
On Binary MethodsKim Bruce�Department of Computer Science, Williams College, Williamstown, Massachusetts 01267, USA.Luca CardelliyDigital Equipment Corporation, Systems Research Center, 130 Lytton Ave, Palo Alto, CA 94301, USA.Giuseppe Castagnaz(CNRS) LIENS-DMI, �Ecole Normale Sup�erieure, 45 rue d'Ulm, 75005 Paris, France.The Hopkins Objects GroupxDepartment of Computer Science, The Johns Hopkins University, Baltimore, Maryland 21218. USAGary T. Leavens{229 Atanaso� Hall, Department of Computer Science, Iowa State University, Ames, Iowa, 50011, USA.Benjamin PiercekComputer Laboratory, New Museums Site, Pembroke Street, Cambridge CB2 3QG, United Kingdom.Giving types to binary methods causes signi�cant problemsfor object-oriented language designers and programmers.This paper o�ers a comprehensive description of the prob-lems arising from typing binary methods, and collects andcontrasts diverse views and solutions. It summarizes thecurrent debate on the problem of binary methods for awide audience.
1 Introduction

Binary methods have caused great difficulty for designers of
strongly typed object-oriented languages and for program-
mers using those languages. In this paper we study the�partially supported by NSF grant CCR-9121778 and NSF grant CCR-
9424123. Internet:kim@cs.williams.eduyInternet: luca@src.dec.com.zInternet: castagna@dmi.ens.frxJonathan Eifrig, Scott Smith, Valery Trifonov. Contact Scott Smith.
Research partially supported by NSF grant CCR-9301340 and AFOSR grant
F49620-93-1-0169. Internet: scott@cs.jhu.edu.{partially supported by NSF grants CCR-9108654 and CCR-9593168.
Internet: leavens@cs.iastate.edu.kInternet: benjamin.pierce@cl.cam.ac.uk
c John Wiley & Sons, Inc.THEORY AND PRACTICE OF OBJECT SYSTEMS 1(Number:3)

sources of these problems and compare and contrast a variety
of solutions.

The authors of this paper have differing views on what the
most appropriate solutions are. We have attempted here to
collect together the solutions that individualsamong us advo-
cate and to present a consensus on what can be fairly stated
as strengths and weaknesses of each approach. This paper
grew from presentations and discussions at the 2nd Work-
shop on Foundations of Object-Oriented Languages, which
was sponsored by NSF and ESPRIT and held in Paris in June,
1994 [19].

Let us begin by fixing some basic terminology. A class
is the code that defines the instance variables and methods
of some objects. The objects that conform to this definition
are called instances of the class. (The issues that we discuss
also arise in delegation-based languages; for simplicity we
concentrate on classes.) In this article we use new as a prim-
itive that generates an instance of a class from the class name
(and some initial values for its instance variables). An in-
terface type, also called an object type or simply a type con-
tains the names of the object’s methods, and the types of each
method’s arguments and results. Due to subtyping, an object
may have multiple interface types; what we mean when we
mention the “type of an object” is the least such type (i.e.,
the most specific such type). Similarly several classes may

THEORY AND PRACTICE OF OBJECT SYSTEMS 1(Number:3)
generate objects of the same interface type if the hidden im-
plementations are distinct, but the public methods have the
same type. Usually, for a class named SomeClass, the inter-
face type of its objects is written Some; that is, we use a nam-
ing convention where dropping Class from the end of a class
name is used to give a type name. In a few sections, classes
are identified with types, as they are in languages like C++
and Eiffel. We will note this explicitly in those sections, and
use the name Some both as the name of the class (we will not
use the Class suffix) and as the (least) interface type of ob-
jects of that class.

Binary operations which take two arguments of the same
type are quite familiar in non-object-oriented languages.
Typical examples include arithmetic operations on number
objects, as well as binary relations such as = and <, and
set operations like subset and union. In object-oriented lan-
guages these operations are generally written as methods. In
this case the first argument of the binary operation becomes
the receiver of a corresponding “message”, with the second
parameter becoming the only argument. Consequently, we
define a binary method of some object of type � as a method
that has an argument of the same type � . Such a method is
binary in the sense that it acts on two objects of the same
type: the object passed as argument and the receiving object
itself. In general, a binary method could also include other
arguments (includingother arguments of the same type); by a
standard abuse of terminologywe still refer to these as binary
methods. We provide examples in an object-oriented style
later.

A subclass is code that extends a class or classes (called
the superclasses of the subclass). Subclasses inherit defi-
nitions of instance variables and methods from their super-
classes. A subclass may also override the definitions of
methods it would otherwise inherit by redefining them. Be-
cause a subclass inherits code for methods, it also inherits in-
terface type information for the methods that it does not over-
ride.

The most significant problem with binary methods lies in
their typing in the presence of inheritance. The source of this
problem is that the type of the argument of a binary method
naturally should change in parallel to changes in the type of
the object produced by the subclass. The difficulty is that
these type changes may result in subclasses which may no
longer produce subtypes. On the other hand if inheritance
is limited to always produce subtypes then useful subclasses
can not be directly defined, and work-arounds must be found.
A second problem is the asymmetry of a binary method: the
method may have privileged access to only one of the two
objects the method is invoked on. These two problems are
described in more detail in Section 2.

Sections 3 and 4 concentrate on solutions to the problem
of typing binary methods in the presence of inheritance. We
consider the question from two sides: in Section 3, we reflect
on whether it actually need be solved at all (i.e., whether bi-
nary operations might best not be treated as methods); in Sec-
tion 4, we meet the problem head-on and review some solu-
tions that have been proposed.

Turning to the problem of privileged access, Section 5
sketches a technique by which object-style data encapsula-
tion can be blended with conventional ADT-style encapsula-
tion to allow implementation of binary operations with priv-
ileged access to object representations.

Section 6 offers concluding remarks.
Although it is difficult to form a complete list of crite-

ria used to evaluate different solutions to the binary methods
problem, a partial list of general criteria could be formulated
as follows.

1. How expressive is the solution? In particular, to what
extent does it allow reasonable subclassing and message
sends?

2. Do subclasses always produce subtypes?

3. Do binary methods have privileged access to the argu-
ment’s state?

4. Is program development modular? In particular, does
adding a new class ever force modification to existing
code, and can module interfaces be defined?

5. Are the receiver and argument of a binary method
treated symmetrically?

6. Does the solution avoid unnecessary code duplication?

These criteria are used to evaluate the different approaches
in the sections that follow.

We only consider type systems that are sound in the sense
that code that statically passes the type system cannot pro-
duce type errors at run time. Therefore we do not consider
constructs that allow one to escape from the type system (by
means such as a “cast” in C++) to be a “solution” to the prob-
lems posed by binary methods; such type systems cannot
guarantee soundness without run-time checks. We also ig-
nore solutions based on the typecase construct, since it is not
general enough to avoid the problems that message passing
is supposed to solve; see Section 4.2.2 for further details.

2 The Problem of Binary Methods

This section describes the problems caused by binary meth-
ods. The first subsection describes typing problems in the
presence of inheritance, and the second describes problems
with privileged access.

2.1 Typing Binary Methods in the Presence of
Inheritance

In procedural or functional languages, the type of a binary
function that takes two arguments of type � and returns a
value of type � is written � � � ! �. In an object-oriented
language, functions or procedures are typically replaced by
methods belonging to a class corresponding to one of the ar-
guments. Figure 1 shows a standard example of a class with

THEORY AND PRACTICE OF OBJECT SYSTEMS 1(Number:3)
a binary method.1 In PointClass, the method equal, which

class PointClass
instance variables

xValue: real
yValue: real

methods
x: real is return(xValue)
y: real is return(yValue)
equal(p: Point): bool is

return((xValue==p.x) && (yValue==p.y))
end class

Figure 1: The class PointClass.

tests for equality with another instance of PointClass, is writ-
ten with a single parameter of type Point, the type of ob-
jects instantiated from PointClass. As may be seen in this
example, binary operations—when regarded as methods—
are asymmetric: the receiver plays a role somewhat different
than the parameter. This distinction is highlighted when we
define a subclass of a class with a binary method.

Figure 2 defines a subclass ColorPointClass of
PointClass. In ColorPointClass, the type of the parameter

class ColorPointClass subclass of PointClass
instance variables

-- xValue and yValue are inherited
cValue : string

methods
-- x and y are inherited

c: string is return(cValue)
-- equal is overriden

equal(p: ColorPoint): bool is
return((cValue==p.c) && (xValue==p.x)

&& (yValue==p.y))
end class

Figure 2: The class ColorPointClass.

of equal is changed to ColorPoint to match the type of the
receiver, allowing two ColorPoint objects to be compared
by the equal method, which overrides the behavior of equal
for points.

We generally write object types similarly to the type of the
record of methods.2 Therefore instances of PointClass and
ColorPointClass have the following object types:1A few notes on our notation. Methods are functions or procedures
whose body occurs after the keyword is. We write parameterless functions
and procedures by omitting the parentheses. We write the type of parame-
terless functions as if they were variables of their return type. That is, we
omit an implicit unit ! before the result type. Methods are selected by
dot notation; thus o.m denotes the method of name m defined for the object
o. Commented text is preceded by “--”.2We presume that instance variables are not accessible from outside of
the object.

Point � OT hhx: real; y: real;
equal:Point ! boolii

ColorPoint � OT hhx: real; y: real; c: string;
equal:ColorPoint ! boolii

The prefix OT is used to distinguish object types from record
types. Note that both of these definitions happen to be recur-
sive: the type being defined appears on the right-hand side
of the �. It is not uncommon for the type being defined to
appear as either an argument or result type in its methods.

Informally, a type � is a subtype of � , written � <: � ,
if an expression of type � can be used in any context that
expects an expression of type � (cf. [15, 16, 49]). Associated
with subtyping is the principle of subsumption (subtype
polymorphism): if � <: � and a program fragment has
type �, it also has type � . A simple example of subtyping
in object-oriented programming is that an object type is a
subtype of the type with some methods removed, as any
context that expects the object with fewer methods will
not directly use the extra methods and thus no type errors
will occur. In fact it is also possible to replace the type
of any method by a subtype and still have the resulting
object types in the subtype relation. Thus the general rule is
OT hhm1:S1; : : : ;mn:Sn; : : : ;mn+k:Sn+kii <: OT hhm1:T1;
...;mn :Tnii (with k � 0) if and only if, for each i 2 f1::ng,Si <: Ti.

The rule for subtyping functions states that � !� <: �0 ! � 0 if and only if �0 <: � and � <: � 0 [15].
(This is sometimes called the “contravariant rule” because it
is contravariant in the left argument of !.) This rule is infor-
mally justified by the following. If f is expected to have type�0 ! � 0, but actually has type � ! � , then f can be passed
an argument of type �0 when (by subsumption) �0 <: �; fur-
thermore, the result of such a call will have type � , which
(by subsumption) can be considered to be of type � 0. Hence
all functions of type � ! � can be used as if they had type�0 ! � 0 without type error.

Subtype polymorphism is a useful feature of object-
oriented programming: if subclasses correspond to sub-
types, a subclass object can always be passed to a func-
tion or method expecting a superclass object, allowing re-
use of code. Unfortunately, subclasses do not always gen-
erate subtypes; this can happen if the types of methods need
to change in subclasses to require more specialized behavior
from their arguments. In particular, since the equal method
in ColorPointClass checks its argument for color as well as
position, the argument type needs to change, as the exam-
ple indicates. Because of the contravariance of the subtyp-
ing relation on the domain of equal, ColorPoint is not a sub-
type of Point. For the subtype relation to hold, the type of
equal in ColorPoint would have to be a subtype of the type
in Point. Thus ColorPoint ! bool must be a subtype of
Point ! bool. But, by the subtyping principle for functions,
this requires Point to be a subtype of ColorPoint, exactly the
opposite of what we are after and clearly untrue.

This loss of subtyping in this case is not due to any prob-
lem with the definition of subtyping for functions; the proce-
dure breakit of Figure 3 illustrates how allowing this subtyp-

THEORY AND PRACTICE OF OBJECT SYSTEMS 1(Number:3)
ing would be unsound. When breakit is applied to an actual
parameter of type Point, there is no problem. However if the
actual parameter is a ColorPoint, a run-time error will occur
when p.equal(nuPt) is evaluated. Since the value of p will
be a ColorPoint, the code for equal in ColorPointClass will
be executed. When nuPt is sent the message c, it will fail
because it has no corresponding method. Thus, in a sound
type system, a call of breakit with an actual parameter of type
ColorPoint must not type check.

procedure breakit(p: Point)
var

nuPt: Point
begin

nuPt := new PointClass(3.2, 4.5)
if p.equal(nuPt) then
...

end

Figure 3: The procedure breakit.

Most statically-typed object-oriented languages require
subclasses to generate subtypes, even in the presence of bi-
nary methods. One type requirement that has been used to
this end is that the types of methods may not be changed upon
inheritance; this is done, for example, in C++ [52] Object
Pascal [53], and Modula-3 [46]. In such languages, one can-
not write ColorPointClassas in Figure 2, with the typing dis-
cussed above.

Eiffel does allow argument types to be specialized
in a subclass’s methods; for example, it would allow
ColorPointClass to be written as in Figure 2. We call such
argument specialization covariant argument specialization,
because it goes against the contravariant rule in argument
positions. Eiffel in addition preserves the invariant that
subclasses generate subtypes, but this means breakit would
type-check and produce a run-time error when passed a
ColorPoint. For Eiffel there is a proposal to compensate
for the resulting insecurity in the type system by a link-time
data-flow analysis of the program (called a system validity
check), which would, if implemented, catch possible type
errors [43]. But even if that were done, the “subtype”
relation would have no clear meaning: Eiffel would claim
ColorPoint to be a subtype of Point, but would not allow
anything but a Point to be passed to breakit. So even though
Eiffel would judge ColorPoint to be a “subtype” of Point,
ColorPoint objects could not be used in all contexts where
Point objects could be used.

The Point/ColorPointexample illustrates some but not all
of the problems that arise in typing binary methods in the
presence of inheritance. Further examples that illustrate ad-
ditional problems will be presented in the sections below.

2.2 Privileged Access to Object Representa-
tions

A completely different kind of problem with binary opera-
tions on objects—whether they are methods or free-standing
procedures—is that they must often be given privileged ac-
cess to the instance variables of both of their arguments.

The equality methods of points and colored points are ex-
amples of the simpler case where this need does not arise—
the necessary attributes of the argument are already publicly
available through existing methods. In order to write the
equal method for the point class, we only needed to com-
pare the receiver’s instance variables xValue and yValue
to the values returned by the x and y methods of the argu-
ment p. There is no need to access p’s instance variables
directly. Indeed, p might not even have instance variables
named xValue and yValue; there is no need to know any-
thing at all about its internal representation. The situation is
similar for the equal of the colored point class.

On the other hand, suppose we want to write a class defi-
nition for simple integer set objects with the following inter-
face type:

IntSet � OT hhadd: int ! unit;
member: int ! bool;
union: IntSet ! IntSet;
superSetOf : IntSet ! boolii

We can easily choose a representation for integer sets, (say, as
lists of integers) and implement the add and member methods
as in Figure 4. But when we come to implementing the union
and superSetOf methods, we get stuck: given the interface
type we have chosen for sets, there is no way to find out what
elements a given set contains.

class IntSetClass
instance variables

elts: IntList
methods

add(i: int): unit is elts := elts.cons(i)
member(i: int): bool is return(elts.memq(i))
union(s: IntSet): IntSet is ???
superSetOf (s: IntSet): bool is ???

end class

Figure 4: The class IntSetClass, for which writing
superSetOf and union is problematic.

The obvious thing to do is to extend the public interface
of sets with an enumerate method that (for example) returns
a list of the elements of the set. But suppose we want to use
a more efficient internal representation for sets, storing the
elements in a bit string. We would certainly expect not only
the add and member methods to be efficient, but superSetOf
and union as well. But, to achieve good performance, union
needs to work directly with the bit string representations of
the two sets, so the enumerate method has to be replaced by
an asBitString method that returns the underlying represen-

THEORY AND PRACTICE OF OBJECT SYSTEMS 1(Number:3)
tation. Doing so is unsatisfactory, because it makes represen-
tation details visible to users.

In order to handle binary operations like equal as meth-
ods, we need the type of a parameter of a method to be the
same as the type of the receiving object; for methods like
superSetOf and union, we need an additional mechanism
for constraining the implementation of a parameter to be the
same as the receiver’s. Indeed, such a mechanism is required
whether or not we want to consider union a proper method of
set objects: an external procedure for computing the union of
two set objects will also need to gain privileged access to the
internal representations of both of its arguments.

3 Avoiding Binary Methods

Sometimes the simplest solution to a problem is to ignore it.
In this section we explore the position that binary operations
like equal, union, and+ should not be regarded as methods of
either of their argument objects, thus sidestepping the thorny
typing issues raised so far.

There are some theoretical benefits to taking this step. For
example, aside from binary methods, the types of methods
are always positive, in the sense that the object type itself ap-
pears only in result positions. In this case, the classic encod-
ing of object types as recursive records [15, 25] may be re-
placed by an encoding where objects are modeled by existen-
tial types [48, 33].

It may also be argued that keeping binary operations
separate from their arguments avoids conceptual confusion.
Turning a symmetric operation like + into a method gives
one of its arguments an artificially special status, requiring
programmers to think in terms of contorted locutions like
“Ask the number a to add itself to b and send back the result,”
instead of the more straightforward “Compute the sum of a
and b.” (However, having said this, it is only fair to give the
methodological counterargument: An important property of
objects is their appearance as active entities that encapsulate
both data and the code acting on that data. Removing binary
methods from objects disrupts this property, requiring an ad-
ditional layer of module structure to encapsulate the binary
methods with their class. Section 5 suggests that when bi-
nary methods require privileged access to both object states,
such additional encapsulation may be needed anyway.)

A final reason for avoiding binary methods is that they can
exacerbate difficulties with behavioral subtyping of specifi-
cations. Behavioral subtyping is a stronger relationship than
subtyping, and, in addition to guarantees about lack of type
errors, makes behavioral guarantees [4, 5, 38, 37, 41, 39].
The degree of behavioral subtyping between specifications
is limited if the specifications of supertypes are too strong to
allow reasonable implementations of “behavioral subtypes.”
The problem is that if a subtype has extra information in its
objects, then the methods of the supertype have to be care-
fully specified if they are to be weak enough to allow for be-
havioral subtyping. A weak enough specification will allow
a subtype’s binary methods to combine the extra information
in the subtype objects: the receiver and the additional argu-

ments. (With just unary methods, on the other hand, keeping
or ignoring the extra information usually works, even with-
out any forethought on the part of the specifier.) For example,
the type ColorPoint has extra information, namely the color
of the point. The specifications of the unary methods x and y
simply ignore the point’s color, which allows for behavioral
subtyping. However, if one specifies the equal method for
the type Point so that it returns true if and only if the x and y
coordinates are equal, then behavioral subtypes cannot take
such extra information into account.

With these arguments in mind, we consider in this section
some alternatives to binary methods.

3.1 Using Functions Instead of Binary Meth-
ods

In languages that provide both objects and conventional pro-
cedural abstraction, an alternative to using binary methods is
simply to make binary operations into functions. These bi-
nary functions can be defined outside of classes, and can be
applied to pairs of arguments as usual.

function eqPoint(p1,p2: Point): bool is
return((p1.x == p2.x) && (p1.y == p2.y));

function eqColorPoint(cp1,cp2: ColorPoint):bool is
return((cp1.x == cp2.x) && (cp1.y == cp2.y)

&& (cp1.c == cp2.c))

where Point and ColorPoint no longer include the equal
method.

Ordinarily, one advantage of using methods instead of
functions is dynamic dispatch: each class can choose its own
code to execute in response to a given message. Therefore,
moving from binary methods to binary functions may seem
a step backwards. The programmer must now know when to
apply eqPoint and eqColorPoint, instead of relying on the
objects themselves “knowing” which equality is appropriate.
(To be fair, it is worth noting that it is difficult to achieve
dynamic dispatch for binary methods such as equal, with-
out adding additional methods to the classes PointClass and
ColorPointClass, as in Section 4.3.)

The loss of dynamic dispatch when functions are used in-
stead of binary methods is a serious problem. The problem
manifests itself by causing code duplicationwhich would not
be needed if methods were used. When methods are used, it
often occurs that the body of one method,m, invokes another
method, n, on the receiving object itself. Ifn is overridden in
a subclass, then invocations ofm on objects generated by the
subclass will correctly call the new version of n. However,
if n happens to be a binary method, then replacing it with
two (or more) binary functions results in a loss of dynamic
dispatch. The loss of dynamic dispatch means that either the
correct version of n will not be called from the inherited m
in the subclass, or extra code must be written in the subclass
(for method m) to call the proper version of n.

Figure 5 is an example that illustrates the problems caused
by loss of dynamic dispatch. (Although we have no hard
data on how common such examples are, this example is

THEORY AND PRACTICE OF OBJECT SYSTEMS 1(Number:3)
class LinkClass

instance variables
value: integer
next: MyType

methods
getValue: integer is return(value)
getNext: MyType is return(next)
setValue(n: integer): unit is value := n
setNext(link: MyType): unit is next := link
append(link: MyType): unit is

if next == nil then self.setNext(link) else next.append(link)
end class

class DoubleLinkClass subclass of LinkClass
instance variables -- value and next are inherited

prev: MyType
methods -- getValue, getNext, setValue, and append are inherited; setNext is overridden

getPrev: MyType is return(prev)
setNext(link: MyType): unit is next := link; link.setPrev(self)
setPrev(link: MyType): unit is prev := link

end class

Figure 5: The classes LinkClass and DoubleLinkClass.

a combination of standard idioms.) LinkClass is a simple
class of linked list objects, and DoubleLinkClass is a sub-
class that uses double links (a more complete implementation
would include methods such as reverse, map, and length).
The type MyType given to variables next and link in the
example represents the type of objects of the current class.
That is, it means Link in the class LinkClass, but means
DoubleLink in the class DoubleLinkClass and in the instance
variables and methods it inherits from LinkClass. MyType
will be discussed in more detail in Section 4.1 below; also
cf. [51, 12, 13, 29]. The objects now have only one interest-
ing method, append, which is inherited by DoubleLinkClass.
This method uses setNext, a binary method, to set the pointer
next, and setNext is overridden in DoubleLinkClass to also
properly maintain the prev link to the previous object.

In a hypothetical function encoding, the setNext
method would be replaced by functions setNextLink
and setNextDoubleLink that lie outside the class definition
(ignoring for now questions of privileged access). However,
since append invokes setNext, it would have to be re-written
as two almost identical functions, one invokingsetNextLink
and the other invoking setNextDoubleLink, causing unnec-
essary code duplication. An in-place reverse method of no
arguments is another method for which inheritance would
suffer under this encoding. Thus dispatch can be statically
resolved, but only at the cost of code duplication if this
scheme is used.

3.2 Making Both Arguments into One Object

Even in a “purist” object-oriented language where every op-
eration is treated as a message sent to some object, we may

place binary operations outside of the objects on which they
operate by turning the two argument objects into a single pair
object and invoking the method on the pair. To see how this
would work, imagine that the types Point and ColorPoint do
not have any binary methods. For example, they could be:

Point � OT hhx: real; y: realii
ColorPoint � OT hhx: real; y: real; c: stringii

With this definition, ColorPoint would be a subtype of Point.
Now define two new classes, PointPairClass and

ColorPointPairClass, each with a method named equal,
as shown in Figure 6. Note that the types of the objects
generated by these classes are the same, OT hhequal: boolii,
since they have the same public interface.

So the former binary methods are now unary methods of
these new classes. What would originally have been written
as:

aCPt.equal(anotherCPt)

to compare two colored points, will now be writtenwith these
new classes as:

(new PointPairClass(aCPt, anotherCPt)).equal

If the types of aCPt and anotherCPt are both ColorPoint,
then one might wish instead to compare them as colored
points, in which case one would write:

(new ColorPointPairClass(aCPt, anotherCPt)).equal

There is a benefit in making these pair objects: it clarifies the
perspective desired for the equality comparison. When one
creates a PointPairClass object, it is clear what behavior is

THEORY AND PRACTICE OF OBJECT SYSTEMS 1(Number:3)
class PointPairClass

instance variables
p1: Point
p2: Point

methods
equal: bool is

return((p1.x==p2.x) && (p1.y==p2.y))
end class

class ColorPointPairClass
instance variables

p1: ColorPoint
p2: ColorPoint

methods
equal: bool is

return((p1.x==p2.x) && (p1.y==p2.y)
&& (p1.c==p2.c))

end class

Figure 6: The classes PointPairClass and
ColorPointPairClass.

expected from its equal method; this expectation is borne out
even when the two points that make up the PointPairClass
object are actually ColorPoint objects.

Because the classes generate objects of the same (in-
terface) type, one can have a variable myPointPair that
denotes objects generated by either PointPairClass or
ColorPointPairClass. In this case a message send such as
“myPointPair.equal” results in the invocation of the equal
method defined in whichever class was used to generate
the object. Thus, sending the equal message to a pair
object gets the view with which the pair was created. This
should be contrasted with the function call “eqPoint(aCPt,
anotherCPt),” which always compares its two arguments
as points. It can also be contrasted with a message-send of
the form “aCPt.equal(anotherCPt),” which always uses
the equal code of ColorPointClass.

This approach has problems similar to the function ap-
proach that was discussed previously—the LinkClass exam-
ple of Figure 5 would require code duplication for inherited
methods such as append.

4 Embracing Binary Methods

Having examined what happens if binary methods are
avoided, in this section we consider the typing mechanisms
that must come into play if one chooses not to avoid them.

Two important solutions have been proposed to the typing
problems posed by binary methods. One solution, first pro-
posed by the Abel project at HP labs [25], develops a method
that partially solves the Point/ColorPoint problem by relax-
ing the requirement that subclasses generate subtypes. As
they put it, “Inheritance is not subtyping.” They did not,
however, propose a concrete mechanism for realizing their

ideas in an object-oriented language. In Section 4.1, we show
one way this may be done using the concept of matching
[12, 13].

The other important solution was presented in two pa-
pers at the 1991 OOPSLA conference [2, 31]. These papers
deal with the static type-checking of languages with multi-
methods (also called generic functions or overloaded func-
tions). Multi-methods as in CLOS allow, as we show in Sec-
tion 4.2.1, the Point/ColorPointexample to be typed preserv-
ing the subtyping of the two classes. But this is obtained at
the expense of the encapsulation of the methods, since the
generic functions, like the functions in Section 3.1, are sep-
arated from objects (objects encapsulate only data). In Sec-
tion 4.2.2 we show how to reconcile multi-methods with ob-
jects encapsulating data and code [17, 45].

Closely related to the solutions of Section 4.2 is Ingalls’
solution to the multiple dispatch problem [34]. He presented
his solution in an untyped framework, but it can be adapted
to a typed language, as Section 4.3 shows.

Lastly, we show in Section 4.4 how a general principle
of giving more “precise” types to binary methods produces
more flexible typings across a range of approaches, even in
the case where binary operations are not treated as methods.

4.1 Matching

This section describes how a relation called “matching,”
which is weaker than subtyping, can replace subtyping in
many situations [12]. In particular, we will see below that
this generalization of subtyping provides us with the ability
to handle binary methods smoothly.

4.1.1 Generalizing subtyping to matching

As seen in Section 2.1, languages that insist that subclasses
generate subtypes often compensate for the resulting type
problems by restricting the programmer’s ability to change
the types of parameters of inherited methods. This effec-
tively eliminates the use of binary methods in these cases.
If one feels that binary methods are important, then an ob-
vious solution is to give up the identification of subclasses
with subtypes. An important advantage of this decision, not
discussed further here, is to separate the notion of interface
(type) from that of implementation (class). In the remain-
der of this section we assume such a separation has been
made, and thus that the notions of subtyping and matching
(defined below) depend only on the interfaces of objects, not
the classes generating them.

Most object-oriented languages provide a name for the re-
ceiver of a message (e.g., self or this), which can be used in-
side method bodies. Similarly, we use MyType as a keyword
that denotes the type of the receiver [51]. It may be used in
the definition of methods whose parameters or return types
should be the same as that of the receiver. One can think
of the object type in the following as simply another way of
writing the type Point given in section 2.1, and it could also
be the type of objects of a polar implementation of points.

Point � OT hhx: real; y: real; equal:MyType ! boolii

THEORY AND PRACTICE OF OBJECT SYSTEMS 1(Number:3)� PolarPoint

One advantage of MyType is that it makes it easier for hu-
man readers to compare types like Point and PolarPoint. A
more important advantage is that it works well with inheri-
tance of methods, because its meaning changes in the sub-
class. For example, when MyType is used in the definition of
ColorPointClass, all occurrences of MyType in the methods
automatically represent ColorPoint rather than Point.

ColorPoint � OT hh x: real; y: real; c: string;
equal:MyType ! boolii

As before we can show the type ColorPoint is not a subtype
of Point. However, there is a relationship between the types
ColorPoint and Point, which is clearly apparent when look-
ing at their types written using MyType. One can see that
the only difference is the addition of a new method, c, to
ColorPoint.

We say one object type matches another if the first has
at least the methods of the second and the corresponding
method types are the same, considering MyType in one to be
“the same” as MyType in the other. We use <# to denote this
relationship. In symbols,OT hhm1: �1; : : : ;mn: �nii <# OT hhm1: �1; : : : ;mk: �kii
holds iff k � n. (In fact, a more general definition is pos-
sible in which the types of corresponding methods of the
first are all subtypes of the corresponding types of the sec-
ond [12]. This means that the corresponding result types are
subtypes—vary in a covariant way—while the correspond-
ing parameter types are supertypes—vary in a contravariant
way. However, this more general relation will not be needed
here.)

Because the meaning of MyType changes in subclasses,
the meanings of the types of methods in subclasses need not
be the same as those of the corresponding methods in the su-
perclass. However, type-safe rules for defining subclasses
can ensure that the types of the objects from the subclass al-
ways match the types of the objects generated from the su-
perclass. In order to obtain type safety, it is necessary to
type check the methods of a class under the assumption that
MyType only matches the type of objects being defined by
the class. This ensures that these methods will continue to be
type-safe when inherited in subclasses [12]. While some rou-
tines will not type check with this assumption, even though
they would have passed under the stronger assumption that
MyType is exactly the type of objects generated by this class,
in our (admittedly not comprehensive) experience, very few
routines fail. Matching tells you what messages can be sent
to an object, and what their types will be. However, if S <# T,
it does not allow the use of a parameter of type S where one
of type T is expected. Nor does it allow assignment of ex-
pressions of type S to variables of type T.

As stated earlier, ColorPoint is not a subtype of Point.
ColorPoint and Point provide an example of two types which
match, but are not subtypes. Basically, if a class has a binary
method, that is, a method with a parameter of type MyType,

subclasses of that class that add new methods will not gen-
erate subtypes. On the other hand if a method’s return type
is MyType, this will not stand in the way of subtyping. Both
of these follow easily from the subtyping rule for recursive
types in [3], and the fact that MyType can be seen as an ab-
breviation for a recursive definition of types.

What if we want to use a ColorPoint as an actual parame-
ter in a procedure or function that originallyexpected a Point
parameter? Since the example of breakit in the introduction
showed this could not always be done, another, more restric-
tive, construct is needed.

We can introduce a language feature to support a form of
bounded polymorphism using matching. With this feature,
functions can be specified to take type parameters whose val-
ues are restricted to “match” another type. Of course, unre-
stricted type parameters can also be provided, but in a large
number of situations some sort of restriction is necessary.

As an example, suppose we wish to write a routine to sort
an array whose elements are drawn from some ordered set.
In an object-oriented language, the requirement that the el-
ements be ordered can be modeled by demanding that they
support (at least) less than and equal methods. Define:

Comparable � OT hh less than:MyType ! bool;
equal:MyType ! boolii

With this definition, the header of our polymorphic sort rou-
tine is as follows, where the notation “T<#Comparable”
means that the type parameter T must match the type
Comparable:

procedure sort(T<#Comparable; a: Array of T);

And the function then has type3
sort : All(T<#Comparable) (Array of T) ! unit.

If PhoneEntry is an object type supporting at least methods
less than and equal of type

MyType ! bool;
and if pArray is an array of elements of type PhoneEntry,
then sort(PhoneEntry, pArray) is a legal call of sort.

It is worth noting here that the type Comparable has no
useful proper subtypes because of the appearance of MyType
as the type of a parameter in its methods. Thus, if the bounds
on type parameters were only expressed in terms of subtyp-
ing, it would be impossible to apply the sort routine to any
interesting arguments.

The use of bounded matching is equivalent to the use of
F-bounded polymorphism suggested in [14]. It is also very
similar in effect to the restrictions on type parameters ex-
pressible in CLU and Ada (as well as the type classes of
Haskell). For example, in Ada one would write the sort rou-
tine as:3The notation All(S <# T)E(S) is the universally polymorphic type
that can be instantiated to E(S), for all S such that S <# T .

THEORY AND PRACTICE OF OBJECT SYSTEMS 1(Number:3)
generic

type t is private;
with function "<"(x,y: t) return BOOLEAN

is <>;
with function "="(x,y: t) return BOOLEAN

is <>;
procedure sort (A: in out array (<>) of t) is ...

This is similar to the sort procedure written with bounded
matching. Object-oriented languages containingsimilar con-
structs are Emerald [10], School [50], and Theta [40].

Returning to our example with Point, if f(p: Point) is a
functionaccepting an argument of type Point then it can often
be rewritten in the form f(T<#Point; p:T) so that it accepts
a type parameter matching Point and an object of that type.
If this type checks, then it will be possible to apply it to the
type ColorPoint as well as an object of type ColorPoint. Of
course this rewriting will not succeed in all cases—breakit
being a prime example. The reason this transformation will
not succeed in breakit is that the formal parameter nuPt will
be of some type T <# Point, while p will always be of type
Point. Thus we cannot guarantee that the type of the argu-
ment to equal in the body of breakit will be the same as the
type of p, and the type check must fail.

What can actually be done with the information that
one type matches another? The matching relation guar-
antees that certain messages may be sent to an object. IfT <# Comparable then objects of type T can be sent mes-
sages less than and equal (and their parameters must also be
of type T). It turns out that for most situations this is all that
is needed in order to ensure that the object is usable. The
stronger information that a type is actually a subtype of an-
other is generally not needed.

In particular, bounded matching can be viewed as an ex-
plicit, weakened (and hence more generally applicable) form
of subtyping. If subsumption were necessary to type a func-
tion call, the code could be re-written so the function con-
strains the type parameter, like Comparable above, and func-
tion invocations explicitly pass the “smaller” type as argu-
ment. Simple subtyping is handled by the case where the
type constraint contains no occurrences of MyType. The dis-
advantage of this encoding of subtyping is that all subtypings
must be explicitly given in the program.

In general the use of bounded matching requires one
to “plan ahead,” by identifying the type parameter to be
matched against. This was illustrated in the sort example:
the type Comparable needs to be discovered by the program-
mer, and every use of sort requires that an explicit type pa-
rameter be passed. This is in contrast to subtyping, which is
implicit and, as mentioned above, does not require any ex-
plicit type instantiation to be given in the program. (It is an
interesting open problem to show how to automatically in-
fer declarations that use matching.) If we were to decide to
eliminate subtyping altogether in favor of matching, then all
object subtypings would have to be recast as bounded match-
ings. Moreover, since we have, thus far, only defined match-
ing for object types, we would not be able to capture the use

of subtyping on other types without extending the definition
of matching.

Another difficulty with relying only on matching is that
it is not type-safe to perform an assignment to a variable of
an object whose type only matches that of the variable. For
example, imagine a framework for graphical user interfaces,
in which one creates a main window as a subclass of some
framework class, and has to store the window in some vari-
able. In this case the type of the subclass objects has to be
a subtype of the declared type of the variable in the frame-
work. Subtyping seems to be required for this sort of cross-
type assignment. While this can be worked around by using
type parameters to designate the types of instance variables,
it does limit flexibility in handling heterogeneous data struc-
tures, all of whose elements are subtypes of a given type.

The use of MyType is sufficient to write examples such as
linked lists or trees, where methods for attaching a node to
another or returning an adjoining node must be binary meth-
ods. The types of the instance variables of these nodes also
can be written in terms of MyType. If the definition of singly-
linked node is written using MyType in this way, it is easy
to define a doubly-linked node as a subclass of singly-linked
node. Figure 5 presents such an example. As expected, the
type of a doubly-linkednode is not a subtype of singly-linked
node, but it does match. It is then relatively easy to write an
implementation for lists which takes a type parameter which
matches singly-linked node. By applying this to either the
type for singly-linkednode or doubly-linked node, the corre-
sponding kind of list can be generated without code duplica-
tion. (See [13] for the details of this parameterized example.)

The use of MyType in class definitions makes it easier
to write useful subclasses in statically typed object-oriented
languages, especially when the superclasses contain binary
methods. As illustrated in the sorting example above, the
matching relation is very useful in defining bounded poly-
morphic functions. In fact, the use of these two features
should provide a type-safe replacement for the (unsafe) uses
of covariant argument specialization typing in languages like
Eiffel or O2 [8], while providing comparable expressiveness.
The object-oriented language LOOP [29], on the other hand,
has no matching relation per se, but has similar expressivity,
achieved by circular subtype assertions � <: �where � and�
may share free type variable X; this can be viewed as a form
of operator subtyping � (X) <: �(X). The introduction of
a matching relation is thus one, but not the only, solution to
the problem of typing inherited binary methods.

In the next subsection we explore the mathematical as-
pects of the matching relation.

4.1.2 Matching and Object Types

As described in [1], matching can consistently be defined
in terms of pointwise subtyping on operators from types to
types. In this case an object type is used to define a function
from types to types by replacing all occurrences of MyType
by a type variable. For example, Point, can be used to define:

PointOperator� �P :Type: hh x: real; y: real;
equal:P ! boolii

THEORY AND PRACTICE OF OBJECT SYSTEMS 1(Number:3)
The original Point can be recovered by taking the fixed point
of the operator4:

Point � Fix(PointOperator)
Details can be found in the paper cited above.

While understanding objects types as fixed points in this
way is intuitively appealing, the ability to unfold recursive
types does not interact well with the definitionof matching as
essentially a relation on these operators (rather than the fixed
points themselves).

For example, look at the relationship between the follow-
ing types:

EPoint � OT hhx: real; y: real;
equal:EPoint ! boolii

Point � OT hhx: real; y: real;
equal:MyType ! boolii

ColorPoint � OT hhx: real; y: real; c: string;
equal:MyType ! boolii

Understanding object types as recursive records, the first
two would seem to be the same type. However, while
ColorPoint matches Point according to our definition of
matching, ColorPoint does not match EPoint. Thus these
two seemingly identical types must be treated as being dis-
tinct. It is worth noting that there is some justification to
treating the two types as distinct, as the equal method of a
class which generates objects of type Point is type checked
under weaker assumptions on the parameter (i.e., it has type
MyType, which is only assumed to match Point) than the cor-
responding method of EPoint, in which the parameter has
type EPoint.

This anomaly suggests that an encoding of object types
in terms of something a bit weaker than fixed points might
be necessary. It is an interesting open problem to find such
an encoding of object types (including MyType) and a corre-
sponding semantic definition of matching.

4.2 Multi-methods

A different solution whereby binary methods can be em-
braced is to use multi-methods. Contrary to matching, this
solution does not introduce a new relation on types, since
with multi-methods one can have both type safety and sub-
typing relations such as ColorPoint <: Point.

A multi-method is a collection of method bodies associ-
ated with one message name. The selection of which method
body to execute depends on the classes of one or more of the
parameters of the method (rather than just on the class of the
receiver as in ordinary object-oriented languages).

In this survey we distinguish two different kinds of multi-
methods: the ones used by the language CLOS [27], and the
encapsulated multi-methods of [17, 45]. A unified analysis
of both kinds of multi-methods is given in [17]. We now de-
scribe each kind in turn.4The notation Fix(F) means the least fixpoint of F .

4.2.1 Multi-methods à la CLOS

Intuitively the idea is to consider (multi-)methods (in CLOS
jargon, generic functions) as global functions that are dy-
namically bound to different method bodies according to the
classes of the actual arguments. An object does not encapsu-
late its methods, just the data (its instance variables). There
no longer exists the notion of a privileged receiver for a
method (the one that encapsulates it, usually denoted by self
or this) since a multi-method is applied to several arguments
that equally participate in the selection of the body. In this
case we talk of “multiple dispatching” languages, in antithe-
sis to “single dispatching” ones where a privileged receiver
is used. A class of objects is then characterized just by the
internal variables of its instances. For example, in a typed
multi-method-based language, the classes given in Figures 1
and 2 would be defined as in Figure 7.

In order to stress the difference with the formalisms pre-
sented so far we have used a different syntax. Thus a class de-
clares only its subclassing relation and the internal represen-
tation of its instances (the includes keyword), while method
definitions (introduced by the keyword method) appear out-
side the class declarations. In order to simplify the exposi-
tion in this section, we identify classes and types, in the sense
that the name of a class (for which we no longer use the suf-
fix Class) is used as the type of its instances; therefore in this
section (and in this section only) p : Point will also mean
“p is an instance of class Point.” Thus, when discussing
multi-methods à la CLOS, we write class names where types
would otherwise appear.5 This allows one to consider multi-
methods as overloaded functions, whose actual code is dy-
namically selected according to the type (i.e., the class) of the
arguments they are applied to.

The definitions of the methods in Figure 7 are com-
pletely disconnected from those of classes. There are
two distinct definitions for equal, one for arguments of
types Point�Point and the other for arguments of type
ColorPoint�ColorPoint. We say that the message equal de-
notes a multi-method (or a generic function, or an overloaded
function) formed by two branches (or method bodies). The
type of a multi-method is the set of the types of its branches;
thus equal has type:fPoint� Point ! bool;ColorPoint� ColorPoint ! boolg
When equal is applied to a pair of arguments, the system ex-
ecutes the branch defined for those parameters whose type
“best matches” the type of the arguments. For example if
equal is applied to two arguments in which at least one of
them is of type Point and the other is a subtype of it, then the
first definition of equal is executed; if both arguments have
as type a subtype of ColorPoint then the second definition is5If we were to distinguish between types and classes (i.e. between inter-
faces and implementations: cf 4.1.1) , then a new notation would be needed
to specify both a class and a type parameter for multi-methods. One pos-
sibility is to use the notation of Cecil [20, 22], which does separate these
concepts.

THEORY AND PRACTICE OF OBJECT SYSTEMS 1(Number:3)
class Point

includes
xValue: real
yValue: real

end class

class ColorPoint subclass of Point
includes -- xValue and yValue are inherited

cValue : string
end class

method x(p: Point):real is return(p.xValue)

method y(p: Point):real is return(p.yValue)

method c(p: ColorPoint):real is return(p.cValue)

method equal(p:Point , q:Point):bool is return((x(p)==x(q)) && (y(p)==y(q)))

method equal(p:ColorPoint , q:ColorPoint): bool is return((c(p)==c(q)) && (x(p)==x(q)) && (y(p)==y(q)))

Figure 7: Point and ColorPoint classes defined using multi-methods à la CLOS.

selected. More generally, when a multi-method of typefS1 ! T1; S2 ! T2; : : : ; Sn ! Tng
is applied to an argument of type S, the system executes the
body defined for the parameter of type Sj = mini=1::nfSi jS <: Sig. This selection is performed at run-time. In
this way one obtains dynamic dispatch. Note that in this
paradigm binary methods are really binary, since the implicit
argument given by the receiver of the message is, in this case,
explicit.

In [18] it is proved that to have a sound type system it
suffices that every multi-method of type fS1 ! T1; S2 !T2; : : : ; Sn ! Tng satisfies the following condition.68i; j 2 [1::n] if Si <: Sj then Ti <: Tj (1)

(This is similar to the monotonicity condition of [49, 42].)
Note that all the multi-methods defined in Figure 7 (and
in particular equal) satisfy this condition. Therefore
ColorPoint <: Point does not cause type insecurities.

Intuitively, the idea underlying the multi-method ap-
proach is that binary methods may be applied to arguments
of different types and that, in general, it is not possible to
choose the code to execute according to the type of just one
argument. To determine which method body must be exe-
cuted one needs to know the types of all the arguments of
the method. In single dispatching the branch selection is
based only on one argument—the receiver; therefore com-
bining subtyping and binary methods with heterogeneous ar-
guments is not type-safe. In contrast, using a multi-method
we can refine the selection by considering all the arguments.6Some further conditions are required to assure that a best matching
branch always exists for the selection (see [2], [22], and [18]).

Thus it need never happen that the argument of a method has
a supertype of the type of the corresponding parameter (as in
the case of breakit). It is important to stress that this consti-
tutes an approach completely different from matching, where
the arguments of a binary method are statically forced to have
the same type.

Note also that multi-methods allow one to specialize
equal in a different way for each possible combination of ar-
guments. It suffices to add the branches for the remaining
cases:

method equal(p: Point, q: ColorPoint): bool is ...

method equal(p: ColorPoint, q: Point): bool is ...

As we have seen, CLOS’s multi-methods induce an object-
oriented style of programming that is rather different from
the one of traditional single dispatching object-oriented lan-
guages. Most of the languages that use multi-methodsare un-
typed (e.g. CLOS [27], Dylan [7], which use classes instead
of types to drive the selection of multi-methods). The only
strongly-typed languages in our ken that use multi-methods
are Cecil [22], and Polyglot [2].

The lack of encapsulation in multi-methods is both an ad-
vantage and a drawback. The drawback is methodological:
an object (or a class of objects) is no longer associated with a
fixed set of methods that have privileged access to its internal
representation. The usual rule is that any method with a for-
mal parameter of a given class can access the instance vari-
ables of the actual parameter object. The advantage is that
this solves the privileged access problem described in Sec-
tion 2.2, because a binary method can gain privileged access
to both its arguments. However, because such methods can
be defined anywhere in the program, one cannot restrict di-
rect access to instance variables to a small area of the pro-
gram text. One way to fix such problems may be to add a

THEORY AND PRACTICE OF OBJECT SYSTEMS 1(Number:3)
class ColorPointClass subclass of PointClass

instance variables -- xValue and yValue are inherited
cValue : string

methods
c:string is return(cValue)
equal(p: Point):bool is return((xValue==p.x) && (yValue==p.y))
equal(p: ColorPoint):bool is return((cValue==p.c) && (xValue==p.x) && (yValue==p.y))

end class

Figure 8: The class ColorPointClass written using encapsulated multi-methods.

separate module system to control instance variable access
[22]. Instead of pursuing that idea, in the next subsection, we
show how to apply the ideas of multi-methods in more tradi-
tional object-oriented languages with single dispatching and
classes.

Conventional wisdom is that multiple dispatch is more ex-
pensive than single dispatch. In a single dispatch language, a
single table lookup can find the best argument branch. With
multiple dispatch, it may be more expensive to compute the
branch of a multi-method that matches the arguments best,
although various techniques have been designed to minimize
the added expense [6, 23, 26]. However, in a language where
the compiler can tell which argument positions need dis-
patching (as in CLOS), one can implement multi-methoddis-
patch as a chain of single dispatches [36]. If this is done,
then there is no extra cost for multiple dispatch in programs
that do not use it; that is, in a multiple-dispatching language,
programs that only use single dispatch have the same cost
as in a single-dispatching language. Moreover, if a program
in a single-dispatching language is written by using addi-
tional dispatching after methods are called to resolve prob-
lems caused by binary methods (as in Section 4.3), then such
a program will be no faster than the equivalent multi-method
program [21].

A final drawback of multi-methods à la CLOS is the dif-
ficulty of combining independently developed systems of
multi-methods [24]. While other ways to solve this problem
have been studied [22], the problem nearly disappears when
multi-methods are combined with single dispatching, as de-
scribed next.

4.2.2 Encapsulated multi-methods

To solve the encapsulation problems of multi-methods à la
CLOS, we seek to emulate the Smalltalk model, where every
method is the method of one object. Thus each method has
a privileged receiver argument (self), which is the only argu-
ment whose internal state can be accessed by the method. In-
stead of defining multi-methods as global functions, the idea
is to use them to define the bodies of some methods in a class
definition [17]. In this way a multi-method is always associ-
ated to a message m of a class C. When m is sent to an object
of class C, it is dispatched to the corresponding method. If
this method happens to be a multi-method, then the branch
is selected according to the types of the further arguments

of m. Thus, the selection of the method is still based on the
receiver, but the actual code is selected among several bod-
ies that are encapsulated inside the object. Inside these bod-
ies, the receiver is still denoted by the keyword self. En-
capsulated multi-methods are to be distinguished from static
overloading (as found in Ada, Haskell, C++, and other lan-
guages), because the selection of code must be made dynam-
ically.

As an example of this technique, take the class Point as
in Figure 1 and rewrite the class ColorPoint as in Figure 8.
In that Figure (note we are using our original notation for
classes again) there are two definitions for equal: the first is
executed when the argument of equal is of type Point, the
other when it is of type ColorPoint. The selection of the ap-
propriate definition is done at run-time when the argument of
equal has been fully evaluated and hence its run-time type is
apparent. The selection is based on the type of the additional
argument. In other words, we have transformed the method
associated to equal into a multi-method, where arguments of
different types are associated to different codes.

There are two differences from multi-methods à la CLOS.
The first is that multi-methods are defined in particular
classes, whereas in CLOS they are globally defined generic
function names. This solves the encapsulation problems of
CLOS multi-methods, because access to instance variables
is restricted to the methods of a class, as only the receiver’s
instance variables can be accessed. The second difference
is that dispatch is not based on actual argument classes, but
rather on argument types. This is possible because no priv-
ileged access is obtained to the additional arguments. How-
ever since types are not equated with classes, the technique
cannot solve the problem of privileged access to other ar-
guments discussed in Section 2.2: several different classes
might implement the same type, so from the type alone it is
unclear which class implementation the method should have
access to.

The type of a multi-method is the set of the types
of its different codes. Thus the type of an instance of
ColorPointClass now becomes

ColorPoint �OT hhx: real; y: real; c: string;
equal: fPoint ! bool;ColorPoint ! boolgii

and ColorPoint <: Point holds, since, for subtyping, or-
dinary methods are considered as multi-methods with just

THEORY AND PRACTICE OF OBJECT SYSTEMS 1(Number:3)
one branch (their type is a singleton set) and in a type sys-
tem for multi-methods (see [17]) one can deduce: fPoint !
bool;ColorPoint ! boolg <: fPoint ! boolg.

More precisely, the subtyping relation between sets of
types states that one set of types is smaller than another if
and only if for every type contained in the latter there exists
a type in the former smaller than it. This fits the intuition that
one multi-method can be replaced by another multi-method
of different type when for every branch that can be selected
in the former there is one branch in the latter that can replace
it.

Thus, if in writing a subclass one wants the type of the
instances to be a subtype of the type of the instances of the
superclass, then some care in overriding binary methods is
required. Indeed, the rule of thumb for this approach is that
to override a binary method one must use an (encapsulated)
multi-method with (at least) two branches: one with a pa-
rameter whose type is the type of the instances of the class
being defined, the other with a parameter whose type is the
type of the instances of the original superclass in which the
message associated with the binary method has been first de-
fined. Thus, when a binary method is overridden in a new
class, it is not enough to specify what the new method has to
do with the objects of the new class. It is also necessary to
specify what it has to do when the argument is an object of a
superclass. Fortunately, this does not require a large amount
of extra programming. The number of branches that suffice
to override a binary (or n-ary) method in a type-safe manner
is independent of both the size and the depth of the inheri-
tance hierarchy; indeed, it is always equal to two. For exam-
ple, suppose that we further specialize our Point hierarchy by
adding further dimensions:

class 3DPointClass subclass of PointClass
instance variables x3Value: real
methods ...

class 4DPointClass subclass of 3DPointClass
instance variables x4Value: real
methods ...

...and so on, up to a dimension n. The new classes
form a chain in the inheritance hierarchy. If we want
to override equal, what do we have to do in order for
this to be a chain of the subtyping hierarchy too (i.e.,nDPoint <: : : : <: 4DPoint <: 3DPoint <: Point)? If
we want to override equal in nDPointClass (thus we want
that in the description of nDPointClass a definition of the
form equal(p : nDPoint)is : : : appears), then the first idea
is to write for the class nDPointClass a multi-method withn� 1 branches, one for each class in the chain7. This is pos-
sible, but for type safety a multi-method with two branches7Of course, if in the definition of nDPointClass we do not give any defi-
nition for equal then nDPointClass inherits the last (multi-)method defined
for equal in the upper hierarchy. It is important to be clear that, in the for-
malization we use, a new definition of a (multi-)method completely over-
rides the old one (i.e. it is not possible to inherit some branches and override
others: this could by obtained by adding some extra syntax.)

is enough: one for arguments of type nDPoint, which is the
one we want to define, and the other for arguments of type
Point, which will handle all the arguments of a supertype ofnDPoint. For example, in case of n = 4 one could define8

class 4DPointClass subclass of 3DPointClass
instance variables x4Value: real
methods

x4:real is return(x4Value)
equal(p: Point):bool is return(p.equal(self))
equal(p: 4DPoint):bool is

return((xValue==p.x) && (yValue==p.y) &&
(x3Value==p.x3) && (x4Value==p.x4))

end class

Type safety stems from the fact that the subtyping condition
is satisfied.9

A final remark is in order. The different branches that
compose a single multi-method are not required to return
the same type. For type safety it suffices to have the con-
dition (1) as for multi-methods à la CLOS: for each pair of
multi-method branches c1; c2 with the same name and num-
ber of arguments,10 if the parameter types of c1 are smaller
than the corresponding parameter types of c2, then the result
type of c1 must be smaller than the result type of c2 [49, 18].

Note that multi-methods can be considered as a kind of
typecase construct enhanced by two features: (a) the selec-
tion of the case to apply uses subtyping instead of type equal-
ity; (b) all the cases are not required to return the same type
(they are solely required to satisfy the condition (1)). This
makes multi-methods more flexible than statically defined
typecase statements as might be found in imperative lan-
guages: without (a), a binary method whose parameter type
is guarded using a typecase would always have to be rewrit-
ten when new subclasses are added to the program; without
(b), specialization of the result type of binary methods could
not be handled. The only remaining problem that multi-
methods and typecase share is that if the method should only
be defined with a parameter of exactly the same type as the
receiver, the multi-method user will be required to add a new
method body with the original parameter type whose only
purpose is to raise an error message. See the conclusion for
further discussion of this issue.

Some further consistency conditions are required in case
of multiple inheritance [31, 45, 18, 22].

One of the main advantages of this approach is that the
extra branch required to assure type safety of subtyping can8This example is due to John Boyland.9In general, if we have a hierarchy of n classes whose instances have
type Sn <: ::: <: S1 and we want to define for each of them a binary
method, respectively returning the type Tn <: ::: <: T1 then according
to the subtyping rule for multi-methods we have the following type inequal-
ities: fSn ! Tn; S1 ! Tn�1g <: ::: <: fSi+1 ! Ti+1; S1 !Tig <: fSi ! Ti; S1 ! Ti�1g <: ::: <: fS1 ! T1g. This proves
that two branches always suffice for binary methods. The declarations of the
classes for points are a special case of this, where S1 =Point, for i 2 [3::n]Si�1 =iDPoint, and for i 2 [1::n-1] Ti =bool.10Indeed multi-methods may have more than one parameter (this allows
us to deal with n-ary methods), and the multi-method branches are not all
required to have the same number of parameters.

THEORY AND PRACTICE OF OBJECT SYSTEMS 1(Number:3)
class PointClass: : :

methods: : :
equal(p: Point): bool is return(p.equalPoint(self))
equalPoint(p: Point): bool is return((xValue==p.x) && (yValue==p.y))
equalColorPoint(p: ColorPoint): bool is return(self.equalPoint(p))

class ColorPointClass subclass of PointClass: : :
methods

equal(p: Point): bool is return(p.equalColorPoint(self))
-- equalPoint is inherited

equalColorPoint(p: ColorPoint): bool is return((cValue==p.c) && (xValue==p.x) && (yValue==p.y))

Figure 9: Ingalls’ simulation of multi-methods.

be generated in an automatic way. Therefore this technique
can be embedded directly in the technology of the compiler,
and used to “patch” the already existing code of languages
that use covariant specialization, like Eiffel and O2. Thus,
like the solution given in the next section, this solution can
be directly applied to languages with covariant argument spe-
cialization without requiring any modification of the code: a
recompilation of existing code will suffice (see [11]).

On the other hand this approach has some disadvantages.
One disadvantage compared to multi-methods à la CLOS is
that it does not solve the problem of obtaining privileged ac-
cess to other arguments in a binary method. Another disad-
vantage of this approach is that in case of multiple inheri-
tance additional type checking constraints are needed. The
problem is that when multiple inheritance is used, the notion
of a “best matching branch” to select or to inherit may be
lost. Consequently, unconstrained use of multi-methods can
break the modularity of programming [24], since the addi-
tion of a new class to the system might require the addition of
some new code in a different class to assure the existence of
the best branch (see, for example, [22]). However the prob-
lem with modularity is less critical than in the case of multi-
method à la CLOS. An additional disadvantage is again the
performance penalty imposed by multi-methods. One extra
test and branch is required to decide which code is to be ex-
ecuted. The overhead to resolve uses of encapsulated multi-
methods is however smaller than in the case of CLOS multi-
methods since there is no special lookup needed for the priv-
ileged receiver.

There are also some less important disadvantages. The
first one is that, as it depends on an avant garde type the-
ory, the interactions of this theory with fairly standard fea-
tures like polymorphism (both implicit and explicit) are not
yet clear. (Models based on records have been more deeply
studied than those based on overloading.) Also, even though
there is not a blowup of the number of extra method bodies
that must be written, there is at least a doubling of the num-
ber of method bodies that must be written each time a binary

method is overridden. Some further negative remarks are to
be found at the end of the next section.

4.3 Simulating Multi-methods in a Single-
Dispatching Language

Ingalls offered a solution to what he called the problem
of “multiple polymorphism” at the first OOPSLA confer-
ence [34]. His solution to the binary method problem, of-
fered in the context of single-dispatching languages such as
Smalltalk-80 [32], was to use two message dispatches, one
to resolve the polymorphism of each argument.

In the example of points, colored points, and equality, the
equal method would be coded as in Figure 9. As usual, the
class ColorPointClass inherits the method equalPoint from
the class PointClass. Now the (mutually recursive) types of
the instances of PointClass and ColorPointClass are:

Point � OT hhx: real; y: real;
equal:Point ! bool;
equalPoint:Point ! bool;
equalColorPoint:ColorPoint ! boolii

ColorPoint � OT hhx: real; y: real; c: string;
equal:Point ! bool;
equalPoint:Point ! bool;
equalColorPoint:ColorPoint ! boolii

Notice that, with this typing, ColorPoint is a subtype of
Point. Also, equal in ColorPoint is a binary method, since by
subsumption it can have argument type ColorPoint as well.
This typing can be said to be more precise than the typing of
ColorPoint given in the introduction; the general issue of the
use of more precise typings is taken up in Section 4.4.

The solution offered by Ingalls is probably the best-
known way to simulate multiple dispatch in a language with
only single dispatch. With respect to true multiple-dispatch,
the Ingalls simulation is more exact than the function simula-
tion offered in Section 3.1, since it can arrange for equal with
two arguments whose dynamic type is ColorPoint to always

THEORY AND PRACTICE OF OBJECT SYSTEMS 1(Number:3)
take color intoaccount, regardless of the static types of the ar-
gument expressions. This is because of the second dynamic
dispatch in the equal method. Such a result is not possible
with the function simulation of Section 3.1: one will always
be able to apply the eqPoint function to two ColorPoint ob-
jects and lose exact type information. This example is thus
one case for which dynamic dispatch on binary methods oc-
curs. In this respect, the simulation of multiple-dispatch with
external functions is less faithful and flexible than the Ingalls
simulation.

This translation can also be contrasted with encapsulated
multi-methods as described in Section 4.2.2. Ingalls’ trans-
lation lacks modularity in that it requires equalColorPoint
to be added to the PointClass class when ColorPointClass
is defined. With multi-methods, modularity can be pre-
served since the redefinition of the equal method inside
ColorPointClass does not require any modification of the
code for PointClass; however, this introduces an unnatural
asymmetry, since the redefinition of equal requires one to
write code for how a ColorPoint behaves when its equal
method is passed a Point, but not vice-versa. The natural
symmetry cannot be restored except by breaking the modu-
larity of the multi-method solution.

It should be pointed out that the above argument only
holds if we require (multi-)methods to be written in classes,
as in Section 4.2.2. For multi-methods à la CLOS there is
no problem of asymmetry, although there is still a modularity
problem. However, the multi-method approach still requires
one to go back and add code for types that appeared to have
been completed earlier.

Ingalls’ solution is surprisingly general—by overriding
equalPoint in ColorPointClass, a different method can be ex-
ecuted for all four combinations of Point and ColorPoint. In-
galls’ solution could in fact be used as one technique for im-
plementing encapsulated multi-methods in a compiler, pro-
vided the compiler had access to all of the code at compila-
tion time.

Finally, for large inheritance hierarchies the number of
cases required by Ingalls’ solution can, in principle, become
quite cumbersome.

4.4 Precise Typings

It is sometimes advantageous to use more precise typings
for methods. A binary method only needs its argument to
have the methods that are explicitly used. Generally this is a
weaker requirement than having the argument be an object of
the current class, and it may allow for a “larger” (with respect
to the <: relation) type of the argument of this method; by
the contravariant subtyping rule for functions this produces a
smaller type for the method. The informal idea is thus to give
methods smaller types [9, 10]. By subsumption, these types
can always be lifted to “true binary” form, allowing objects
of the same class to be passed as arguments to the method.
Thus, specifying a smaller type of a method can only increase
its usability.

Ingalls’ solution in Section 4.3 in fact depends on the use
of precise types, for the key to its typability is the use of Point

for the type of the argument of equal in ColorPointClass.
This gives the method a smaller type than if the argument
were of type ColorPoint. In this section we elaborate on this
technique.

By way of illustration, consider the original
Point/ColorPoint example of Figures 1 and 2. Since
neither equal method calls equal recursively, the types

Pointmin �OT hhx: real; y: real;
equal:OT hhx: real; y: realii ! boolii

ColorPointmin �OT hhx: real; y: real; c: string;
equal:OT hhx: real; y: real; c: stringii ! boolii

may also be given. These types are subtypes of the types
given originally. Note that the objects passed to equal them-
selves require no equal method be present. Since Pointmin
is a subtype of OT hhx: real; y: realii and similarly for
ColorPointmin, it is easy to see that

Pointmin <: OT hhx: real; y: real;
equal:Pointmin ! boolii

ColorPointmin <: OT hhx: real; y: real; c: string;
equal:ColorPointmin ! boolii

so equal is indeed a binary method, and no typings are
lost in this approach. In fact, something is gained over the
matching interpretation described in Section 4.1: it is pos-
sible to invoke the equal method of a Point(min) with a
ColorPoint(min) as argument. Typing this “heterogeneous”
invocation is crucial for a class defining binary methods in-
tended to be inherited without redefinition and able to take
as arguments objects of any subclass [28]. In a type system
based on matching, a method declared to take arguments of
type MyType cannot, in general, accept an object of a sub-
class as argument; it is necessary to use bounded matching
to realize this (see the discussion at the end of Section 4.1.1).
Precise types here provide a simpler solution based on sub-
typing. Note that ColorPointmin does not match, nor is it a
subtype of, Pointmin.

As shown in Section 4.3, typing Ingalls’ solution when
MyType appears only in the types of method parameters
is possible simply by using subsumption, e.g., to lift a
ColorPoint to a Point in cp1:equal(cp2), where both cp1
and cp2 are objects of type ColorPoint. However this tech-
nique cannot be directly applied to binary methods with re-
sult of type MyType (or involving MyType), because sub-
sumption on the type of the argument may cause loss of inter-
esting type information. Consider the example in Figure 10,
which defines points and colored points with a binary max
method. Objects of MPointClass and ColorMPointClass
could be given the following types, which are simple mod-
ifications of the types of Points in Section 4.3.

MPoint�OT hhx: real; y: real;
max:MPoint ! MPoint;
maxMPoint:MPoint ! MPoint;

THEORY AND PRACTICE OF OBJECT SYSTEMS 1(Number:3)
class MPointClass: : :

methods: : :
max(p: MPoint): MPoint is return(p.maxMPoint(self))
maxMPoint(p: MPoint): MPoint is

if xValue **2 + yValue **2 < p.x**2+ p.y**2
then return(p) else return(self)

maxColorMPoint(p: ColorMPoint): MPoint is return(self.maxMPoint(p))

class ColorMPointClass subclass of MPointClass: : :
methods

max(p: MPoint): MPoint is return(p.maxColorMPoint(self))
-- maxMPoint is inherited

maxColorMPoint(p: ColorMPoint): ColorMPoint is
if (xValue **2 + yValue **2) � brightness(cValue)< (p.x**2+ p.y**2) � brightness(p.c)
then return(p) else return(self)

Figure 10: Ingalls simulation of points with a max method: first attempt.

maxColorMPoint:ColorMPoint! MPointii
ColorMPoint�OT hhx: real; y: real; c: string;

max:MPoint ! MPoint;
maxMPoint:MPoint ! MPoint;
maxColorMPoint:ColorMPoint! ColorMPointii

The subtyping ColorMPoint <: MPoint still holds, but note
that the result of method max of ColorMPointClass is of type
MPoint; type checking would fail if we assigned this method
the type MPoint ! ColorMPoint. Thus the static type of
taking the max of two ColorMPoints will have to be merely
MPoint (unless the method maxColorMPoint was used ex-
plicitly). True multi-methods do not suffer from this short-
coming.

We can overcome this problem in a more expressive type
system that provides for polymorphism in addition to recur-
sive types. The idea is to make the type of max more precise,
and in this case, polymorphic. The code for the max methods
with their new type annotations is given in Figure 11. This
modification yields types for the objects of MPointClass and
ColorMPointClass described in Figure 12. If p is a MPoint,
its max method can still be specialized to a binary method:
p:max[MPoint] is of type MPoint ! MPoint, and similarly
for the max method of a ColorMPoint. The relation with the
types of the “true binary” methods is more direct in an im-
plicitly typed language, where the precise types are smaller
[30, 28].

With this typing, taking the max of two elements of
ColorMPoint returns a ColorMPoint; any other combination
returns a MPoint, the best static type possible. Note that
ColorMPoint is still a subtype of MPoint in a system with
implicit unfolding of recursive types. So, this typing has all
the desired properties of the typing via pure multi-methods of

Section 4.2, giving more situations in which Ingalls’ method
may be usefully applied.

SOOP and PolyTOIL are two languages in which all of
the precise typings of this section may be expressed. Pre-
cise types are complex, however, and it is difficult to imagine
programmers writing them routinely. A solution to this prob-
lem is to automatically infer minimal types. See [28] for a
type inference algorithm for the I-LOOP object-oriented lan-
guage. The algorithm infers a form of F-bounded polymor-
phic type for classes and objects. It infers minimal types for
the original Point/ColorPoint example that are very similar
to the “small” types presented above. The types inferred for
objects of MPointClass and ColorMPointClass are slightly
more general than the form above.

To summarize some of the advantages and disadvantages
of precise typing:

+ Precise types allow more flexibility in typing than
matching alone. They may be expressed using bounded
matching, but bounded matching requires explicit quan-
tification and instantiation where subtyping alone may
suffice.

+ Precise types are a critical component of a typed version
of Ingalls’ solution.

+ More precise types in module interfaces can be used to
overcome some of the limitations of matching.

- The generally more complicated form of the precise
types suggests that a type inference algorithm may be
the only practical alternative.

- In defining a subclass, one may have to go back and
modify the type annotations of the superclass (and, in
general, the superclass of the superclass, etc.) in order

THEORY AND PRACTICE OF OBJECT SYSTEMS 1(Number:3)
class MPointClass: : :

max[X:Type](p:OT hhmaxMPoint:MPoint ! X; maxColorMPoint:ColorMPoint! Xii):X is
return(p.maxMPoint(self)): : :

class ColorMPointClass subclass of MPointClass: : :
max[X: Type](p: OT hhmaxColorMPoint:ColorMPoint! Xii): X is

return(p.maxColorMPoint(self)): : :
Figure 11: Ingalls simulation of points with a max method: precise typing.

MPoint �OT hhx: real; y: real;
max:All(X) OT hh maxMPoint:MPoint ! X; maxColorMPoint:ColorMPoint! Xii ! X;
maxMPoint:MPoint ! MPoint;
maxColorMPoint:ColorMPoint! MPointii

ColorMPoint�OT hhx: real; y: real; c: string;
max:All(X) OT hhmaxColorMPoint:ColorMPoint! Xii ! X;
maxMPoint:MPoint ! MPoint;
maxColorMPoint:ColorMPoint! ColorMPointii

Figure 12: Types for object of MPointClass and ColorMPointClass

to generate subtypes. This may be seen as another argu-
ment in favor of type inference, since no modifications
will be required in an implicitly typed language.

5 Privileged Access to Object Repre-
sentations

In Section 2.2, we saw that the problems of typing binary
methods are often accompanied by difficulties in implement-
ing binary operations without exposing object internals to
public view. This section sketches a technique whereby such
“overexposed objects” can be wrapped in an additional layer
of abstraction, creating a limited scope in which their internal
structure is visible. The technique was developed by Pierce
and Turner [47] and by Katiyar, Luckham, and Mitchell [35];
we refer the reader to these papers for further details. In par-
ticular, [47] demonstrates that the mechanism shown here
is compatible with inheritance (though it requires some ad-
ditional machinery). These ideas give a semantic basis for
some aspects of the encapsulation via friends found in C++
and the encapsulation in Cecil [20]. Returning to the exam-
ple of integer set objects (and dropping the union method, for
brevity), it is clear that the typing

IntSet � OT hhadd: int ! unit;
member: int ! bool;
superSetOf : IntSet ! boolii

does not provide a sufficiently rich protocol to allow the
superSetOf method to be implemented: there is no way to
find out what are the elements of the other set (the one pro-
vided as argument to superSetOf). We have no choice but to
extend the interface of set objects witha method that provides
access to this information; let us call it rep, as a reminder that,
in general, it may need to provide access to the whole internal
representation of the object.

IntSetExposed � hhadd: int ! unit;
member: int ! bool;
superSetOf : IntSetExposed ! bool
rep: IntListii

Now we can easily implement all the methods of
IntSetExposedClass, as shown in Figure 13.

It remains to show how to package the class
IntSetExposedClass so that the rep method can only be
called by other instances of the same class. For this, we
generalize Mitchell and Plotkin’s motto that “abstract types
have existential type” [44], combining it with the idea
of object interfaces as type operators from Cardelli and
Wegner’s partially abstract types [16].

The interface of the exposed integer set objects can be
written as follows.

IntSetExposedOperator(S) � hhadd: int ! unit;
member: int ! bool;
superSetOf : S ! bool
rep: IntListii

THEORY AND PRACTICE OF OBJECT SYSTEMS 1(Number:3)
class IntSetExposedClass

instance variables
elts: IntList

methods
add(i: int): unit is elts := elts.cons(i)
member(i: int): bool is return(elts.memq(i))
superSetOf (s: IntSet): bool is

return(elts.superListOf (s.rep))
rep: IntList is return(elts)

end class

Figure 13: The class IntSetExposedClass, for which writing
superSetOf is straightforward

intSetPackage =
pack

procedure newIntSet() is
var

nuSet: Fix(IntSetExposedOperator)
begin

nuSet := new IntSetExposedClass();
return(nuSet)

end
as

Some(ISOp <: IntSetOperator)OT hhnewIntSet : Fix(ISOp)ii
hiding

IntSetExposedOperator
end

Figure 14: The package intSetPackage.

Similarly, the interface of ordinary integer set objects (with-
out rep) can be written:

IntSetOperator(S) � hhadd: int ! unit;
member: int ! bool;
superSetOf : S ! boolii

Now comes the key point. Instead of defining IntSet =
Fix(IntSetOperator) as we did before, we build an abstract
data type (ADT) and then open it to obtain IntSet. The imple-
mentation of the ADT uses IntSetExposedOperator, so that
superSetOf makes sense, but the rep method is hidden from
public view.

The integer set package (or module) is defined in Fig-
ure 14. To verify that its type is

intSetPackage : Some(ISOp <: IntSetOperator)OT hhnewIntSet : Fix(ISOp)ii
we need only check that when the hidden “witness type”
IntSetExposedOperator is replaced by the abstract place-
holder ISOp in the type of the body of the packageOT hhnewIntSet : Fix(IntSetExposedOperator)ii

we obtain the body of the abstract type:OT hhnewIntSet : Fix(ISOp)ii:
Having built intSetPackage, we can open it to obtain

the creation procedure newIntSet and the abstract interface
ISOp, from which we define the type IntSet:

open intSetPackage
as ISOp with OT hhnewIntSetii
type IntSet = Fix(ISOp)

In the remainder of the program, objects created using
newIntSet have type IntSet. In particular, they can be sent
the superSetOf message.

In effect, what we have accomplished is to blend object-
and ADT-style abstraction mechanisms. The primary mech-
anism is objects: both ordinary (unary) operations like add
and binary operations like superSetOf are methods of ob-
jects rather than free-standing procedures. The extra layer of
packaging guarantees that elements of IntSet can only be cre-
ated by calling newIntSet—i.e., that every element of IntSet
is actually an instance of IntSetExposedClass, and hence sup-
ports the rep message.

6 Summary and Conclusions

Binary methods pose real problems in object-oriented pro-
gramming languages. There is a typing problem because
types withbinary methods have few interestingsubtypes, and
there is a problem obtaining privileged access to additional
arguments in binary methods.

We discussed the following solutions to the typing prob-
lem for binary methods.� Avoiding binary-methods completely. We proposed

several techniques for achieving similar effects.� Using a notion of matching, which is weaker than sub-
typing. This allows more polymorphism in the presence
of types with binary methods. However, it seems to re-
quire programmers to plan ahead more than they would
using subtyping, and its flexibility is not as great as with
multi-methods.� Using multi-methods, either as a basis for object-
oriented programming, or as a solution within the
framework of single-dispatched languages. This gives
the programmer more flexibility in programming bi-
nary methods, and consequently allows more subtyp-
ing. However, there are modularity and efficiency prob-
lems with these approaches.� Using more precise typings for methods (including the
Ingalls simulation of multi-methods). This allows more
flexibility than matching. However, it seems to require
type inference to be practical [28], and the resulting
types may be more complicated than programmers want
to see.

THEORY AND PRACTICE OF OBJECT SYSTEMS 1(Number:3)
To solve the problem of privileged access to additional ar-

guments, we discussed adding additional layers of abstrac-
tion. However, this by itself does not solve the typing prob-
lems of binary methods; it must be combined with one of the
previous solutions.

Matching, multi-methods, and precise typings offer three
different solutions to the binary methods problem. Match-
ing insists that binary methods have the type of both argu-
ments (the receiver and the extra argument) exactly the same,
and statically enforces this property. Multi-methodsallow all
heterogeneous invocations of binary methods, so for instance
the equal method of a ColorPoint may be passed a Point as
argument. Precise typings lie somewhere between the two:
they do not insist that binary methods have the same type for
both arguments, but also do not allow all safe heterogenous
invocations of binary methods.

To illustrate a weakness of multi-methods, consider the
binary methods of DoubleLinkClass in Figure 5. Using
multi-methods, there is a problem if the setNext method of
DoubleLink is invoked with a Link node as argument: the
Link should point back to the DoubleLink, but it cannot. The
best solution is to define a multi-method case here to flag a
run-time error. In the case of matching, the receiver and ar-
gument must be the same type and the type system safely pre-
cludes such a message send. Precise typings produce a solu-
tion between the two: a Link may point to a DoubleLink, but
a DoubleLink may not point to a Link. The latter restriction,
imposed by the type system, prevents the above run-time er-
ror from arising.

To illustrate a lack of expressiveness of match-
ing, consider a graphical user interface in which an
AlertWindowClass has been defined by inheritance from
WindowClass. A binary method overlap should be able
to compare plain windows with alert windows. Note
also that the overlap method should be specialized in
AlertWindowClass in order to take into account some prior-
ity of the alerts (thus overlap is a binary method). This could
be programmed with multi-methods and precise typings, but
not with matching.

A weakness of precise typings is illustrated by the need
to use Ingalls’ solution to simulate multiple dispatch. This
solution is an ad hoc implementation of multiple dispatch.
All three solutions thus have strengths and weaknesses. This
suggests that the integration of different solutions into a sin-
gle object-oriented language is a task worthy of study.

So, which solution is the best? None of the solutions dis-
cussed above are perfect. Some work also remains in deter-
mining if some of the solutions will scale up to full-featured
languages. For practical programming languages the bottom
line may be the empirical question of what sort of inconve-
nience the programmer is most likely to tolerate. It is our
hope that further research will uncover better solutions, per-
haps using some combination of the techniques discussed in
this paper.

Acknowledgements

Thanks to the US National Science Foundation and ESPRIT
for their support of the workshop that resulted in this paper.
Thanks to the anonymous referees for comments that helped
improve this paper.

References

[1] Martı́n Abadi and Luca Cardelli. On subtyping and
matching. In Proceedings ECOOP ’95, pages 145–167.
LNCS 952, Springer-Verlag, 1995.

[2] Rakesh Agrawal, Lindga G. DeMichiel, and Bruce G.
Lindsay. Static type checking of multi-methods.
ACM SIGPLAN Notices, 26(11):113–128, November
1991. OOPSLA ’91 Conference Proceedings, Andreas
Paepcke (editor), October 1991, Phoenix, Arizona.

[3] Roberto M. Amadio and Luca Cardelli. Subtyping re-
cursive types. ACM Transactions on Programming
Languages and Systems, 15(4), September 1993.

[4] Pierre America. Inheritance and subtyping in a parallel
object-oriented language. In Jean Bezivin et al., editors,
ECOOP ’87, European Conference on Object-Oriented
Programming, Paris, France, pages 234–242, New
York, NY, June 1987. Springer-Verlag. Lecture Notes
in Computer Science, Volume 276.

[5] Pierre America. Designing an object-oriented pro-
gramming language with behavioural subtyping. In
J. W. de Bakker, W. P. de Roever, and G. Rozenberg,
editors, Foundations of Object-Oriented Languages,
REX School/Workshop, Noordwijkerhout, The Nether-
lands, May/June 1990, volume 489 of Lecture Notes in
Computer Science, pages 60–90. Springer-Verlag, New
York, NY, 1991.

[6] Eric Amiel, Oliver Gruber, and Eric Simon. Optimizing
multi-method dispatch using compressed dispatch ta-
bles. In OOPSLA ’94 Conference Proceedings, volume
29(10) of SIGPLAN Notices, pages 244–258. ACM,
October 1994.

[7] Apple Computer Inc., Eastern Research and Technol-
ogy. Dylan: an object-oriented dynamic language,
April 1992.

[8] François Bancilhon, Claude Delobel, and Paris Kanel-
lakis (eds.). Implementing an Object-Oriented
database system: The story of O2. Morgan Kaufmann,
1992.

[9] Andrew Black, Norman Hutchinson, Eric Jul, and
Henry Levy. Object structure in the Emerald sys-
tem. ACM SIGPLAN Notices, 21(11):78–86, Novem-
ber 1986. OOPSLA ’86 Conference Proceedings, Nor-
man Meyrowitz (editor), September 1986, Portland,
Oregon.

THEORY AND PRACTICE OF OBJECT SYSTEMS 1(Number:3)
[10] Andrew P. Black and Norman Hutchinson. Typecheck-

ing polymorphism in Emerald. Technical Report CRL
91/1 (Revised), Digital Equipment Corporation, Cam-
bridge Research Lab, Cambridge, Mass., July 1991.

[11] John Boyland and Giuseppe Castagna. Type-safe
compiling of covariant specialization: a practical case.
Technical Report CSD-95-890, University of Califor-
nia, Berkeley, November 1995. Currently avail-
able by anonymous ftp from ftp.ens.fr in file
/pub/dmi/users/castagna/o2.ps.Z.

[12] Kim B. Bruce. A paradigmatic object-oriented pro-
gramming language: design, static typing and seman-
tics. Journal of Functional Programming, 4(2):127–
206, 1994.

[13] Kim B. Bruce, Angela Schuett, and Robert van Gent.
PolyTOIL: A type-safe polymorphic object-oriented
language. In Proceedings ECOOP ’95, pages 27–
51. LNCS 952, Springer-Verlag, 1995. A complete
version of this paper with full proofs is available via
http://www.cs.williams.edu/�kim/.

[14] Peter Canning, William Cook, Walter Hill, Walter
Olthoff, and John Mitchell. F-bounded quantification
for object-oriented programming. In Fourth Interna-
tional Conference on Functional Programming Lan-
guages and Computer Architecture, pages 273–280,
September 1989.

[15] Luca Cardelli. A semantics of multiple inheritance. In
G. Kahn, D. MacQueen, and G. Plotkin, editors, Se-
mantics of Data Types, volume 173 of Lecture Notes
in Computer Science, pages 51–67. Springer-Verlag,
1984. Full version in Information and Computation
76(2/3):138–164, 1988.

[16] Luca Cardelli and Peter Wegner. On understanding
types, data abstraction, and polymorphism. Computing
Surveys, 17(4):471–522, December 1985.

[17] Giuseppe Castagna. Covariance and contravariance:
conflict without a cause. ACM Transactions on Pro-
gramming Languages and Systems, 17(3):431–447,
1995.

[18] Giuseppe Castagna, Giorgio Ghelli, and Giuseppe
Longo. A calculus for overloaded functions with sub-
typing. Information and Computation, 117(1):115–
135, February 1995. A preliminary version appeared
in ACM Conference on LISP and Functional Program-
ming, June 1992 (pp. 182–192).

[19] Giuseppe Castagna and Gary T. Leavens. Founda-
tions of object-oriented languages: 2nd workshop re-
port. SIGPLAN Notices, 30(2):5–11, February 1995.

[20] Craig Chambers. Object-oriented multi-methods in Ce-
cil. In Ole Lehrmann Madsen, editor, ECOOP ’92, Eu-
ropean Conference on Object-Oriented Programming,

Utrecht, The Netherlands, volume 615 of Lecture Notes
in Computer Science, pages 33–56. Springer-Verlag,
New York, NY, 1992.

[21] Craig Chambers. multi-method implementation ques-
tion. personal communication via e-mail, August and
November 1995.

[22] Craig Chambers and Gary T. Leavens. Typechecking
and modules for multi-methods. ACM SIGPLAN No-
tices, 29(10):1–15, October 1994. OOPSLA ’94 Con-
ference Proceedings, October 1994, Portland, Oregon.

[23] Weimin Chen, Volker Turau, and Wolfgang Klas. Effi-
cient dynamic look-up strategy for multi-methods. In
Mario Tokoro and Remo Pareschi, editors, ECOOP
’94, European Conference on Object-Oriented Pro-
gramming, Bologna, Italy, volume 821 of Lecture
Notes in Computer Science, pages 408–431, New York,
NY, July 1994. Springer-Verlag.

[24] William R. Cook. Object-oriented programming versus
abstract data types. In J. W. de Bakker, W. P. de Roever,
and G. Rozenberg, editors, Foundations of Object-
Oriented Languages, REX School/Workshop, Noord-
wijkerhout, The Netherlands, May/June 1990, volume
489 of Lecture Notes in Computer Science, pages 151–
178. Springer-Verlag, New York, NY, 1991.

[25] William R. Cook, Walter L. Hill, and Peter S. Canning.
Inheritance is not subtyping. In Proc. 17th ACM Symp.
on Principles of Programming Languages, pages 125–
135, January 1990.

[26] Jeffrey Dean, David Grove, and Craig Chambers. Ef-
ficient dynamic look-up strategy for multi-methods. In
Walter Olthoff, editor, ECOOP ’95, European Confer-
ence on Object-Oriented Programming, Aarhus, Den-
mark, volume 952 of Lecture Notes in Computer Sci-
ence, pages 77–101, New York, NY, August 1995.
Springer-Verlag.

[27] L.G. DeMichiel and R.P. Gabriel. Common Lisp Ob-
ject System overview. In Bézivin, Hullot, Cointe,
and Lieberman, editors, Proc. of ECOOP ’87 European
Conference on Object-Oriented Programming, number
276 in LNCS, pages 151–170, Paris, France, June 1987.
Springer-Verlag.

[28] J. Eifrig, S. Smith, and V. Trifonov. Sound polymorphic
type inference for objects. In Proceedings of OOPSLA
’95, pages 169–184, 1995.

[29] J. Eifrig, S. Smith, V. Trifonov, and A. Zwarico. Ap-
plication of OOP type theory: State, decidability, inte-
gration. In Proceedings of OOPSLA ’94, pages 16–30,
1994.

[30] Jonathan Eifrig, Scott Smith, and Valery Tri-
fonov. Type inference for recursively constrained
types and its application to OOP. In Mathemat-
ical Foundations of Programming Semantics,

THEORY AND PRACTICE OF OBJECT SYSTEMS 1(Number:3)
New Orleans, volume 1 of Electronic Notes in
Theoretical Computer Science. Elsevier, 1995.
http://www.elsevier.nl:80/mcs/tcs/pc/volume01.htm.

[31] Giorgio Ghelli. A static type system for message pass-
ing. In OOPSLA ’91 Conference Proceedings, pages
129–145, 1991.

[32] Adele Goldberg and David Robson. Smalltalk-80: The
Language and Its Implementation. Addison-Wesley,
Reading, MA, 1983.

[33] Martin Hofmann and Benjamin Pierce. A unifying
type-theoretic framework for objects. Journal of Func-
tional Programming, 1995. Previous versions appeared
in the Symposium on Theoretical Aspects of Computer
Science, 1994, (pages 251–262) and, under the title
“An Abstract View of Objects and Subtyping (Prelimi-
nary Report),” as University of Edinburgh, LFCS tech-
nical report ECS-LFCS-92-226, 1992.

[34] Daniel H. H. Ingalls. A simple technique for handling
multiple polymorphism. In Norman Meyrowitz, ed-
itor, OOPSLA ’86 Conference Proceedings, Portland,
Oregon, September 1986, volume 21(11) of ACM SIG-
PLAN Notices, pages 347–349. ACM, November 1986.

[35] Dinesh Katiyar, David Luckham, and John Mitchell.
A type system for prototyping languages. In Con-
ference Record of POPL ’94: 21st ACM SIGPLAN–
SIGACT Symposium of Principles of Programming
Languages, Portland, Oregon, pages 138–150. ACM,
January 1994.

[36] Gregor Kiczales and Luis H. Rodriguez Jr. Efficient
method dispatch in PCL. In Andreas Paepcke, ed-
itor, Object-Oriented Programming: the CLOS Per-
spective, chapter 14, pages 335–348. MIT Press, Cam-
bridge, Mass., 1993.

[37] Gary T. Leavens. Modular specification and verifi-
cation of object-oriented programs. IEEE Software,
8(4):72–80, July 1991.

[38] Gary T. Leavens and William E. Weihl. Reasoning
about object-oriented programs that use subtypes (ex-
tended abstract). In N. Meyrowitz, editor, OOPSLA
ECOOP ’90 Proceedings, volume 25(10) of ACM SIG-
PLAN Notices, pages 212–223. ACM, October 1990.

[39] Gary T. Leavens and William E. Weihl. Specification
and verification of object-oriented programs using su-
pertype abstraction. Acta Informatica, 1994. To appear.
An expanded version is Department of Computer Sci-
ence, Iowa State University, Technical Report 92-28d,
August 1994.

[40] Barbara Liskov, Dorothy Curtis, Mark Day, Sanjay
Ghemawat, Robert Gruber, Paul Johnson, and An-
drew C. Myers. Theta reference manual. Technical
Report Programming Methodology Group Memo 88,
MIT, February 1995.

[41] Barbara Liskov and Jeannette Wing. A behavioral no-
tion of subtyping. ACM Transactions on Programming
Languages and Systems, 16(6):1811–1841, November
1994.

[42] Narciso Martı́-Oliet and José Meseguer. Inclusions
and subtypes. Technical Report SRI-CSL-90-16, Com-
puter Science Laboratory, SRI International, December
1990.

[43] Bertrand Meyer. Eiffel: the language. Prentice-Hall,
1992.

[44] John Mitchell and Gordon Plotkin. Abstract types have
existential type. ACM Transactions on Programming
Languages and Systems, 10(3), July 1988.

[45] W. B. Mugridge, J. G. Hosking, and J. Hamer. Multi-
methods in a statically-typed programming language.
In Pierre America, editor, ECOOP ’91 Conference Pro-
ceedings, Geneva, Switzerland, volume 512 of Lecture
Notes in Computer Science. Springer-Verlag, 1991.

[46] Greg Nelson, editor. Systems Programming with
Modula-3. Prentice Hall, 1991.

[47] Benjamin C. Pierce and David N. Turner. Stat-
ically typed friendly functions via partially abstract
types. Technical Report ECS-LFCS-93-256, Univer-
sity of Edinburgh, LFCS, April 1993. Also available as
INRIA-Rocquencourt Rapport de Recherche No. 1899.

[48] Benjamin C. Pierce and David N. Turner. Simple type-
theoretic foundations for object-oriented programming.
Journal of Functional Programming, 4(2):207–247,
April 1994. A preliminary version appeared in Princi-
ples of Programming Languages, 1993, and as Univer-
sity of Edinburgh technical report ECS-LFCS-92-225,
under the title “Object-Oriented Programming Without
Recursive Types”.

[49] John Reynolds. Three approaches to type structure. In
Mathematical Foundations of Software Development.
Springer-Verlag, 1985. Lecture Notes in Computer Sci-
ence No. 185.

[50] N. Rodriguez, R. Ierusalimschy, and J. L. Rangel.
Types in school. SIGPLAN Notices, 28(8), 1993.

[51] Craig Schaffert, Topher Cooper, Bruce Bullis, Mike
Kilian, and Carrie Wilpolt. An introduction to Trel-
lis/Owl. In Norman Meyrowitz, editor, OOPSLA ’86
Conference Proceedings, Portland, Oregon, September
1986, volume 21(11) of ACM SIGPLAN Notices, pages
9–16. ACM, November 1986.

[52] Bjarne Stroustrup. The C++ Programming Language.
Addison-Wesley, Reading, Mass, 1986.

[53] Larry Tesler. Object Pascal report. Technical Report 1,
Apple Computer, 1985.

