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Abstract

Subtyping relations for the-calculus are usually defined in a syntactic way, by means of
structural rules. We propose a semantic characterisatibohannel types and use it to de-
rive a subtyping relation. The type system we consider deduead-only and write-only
channel types, as well as boolean combinations of typest-theeretic interpretation of
types is provided, in which boolean combinations of typesiaterpreted as the corre-
sponding set-theoretic operations. Subtyping is definddcgsion of the interpretations.
We prove decidability of the subtyping relation and skebt@&hdubtyping algorithm.

In order to fully exploit the type system, we define a varidnthe tecalculus where
communication is subjected to pattern matching that pemdynamic typecase.

Dedicated to the 60th birthday of Mario Coppo, Mariangiola
Dezani-Ciancaglini, and Simona Ronchi della Rocca

1 Introduction and motivations

In this article we study a type system for a concurrent pred¢asguage in which
values are exchanged between agents via communicationelsahat can be dy-
namically generated. The language we consider is a varifatiteoasynchronous
T-calculus [Bou92, HT91], in which communication is subggtto pattern match-

ing.

There exists a well established literature on typing andygibg for thercalculus
(e.g. [PS96, Sew98, YH99, SWO02]). However, all the appreachke are aware of
rely on subtyping relations or on type equivalences thatlafmed syntactically, by
means of structural rules. In our view, such syntactic fdisasions of typing rela-
tions miss a clean semantic intuition of types. Considerekample, the type sys-
tem defined by Hennessy and Riely [HRO02], which is one of thetmdvanced type
systems for variants of the-calculus. It includes read-only and write-only chan-
nels, as well as union and intersection types. In that systenfollowing equality
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is used tadefinethe union type:
ch™(t;)Vecht(ty) =ch™(t1Vty) (1)

wherech' (t) is the type of channels from which we can only read values jpé ty
t, andV denotes union. We would like to understand the precise setratuition
that underlies an equation such as (1).

Semantic subtyping. The basic idea is simple: the semantics of a type is the set of
the values that have that type, and union, intersection agdtion types are inter-
preted using the corresponding set theoretical operadaistyping is then defined

as inclusion of the interpretations. However, the subtgp@eiation is needed in or-
der to type the values, usually by subsumption. We are tbexéfapped in a circle,
where we need subtyping to define typing, that defines thepirgtion, that de-
fines the subtyping. We are able to break this circle via a fipeint” construction.

Before even having defined the language, and thereforedef@n knowing what

values are, we define a “bootstrap” semantics of types, thased to define the
subtyping relation. This subtyping relation is then usetyfme values. This gives
us another semantics of types, as sets of values. The keyiptinat, if we choose

the right bootstrap semantics, the values semantics wiléspond to the bootstrap
semantics, and the circle will be closed.

Channels as boxedn order to understand how channels and channel types relate
we have to provide a semantic account of channels. Ourioitug that a channel is

a box in which we can put things (write) and from which we caetthings (read).
The type of a channel, then, is characterised by the set ahthgs the box can
contain. That is, a channel of tyjgl™ (t) is a box in which we must expect to find
objects of type and, similarly, a channel of typeh™(t) is a box in which we are
allowed to put objects of type This is a particular interpretation (see Section 5.5
for alternative intuitions), but if one takes this standerthequality (1) does not
seem to be justified. Consider the typds (candy)V ch™ (coal) andch® (candyV
coal). Both represent boxes. If we have a box of the first type, therexpect to
find in it either a candy or a piece of charcoal, but we know ialiways one of
the two. For instance, if we use the box twice, the second weevill know what
present it contains. A box of the second type, instead, isigpfse box” as it can
always give us both candies and charcoal. Our intuition sstgghat the two types
above are different because they characterise two différads of objects.

The role of the language. So why did Hennessy and Riely require (1)? The point
is that, if in the language under consideration there is mbegytic construction that
can tell apart a&andy from acoal and then branchthat is, if it is not possible to
branch to different pieces of code for messages of diffengres (e.g. a typecase,
an exception trapping, an overloaded function, ...), thénnot possible to oper-
ationally observe any difference between the types in (Enri¢ssy and Riely do
not have such a construction, therefore (1) is sound.



On the contrary, suppose we are sent a chaonétypech(candy)V ch'(coal)

If it is possible to test whetharis of typech' (candy) or of typech® (coal), then
we can continue assuming that onve will receive messages of only one of the
two types. In this case a rule such as (1) would be unsounduiseat would make
it possible to receive oabothcandy andcoal and this could make the code crash.

We define a variant of tha-calculus that exploits the full power of our new type
system, and in particular that permits dynamically testimg type of values re-
ceived on a channel. We implement the dynamic test by endpwmput actions
with patterns, and allowing synchronisation when patteataming succeeds. The
result is a simple and elegant formalism that can be eastnebed with product
types, to obtain a polyadie-calculus, and with a restricted form of recursive types.

Advantages of a semantic approachThe main advantage of using a semantic
approach is that types have a natural and intuitive set éieonterpretation as sets
of their values. This property turns out to be very helpfut naly to understand
the meaning of the types, but also to reason about them. §@moe, the subtyping
algorithm is deduced just by applying set-theoretic propsyin the proofs we can
rewrite types by using set-theoretic laws, and the typingatfern matching can be
better understood in terms of set-theoretic operations (ke second pattern in an
alternative will have to filter all that was not already madhoy the first pattern:
set theoretic difference).

The languag&Duce [BCF03] also demonstrated the practical impact of ¢éiness-
tic approach: subtyping results are easier to understaralgoogrammer, since she
does not have to reason in terms of subtyping rules but rathset-theoretic op-
erations. Furthermore, the compiler/interpreter canrretauch more precise and
meaningful error messages. For instance if type-checlditg the compiler returns
a value or a witness that is in the set-theoretic differeretevben the deduced type
and the expected type, and this information helps the prograr to understand
why type-checking failed.

For a wider discussion on the advantages of semantic sulgtyye refer the reader
to Castagna and Frisch’s introductory article [CFO05].

Main contributions. This work provides several contributions: We define a very
expressive type and subtype system for thealculus with read-only and write-
only channel types, product types, and complete booleabic@tions of types. We
define a set-theoretic denotational model for the typesrevbeolean combinations
are interpreted as the corresponding set-theoretic apasaand channel types are
interpreted as sets of boxes. We use the model to define snbtgp set-theoretic
containment. We show how to extend tteealculus in order to fully exploit the
expressiveness of the type system, in particular by endpwiput actions with
pattern matching. Finally we show that in that setting thgirtg and subtyping
relations are decidable. A further contribution of this wes the opening of a new
way to integrate functional and concurrent features in #maescalculus: this will



be done by fully integrating (our new version af)Jand CDuce systems, to yield
a calculus with dynamic type dispatch, overloading, chledecommunications
and where both functions and channels have first class mdiEp. A step in that
direction has already been taken with the work in [CDVO06].

Related work. The first work on subtyping fort was done by Pierce and San-
giorgi [PS96] and successively extended in several otheks\j&ew98, NFPVOO,
YH99].

The work closest to ours, at least for the expressivenesgedi/pes, is the already
cited work of Hennessy and Riely [HRO2]. As far mgypes are concerned, our
work subsumes their system in the sense that it defines ar ricliyping rela-
tion; this can be checked by observing that their typés,t) corresponds to the
intersectiorch™ (s) Ach™ (t) of our formalism.

The works of Acciai and Boreale [ABO5] and of Carpinetial. [CLP06], define

languages similar to ours, with XDuce-like pattern matghiHowever their type
systems are less rich than ours and, most importantly, sadityping relations are
defined syntactically.

As for the technical issues of semantic subtyping, our isioint is the work
developed by Frischt al. for functional programming languages [FCB02, Fri04],
that led to the design dfDuce [BCFO03].

Plan of the article: In Section 2 we describe the types, their semantics, and sub-
typing relation whose decidability is shown in Section 3Skrction 4 we introduce
Cm, a variant ofr-calculus tailored on the previous types, and show exanygiles
its usage. In Section 5 we discuss possible extensio@steihile similarities with
different paradigms are outlined in the conclusion, SectoIn order to lighten

the presentation, we postpone the proofs of all propertasd in the article to the
appendixes.

2 Types and subtyping

We shall present in detail a relatively simple system witt juase types, channels,
and boolean combinators. In Section 5, we will then sketaef tooadd the product
type constructor, recursive types, and functional types.

2.1 Types

In the simplest of our type systems, a type is inductivelytdw applyingtype
constructorsnamely base type constructors (e.g. integers, strings,)ethe input
or the output channel type constructor, or by applyingoalean combinatqri.e.,
union, intersection, and negation:



Types t:=Db | cht(t) | ch (1) constructors
| O] 1]t | tVvt | tAt combinators

Combinators are self-explaining, withbeing the empty type antithe type of all
values. The “set difference” combinatsyt will be used as a shorthand fen —t.

For what concerns type constructaek; (t) denotes the type of those channels that
can be used tmputonly values of typé. Symmetricallych™ (t) denotes the type of
those channels that can be usedudputonly values of typé. The read and write
channel typech(t) is absent from our definition. We shall use it only as syntacti
sugar forch™ (t) Ach® (t), that is the type of channels that can be used to read only
and to write only values of typé. The set of all types (sometimes referred to as
“type algebra”) will be denoted by’ .

In our approach channels are physical boxes where one cart arsd withdraw
objects of a given type. Our intuition is that there is notlsadhing as a read-only
or write-only box: each box is associated with a typend one can always write
and read objects of that type into and from such a box. Thutyfreeofch™ (t) can
be considered just a constraint telling that a variable af tjppe will be bound only
to boxes from which one can read objects of typk we know that a message has
typech’(t), it does notmean that we cannot write into it, we simply do not have
any information about what can be written in it: for instaticls message could be
a box that cannot contain any object. What the type tells sgngply that we had
better avoid writing into it since, in the absence of furthdormation, no writing
will be safe. Similarly, if a message is of typh™ (t), then we know that it can only
be a box in which writing an object of typeis safe, but we have no information
about what could be read from that channel, since the messagw be a box that
can contain any object. Therefore we had better avoid rgafiom it, unless we
are ready to accept anything. However, if are ready to accept anything, then our
type system guarantees that we can read on a channel witlhyE because, as
we will see later, we haveh™ (t) < ch'(1).

2.2 Semantics of types
Our leading intuition is that a type should denote the setadfies of that type.

That is:

[t ={v]| Fv:t}.
The basic types (integers, strings) should denote sub$etset of basic values
B. The boolean operators over types should be interpretedsing uhe boolean
operators over sets. By following our intuition we shall bdkiat the interpretation
of the typech(t) has to denote the set of all boxes (i.e. channels) that caaioon
objects of typd:

[ch(t)] = {c| cis a box for objects irft]} . 2)

Since every box is uniquely associated to a type, then tieegrétations of chan-
nel types are pairwise disjoint. This already gives invace& of channel types:
[ch(t)] C [ch(s)] if and only if [t] = [5].



Starting from the above interpretation offi(t), we can now provide a semantics
for ch®(t) andch™(t). As said, the former should denote the set of all boxes from
which one can safely expect to get only objects of typ&hus we require that
ch™(t) denotes all boxes for objects of typebut also all boxes for objects of type
s, foranys<t. Indeed, by subsumption, objects of tygese also of typé. Dually,
ch™(t) should denote the set of all boxes in which one can safelylatts of type

t. Therefore it will denote all boxes that can contain objettypes, for anys > t.

Let us writec! to denote a box for objects of typeWe have

[cht (t)] = {cs | sgt} . [eh )] = {cs | sZt} .

Given the above semantic interpretation, from the viewpoirypes all the boxes
of one given type are indistinguishable, because either they all belongeartter-
pretation of one type or they all do not. This implies that skityping relation is
insensitive to the actual number of boxes of a given type. #¥etbus assume that
for every equivalence class of types, there is only one soghwhich may as well
be identified with[t], so that the intended semantics of channel types would be

e ) = {Is] Is<t}, [en ] ={Is] s>t} ©)

We have that this semantics induces covariance of inpustgpd contravariance
of output types. Moreover, as anticipated, we have thét) = ch™(t) A ch’(t)
since the types on both sides of the equality have the samangiesr—namely, the
singleton{[t] }—and therefore it is justified to considein(t) as syntactic sugar for
ch™(t) Ach™ (t), rather than a type constructor.

According to the discussion above, in order to define the séissof a channel
type, we need to know the subtyping relation. And here we ga@dn the presence
of a circle. We use the subtyping relation in order to build ithterpretation that we
need in order to define the subtyping relation. We devote éx¢ section to solve
this problem.

2.3 Building a model

The minimal requirement for an interpretation functionhiattboolean combinators
should be interpreted in the corresponding set-theotajparators, and that basic
values and channels should have disjoint interpretations.

Definition 2.1 (Pre-model) Let Z,andB be sets such th& C &, and let[ | be a
function from.7 to (2). The pair(Z,[]) is said to be gre-modeif

[b] € B, [cht(t)]nB =, [ch (1)]NB = ;

- [1)=2,[0] =o;

- [t =2\ [t];

— [tavie] = [ta] U[t2], [tr At2] = [ta] N [t2].

We use this interpretation to build another interpretgtamctording to the intended
meaning of equations (3). The symbebwill denote disjoint union of sets.



Definition 2.2 (Extensional interpretation) Let(Z,[]) be a pre-model. LeL.7]
denote the image of the functi¢rj. Theextensionalnterpretation of the types is
the functiond() : 7 — Z(B+[.7]), defined as follows:
— &(b) = [b];
¢(1)=B+[7], £(0) =
— () =&\ EQ);
Et1Vi) =&(t) U& (L), E(tiAtr) = &(t1) NE(t2);
(Ch+( ) ={[s] | [s] < [tT}:
— &(ch™(t)) = {[s] | [s] =2 [tT}-

A pre-model and its extensional interpretation induce, nn@ple, different pre-

orders on types. We could use the extensional interpretatidouild yet another
interpretation, and so on. In order to close the circle, wadlstonsider a pre-model
“acceptable” if it is a fixed point of this process, that isitiihduces the same con-
tainment relation as its extensional interpretation. Tdnsounts to the following
definition:

Definition 2.3 (Model) A pre-model Z,[]) is amodelif for every t,t,, we have
[t1] C [to] if and only if&(t1) C &(t2).

The last (and quite hard) point is to show that there actuedigts a model, that is,
that the condition imposed by Definition 2.3 can indeed bisfsadl. Paradoxically

the model itself is not important. The subtyping relatioessentially characterised
by the definition of extensional interpretatiaf{]. So what really matters is the
proof that there exists at least one model. As the case ofgweltypes proves (see
8 5.2), the existence of such a model is far from being trj\aald naive syntactic
solutions —such as a term model— cannot be used.

Theorem 2.4 There exists a modé7, []).

Types are stratified according to the nesting of the charm&dtcuctor. The model
(2,]]) is obtained as the limit of a chain of modé{s, [],,), built exploiting this
stratification. The long and technical proof can be found ppéndix A.2.

Finally, given a model for the types, we define
def def

s<t<=[g] C[t], s=t<[g] =[t] .

2.4 Examples of type (in)equalities and graphical représigon

We list here some interesting equations and inequationedeet types that can be
easily derived from the set-theoretic interpretation @eg. A first simple example
of equality and inequality is

ch(t) < ch™(0) = ch" (1) (4)

which states that every chanrebf whatever typech(t) can always be safely used
in a process that does not write orfsince it has also typeh™ (0)) and that does
not care about whatreturns (since it has typeh™ (1)).
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Fig. 1. Channel types Fig. 2. Some equations

Besides these fiddling relations, far more interestingi@hia can be deduced and,
guite remarkably, in many cases this can be done graphicadigsider the defi-
nitions in (3): they tell us that the interpretation i’ (t) is the set of the inter-
pretations of all types smaller than or equalttdAs such, it can be represented
by the downward cone starting fromSimilarly, the upward cone starting frotn
representgh (t). This illustrated in Figure 1 where the upward cahespresents
ch™(s) and the downward con@representsh™ (t). As the reader can easily verify,
this representation immediatly gives covariance of ingpes and contravariance
of output types.

If we now pass to Figure 2 we see titht (s) is the upward cong+C andch™ (t)
is the upward con€+D. Their intersection is the cor@, that is the upward cone
starting from the least upper boundéndt which yields the following equation

ch™(s)Ach (t) =ch (svt). (5)

This states that if on a channel we can write values of t/aed values of typé,
this means that we can write on it values of tyget. Dually, by turning Figure 2
upside down it is easy to check the following equation:

ch(s)Ach'(t) = ch" (sAt) (6)

which states that if a channel is such that we always read freadues of types
but also such that we always read from it values of tiygeen what we read from
it are actually values of typeAt.

Similarly, note that the union ath™(s) andch(t) is given byB+C+D and that
this is strictly contained in the upward cone starting frent, since the latter also
contains the regioA, whence the strictness of the following containment:

ch™(s)vch (t) < ch (sAt). (7)

Actually, the difference of the two types in the above indiyas the regionA
which representsh’ (svt) Ach™ (sAt), from which we deduce

ch™(sAt) =ch (s)vch (t) Vv (ch"(sVt)Ach (sAt)) .



By turning Figure 2 upside down again we can check the duatjoégon (7):
ch®(s)vch'(t) < cht(svt) (8)

As a final example consider the typk™(s) Ach™(t), that is the type of a channel
on which we can write values of typeand from which we expect to read values of

typet. We have ch* (s) Ach(t) = 0 )

if and only ift £ s, i.e. we should expect to read at least what we can write. Once
more this can be checked graphically on Figure 1, but in ci@show the role of

our definitions, let us formally deduce this last equatiop dgfinition, (9) holds if

and only if[ch* (s) Ach™(t)] = [0]. By definition of model and the antisymmetry
of C this holds if and only if§’(ch* (s) Ach™ (t)) = &(0). By definition of& () this
holds if and only if{[s]'|[s]’ € [s]} N {[t]'|[t]  [t']} = @. By the reflexivity and
transitivity of C this holds if and only if]t] £ [s], that is, by definition of subtyping

if and only ift £ s.

3 Decidability of subtyping

For practical applications, it is essential that subtypwigtions are decidable. The
subtyping relation defined in Section 2 is indeed decidalite.decision procedure
is however a bit involved. As we show in details later in threstson, we can always
reduce the problem of deciding the subtyping between twedyp deciding an

inclusion of the following form:

chf(t)Ach () < \/ch"(t])v\/ ch (tf). (10)
heH keK
While in some cases it is easy to decide the inclusion abarer{stance, when
to £ t1 since then the left-hand side is empty), in general, thisiireg checking
whether a type istomig that is whether its only proper subtype is the empty type
(for sake of simplicity the reader can think of the atomiceagas the singletons of
the type systerh). To have an idea of why we have to push the check at the level of
atomic types let us once more resort to the graphical reptasen. Consider the
equation (10) above with only two typssandt with t < s (note the strictness of
inclusion, which implies thad\t is not empty), and try to check whether:
cht(s)Ach™(t) <ch (s)vch'(t).
The situation is represented in Figure 1 where the regiogpresents the left-hand
side of the inequality, while the regidwC is the right hand side. So to check the
subtyping above we have to check whetheis contained inB+C. At first sight
these two regions look completely disjoint, but observe thay have at least two

1 Nevertheless, notice that according to their definitioomit types may be neither sin-
gletons nor finite. For instanceh(0) is atomic, but in the model defined by equation (2)—
more precisely, in the model of values of Theorem 4.5—it & ¢bt of all the synchroni-
sation channels; these are just token identifiers on a cblentdphabet, thus the type is
countable as well.



points in common, marked in bold in the figure (they are reSpely the types

ch(s) andch(t)). Now, the containment holds if the regiendoes not contain any
other type besides these two. This holds true if and onlyafahs no other type
betweers andt, that is if and only ifs\t is an atomic type.

Let us now present the technical details of the decisiongore (proofs can be
found in the appendix). First of all we need to define the ntiof finite and atomic

types.

Definition 3.1 (Atomic and finite types) Anatomis a minimal non-empty type. A
type isfinite if it is equivalent to a finite union of atoms.

We start the description of the decision procedure by ndahagdeciding subtyping
is equivalent to deciding the emptiness of a type.

s<t &= sA-t=0 (11)
which can be derived as follows:
s<t < [JCt] & [fn([tj=2 < [sA-t]=[0] +—= sA-t=0.

Thanks to the semantic interpretation we can directly agplytheoretic equiva-
lences to types (in the rest of the article we will do it with@xplicitly passing
via the interpretation function). We then deduce that etgpg can be (effectively)
represented in disjunctive normal form, i.e. as the uniomt@rsections of literals,
where a literal is a base type or a channel type, possiblytadg&ince a union is
empty only if all its addenda are empty, then in order to deedhptiness of a type
—and thus in virtue of (11) to decide subtyping— it sufficedbtoable to decide
whether an intersection of literals is empty. Since basesygnd channel types are
interpreted in disjoint sets, intersections that involterals of both kinds are either
trivial, or can be simplified to intersections involvingdials of only one kind. The
problem is therefore reduced to decide whether

(AB)A(A—b)) and (Ach(t)A (A —~ch'it;))

ieP jeN ieP jeN
are equivalent t® (wherev stands for either#" or “ —" and we grouped literals
according to whether they are negated or not). The decisia@mptiness of the
left-hand side depends on the basic types that are used Habcancerns the right-
hand side, we decompose this problem into simpler subpmbl&lore precisely,
we reduce this problem to the problem of deciding subtypiatyvieen boolean
combinations of thg’s andt;’s. This problem is simpler, in the sense that it involves
a strictly smaller nesting of channel types.

Using set-theoretic manipulations—in the case in point Darddn’s laws—the
problem of deciding

(Ach(t)) A (A —ch’it;)) =0
ieP jeEN
can be shown to be equivalent to

10



(A ch’(t)) < (\ eh’ity)) - (12)
ieP jeN
Because of equations (5) and (6), we can push the intersemithe left-hand side
inside the constructors and reduce (12) to the equationw&0yet in the previous
section, and that we recall below:

cht(ty) Ach™(t2) < \/ ch™(t§) v \/ ch™(t§) (10)
heH keK
where we grouped covariant and contravariant types togdththis way we sim-
plified the left-hand side. Similarly we can get rid of redantd addenda on the
right-hand side of (10) by eliminating:

(1) all the covariant channel types ortgafor which there exists a covariant ad-
dendum on a smaller or equéi (since the former channel type is contained
in the latter);

(2) all contravariant channel types ort}{afor which there exists a contravariant
addendum on a larger or equﬁl (for the same reason as the above);

(3) all the covariant channels ont?tthat is not larger than or equal tg (since
thench™ (t;) Nch' (tg‘) =0, so it does not change the inequation);

(4) all contravariant channels ortbthat is not smaller than or equal tp(since
thench™ (t1) Nch (t¥) = 0).

Then the key property for decomposing the problem (10) intgoter subproblems
is given by the following theorem:

Theorem 3.2 Supposelttz,tg,tz € 7, keK, heH. Suppose moreover that the
following conditions hold:

c1. for all distinct hh e H, t§ £ tJ';

c2. for all distinct kk' € K, tk £ t¥;

c3. forallhe H, t, < t};

c4. forallke K, tf<t;.

Then

cht(ty) Ach™(tp) < \/ ch™(t§) v \/ ch™(t§) (10)

heH keK

if and only if one of the following conditions holds

LE. b Lty or

R1. 3h € H such thatt < t§ or

R2. 3k € K such thatf <t, or

CA. for every choice of atomg & tl\tg‘, with he H, there exists lc K such that

tlz <2V Vheh an.

The four hypotheses c1-c4 simply state that the right-hatel & the inequation

was simplified according to the rules (1-4) described rigifoke the statement

of the theorem. The first condition (LE) says tleht (t1) A ch™ (t) is empty. The

second condition (R1) and the third condition (R2) respetti make sure that

one of thech (tf}) and, respectively, one of thei (t}) containsch™ (t) A ch™ (tp).

11



Finally the fourth and more involvedcondition (CA) says that, every time we add
to t, atoms oft; so that we are no longer below arg/then we must end up above
some of the.

We have already shown at the beginning of this Section an pbaai the sensi-
tivity of the subtyping relation to atoms. To obtain anotlmeore concrete example
of this fact, suppose there are three atasns;,err,,exc and consider the case
wheret, = int, t; =th)Verri VerryVexc,t3 =1t Vexc, ty =tpVerry Verrs,.

It is easy to see thath™ (t;) Ach™(t2) £ ch™(t3) vV ch™ (t4) since, for example, the
typech(toV erry) is a subtype of the left-hand side, but not of the right-h&add.s
However iferr; = errsy, the subtyping relation holds, because of condition (CA).
Indeed in that case the indexing sebf Theorem 3.2 is a singleton. The only atom
inti\tziserr;y, and itis true thaty <tV err;.

As announced, Theorem 3.2 decomposes the subtyping praibigdi®) into a finite
set of subtyping problems on simpler types (we must simphigy/right hand side
of inequation (10) by verifying the inequalities of condits c1—-c4, and possibly
perform the|H| + |K| + 1 checks for LE, R1 and RBnd into the verification of
condition (CA).

The condition (CA) involves a universal quantification onspibly infinite sets
tl\tg‘, and therefore it is not possible to use it for a decision w@ligm as it is.
This problem can be avoided thanks to the following propasit

Proposition 3.3 If we replace condition (CA) with

CA*. Let Hf C H be the set of those indices h for Whintg is finite. For every
choice of atoms < t;\tf, with h € Hs, there exists k K such that § <
tzvvher an.

then Theorem 3.2 still holds.

Therefore it suffices to check the condition just for tig] that are finite. This can

be done effectively provided that we are able to:

(1) decide whether a type is finite and
(2) ifitis the case, list all its atoms.

We will assume that this is possible for base types and pifafethis implies that
it is possible for all types.

Lemma 3.4 There is an algorithm that decides whether a type t is finii&it is
the case, outputs all its atoms.

Theorem 3.5 The subtyping relation is decidable.

We do not discuss here the complexity of the decision algarinor the possibility
of finding more efficient ways of doing it. We leave it for fuework.

2 The original condition (CA) as it can be found in [CDV05] wasa more involved. We
renew our gratituted to the anonymous referee who suggesteajor simplification.
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4 TheCrcalculus

We shall present a variant of timecalculus, that exploits the type system of Section
2. We will present its syntax, semantics, and typing ruled,@ove the decidability
of the typing relation.

4.1 Patterns

As we explained in the introduction, if we want to fully exfilthe expressiveness
of the type system, we must be able to check the type of theagessead on
a channel. The simplest solution would be to add an explgeicase process
(e.g.[M : t]P which reduces td® or 0 according whetheM is of typet or not).
Here, instead, we choose a more general approach, by englowiut actions with
CDuce patterns. Pattern matching includes dynamic typekshes a special case,
and fits nicely in the semantic subtyping framework.

Definition 4.1 (Patterns) Given a type algebraZ, and a set of variable¥, a
patternp on(V,.7) is a term generated by the following grammar

Patterns p::i=X capturex eV
|t type constraintt € .7
| pAp conjunction
| plp alternative

such that for every subtermy p p» of p we have Vaip1) N Var(pz) = @, and for
every subterm 1)p» of p we have Vdp;) = Var(pz) (where Vaft p) denotes the set
of variables ofV occurring in p).

Patterns are rather basic: they can test if a value is of andwee, capture it, and
combine these tests via conjunctions and disjunctionsoSms$tancexAt is the
pattern that captures a valuexnf it is of type t. As a matter of fact, the patterns
above lack the main capability peculiar of general patténas is to deconstruct
values. The reason is that here we consider a minimal typersys which the
only type constructors are for channel types, and theirasare not “constructed”
from simpler values (e.g. pairs of values for product cangtrr) but are constants.
So here patterns act more as a placeholder and they aresitmeren view of the
extension of our language with recursive types (Section pr@duct types (Sec-
tion 5.1) or other type constructors.

Following [FCB02, BCF03] we define the semantics of patteirectly on models.
A pattern is matched against an element of the domaiwf a model of the types
and the matching returns either a substitution for the fia@ables of the pattern,
or a failure, denoted b@:

Definition 4.2 Given a mode[] : . — 2, an element & 2, and a pattern p,
the matching of d with p, noted by g, is the element a?V'(P) U {Q} defined as
follows:
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d/t ={} ifd e [t] d/prApz =d/p1@d/p2
d/t =Q ifd € [t] d/pilpz =d/p1 ifd/p1#Q
d/x = {x—d} d/pp2 =d/p2 ifd/p1=Q

wherey; ® y> is Q wheny; = Q or y, = Q and the union of the two otherwise.

A quite useful property of the pattern matching above is thatset of all elements
for which a patternp does not fail is the denotation of a type. Since this type is
unique, we denote it bypS. In other terms, for every (well-formed) pattepnthere
exists a unique typgp( such thaf[]pf] = {d € Dom | d/p # Q}. Not only, but
this type can be calculated. Similarly, consider a patfeamd a type < ] pf, then
there is also an algorithm that calculates the type enviemtty p that associates
to each variable of p theexactset of values that can capture whep is matched
against values of type Formally

Theorem 4.3 There is an algorithm mapping every pattern p to a typé such
that[{pf] ={d e 2 |d/p#Q}.

Theorem 4.4 There is an algorithm mapping every péir p), where p is a pattern
and t a type such that< ]pf, to a type environmertt/p) € .7VaP) such that

[(t/P) (9] = {(d/p)(x) | d € [t]}

For such basic patterns the proofs of the properties ab@esweally straightforward.
What is remarkable is that these properties hold for poly&dt with recursive
types, as well (Section 5.2).

4.2 The language

The syntax of our calculus is very similar to that of the asyooousrtcalculus
a variant of that-calculus for which message emission is non-blocking. &e
is generally considered as the calculus representing thenes of name passing
with no redundant operation. The variant we consider is genyjlar to the original
calculus, but we permit patterned input prefix and guardedelbetween different
patterns on the same input channel.

Channelsa ::= x variables Processes P.= oM output
| ¢ constant | Siera(pi).R patterned input
| PP parallel
Messages M:= n constant | (veH)P restriction
| a channel | 1P replication

wherel is a possibly empty finite set of indexésanges over the types defined in
Section 2.1 angb; are patterns as given in Definition 4.1. As customary we use th
convention that the empty sum corresponds to the inert pgy@znoted bg.

We want to comment on the presence of the simplified form ofreation we have
adopted: guarded sum of inputs on a single channel with Iplysdifferent pat-
terns. Choice operators are very useful for specifying eoeninistic behaviours,
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Messages h
Fn:b, ©onsY Fed o ch e
M=M:s<t
Frxereg v TFEMi U
Processes
r'=P rep FrEM:t TFa:ch (t)
M (vd)p (new) roip (ep) ey (output)
[a:cht(t) rt/pi-P FrEPL TEP
t<Viel 1pi§ (input) (para)
M Sica(p).R M= Pyf|P>

Fig. 3. Typing rules

but give rise to problems when considering implementassoés. Two main kinds
of choice have to be considerezkternal choicahat leaves the decision about the
continuation to the external environment (usually havirdependent on the chan-
nel used by the environment to communicate) sxternal choicethat is performed
by the process regardless of external interactions. Thempatterns we can offer
an externally controllable choice, where the type of thenesd message, not the
used channel, determines the continuation. Internal ehzaa also be modelled by
specifying processes that perform input on the same chaaoelding to the same
pattern.

The other important difference with standard asynchroneaalculus is that we
distinguish between channel variables and channel casstad that the latter are
decorated by the type of messages they communicate. Thesponds to our intu-
ition that every box is intimately associated to the typehefdbjects it can contain.
In what follows we will call channel constants also “typedanhels”, “boxes”, or
“channel values” to distinguish them from channel variable

Thevaluesof the language are the closed messages, that is to say #tedlgannels
and the constants: v:=n| c.

We use?” to denote the set of all values. Every value is associatedyipea every
constantn is associated to an atomic basic tylpe (we also assume that every
atomic basic typé,, has its corresponding basic valo) while every channel value
is associated with the channel type that transport messdigles type indicated in
the index. So all the values can be typed by the rules (cofwtan), and (subs)
of Figure 3 (actually with an emptly) where in the (subs) subsumption rule the
< is the subtyping relation induced by the model built to pré\eeorem 2.4 (see
Appendix A.2).
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2l =11 | 2P | PIZ[] | (v)Z]]

P—Q = Z[P|— Z|Q| P=P—Q=P —Q
Plo=P  P|lQ=QP  P(Q|R)=(PI|Q)|IR
(veo=0  (v&)P= (vd)P{c ~d'} IP=IP|P
(vel) (veZ)P = (ve)(vel)P for ¢y # Gy

(ve)(PIQ) = P||(ve)Q for ¢ ¢ fn(P)

whereP{c' ~» d'} is obtained fronP by renaming all free occurrences of the
boxc! into d!, and assumed' is fresh.

Fig. 4. Context and congruence closure

4.3 Semantics

LetM = (2w, [ ]\1) be any model (that is, it satisfies Definition 2.8).induces a
subtyping relation<y defined as <yt <= [s]y, < [t]y- Consider the typing
rules for Message in Figure 3, use for the subsumption rulleq)sthe<y, relation,
and denote by Fy M : t the corresponding typing relation.

Now consider this new interpretation functipf,, : 7 — Z(7') defined agt], =
{v | T FmVv:t}. Itturns out that this interpretation, whatever the modgesatisfies
the model conditions of Section 2.3 and furthermore it getesr the same subtyp-
ing relation as<);. The circle we mentioned in the Introduction is now closed.

Theorem 4.5 (Model of values)Let (Z,[ ]|) be a model and andl - M : t be,
respectively, the subtyping and typing relations it indudeet[t]., ={v | I Fv:
t}. Then(7,[], ) is a modeland &t < [s], C [t],.

Since values are elements of a model of the types, Definit@agdplies fod being
a value. We can thus use it to define the reduction semantmsrafalculus:

cv || th(pi)ﬂ —  Pj[v/pj]

whereP[o] denotes the application of substitutioto proces$. The asynchronous
output of avalueon the boxc' synchronises with an input on the same box only
if at least one of the patterns guarding the sum matches tmencmicated value.

If more than one pattern matches, then one of them is nonrdetistically cho-
sen and the corresponding process executed, but beforgetsiteon the pattern
variables are replaced by the captured values. More refiragdmmg policies (best
match, first match, ...) can be easily encoded by a properfugp®combinators

in patterns. As usual the notion of reduction must be corepletith reductions

in evaluation contexts and up to structural congruence selifinitions are sum-
marised in Figure 4.

This operational semantics is the same as thatcdlculus but the actual process
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behavior has been refined in two points: communication is subjected to pattern
matching andii) communication can happen only along values (boxes).

The use of pattern matching is what makes it necessary tmgiissh between

typed channels and variables: matching is defined only ®fdhmers as they are
values, while a matching on variables must be delayed ur&y will be bound to

a value.

Since we distinguish between variables and typed chanitels,reasonable to
require that communication takes place only if we have a ighy€hannel that
can be used as a support for it; thus, we forbid synchrowisatithe channel is
still a variable. However there is a more technical reasonetuire this. Con-
sider an environmenf = x : 0. By subsumption we havE + x: ch(int) and

I = x:ch (string). Then, according to the typing rules of our system (see later
on) the procesZciao || X(y).X(y+Y) is well typed, in the environmerit, but it
would give rise to a run time error by attempting to divide stiengciao by itself:

Xciao|[X(y).X(y+y) — X(ciao-+ciao)
This reduction cannot happen in our calculus, because wa@agr instantiate a

variable of typeO (from a logical viewpoint, this corresponds to the classea
falso quodlibetdeduction rule).

4.4 Typing

In Figure 3, we summarise typing rules that guarantee thateil typed processes,
channels communicate only values that correspond to e t

The rules for messages do not deserve any particular commemgustomary, the
system deduces only good-formation of processes withaig@isg them any type.
The rules for replication and parallel composition are d&ad. The rule for restric-
tion is slightly different since we do not need to store in tyyge environment the
type of the channél. In the rule for output we check that the message is comggatibl
with the type of the channel.

The rule for input is the most involved one. The premises efrtiie first infer the
typet of the message that can be transmitted over the chantie¢n for each sum-
mandi they use this type to calculate the type environment of tlteepavariables
(the environmen(t/p;) of Theorem 4.4) and check whether under this environ-
ment the summand procelss typeable. This is all that is needed to have a sound
type system. However the input construct is like a typecaa®hing expression,
so it seems reasonable to perform a check thapatterns are exhaustive afid)
there is no useless caSeThe first check is performed by the side condition of the

3 Strictly speaking, we do not restrict variables but valisesit would be formally wrong

to store it inl". For the same reason;conversion is handled as a structural equivalence
rule.

4 In functional programming these checks are necessary fordstess since an expression
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(input) rule:t < Vi 1pif checks whether pattern matching is exhaustive, that is
if for whatever value (of typé) sent ona there exists at least one pattgonthat
will accept it (the cases cover all possibilities). For tee@d condition one could
naively think to add a second side condition such@§At £ 0foralli € | (we did
this naivety in [CDV05]), which should check that the pattematching is not re-
dundant, by verifying that there does not exists a patpethat will fail with every
value of typet (no case is useless). However such a check is meaningfuifonly
is thebestpossible type we can deduce for the messages arrivireg tma system
with subsumption this condition can be always satisfied bysitering a larget
(e.9.t =Vig 1pif), thus, without ensuring that all cases of the pattern niagchre
useful. Therefore we postpone the verification of this propell the definition of
the typing algorithm (Section 4.5) when this “best” typelwi available.

As usual the basic result is the subject reduction, precbgedsubstitution lemma.
The proof of the theorem relies on the semantics of chanpelstyas set of boxes,
and can be found in Appendix B.2

Lemma 4.6 (Substitution)
—Ifr,t/p-M :t'andllFv:t, thenl = M’[v/p] : t'.
— IfIt/pkPandrl -v:t, thenl - P[v/p].

Lemma 4.7 (Congruence)lf ' - P and P= Q, thenl - Q.
Theorem 4.8 (Subject reduction) If I - P and P— P/, thenl - P'.

4.5 Typing algorithm

The decidability of the subtyping relation does not dirgatiply decidability of the
typing relation (only semi-decidability is straightforved. The type algorithm is
obtained from the typing rules in a standard way, namely lgtohg) the subsump-
tion rule and embedding the checking of the subtyping r@heitn the elimination
rules, in our case the (output) rule. As it is often the cdsefyping algorithm also
requires to compute a least upper bound of some given forpaiticular, the al-
gorithmic version of the (input) rules requires us to coneptlte least type of the
form ch™ (s) which is above a given type and it is not so evident that such a type
exists (observe that our type algebradt a complete lattice). Nevertheless, it turns
out that such a type does exist (which gives us the minimunmgyproperty) and
furthermore it can be effectively computed.

Lemma 4.9 (Upper bound channel) For every type < ch* (1) there exists a least
type t such that ch(t) is an upper bound of s. We denote such typ&ks).

The algorithmic rules are then defined as in Figure 5. Sousglaed complete-
ness of these rules with respect to those in Figure 3 are @elpistraightforward:

non-complying to them may yield a type-error. In proces&hlige non-compliance would
just block synchronisation.
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Processes
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N-a:s M, ¢(/pFPR r-pPL rep

% (9<Vie! 1§ (input) (para)

M=Yica(p)R [Pyl

Fig. 5. Algorithmic rules

soundness is obtained by a trivial application of the sulpgionm rule, while com-
pleteness can be easily deduced thanks to the fact that sosypferred for pro-
cesses (only good formation is checked), by using the faatttie types’(s) in
the algorithmic (input) rule is always smaller than or equethe type used by the
corresponding rule in Figure 3. Lemma 4.9 and the decidglufi(4’(s)/p) (given
by Theorem 4.4) immediatly yield the following result.

Theorem 4.10 The typing relation is decidable.

Finally, recall that in Section 4.4 we hinted that we cannatisally check that all
the branches of a pattern match are useful until we do notaethe minimum
type of the message that a channel can transport. Note thatiglorithmic rules
deduce for a channel its minimum type, and if this minimumetyg says, then

by definition%’(s) is the minimum type of the messages that the channel trasport
Therefore in order to check the usefulness of every branstfitces to add to both
the (input) rules in Figure 3 and 5 the side conditiére I, ] p; A€ (s) # 0, and alll

the previous results carry along.

4.6 Anexample

We present here an example of’a process. Consider the following situation. A
web server is waiting on a chanrel The client wants the server to perform some
computation on values it will send to the server. The servabie to perform two
different kinds of computation, on values of typ&say arithmetic operations), or
on values of type, (say list sorting). At the beginning of each session, thentli
can decide which operations it wants the server to perfoynsgimding a channel to
the server, along which the communication can happen. Tiversehecks the type
of the channel, and provides the corresponding service.
P=a(x:ch(t1)).x(y).PL+a(x: ch®(t2)).1x(y).P>
where we used th€Duce convention for patterns according to whicht is syn-
tactic sugar forxAt In the above process the chaneehas typech’ (ch™ (t1) vV
ch®(t)). Note that, as explained in Section 2.4 (equation @)¥,(t1) V ch™ (tp) #
ch*(t1Vt2). This means that the channel the server received anll communi-
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cateeitheralways values of typg or always values of typ®, and not interleaved
sequences of the two, ak™ (t; Vt2) would do.

As we discussed in the Introduction, this distinction ispi@sent in analogous ver-
sions of process calculi where the axieht (t1) V ch™ (t2) = ch' (t1 Vt2) is present.
If such an axion were added to our theory, then we would pragtalefensively,
as ifa had the (morally larger) typeh™ (ch* (t; Vt,))

P =a(x).!(x(y:t1).PL+x(y: t2).P,)
which is a less efficient server, since it performs pattericimag every time it
receives a value.

5 Extensions and variations

5.1 Polyadic version

The first extension we propose consists in adding produattdype constructors.
This is pretty straightforward. It requires addihg=t x t to the productions of
types,M ::= (M, M) to the productions of messages, gnd= (p1,p2) to the pro-

ductions of patterns with the condition that for every suftép1, p2) of a pattern

we haveVar(p1) NVar(pz) = @.

The extensional interpretation becon®s) : .7 — 2 (B+ 22+ [.7]) and requires
&(t1 x tp) = [ta] x [t2]. This completely characterises the subtyping relation. A
semantic model can be built, in analogy with Section 2.2. Jiigyping relation is
still decidable, as well as the typing relation.

The extensions described above suffice to obtain the payattulus. In particular
projections can be encoded by pattern matching. By usindyataypes, together
with the partially recursive types we show next, we can aistmde more structured
data, like lists or XML documents.

5.2 Partially recursive types

The types introduced so far can be represented as finitelddbieées. Recursive
types are obtained without changing the syntax, by allownegs to be infinite. As

in the type system ofDuce we require such trees to be regular (so as they are
finitely representable) and with the property that everynitdi branch contains in-
finitely many nodes labelled by the product constructor &toavoid meaningless
recursive definitions such &s=t At).

Moreover we require that every branch can contain only fiyiteany nodes la-
belled with channel constructor. This amounts to requiet the number of nested
channel constructors is always bound. Or equivalently, ef were to define re-
cursive types with equations, this amounts to forbid theirgige variable being
defined to be used inside a channel constructor (sugh=ash(x) V int).
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The reason for this is that, without this restriction, it & possible to find a model.
To see why, observe that we could have a recursivettgoeh that

t =bV (ch(t) Ach(b))
for some nonempty base typelf we have a model, eithér= b ort # b. Suppose
t = b, thench(t) Ach(b) = ch(b) andb =t = bV ch(b). The latter impliesh(b) <b
which is not true whem is a base type. Therefore it must be b. According to
our semantics this impliesh(t) A ch(b) = 0, because they are two distinct atoms.
Thust = bV 0= b, contradiction.

Types are therefore stratified according to how many levalgsting of the channel
constructor there are and this stratification allows us tastmict the model using
the same ideas as presented in Section 2. There are two nagafor arbitrary
nested recursion of channels: one is to type “self appbadtithat is a channel
that can carry itself; the other is for the definition of typaacodings. In our type
system, we can already type self application by using, fstaince, the typeh(1):

a channel that can carry everything, can clearly carryfitgdternatively we can

recover fully recursive types if we restrict td@cal version ofCrt(see Section 5.4
below) which is also enough for encoding functional langsagDV06].

Furthermore, note that recursion is still allowed with attype constructors, and a
recursive type can appear inside a channel constructorgedyhat the number of
occurrences of channel constructors is finite. For instaveeare allowed to define
the typech(IBlist), wherelBlist is the type of heterogeneous lists of booleans and
integers, defined as

IBlist = ((int V bool) x IBlist) V ch(0)

(we usech(0) as the type of the empty list). Formally we have:

Definition 5.1 (Types) A type t is a possibly infinite regular tree generated by the
following productions

Types tu= b |cht(t) | ch(t)|txt | O] 1] t]tVt|tAt
and such that on every infinite branch it has infinitely manguoences of the
product constructor and finitely many occurrences of thenclghconstructors.

With such recursive types it becomes interesting to userse@ipatterns. If we
relax the condition defined in Section 5.1 for pair pattemd iatroduce a “constant
pattern” as a case base for recursive pattern, then we caessxghe powerful
patterns ofCDuce.

Definition 5.2 (Patterns) A pattern p is a possibly infinite regular tree generated
by the following productions

Patterns  p = x [t | (p,p) | (x:=n) | pAp | plp
where x denotes a variable, t a type, and n a basic value. fstdily we require
that on every infinite branch of p there are infinitely manyuwoences of the pair
pattern, that for every subtermy p. p2 of p Var(p1) N Var(p2) = @, and that for
every subterm gp, of p Var(p1) = Var(pz). Their semantics is defined as follows
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d/t = {} ifd € [t] d/piApz =d/pr®d/p2

d/t =Q ifd e [-t] d/(p1,p2) = d/p1®d/p2
d/x = {x—d} d/pi|p2 = d/p1 ifd/p1 # Q
d/(x:=d) = {x—d} d/pi|p2 = d/p2 ifd/p1=Q

wherey; @ y2 is Q wheny; = Q or y» = Q and otherwise is the element
y € @Pomiy))ubomy2) gych that:

y1(X) if x € Dom(y;)\Dom(y2),
Y(X) = ¢ y2(x) if x € Dom(y2)\Dom(y1),
(Ya(x),y2(x))  if x € Dom(yz) "Dom(y1).

Let us give an example of recursive pattern that uses a aursagtern(x := n). If

we match a value of the tyd8list defined above, against the recursively defined
patternp = (x: int, p)|(_,p)|(x:= nil®), then we capture inthe list of all integers
occurring in the matched value. More in details, the patterromposed of three
alternative subpatterns, each subpattern being appligdifoine preceding ones
fail. The first subpattern matches if the head of the list isype int. In that case

it captures the head xand recursively applies the pattern to the tail. If the head
is not of typeint, then the second patterns skips it, and recursively apfties
pattern to the tail. The constant pattern is applied onliaéf previous two patterns
failed, that is if the matched value is not a pair (head,tdihis means that the
value is the empty list, and therefore we associalto x. The third case of the
the definition ofy states that for the whole pattem,s associated to the list—
actually the pair (head,tail)—of the values capturedxbg each pair subpattern.
Both Theorems 4.3 and 4.4 hold also for this extension (tkefgrare similar to
those found in [FCBO02]) and the algorithm of the latter dextuor x the type

t = (int x t) V ch(0), that is the type of the lists of integers.

This kind of recursive types and patterns are enough to engil data types and
manipulate thena la CDuce. The reader can refer to [BCFO03] for more detalils.

5.3 Arrow types

We can extend the type system further by adding functionsype that processes
could sendCDuce expressions as messages. To construct the model, wamee
combine the techniques used foDuce with the ones presented in this work.

However, we still cannot get full recursive types, due to lihetation described
above. Moreover, we do not know whether the subtyping i@hator this system
is decidable. The techniques used for the simple systemotdenextended here,
because we do not know how to decide whether an arrow typaeeadinite set.
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5.4 The local calculus

We do not investigate in detail the last two extensions psegcabove, because,
although theoretically challenging, they do not have mueltiical interest. In the
applications, we may not want to have the full power offth&alculus. In particular
it has been observed [Mer00] that timput capability the ability to use in input a
received channel, is difficult to implement. In practicesicbnvenient to restrict to
the so-calledocal variant of thert-calculus [Mer00], where the input capability is
not allowed.

In our case this restriction has other important consegegenc

e the covariant channel tym™ (t) is no longer necessary. The example of Section
5.2 cannot be constructed, and indeed it is possible castmodel of the types
with full recursion. The absence of input channel types maltso the decision
algorithm considerably simpler, as condition CA is involady when channel
types of different polarity are present. In particular thbtyping of channel types
can be reduced to the following conditioth™(t) < \/;c, ch™(t;) if and only if
there exists € | such that; <t.

e it is possible to define a type-respecting encodin@biuce intoCrr, similar to
the Milner-Turner encoding of the simply typaecalculus intt (see for instance
[SWO02]). This makes explicit arrow types not necessary. e\@v the standard
translation of arrow types into channel types does not esgppuality, therefore
to devise a type-respecting encoding a more subtle apprwasimeeded.

The contribution described above was carried out by thedmstthe third authors,
together with Mariangiola Dezani [CDVO06].

5.5 Alternative models

Hitherto, the whole discussion is based on the intuition tdhannels always have
both input and output capabilities, intuition that we metkesed with the definition
of the model given in Appendix A.2. However, this is jugiarticular model based
on aparticular intuition. As a matter of fact, the semantic subtyping ajgtopro-
vides two degrees of freedom in the definition of a model amdk tof a subtyping
relation:

(1) We can give different definitions of the extensional iptetation (i.e., Defini-
tion 2.2).

(2) Once the extensional definition is set, there may exi&rent models, that
is, different premodels that satisfy Definition 2.3 for theen &.

Both knobs can be turned to tune the subtyping relation, étwéen them the one
that really matters is the first one.

The extensional interpretation is the one that deviseshheacteristics of the sub-
typing relation: from our experience, different modelsuod slight variations to
the subtyping relation, if any at all. For instance, in thérdgon of CDuce the
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chosen extensional interpretation admits models thatcedlifferent subtyping
relations [FCB02]. These models, however are rather diffimufind and differ
only in the degree of sharing in recursive types [FriO4]. thas reason, we believe
that, once the extensional interpretation is defined, tistenxce of a model matters
much more than its definition. Moreover in our case we conjecthat all models
for the extensional interpretation of Definition 2.2 indube same subtyping rela-
tion. This explains why we focused on the extensional imeggtion and relegated
the definition of the model to Appendix A.2.

On the contrary it can be very interesting to study altexgatefinitions of the
extensional interpretation, since they correspond toedbffit intuitive semantics
and induce substantially different subtyping relatiortse feason why we chose our
current definition for the extensional interpretation iattit allows us to mix and
compare channels of different polarities. This interpietapushed the approach
to its limits, as the issues with recursion and atomic typearty show. But it
is possible to consider different interpretations, in erteeither recover existing
subtyping relations, or make the subtyping relation motfsusd with respect to
some features. As an example, let us briefly hint at four reétieve definitions of
the extensional interpretation.

(1) We can define the extensional interpretation so thatfiects an intuitive
model in which not only read-and-write channels but alsa+ealy channels
and write-only channels are present. Here we would inteqie(t) as the set
of all read-only and read-and-write channels for a tggenaller than or equal
tot (and similarly forch™(t)). Althoughch(t) would still be the intersection
of ch*(t) andch™(t), this would substantially change the subtyping relation
(there no longer is a type of all channels, channels of d@gffepolarities are
less comparable, etc.) yielding a subtyping relation ¢losehe one defined
by Pierce and Sangiorgi [PS96].

(2) We can define an extensional interpretation sensitivideadentity of indi-
vidual channels, that is, an interpretation in which thelraad-write channel
type no longer is atomic. We would then obtain a subtypingti@h which
would be compatible with a language in which pattern magleiain also test
the name of a channel.

(3) We can draw inspiration from the models @Duce and interpreth™ (t) as
the set of (the interpretations of) functions of typeit — t, ch™(t) as the
set of (the interpretations of) functions of type» unit, andch(t) as their
intersection. Once more this would induce a substantiatfgrént subtyping
relation. In particular, this interpretation is compadiblith an unconstrained
definition of recursive types: since {dDuce the intersection of two function
spaces is never empty, then the counterexample given irn8é&c® no longer
works (© <t holds in all models).

(4) We can define a variant of the previous interpretationcWwhnstead of sin-
gle functions uses records of functions to interpret chémre particular
we would interpretch (t) as the record typéread: unit — t}, ch™(t)
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as the record typéwite: t— unit}, and finallych(t) as the record type
{read: unit—t, wite: t— unit}. Thisinterpretation, too, is compati-
ble with full recursion (as an aside, this is the way in whieferences types
are encoded and implemented in the langu@@eice, which explains why
pointers are possible even@Duce features fully recursive types) but keeps
the interpretation of read-only, write-only, and read-awite channel types,
distinct. This interpretation should also induce a constve extension of the
Pierce and Sangiorgi’s subtyping relation.

The four above are just some of the possible different imetgpions for channel
types. Although in this work we considered one particul&geipretation, we did not
do so with the purpose to fix it as the best possible interpogtabut rather with
the purpose to use it to illustrate how to apply the technmfisemantic subtyping
to mobile processes.

6 Conclusion

Pierce and Sangiorgi’s subtyping for tiecalculus, though very elegant, is struc-
turally very poor: it essentially amounts to compare theslewf nesting of chan-
nel constructors with the same polarity. In order to obtamwch richer and ex-
pressive subtyping relation, we combine here their typeh wnion, intersection,
and negation types. This is not a new idea—at least for whateras unions and
intersections—, but the originality of our approach is ttiet theory is semantically
justified via a set theoretic interpretation of types as eétalues, which looks as
quite a reasonable interpretation. The naturalness ofnieepretation is justified
and supported by several technical aspects, and reinforctte results exposed in
the follow up of this work [CDV06] where, together with Manigiola Dezani, the
first and third author devised a local version@ift and defined a type-preserving
translation ofCDuce into the latter.

While the interpretation is very simple, its consequenaesrot. We have seen
that deciding subtyping requires to enumerate and checkbgnene the atoms
that compose the types involved in the verification. Suchgaeeof complexity is
present only in the general framework. This is acceptalleesour work aims at
establishing the foundational basis of subtypingmesalculus. Of course, such a
degree of complexity makes the calculus unfit for practiggdli@ations. However
in a practical scenario one would rather resort to the loeadion ofCrtas defined
in [CDVO06] and, in that case, the extra complexity of subtygpdisappears, the
subtyping algorithm being reduced to perform classic $tnat checks on syntactic

types.

The fact that here we have to descend to the very structureahgposes types (the
world “atoms” is quite suggestive in this case) is not overdyprising. The pointis
that we are touching deep into the semantics of computatidns is witnessed by
the fact that some characteristics (in some case, sometiesljliof Crtare shared
by completely different paradigms for which a semantic gpltg technique was
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used. For instancé&;Duce function values require some special non-structypal t
ing rule which uses negated literals. This kind of rule beesmecessary also for
Cmas soon as one consider its local variant [CDV06]. A much rstiking corre-
spondence happens with atoms: we have shown that in ordecigedthe subtyping
relation inCttone must be able to decide the atomicy of the types. Quitaisurp
ingly the same problem appearshrcalculus (actually, in any semantic subtyping
based system) as soon as we try to extend it with polymorgpest Imagine that
we embed our types (whatever they are) with type varialfles ... . Then the
“natural” (semantic) extension of the subtyping relatistia quantify the interpre-
tations over all substitutions for the type variables:

<ty <L vs[tls/X]] C [tals/X]] - (13)

Consider now the following inequality (taken from [HFCOS{heret is a closed
type

(t,X) < (tx—t) V(X xt). (14)
It is easy to see that this inequality holds if and onlyt i atomic. Ift is not
atomic, then it has at least one non-empty proper subtye(E3) does not hold
when we substitute this subtype &t If insteadt is atomic, then for alX either
t < X ort < =X, whence (14). Note that this example does not use any fancy or
powerful type constructor, such as arrows or channels: Iy ases products and
type variables. So it applies to all polymorphic extensiohsemantic subtyping
where, once more, deciding subtyping reduces to decidingtlvdn some type is
atomic or not.

These and other similarities are discussed in [Cas05] tawtie reader can refer
for deeper analysis and a discussion on perspectives.
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A Proofs from Sections 2 and 3

A.1 Characterising inclusion (Theorem 3.2 and Proposifia3)

In this section we first prove Theorem 3.2 and then strengtieresult as in Propo-
sition 3.3.

We recall that in a boolean algebra, atomis a minimal nonzero element. A
boolean algebra iatomicif every nonzero element is greater than or equal to an
atom. It is easy to prove that an atomic boolean algebra ivalgunt to a subset of
the powerset of its atoms.

Let (D,A,V,0,1) be an atomic boolean algebra where, as custordary,d if and
only if d v d = d. For everyd € D we denote| d (that is, the set of all elements
smaller than or equal td) asch®(d) and{d (that is, the set of all elements larger
than or equal tal) asch™ (d). We want to give an equivalent characterisation of the

equation _ .
(eht (dy N ch (d)) € [ J ch™(dd)u | ch(df)
i€l jed heH keK

that does not use the “operatordi™(),ch™(). Notice that

Meh*(d}) =ch"(Ad}) and  (ch (d}) =ch (\/d}).

i€l i€l jed jed
Also, if there existh, b’ such thadf < df, then we can ignoref asch*(df) C
ch™(d}). Dually for thed. Therefore we can concentrate on the case

cht(dy) Neh™(dp) € | eh™(df) U [ J ch(df)
heH keK
where no twcle are comparable, and r¢t§ are comparable.

The first case in which the inclusion holds is whai (d;) Nch™(dz) = @, which
happens exactly wheap £ d;. If d> < dy, without loss of generality we can also
assume thadl§ > d; for all h € H and thatdf < d; for all k € K. This is because
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if dgz d, for someh then no element oth~ (d) can be inch*(dg). We can thus
ignore such sets to test for the inclusion, and similarlytferdy’s.

The inclusion surely holds if for sontewe haved; < dﬁ, or if for somek we have

d, > df, since then, for instance in the former caste; (d1) is contained ireh™ (df)
and so is its intersection witth™ (dy). The most difficult case occurs when

dp < dy;

forallhe H, d} > dy;
forallk e K, dX < dy;
forallh e H, d3 2 di;
forallk € K, df £ da.

The way of thinking the inclusion is the following. (From nan it will be easier to
think of D as a subset of the powerset of its atoms; therefore we wilesiones say
“contained” rather than “smaller”, and so on.) Considetia ch™ (d;) Nch™(dp).

If dis not below any of theIQ then it must be above one of thg. Suppose there is
an elemenk of d; which is in nodg1 (more precisely, suppose that there is an atom
d such that < d; and for allh, d £ df; to stress that it is an atom denat®y {x}).
Thend, v {x} is not contained in any of thé, and it must contain one of tr.
This implies that for suchlf, d&\ d» < {x} ®. Consider now two elemenis, x2 in
d; such that if«; belongs tadf thenx, does not belong td3. Thend, V {x1, X} is
not contained in any of thef, and it must contain one of thd. This implies that
for suchdy, d¥\ dp < {x1,%2}.

More generally: for every1 € H choose an element, € dl\dQ. Clearly we have
thatd, v {x, | h € H} is not contained in any of thdf}. Reasoning as above we then
have that there is df such thad\ d < {x, | h€ H}.

This proves the necessity of condition (CA): for every cleodt x, € dp \ dg there
must be alf such thad \ dz < {x, | h€ H}.

We argued that the condition (CA) is necessary. It is alsbcsent: if the condition
holds, every sedl included ind;, containingdz, and which is not contained in any
of thedg‘, must contain a set of the forth v {x, | h € H}: just pick one witness of
noncontainment for everyf. Thusd contains one of thelf.

We can strengthen the result as stated in Proposition 31/3sider the case where
for someh the sels';zll\dg1 are infinite. LetH; C H be the set of such. Pickh € H;,
and letH = H \ {h}. Since there are only finitely mar, the condition is satisfied
if and only if for at least two (in fact infinitely many) diffent choicesq andx
we have that the samdf satisfiesd; \ dz < {xn | h € H} Vv {x.}, anddj\ dz <
{*n | he H} v {x'}. Therefore we must havef \ d» C {x, | h € H}. Repeating
this for every index inH;j, we conclude thatl \ d» < {x, | h € H\ Hi}. Noting
thatH \ H; = H¢, we conclude the proof that the condition (CA) is equivalent

S Itisin factdf\ dy = {x} , sinced £ dp.
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condition (CA): for every choice ok, € dl\dh, h € Hs¢, there must be d'Af such
thatd \ dz < {x, | h € H¢}. (We could improve further by considering only those
dl\dg‘ whose cardinality is not greater than the numbe(dﬁ)f we do not need this
for our purposes.)

A.2 The existence of a model

We shall construct here a model for the simplest of our tymeesys. This amounts
to build a pre-model and then show that it satisfies Definifdh To understand
the definitions and the proofs in this section, it is adviedblread first Section 3
and Appendix A.1.

Types are stratified according to the height of the nestinige@thannel constructor.
We define the height functiofat) as follows:
h(b) = h(0) = A(1) = 0;
fA(ch(t)) = A(ch™(t)) = A(ch™ (t)) = A(t) + 1;
— h(t1Vty) = h(ta Aty) = max(h(ty), h(t2));
— h(=t) = A(t).
Then we setZp = {t | i(t) <n}.

Our pre-model for the types is built in steps. We start by plimg a model for
types of height 0, that is types ifip. Note that we must define the semantics only
for type constructors, because the interpretation of thelsoators is determined
by the definition of pre-model. The only constructors of iei§ are the basic
types, for these we assume existence of a universe of ietatpnB. We also
assume that every basic typenas an interpretatio®[b] C B. Finally, we need

k

a small technicality: we add to our types of height O the tyg#s.. (ch(0))), that
we denote here ds Although at higher levels these types are just syntact@asu
we need them at level O to witness the existence of infiniteipyrchannel types.
The pre-model at level 0 is exactly formed by the basic types fhe positive
natural numbers to model the ThereforeZy = B + Nt with [b], = #[b] and
[k]o = {k} . The boolean combinators are interpreted by using the quoreing
set-theoretic combinators, according to Definition 2.1.

Using this pre-model we define a subtyping relation a¥grast <gt’ if and only
if [ty € [t']o- We shall denote by-g the corresponding equivalence.

Now suppose we have a pre-mod&| for .7, with corresponding preordet, and
equivalence=,. We call %, the set of equivalence classé%/:n. ThenZn,1 is
defined as follows: det —~

D1 =B+ .

with the following interpretation of channel types:
= [eh™ (O g = {[t']= |t <nt};

= [eh™ O] ={[t]= [t <at}.
In principle each of these pre-models defines a differenbraier between types.
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However, all such preorders coincide in the following sense
Proposition A.1 Lett,t’ € 7, and kh> n, thent<,t" if and only if t<, t'.

Proof To carry out the proof we use an interesting fact: everylstog of our pre-
models is denoted by some type. For elementB ¢iiis was an assumption. For

elements of%,, observe that the singletdtt]—,} is denoted by the typeh(t).

Suppose we have a mode}, for .7, with corresponding preordet, and equiva-
def

lence=p. We call?n the set of equivalence classés/ =,. Then we setZp 1 =
B + ., with the semantics of the channel types being

[eh™ (Olnya = {[t']=0 [t <nt};
[eh™ ()] = {[t]=, [t <nt'};
[k+2n0 = {lk]=}-
Note that now the semantics of-dch(0) is the expected one, and in general the
semantics ok + 1 coincides with the semantics ofi(k). Therefore in the seman-
tics at levels greater than O we can appropriately desugdkshand ignore their
existence.

When is a type empty? Given a typewe put it in disjunctive normal form. Clearly
t is empty if and only if all summands are empty. If a summanda&os literals

of both basic types and channel types it is easy to decideieesgt if it contains
two positive literals of different kinds, then it is empty.the positive literals are
all of one kind, it is empty if and only if it is empty when remayg the negative
literals of the other kind. Finally the intersection of omlggative literals is empty
if the two kinds separately cover their own universe of iptetation. (That is if the
union of all negated basic typeshsand similarly for the channel types.)

Therefore it is enough to check emptiness for intersectadrigerals of one kind
only. For base types:
A bA A -b.

beP beN
For channel types:

Acht(t) A Ach (th) A A —cht(t9) A A —ch(t)) .
i€l jed heH keK
Using equations (5) and (6) of Section 2 we can simplify tls¢ éxpression to
ch* () Ach™ () A A\ ~ch™(t5) A A ~ch(tf) .
heH keK
To prove Proposition A.1, we now prove by induction the fallog statement: let
t € I, then

e t=p0ifandonlyift =4,10;
e [tlh=Iifand onlyif|t|nr1=1;

where|t| denotes the cardinality of
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We start by the case = 0. The “algorithm” for checking emptiness works in the
same way for basic types. The only difference occurs forypedk. The condition
to check at level O is the following

NN () [kl € U [kl

keP keN
which can be true only if there are two differdnt P or if the onlyk in Pis also in

N. It is important here thal is infinite, so no finite union of singletons can cover
it. Therefore the condition above is equivalent to

Zon (k] < U [kl
_ _keP keN o _
and therefore =g O if and only ift =1 0. As for the cardinality: the proof is more

general and it is the same as the inductive step case thatomersxt.
For the inductive step suppose that we know that for everg typ.7, we have

e t=p0ifandonlyift =51 0;
e [tlh=Iifand onlyif|t|nr1=1.

Now take a typé € 7,1, we want to prove that

o t=p10ifandonly ift =,,20;
o [tlnra=Iifandonlyif|t|n2=1.

Again the “algorithm” for checking the emptiness of basipag does not change.
In the case of channel types we have to check that

[eh™ (to)]h, 1N Ieh™ (22)]h,1 € U ﬂCh+(t:Q)]]n+1U U [ch (t5)]nsa

heH keK
if and only if
[eh* (t)]n 2N Ieh (2)]n2 € U [eh™ (t9)]n,2U U Teh™ (tD)]n.2 -
heH keK

As argued in the previous section, the first condition is eajent to:
R1. 3h € H such that; <, tf or

R2. 3k € K such thatf <ntp or

CA* the involved condition involving<, and atoms.

The induction hypothesis gives us easily the equivalentisadirst three conditions
at levelsn andn—+ 1. For the condition (CA) note first that

o th<pty o th<py1ly

o forallhe H,th >nt o forallhe H,t) >ni1to
o forallke K, tf <nty are equivalentto e forallke K, tf <, 1ts
o forallhe H,t3 2nts o forallhe H,t3 ?ni1ts
o forallk e K, tf £ntp o forallke K, t§ Zni1to

because of the induction hypothesis.

We have to check that the condition (OA
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Let Ht n be the set oh € H such that|t1\t§‘\n finite. For everya, € Atony,
an <nt1\tf, h € Hs n, there must be & such that{\t> <n Vhcy, , an.

is equivalent to the same condition where we replace alhtiveh n+ 1.

Recall that since all singletons are denoted, atoms ardlgxhe singleton types.
We need a lemma to prove that the condition {CAt leveln works on exactly the
same atoms as at level 1:

Lemma A.2 Suppose that for everya .7,

—t=p0ifand only ift=n,10;

—|tln=1ifand only if [t|n, 1 =I.
Pickt€ .7, and an atom & 1. If a <11t and|t], is finite, then there exists an
atomde Jywitha=,,14d.

Proof supposdt|, = | with | finite. Since every singleton is denoted+, a; vV
...V @ for disjoint n-atomsa;. Then the same equality is true at lewel 1. Since
a<pi1t,thena<p.1a1Vv...Va from which we derive thad =, 1 g for somei.
Thusa = g; satisfies the required conditiond

We are now going to check the equivalence of the conditions.

Suppose it is true for the+ 1 case. Then pick a choice nfatomsay, h € Hs .
By the induction hypothesis tha, are n+ 1-atoms, too. Also, by the induction
hypothesigt;\t|ny1 is finite if and only if t;\t§|n is finite. ThusH¢ n = Hr 1.
Since (CA) is true at leveln+ 1, then there must be & such thatf\t; <n1
VheHy ;1 @ Which impliesti\tz <n Vpep, , .

Conversely suppose it is true far Pick a choice oh+ 1-atomsay, h € Hf ny1.

If one of theseay, is not equivalent to an-atom, then by Lemma A.atl\tg‘\nﬂ
would be infinite. Thus we can assume thatagllare n-atoms. As above we have
Ht n = Hf nt1, and since (CA) is true at leveln, there must be alf such that

ti\tz <n Vpen, , @ Which impliesti\t> <ni1 Vhe, ,,, @

We have now to prove the condition on the cardinality. Wetdigrobserving that
all the atoms we have described above (when we proved thay sirgleton is

denoted) are atoms independently of the level. They are sateenause of their
shape. We now prove the following

e |t|nr1 =1 implies|t|ni2=1;
e |t|nr1 > 1 implies|t|ni2 > 1.

from which we can concludg|n+1 = | if and only if [t|n2 = 1.

Supposét|,.1 =1. Thent =1 a1 V...V a for some disjoint atoms. Thus=p, >
a1V...Vay, and since the; are still atoms (and they are still disjoinf)jn2 =1I.

Supposeét|nr1 > I, thent >n11 a1 V...V g for some disjoint atoms. Thus>p. 2
a1V...Vay, and since the; are still atoms (and they are still disjoinf)jn2 > I.
O
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We finally observe that adding tlketo our types is not restrictive, &= chk(O).
Hinging on Proposition A.1, we define preorder between tygse®ollows.
Definition A.3 (Order) Lett,t’ € 7, thent<,t'ifand only ift<,t’.

Due to Proposition A.1, this relation is well defined and icelsian equivalence,
on the set of type3. Let 7 be .7 /—_, we are finally able to produce a unique
pre-modelZ defined as:

2=B+7 .

Where

= [eh" ()] = {[t'-. |t <w t};

= [ehm O] ={[t']-. [t <= t'}.
This pre-model defines a new preorder between types that naelbéy<. How-
ever, the following proposition proves thatis not new but it is the limit of the
previous preorders, i.€%e.

Proposition A.4 Lett,t'e.7, thent<t’'if and only if t <, t’.

Proof We prove it by induction on the height of the types. That ispreve by
induction onn that ift € .7, then

e t=0ifand only ift =« O;
e [t|=1Iifandonlyif|t|o =1.

Note that to check emptiness of a typedh, 1 we only invoke types in.

The condition at level 0 only requires that the tyfiebe interpreted into distinct
singletons contained i, which is the case.

The second statement, and the whole inductive step are paw/é the proof of
Proposition A.1. O

It is now easy to show the following.
Theorem A.5 The pre-mode(Z,[]) is a model.

Proof Consider the extensional interpretati€) of types as in Definition 2.2. We
have to check thaft] = @ <= &(t) = @. Note that in fact the range @f() is

P (B+[.7]). By proposition A.4, we have thaf.7 ], C) is isomorphic to(?, <).
Up to this isomorphismy’( ) coincides with[]. O

A.3 Proof of decidability of finiteness

Given our model of types, we show that we can

(1) decide whether a type is finite
(2) ifitis the case, list all its atoms
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To prove our claim we proceed by induction on the height otyipes. We strengthen
the statement by requiring that all atoms of a finite typeve the same height, or
lower, oft. We assume that at height O, this is the case. It is a reasoaablmp-
tion: for example it is the case if we have for base types tipe tyf all integers
plus all constant types. Consider a tyipaf heightn+ 1 and assume that for lower
heights we can decide whether a type is finite and, if it is #seclist all its atoms.
By Theorem 3.2, this guarantees that we can also decide mesptof all types of
heightn+ 1. We ask ourselves which atoms can be proved to belondftave put

t in normal form, we obtain the disjunction of terms of the form

r =ch'(ty) Ach (tp) /\—|chJr (th) /\—lch t4

(We exclude base types, because they have been conS|dbmgrEtt0, and “mixed
types”, which can be reduced to one of the “pure” cases.) @tdyns of the form
ch(s), can be contained in non-base types. For how mamye can have that
ch(s) <t? A union is finite if and only if all its summands are, thus finite if
and only if all ther’s are finite. When ig finite? First of all it is finite when it is
empty, which we can test it by induction hypothesis.

Otherwise ifr is not empty, them is finite if and only ifch™ (t;) A ch™ (to) is finite,
which happens exactly wheén< t; andt; A -tz is finite. For the “if” part, note that
ch(s) belongs toch™ (t1) Ach™(ty), if and only if s=t, v §' for somes’ < t; A —it».
Sincet; A -ty is finite and of smaller height, then by induction hypothegescan
list all its atoms, thus all the correspondisig, thus all the correspondiran(toV s')
that are all the possible candidates of atoms. @y induction hypothesis we also
have that all thes’ have at most height.

For the “only if” part it suffices to prove that &h* (t1) Ach™ (to) is infinite, then the
whole ofr is infinite. Assume that for ng t; < t3 and for noj, t4 <t (otherwise

r is empty). We have to find infinitely marg/such that, <s<tj, s« t5 for all i
andt4 « sfor all j. Pick atomsat3 < tl/\—nt3 anda4 < t4/\—|t2 Note that n(H3 can
coincide with an)a‘jl, because they are taken from disjoint sets. Then for anydype
such that, < s <ty, the types:= (SVV, ais) A=V aj'1 belongs ta. It is possible
that for two differents’ the corresponding coincide. However such “equivalence

classes” of' are finite. Since there are infinitely magy there are infinitely many
S, sor is infinite.

In summary, for every that formst we check whethep < t; andt; A -tz is finite,
and at the end we find either thiais infinite (if one of ther is) or that it is finite.

In the latter case we have a finite list of candidates to betbrasioft (hamely all
ch(s) for sincluded in the the varioug A —tp) and to list all the atoms dfwe just

to check for each candidate its inclusiontinWhich we can do, since they are at
most of height+ 1.

35



B Proofs from Section 4

B.1 Proof of Theorem 4.5

We first show that?", [] ) is a pre-model. Inspecting the typing rules, it is easy to
show that for every value and every types, to

Q) rev:1,
(2) THv:tpifand only if I H/v: =ty
(B) TFv:tyAtpifandonlyifl Fv:ty andl - v:to.

Point (1) is a simple application of the subsumption rule.(29 suppose that there
existst such thaw : t andv : —t. The only rule to deduce a negative type for a value
is the subsumption rule. Therefore there must be a $ygach thav: s, s<t and

s < —it. But thens = 0, impossible since the empty type is not inhabited. Suppose
instead there existssuch that/ v:t andi/ v: —t; if v = c®thench(s) is not smaller
thant nor than—t, impossible sinceh(s) is atomic. The same can be deduced from
the atomicity ofb, for v=n. Therefore(#,[] ) is a pre-model.

By the subsumption rule we have thatifsands <t thenv:t. Therefores<t —-
[sl, C [t], . For the other direction, i§ £ t, there is an atoma in s\t. For every
atoma there is a value such thaf” - v: a (this is clearly true for channels, while
it was an assumption for basic types). By subsumpfienv: sandl - v : —t,
which impliesl" /v : t. Thus[s], Z [t], .

To prove that it is a model we have to check tftdt= @ <= &'(t) =2. Again the
range of¢’() is Z(B+[.7], ). By the observation above, we have tha¥'] ,, C)

is isomorphic to{.7, <). Up to this isomorphism¥’( ) coincides with[],,. O

B.2 Proof of the subject reduction
As usual, the crucial step is the substitution lemma 4.6. @ério prove

o If[,t/pHM :t"andl Fv:t, thenl - M'[v/p]:t’.
e If [ t/p-Pandl Fv:tthenl - P[v/pl.

This is done by induction on the typing rules, by making us€leforem 4.4. Then
consider a well-typed premise of the reduction rdle: ctv || Tic ¢t(pi).P. This
means thaf’ - v:tandl, t/pi F R. Sincet <V, 1pif, there must be g such
thatt v: ] p;§. For all suchj, the substitutiorv/p; is defined. By the substitution
lemma, for all suctj we havel” - Pj[v/pj].

B.3 Proof of Lemma 4.9

Take a nonempty type < ch(1). This means that its disjunctive normal form
contains only channel types. Consider first the case wheeomposed of only
one clauss= ch'(t;) Ach™ (t2) AAp—ch’ (t§) A A —ch™(t¥). Sincesis not empty
we have
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to <ty and

vheH,t; £t§ and

vk e K, t8 £ tp and

there exists a choice of atomag < tl\tg for h € H¢ such that for ndk € K,

th <tV Vhe, an.

Consider now some tygeand the inequatioa < ch' (t). This is satisfied if an only
if SA—ch' (t) = 0. We can think oth™ (t) as an extrah' (t]) added to the normal
form of s. In order to have thaA —~ch' (t) is empty, we only have two possibilities.
The first is that; < t. Therefore the first candidate for ledss preciselyt;. But
can it be smaller than this?

First, note that we must have that t,, as otherwise we cannot hase< ch' (t).
Therefore to obtain a smallewe must remove some atomstin, t. Which ones?
Consider all possible choices of atoms< tl\tQ for h € H¢ such that for ndk € K,

té'f < tZVVher an. As noticed, sincesis not empty, there must be at least one such
choice.

We claim that none of thosa, can be removed frorty. To show this, consider a
choice of atomsy, as above withh € Hy and leta = a;, for someh € H¢. Consider
t =t;\ aand recall we can consideas one extra! in the normal form of. Now
we must check condition (C# for this new clause. Let®* = HU {e}, witht3 =t.
Note that; \ t = ais finite, and thu$d? = Hy U {e}. By puttinga = a,, we can see
the above choice of atoms as a choice of atamsvith h € Hf. Indeed the atora
plays the double role dii; anda,.

In order for (CA) to be satisfied, we should be able to findfesuch that} <
t2VVheH; ah = 2V Vhen, @, Which it is not possible by hypothesis. Then, such

atoms cannot be removed fram

Now, consider an atorathat is not of this form. Reasoning in similar way as above
we can show that we can takeout of t; if and only if for all possible choices
of atomsay, < H¢, such that for nk € K, tlj <12V Vhen, @, there isk such that

th\ (2 Viery, an) = a

How many such atoms there are? Only finitely many, as the tsalquantification
above is finite. Therefore we can remove these atoms one bylbeecorrespond-
ing t is such thats < ch'(t) and moreover we cannot remove any other atom.
Finally all such atoms can be computed.

The above proves the statement for typesmposed only of one clause. Consider
a types whose disjunctive normal form is=s1 V...V s, and suppose for each
s the typet; is the least such that < ch™(t;). Then the type =t;V ... Vt, is the
least such thas < ch™ (t). Clearly it has the property. To show it is the least such,
remove one atona from it and suppose it still has the property. Thereforesno
containsa. Howevera belongs to one of the. Therefore, by removing from such

ti we would obtain a smallef such thas < ch'(t/), contradiction.
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