On Binary Methods

Kim Bruce™

Department of Computer Science, Williams College, Williamstown, Massachusetts 01267, USA.

Luca Cardelli’

Digital Equipment Corporation, Systems Research Center, 130 Lytton Ave, Palo Alto, CA 94301, USA.

Giuseppe Castagna1

(CNRS) LIENS-DMI, Ecole Normale Supérieure, 45 rue d'Ulm, 75005 Paris, France.

The Hopkins Objects Group§

Department of Computer Science, The Johns Hopkins University, Baltimore, Maryland 21218. USA

Gary T. Leavens’

229 Atanasoff Hall, Department of Computer Science, lowa State University, Ames, lowa, 50011, USA.

Benjamin Piercel

Computer Laboratory, New Museums Site, Pembroke Street, Cambridge CB2 3QG, United Kingdom.

Giving types to binary methods causes significant problems
for object-oriented language designers and programmers.
This paper offers a comprehensive description of the prob-
lems arising from typing binary methods, and collects and
contrasts diverse views and solutions. It summarizes the
current debate on the problem of binary methods for a
wide audience.

1 Introduction

Binary methods have caused great difficulty for designers of
strongly typed object-oriented languages and for program-
mers using those languages. In this paper we study the

*partially supported by NSF grant CCR-9121778 and NSF grant CCR-
9424123. Internet:ki m@s. wi | | i ans. edu

tinternet; | uca@r c. dec. com

Internet: cast agna@ini . ens. fr

§ Jonathan Eifrig, Scott Smith, Valery Trifonov. Contact Scott Smith.
Research partially supported by NSF grant CCR-9301340and AFOSR grant
F49620-93-1-01609. Internet: scott @s. j hu. edu.

Tpartially supported by NSF grants CCR-9108654 and CCR-9593168.
Internet; | eavens@s. i ast at e. edu.

llinternet: benj ani n. pi erce@l . cam ac. uk
© John Wiley & Sons, Inc.

THEORY AND PRACTICE OF OBJECT SYSTEMS 1(Number:3)

sources of these problemsand compare and contrast avariety
of solutions.

Theauthors of thispaper have differingviewsonwhat the
most appropriate solutions are. We have attempted here to
collect together the sol utionsthat i ndividua samong us advo-
cate and to present a consensus on what can be fairly stated
as strengths and weaknesses of each approach. This paper
grew from presentations and discussions a the 2nd Work-
shop on Foundations of Object-Oriented Languages, which
was sponsored by NSFand ESPRIT and held in Parisin June,
1994[19].

Let us begin by fixing some basic terminology. A class
is the code that defines the instance variables and methods
of some objects. The objects that conform to this definition
are called instances of the class. (Theissues that we discuss
also arise in delegation-based languages; for smplicity we
concentrate on classes.) In thisarticlewe use new asaprim-
itivethat generates an instance of aclass from the class name
(and some initial values for its instance variables). An in-
terface type, also called an object type or simply a type con-
tainsthe names of the object’ smethods, and thetypes of each
method’s arguments and results. Dueto subtyping, an object
may have multipleinterface types, what we mean when we
mention the “type of an object” is the least such type (i.e,
the most specific such type). Similarly severa classes may

gt e MR M) R M R T AAa T e I e A M T R TR TR AR Rt

plementations are distinct, but the public methods have the
same type. Usualy, for a class named SomeClass, the inter-
face typeof itsobjectsiswritten Some; that is, we use anam-
ing convention where dropping Classfrom the end of aclass
name is used to give atype name. In afew sections, classes
are identified with types, as they are in languages like C++
and Eiffel. We will notethisexplicitly in those sections, and
use the name Some both as the name of the class (wewill not
use the Class suffix) and as the (least) interface type of ob-
jects of that class.

Binary operations which take two arguments of the same
type are quite familiar in non-object-oriented languages.
Typica examples include arithmetic operations on number
objects, as well as binary relations such as = and <, and
set operations like subset and union. In object-oriented lan-
guages these operations are generally written as methods. In
this case the first argument of the binary operation becomes
the receiver of a corresponding “message’, with the second
parameter becoming the only argument. Consequently, we
define a binary method of some object of type r as amethod
that has an argument of the same type . Such a method is
binary in the sense that it acts on two objects of the same
type: the object passed as argument and the receiving object
itself. In general, a binary method could aso include other
arguments (including other argumentsof the sametype); by a
standard abuse of terminology we still refer to these asbinary
methods. We provide examples in an object-oriented style
later.

A subclassis code that extends a class or classes (cdled
the superclasses of the subclass). Subclasses inherit defi-
nitions of instance variables and methods from their super-
classes. A subclass may aso override the definitions of
methods it would otherwise inherit by redefining them. Be-
cause asubclassinheritscode for methods, it also inheritsin-
terface typeinformation for themethodsthat it does not over-
ride.

The most significant problem with binary methodsliesin
their typingin the presence of inheritance. The sourceof this
problem is that the type of the argument of a binary method
naturally should changein parallel to changes in the type of
the object produced by the subclass. The difficulty is that
these type changes may result in subclasses which may no
longer produce subtypes. On the other hand if inheritance
islimited to aways produce subtypes then useful subclasses
can not be directly defined, and work-arounds must be found.
A second problem isthe asymmetry of a binary method: the
method may have privileged access to only one of the two
objects the method is invoked on. These two problems are
described in more detail in Section 2.

Sections 3 and 4 concentrate on solutionsto the problem
of typing binary methods in the presence of inheritance. We
consider the question fromtwo sides: in Section 3, we reflect
on whether it actualy need be solved at all (i.e., whether bi-
nary operationsmight best not betrested asmethods); in Sec-
tion 4, we meet the problem head-on and review some solu-
tionsthat have been proposed.

b RS AL
J ~

sketches a technique by which object-style data encapsula-
tion can be blended with conventional ADT-style encapsula-
tionto allow implementation of binary operationswith priv-
ileged access to object representations.

Section 6 offers concluding remarks.

Although it is difficult to form a complete list of crite-
riaused to evaluate different solutionsto the binary methods
problem, a partia list of genera criteriacould beformulated
asfollows.

1. How expressive is the solution? In particular, to what
extent doesit all ow reasonabl e subclassing and message
sends?

2. Do subclasses aways produce subtypes?

3. Do binary methods have privileged access to the argu-
ment’s state?

4. |s program development modular? In particular, does
adding a new class ever force modification to existing
code, and can modul e interfaces be defined?

5. Are the receiver and argument of a binary method
treasted symmetrically?

6. Does the solution avoid unnecessary code duplication?

These criteria are used to evauate the different approaches
in the sections that follow.

We only consider type systemsthat are sound inthe sense
that code that statically passes the type system cannot pro-
duce type errors a run time. Therefore we do not consider
congtructsthat allow one to escape from the type system (by
means such asa“cast” in C++) tobea“ solution” to the prob-
lems posed by binary methods; such type systems cannot
guarantee soundness without run-time checks. We also ig-
nore sol utionsbased on thetypecase construct, sinceitisnot
general enough to avoid the problems that message passing
is supposed to solve; see Section 4.2.2 for further details.

2 TheProblem of Binary Methods

This section describes the problems caused by binary meth-
ods. The first subsection describes typing problems in the
presence of inheritance, and the second describes problems
with privileged access.

2.1 TypingBinary Methodsin the Presence of
Inheritance

In procedura or functional languages, the type of a binary
function that takes two arguments of type = and returns a
value of type o iswritten 7 x 7 — . In an object-oriented
language, functions or procedures are typically replaced by
methods belonging to a class corresponding to one of the ar-
guments. Figure 1 shows a standard example of a class with

e R TIAE Y F TR RS pee b TR S T TR TR IAA Aty FRR it

class PointClass
instancevariables
xValue: real
yValue: real
methods
x: real isreturn(xValue)
y: real isreturn(yValue)
equal (p: Point): bool is
return((xValue==p.x) && (yValue==p.y))
end class

Figure 1: The class PointClass

testsfor equality with another instance of PointClass, iswrit-
ten with a single parameter of type Point, the type of ob-
jects instantiated from PointClass As may be seen in this
example, binary operations—when regarded as methods—
are asymmetric: thereceiver playsarolesomewhat different
than the parameter. This distinctionis highlighted when we
define a subclass of a class with a binary method.

Figure 2 defines a subclass ColorPointClass of
PointClass In ColorPointClass the type of the parameter

class ColorPointClasssubclass of PointClass
instancevariables
-- XValue and yValue areinherited
cValue : string
methods
--xandy areinherited
c: string isreturn(cValue)
-- equal isoverriden
equal (p: ColorPoint): bool is
return((cValue==p.c) && (xValue==p.x)
&& (yValue==p.y))
end class

Figure 2: The class ColorPointClass

of equal is changed to ColorPoint to match the type of the
receiver, allowing two ColorPoint objects to be compared
by the equal method, which overrides the behavior of equal
for points.

Wegenerally writeobject typessimilarly to thetypeof the
record of methods.> Therefore instances of PointClass and
ColorPointClasshave the following object types:

LA few notes on our notation. Methods are functions or procedures
whose body occurs after the keyword is. We write parameterless functions
and procedures by omitting the parentheses. We write the type of parame-
terless functions as if they were variables of their return type. That is, we
omit an implicit unit — before the result type. Methods are selected by
dot notation; thus 0.m denotes the method of name m defined for the object
0. Commented text is preceded by “--".

2\We presume that instance variables are not accessible from outside of
the object.

D A S

equal: Point — bool})

Dl B At

ColorPoint= OT {x:real; y:real; c: string;
equal: ColorPoint — bool})

The prefix OT isused to distinguish object types from record
types. Note that both of these definitions happen to be recur-
sive: the type being defined appears on the right-hand side
of the =. It is not uncommon for the type being defined to
appear as either an argument or result typein its methods.

Informally, atype o is a subtype of 7, written o <: 1,
if an expression of type o can be used in any context that
expects an expression of type r (cf. [15, 16, 49]). Associated
with subtyping is the principle of subsumption (subtype
polymorphism): if ¢ <: 7 and a program fragment has
type o, it also has type r. A simple example of subtyping
in object-oriented programming is that an object type is a
subtype of the type with some methods removed, as any
context that expects the object with fewer methods will
not directly use the extra methods and thus no type errors
will occur. In fact it is aso possible to replace the type
of any method by a subtype and till have the resulting
object typesin the subtype relation. Thusthe general ruleis
OT{m1:S1,...,mp:Sn, ..., Mot Spghe) <2 OT {my: 11,
w1) (Withk > 0) if and only if, foreach i € {1..n},
S; <. T;.

The rule for subtyping functions states that ¢ —
T <0 — ifandonlyif ¢’ <: cand 7T <: 7 [15].
(Thisis sometimes called the “ contravariant rule” because it
iscontravariant in theleft argument of —.) Thisruleisinfor-
mally justified by thefollowing. If f isexpected to havetype
o’ — 7/, but actually hastype o — 7, then f can be passed
an argument of type ¢’ when (by subsumption) ¢’ <: o; fur-
thermore, the result of such a call will have type 7, which
(by subsumption) can be considered to be of type 7. Hence
all functions of type o — can be used as if they had type
o' — ' without type error.

Subtype polymorphism is a useful festure of object-
oriented programming: if subclasses correspond to sub-
types, a subclass object can aways be passed to a func-
tion or method expecting a superclass object, alowing re-
use of code. Unfortunately, subclasses do not aways gen-
erate subtypes; this can happen if the types of methods need
to change in subclasses to require more specidized behavior
from their arguments. In particular, since the equal method
in ColorPointClass checks its argument for color as well as
position, the argument type needs to change, as the exam-
pleindicates. Because of the contravariance of the subtyp-
ing relation on the domain of equal, ColorPoint isnot a sub-
type of Point. For the subtype relation to hold, the type of
equal in ColorPoint would have to be a subtype of the type
in Point. Thus ColorPoint — bool must be a subtype of
Point — bool. But, by the subtyping principlefor functions,
thisrequires Point to be asubtype of ColorPoint, exactly the
opposite of what we are after and clearly untrue.

Thisloss of subtypingin thiscase isnot due to any prob-
lem with the definition of subtyping for functions; the proce-
dure breakit of Figure 3illustrateshow allowing thissubtyp-

AT M Ul IAJAl I VR TIRE T RT AAlL 1R AA

it el Rl
parameter of type Point, thereisno problem. However if the

actua parameter isa ColorPoint, arun-timeerror will occur
when p.equal (nuPt) is evaluated. Since the value of p will
be a ColorPoaint, the code for equal in ColorPointClasswill
be executed. When nuPt is sent the message c, it will fail
because it has no corresponding method. Thus, in a sound
typesystem, acall of breakit with an actual parameter of type
ColorPoint must not type check.

procedure breakit(p: Point)
var
nuPt: Point
begin
nuPt := new PointClasy3.2, 4.5)
if p.equal(nuPt) then

end

Figure 3: The procedure breakit.

Most statically-typed object-oriented languages require
subclasses to generate subtypes, even in the presence of bi-
nary methods. One type requirement that has been used to
thisend isthat thetypes of methodsmay not be changed upon
inheritance; thisis done, for example, in C++ [52] Object
Pascal [53], and Modula-3[46]. In such languages, one can-
not write ColorPointClassasin Figure 2, withthetyping dis-
cussed above.

Eiffdl does alow argument types to be speciaized
in a subclass's methods;, for example, it would alow
ColorPointClass to be written as in Figure 2. We cdll such
argument specialization covariant argument specialization,
because it goes against the contravariant rule in argument
positions. Eiffel in addition preserves the invariant that
subclasses generate subtypes, but this means breakit would
type-check and produce a run-time error when passed a
ColorPoint. For Eiffel there is a proposal to compensate
for the resulting insecurity in the type system by alink-time
data-flow analysis of the program (called a system validity
check), which would, if implemented, catch possible type
erors [43]. But even if that were done, the “subtype”
relation would have no clear meaning: Eiffel would claim
ColorPoint to be a subtype of Point, but would not allow
anything but a Point to be passed to breakit. So even though
Eiffel would judge ColorPoint to be a “subtype” of Point,
ColorPoint objects could not be used in &l contexts where
Point objects could be used.

The Point/Col or Point exampleillustratessome but not all
of the problems that arise in typing binary methods in the
presence of inheritance. Further examples that illustrate ad-
ditiona problemswill be presented in the sections bel ow.

- = LR A

tions

OV B) R R AT e R

A completely different kind of problem with binary opera-
tions on objects—whether they are methods or free-standing
procedures—is that they must often be given privileged ac-
cess to the instance variables of both of their arguments.

The equality methods of pointsand colored pointsare ex-
amples of the simpler case where this need does not arise—
the necessary attributes of the argument are already publicly
available through existing methods. In order to write the
equal method for the point class, we only needed to com-
pare the receiver’s instance variables xValue and yValue
to the values returned by the x and y methods of the argu-
ment p. There is no need to access p's instance variables
directly. Indeed, p might not even have instance variables
named xValue and yValue; there is no need to know any-
thing at all about itsinternal representation. The situationis
similar for the equal of the colored point class.

On the other hand, suppose we want to write a class defi-
nition for simple integer set objectswith the followinginter-
face type:

IntSet = OT {(add: int — unit;
member: int — bool;
union: IntSet — IntSet;
super SetOf : IntSet — bool))

We can easily choosearepresentationfor integer sets, (say, as
listsof integers) and implement theadd and member methods
asinFigure4. But when we cometo implementing the union
and super SetOf methods, we get stuck: given the interface
typewe have chosen for sets, thereisno way to find out what
elements a given set contains.

class IntSetClass
instance variables
elts: IntList
methods
add(i: int): unitiselts := elts.cons(i)
member (i: int): bool isreturn(elts.memq(i))
union(s: IntSet): IntSetis ?7??
super SetOf (s: IntSet): bool is ?7?7?
end class

Figure 4: The class IntSetClass, for which writing
super SetOf and union is problematic.

The obvious thing to do is to extend the public interface
of setswith an enumerate method that (for example) returns
alist of the elements of the set. But suppose we want to use
a more efficient internal representation for sets, storing the
elementsin abit string. We would certainly expect not only
the add and member methods to be efficient, but super SetOf
and union as well. But, to achieve good performance, union
needs to work directly with the bit string representations of
the two sets, so the enumerate method hasto be replaced by
an asBitString method that returns the underlying represen-

RTINS

tation detailsvisibleto users.

In order to handle binary operations like equal as meth-
ods, we need the type of a parameter of a method to be the
same as the type of the receiving object; for methods like
super SetOf and union, we need an additional mechanism
for constraining the implementation of a parameter to be the
same asthereceiver’s. Indeed, such amechanismisrequired
whether or not wewant to consider union a proper method of
Set objects: an external procedurefor computing the union of
two set objectswill aso need to gain privileged access to the
internal representations of both of its arguments.

J 1 MR TR T IR T T

3 Avoiding Binary Methods

Sometimes the simplest solution to aproblem isto ignoreit.
In this section we explore the position that binary operations
likeequal, union, and + should not beregarded as methods of
either of their argument obj ects, thus sidestepping the thorny
typing issues raised so far.

There are some theoretical benefitsto taking thisstep. For
example, aside from binary methods, the types of methods
are always positive, in the sense that the object typeitself ap-
pears only in result positions. In thiscase, the classic encod-
ing of object types as recursive records [15, 25] may be re-
placed by an encoding where objectsare model ed by existen-
tial types[48, 33].

It may aso be argued that keeping binary operations
separate from their arguments avoids conceptual confusion.
Turning a symmetric operation like + into a method gives
one of its arguments an artificially specia status, requiring
programmers to think in terms of contorted locutions like
“Ask thenumber « to add itself to 4 and send back theresult,”
instead of the more straightforward “Compute the sum of «
and b.” (However, having said this, it isonly fair to give the
methodol ogical counterargument: An important property of
objectsistheir appearance as active entities that encapsulate
both data and the code acting on that data. Removing binary
methods from objects disruptsthis property, requiring an ad-
ditiona layer of module structure to encapsulate the binary
methods with their class. Section 5 suggests that when bi-
nary methods require privileged access to both object states,
such additional encapsulation may be needed anyway.)

A final reason for avoiding binary methodsisthat they can
exacerbate difficulties with behavioral subtyping of specifi-
cations. Behaviora subtypingis a stronger relationship than
subtyping, and, in addition to guarantees about lack of type
errors, makes behavioral guarantees [4, 5, 38, 37, 41, 39].
The degree of behavioral subtyping between specifications
islimited if the specifications of supertypes are too strong to
allow reasonabl e implementations of “behavioral subtypes.”
The problem isthat if a subtype has extrainformationin its
objects, then the methods of the supertype have to be care-
fully specified if they are to beweak enough to alow for be-
havioral subtyping. A weak enough specification will alow
asubtype' sbinary methods to combinethe extrainformation
in the subtype objects: the receiver and the additional argu-

PRI IRA AP RERE Ty A I Y TR IS 0

or ignoring the extra information usually works, even with-
out any forethought onthe part of the specifier.) For example,
the type ColorPoint has extrainformation, namely the color
of the point. The specifications of the unary methods x and y
simply ignore the point’s color, which allows for behavioral
subtyping. However, if one specifies the equal method for
the type Point so that it returnstrueif and only if thex and y
coordinates are equal, then behaviora subtypes cannot take
such extra information into account.

With these argumentsin mind, we consider in thissection
some dternativesto binary methods.

e AARE TR T Ty It 1Y

3.1 Using Functions Instead of Binary Meth-
ods

In languagesthat provideboth objects and conventional pro-
cedural abstraction, an aternativeto using binary methodsis
simply to make binary operations into functions. These bi-
nary functions can be defined outside of classes, and can be
applied to pairs of arguments as usual.

function eqPoint(p1,p2: Point): bool is
return((pl.x == p2.x) && (pl.y == p2.y));

function eqColorPoint(cpl,cp2: ColorPaint):bool is
return((cpl.x==cp2.X) && (cpl.y == cp2.y)
&& (cpl.c == cp2.c))

where Point and ColorPoint no longer include the equal
method.

Ordinarily, one advantage of using methods instead of
functionsisdynamic dispatch: each class can chooseitsown
code to execute in response to a given message. Therefore,
moving from binary methods to binary functions may seem
astep backwards. The programmer must now know when to
apply eqPoint and eqColorPoint, instead of relying on the
obj ectsthemsel ves “knowing” which equality isappropriate.
(To be fair, it is worth noting that it is difficult to achieve
dynamic dispatch for binary methods such as equal, with-
out adding additional methods to the classes PointClassand
ColorPointClass asin Section 4.3.)

Theloss of dynamic dispatch when functionsare used in-
stead of binary methodsis a serious problem. The problem
manifestsitsalf by causing code duplicationwhich would not
be needed if methods were used. When methods are used, it
often occursthat thebody of onemethod, m, invokesanother
method, n, onthereceiving objectitself. If n isoverriddenin
asubclass, then invocationsof 1 on objects generated by the
subclass will correctly call the new version of n. However,
if n happens to be a binary method, then replacing it with
two (or more) binary functions results in a loss of dynamic
dispatch. Theloss of dynamic dispatch means that either the
correct version of n will not be called from the inherited m
in the subclass, or extra code must be written in the subclass
(for method) to call the proper version of n.

Figure5isan examplethat illustratesthe problems caused
by loss of dynamic dispatch. (Although we have no hard
data on how common such examples are, this example is

uiaso LITIRUIASS

instance variables
value: integer
next: MyType

methods
get\Value: integer isreturn(value)
getNext: MyTypeisreturn(next)
setValue(n: integer): unitisvalue :=n
setNext(link: MyType): unitisnext :=link
append(link: MyType): unitis

end class

class DoubleLinkClass subclass of LinkClass
prev: MyType
getPrev: MyTypeisreturn(prev)

setPrev(link: MyType): unitis prev :=link
end class

if next == nil then salf.setNext(link) & se next.append(link)

instance variables -- value and next are inherited
methods -- getValue, getNext, setValue, and append are inherited; setNext is overridden

setNext(link: MyType): unitisnext :=link; link.setPrev(self)

Figure5: The classes LinkClass and DoubleLinkClass.

a combination of standard idioms.) LinkClassis a simple
class of linked list objects, and DoubleLinkClassis a sub-
classthat usesdoubl elinks(amore completeimplementation
would include methods such as reverse, map, and length).
The type MyType given to variables next and link in the
example represents the type of objects of the current class.
That is, it means Link in the class LinkClass, but means
DoublelLinkin theclass DoubleLinkClassand in theinstance
variables and methods it inherits from LinkClass. MyType
will be discussed in more detail in Section 4.1 below; also
cf. [51, 12, 13, 29]. The objects now have only one interest-
ing method, append, whichisinherited by DoubleLinkClass
Thismethod uses setNext, a binary method, to set the pointer
next, and setNext is overridden in DoubleLinkClass to also
properly maintain the prev link to the previous object.

In a hypothetical function encoding, the setNext
method would be replaced by functions setNextLink
and setNextDoubleLink that lie outside the class definition
(ignoring for now questions of privileged access). However,
since append invokes setNext, it would have to be re-written
astwo almost identical functions, oneinvoking setNextLink
and the other invoking setNextDoubleLink, causing unnec-
essary code duplication. An in-place reverse method of no
arguments is another method for which inheritance would
suffer under this encoding. Thus dispatch can be statically
resolved, but only at the cost of code duplication if this
scheme isused.

3.2 Making Both Argumentsinto One Object

Evenina“purist” object-oriented language where every op-
eration is treasted as a message sent to some object, we may

place binary operations outside of the objects on which they
operate by turningthetwo argument objectsintoasinglepair
object and invoking the method on the pair. To see how this
would work, imagine that the types Point and Col or Point do
not have any binary methods. For example, they could be;

Point= OT {(x:real; y:real))
ColorPoint= OT {(x:real; y:real; c:string))

With thisdefinition, Col or Point woul d be a subtype of Point.

Now define two new classes, PointPairClass and
ColorPointPairClass each with a method named equal,
as shown in Figure 6. Note that the types of the objects
generated by these classes arethe same, OT {(equal: bool),
since they have the same publicinterface.

So the former binary methods are now unary methods of
these new classes. What would originally have been written
as.

aCPt.equal(anotherCPt)

to compare two colored points, will now bewrittenwiththese
new classes as.

(new PointPairClasyaCPt, anotherCPt)).equal

If the types of aCPt and anotherCPt are both ColorPoint,
then one might wish instead to compare them as colored
points, in which case one would write:

(new ColorPointPairClasgyaCPt, anotherCPt)).equal

Thereisabenefitin making these pair objects: it clarifiesthe
perspective desired for the equality comparison. When one
creates a PointPairClass object, it is clear what behavior is

Liaso ruliitral viaso
instancevariables
pl: Point
p2: Point
methods
equal: bool is
return((pl.x==p2.x) && (p1.y==p2.y))
end class

class ColorPointPairClass
instancevariables
pl: ColorPoint
p2: ColorPoint
methods
equal: bool is
return((pl.x==p2.x) && (pl.y==p2.y)
&& (pl.c==p2.c))
end class

Figure 6: The
ColorPointPairClass

classes PointPairClass and

expected fromits equal method; thisexpectation isborneout
even when the two points that make up the PointPairClass
object are actually ColorPoint objects.

Because the classes generate aobjects of the same (in-
terface) type, one can have a variable myPointPair that
denotes objects generated by either PointPairClass or
ColorPointPairClass In this case a message send such as
“myPointPair.equal” resultsin the invocation of the equal
method defined in whichever class was used to generate
the object. Thus, sending the equal message to a pair
object gets the view with which the pair was created. This
should be contrasted with the function call “eqgPoint(aCPt,
anotherCPt),” which always compares its two arguments
as points. It can aso be contrasted with a message-send of
the form “aCPt.equal (anotherCPt),” which always uses
the equal code of ColorPointClass

This approach has problems similar to the function ap-
proach that was discussed previously—the LinkClass exam-
ple of Figure 5 would require code duplication for inherited
methods such as append.

4 Embracing Binary Methods

Having examined what happens if binary methods are
avoided, in this section we consider the typing mechanisms
that must come into play if one chooses not to avoid them.
Two important solutionshave been proposed to thetyping
problems posed by binary methods. One solution, first pro-
posed by the Abel project at HP labs[25], devel opsamethod
that partially solves the Point/Color Point problem by relax-
ing the requirement that subclasses generate subtypes. As
they put it, “Inheritance is not subtyping.” They did not,
however, propose a concrete mechanism for redizing their

) R AR IWALAILTAIT T Ty T WA TRAEYY

A TR T
one way this may be done using the concept of matching

[12, 13].

The other important solution was presented in two pa-
pers at the 1991 OOPSLA conference [2, 31]. These papers
deal with the static type-checking of languages with multi-
methods (also called generic functions or overloaded func-
tions). Multi-methodsasin CLOS allow, as we show in Sec-
tion4.2.1, the Point/Col or Point exampl eto be typed preserv-
ing the subtyping of the two classes. But thisis obtained at
the expense of the encapsulation of the methods, since the
generic functions, like the functionsin Section 3.1, are sep-
arated from objects (objects encapsulate only data). In Sec-
tion 4.2.2 we show how to reconcile multi-methodswith ob-
jects encapsulating data and code [17, 45].

Closely related to the solutions of Section 4.2 isIngals
solution to the multiple dispatch problem [34]. He presented
his solution in an untyped framework, but it can be adapted
to atyped language, as Section 4.3 shows.

Lastly, we show in Section 4.4 how a general principle
of giving more “precise’ types to binary methods produces
more flexible typings across a range of approaches, even in
the case where binary operations are not treated as methods.

4.1 Matching

This section describes how a relation called “matching,”
which is weaker than subtyping, can replace subtyping in
many situations [12]. In particular, we will see below that
this generalization of subtyping provides us with the ability
to handle binary methods smoothly.

411 Generalizing subtyping to matching

As seen in Section 2.1, languages that insist that subclasses
generate subtypes often compensate for the resulting type
problems by restricting the programmer’s ability to change
the types of parameters of inherited methods. This effec-
tively eliminates the use of binary methods in these cases.
If one fedls that binary methods are important, then an ob-
vious solution is to give up the identification of subclasses
with subtypes. Animportant advantage of this decision, not
discussed further here, is to separate the notion of interface
(type) from that of implementation (class). In the remain-
der of this section we assume such a separation has been
made, and thus that the notions of subtyping and matching
(defined below) depend only on the interfaces of objects, not
the classes generating them.

M ost obj ect-oriented languages provideanamefor there-
ceiver of amessage (e.g., self or this), which can be used in-
side method bodies. Similarly, we use MyType as akeyword
that denotes the type of the receiver [51]. It may beused in
the definition of methods whose parameters or return types
should be the same as that of the receiver. One can think
of the object type in the following as simply another way of
writing the type Point given in section 2.1, and it could aso
be the type of objects of a polar implementation of points.

Point= OT {x:real; y:real; equal: MyType — bool})

— 1 Al ARk

One advantage of MyType is that it makes it easier for hu-
man readers to compare types like Point and PolarPoint. A
more important advantage is that it works well with inheri-
tance of methods, because its meaning changes in the sub-
class. For example, when MyTypeisused in the definition of
ColorPointClass all occurrences of MyType in the methods
automatically represent ColorPoint rather than Point.

ColorPoint= OT { x:real; y:real; c: string;
equal: MyType — bool))

As before we can show the type ColorPoint is not a subtype
of Point. However, there is arelationship between the types
ColorPoint and Point, which is clearly apparent when look-
ing at their types written using MyType. One can see that
the only difference is the addition of a new method, c, to
ColorPoint.

We say one object type matches another if the first has
at least the methods of the second and the corresponding
method types are the same, considering MyType in oneto be
“the same” as MyType in the other. We use <# to denote this
relationship. In symbols,

OT {My:r; . ciMy:m) <# OT My ;.o Myt 7))
holdsiff £ < n. (Infact, a more genera definition is pos-
sible in which the types of corresponding methods of the
first are dl subtypes of the corresponding types of the sec-
ond [12]. This means that the corresponding result types are
subtypes—vary in a covariant way—while the correspond-
ing parameter types are supertypes—vary in a contravariant
way. However, thismore general relation will not be needed
here.)

Because the meaning of MyType changes in subclasses,
the meanings of the types of methodsin subclasses need not
be the same as those of the corresponding methodsin the su-
perclass. However, type-safe rules for defining subclasses
can ensure that the types of the objects from the subclass al-
ways match the types of the objects generated from the su-
perclass. In order to obtain type safety, it is necessary to
type check the methods of a class under the assumption that
MyType only matches the type of objects being defined by
theclass. Thisensuresthat these methodswill continueto be
type-safewhen inheritedin subclasses[12]. Whilesomerou-
tineswill not type check with this assumption, even though
they would have passed under the stronger assumption that
MyTypeisexactly thetype of objectsgenerated by thisclass,
in our (admittedly not comprehensive) experience, very few
routinesfail. Matching tells you what messages can be sent
toan object, and what their typeswill be. However, if S <# T,
it does not alow the use of a parameter of type Swhere one
of type T is expected. Nor does it allow assignment of ex-
pressions of type Sto variables of type T.

As stated earlier, ColorPoint is not a subtype of Point.
ColorPoint and Point providean exampl e of two typeswhich
match, but are not subtypes. Basicaly, if aclass hasabinary
method, that is, a method with a parameter of type MyType,

R VAT M R TAR RAAS B I A TR R TR I R IR O T

erate subtypes. On the other hand if a method’s return type
is MyType, thiswill not stand in the way of subtyping. Both
of these follow easily from the subtyping rule for recursive
typesin [3], and the fact that MyType can be seen as an ab-
breviation for a recursive definition of types.

What if we want to use a ColorPoint as an actua parame-
ter in aprocedure or function that originally expected a Point
parameter? Since the example of breakit in theintroduction
showed thiscould not always be done, another, more restric-
tive, construct is needed.

We can introduce alanguage feature to support a form of
bounded polymorphism using matching. With this feature,
functionscan be specified to take type parameters whose val -
ues are restricted to “match” another type. Of course, unre-
stricted type parameters can also be provided, but in alarge
number of situations some sort of restriction is necessary.

Asan example, suppose we wish to writearoutineto sort
an array whose elements are drawn from some ordered set.
In an object-oriented language, the requirement that the el -
ements be ordered can be modeled by demanding that they
support (at least) less_than and equal methods. Define:

Comparable= OT { less_than: MyType — booal,
equal: MyType — bool)

With this definition, the header of our polymorphic sort rou-
tine is as follows, where the notation “T'<#Comparablée’
means that the type parameter 7" must match the type
Comparable:

procedure sort(7'<¢#Comparable a: Array of T);
And the function then has type®
sort : All{(T'<#Comparable) (Array of 7') — unit.

If PhoneEntry is an object type supporting at least methods
less than and equal of type

MyType — bool,

and if pArray is an array of elements of type PhoneEntry,
then sort(PhoneEntry, pArray) isalegal cal of sort.

It is worth noting here that the type Comparable has no
useful proper subtypes because of the appearance of MyType
asthetypeof aparameter initsmethods. Thus, if thebounds
on type parameters were only expressed in terms of subtyp-
ing, it would be impossible to apply the sort routine to any
interesting arguments.

The use of bounded matching is equivalent to the use of
F-bounded polymorphism suggested in [14]. It isaso very
similar in effect to the restrictions on type parameters ex-
pressible in CLU and Ada (as well as the type classes of
Haskell). For example, in Ada onewould writethe sort rou-
tineas.

3The notation All(S <# T)E(S) isthe universally polymorphic type
that can beinstantiated to £/(S), for al S suchthat S <# T .

b et
typetisprivate
with function " <" (x,y: t) return BOOLEAN
is<>:
with function " =" (x,y: t) return BOOLEAN
is<>;
procedure sort (A: in out array (<>) of t) is...

This is similar to the sort procedure written with bounded
matching. Obyject-orientedlanguages containingsimilar con-
structs are Emerald [10], School [50], and Theta[40].

Returning to our example with Point, if f(p: Point) is a
functionaccepting an argument of type Point thenit can often
be rewritten in the form f(7'<#Point; p:T) so that it accepts
atype parameter matching Point and an object of that type.
If thistype checks, then it will be possible to apply it to the
type ColorPoint as well as an object of type ColorPoint. Of
course this rewriting will not succeed in all cases—breakit
being a prime example. The reason this transformation will
not succeed in breakit isthat theformal parameter nuPt will
be of some typeI" <# Point, while p will lways be of type
Point. Thus we cannot guarantee that the type of the argu-
ment to equal in the body of breakit will be the same as the
type of p, and the type check must fail.

What can actually be done with the information that
one type matches another? The matching relation guar-
antees that certain messages may be sent to an object. If
T < Comparable then objects of typeI" can be sent mes-
sages less than and equal (and their parameters must also be
of type 7"). It turnsout that for most situationsthisis al that
is needed in order to ensure that the object is usable. The
stronger information that atypeis actualy a subtype of an-
other is generally not needed.

In particul ar, bounded matching can be viewed as an ex-
plicit, weakened (and hence more generally applicable) form
of subtyping. If subsumption were necessary to type afunc-
tion call, the code could be re-written so the function con-
strainsthetypeparameter, like Comparableabove, and func-
tion invocations explicitly pass the “smaller” type as argu-
ment. Simple subtyping is handled by the case where the
type constraint contains no occurrences of MyType. The dis-
advantage of thisencoding of subtypingisthat al subtypings
must be explicitly given in the program.

In genera the use of bounded matching requires one
to “plan ahead,” by identifying the type parameter to be
matched against. This was illustrated in the sort example:
thetype Compar ableneeds to be discovered by the program-
mer, and every use of sort requires that an explicit type pa-
rameter be passed. Thisisin contrast to subtyping, whichis
implicit and, as mentioned above, does not require any ex-
plicit type instantiation to be given in the program. (It isan
interesting open problem to show how to automatically in-
fer declarations that use matching.) If we were to decide to
eliminate subtyping altogether in favor of matching, then all
obj ect subtypingswoul d haveto berecast asbounded match-
ings. Moreover, sincewe have, thusfar, only defined match-
ing for object types, we would not be able to capture the use

et Ry e BRI RIS At T YT MR Rl it

of matching.

Another difficulty with relying only on matching is that
it is not type-safe to perform an assignment to a variable of
an object whose type only matches that of the variable. For
example, imagine aframework for graphical user interfaces,
in which one creates a main window as a subclass of some
framework class, and has to store the window in some vari-
able. In this case the type of the subclass objects has to be
a subtype of the declared type of the variable in the frame-
work. Subtyping seems to be required for this sort of cross-
type assignment. While this can be worked around by using
type parameters to designate the types of instance variables,
it doeslimit flexibility in handling heterogeneous data struc-
tures, al of whose elements are subtypes of a given type.

The use of MyType is sufficient to write examples such as
linked lists or trees, where methods for attaching a node to
another or returning an adj oining node must be binary meth-
ods. The types of the instance variables of these nodes also
can bewritteninterms of MyType. If thedefinition of singly-
linked node is written using MyType in this way, it is easy
to define a doubly-linked node as a subclass of singly-linked
node. Figure 5 presents such an example. As expected, the
typeof adoubly-linked nodeisnot asubtypeof singly-linked
node, but it does match. It isthen relatively easy to write an
implementation for lists which takes atype parameter which
meatches singly-linked node. By applying this to either the
typefor singly-linked node or doubly-linked node, the corre-
sponding kind of list can be generated without code duplica-
tion. (See[13] for the detail sof this parameterized example.)

The use of MyType in class definitions makes it easier
to write useful subclasses in statically typed object-oriented
languages, especially when the superclasses contain binary
methods. As illustrated in the sorting example above, the
matching relation is very useful in defining bounded poly-
morphic functions. In fact, the use of these two features
should provide atype-safe replacement for the (unsafe) uses
of covariant argument specidization typing inlanguageslike
Eiffel or O, [8], whileproviding comparable expressiveness.
The object-oriented |language L oop [29], on the other hand,
has no matching relation per se, but has similar expressivity,
achieved by circul ar subtypeassertions <: o wherer and o
may share freetypevariable X ; thiscan beviewed asaform
of operator subtyping 7(X) <: ¢(X). The introduction of
amatching relation is thus one, but not the only, solution to
the problem of typing inherited binary methods.

In the next subsection we explore the mathematical as-
pects of the matching relation.

4.1.2 Matching and Object Types

As described in [1], matching can consistently be defined
in terms of pointwise subtyping on operators from types to
types. In thiscase an object typeis used to define afunction
from types to types by replacing all occurrences of MyType
by atypevariable. For example, Point, can be used to define:

PointOperator = AP : Type. { x: real; y: real;
equal: P — bool})

RIS ARA T N T

of the operator®:

SR A) RIS M I TR M AR

Point = Fix(PointOperator)

Details can be found in the paper cited above.

While understanding objects types as fixed pointsin this
way is intuitively appealing, the ability to unfold recursive
typesdoes not interact well with the definitionof matching as
essentially arelation on these operators (rather than thefixed
points themselves).

For example, look at the rel ationship between the fol | ow-

ing types:

EPoint = OT {x:real; y:real;
equal: EPoint — bool)

Point = OT {(x:real; y:real;
equal: MyType — bool)

ColorPoint= OT {x:real; y:real; c: string;
equal: MyType — bool)

Understanding object types as recursive records, the first
two would seem to be the same type. However, while
ColorPoint matches Point according to our definition of
matching, ColorPoint does not match EPoint. Thus these
two seemingly identical types must be treated as being dis-
tinct. It is worth noting that there is some justification to
treating the two types as distinct, as the equal method of a
class which generates objects of type Point is type checked
under weaker assumptions on the parameter (i.e., it hastype
MyType, whichisonly assumed to match Point) than the cor-
responding method of EPoint, in which the parameter has
type EPoint.

This anomaly suggests that an encoding of object types
in terms of something a bit weaker than fixed points might
be necessary. It is an interesting open problem to find such
an encoding of object types (including MyType) and a corre-
sponding semantic definition of matching.

4.2 Multi-methods

A different solution whereby binary methods can be em-
braced is to use multi-methods. Contrary to matching, this
solution does not introduce a new relation on types, since
with multi-methods one can have both type safety and sub-
typing relations such as ColorPoint <: Point.

A multi-method is a collection of method bodies associ-
ated with one message name. The sel ection of which method
body to execute depends on the classes of one or more of the
parameters of the method (rather than just on the class of the
receiver asin ordinary object-oriented languages).

In this survey we distinguishtwo different kinds of multi-
methods. the ones used by thelanguage CLOS[27], and the
encapsulated multi-methods of [17, 45]. A unified analysis
of both kindsof multi-methodsisgivenin[17]. We now de-
scribe each kind in turn.

4The notation Fix(F') meansthe least fixpoint of .

ALl viaisl i ividdy A v VWi W

Intuitively theideaisto consider (multi-)methods (in CLOS
jargon, generic functions) as global functions that are dy-
namically bound to different method bodies according to the
classes of theactua arguments. An object does not encapsu-
late its methods, just the data (itsinstance variables). There
no longer exists the notion of a privileged receiver for a
method (the one that encapsulatesiit, usually denoted by self
or this) since amulti-method is applied to several arguments
that equally participate in the selection of the body. In this
case wetalk of “multiple dispatching” languages, in antithe-
sisto “single dispatching” ones where a privileged receiver
isused. A class of objects is then characterized just by the
interna variables of itsinstances. For example, in a typed
multi-method-based language, the classes givenin Figures 1
and 2 would be defined asin Figure 7.

In order to stress the difference with the formalisms pre-
sented so far wehave used adifferent syntax. Thusaclassde-
clares only itssubclassing relation and the interna represen-
tation of itsinstances (the includes keyword), while method
definitions (introduced by the keyword method) appear out-
side the class declarations. In order to simplify the exposi-
tionin thissection, weidentify classes and types, inthesense
that the name of a class (for which we no longer use the suf-
fix Class) isused asthetype of itsinstances; thereforein this
section (and in this section only) p : Point will also mean
“p is an instance of class Point.” Thus, when discussing
multi-methodsala CL OS, we write class names where types
would otherwise appear.®> Thisallows oneto consider multi-
methods as overloaded functions, whose actua code is dy-
namically selected according to thetype(i.e., theclass) of the
arguments they are applied to.

The definitions of the methods in Figure 7 are com-
pletely disconnected from those of classes. There are
two distinct definitions for equal, one for arguments of
types PointxPoint and the other for arguments of type
ColorPointx ColorPoint. We say that the message equal de-
notesamulti-method (or agenericfunction, or an overloaded
function) formed by two branches (or method bodies). The
type of amulti-method isthe set of thetypes of its branches;
thus equal has type:

{Point x Point — bool,ColorPoint x ColorPoint — bool}

When equal isapplied to apair of arguments, the system ex-
ecutes the branch defined for those parameters whose type
“best matches’ the type of the arguments. For example if
equal is applied to two arguments in which at least one of
themisof type Point and the other isa subtypeof it, then the
first definition of equal is executed; if both arguments have
as type a subtype of ColorPoint then the second definitionis

51f we were to distinguish between types and classes (i.e. between inter-
faces and implementations: cf 4.1.1) , then a new notation would be needed
to specify both a class and a type parameter for multi-methods. One pos-
sibility is to use the notation of Cecil [20, 22], which does separate these
concepts.

viaso rullic
includes
xValue: real
yValue: real
end class

class ColorPoint subclass of Point
includes
cValue : string
end class

method x(p: Point):real isreturn(p.xValue)
method y(p: Point):real isreturn(p.yValue)

method c(p: ColorPoint):real isreturn(p.cValue)

method equal (p:Point, g:Point):bool isreturn((x(p)==x(q)) && (y(p)==y(q)))
method equal (p:ColorPoint, g:ColorPoint): bool isreturn((c(p)==c(q)) && (X(p)==x(q)) && (y(p)==y(q)))

-- XValue and yValue areinherited

Figure 7: Point and ColorPoint classes defined using multi-methodsala CLOS.

selected. More generally, when a multi-method of type

{Sl —T1,5 = T5,...,5, —)Tn}

isapplied to an argument of type S, the system executes the
body defined for the parameter of type S; = min;—1 ,{5; |
S <: S;}. This selection is performed &t run-time. In
this way one obtains dynamic dispatch. Note that in this
paradigm binary methodsare redly binary, sincetheimplicit
argument given by thereceiver of themessageis, inthiscase,
explicit.

In [18] it is proved that to have a sound type system it
suffices that every multi-method of type {51 — 71,52 —
Ty, ..., S, — Ty} satisfies the following condition.®

Vi, j € [l..n] if 85 <:Sj then 7} <: 1} Q)
(This is similar to the monotonicity condition of [49, 42].)
Note that al the multi-methods defined in Figure 7 (and
in paticular equal) satisfy this condition. Therefore
ColorPoint <: Point does not cause type insecurities.

Intuitively, the idea underlying the multi-method ap-
proach is that binary methods may be applied to arguments
of different types and that, in general, it is not possible to
choose the code to execute according to the type of just one
argument. To determine which method body must be exe-
cuted one needs to know the types of al the arguments of
the method. In single dispatching the branch sdlection is
based only on one argument—the receiver; therefore com-
bining subtyping and binary methods with heterogeneous ar-
guments is not type-safe. In contrast, using a multi-method
we can refine the selection by considering al the arguments.

6 Some further conditions are required to assure that a best matching
branch always exists for the selection (see[2], [22], and [18]).

Thusit need never happen that the argument of amethod has
asupertype of thetype of the corresponding parameter (asin
the case of breakit). It isimportant to stress that this consti-
tutesan approach compl etely different from matching, where
theargumentsof abinary method are statically forced to have
the same type.

Note also that multi-methods allow one to specidize
equal inadifferent way for each possible combination of ar-
guments. It suffices to add the branches for the remaining
Cases.

method equal(p: Point, q: ColorPoint): bool is...
method equal(p: ColorPoint, g: Point): bool is...

Aswe have seen, CLOS's multi-methods induce an object-
oriented style of programming that is rather different from
the one of traditional single dispatching object-oriented lan-
guages. Most of thelanguagesthat use multi-methodsare un-
typed (e.g. CLOS [27], Dylan [7], which use classes instead
of types to drive the selection of multi-methods). The only
strongly-typed languages in our ken that use multi-methods
are Cecil [22], and Polyglot [2].

Thelack of encapsulation in multi-methodsis both an ad-
vantage and a drawback. The drawback is methodologicdl:
an object (or aclass of objects) isno longer associated with a
fixed set of methodsthat have privileged accessto itsinternal
representation. The usual ruleisthat any method with afor-
mal parameter of a given class can access the instance vari-
ables of the actual parameter object. The advantage is that
this solves the privileged access problem described in Sec-
tion 2.2, because a binary method can gain privileged access
to both its arguments. However, because such methods can
be defined anywhere in the program, one cannot restrict di-
rect access to instance variables to a small area of the pro-
gram text. One way to fix such problems may be to add a

Liaso LUV Ul IlLlIadaoosuvuiaso Ul rullitvliaso
instance variables
cValue : string
methods
c:stringisreturn(cValue)

end class

-- XValue and yValue areinherited

equal (p: Point):bool isreturn((xValue==p.x) && (yValue==p.y))
equal (p: ColorPoint):bool isreturn((cValue==p.c) && (xValue==p.x) && (yValue==p.y))

Figure 8: The class ColorPointClasswritten using encapsulated multi-methods.

separate module system to control instance variable access
[22]. Instead of pursuing that idea, in the next subsection, we
show how to apply theideas of multi-methodsin moretradi-
tional object-oriented languages with single dispatching and
classes.

Conventional wisdomisthat multipledispatchismoreex-
pensivethan single dispatch. In asingledispatch language, a
singletable lookup can find the best argument branch. With
multipledispatch, it may be more expensive to compute the
branch of a multi-method that matches the arguments best,
although varioustechniques have been designed to minimize
the added expense [6, 23, 26]. However, inalanguagewhere
the compiler can tell which argument positions need dis-
patching (asin CLOS), one can implement multi-method dis-
patch as a chain of single dispatches [36]. If thisis done,
then there is no extra cost for multiple dispatch in programs
that do not useit; that is, in a multiple-dispatching language,
programs that only use single dispatch have the same cost
asin asingle-dispatching language. Moreover, if aprogram
in a single-dispatching language is written by using addi-
tional dispatching after methods are called to resolve prob-
lems caused by binary methods (asin Section 4.3), then such
aprogram will be no faster than the equiva ent multi-method
program [21].

A final drawback of multi-methods ala CLOS isthe dif-
ficulty of combining independently developed systems of
multi-methods[24]. While other ways to solve this problem
have been studied [22], the problem nearly disappears when
multi-methods are combined with single dispatching, as de-
scribed next.

4.2.2 Encapsulated multi-methods

To solve the encapsul ation problems of multi-methods a la
CLOS, we seek to emul ate the Smalltalk model, where every
method is the method of one object. Thus each method has
aprivileged receiver argument (self), whichistheonly argu-
ment whoseinternd state can be accessed by themethod. In-
stead of defining multi-methods as globa functions, theidea
isto use themto define the bodies of some methodsin aclass
definition[17]. In thisway amulti-method is always associ-
ated to amessage mof aclass C. When missent to an object
of class C, it is dispatched to the corresponding method. 1f
this method happens to be a multi-method, then the branch
is selected according to the types of the further arguments

of m. Thus, the selection of the method is till based on the
receiver, but the actua code is selected among several bod-
ies that are encapsulated inside the object. Inside these bod-
ies, the receiver is dtill denoted by the keyword self. En-
capsul ated multi-methods are to be di stinguished from static
overloading (as found in Ada, Haskell, C++, and other lan-
guages), because the sel ection of code must be made dynam-
ically.

As an example of this technique, take the class Point as
in Figure 1 and rewrite the class ColorPoint asin Figure 8.
In that Figure (note we are using our original notation for
classes again) there are two definitionsfor equal: thefirst is
executed when the argument of equal is of type Point, the
other when it is of type ColorPoint. The selection of the ap-
propriatedefinition isdone at run-timewhen the argument of
equal has been fully evaluated and henceitsrun-timetypeis
apparent. The selection isbased on thetype of the additional
argument. In other words, we have transformed the method
associated to equal into a multi-method, where arguments of
different types are associated to different codes.

There are two differences from multi-methodsalaCLOS.
The first is that multi-methods are defined in particular
classes, whereas in CLOS they are globally defined generic
function names. This solves the encapsulation problems of
CLOS multi-methods, because access to instance variables
is restricted to the methods of a class, as only the receiver’s
instance variables can be accessed. The second difference
isthat dispatch is not based on actual argument classes, but
rather on argument types. Thisis possible because no priv-
ileged access is obtained to the additional arguments. How-
ever since types are not equated with classes, the technique
cannot solve the problem of privileged access to other ar-
guments discussed in Section 2.2: several different classes
might implement the same type, so from thetype aoneitis
unclear which class implementation the method should have
access to.

The type of a multi-method is the set of the types
of its different codes. Thus the type of an instance of
ColorPointClassnow becomes

ColorPoint =
OT {(x:real; y:real; c: string;
equal: {Point — bool, ColorPoint — bool }))

and ColorPoint <: Point holds, since, for subtyping, or-
dinary methods are considered as multi-methods with just

MR MR AM I Y T ST R ety R et

e e A
tem for multi-methods (see [17]) one can deduce: {Point —
bool, ColorPoint — bool} <: {Point — bool }.

More precisdly, the subtyping relation between sets of
types states that one set of types is smaller than another if
and only if for every type contained in the | atter there exists
atypeintheformer smaller thanit. Thisfitstheintuitionthat
one multi-method can be replaced by another multi-method
of different type when for every branch that can be selected
inthe former thereis one branch inthe latter that can replace
it.

Thus, if in writing a subclass one wants the type of the
instances to be a subtype of the type of the instances of the
superclass, then some care in overriding binary methods is
required. Indeed, the rule of thumb for this approach is that
to override a binary method one must use an (encapsul ated)
multi-method with (at least) two branches: one with a pa-
rameter whose type is the type of the instances of the class
being defined, the other with a parameter whose typeis the
type of the instances of the origina superclass in which the
message associ ated with the binary method has been first de-
fined. Thus, when a binary method is overridden in a new
class, it is not enough to specify what the new method has to
do with the objects of the new class. It is aso necessary to
specify what it has to do when the argument is an object of a
superclass. Fortunately, this does not require alarge amount
of extraprogramming. The number of branches that suffice
to overrideabinary (or n-ary) method in atype-safe manner
is independent of both the size and the depth of the inheri-
tance hierarchy; indeed, it isalways equa to two. For exam-
ple, supposethat wefurther specialize our Point hierarchy by
adding further dimensions:

class 3DPointClasssubclass of PointClass
instance variables x3Value: real
methods...

class 4DPointClass subclass of 3DPointClass
instance variables x4Value: real
methods...

...and s0 on, up to a dimension n. The new classes
form a chain in the inheritance hierarchy. If we want
to override equal, what do we have to do in order for
this to be a chain of the subtyping hierarchy too (i.e,
nDPoint <: ... <: 4DPoint <: 3DPoint <: Point)? If
we want to override equal in nDPointClass (thus we want
that in the description of nDPointClass a definition of the
form equal(p : nDPoint)is ... appears), then thefirst idea
is to write for the class nDPointClass a multi-method with
n — 1 branches, onefor each classinthechain”. Thisispos-
sible, but for type safety a multi-method with two branches

7 Of course, if in the definition of »DPointClasswe do not give any defi-
nition for equal then nDPointClass inheritsthe last (multi-)method defined
for equal in the upper hierarchy. It isimportant to be clear that, in the for-
malization we use, a new definition of a (multi-)method completely over-
ridestheold one(i.e. it is not possibleto inherit some branchesand override
others: this could by obtained by adding some extra syntax.)

IS M T R M T T IR IRy vt i v

el B i
one we want to define, and the other for arguments of type

Point, which will handle all the arguments of a supertype of
nDPoint. For example, in case of n = 4 one could define®

class 4DPointClass subclass of 3DPointClass
instance variables x4Value: real
methods
x4:real isreturn(x4Value)
equal (p: Point):bool isreturn(p.equal (self))
equal (p: 4DPoint):bool is
return((xValue==p.x) && (yValue==p.y) &&
(x3Value==p.x3) && (x4Value==p.x4))
end class

Type safety stems from the fact that the subtyping condition
issatisfied.’

A find remark isin order. The different branches that
compose a single multi-method are not required to return
the same type. For type safety it suffices to have the con-
dition (1) as for multi-methods a la CLOS: for each pair of
multi-method branches ¢1 , ¢; with the same name and num-
ber of arguments,'® if the parameter types of ¢; are smaller
than the corresponding parameter types of ¢, then theresult
type of ¢; must be smaller than the result type of ¢, [49, 18].

Note that multi-methods can be considered as a kind of
typecase construct enhanced by two features. (a) the selec-
tion of the case to apply uses subtypinginstead of type equal -
ity; (b) all the cases are not required to return the same type
(they are soldly required to satisfy the condition (1)). This
makes multi-methods more flexible than statically defined
typecase statements as might be found in imperative lan-
guages: without (a), a binary method whose parameter type
isguarded using atypecase would aways have to be rewrit-
ten when new subclasses are added to the program; without
(b), specialization of the result type of binary methods could
not be handled. The only remaining problem that multi-
methods and typecase shareisthat if the method should only
be defined with a parameter of exactly the same type as the
receiver, the multi-method user will be required to add anew
method body with the original parameter type whose only
purpose isto raise an error message. See the conclusion for
further discussion of thisissue.

Some further consistency conditions are required in case
of multipleinheritance[31, 45, 18, 22].

One of the main advantages of this approach is that the
extra branch required to assure type safety of subtyping can

8 This exampleis due to John Boyland.
1n general, if we have a hierarchy of n classes whose instances have
type S, <: ... <: S; and we want to define for each of them a binary
method, respectively returning the type 7, <: ... <: T} then according
to the subtyping rule for multi-methodswe havethe following typeinequal-
ities: {Sn = Tn,S1 — Tn—l} <: L <: {Sl‘+1 — /T,‘_|.17 S —
T} <: {Si — 15,51 = Ti—1} <: ... <: {S1 — T1}. Thisproves
that two branchesalwayssuffice for binary methods. The declarationsof the
classesfor pointsare aspecial caseof this, where S; =Poaint, fori € [3..n]
Si—1 =:DPoint, andfor ¢ € [1..n-1] T; =booal.
101ndeed multi-methods may have more than one parameter (this allows
us to deal with n-ary methods), and the multi-method branches are not all
required to have the same number of parameters.

viaoo ruliiitelasos
methods

equal (p: Point): bool isreturn(p.equal Point(self))

class ColorPointClasssubclass of PointClass
methods

-- equal Point isinherited

equal Point(p: Point): bool isreturn((xValue==p.x) && (yValue==p.y))
equal ColorPoint(p: ColorPoaint): bool isreturn(self.equal Point(p))

equal (p: Point): bool isreturn(p.equal ColorPoint(self))

equal ColorPoint(p: ColorPoaint): bool isreturn((cValue==p.c) && (xValue==p.x) && (yValue==p.y))

Figure9: Ingalls’ simulation of multi-methods.

be generated in an automatic way. Therefore this technique
can be embedded directly in the technology of the compiler,
and used to “patch” the already existing code of languages
that use covariant specidization, like Eiffel and O,. Thus,
like the solution given in the next section, this solution can
bedirectly appliedtolanguageswith covariant argument spe-
cialization without requiring any modification of the code: a
recompilation of existing code will suffice (see [11]).

On the other hand this approach has some disadvantages.
One disadvantage compared to multi-methodsalaCLOS is
that it does not solve the problem of obtaining privileged ac-
cess to other arguments in a binary method. Another disad-
vantage of this approach is that in case of multiple inheri-
tance additional type checking constraints are needed. The
problem isthat when multipleinheritanceis used, the notion
of a “best matching branch” to select or to inherit may be
lost. Consequently, unconstrained use of multi-methods can
break the modularity of programming [24], since the addi-
tionof anew classto the system might requirethe addition of
some new code in a different class to assure the existence of
the best branch (see, for example, [22]). However the prob-
lem with modularity isless critical than in the case of multi-
method &la CLOS. An additional disadvantage is again the
performance penalty imposed by multi-methods. One extra
test and branch is required to decide which code isto be ex-
ecuted. The overhead to resolve uses of encapsulated multi-
methodsishowever smaller than in the case of CLOS multi-
methods sincethereis no special lookup needed for the priv-
ileged receiver.

There are a'so some less important disadvantages. The
first one is that, as it depends on an avant garde type the-
ory, the interactions of this theory with fairly standard fea-
tures like polymorphism (both implicit and explicit) are not
yet clear. (Modelsbased on records have been more deeply
studied than those based on overloading.) Also, even though
there is not a blowup of the number of extra method bodies
that must be written, there isat least a doubling of the num-
ber of method bodiesthat must be written each time abinary

method is overridden. Some further negative remarks are to
be found at the end of the next section.

4.3 Simulating Multi-methods in a Single-
Dispatching Language

Ingalls offered a solution to what he called the problem
of “multiple polymorphism” at the firsst OOPSLA confer-
ence [34]. His solution to the binary method problem, of-
fered in the context of single-dispatching languages such as
Smalltalk-80 [32], was to use two message dispatches, one
to resolve the polymorphism of each argument.

In the exampl e of points, colored points, and equality, the
equal method would be coded asin Figure 9. As usual, the
class ColorPointClassinherits the method equal Point from
the class PointClass. Now the (mutually recursive) types of
theinstances of PointClassand ColorPointClassare:

Point= OT {{x:real; y:real;
equal: Point — bool;
equal Point: Point — bool;
equal Color Point: ColorPoint — bool)

ColorPoint= OT {x:real; y:real; c: string;
equal: Point — bool;
equal Point: Point — bool;
equal Color Point: ColorPoint — bool)

Notice that, with this typing, ColorPoint is a subtype of
Point. Also, equal in ColorPointisabinary method, sinceby
subsumption it can have argument type ColorPoint as well.
Thistyping can be said to be more precise than the typing of
ColorPoint givenin theintroduction; the general issue of the
use of more precise typingsistaken up in Section 4.4.

The solution offered by Ingals is probably the best-
known way to simulate multiple dispatch in alanguage with
only single dispatch. With respect to true multiple-dispatch,
thelngallssimulationismore exact than thefunction simul a-
tion offered in Section 3.1, sinceit can arrange for equal with
two arguments whose dynamic typeis ColorPoint to aways

LAV AT AT TR IR RS Ty T g™ M el

gument expressions. Thisis because of the second dynamic
dispatch in the equal method. Such a result is not possible
with the function simulation of Section 3.1: onewill aways
be able to apply the eqPoint function to two Color Point ob-
jects and lose exact type information. This example is thus
one case for which dynamic dispatch on binary methods oc-
curs. Inthisrespect, the simulation of multiple-dispatchwith
external functionsislessfaithful and flexiblethan thelngalls
simulation.

Thistrandation can aso be contrasted with encapsul ated
multi-methods as described in Section 4.2.2. Ingdls trans-
lation lacks modularity in that it requires equal ColorPoint
to be added to the PointClass class when ColorPointClass
is defined. With multi-methods, modularity can be pre-
served since the redefinition of the equal method inside
ColorPointClass does not require any modification of the
code for PointClass, however, this introduces an unnatural
asymmetry, since the redefinition of equal requires one to
write code for how a ColorPoint behaves when its equal
method is passed a Point, but not vice-versa. The natural
symmetry cannot be restored except by breaking the modu-
larity of the multi-method solution.

It should be pointed out that the above argument only
holds if we require (multi-)methods to be written in classes,
as in Section 4.2.2. For multi-methods a la CLOS there is
no problem of asymmetry, althoughthereisstill amodularity
problem. However, the multi-method approach still requires
one to go back and add code for types that appeared to have
been completed earlier.

Ingals solution is surprisingly genera—»by overriding
equal Pointin ColorPointClass adifferent method can beex-
ecuted for all four combinationsof Point and ColorPoint. In-
galls' solution could in fact be used as one technique for im-
plementing encapsulated multi-methodsin a compiler, pro-
vided the compiler had access to al of the code at compila-
tiontime.

Finaly, for large inheritance hierarchies the number of
cases required by Ingalls' solution can, in principle, become
guite cumbersome.

Al Iy Ml e A

4.4 Precise Typings

It is sometimes advantageous to use more precise typings
for methods. A binary method only needs its argument to
have the methods that are explicitly used. Generaly thisisa
weaker reguirement than having the argument be an obj ect of
thecurrent class, andit may allow for a“larger” (with respect
to the <: relation) type of the argument of this method; by
the contravariant subtyping rulefor functionsthis producesa
smaller typefor themethod. Theinformal ideaisthustogive
methods smaller types[9, 10]. By subsumption, these types
can aways be lifted to “true binary” form, allowing objects
of the same class to be passed as arguments to the method.
Thus, specifyingasmaller typeof amethod can only increase
its usability.

Ingalls solutionin Section 4.3 in fact depends on the use
of precisetypes, for thekey toitstypability istheuse of Point

R MY VM gt it AR AR AT
J J

N et TR T A et
This gives the method a smaller type than if the argument

were of type ColorPoint. In thissection we elaborate on this
technique.

By way of illustration, consider the origina
Point/ColorPoint example of Figures 1 and 2. Since
neither equal method calls equal recursively, the types

Point,,:, =
OT (x:real; y:real;
equal: OT {(x:real; y: real)) — bool)

ColorPoint,,;, =
OT {(x:real; y:real; c:string;
equal: OT {x:real; y:real; c:string)) — bool)

may also be given. These types are subtypes of the types
given originally. Note that the objects passed to equal them-
selves require no equal method be present. Since Point,,,;,,
is a subtype of OT {(x:real; y:real)) and similarly for
ColorPoaint,,;,, it iseasy to see that

Point,;, <: OT {x:real; y:real;
equal: Point,,;,, — bool)

ColorPaint,,;,, <: OT {x:real; y:real; c: string;
equal: ColorPoint,,;,, — bool}

s0 egual is indeed a binary method, and no typings are
lost in this approach. In fact, something is gained over the
matching interpretation described in Section 4.1: it is pos-
sible to invoke the equal method of a Point,,;,) with a
ColorPoaint,,,,;,) as argument. Typing this “ heterogeneous’
invocationis crucia for a class defining binary methods in-
tended to be inherited without redefinition and able to take
as arguments objects of any subclass [28]. In atype system
based on matching, a method declared to take arguments of
type MyType cannot, in general, accept an object of a sub-
class as argument; it is necessary to use bounded matching
toredizethis(seethediscussion at theend of Section4.1.1).
Precise types here provide a simpler solution based on sub-
typing. Note that ColorPoint,,;, does not match, nor isit a
subtype of, Point,,,;,, .

As shown in Section 4.3, typing Ingalls solution when
MyType appears only in the types of method parameters
is possible simply by using subsumption, eg., to lift a
ColorPoaint to a Point in cpl.equal(cp2), where both cpl
and cp2 are objects of type ColorPoint. However thistech-
nique cannot be directly applied to binary methods with re-
sult of type MyType (or involving MyType), because sub-
sumptionon thetypeof the argument may cause lossof inter-
esting type information. Consider the example in Figure 10,
which defines points and colored points with a binary max
method. Objects of MPointClass and ColorMPointClass
could be given the following types, which are simple mod-
ifications of the types of Pointsin Section 4.3.

MPoint =
OT {(x:real; y:real;
max: MPoint — MPoint;
maxMPoint: MPoint — MPoaint;

viaso iviruliitelaso
methods

max(p: MPoint): MPointisreturn(p.maxMPoint(self))
maxMPoint(p: MPoint): MPoint is
if xValue **2 4+ yValue ** 2 < p.x** 24 p.y** 2
then return(p) else return(self)
maxColorMPoint(p: ColorMPoint): MPoaint is return(self.maxMPoint(p))

class ColorMPointClasssubclass of MPointClass

methods
max(p: MPoint): MPointisreturn(p.maxColorMPoint(self))
-- maxMPoint isinherited
maxColorMPoint(p: ColorMPoint): ColorMPointis
if (xValue ** 2+ yValue ** 2) x brightness(cValue)

then return(p) else return(self)

< (pX** 2+ p.y* * 2) * brightness(p.c)

Figure 10: Ingalls simulation of pointswith a max method: first attempt.

maxCol or MPoint: ColorMPoint — MPoint})

ColorMPoint =
OT {x:real; y:real; c: string;
max: MPoint — MPoint;
maxMPoint: MPoint — MPoint;
maxCol or MPoint: ColorMPoint — ColorMPoint)

The subtyping ColorMPoint <: MPoint till holds, but note
that the result of method max of ColorMPointClassis of type
MPoint; type checking wouldfail if we assigned thismethod
the type MPoint — ColorMPoint. Thus the static type of
taking the max of two ColorMPoints will have to be merely
MPoint (unless the method maxColorMPoint was used ex-
plicitly). True multi-methods do not suffer from this short-
coming.

We can overcome this problem in amore expressive type
system that providesfor polymorphism in addition to recur-
sivetypes. Theideaisto make thetype of max more precise,
and in thiscase, polymorphic. The codefor the max methods
with their new type annotationsis given in Figure 11. This
modification yiel dstypesfor the objects of MPointClassand
ColorMPointClassdescribed in Figure 12. If p isaMPaint,
its max method can still be specialized to a binary method:
p.max[MPoint] is of type MPoint — MPoint, and similarly
for the max method of a ColorMPoint. Therelation with the
types of the “true binary” methods is more direct in an im-
plicitly typed language, where the precise types are smaller
[30, 28].

With this typing, taking the max of two elements of
ColorMPoaint returns a ColorMPoint; any other combination
returns a MPoint, the best static type possible. Note that
ColorMPoint is still a subtype of MPaint in a system with
implicit unfolding of recursive types. So, thistyping has all
thedesired propertiesof thetyping viapuremulti-methods of

Section 4.2, giving more situationsin which Ingalls' method
may be usefully applied.

Soop and PolyTOIL are two languages in which al of
the precise typings of this section may be expressed. Pre-
cisetypesare complex, however, anditisdifficult to imagine
programmerswriting them routinely. A solutiontothisprob-
lem is to automatically infer minimal types. See [28] for a
typeinference algorithmfor the | -L oOP object-oriented lan-
guage. The agorithm infers a form of F-bounded polymor-
phic type for classes and objects. It infers minimal typesfor
the original Point/ColorPoint example that are very similar
to the“small” types presented above. The typesinferred for
objects of MPointClass and ColorMPointClass are dightly
more general than the form above.

To summarize some of the advantages and disadvantages
of precise typing:

+ Precise types dlow more flexibility in typing than
matching alone. They may be expressed using bounded
matching, but bounded matching requiresexplicit quan-
tification and instantiation where subtyping alone may
suffice.

+ Precisetypesareacritica component of atyped version
of Ingalls solution.

+ More precise typesin module interfaces can be used to
overcome some of the limitations of matching.

- The generally more complicated form of the precise
types suggests that a type inference algorithm may be
the only practical aternative.

- In defining a subclass, one may have to go back and
modify the type annotations of the superclass (and, in
generd, the superclass of the superclass, etc.) in order

uiaso IVirFullitel aso

return(p.maxMPoint(self))

class ColorMPointClasssubclass of MPointClass

return(p.maxColorMPoint(self))

max[X:Type](p: OT {maxMPoint: MPoint — X; maxColorMPoaint: ColorMPoint — X}):X is

max[X: Type](p: OT {maxColorMPoint: ColorMPoint — X%): X is

Figure 11: Ingallssimulation of pointswith a max method: precise typing.

MPoint =
OT {(x:real; y:real;

maxMPoint: MPoint — MPoint;
maxCol or MPoint: ColorMPoint — MPoint})

ColorMPoint =
OT {{x:real; y:real; c:string;

maxMPoint: MPoint — MPoint;

max: All(X) OT { maxMPoint: MPoint — X; maxColorMPoint: ColorMPoint — X} — X;

max: All(X) OT {maxColorMPoint: ColorMPoint — X) — X;

maxCol or MPoint: ColorMPoint — Color MPoint))

pl

Figure 12: Types for object of MPointClassand ColorMPointClass

to generate subtypes. Thismay be seen as another argu-
ment in favor of typeinference, since no modifications
will be required in animplicitly typed language.

5 Privileged Access to Object Repre-
sentations

In Section 2.2, we saw that the problems of typing binary
methods are often accompanied by difficultiesinimplement-
ing binary operations without exposing object internals to
publicview. This section sketches atechniquewhereby such
“overexposed objects’ can bewrapped in an additional layer
of abstraction, creating alimited scopeinwhichtheirinterna
structure is visible. The technique was developed by Pierce
and Turner [47] and by Katiyar, Luckham, and Mitchell [35];
we refer the reader to these papersfor further details. In par-
ticular, [47] demonstrates that the mechanism shown here
is compatible with inheritance (though it requires some ad-
ditional machinery). These ideas give a semantic basis for
some aspects of the encapsulation viafriends found in C++
and the encapsulation in Cecil [20]. Returning to the exam-
pleof integer set objects (and droppingthe union method, for
brevity), it isclear that the typing

IntSet = OT ({add: int — unit;
member: int — bool;
super SetOf : IntSet — bool)

does not provide a sufficiently rich protocol to alow the
super SetOf method to be implemented: there is no way to
find out what are the elements of the other set (the one pro-
vided as argument to super SetOf). We have no choice but to
extend theinterface of set objectswithamethodthat provides
accesstothisinformation; let uscall it rep, asareminder that,
ingeneral, it may need to provideaccess to the wholeinternal
representation of the object.

IntSetExposed = {(add: int — unit;
member: int — bool;
super SetOf : IntSetExposed — bool
rep: IntList)

Now we can easily implement al the methods of
IntSetExposedClass, as shown in Figure 13.

It remains to show how to package the class
IntSetExposedClass so that the rep method can only be
caled by other instances of the same class. For this, we
generaize Mitchell and Plotkin’s motto that “abstract types
have existential type’ [44], combining it with the idea
of object interfaces as type operators from Cardelli and
Wegner’s partially abstract types[16].

The interface of the exposed integer set objects can be
written as follows.

IntSetExposedOperator (S) = (add: int — unit;
member: int — bool;
super SetOf : S— bool
rep: IntList)

uliaso ittt ApUscuUL Il dso
instancevariables
elts: IntList
methods
add(i: int): unitiselts := elts.cons(i)
member (i: int): bool isreturn(elts.memq(i))
super SetOf (s: IntSet): bool is
return(elts.superListOf (s.rep))
rep: IntList isreturn(elts)
end class

Figure 13: The class IntSetExposedClass, for which writing
super SetOf is straightforward

intSetPackage =
pack
procedure newlintSet() is
var
nuSet: Fix(IntSetExposedOperator)
begin
nuSet := new IntSetExposedClasy));
return(nuSet)
end
as

Some(ISOp < : IntSetOperator)
OT {newIntSet : Fix(1SOp))
hiding
IntSetExposedOper ator
end

Figure 14: The package intSetPackage.

Similarly, theinterface of ordinary integer set objects (with-
out rep) can be written:

IntSetOperator(S§) = ((add: int — unit;
member: int — bool;

super SetOf : S — bool)

Now comes the key point. Instead of defining IntSet =
Fix(IntSetOperator) as we did before, we build an abstract
datatype(ADT) and then openittoobtain IntSet. Theimple-
mentation of the ADT uses IntSetExposedOperator, so that
super SetOf makes sense, but the rep method is hidden from
public view.

The integer set package (or module) is defined in Fig-
ure 14. To verify that itstypeis

intSetPackage : Some(ISOp <: IntSetOperator)

OT {newlIntSet : Fix(1SOp))

we need only check that when the hidden “witness type”
IntSetExposedOperator is replaced by the abstract place-
holder 1SOp in the type of the body of the package

OT {newlIntSet : Fix(IntSetExposedOperator)})

i MR R AT btk B

OT {(newlIntSet : Fix(ISOp)).

Having built intSetPackage, we can open it to obtain
the crestion procedure newlIntSet and the abstract interface
| Op, from which we define the type IntSet:

open intSetPackage
as|SOpwith OT {newlntSet)

type IntSet = Fix(1SOp)

In the remainder of the program, objects created using
newlIntSet have type IntSet. In particular, they can be sent
the super SetOf message.

In effect, what we have accomplished is to blend object-
and ADT-style abstraction mechanisms. The primary mech-
anism is abjects: both ordinary (unary) operations like add
and binary operations like superSetOf are methods of ob-
jectsrather than free-standing procedures. The extralayer of
packaging guaranteesthat el ements of IntSet can only becre-
ated by calling newIntSet—i.e., that every e ement of IntSet
isactually aninstance of IntSetExposedClass, and hence sup-
portsthe rep message.

6 Summary and Conclusions

Binary methods pose real problems in object-oriented pro-
gramming languages. There is a typing problem because
typeswith binary methods have few interesting subtypes, and
there is a problem obtaining privileged access to additional
arguments in binary methods.

We discussed the following solutions to the typing prob-
lem for binary methods.

¢ Avoiding binary-methods completely. We proposed
several techniques for achieving similar effects.

e Using anotion of matching, which isweaker than sub-
typing. Thisallowsmore polymorphisminthe presence
of typeswith binary methods. However, it seemsto re-
quire programmersto plan ahead more than they would
using subtyping, and itsflexibility isnot as great aswith
multi-methods.

e Using multi-methods, either as a basis for object-
oriented programming, or as a solution within the
framework of single-dispatched languages. This gives
the programmer more flexibility in programming bi-
nary methods, and consequently allows more subtyp-
ing. However, thereare modularity and efficiency prob-
lems with these approaches.

e Using more precise typings for methods (including the
Ingallssimulation of multi-methods). Thisallowsmore
flexibility than matching. However, it seems to require
type inference to be practical [28], and the resulting
types may be more complicated than programmerswant
to see.

bt il Rt~ Al
guments, we discussed adding additiona layers of abstrac-
tion. However, this by itself does not solve the typing prob-
lems of binary methods; it must be combined with one of the
previous solutions.

Matching, multi-methods, and precise typings offer three
different solutionsto the binary methods problem. Match-
ing insists that binary methods have the type of both argu-
ments (thereceiver and the extraargument) exactly the same,
and statically enforcesthisproperty. Multi-methodsallow all
heterogeneousinvocationsof binary methods, so for instance
the equal method of a ColorPoint may be passed a Point as
argument. Precise typingslie somewhere between the two:
they do not insist that binary methods have the same typefor
both arguments, but also do not allow all safe heterogenous
invocations of binary methods.

To illustrate a weakness of multi-methods, consider the
binary methods of DoubleLinkClass in Figure 5. Using
multi-methods, there is a problem if the setNext method of
DoubleLink is invoked with a Link node as argument: the
Link should point back to the DoubleLink, but it cannot. The
best solution is to define a multi-method case here to flag a
run-time error. In the case of matching, the receiver and ar-
gument must be the same typeand thetype system safely pre-
cludes such amessage send. Precise typings produce a solu-
tion between thetwo: aLink may point to a DoubleLink, but
aDoubleLink may not point to aLink. The latter restriction,
imposed by thetype system, preventsthe above run-time er-
ror from arising.

To illustrate a lack of expressiveness of match-
ing, consider a graphica user interface in which an
AlertWindowClass has been defined by inheritance from
WindowClass A binary method overlap should be able
to compare plain windows with aert windows. Note
also that the overlap method should be speciaized in
AlertWindowClassin order to take into account some prior-
ity of theaerts (thus overlap isabinary method). Thiscould
be programmed with multi-methods and precise typings, but
not with matching.

A weskness of precise typingsis illustrated by the need
to use Ingalls solution to simulate multiple dispatch. This
solution is an ad hoc implementation of multiple dispatch.
All three solutionsthus have strengthsand weaknesses. This
suggests that the integration of different solutionsinto a sin-
ole object-oriented language is a task worthy of study.

So, which solutionisthe best? None of the solutionsdis-
cussed above are perfect. Some work also remainsin deter-
mining if some of the solutionswill scale up to full-featured
languages. For practical programming languages the bottom
line may be the empirical question of what sort of inconve-
nience the programmer is most likely to tolerate. It is our
hope that further research will uncover better solutions, per-
haps using some combination of the techniques discussed in
this paper.

S VRAMT AT T A

R Rt

Thanks to the US National Science Foundation and ESPRIT
for their support of the workshop that resulted in this paper.
Thanks to the anonymous referees for comments that hel ped
improve this paper.

References

[1] Martin Abadi and Luca Cardelli. On subtyping and
matching. In Proceedings ECOOP ' 95, pages 145-167.
LNCS 952, Springer-Verlag, 1995.

[2] Rakesh Agrawal, Lindga G. DeMichid, and Bruce G.
Lindssy. Static type checking of multi-methods.
ACM SIGPLAN Notices, 26(11):113-128, November
1991. OOPSLA '91 Conference Proceedings, Andreas
Paepcke (editor), October 1991, Phoenix, Arizona.

[3] Roberto M. Amadio and Luca Cardelli. Subtyping re-
cursive types. ACM Transactions on Programming
Languages and Systems, 15(4), September 1993.

[4] Pierre America. Inheritance and subtypinginaparallel
object-orientedlanguage. In Jean Bezivinet d ., editors,
ECOOQOP' 87, European Conference on Object-Oriented
Programming, Paris, France, pages 234-242, New
York, NY, June 1987. Springer-Verlag. Lecture Notes
in Computer Science, Volume 276.

[5] Pierre America. Designing an object-oriented pro-
gramming language with behavioural subtyping. In
J. W. de Bakker, W. P. de Roever, and G. Rozenberg,
editors, Foundations of Object-Oriented Languages,
REX School/Workshop, Noordwijkerhout, The Nether-
lands, May/June 1990, volume 489 of Lecture Notesin
Computer Science, pages 60—90. Springer-Verlag, New
York, NY, 1991.

[6] EricAmid, Oliver Gruber, and Eric Simon. Optimizing
multi-method dispatch using compressed dispatch ta
bles. InOOPS_A’ 94 Conference Proceedings, volume
29(10) of SSIGPLAN Notices, pages 244-258. ACM,
October 1994.

[7] Apple Computer Inc., Eastern Research and Technol-
ogy. Dylan: an object-oriented dynamic language,
April 1992.

[8] Francois Bancilhon, Claude Delobel, and Paris Kanel-
lakis (eds.). Implementing an Object-Oriented
database system: The story of O,. Morgan Kaufmann,
1992.

[9] Andrew Black, Norman Hutchinson, Eric Jul, and
Henry Levy. Object structure in the Emerald sys-
tem. ACM SIGPLAN Notices, 21(11):78-86, Novem-
ber 1986. OOPSLA ’ 86 Conference Proceedings, Nor-
man Meyrowitz (editor), September 1986, Portland,
Oregon.

L=—=>1 ~

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

AR e TR AT TR At b it i iagt e T) et TR

ing polymorphismin Emerald. Technical Report CRL
91/1 (Revised), Digital Equipment Corporation, Cam-
bridge Research Lab, Cambridge, Mass., July 1991.

John Boyland and Giuseppe Castagna. Type-safe
compiling of covariant specidlization: a practica case.
Technical Report CSD-95-890, University of Califor-
nia, Berkeley, November 1995. Currently avail-
able by anonymous ftp from ftp.ens.fr in file
/ pub/ dmi / user s/ cast agna/ 02. ps. Z.

Kim B. Bruce. A paradigmatic object-oriented pro-
gramming language: design, static typing and seman-
tics. Journal of Functional Programming, 4(2):127-
206, 1994.

Kim B. Bruce, Angela Schuett, and Robert van Gent.
PolyTOIL: A type-safe polymorphic object-oriented
language. In Proceedings ECOOP ' 95, pages 27—
51. LNCS 952, Springer-Verlag, 1995. A complete
version of this paper with full proofs is available via
http://www.cswilliams.edu/~kim/.

Peter Canning, William Cook, Walter Hill, Walter
Olthoff, and John Mitchell. F-bounded quantification
for object-oriented programming. In Fourth Interna-
tional Conference on Functional Programming Lan-
guages and Computer Architecture, pages 273-280,
September 1989.

Luca Carddlli. A semantics of multipleinheritance. In
G. Kahn, D. MacQueen, and G. Plotkin, editors, Se-
mantics of Data Types, volume 173 of Lecture Notes
in Computer Science, pages 51-67. Springer-Verlag,
1984. Full version in Information and Computation
76(2/3):138-164, 1988.

Luca Carddli and Peter Wegner. On understanding
types, data abstraction, and polymorphism. Computing
Surveys, 17(4):471-522, December 1985.

Giuseppe Castagna. Covariance and contravariance:
conflict without a cause. ACM Transactions on Pro-
gramming Languages and Systems, 17(3):431-447,
1995.

Giuseppe Castagna, Giorgio Ghelli, and Giuseppe
Longo. A calculus for overloaded functions with sub-
typing. Information and Computation, 117(1):115—
135, February 1995. A preliminary version appeared
in ACM Conference on LISP and Functional Program-
ming, June 1992 (pp. 182-192).

Giuseppe Castagna and Gary T. Leavens. Founda
tions of object-oriented languages. 2nd workshop re-
port. SGPLAN Notices, 30(2):5-11, February 1995.

Craig Chambers. Object-oriented multi-methodsin Ce-
cil. InOle Lehrmann Madsen, editor, ECOOP ' 92, Eu-
ropean Conference on Object-Oriented Programming,

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

R T VAL IR TRAL TG VA

in Computer Science, pages 33-56. Springer-Verlag,
New York, NY, 1992,

Pl VA VT =Vl Uil Y TN

Craig Chambers. multi-method implementation ques-
tion. personal communication via e-mail, August and
November 1995.

Craig Chambers and Gary T. Leavens. Typechecking
and modules for multi-methods. ACM SIGPLAN No-
tices, 29(10):1-15, October 1994. OOPSLA '94 Con-
ference Proceedings, October 1994, Portland, Oregon.

Weimin Chen, Volker Turau, and Wolfgang Klas. Effi-
cient dynamic look-up strategy for multi-methods. In
Mario Tokoro and Remo Pareschi, editors, ECOOP
'94, European Conference on Object-Oriented Pro-
gramming, Bologna, Italy, volume 821 of Lecture
Notesin Computer Science, pages408-431, New York,
NY, July 1994. Springer-Verlag.

William R. Cook. Object-oriented programming versus
abstract datatypes. In J. W. de Bakker, W. P. de Roever,
and G. Rozenberg, editors, Foundations of Object-
Oriented Languages, REX School/Workshop, Noord-
wijkerhout, The Netherlands, May/June 1990, volume
489 of Lecture Notesin Computer Science, pages 151—
178. Springer-Verlag, New York, NY, 1991.

William R. Cook, Walter L. Hill, and Peter S. Canning.
Inheritanceis not subtyping. In Proc. 17th ACM Symp.
on Principles of Programming Languages, pages 125—
135, January 1990.

Jeffrey Dean, David Grove, and Craig Chambers. Ef-
ficient dynamic look-up strategy for multi-methods. In
Walter Olthoff, editor, ECOOP ' 95, European Confer-
ence on Object-Oriented Programming, Aarhus, Den-
mark, volume 952 of Lecture Notes in Computer Sci-
ence, pages 77-101, New York, NY, August 1995.

Springer-Verlag.

L.G. DeMichid and R.P. Gabriel. Common Lisp Ob-
ject System overview. In Bézivin, Hullot, Cointe,
and Lieberman, editors, Proc. of ECOOP ' 87 European
Conference on Obj ect-Oriented Programming, number
276inLNCS, pages 151170, Paris, France, June1987.

Springer-Verlag.

J. Eifrig, S. Smith, and V. Trifonov. Sound polymorphic
type inference for objects. In Proceedings of OOPSLA
'95, pages 169-184, 1995.

J. Eifrig, S. Smith, V. Trifonov, and A. Zwarico. Ap-
plication of OOP typetheory: State, decidability, inte-
gration. In Proceedings of OOPSLA’ 94, pages 16-30,
1994,

Jonathan Eifrig, Scott Smith, and Vaery Tri-
fonov. Type inference for recursively constrained
types and its application to OOP. In Mathemat-
ical Foundations of Programming Semantics,

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

PN AT TAAAL IS FNRARS 1

Theoretical Computer Science. Elsevier, 1995.
http://www.el sevier.nl:80/mcs/tcs/pc/volume0l.htm.

iyl = Vi el i it v

Giorgio Ghelli. A static type system for message pass-
ing. In OOPSLA '91 Conference Proceedings, pages
129145, 1991.

Adele Goldberg and David Robson. Smalltalk-80: The
Language and Its Implementation. Addison-Wesley,
Reading, MA, 1983.

Martin Hofmann and Benjamin Pierce. A unifying
type-theoretic framework for objects. Journal of Func-
tional Programming, 1995. Previousversionsappeared
inthe Symposiumon Theoretical Aspects of Computer
Science, 1994, (pages 251-262) and, under the title
“An Abstract View of Objects and Subtyping (Prelimi-
nary Report),” as University of Edinburgh, LFCS tech-
nical report ECS-LFCS-92-226, 1992.

Daniel H. H. Ingalls. A simple technique for handling
multiple polymorphism. In Norman Meyrowitz, ed-
itor, OOPSLA ' 86 Conference Proceedings, Portland,
Oregon, September 1986, volume 21(11) of ACM S G-
PLAN Notices, pages 347-349. ACM, November 1986.

Dinesh Katiyar, David Luckham, and John Mitchell.
A type system for prototyping languages. In Con-
ference Record of POPL '94: 21st ACM SIGPLAN-
SGACT Symposium of Principles of Programming
Languages, Portland, Oregon, pages 138-150. ACM,
January 1994.

Gregor Kiczales and Luis H. Rodriguez Jr. Efficient
method dispatch in PCL. In Andreas Pagpcke, ed-
itor, Object-Oriented Programming: the CLOS Per-
spective, chapter 14, pages 335-348. MIT Press, Cam-
bridge, Mass., 1993.

Gary T. Leavens. Modular specification and verifi-
cation of object-oriented programs. |EEE Software,
8(4):72-80, July 1991.

Gary T. Leavens and William E. Weihl. Reasoning
about object-oriented programs that use subtypes (ex-
tended abstract). In N. Meyrowitz, editor, OOPSLA
ECOOP ' 90 Proceedings, volume 25(10) of ACM SIG-
PLAN Notices, pages 212—223. ACM, October 1990.

Gary T. Leavens and William E. Weihl. Specification
and verification of object-oriented programs using su-
pertypeabstraction. Acta Informatica, 1994. To appear.
An expanded version is Department of Computer Sci-
ence, lowa State University, Technical Report 92-28d,
August 1994.

Barbara Liskov, Dorothy Curtis, Mark Day, Sanjay
Ghemawat, Robert Gruber, Paul Johnson, and An-
drew C. Myers. Theta reference manua. Technica
Report Programming Methodology Group Memo 88,
MIT, February 1995.

Ll

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

AR EETAVY W Viae Rt et v M Ayl e i

v b
tion of subtyping. ACM Transactionson Programming
Languages and Systems, 16(6):1811-1841, November
1994,

Narciso Marti-Oliet and Jose Meseguer. Inclusions
and subtypes. Technical Report SRI-CSL-90-16, Com-
puter Science Laboratory, SRI International, December
1990.

Bertrand Meyer. Eiffe: thelanguage. Prentice-Hall,
1992.

John Mitchell and Gordon Plotkin. Abstract typeshave
existential type. ACM Transactions on Programming
Languages and Systems, 10(3), July 1988.

W. B. Mugridge, J. G. Hosking, and J. Hamer. Multi-
methods in a statically-typed programming language.
In Pierre America, editor, ECOOP ' 91 Conference Pro-
ceedings, Geneva, Switzerland, volume 512 of Lecture
Notesin Computer Science. Springer-Verlag, 1991.

Greg Ndson, editor. Systems Programming with
Modula-3. Prentice Hall, 1991.

Benjamin C. Pierce and David N. Turner. Stat-
ically typed friendly functions via partially abstract
types. Technical Report ECS-LFCS-93-256, Univer-
sity of Edinburgh, LFCS, April 1993. Also availableas
INRIA-Rocquencourt Rapport de Recherche No. 1899.

Benjamin C. Pierce and David N. Turner. Simpletype-
theoreticfoundationsfor obj ect-oriented programming.
Journal of Functional Programming, 4(2):207-247,
April 1994. A preliminary version appeared in Princi-
ples of Programming Languages, 1993, and as Univer-
sity of Edinburgh technical report ECS-LFCS-92-225,
under thetitle* Object-Oriented Programming Without
Recursive Types’.

John Reynolds. Three approaches to type structure. In
Mathematical Foundations of Software Development.
Springer-Verlag, 1985. Lecture Notesin Computer Sci-
ence No. 185.

N. Rodriguez, R. lerusaimschy, and J. L. Rangel.
Typesin school. SSIGPLAN Notices, 28(8), 1993.

Craig Schaffert, Topher Cooper, Bruce Bullis, Mike
Kilian, and Carrie Wilpolt. An introduction to Trel-
[iOwl. In Norman Meyrowitz, editor, OOPSLA '86
Conference Proceedings, Portland, Oregon, September
1986, volume 21(11) of ACM SIGPLAN Notices, pages
9-16. ACM, November 1986.

Bjarne Stroustrup. The C++ Programming Language.
Addison-Wedl ey, Reading, Mass, 1986.

Larry Teder. Object Pascal report. Technical Report 1,
Apple Computer, 1985.

