf(s1→→→t1; . . . ; sn→→→tn).λx.e0. Then e; e0[f := e1;x := e2].
Rule (case): we have e = (x = e0 ∈ s ? e1 | e2). If e0 can be reduced, then
e can also be reduced. Otherwise, by the induction hypothesis, we obtain that
e0 is a value v. Because of Lemma 6.23, we have ` v : s or ` v : ¬¬¬s, and thus
e; e1[x := v] or e; e2[x := v].

6.7 Construction of models

A naive idea to build a model would be to look for an interpretation domain D such
that D = ED. Of course such a set cannot exist, since the cardinality of EfunD, and
thus of ED, is strictly larger than the cardinality of D. This cardinality problem
can be avoided by considering only finite graphs to interpret functions. As we will
show below, this does not affect the subtyping relation.

For any set D, we write EfD = C + D2 + Pf (D × DΩ) where Pf denotes the
restriction of the powerset to finite subsets.

Definition 6.28. A set-theoretic interpretation J_K : T →P(D) is finitely extensional
if:

(1 ) D = EfD

(2 ) JaK = E(a) ∩D for any atom a.

Lemma 6.29. If J_K is a finitely extensional set-theoretic interpretation, then
JtK = E(t) ∩D for any type t, and JτK = E(τ) ∩D for any normal formal τ .

Proof: Induction on t.

The next lemma shows that taking finite sets as extensional models for func-
tions does not change the subtyping relation between arrow types (compare it with
Lemma 6.7).
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Lemma 6.30. Let (Xi)i∈P and (Xi)i∈N be two finite families of subsets of D.
Then: ⋂

i∈P
Pf (Xi) ⊆

⋃
i∈N

Pf (Xi) ⇐⇒ ∃io ∈ N.
⋂
i∈P

Xi ⊆ Xi0

Proof: The⇐ implication is straightforward. Let us prove⇒. We assume that
any finite subset of X =

⋂
i∈P Xi is a subset of one of the Xi0 with i0 ∈ N .

We need to prove that the same holds for X itself. Otherwise, we could find for
each i0 ∈ N an element xi0 ∈ X\Xi0 and we would obtain a contradiction by
considering the finite set {xi0 | i0 ∈ N}.

Lemma 6.31. Let P,N be two finite sets of arrow types and J_K an arbitrary
set-theoretic interpretation. Then:⋂

a∈P
E(a) ⊆

⋃
a∈N

E(a) ⇐⇒ Pf (D ×DΩ) ∩
⋂
a∈P

E(a) ⊆
⋃
a∈N

E(a)

(By convention
⋂
a∈∅ E(a) = P(D ×DΩ).)

Proof: Consequence of Lemmas 6.7, 6.30, and 6.6.

It is, then, not surprising that finitely extensional interpretations are models.

Lemma 6.32. Every finitely extensional interpretation is a model.

Proof: Since JτK = E(τ) ∩D, we need to prove that

E(τ) = ∅ ⇐⇒ E(τ) ∩D = ∅

for any normal form τ . We write:

E(τ) =
⋃
u∈U

⋃
(P,N)∈τ

(
EuD ∩

⋂
a∈P

E(a)\
⋃
a∈N

E(a)

)

So we need to prove that for any u ∈ U and (P,N) two finite sets of atoms, we
have:

EuD ∩
⋂
a∈P

E(a) ⊆
⋃
a∈N

E(a) ⇐⇒ D ∩ EuD ∩
⋂
a∈P

E(a) ⊆
⋃
a∈N

E(a)

If u 6= fun, then EuD ⊆ D, and the equivalence is thus trivial. The case u = fun
comes from Lemma 6.31.

6.8 A universal model

In this section, we define a structural and finitely extensional model and then show
that it is universal and, in the next section, that the subtyping relation induced by
this model is decidable.

We need to build a set D0 such that D0 = EfD0, that is, a solution to the
equation D0 = C +D0 ×D0 + Pf (D0 ×D0

Ω). We will consider the initial solution
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to this equation. Concretely, we define D0 as the set of finite terms generated by
the production d of the following grammar (c ranges over elements of C ):

d ::= c | (d, d) | {(d, d′), . . . , (d, d′)}
d′ ::= d | Ω

Now, we need to define a set-theoretic interpretation J_K0
: T → P(D0) such

that JtK0
= E(a)0 ∩D0. Because of the inductive structure of elements of D0, this

equation actually defines the function J_K0. To see this, we will define a binary
predicate (d : t) where d ∈ D0 and t ∈ T . The truth value of (d : t) is defined by
induction on the pair (d, t) ordered lexicographically, using the inductive structure
for elements of D0, and the induction principle we mentioned earlier for types. Here
is the definition:

(c : b) = c ∈ BJbK
((d1, d2) : t1×××t2) = (d1 : t1) ∧ (d2 : t2)
({(d1, d

′
1), . . . , (dn, d

′
n)} : t1→→→t2) = ∀i. (di : t1)⇒ (d′i : t2)

(d : t1∨∨∨t2) = (d : t1) ∨ (d : t2)
(d : ¬¬¬t) = ¬(d : t)
(d : t) = false otherwise

Now we define JtK0
= {d ∈ D0 | (d : t)}. It is straightforward from this definition

to see that J_K0 is a set-theoretic interpretation and that it is structural (and thus
well-founded). It is also clear that it is finitely extensional. It is thus a model. It
remains to prove that this model is universal. This is a direct consequence of the
next lemma.

Lemma 6.33. If S 0 = {τ | JτK0
= ∅} and S is a simulation, then S ⊆ S 0.

Proof: Let S be a simulation. We need to prove that ∀τ ∈ S . JτK0
= ∅, that

is:
∀d ∈ D0.∀τ ∈ S . d 6∈ JτK0

We will prove this property by induction on d ∈ D0. Let’s take d ∈ D0 and
τ ∈ S . Since S is a simulation, we also have τ ∈ ES , that is:

∀u ∈ U.∀(P,N) ∈ t. (P ⊆ Au ⇒ CP,N∩Au
u ) (6)

where the conditions CP,Nu are as in Definition 6.9.
We need to prove that d 6∈ JτK0. The set JτK0 is equal to:⋃

(P,N)∈τ

⋂
a∈P

JaK0\
⋃
a∈N

JaK0

We prove that d does not belong to any of the terms of this union. Let (P,N) ∈
τ and u be the kind of d (as for values, it is straightforward to associate a
unique kind to each element of D0). If a ∈ A \Au, then clearly d 6∈ JaK0. As a
consequence, if P 6⊆ Au, then d 6∈

⋂
a∈P JaK0\

⋃
a∈N JaK0. We now assume that

P ⊆ Au. We can apply (6). We obtain that CP,N∩Au
u holds. It remains to prove

that:
d 6∈

⋂
a∈P

JaK0\
⋃

a∈N∩Au

JaK0
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u = basic, d = c. The condition CP,N∩Au
u is:

C ∩
⋂
b∈P

BJbK ⊆
⋃
b∈N

BJbK

As a consequence, we get:

d 6∈
⋂
b∈P

BJbK\
⋃
b∈N

BJbK =
⋂
a∈P

JaK0\
⋃

a∈N∩Abasic

JaK0

u = prod, d = (d1, d2). The condition CP,N∩Au
u is:

∀N ′ ⊆ N ∩Aprod.



N

( ∧∧∧
t1×××t2∈P

t1∧∧∧
∧∧∧

t1×××t2∈N ′

¬¬¬t1

)
∈ S

∨

N

 ∧∧∧
t1×××t2∈P

t2∧∧∧
∧∧∧

t1×××t2∈N\N ′

¬¬¬t2

 ∈ S

For each N ′, we apply the induction hypothesis to d1 and to d2. We get:

d1 6∈

t ∧∧∧
t1×××t2∈P

t1∧∧∧
∧∧∧

t1×××t2∈N ′

¬¬¬t1

|0

∨ d2 6∈

u

v
∧∧∧

t1×××t2∈P
t2∧∧∧

∧∧∧
t1×××t2∈N\N ′

¬¬¬t2

}

~

0

That is:

d 6∈

( ⋂
t1×××t2∈P

Jt1K
0\

⋃
t1×××t2∈N ′

Jt1K
0

)
×

 ⋂
t1×××t2∈P

Jt2K
0\

⋃
t1×××t2∈N\N ′

Jt2K
0


According to Lemma 6.4 and to Jt1K

0 × Jt2K
0

= Jt1×××t2K0, we thus get:

d 6∈
⋂
a∈P

JaK0\
⋃

a∈N∩Aprod

JaK0

u = fun, d = {(d1, d
′
1), . . . , (dn, d

′
n)}. The condition CP,N∩Au

u says that there
exists t0→→→s0 ∈ N such that, for all P ′ ⊆ P :

N

(
t0∧∧∧

∧∧∧
t→→→s∈P ′

¬¬¬t

)
∈ S ∨


P 6= P ′

N

(¬¬¬s0)∧∧∧
∧∧∧

t→→→s∈P\P ′

s

 ∈ S

Applying the induction hypothesis to the di and d′i (note that if d′i = Ω, then
d′i 6∈ JτK0 is trivial for all τ):

di 6∈

t

t0∧∧∧
∧∧∧

t→→→s∈P ′

¬¬¬t

|0

∨


P 6= P ′

d′i 6∈

u

v(¬¬¬s0)∧∧∧
∧∧∧

t→→→s∈P\P ′

s

}

~

0
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Let us first assume that ∀i. (di ∈ Jt0K
0 ⇒ d′i ∈ Js0K

0
). Then we have d ∈

Jt0→→→s0K
0. Otherwise, let us consider i such that di ∈ Jt0K

0 and d′i 6∈ Js0K
0. The

formula above gives for any P ′ ⊆ P :(
di ∈

⋃
t→→→s∈P ′

JtK0

)
∨

P ′ 6= P ∧ d′i ∈ {Ω} ∪
⋃

t→→→s∈P\P ′

J¬¬¬sK0


Let’s take P ′ = {t→→→s ∈ P | di 6∈ JtK0}. We have di 6∈

⋃
t→→→s∈P ′ JtK0, and thus

P ′ 6= P and d′i ∈ {Ω} ∪
⋃
t→→→s∈P\P ′ J¬¬¬sK0. We can thus find t→→→s ∈ P\P ′ such

that d′i 6∈ JsK0, and because t→→→s 6∈ P ′, we also have di ∈ JtK0. We have thus
proved that d 6∈ Jt→→→sK0 for some t→→→s ∈ P .
In both cases, we get:

d 6∈
⋂
a∈P

JaK0\
⋃

a∈N∩Afun

JaK0

6.9 Decidability of subtyping for the universal model

We will now focus on Theorem 5.8. Let ≤0 denote the subtyping relation in-
duced by the universal model J_K0. We have t1 ≤0 t2 ⇐⇒ Jt1\\\t2K0

= ∅ ⇐⇒
JN (t1\\\t2)K0

= ∅. Therefore we need to show how to decide, for a given normal
form τ0, whether Jτ0K

0
= ∅ or not. Thanks to the Lemma above, we get: Jτ0K

0
= ∅

if and only if there exists a simulation S such that τ0 ∈ S .
Actually, we can restrict our attention to a finite number of normal forms. Indeed,

let us consider the set A of all the atoms that occur in τ0 (including atoms nested in
other atoms). Thanks to the regularity of types, this set A is finite. Write N (A)
for the set of normal forms built only on top of these atoms, that is: N (A) =
P(P(A)×P(A)). This set is also finite, and looking at Definition 6.9, we see that
an intersection of a simulation and N (A) is again a simulation. As a consequence,
we get: Jτ0K

0
= ∅ if and only if there exists a simulation S ⊆ N (A) such that

τ0 ∈ S . A naive algorithm can simply enumerate all the subset of N (A) which
contain τ0 and by applying Definition 6.9 check whether one of them is a simulation.

Of course, there exist better algorithms. For instance, we can interpret the
definition of a simulation as saturation rules: the algorithm starts from the set
{τ0} and tries to saturate it until it obtains a simulation. Because of the disjunc-
tions in the definition of a simulation, this algorithm needs to explore different
branches. A branch cannot be infinite because the algorithm will only consider
the normal forms in N (A) which is a finite set. There exists a simulation which
contains τ0 if and only if one of the branches succeeds in reaching a simulation. The
Ph.D. thesis [Frisch 2004] describes two algorithms that improve over this simple
saturation-based strategy. These algorithms are those implemented in the CDuce
compiler [CDUCE ] and, as such, they are daily tested on large and complex types
such as the XHTML DTD.
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6.10 Non-universal models

The interpretation domain D of a finitely extensional set-theoretic interpretation
must be a solution to the equation D = EfD. In the previous section, we considered
the initial solution to this equation and we obtained a universal model. In this
section, we will build non-universal models by considering non-initial solutions to
the equation D = EfD.

A first attempt could be to consider infinite (or maybe regular) terms generated
by the following productions:

d ::= c | (d, d) | {(d, d′), . . . , (d, d′)}
d′ ::= d | Ω

But it is then impossible to build a finitely extensional interpretation on this domain
D∞. Indeed, if J_K is such an interpretation, we consider the element d ∈ D∞

such that d = (d, d) and the type t such that t = (¬¬¬t)×××(¬¬¬t). Since d ∈ D∞

and JtK = E(t) ∩ D∞ = (D∞\JtK) × (D∞\JtK), we have: d ∈ JtK ⇐⇒ (d, d) ∈
(D∞\JtK)× (D∞\JtK) ⇐⇒ d 6∈ JtK. Contradiction.

So, we will build domains which are intermediate between D0 and D∞. We need
to introduce some new notions.

For an arbitrary set X, we define D[X] as the set of finite terms generated by the
production d below:

d ::= x | c | (d, d) | {(d, d′), . . . , (d, d′)}
d′ ::= d | Ω

where x ranges over elements of X. In other words, D[X] is the initial solution D
to the equation D = X + C +D2 + Pf (D×DΩ). We define the predicate ∆ ` d : t
for d ∈ D[X], t ∈ T , ∆ ∈P(T )X by induction on the structure of d:

(∆ ` d : t1∨∨∨t2) = (∆ ` d : t1) ∨ (∆ ` d : t2)
(∆ ` d : ¬¬¬t) = ¬(∆ ` d : t)
(∆ ` c : b) = c ∈ BJbK
(∆ ` (d1, d2) : t1×××t2) = (∆ ` d1 : t1) ∧ (∆ ` d2 : t2)
(∆ ` {(d1, d

′
1), . . . , (dn, d

′
n)} : t1→→→t2) = ∀i. (∆ ` di : t1)⇒ (∆ ` d′i : t2)

(∆ ` x : a) = a ∈ ∆(x)
(∆ ` d : t) = false otherwise

A congruence onD[X] is an equivalence relation≡ such that (d1
1 ≡ d2

1∧d1
2 ≡ d2

2)⇒
(d1

1, d
1
2) ≡ (d2

1, d
2
2) and (∀i.d1

i ≡ d2
i ∧ d

′1
i ≡ d

′2
i ) ⇒ {(d1

1, d
′1
1 ), . . .} ≡ {(d2

1, d
′2
1 ), . . .}.

If for all x, we choose an element dx ∈ Ef (D[X]) = D[X]\X and if we consider
the smallest congruence ≡ such that ∀x ∈ X.x ≡ dx, then the quotient D[X]

≡ =

D[X]/ ≡ is such that Ef (D
[X]
≡ ) = D

[X]
≡ (modulo an implicit bijection). Note that

this quotient looks a lot like D0, except that there are some non well-founded
elements. Let’s choose some ∆ ∈P(T )X . We require the predicate (∆ ` d : t) to
be invariant under ≡, that is: d1 ≡ d2 ⇒ ((∆ ` d1 : t) ⇐⇒ (∆ ` d2 : t)). This is
the case if and only if ∀x.(∆ ` x : t) ⇐⇒ (∆ ` dx : t), that is, if and only if:

(∗) ∀x ∈ X. ∆(x) = {t | ∆ ` dx : t}

When this property holds, we can define J_K∆ : T → P(D
[X]
≡ ) by JtK∆ =
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{[d]≡ | (∆ ` d : t)}, where [d]≡ denotes the equivalence class of d modulo ≡.
This defines a finitely extensional set-theoretic interpretation (and thus a model).

Of course, the difficulty is now to choose X, the dx and ∆ such that (∗) holds.
Let us consider the case where X = Z, and each dk, k ∈ Z is defined using only
dk−1 in a uniform way. Formally, we consider a fixed element δ ∈ D{•} such that
δ 6= • and we define dk = δ[• := k − 1] (that is, the element of DZ obtained by
substituting • by k − 1 in δ). If ∆ ∈ P(T )Z, then ∆ ` dk : t is equivalent to
∆ ` δ[• := k − 1] : t, and an induction on the structure of δ shows that this is
equivalent to (• 7→ ∆k−1) ` δ : t (from now on, we write ∆k instead of ∆(k)). If
we define the operator F : P(T )→P(T ) by F (T ) = {t | (• 7→ T ) ` δ : t}, then
the condition (∗) can be rewritten as:

∀k ∈ Z. ∆k = F (∆k−1)

Building such a sequence is not straightforward. We will rely on a technical
lemma.

Lemma 6.34. Let A be a finite set, f : A → A, and a0 ∈ A. There exists a
unique periodic sequence (ak)k∈Z ∈ AZ such that:

∃n0 ∈ N.∀k ≥ n0.ak = fk(a0)

(where fn denotes the n-th iterated composition of f with itself). This sequence is
such that:

∀k. ak+1 = f(ak)

Proof: We consider the sequence (an)n∈N defined by an = fn(a0). Since A
is finite, this sequence cannot be injective. We can find n0 < n1 such that
an0 = an1 . A recurrence gives an = an+(n1−n0) for any n ≥ n0: the sequence
(an)n∈N is ultimately periodic. As a consequence, there exists a unique sequence
(ak)k∈Z which coincides ultimately with (an)n∈N.
Clearly, the property ak+1 = f(ak) holds for k large enough, and because (ak)k∈Z

is periodic, it holds for any k.

Theorem 6.35. Let T 0 be a set of types. There exists a sequence (∆k)k∈Z such
that:

—∀k ∈ Z.∆k+1 = F (∆k)

—For any type t, the sequence of the truth values of (t ∈ ∆k)k∈Z is periodic and
∃n0 ∈ N.∀k ≥ n0.(t ∈ ∆k ⇐⇒ t ∈ F k(T 0))

Proof: Since the set P(T ) is not finite, we cannot use the lemma directly. The
regularity of types will come to the rescue. We define a cone as a finite set of types
which is closed under subterms decomposition (that is, if the set contains a type,
it also contains all its subterms). Any type belongs to some cone because a type
is a regular term. For a cone C, we can define the function FC : P(C)→P(C)
by FC(T ) = F (T )∩C. We can apply the lemma to this function, because P(C)
is finite. We write (TCk )k∈Z for the sequence we obtain. Now, we observe on the
definition of the ` predicate that for t ∈ C, the assertion (• 7→ T ) ` δ : t holds
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if and only if (• 7→ (T ∩ C)) ` δ : t holds. This gives immediately the following
property:

∀T ⊆ T . C ∩ F (T ∩ C) = C ∩ F (T )

From that, a recurrence gives FnC(T 0) = Fn(T 0) ∩ C. So, for t ∈ C, we have
t ∈ TCk ⇐⇒ t ∈ F k(T0) when k is large enough. Since the sequence (t ∈ TCk )k∈Z

is periodic, it does not depend on the choice of the cone C which contains t.
We can thus define ∆k as the set of types t such that t ∈ TCk for some/any
cone C that contains t. We have TCk = ∆k ∩ C. It remains to check that
∆k+1 = F (∆k) for all k. Let t be a type and C a cone which contains t.
We have t ∈ ∆k+1 ⇐⇒ t ∈ TCk+1 and according to the lemma, we have
TCk+1 = F (TCk ) ∩ C = F (∆k) ∩ C. So: t ∈ ∆k+1 ⇐⇒ t ∈ F (∆k). Since
this property holds for an arbitrary t, we get ∆k+1 = F (∆k) as expected.

We will give two examples of constructions based on this theorem. First, we will
build a model which is not well-founded. In a well-founded model, the recursive
type t0 = t0×××t0 is empty. We will build a model where this type is not empty.
We take δ = (•, •) and we build (∆k)k∈Z as given by the theorem. We thus get a
finitely extensional set-theoretic interpretation J_K∆ : T → P(DZ

≡). For any set
of types T , we have t0 ∈ F (T ) ⇐⇒ (• 7→ T ) ` δ : t0 ⇐⇒ (• 7→ T ) ` (•, •) :
t0×××t0 ⇐⇒ (• 7→ T ) ` • : t0 ⇐⇒ t0 ∈ T . So if we choose T 0 such that t0 ∈ T 0,
we have t0 ∈ ∆k for all k, from which we conclude that Jt0K∆ contains the [k]≡ for
k ∈ Z. In particular, it is not empty. To better understand our construction, we
can consider the type t1 = (¬¬¬t1)×××(¬¬¬t1). We find that t1 ∈ F (T ) ⇐⇒ t1 6∈ T and
we deduce that Jt1K∆ contains the [k]≡ for all even k ∈ Z (if t1 ∈ T 0) or for all
k ∈ Z (if t1 6∈ T 0). For more complex recursive types, we might see other periods
that 2.

Now, we will build a structural (and thus well-founded) model which is not
universal. We consider the recursive type t0 = (0→→→0)\\\(t0→→→0). If J_K is a finitely
extensional set-theoretic interpretation, a simple computation gives:

Jt0K = {{(di, d′i) | ∃i. di ∈ Jt0K}}

In particular, this set is empty for the universal model built in the previous section
(because its elements are finite trees). We take δ = {(•,Ω)} and we proceed as
above, with the following computation: t0 ∈ F (T ) ⇐⇒ (• 7→ T ) ` δ : t0 ⇐⇒
(• 7→ T ) ` {(•,Ω)} : (0→→→0)\\\(t0×××0) ⇐⇒ (• 7→ T ) ` • : t0 ⇐⇒ t0 ∈ T . We
conclude by taking T 0 such that t0 ∈ T 0 that the model J_K∆ is not universal.
It remains to see that it is structural. The decomposition relation . is defined by
([d1]≡, [d2]≡) . [di]≡. Because of the definition of δ, if [d]≡ . [d′]≡, then d must be
a pair (d1, d2) in DZ ×DZ . As a consequence, the relation . is Noetherian.

6.11 Towards type-checking

In this section, we introduce notions that will be useful to derive a type-checking
algorithm. We also give the proof of Theorem 5.3 (local exactness of the application
rule). The existence results in this section are effective (viz. it is possible to compute
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the objects whose existence is asserted) provided that the subtyping relation is
decidable.

Lemma 6.36. Let t be a type such that t ≤ 1×××1. There exists a finite set of
pairs of types π(t) ∈Pf (T 2) such that:

—t '
∨∨∨

(t1,t2)∈π(t)

t1×××t2

—∀(t1, t2) ∈ π(t). t1 6' 0 ∧ t2 6' 0

Proof: We can write:

t '
∨∨∨

(P,N)∈N (t) s.t. P⊆Aprod

(1×××1)∧∧∧
∧∧∧
a∈P

a\\\
∨∨∨

a∈N∩Aprod

a

Using Lemma 6.4, we can rewrite any intersection of product types and comple-
ment of product types as a union of product types P ′ ⊆ Aprod:

t '
∨∨∨
a∈P ′

a

We simply define π(t) as {(t1, t2) | t1×××t2 ∈ P ′ ∧ t1 6' 0 ∧ t2 6' 0}.

Lemma 6.37. Let t be a type such that t ≤ 0→→→1. Then there exists a finite set
of pairs of types ρ(t) ∈Pf (T 2) and a type Dom(t) such that:

∀t1, t2. (t ≤ t1→→→t2) ⇐⇒
{
t1 ≤ Dom(t)
∀(s1, s2) ∈ ρ(t). (t1 ≤ s1) ∨ (s2 ≤ t2)

Proof: We can write:

t '
∨∨∨

(P,N)∈N (t) s.t. P⊆Afun

(0→→→1)∧∧∧
∧∧∧
a∈P

a\\\
∨∨∨

a∈N∩Afun

a

Clearly, the Lemma is true for t ' 0 (with Dom(t) = 1 and ρ(t) = ∅), and if it
holds for t and t′, then it also holds for t∨∨∨t′ (with Dom(t∨∨∨t′) = Dom(t)∧∧∧Dom(t′)
and ρ(t∨∨∨t′) = ρ(t)∪ ρ(t′)). We can thus assume without loss of generality that t
has the form:

t =
∧∧∧
a∈P

a\\\
∨∨∨
a∈N

a

with P,N ⊆ Afun, P 6= ∅, and t 6' 0. Lemma 6.13 gives: t ≤ t1→→→t2 ⇐⇒∧∧∧
a∈P a ≤ t1→→→t2 and Lemma 6.8 tells us how to decompose this subtyping into:

∀P ′ ⊆ P.

(
t1 ≤

∨∨∨
s1→→→s2∈P ′

s1

)
∨

P 6= P ′ ∧
∧∧∧

s1→→→s2∈P\P ′

s2 ≤ t2


We can thus define:

Dom(t) =
∨∨∨

s1→→→s2∈P
s1
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ρ(t) = {(
∨∨∨

s1→→→s2∈P ′

s1,
∧∧∧

s1→→→s2∈P\P ′

s2) | P ′ ( P}

Corollary 6.38. Let t and t1 be two types. If t ≤ t1→→→1, then t ≤ t1→→→t2 has a
smallest solution t2 which we write t • t1.

Proof: Since t ≤ t1→→→1, we have t1 ≤ Dom(t). The assertion t ≤ t1→→→t2 is thus
equivalent to:

∀(s1, s2) ∈ ρ(t). (t1 ≤ s1) ∨ (s2 ≤ t2)

that is:  ∨∨∨
(s1,s2)∈ρ(t) s.t. (t1 6≤s1)

s2

 ≤ t2
We write t • t1 for the left-hand side of this equation.

We can now prove Theorem 5.3.

Proof: Let t, t1 be two types such that t ≤ t1→→→1. Clearly, if ` vf : t and
` vx : t1, then ` vfvx : t • t1, and thus, subject reduction gives ` v : t • t1 if
vfvx

?
; v.

Let us prove the opposite implication:

∀v. ` v : t • t1 ⇒ ∃vf , vx. (vfvx
?
; v) ∧ (` vf : t) ∧ (` vx : t1)

This property is clearly true for t ' 0, and if it is true for t and t′, then it is
true for t∨∨∨t′ (because 0 • t1 ' 0 and (t∨∨∨t′) • t1 ' (t • t1)∨∨∨(t′ • t1)). We can thus
assume, as in the proof of Lemma 6.37, that t has the form:

t =
∧∧∧
a∈P

a\\\
∨∨∨
a∈N

a

with P,N ⊆ Afun, P 6= ∅, and t 6' 0. Following the same argument as in the
proof of Lemma 6.37, we get:

t • t1 =
∨∨∨

P ′(P s.t. t1 6≤
∨∨∨

t′1→→→t′2∈P ′ t′1

 ∧∧∧
t′1→→→t′2∈P\P ′

t′2


and

t1 ≤
∨∨∨

t′1→→→t′2∈P

t′1

Let v be a value of type t • t1. We can find P ′ ( P such that t1 6≤
∨∨∨
t′1→→→t′2∈P ′ t′1

and ` v :
∧∧∧
t′1→→→t′2∈P\P ′ t′2. Let vx be a value of type t1\\\

∨∨∨
t′1→→→t′2∈P ′ t′1 and vf the

Journal of the ACM, Vol. 55, No. 4, September 2008.



6.12 Type-checking algorithm · 45

abstraction

µf(P ).λx. (y = x ∈
∨∨∨

t′1→→→t′2∈P ′

t′1 ? fy | v)

It is then easy to check that ` vf : t and vfvx
?
; v.

6.12 Type-checking algorithm

In this section, we assume that the subtyping relation ≤ is decidable and we give a
type-checking algorithm for our type system.

The key difficulty to overcome is that the set of types t such that Γ ` e : t, for a
given environment Γ and a given expression e has no smallest element in general.
Indeed, consider the case where e is a well-typed abstraction. The (abstr) rule
allows us to choose an arbitrary number of incomparable arrow types.

We will thus introduce a new syntactic category, called type scheme to denote such
sets of types. The syntax for type schemes is given by the following productions:

t ::= t t ∈ T
| [t1→→→s1; . . . ; tn→→→sn] n ≥ 1; ti, si ∈ T
| t1 ⊗ t2

| t1 > t2

| Ω

We will write [ti→→→si]i=1..n for [t1→→→s1; . . . ; tn→→→sn]. We define the function {{{_}}}
which maps schemes to sets of types:

{{{t}}} = {s | t ≤ s}
{{{[ti→→→si]i=1..n}}} = {s | ∃s0 =

∧∧∧
i=1..n

(ti→→→si) ∧
∧∧∧

j=1..m

¬¬¬(t′j→→→s′j). 0 6' s0 ≤ s}

{{{t1 ⊗ t2}}} = {s | ∃t1 ∈ {{{t1}}}, t2 ∈ {{{t2}}}. t1×××t2 ≤ s}
{{{t1 > t2}}} = {s | ∃t1 ∈ {{{t1}}}, t2 ∈ {{{t2}}}. t1∨∨∨t2 ≤ s}
{{{Ω}}} = ∅

Lemma 6.39. Let t be a type schema. Then {{{t}}} = ∅ if and only if Ω appears
in t. Moreover, {{{t}}} is closed under subsumption (t ∈ {{{t}}} ∧ t ≤ t′ ⇒ t′ ∈ {{{t}}}) and
intersection (t ∈ {{{t}}} ∧ t′ ∈ {{{t}}} ⇒ t∧∧∧t′ ∈ {{{t}}}).

Proof: Straightforward induction on the structure of t.

Lemma 6.40. Let t be a type scheme and t0 a type. We can compute a type
scheme, written t0 ? t, such that:

{{{t0 ? t}}} = {s | ∃t ∈ {{{t}}}. t0∧∧∧t ≤ s}

Proof: We define t0 ? t by induction on t. If t is a type t, we take t0 ? t = t0∧∧∧t.
If t is a union t1∨∨∨t2, we distribute: t0 ? t = (t0 ? t1) > (t0 ? t2). If t is Ω, or
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if {{{t}}} = ∅, we take t0 ? t = Ω. For the two remaining cases, we assume that
{t} 6= ∅, and we observe that:

t0 '
∨∨∨

(P,N)∈N (t)

∧∧∧
a∈P

a∧∧∧
∧∧∧
a∈N
¬¬¬a

We can thus see t0 as a Boolean combination built with 0, 1, ∨∨∨, ∧∧∧, atoms and
complement of atoms. For t0 ' 0, we take t0 ? t = 0. For t0 ' 1, we take
t0 ? t = t. For t0 ' t1∨∨∨t2, we take t0 ? t = (t1 ? t) > (t2 ? t). For t0 ' t1∧∧∧t2,
we take t0 ? t = t1 ? (t2 ? t). It remains to deal with the case of an atom or a
complement of an atom.
For the case t = t1 ⊗ t2, we take:

(t1×××t2) ? (t1 ⊗ t2) = (t1 ? t1)⊗ (t2 ? t2)

¬¬¬(t1×××t2) ? (t1 ⊗ t2) = ((¬¬¬t1 ? t1)⊗ t2) > (t1 ⊗ (¬¬¬t2 ? t2))

and if a ∈ A \Aprod:

a? (t1 ⊗ t2) = 0

¬¬¬a? (t1 ⊗ t2) = (t1 ⊗ t2)

For the case t = [ti→→→si]i=1..n, we take:

(t→→→s) ? [ti→→→si]i=1..n =


[ti→→→si]i=1..n if

∧∧∧
i=1..n

ti→→→si ≤ t→→→s

0 if
∧∧∧

i=1..n

ti→→→si 6≤ t→→→s

¬¬¬(t→→→s) ? [ti→→→si]i=1..n =


0 if

∧∧∧
i=1..n

ti→→→si ≤ t→→→s

[ti→→→si]i=1..n if
∧∧∧

i=1..n

ti→→→si 6≤ t→→→s

and if a ∈ A \Afun:

a? [ti→→→si]i=1..n = 0

¬¬¬a? [ti→→→si]i=1..n = [ti→→→si]i=1..n

Lemma 6.41. Let t be a type scheme and t a type. We can decide the assertion
t ∈ {{{t}}}, which we also write t ≤ t.

Proof: First, we make the observation that t ∈ {{{t}}} if and only if 0 ∈ {{{(¬¬¬t) ? t}}}.
Indeed: 0 ∈ {{{(¬¬¬t) ? t}}} ⇐⇒ ∃s ∈ {{{t}}}. (¬¬¬t)∧∧∧s ≤ 0 ⇐⇒ ∃s ∈ {{{t}}}. s ≤ t ⇐⇒
t ∈ {{{t}}}. As a consequence, we only need to deal with the case t = 0. If {{{t}}} = ∅,
then 0 ∈ {{{t}}} does not hold. Otherwise, we conclude by induction over the
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structure of t:
0 ∈ {{{t}}} ⇐⇒ t ' 0
0 6∈ {{{[ti→→→si]i=1..n}}}
0 ∈ {{{t1 ⊗ t2}}} ⇐⇒ (0 ∈ {{{t1}}}) ∨ (0 ∈ {{{t2}}})
0 ∈ {{{t1 > t2}}} ⇐⇒ (0 ∈ {{{t1}}}) ∧ (0 ∈ {{{t2}}})
0 6∈ {{{Ω}}}

Lemma 6.42. Let t be a type scheme and i ∈ {1, 2}. We can compute a type
scheme πi(t) such that

{{{πi(t)}}} = {s | ∃t1×××t2 ∈ {{{t}}}.ti ≤ s}

Proof: Let’s take for instance i = 1. Note that ∃t1×××t2 ∈ {{{t}}}.t1 ≤ s is equivalent
to s×××1 ∈ {{{t}}}.
If t 6≤ 1×××1, then we take {{{π1(t)}}} = Ω. Otherwise, we proceed by induction
over the structure of t. For t = t1 > t2, we take π1(t) = π1(t1) > π1(t2). For
t = t1 ⊗ t2, we take π1(t) = t1. For t = t, we take π1(t) =

∨∨∨
(t1,t2)∈π(t) t1. The

other cases are impossible.

Lemma 6.43. Let t and t1 be two type schemes. We can compute a type scheme
t • t1 such that

{{{t • t1}}} = {s | ∃t1→→→t2 ∈ {{{t}}}.t1 ∈ {{{t1}}} ∧ t2 ≤ s}

Proof: We proceed by induction over the structure of t. For t = t1 > t2, we
take t • t1 = t1 • t1 > t2 • t1. For t = t1 ⊗ t2 or t = Ω, we take t • t1 =
Ω. For t = [t′i→→→s′i]i=1..n, we take t • t1 = (

∧∧∧
i=1..n(t′i→→→s′i)) • t1, so the only

remaining case is t = t. We observe that ∃t1→→→t2 ∈ {{{t}}}.t1 ∈ {{{t1}}} ∧ t2 ≤ s is
equivalent to ∃t1 ∈ {{{t1}}}.t ≤ t1→→→s. According to Lemma 6.37, this is equivalent
to: ∃t1 ∈ {{{t1}}}.t1 ≤ Dom(t) ∧ ∀(s1, s2) ∈ ρ(t). (t1 ≤ s1) ∨ (s2 ≤ s). We now prove
that this is equivalent to t1 ≤ Dom(t) ∧ ∀(s1, s2) ∈ ρ(t). (t1 ≤ s1) ∨ (s2 ≤ s).
The ⇒ implication is immediate. Let us check the ⇐ implication. For every
(s1, s2) ∈ ρ(t) such that s2 6≤ s, we have t1 ≤ s1 and it is thus possible to find a
type t′1 ∈ {{{t1}}} such that t′1 ≤ s1. We define t1 as the intersection of all these t′1
and of Dom(t), and we thus have t1 ∈ {{{t1}}} ∧ t1 ≤ Dom(t) ∧ ∀(s1, s2) ∈ ρ(t). (t1 ≤
s1)∨ (s2 ≤ s). To conclude, we define t • t1 as Ω if t1 6≤ Dom(t), and otherwise as:∨∨∨

(s1,s2)∈ρ(t) s.t. (t1 6≤s1)

s2

We can now describe a type-checking algorithm. We define a scheme environment
as a finite mapping � from variables to type schemes such that {{{�(x)}}} 6= ∅ for
every x in the domain of �. The type-checking algorithm is formalized as a total
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function which maps a scheme environment � and an expression e to a scheme
written �[e]. This function is defined by induction on the structure of e by the
following equations:

�[c] = bc

�[(e1, e2)] = �[e1]⊗ �[e2]

�[µf(t1→→→s1; . . . ; tn→→→sn).λx.e] =

{
t if ∀i = 1..n. si ≤ si
Ω otherwise

where
{
t = [ti→→→si]i=1..n

si = ((f : t), (x : ti),�)[e] (i = 1..n)

�[x] =

{
�(x) if �(x) is defined
Ω otherwise

�[πi(e)] = πi(�[e])
�[e1e2] = �[e1] • �[e2]

�[(x = e ∈ t ? e1|e2)] = s1 > s2

where



t0 = �[e]
t1 = t? t0

t2 = (¬¬¬t) ? t0

si =

 ((x : ti),�)[ei] if ti 6≤ 0,{{{ti}}} 6= ∅
0 if ti ≤ 0
Ω if {{{ti}}} = ∅

(i = 1..2)

We are now going to prove soundness and completeness of the algorithm. If �
is a scheme environment and Γ is a typing environment, we write � ≤ Γ when �
and Γ have the same domain and for all x in this domain �(x) ≤ Γ(x). If Γ1 and
Γ2 are two typing environment, we define Γ1∧∧∧Γ2 by (Γ1∧∧∧Γ2)(x) = Γ1(x)∧∧∧Γ2(x)
(undefined when one of the Γi(x) is not defined). Note that if � ≤ Γ1 and � ≤ Γ2,
then � ≤ Γ1∧∧∧Γ2.

Lemma 6.44 (Correctness). If �[e] ≤ t, then there exists Γ ≥ � such that
Γ ` e : t.

Proof: By induction over the structure of e.
e = c. We have bc ≤ t, and thus ` c : t. We can take for Γ an arbitrary typing
environment such that Γ ≥ �. We use the ∧∧∧ operator on typing environments
and Lemma 6.14 to reconcile different Γ’s given by several uses of the induction
hypothesis.
e = x. We have Γ(x) ≤ t. We can choose Γ ≥ � such that Γ(x) = t.
e = (e1, e2). We have �[e1]⊗�[e2] ≤ t. We can thus find t1 ≥ �[e1] and t2 ≥ �[e2]
such that t1×××t2 ≤ t. The induction hypothesis gives Γ1 ≥ � such that Γ1 ` e1 : t1
and Γ2 ≥ � such that Γ2 ` e2 : t2. We take Γ = Γ1∧∧∧Γ2.
e = e1e2. We have �[e1] • �[e2] ≤ t. We can thus find t1, t2 such that t1→→→t2 ≥
�[e1], t1 ≥ �[e2] and t2 ≤ t. The induction hypothesis gives Γ1 ≥ � such that
Γ1 ` e1 : t1→→→t2 and Γ2 ≥ � such that Γ2 ` e2 : t1. We take Γ = Γ1∧∧∧Γ2.
e = πi(e

′). We have πi(�[e′]) ≤ t. We can thus find t1, t2 such that t1×××t2 ≥ �[e′]

and ti ≤ t. The induction hypothesis gives Γ ≥ � such that Γ ` e′ : t1×××t2. We
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deduce that Γ ` e : ti and by subsumption Γ ` e : t.
e = (x = e′ ∈ t′ ? e1 | e2). We take t0 = �[e′], t1 = t′ ? t0 and t2 = (¬¬¬t′) ? t0.
We also take s1 and s2 as in the corresponding case of the definition of �[e]. We
have s1 > s2 ≤ t. We can thus find s1 ≥ s1 and s2 ≥ s2 such that t ≥ s1∨∨∨s2. Let’s
take i ∈ {1, 2}. We will define a type ti. We have si 6= Ω since si ≥ si. Two cases
remain. If ti 6≤ 0, we have si = ((x : ti),�)[ei]. The induction hypothesis gives
Γi ≥ � and ti ≥ ti such that (x : ti),Γi ` ei : si. Otherwise, we have si = 0 and
we take ti = 0. In both cases, we have ti ≥ ti.
Let’s consider the type t0 = (t1∧∧∧t′)∨∨∨(t2∧∧∧¬¬¬t′). We now prove that t0 ≥ t0.
Since t1 ≥ t1 = t′ ? t0, there exists t′1 ≥ t0 such that t′∧∧∧t′1 ≤ t1. Similarly,
we have t′2 ≥ t0 such that (¬¬¬t′)∧∧∧t′2 ≤ t2. We get t0 ≥ (t′∧∧∧t′1)∨∨∨((¬¬¬t′)∧∧∧t′2) ≥
(t′∧∧∧t′1∧∧∧t′2)∨∨∨((¬¬¬t′)∧∧∧t′1∧∧∧t′2) ' t′1∧∧∧t′2 ≥ t0.
Since t0 ≥ t0, the induction hypothesis gives Γ0 ≥ � such that Γ0 ` e′ : t0. Let’s
consider the types t′′1 = t0∧∧∧t ≤ t1 and t′′2 = t0∧∧∧(¬¬¬t) ≤ t2. By considering the
intersection of Γ0 and of Γ1 and Γ2 when they are defined, we find Γ ≥ � such
that Γ ` e′ : t0 and (xi : t′′i ),Γ ` ei : si when ti 6≤ 0. The rule (case) gives
Γ ` e : s1∨∨∨s2. By subsumption, we get Γ ` e : t.
e = µf(t1→→→s1; . . . ; tn→→→sn).λx.e′. We take t and si as in the definition of the
corresponding case for �[e]. Since �[e] 6= Ω, we get t ≤ t and si ≤ si for all
i = 1..n. The induction hypothesis gives, for each i, an environment Γi ≥ �, and
two types ti ≥ t, t′′i ≥ ti such that (f : ti), (x : t′′i ),Γi ` e′ : si.
We define the type t′ as

∧∧∧
i=1..n t

i∧∧∧t. We have t′ ≥ t = [ti→→→si]i=1..n. We can
thus find a type t′′ of the form t′′ =

∧∧∧
i=1..n ti→→→si∧∧∧

∧∧∧
j=1..m¬¬¬(t′j→→→s′j) such that

t′ ≥ t′′ and t′′ 6' 0.
If we take for Γ the intersection of all the Γi, we obtain (f : t′′), (x : ti),Γ ` e′ : si
for all i from which we conclude Γ ` e : t′′ and thus Γ ` e : t.

Lemma 6.45 (Completeness). If � ≤ Γ and Γ ` e : t then �[e] ≤ t.

Proof: By induction over the derivation of Γ ` e : t and case disjunction over
the last rule used in this derivation. The proof is mechanical. We give the details
only for the rule (case).

Γ ` e : t0

{
t0 6≤ ¬¬¬t ⇒ (x : t0∧∧∧t),Γ ` e1 : s
t0 6≤ t ⇒ (x : t0\\\t),Γ ` e2 : s

Γ ` (x = e ∈ t ? e1|e2) : s

We assume that � ≤ Γ and we take t0,t1, t2,s1,s2 as in the definition of �[(x =
e ∈ t ? e1|e2)]. We need to prove that s1 > s2 ≤ s, that is s1 ≤ s and s2 ≤ s. We
will do the proof for s1 (the proof for s2 is similar).
The induction hypothesis gives t0 = �[e] ≤ t0, from which we get t1 ≤ t∧∧∧t0. If
t1 ≤ 0, then s1 = 0 ≤ s. Otherwise, since {{{t1}}} 6= ∅, we have s1 = ((x : t1),�)[e1].
We have t0 6≤ ¬¬¬t, otherwise t1 ≤ 0. We thus have a sub-derivation (x : t0∧∧∧t),Γ `
e1 : s. The induction hypothesis, applied to the environment (x : t1),� gives
s1 ≤ s.
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By combining the two previous lemmas, we get an exact characterization of the
type-checking algorithm in terms of the type system.

Theorem 6.46. For any scheme environment � and expression e:

{{{�[e]}}} = {t | ∃Γ ≥ �.Γ ` e : t}

Corollary 6.47. Let Γ be a typing environment. It can also be seen as a
scheme environment. For any expression e and any type t, we have:

Γ ` e : t ⇐⇒ Γ[e] ≤ t

As a special case, the expression e is well-typed under Γ if and only if {{{Γ[e]}}} 6= ∅.

To conclude with the decidability of the type system, we observe that the asser-
tion {{{Γ[e]}}} 6= ∅ is decidable (Lemma 6.39).

7. COMMENTARIES

In Section 2 we described the basic intuitions and we gave an overview of our
approach. In this section we comment and explain the intuition and motivations
that underlie some more technical choices we made in the formal development of
the work.

7.1 What does the closing-the-circle theorem mean?

Theorem 5.5 is a nice and important property about our system. It means that
whenever the interpretation of types as sets of values is a model, it induces the same
subtyping relation as the bootstrap model; as a consequence, there is no point using
this model as a new bootstrap model and iterating the whole process again. The
theorem is also an indication that the typing rules are somewhat coherent with
the definition of models. It is a quality check, but a limited one: we should resist
the temptation to read too much from the theorem. Let us be explicit on this
point: Theorem 5.5 does not say that the definition of models is “valid” in any
way. As a matter of fact, it is possible to change the definition of models in very
bogus ways and still be able to prove the theorem. If we follow closely the formal
development, we see that we could actually change Definition 4.3 and take any
definition for E(t1→→→t2) as long as Lemma 6.13 holds. For instance, we could even
take a definition that makes arrow types covariant in their domain, e.g. E(t1→→→t2) =
P(Jt1K) ×P(Jt2K). Then, of course, the subject reduction theorem would fail to
hold. We could even see purely syntactical evidences that something goes wrong
(without introducing the operational semantics). With the bogus definition above,
we would indeed see that:

(1) the following rule is derivable:

Γ ` e1 : t1 → t2 Γ ` e2 : t

Γ ` e1e2 : t2
(appl′)

(which means that the type system does not check the type for the argument
in function applications);
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(2) Lemma 6.15 (Admissibility of the intersection rule) would fail to hold in general
(but it would still hold for values). Indeed, the case for applications in its proof
relies on the contravariance of arrow types in their domain.

It is interesting to look at how Theorem 5.5 could have failed with the current
definition of models. The easiest way to break the theorem is the typing rule for
abstractions. If we did not allow several function types to appear in λ-abstraction,
or if we did not allow negation of arrow types to appear in the type assigned to the
λ-abstraction, then Theorem 5.5 would not hold.

The fact that the definition of models (and thus subtyping) is “valid” with re-
spect to our calculus is expressed by results from Section 5.1: type-safety says that
subtyping is sound with respect to the semantics of the calculus, and Theorem 5.3
gives some further evidence that the whole system is coherent. As a final note
about Theorem 5.5, we should emphasise here again that even if the interpretation
of types is not a model (that is, if the bootstrap model is not well-founded), then
type-safety still holds.

7.2 On the prescriptive nature of types for λ-abstractions

The λ-abstractions in our calculus come with an explicit signature (a finite sequence
of arrow types). This makes it possible to decide whether a functional value has type
t→→→s or not, without looking at the function body and without relying on the typing
judgement. Such a decision has to be made at run-time to reduce a dynamic type-
dispatch against a type such as t→→→s. So, the result of type-dispatch can depend on
the explicit type annotations on λ-abstractions. For instance, the expression (g =
(µf(true→→→true).λx.x) ∈ (false→→→false) ? 1 | 0) evaluates to 0 (because true→→→true 6≤
false→→→false), but (g = (µf(false→→→false).λx.x) ∈ (false→→→false) ? 1 | 0) evaluates to
1.

This observation gives a “paradox” that we would obtain if we tried to define
a Curry-style type assignment for λ-abstractions, that is, if we did not include
an explicit signature. Indeed, a function could check its own type and behave
differently according to it. Consider for instance the value v = µf.λx.(g = f ∈
true→→→true ? false | true). Then v maps true to true if and only if it does not have
type true→→→true.

7.3 On the typing rule for abstractions

The negative arrow types in the typing rule for λ-abstractions may look surprising.
Indeed this rule can assign to the functional value µf(true→→→true).λx.x the type
¬¬¬(false→→→false) even if semantically, the function maps the value false to itself. We
have already explained in Section 3.3 that we need these negative arrow types in
order to have the property that every value has type t or ¬¬¬t for any type. The
previous section showed a different problem that arises if we try to get rid of the
explicit signature on λ-abstractions.

If we rely on the typing judgement where the rule is modified so as to disallow
negative arrow types but without changing the operational semantics, the calculus
trivially remains type-safe. In this case, the reduction rule for the dynamic type
dispatch must use the old judgement, so that we always have ` v : t or ` v : ¬¬¬t.

This suggests a variation of the (abstr) rule which would allow negative arrow
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types only if the abstraction is closed (the only free variables of the body can be
the function name or the argument name). This can be thought as some kind
of value-restriction. With this new typing judgement, we preserve all the formal
properties of our calculus, including type preservation and Theorem 5.4, because
the new typing judgement coincides with the old one on values.

7.4 On the admissibility of a union rule

Lemma 6.15 says that the following rule is admissible in our type system:

Γ ` e : t1 Γ ` e : t2
Γ ` e : t1∧∧∧t2

One might consider the following dual rule for union types:

Γ, (x : t1) ` e : t Γ, (x : t2) ` e : t

Γ, (x : t1∨∨∨t2) ` e : t
(union)

Since we have adopted a call-by-value semantics, variables in the environment
are meant to be substituted by values, and since a value of type t1∨∨∨t2 has type t1
or type t2, this rule is semantically sound (the substitution lemma would need to be
restricted to values, though). However, this rule, which corresponds to reasoning
by case disjunction, is not admissible in our system: it would allow us to derive
(x : bool) ` (x, x) : true×××true∨∨∨false×××false, while the smallest type the current
system can assign to (x, x) under this typing environment is bool×××bool.

Therefore the question about the opportunity of adding such a rule to our system
naturally arises. We decided not to do so since we can simulate the union rule with
an explicit annotation that drives the case disjunction. Let us write case(x, t, e) for
the expression (y = x ∈ t ? e | e) (for y not free in e). Then the following rule is
admissible (and even derivable) in our system:

Γ, (x : t1) ` e : t Γ, (x : t2) ` e : t

Γ, (x : t1∨∨∨t2) ` case(x, t1, e) : t

Note that e and case(x, t1, e) are observationally equivalent (that is, they are
indistinguishable when embedded in ground contexts of basic type: see, for instance,
Definition 6.4.1 page 132 in [Amadio and Curien 1998]). Then, replacing e with
case(x, t1, e) is just an extra hint for the type-checker and it does not break existing
typing derivations. Indeed, the following rule is admissible:

Γ ` e : t x ∈ Γ
Γ ` case(x, t1, e) : t

So, if we have a derivation for a judgement Γ ` e : t in the system extended
with the rule (union), it is possible to compute an expression e′ observationally
equivalent to e and such that Γ ` e′ : t is derivable in the current system (viz.,
without (union)). This expression is obtained by wrapping some sub-expressions
of e with the case(_) operator, in correspondence of the occurrences of the (union)
rule in the original derivation. Since the same sub-expression can be typed several
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times (because of overloaded functions), it is important that case(_) does not break
existing derivations.

Finally it is interesting to notice that Pierce’s union elimination rule [Pierce 1991]

Γ ` e : u1∨∨∨u2 Γ, x : u1 ` e′ : s Γ, x : u2 ` e′ : s

Γ ` case e of x⇒ e′ : s
(Union-E)

is a special case of our (case) rule given in Section 3.3 where e1 = e2 = e′,
t0 = u1∨∨∨u2, and t is either u1 or u2 (modulo an application of the Strengthen-
ing Lemma—Lemma 6.14, Section 6.3—when the intersection of u1 and u2 is not
empty).

7.5 On the reason why recursion is restricted to functions

One might wonder why recursion is restricted to functions in our calculus. Imagine
we had arbitrary recursion on expressions. Then the expression µx.(x, x) should
be a (recursive) value. We can consider a recursive type t = (¬¬¬t)×××(¬¬¬t) and look
at whether the value v = µx.(x, x) has type t or not. Clearly, we expect to have
` v : t if and only if ` (v, v) : t, which is equivalent to ` (v, v) : (¬¬¬t)×××(¬¬¬t), and thus
to ` v : ¬¬¬t. But since v is a value, this is equivalent to ¬(` v : t). This paradox
justifies that we combine recursion and λ-abstraction in a single construction.

As an aside, note that restricting recursion to single abstractions is enough to
let us encode mutually recursive functions. For instance, assume that we want to
define two mutually recursive functions:

f1(t1→→→s1; . . . ; tn→→→sn).λx.e1

f2(t′1→→→s′1; . . . ; t′m→→→s′m).λy.e2

where the body of the two functions can refer to both f1 and f2. A possible encoding
of the definition above is

µf({1}→→→
∧∧∧
i=1..n ti→→→si; {2}→→→

∧∧∧
j=1..m t

′
j→→→s′j).

λc.(c = c ∈ {1} ?
µf1(t1→→→s1; . . . ; tn→→→sn).λx.e1σ |
µf2(t′1→→→s′1; . . . ; t′m→→→s′m).λy.e2σ)

where {1} and {2} are two basic singleton types (with associated constants 1 and
2) and the substitution σ replaces f1 with (f 1) and f2 with (f 2). Other encodings
are possible and left as an exercise to the reader.

8. RELATED WORK

This work started from our desire to extend the work by Hosoya and Pierce on
XDuce [Hosoya and Pierce. 2003] with first-class functions and arrow types, there-
fore it is natural to start this section with it. XDuce is a domain specific language
specially designed to write XML transformations. Values are fragments of XML
documents, which can be described by so-called regular expression types [Hosoya
et al. 2000] (this notion of types generalises some widely used notions of types for
XML documents such as DTD or XML-Schema). In XDuce a subtyping relation
allows the programmer to use implicitly an expression of type t where an expression
of type s is expected, provided that t is a subtype of s. Despite the richness of the
type algebra, the definition for this subtyping relation is extremely simple: since
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types denote sets of values, subtyping can simply be described as the set-theoretic
inclusion of interpretations. As a matter of fact, XDuce types can express exactly
regular tree languages. It is well known that this class of languages is closed under
all Boolean operators: the difference or the intersection of two XDuce types can be
expressed by XDuce types, even if there is no explicit constructors for intersection
or negation (probably, in order to keep the syntax of types as simple as possible).
As far as we know, XDuce was the first type system with subtyping where types
are interpreted purely set-theoretically and where sets denoted by types are closed
under all Boolean operators.

XDuce also has a powerful notion of pattern matching [Hosoya and Pierce 2001],
where patterns are basically types extended with capture variables. In particular,
a pattern matching can perform arbitrary dispatch on types at run-time, so that
XDuce semantics is actually driven by types. Because of the very rich type algebra
(and in particular of the fact that it is closed under Boolean operators), the static
type-checking of pattern matching results very precise.

Despite its very functional style (mutually recursive functions, structural types,
pattern matching), XDuce lacks first-class functions. Our initial goal was thus to
fill this gap while preserving XDuce key ingredients: (i) a rich type algebra, which
supports recursive types, subtyping and a complete set of Boolean operators, and
interpret them in a purely set-theoretic way (including negation); (ii) a type-driven
semantics (to which we add overloaded functions so that we can reflect dynamic
type dispatch on functions’ interfaces). Other directions for practically embedding
XDuce type system into general purpose languages have been studied indepen-
dently, e.g. Xtatic [Gapayev and Pierce 2003] or OCamlDuce [Frisch 2006]. In this
work, though, we did not want to embed XDuce into some host type system, but to
study the implications of keeping its salient features, in particular a complete set of
Boolean combinators, while designing a whole language with first-class functions.
The same goal was pursued by Jérôme Vouillon in a recent work [Vouillon 2006] by
following an approach opposite to ours. Vouillon gives up intersection and negation
types and starts from a particular model of functions in order to avoid a circular-
ity. In particular, this is obtained by defining a subtyping relation via a deduction
system that is then used to type the expressions of the language. This induces a
model of values that, thanks to the absence of intersections (besides negations), is
sound and complete with respects to the syntactically defined subtyping relation.
The advantage of giving up intersections and negations is that besides arrow types,
the system also accounts for parametric explicit polymorphism.

We already discussed in the introduction why our work fills the gap between existing
work on intersection types and that on lately bound overloaded functions. More
precisely, on the one hand we have the work on overloading where functions can be
formed of different pieces of code stuck together, each piece of code corresponding to
a different input type; however the types of these overloaded functions do not have
a set-theoretic characterisation as intersection types instead have [Castagna et al.
1995]. On the other hand, there is the line of research on intersection (and union)
types [Barendregt et al. 1983; Coppo and Dezani-Ciancaglini 1980; Barbanera et al.
1995; Reynolds 1991; Reynolds 1996], where types have a set-theoretic behaviour
but where different components of an intersection of arrows cannot correspond to
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different pieces of code: intersections stem from different repeated typings of a same
code, whence a “flavour” of parametricity (where the “parameter” is the hypothesis
used in each typing of a function body). We can now better pinpoint where such
a “flavour” comes from. It resides in the equivalence we discussed at the end of
Section 2.6, that is

(t1→→→s1)∧∧∧(t2→→→s2) ' (t1∨∨∨t2)→→→(s1∧∧∧s2) . (7)

This, in some sense, states that it is not possible to have a function with two
different behaviours that are chosen according to the type of the argument (see
Appendix A.3 for a semantic interpretation of this fact). The equation above holds
in the theory of union and intersection types of [Barbanera et al. 1995],7 and al-
though it cannot be proved in the theory of Forsythe, it is not possible, in general,
to write a term in Forsythe that separates the two types of equation (7).8 An
important piece of work related to this aspect of the research is the work on re-
finement types. When refinement types are used for logical frameworks [Pfenning
1993], then they have with respect to equation (7) the same behaviour as the works
on union and intersection types we cited above. Yet, when refinement types are
coupled with datatype definitions and applied to ML, then they work better in
this respect, since it is then possible to write functions with intersection types in
which a particular piece of code is executed only for a given input type [Freeman
and Pfenning 1991]. It is thus possible to write a term that separates two types
of the same form as in equation (7). However, this works only for the declared re-
finements of a datatype and, therefore, it does not account for all possible subsets
of a generic type. Therefore the strict containment of the types in (7) cannot be
proved in general. Rather than a drawback, this is a direct consequence of using
refinement types with Curry-style λ-abstractions: using Church-style abstractions,
as we do, may require code-duplication, in particular in case of overloaded func-
tions that return functions with varying types but with the same behaviour. While
this duplication can be avoided by uncurrifying the overloaded function, it would
make it impractical to use intersections in the way they are used in the context of
refinement types.

A mainstream way to deal with a complex type algebra with Boolean operators is
to rely on a denotational semantics for the calculus and to interpret types as ideals
in this model. There exist a rich literature that follows this approach, for instance
Aiken and Wimmers [Aiken and Wimmers 93; Aiken et al. 1994], Damm [Damm
1994b; Vouillon and Melliès 2004], Melliès and Vouillon [Vouillon and Melliès 2004;
Melliès and Vouillon 2005]. Even Amadio and Cardelli’s seminal paper on subtyping
recursive types [Amadio and Cardelli 1993] proposes a “denotational” interpretation
of types (as complete uniform partial-equivalence relations). The main difference
between our work and this line of research is that we cannot rely on a denota-
tional semantics either for the calculus (because of the type-driven semantics9) or

7Idem, axioms (11) and (12) of Definition 3.3.
8Besides, in Forsythe there is the constraint of “coherence” so that, as a concrete example, it is
not possible to define an overloaded function of type (int→int)∧(real→real) that when applied to
an integer returns zero and when applied on a non-integer real returns one.
9The definition of a denotational semantics for a language with overloaded functions and dynamic
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for the types (because we want to interpret negation as set-theoretic complement
and all the denotational interpretations of types we are aware of are not closed
under complement). The techniques devised in our formal development are thus
quite different from those used before and some aspects of our calculus might seem
strange when looked from the point of view of denotational semantics. An exam-
ple of “strangeness” is our treatment of negative arrow types in the typing rule for
abstractions.

One way to position our paper within the existing literature is to consider that
we show how to introduce and study a semantic notion of subtyping, not only when
no denotational semantics for the calculus can account for type negation, but even
when a denotational semantics for the calculus is out of reach. Our use of the ad-
jective “semantic” refers specifically to the definition of subtyping (by opposition to
a syntactic/axiomatic definition), and not to the semantics of the calculus. Strictly
speaking we do not even give a semantics of types: the interpretation of types is
functional to the semantics of the subtyping relation, but it is not intended to de-
scribe what types are. This is clear when considering our universal model: arrow
types are interpreted as sets of finite relations, but it is patent that the types of the
language we presented are not sets of finite graph functions. The only semantics we
define is the semantics of subtyping. This is perfunctory characterised by the inter-
pretation of Boolean constructors and of the empty types. More precisely, since we
require that union, intersection, and negation type constructors are interpreted as
the corresponding set-theoretic operators (or, equivalently, that they obey the same
laws as the corresponding set-theoretic operators), then the semantics of subtyping
is univoquely identified by the set of empty types. So the core of this work sums
up to identifying the set of types that are equivalent to the empty type. This is
clearly less demanding than defining the entire semantics of types or, a fortiori, the
semantics of a complete language.

In addition to the fundamental difference that we discussed above, it is interesting
to compare in more details our work with Damm’s [Damm 1994b]. Damm’s system
includes intersection and union types, and is also based on ideas from the theory of
regular tree languages. Specifically, it encodes a function type as a set of sequences
that represent all the possible graphs for finite approximations of functions in this
type; this indirect interpretation does not give a direct and effective subtyping rule
for Boolean combinations of arrow types. We could not extract from [Damm 1994b]
a concrete characterisation of the subtyping relation. Instead, our direct treatment
gives a new and non-trivial subtyping rule for arrow types, which turned out to be
useful in other contexts. In particular, a connection has been established between
this rule and the minimal relevant logic B+ [Dezani-Ciancaglini et al. 2002].

The foundational work by Melliès and Vouillon [Vouillon and Melliès 2004; Melliès
and Vouillon 2005] generalises the model of ideals for recursive and polymorphic
types proposed by MacQueen, Plotkin, and Sethi [MacQueen et al. 1986]. Their
approach shares with our work the primacy of the types over the expressions, insofar

dispatch—as the one studied here— is still an open problem: the attempts at creatingsuch a
definition we are aware of either put strong restrictions on dynamic dispatch [Castagna et al.
1993; Tsuiki 1994] or they impose a stratified construction of higher order types [Studer 2001] (a
technique introduced for λ& to enforce strong normalisation [Castagna et al. 1995]).
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as the latter are somehow functional to the justification of the former (in [Vouillon
and Melliès 2004; Melliès and Vouillon 2005] types are sets of intentionally defined
expressions, in the sense that they are defined in terms of some properties they
must satisfy). Contrary to our work, Melliès and Vouillon are not interested in
preserving a strictly set-theoretic interpretation of Boolean operators (e.g. their
union type is an over-approximation of the set-theoretic union), they do not care
about the completeness of this set of operators (negation is not accounted for,
although it should be possible to add it10), and they do not insist of the effectiveness
of the subtyping relation. Actually, in [Vouillon and Melliès 2004; Melliès and
Vouillon 2005] the subtyping relation plays the role of a consistency check for
their denotational semantics (only soundness of the subtyping rules is stated). Our
research aims at a far more modest and practical target: we are not trying to give
a denotational account for subtyping and Boolean operators, but only to define a
subtyping relation. As such we are much more in the realm of the syntax than the
one of the semantics.

9. CONCLUSION

Our original motivation for developing the theory presented in this article was the
addition of first-class functions to XDuce while preserving the set-theoretic ap-
proach to subtyping. This was the starting point of the CDuce project [CDUCE ],
aiming at developing a programming framework covering several aspects of XML
programming: efficient implementation, query languages, web-services, web pro-
gramming, and so on.

The reader might be surprised to face such a complex theory in the setting of
an XML-oriented functional language. First, we should mention that XML plays
no role in the complexity of the theory. The circularity which our bootstrapping
technique addresses comes only from the combination of arrow types, recursive types
and Boolean connectives. Since XDuce already had recursive types and Boolean
connectives, it seemed natural to add arrow types and to fully integrate them with
these features. Simpler solutions could have been possible, e.g. by stratifying the
type algebra so as to avoid any interaction between arrow types and existing XDuce
types: this is what the first author did to integrate XDuce types into an ML-based
type system [Frisch 2006].

Second, we could have presented the theory without introducing the abstract
concept of models. Indeed, for the application to a specific programming language,
we could have worked directly with the universal model (Section 6.8). That said, we
believe that the current presentation better captures the essence of our approach.
Working directly with a specific model might have seemed mysterious and ad hoc.

Although we presented our notion of model and the bootstrapping technique on
a specific type algebra and for a specific calculus, our framework is quite robust.
The Appendix shows how to extend our system with reference types or to modify it

10One of the JACM reviewers suggested that negation could be interpreted as the complement of
reducibility candidates for weak normalisation and conjectures that such an interpretation would
be compatible with Melliès and Vouillon’s approach —hence, with recursive types— as long as
one adds a stratification on terms to the language as in the language interpreted by MacQueen,
Plotkin and Sethi in the ideal model.
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to deal with non-overloaded functions. Frisch’s Ph.D. thesis [Frisch 2004] describes
another variant of the system where application is always well-typed (the opera-
tional semantics can return any value if the function is not prepared to deal with
the argument and the type system does not give any static information about the
type of the result). All these modifications are quite local and do not change the
structure of the formal development nor the main properties of the system.

More importantly, our approach and the techniques we developed turned out to
have much a broader application than we initially expected. What we devised is
the first approach for a higher order λ-calculus in which union, intersection, and
negation types have a set-theoretic interpretation. The logical relevance of the
approach was independently confirmed by Dezani et al. [Dezani-Ciancaglini et al.
2002] who showed that the subtyping relation induced by the universal model of
Section 6.8 restricted to its positive part (that is arrows, unions, intersections but no
negations) coincides with the relevant entailment of the B+ logic (defined 30 years
before we started our work). This same approach can be applied to paradigms other
than λ-calculi: Castagna, De Nicola and Varacca [Castagna et al. 2005; Castagna
et al. 2007] use our technique to define the Cπ-calculus, a π-calculus where Boolean
combinators are added to the type constructors ch+(t) and ch−(t) which classify
all the channels on which it is possible to read or, respectively, to write a value
of type t. The technique using the extensional interpretation is still needed for
cardinality reasons, however bootstrapping in Cπ has a different flavour, since it
generates a model that is much closer to the model of values. Interestingly, this
model is defined by a fix-point construction. Cπ features several points that are in
common with or dual to CDuce: Cπ presents the same paradox one meets when
adding reference types to CDuce [Castagna and Frisch 2005]. The paradox can be
avoided by restricting Cπ to its “local” version [Castagna et al. 2005] or by using less
expressive models [Castagna et al. 2007] but in the former case the type schemes
of Section 6.12 must be reintroduced, in spite of the fact that they are not needed
for the full version of Cπ. Another striking resemblance between CDuce and Cπ
that is worth mentioning is that in order to decide the subtyping relation for Cπ,
one tackles the same difficulties as those met in deciding general subtyping for a
polymorphic extension of CDuce (actually of XDuce [Hosoya et al. 2005]), namely,
one must be able to decide whether a type is a singleton or not. An informal
introduction to these aspects can be found in [Castagna 2005], while the formal
correspondence between CDuce and Cπ is studied in [Castagna et al. 2006].

Finally, let us conclude with a more subjective remark. When we applied our
approach to distinct paradigms we often had the impression that our technique
pushed the various systems to their limits: by choosing appropriate models we
could mimic the existing type systems, but by tweaking them a little bit we could
reach some “semantic” limits, such as the incompatibility of recursion and some
naive implementations of references and channels or the need to descend down
at the atomicity of types to decide subtyping. This seems to suggest that our
technique exhibits and gives us some insights about some intrinsic difficulties that
appear when Boolean operators are combined with various type constructors.
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APPENDIX

A. VARIANTS AND EXTENSIONS

In order to illustrate strengths and limits of our approach, we sketch in this Ap-
pendix some variants and extensions of our system.

A.1 Adding other kinds of data constructors

Our system includes pairs (and product types). Other kinds of data constructors
are very easy to encode in or to add to the system. For instance, assuming two
basic singleton types {1} and {2}, a disjoint sum type constructor t1+++t2 can be
encoded as ({1}×××t1)∨∨∨({2}×××t2); the injections inl(e) and inr(e) become (1, e) and
(2, e); and the case disjunction case e of inl(x1)→ e1 | inr(x2)→ e2 becomes:

(x = e ∈ {1}×××1 ? e1[x1 := π1(x)] | e2[x2 := π1(x)])

If we want to extend our system with built-in sum types instead of encoding
them, all changes are straightforward. For example, the definition of the extensional
interpretation would be:

E(t1+++t2) = Jt1K + Jt2K ⊆ D +D

(where + on the right-hand side denotes the set-theoretic disjoint sum).
More complex data constructors can be similarly added. For instance, Frisch’s

thesis [Frisch 2004] details the construction of extensible records which support con-
catenation and field removal. The subtyping rules that are derived from mechanical
set-theoretic “arithmetic” are rather complex.
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A.2 Reference cells

Besides being a fascinating object of type theoretical study, reference types are a
very useful and used programming construction. Therefore, we might want to add
reference cells to our system. To this end, we would add a new kind of unary type
constructor ref(t).

Before extending our calculus, let us describe a “paradox” that arises with ref-
erence cells in presence of a set-theoretic interpretation of Boolean connectives.
Intuitively, a value of type ref(t) should be a cell from which we must be prepared
to read any value of type t and to which we are allowed to write any value of this
type. Clearly, with such an interpretation, the type ref(t)∧∧∧ref(s) should be empty
as soon as t and s are not equivalent; otherwise, any value in this intersection would
give a way to coerce for free from one type to the other. Conversely, if t ' s, then
ref(t)∧∧∧ref(s) ' ref(s), and if s 6' 0, this type should not be empty (if s ' 0, then
ref(s) can be empty, it suffices to disallow uninitialised references). So, intuitively
for all types t,s with s 6' 0:

ref(t)∧∧∧ref(s) 6' 0 ⇐⇒ t ' s (8)

Can we define a notion of model to account for this behaviour? The answer is
no. To see why, consider a non-empty basic type b, and build the recursive type
t = b∨∨∨(ref(t)∧ref(b)). Since the basic type does not intersect reference types, then
t is equivalent to b if and only if the right hand side of the union in its definition is
empty, that is:

t ' b ⇐⇒ ref(t) ∧ ref(b) ' 0

and because of (8), we obtain:

t ' b ⇐⇒ t 6' b

This negative result does not mean that it is impossible to add reference types
to our system, only that we cannot do it and validate equation (8). This equation
was obtained by the argument that whatever value we write in a reference, we must
be prepared to read it back from it. So let us imagine a notion of reference cell
which comes with two sets: a set X1 of values that can be read from it, and a set
X2 of values that can be written to it. We can for instance design the operational
semantics such that if we try to write a value v in it, it simply discards it if v 6∈ X1

(the type system will ensure that v ∈ X2). A reference marked (that is, explicitly
typed) with the pair (X1, X2) should thus have type ref(t) when X1 ⊆ JtK ⊆ X2

and X1 6= ∅. With these intuitions in mind, the formal definitions follow. We start
with the definition for the extensional interpretation:

E(ref(t)) = ref(JtK) ⊆ D ×P(D)×P(D)

where the right-hand side is defined by:

ref(X) = {(d,X1, X2) | d ∈ X1 ⊆ X ⊆ X2}

We also extend the calculus with the following constructions:

e ::= . . . | !e | (e := e) | reft1,t2(e)

Journal of the ACM, Vol. 55, No. 4, September 2008.



A.2 Reference cells · 63

v ::= . . . | reft1,t2(v)

The first and second productions of expressions are for dereferencing and assign-
ment. The corresponding typing rules are standard (we arbitrarily take 1 as the
result type for the assignment):

Γ ` e : ref(t)

Γ `!e : t

Γ ` e1 : ref(t) Γ ` e2 : t

Γ ` (e1 := e2) : 1

The third new construction creates a reference with the result of e as the initial
value and t1, t2 as markers (corresponding toX1 andX2 in the definition of ref(X)).
Note that we consider here reft1,t2(v) as a value (when it is well-typed). Of course,
to define the operational semantics, we would need a notion of store and locations
to account for the sharing of reference cells. Since this is standard, we do not
formalise such a semantics here. It suffices to say that a reference creation must
reduce to a fresh location; this reduction would extend the store to map the location
to the initial value for the reference. Such a reduction should be disallowed under a
λ-abstraction with several arrow types (one can, for instance, use a weak reduction
semantics).

The expression reft1,t2(e) should have type ref(t) if and only if t1 ≤ t ≤ t2;
otherwise, following our experience with function types, it should have type¬¬¬ref(t).
As a consequence, in order to preserve the admissibility of the intersection rule, we
use the following typing rule:

Γ ` e : t1 ∀i = 1..n. t1 ≤ si ≤ t2 ∀j = 1..m. ¬(t1 ≤ s′j ≤ t2)

Γ ` reft1,t2(e) :
∧∧∧

i=1..n

ref(si) ∧
∧∧∧

j=1..m

¬¬¬ref(s′j)

Although we do not formalise the operational semantics, the intuition is that
at any point during run-time, a reference cell of type ref(t) will have the form
reft1,t2(v) where v is a value of type t1 and t1 ≤ t ≤ t2. Reading the content of
such a reference returns v. Writing a value v′ checks dynamically if v′ has type t1
and if so, replaces v with v′; otherwise, nothing happens. Our type system ensures
that any value read from a reference of type ref(t) has type t and that any value
v assigned to a reference of type ref(t) has type t (but if the reference is of the
form reft1,t2(v′) with v not in t1 it might decide to reject this value silently). Of
course, we do not really want references to reject values we assign to them. But it
is clear that if the original program only contains reference expressions of the form
reft,t(e), this will never happen. Allowing two different types t1, t2 is just a way to
obtain the analog of Theorem 5.5 and to avoid the “paradox” implied by equation
(8) at the beginning of this section.

All the formal definitions and results about models and the type system are easily
adapted. Here, we only hint at the non-trivial points. We start with a set-theoretic
lemma to study the subtyping relation induced by models:
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Lemma A.1. Let (Xi)i∈P and (Yj)j∈N two families of subsets of D. Then:⋂
i∈P

ref(Xi) ⊆
⋃
j∈N

ref(Yj)

⇐⇒(⋂
i∈P

Xi = ∅

)
or

(
∃j ∈ N.

⋂
i∈P

Xi ⊆ Yj ⊆
⋃
i∈P

Xi

)

Proof: The ⇐ implication is straightforward. For the opposite direction, we
assume that

⋂
i∈P ref(Xi) ⊆

⋃
j∈N ref(Yj) and

⋂
i∈P Xi 6= ∅. We define Z1 as⋂

i∈P Xi and Z2 as
⋂
i∈P Yi. We pick an element d from Z1 which is not empty

by hypothesis. The triple (d, Z1, Z2) is in
⋂
i∈P ref(Xi), and thus, by hypothesis,

also in
⋃
j∈N ref(Yj). This gives a j such that (d, Z1, Z2) is in ref(Yj) and the

rest of the proof follows easily.

Note in particular that ref(t)∧∧∧ref(s) is empty if and only if t∧∧∧s is empty, so
equation (8) does not hold. However, we also observe the invariance property
ref(t) ≤ ref(s) ⇐⇒ t ' s or t ' 0 which is the least we can expect from
reference types.

We want the recursive type t = ref(t) to be empty. For cardinality reason, we
cannot extend the notion of structural interpretation by requiring D ×P(D) ×
P(D) ⊆ D, Jref(t)K = ref(JtK). We use the same trick as for function types. We
define:

reff (X) = {(d,X1, X2) | d ∈ X1 ⊆ X ⊆ X2} ⊆ D ×Pf (D)×Pcf (D)

where Pcf (D) denotes the set of cofinite subsets of D. We can easily check that
replacing ref(_) by reff (_) in the Lemma above does not change anything when
P and N are finite. We now take the following definition for a structural interpre-
tation:

—D2 ⊆ D and D ×Pf (D)×Pcf (D) ⊆ D
—for any types t1,t2: Jt1×××t2K = Jt1K× Jt2K

—for any type t: Jref(t)K = reff (JtK)

—The binary relation on D induced by (d1, d2).di and by (d,X1, X2).d is Noethe-
rian.

The definition of the universal model is adapted accordingly: D0 is the initial
solution to the equation D0 = C +D0×D0+Pf (D0×D0

Ω)+(D×Pf (D)×Pcf (D)).
Concretely, we add a new production to this inductive definition of elements of D0:

d ::= . . . |(d, {d, . . . , d}, D0\{d, . . . , d})

The definition of the predicate (d : t) is extended with:

((d, {d1, . . . , dn}, D0\{d′1, . . . , d′m}) : ref(t)) = (d : t) ∧ ∀i.(di : t) ∧ ∀j.¬(d′j : t)
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Related work. Davies and Pfenning [Davies and Pfenning 2000] show an issue
arising from the combination of references cells and intersection types. The problem
appears if we allow implicitly-typed (Curry-style) cell creation, like ref(1). This
reference can be given many types, like ref(1), ref(int), ref(int∨∨∨bool), ref(1). If
we allow to give it an intersection of such types, say ref(int)∧∧∧ref(1), it is possible
to assign to it an arbitrary value (if, by subsumption, we see it with type ref(1)),
but, when we read from it, we expect to read a value of type int (if we see it
with type ref(int)). In [Davies and Pfenning 2000], the solution is to restrict the
introduction of intersection types to values and to remove the distributivity rule
(t→→→s1)∧∧∧(t→→→s2) ≤ (t→→→s1∧∧∧s2). We do not follow such an approach because it has a
global impact on the whole system: changing axiomatically the subtyping between
function types is not possible in our system. We prefer the simpler approach that
consists in having prescriptive types for reference cells. When we create a reference
cell, we give enough information to infer a single unique type for the cell contents.

A.3 Non-overloaded functions

The calculus introduced in this paper let specify several arrow types in λ-abstraction.
In this section, we show how to restrict the calculus and the type system to allow
only one arrow type. The syntax of λ-abstractions is restricted to

µf(t→→→t).λx.e

To type this expression we can use the same type system as for our original calculus.
It is easy to check that the operational semantics will never introduce overloaded
functions if the original expression does not contain any. From that we deduce that
the calculus remains sound. However, the interpretation of types as sets of values
changes and because of that, Theorem 5.5 no longer holds. To see why, take four
types t1, s1, t2, s2 and consider the type (t1→→→s1)∧∧∧(t2→→→s2). Values of this type are
closed well-typed expressions of the form µf(t→→→s).λx.e such that t→→→s ≤ ti→→→si for
i = 1..2. But t→→→s ≤ ti→→→si can be decomposed into (t ' 0) ∨ (ti ≤ t ∧ s ≤ si).
The condition is thus equivalent to (t ' 0) ∨ (t1∨∨∨t2 ≤ t ∧ s ≤ s1∧∧∧s2), which is
again equivalent to t→→→s ≤ (t1∨∨∨t2)→→→(s1∧∧∧s2). We have proved that in the restricted
calculus, we have the following property:

J(t1→→→s1)∧∧∧(t2→→→s2)KV = J(t1∨∨∨t2)→→→(s1∧∧∧s2)KV

but it is easy to check that

(t1→→→s1)∧∧∧(t2→→→s2) ≤ (t1∨∨∨t2)→→→(s1∧∧∧s2)

does not hold in general. This is enough to conclude that Theorem 5.5 does not
hold.

To recover Theorem 5.5 and all the other formal results, we need to adapt just
one definition. In the new restricted calculus, the type t→→→s should describe all
the well-typed and closed expressions of the form µf(t′→→→s′).λx.e, provided that
t′→→→s′ ≤ t→→→s. This condition can be decomposed into t ≤ t′ ∧ s′ ≤ s. 11 Following

11We could use a more complex decompositionof t′→→→s′ ≤ t→→→s as (t ≤ t′ ∧ s′ ≤ s) ∨ t ' 0. This
would make the development slightly complex without any real benefit.
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this intuition, we adapt Definition 4.2; if X and Y are subsets of D, we define
X → Y as:

X → Y = {(X ′, Y ′) ∈P(D)×P(D) | X ⊆ X ′ ∧ Y ′ ⊆ Y }

and keep Definition 4.3 unchanged (with the new definition for X → Y and ED =
C +D2 +P(D)×P(D)). This modification is enough to establish all the theorems
from Section 5 for the restricted calculus. Let us just outline some key modifications
we need to do to account for the new system

Lemma A.2. Let (Xi)i∈P , (Xi)i∈N , (Yi)i∈P , (Yi)i∈N be four families of subsets
of D. Then:

⋂
i∈P

Xi → Yi ⊆
⋃
i∈N

Xi → Yi

⇐⇒
∃i0 ∈ N.Xi0 ⊆

⋃
i∈P

Xi ∧
⋂
i∈P

Yi ⊆ Yi0

Proof: Let us prove the ⇒ direction. We take X =
⋃
i∈P Xi and Y =

⋂
i∈P Yi.

The element (X,Y ) is in
⋂
i∈P Xi → Yi and so it is also in

⋃
i∈N Xi → Yi. We

can thus find i0 ∈ N such that (X,Y ) ∈ Xi → Yi, that is: Xi0 ⊆ X ∧ Y ⊆ Yi0 .
The other direction is straightforward.

From this we learn how to adapt Lemma 6.8:

Lemma A.3. Let P and N be two finite subsets of Afun. Then:⋂
a∈P

E(a) ⊆
⋃
a∈N

E(a)

⇐⇒

∃(t0→→→s0) ∈ N.

t

t0\\\

( ∨∨∨
t→→→s∈P

t

)|

= ∅ ∧

t( ∧∧∧
t→→→s∈P

s

)
\\\s0

|

= ∅

(with the convention
⋂
a∈∅ E(a) = EfunD = P(D)×P(D)).

Definition 6.9 is adapted by taking:

CP,Nfun ::= ∃t0→→→s0 ∈ N.


N

(
t0∧∧∧

∧∧∧
t→→→s∈P

¬¬¬t

)
∈ S

N

(
(¬¬¬s0)∧∧∧

∧∧∧
t→→→s∈P

s

)
∈ S

and the following results follow: Theorem 6.10, Corollary 6.11, Corollary 6.12,
Lemma 6.13, all the results from Section 6.3 and Section 6.4, where Lemma 6.21 is
modified as follows:

Jt→→→sKV = {(µf(t′→→→s′).λx.e) ∈ V . | t′→→→s′ ≤ t→→→s}
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The case for functions in the proof of Lemma 6.27 needs to be adapted as well.
The value v which is produced in this case is now v = µf(t0→→→s0).λx.fx where
t0 =

∨∨∨
i=1..n ti and s0 =

∧∧∧
i=1..n si.

Adapting the case for β-reduction in the proof of the Subject Reduction theorem
is easy.

The last thing to change is the construction of the universal model (Section 6.7
and Section 6.8). We re-define EfD as C +D2+Pcf (D)×Pf (D) where Pcf denotes
the restriction of the powerset to cofinite subsets. The terms of the universal model
are now generated by the following grammar:

d ::= c | (d, d) | ({d, . . . , d}, {d, . . . , d})

The predicate (d : t) used to define the set-theoretic interpretation J_K0 is changed
with:

(({d1, . . . , dn}, {d′1, . . . , d′m}) : t1→→→t2) = ∀i. ¬(di : t1) ∧ ∀j. (d′j : t2)
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