
Semantic subtyping for the pi-calculus

Giuseppe Castagnaa Rocco De Nicolab Daniele Varaccaa

aCNRS - PPS, Université Paris 7, France
bDipartimento di Sistemi e Informatica - Università di Firenze, Italy

Abstract

Subtyping relations for theπ-calculus are usually defined in a syntactic way, by means of
structural rules. We propose a semantic characterisation of channel types and use it to de-
rive a subtyping relation. The type system we consider includes read-only and write-only
channel types, as well as boolean combinations of types. A set-theoretic interpretation of
types is provided, in which boolean combinations of types are interpreted as the corre-
sponding set-theoretic operations. Subtyping is defined asinclusion of the interpretations.
We prove decidability of the subtyping relation and sketch the subtyping algorithm.

In order to fully exploit the type system, we define a variant of the π-calculus where
communication is subjected to pattern matching that performs dynamic typecase.

Dedicated to the 60th birthday of Mario Coppo, Mariangiola

Dezani-Ciancaglini, and Simona Ronchi della Rocca

1 Introduction and motivations

In this article we study a type system for a concurrent process language in which
values are exchanged between agents via communication channels that can be dy-
namically generated. The language we consider is a variant of the asynchronous
π-calculus [Bou92, HT91], in which communication is subjected to pattern match-
ing.

There exists a well established literature on typing and subtyping for theπ-calculus
(e.g. [PS96, Sew98, YH99, SW02]). However, all the approaches we are aware of
rely on subtyping relations or on type equivalences that aredefined syntactically, by
means of structural rules. In our view, such syntactic formalisations of typing rela-
tions miss a clean semantic intuition of types. Consider, for example, the type sys-
tem defined by Hennessy and Riely [HR02], which is one of the most advanced type
systems for variants of theπ-calculus. It includes read-only and write-only chan-
nels, as well as union and intersection types. In that systemthe following equality

Preprint submitted to Theoretical Computer Science 5 June 2007

is used todefinethe union type:

ch+(t1)∨∨∨ch+(t2) = ch+(t1∨∨∨t2) (1)

wherech+(t) is the type of channels from which we can only read values of type
t, and∨∨∨ denotes union. We would like to understand the precise semantic intuition
that underlies an equation such as (1).

Semantic subtyping. The basic idea is simple: the semantics of a type is the set of
the values that have that type, and union, intersection and negation types are inter-
preted using the corresponding set theoretical operators.Subtyping is then defined
as inclusion of the interpretations. However, the subtyping relation is needed in or-
der to type the values, usually by subsumption. We are therefore trapped in a circle,
where we need subtyping to define typing, that defines the interpretation, that de-
fines the subtyping. We are able to break this circle via a “fixed point” construction.

Before even having defined the language, and therefore before even knowing what
values are, we define a “bootstrap” semantics of types, that is used to define the
subtyping relation. This subtyping relation is then used totype values. This gives
us another semantics of types, as sets of values. The key point is that, if we choose
the right bootstrap semantics, the values semantics will correspond to the bootstrap
semantics, and the circle will be closed.

Channels as boxes.In order to understand how channels and channel types relate,
we have to provide a semantic account of channels. Our intuition is that a channel is
a box in which we can put things (write) and from which we can take things (read).
The type of a channel, then, is characterised by the set of thethings the box can
contain. That is, a channel of typech+(t) is a box in which we must expect to find
objects of typet and, similarly, a channel of typech−(t) is a box in which we are
allowed to put objects of typet. This is a particular interpretation (see Section 5.5
for alternative intuitions), but if one takes this stand, then equality (1) does not
seem to be justified. Consider the typesch+(candy)∨∨∨ch+(coal) andch+(candy∨∨∨
coal). Both represent boxes. If we have a box of the first type, then we expect to
find in it either a candy or a piece of charcoal, but we know it isalways one of
the two. For instance, if we use the box twice, the second timewe will know what
present it contains. A box of the second type, instead, is a “surprise box” as it can
always give us both candies and charcoal. Our intuition suggests that the two types
above are different because they characterise two different kinds of objects.

The role of the language.So why did Hennessy and Riely require (1)? The point
is that, if in the language under consideration there is no syntactic construction that
can tell apart acandy from acoal and then branch, that is, if it is not possible to
branch to different pieces of code for messages of differenttypes (e.g. a typecase,
an exception trapping, an overloaded function, . . .), then it is not possible to oper-
ationally observe any difference between the types in (1). Hennessy and Riely do
not have such a construction, therefore (1) is sound.

2

On the contrary, suppose we are sent a channelc of typech+(candy)∨∨∨ch+(coal)
If it is possible to test whetherc is of typech+(candy) or of typech+(coal), then
we can continue assuming that onc we will receive messages of only one of the
two types. In this case a rule such as (1) would be unsound, because it would make
it possible to receive onc bothcandy andcoal and this could make the code crash.

We define a variant of theπ-calculus that exploits the full power of our new type
system, and in particular that permits dynamically testingthe type of values re-
ceived on a channel. We implement the dynamic test by endowing input actions
with patterns, and allowing synchronisation when pattern matching succeeds. The
result is a simple and elegant formalism that can be easily extended with product
types, to obtain a polyadicπ-calculus, and with a restricted form of recursive types.

Advantages of a semantic approach.The main advantage of using a semantic
approach is that types have a natural and intuitive set theoretic interpretation as sets
of their values. This property turns out to be very helpful not only to understand
the meaning of the types, but also to reason about them. For instance, the subtyping
algorithm is deduced just by applying set-theoretic properties, in the proofs we can
rewrite types by using set-theoretic laws, and the typing ofpattern matching can be
better understood in terms of set-theoretic operations (e.g. the second pattern in an
alternative will have to filter all that was not already matched by the first pattern:
set theoretic difference).

The languageCDuce [BCF03] also demonstrated the practical impact of the seman-
tic approach: subtyping results are easier to understand for a programmer, since she
does not have to reason in terms of subtyping rules but ratherof set-theoretic op-
erations. Furthermore, the compiler/interpreter can return much more precise and
meaningful error messages. For instance if type-checking fails the compiler returns
a value or a witness that is in the set-theoretic difference between the deduced type
and the expected type, and this information helps the programmer to understand
why type-checking failed.

For a wider discussion on the advantages of semantic subtyping we refer the reader
to Castagna and Frisch’s introductory article [CF05].

Main contributions. This work provides several contributions: We define a very
expressive type and subtype system for theπ-calculus with read-only and write-
only channel types, product types, and complete boolean combinations of types. We
define a set-theoretic denotational model for the types, where boolean combinations
are interpreted as the corresponding set-theoretic operations and channel types are
interpreted as sets of boxes. We use the model to define subtyping as set-theoretic
containment. We show how to extend theπ-calculus in order to fully exploit the
expressiveness of the type system, in particular by endowing input actions with
pattern matching. Finally we show that in that setting the typing and subtyping
relations are decidable. A further contribution of this work is the opening of a new
way to integrate functional and concurrent features in the same calculus: this will

3

be done by fully integrating (our new version of)π andCDuce systems, to yield
a calculus with dynamic type dispatch, overloading, channelled communications
and where both functions and channels have first class citizenship. A step in that
direction has already been taken with the work in [CDV06].

Related work. The first work on subtyping forπ was done by Pierce and San-
giorgi [PS96] and successively extended in several other works [Sew98, NFPV00,
YH99].

The work closest to ours, at least for the expressiveness of the types, is the already
cited work of Hennessy and Riely [HR02]. As far asπ-types are concerned, our
work subsumes their system in the sense that it defines a richer subtyping rela-
tion; this can be checked by observing that their typerw〈s, t〉 corresponds to the
intersectionch+(s)∧∧∧ch−(t) of our formalism.

The works of Acciai and Boreale [AB05] and of Carpinetiet al. [CLP06], define
languages similar to ours, with XDuce-like pattern matching. However their type
systems are less rich than ours and, most importantly, theirsubtyping relations are
defined syntactically.

As for the technical issues of semantic subtyping, our starting point is the work
developed by Frischet al. for functional programming languages [FCB02, Fri04],
that led to the design ofCDuce [BCF03].

Plan of the article: In Section 2 we describe the types, their semantics, and sub-
typing relation whose decidability is shown in Section 3. InSection 4 we introduce
Cπ, a variant ofπ-calculus tailored on the previous types, and show examplesof
its usage. In Section 5 we discuss possible extensions ofCπ while similarities with
different paradigms are outlined in the conclusion, Section 6. In order to lighten
the presentation, we postpone the proofs of all properties stated in the article to the
appendixes.

2 Types and subtyping

We shall present in detail a relatively simple system with just base types, channels,
and boolean combinators. In Section 5, we will then sketch how to add the product
type constructor, recursive types, and functional types.

2.1 Types

In the simplest of our type systems, a type is inductively built by applying type
constructors, namely base type constructors (e.g. integers, strings, etc...), the input
or the output channel type constructor, or by applying aboolean combinator, i.e.,
union, intersection, and negation:

4

Types t::= b | ch+(t) | ch−(t) constructors
| 0 | 1 | ¬¬¬t | t∨∨∨ t | t∧∧∧ t combinators

Combinators are self-explaining, with0 being the empty type and1 the type of all
values. The “set difference” combinators\\\t will be used as a shorthand fors∧∧∧¬¬¬t.
For what concerns type constructors,ch+(t) denotes the type of those channels that
can be used toinputonly values of typet. Symmetricallych−(t) denotes the type of
those channels that can be used tooutputonly values of typet. The read and write
channel typech(t) is absent from our definition. We shall use it only as syntactic
sugar forch−(t)∧∧∧ch+(t), that is the type of channels that can be used to read only
and to write only values of typet. The set of all types (sometimes referred to as
“type algebra”) will be denoted byT .

In our approach channels are physical boxes where one can insert and withdraw
objects of a given type. Our intuition is that there is not such a thing as a read-only
or write-only box: each box is associated with a typet and one can always write
and read objects of that type into and from such a box. Thus thetype ofch+(t) can
be considered just a constraint telling that a variable of that type will be bound only
to boxes from which one can read objects of typet. If we know that a message has
typech+(t), it does notmean that we cannot write into it, we simply do not have
any information about what can be written in it: for instancethis message could be
a box that cannot contain any object. What the type tells us issimply that we had
better avoid writing into it since, in the absence of furtherinformation, no writing
will be safe. Similarly, if a message is of typech−(t), then we know that it can only
be a box in which writing an object of typet is safe, but we have no information
about what could be read from that channel, since the messagemight be a box that
can contain any object. Therefore we had better avoid reading from it, unless we
are ready to accept anything. However, if weare ready to accept anything, then our
type system guarantees that we can read on a channel with typech−(t) because, as
we will see later, we havech−(t) ≤ ch+(1).

2.2 Semantics of types

Our leading intuition is that a type should denote the set of values of that type.
That is:

JtK = {v | ⊢ v : t} .
The basic types (integers, strings) should denote subsets of a set of basic values
B. The boolean operators over types should be interpreted by using the boolean
operators over sets. By following our intuition we shall have that the interpretation
of the typech(t) has to denote the set of all boxes (i.e. channels) that can contain
objects of typet:

Jch(t)K =
{

c | c is a box for objects inJtK} . (2)

Since every box is uniquely associated to a type, then the interpretations of chan-
nel types are pairwise disjoint. This already gives invariance of channel types:
Jch(t)K⊆ Jch(s)K if and only if JtK = JsK.

5

Starting from the above interpretation ofch(t), we can now provide a semantics
for ch+(t) andch−(t). As said, the former should denote the set of all boxes from
which one can safely expect to get only objects of typet. Thus we require that
ch+(t) denotes all boxes for objects of typet, but also all boxes for objects of type
s, for anys≤ t. Indeed, by subsumption, objects of typessare also of typet. Dually,
ch−(t) should denote the set of all boxes in which one can safely put objects of type
t. Therefore it will denote all boxes that can contain objectsof types, for anys≥ t.
Let us writect to denote a box for objects of typet. We have

Jch+(t)K =
{

cs | s≤ t
}

, Jch−(t)K =
{

cs | s≥ t
}

.

Given the above semantic interpretation, from the viewpoint of types all the boxes
of one given typet are indistinguishable, because either they all belong to the inter-
pretation of one type or they all do not. This implies that thesubtyping relation is
insensitive to the actual number of boxes of a given type. We can thus assume that
for every equivalence class of types, there is only one such box, which may as well
be identified withJtK, so that the intended semantics of channel types would be

Jch+(t)K =
{
JsK | s≤ t

}
, Jch−(t)K =

{
JsK | s≥ t

}
. (3)

We have that this semantics induces covariance of input types and contravariance
of output types. Moreover, as anticipated, we have thatch(t) = ch−(t)∧∧∧ ch+(t)
since the types on both sides of the equality have the same semantics—namely, the
singleton{JtK}—and therefore it is justified to considerch(t) as syntactic sugar for
ch−(t)∧∧∧ch+(t), rather than a type constructor.

According to the discussion above, in order to define the semantics of a channel
type, we need to know the subtyping relation. And here we are again in the presence
of a circle. We use the subtyping relation in order to build the interpretation that we
need in order to define the subtyping relation. We devote the next section to solve
this problem.

2.3 Building a model

The minimal requirement for an interpretation function is that boolean combinators
should be interpreted in the corresponding set-theoretical operators, and that basic
values and channels should have disjoint interpretations.

Definition 2.1 (Pre-model) LetD ,andB be sets such thatB ⊆ D , and letJ K be a
function fromT to P(D). The pair(D ,JK) is said to be apre-modelif

– JbK ⊆ B, Jch+(t)K∩B = ∅, Jch−(t)K∩B = ∅;
– J1K = D , J0K = ∅;
– J¬¬¬tK = D \ JtK;
– Jt1∨∨∨ t2K = Jt1K∪ Jt2K, Jt1∧∧∧ t2K = Jt1K∩ Jt2K.

We use this interpretation to build another interpretation, according to the intended
meaning of equations (3). The symbol+ will denote disjoint union of sets.

6

Definition 2.2 (Extensional interpretation) Let (D ,JK) be a pre-model. LetJT K
denote the image of the functionJ K. Theextensionalinterpretation of the types is
the functionE () : T → P(B+ JT K), defined as follows:

– E (b) = JbK;
– E (1) = B+ JT K, E (0) = ∅;
– E (¬¬¬t) = E (1)\E (t);
– E (t1∨∨∨ t2) = E (t1)∪E (t2), E (t1∧∧∧ t2) = E (t1)∩E (t2);
– E (ch+(t)) = {JsK | JsK ⊆ JtK};
– E (ch−(t)) = {JsK | JsK ⊇ JtK}.

A pre-model and its extensional interpretation induce, in principle, different pre-
orders on types. We could use the extensional interpretation to build yet another
interpretation, and so on. In order to close the circle, we shall consider a pre-model
“acceptable” if it is a fixed point of this process, that is, ifit induces the same con-
tainment relation as its extensional interpretation. Thisamounts to the following
definition:

Definition 2.3 (Model) A pre-model(D ,JK) is a modelif for every t1, t2, we have
Jt1K ⊆ Jt2K if and only ifE (t1) ⊆ E (t2).

The last (and quite hard) point is to show that there actuallyexists a model, that is,
that the condition imposed by Definition 2.3 can indeed be satisfied. Paradoxically
the model itself is not important. The subtyping relation isessentially characterised
by the definition of extensional interpretationE JK. So what really matters is the
proof that there exists at least one model. As the case of recursive types proves (see
§ 5.2), the existence of such a model is far from being trivial, and naive syntactic
solutions —such as a term model— cannot be used.

Theorem 2.4 There exists a model(D ,JK).

Types are stratified according to the nesting of the channel constructor. The model
(D ,JK) is obtained as the limit of a chain of models(Dn,JKn), built exploiting this
stratification. The long and technical proof can be found in Appendix A.2.

Finally, given a model for the types, we define

s≤ t
def

⇐⇒ JsK ⊆ JtK , s= t
def

⇐⇒ JsK = JtK .

2.4 Examples of type (in)equalities and graphical representation

We list here some interesting equations and inequations between types that can be
easily derived from the set-theoretic interpretation of types. A first simple example
of equality and inequality is

ch(t)≤ ch−(0) = ch+(1) (4)

which states that every channelc of whatever typech(t) can always be safely used
in a process that does not write onc (since it has also typech−(0)) and that does
not care about whatc returns (since it has typech+(1)).

7

C

����

BBBB

A

��

s

t

Fig. 1. Channel types

C

A

DB

s∧∧∧ t

t

s∨∨∨ t

s

Fig. 2. Some equations

Besides these fiddling relations, far more interesting relations can be deduced and,
quite remarkably, in many cases this can be done graphically. Consider the defi-
nitions in (3): they tell us that the interpretation ofch+(t) is the set of the inter-
pretations of all types smaller than or equal tot. As such, it can be represented
by the downward cone starting fromt. Similarly, the upward cone starting fromt
representsch−(t). This illustrated in Figure 1 where the upward coneB represents
ch−(s) and the downward coneC representsch+(t). As the reader can easily verify,
this representation immediatly gives covariance of input types and contravariance
of output types.

If we now pass to Figure 2 we see thatch−(s) is the upward coneB+C andch−(t)
is the upward coneC+D. Their intersection is the coneC, that is the upward cone
starting from the least upper bound ofs andt which yields the following equation

ch−(s)∧∧∧ch−(t) = ch−(s∨∨∨ t) . (5)

This states that if on a channel we can write values of types and values of typet,
this means that we can write on it values of types∨∨∨ t. Dually, by turning Figure 2
upside down it is easy to check the following equation:

ch+(s)∧∧∧ch+(t) = ch+(s∧∧∧ t) (6)

which states that if a channel is such that we always read fromit values of types
but also such that we always read from it values of typet, then what we read from
it are actually values of types∧∧∧ t.

Similarly, note that the union ofch−(s) andch−(t) is given byB+C+D and that
this is strictly contained in the upward cone starting froms∧∧∧ t, since the latter also
contains the regionA, whence the strictness of the following containment:

ch−(s)∨∨∨ch−(t) � ch−(s∧∧∧ t) . (7)

Actually, the difference of the two types in the above inequality is the regionA
which representsch+(s∨∨∨ t)∧∧∧ch−(s∧∧∧ t), from which we deduce

ch−(s∧∧∧ t) = ch−(s)∨∨∨ch−(t)∨∨∨(ch+(s∨∨∨ t)∧∧∧ch−(s∧∧∧ t)) .

8

By turning Figure 2 upside down again we can check the dual of equation (7):

ch+(s)∨∨∨ch+(t) � ch+(s∨∨∨ t) (8)

As a final example consider the typech+(s)∧∧∧ch−(t), that is the type of a channel
on which we can write values of typet and from which we expect to read values of
typet. We have

ch+(s)∧∧∧ch−(t) = 0 (9)
if and only if t 6≤ s, i.e. we should expect to read at least what we can write. Once
more this can be checked graphically on Figure 1, but in orderto show the role of
our definitions, let us formally deduce this last equation. By definition, (9) holds if
and only ifJch+(s)∧∧∧ch−(t)K = J0K. By definition of model and the antisymmetry
of ⊆ this holds if and only ifE (ch+(s)∧∧∧ch−(t)) = E (0). By definition ofE () this
holds if and only if{JsK′|JsK′ ⊆ JsK}∩{JtK′|JtK ⊆ Jt ′K} = ∅. By the reflexivity and
transitivity of⊆ this holds if and only ifJtK 6⊆ JsK, that is, by definition of subtyping
if and only if t 6≤ s.

3 Decidability of subtyping

For practical applications, it is essential that subtypingrelations are decidable. The
subtyping relation defined in Section 2 is indeed decidable.The decision procedure
is however a bit involved. As we show in details later in this section, we can always
reduce the problem of deciding the subtyping between two types to deciding an
inclusion of the following form:

ch+(t1)∧∧∧ch−(t2) ≤
_

_

_

h∈H

ch+(th
3)∨∨∨

_

_

_

k∈K

ch−(tk
4) . (10)

While in some cases it is easy to decide the inclusion above (for instance, when
t2 6≤ t1 since then the left-hand side is empty), in general, this requires checking
whether a type isatomic, that is whether its only proper subtype is the empty type
(for sake of simplicity the reader can think of the atomic types as the singletons of
the type system1). To have an idea of why we have to push the check at the level of
atomic types let us once more resort to the graphical representation. Consider the
equation (10) above with only two typess andt with t � s (note the strictness of
inclusion, which implies thats\\\t is not empty), and try to check whether:

ch+(s)∧∧∧ch−(t)≤ ch−(s)∨∨∨ch+(t) .

The situation is represented in Figure 1 where the regionA represents the left-hand
side of the inequality, while the regionB+C is the right hand side. So to check the
subtyping above we have to check whetherA is contained inB+C. At first sight
these two regions look completely disjoint, but observe that they have at least two

1 Nevertheless, notice that according to their definition, atomic types may be neither sin-
gletons nor finite. For instance,ch(0) is atomic, but in the model defined by equation (2)—
more precisely, in the model of values of Theorem 4.5—it is the set of all the synchroni-
sation channels; these are just token identifiers on a countable alphabet, thus the type is
countable as well.

9

points in common, marked in bold in the figure (they are respectively the types
ch(s) andch(t)). Now, the containment holds if the regionA does not contain any
other type besides these two. This holds true if and only if there is no other type
betweens andt, that is if and only ifs\\\t is an atomic type.

Let us now present the technical details of the decision procedure (proofs can be
found in the appendix). First of all we need to define the notions of finite and atomic
types.

Definition 3.1 (Atomic and finite types) Anatomis a minimal non-empty type. A
type isfinite if it is equivalent to a finite union of atoms.

We start the description of the decision procedure by notingthat deciding subtyping
is equivalent to deciding the emptiness of a type.

s≤ t ⇐⇒ s∧∧∧¬¬¬t = 0 (11)

which can be derived as follows:

s≤ t ⇐⇒ JsK ⊆ JtK ⇐⇒ JsK∩∁JtK = ∅ ⇐⇒ Js∧∧∧¬¬¬tK = J0K ⇐⇒ s∧∧∧¬¬¬t = 0 .

Thanks to the semantic interpretation we can directly applyset-theoretic equiva-
lences to types (in the rest of the article we will do it without explicitly passing
via the interpretation function). We then deduce that everytype can be (effectively)
represented in disjunctive normal form, i.e. as the union ofintersections of literals,
where a literal is a base type or a channel type, possibly negated. Since a union is
empty only if all its addenda are empty, then in order to decide emptiness of a type
—and thus in virtue of (11) to decide subtyping— it suffices tobe able to decide
whether an intersection of literals is empty. Since base types and channel types are
interpreted in disjoint sets, intersections that involve literals of both kinds are either
trivial, or can be simplified to intersections involving literals of only one kind. The
problem is therefore reduced to decide whether

(
^

^

^

i∈P

bi)∧∧∧ (
^

^

^

j∈N

¬¬¬b j) and (
^

^

^

i∈P

chνi(ti))∧∧∧ (
^

^

^

j∈N

¬¬¬chν j(t j))

are equivalent to0 (whereν stands for either “+” or “−” and we grouped literals
according to whether they are negated or not). The decision of emptiness of the
left-hand side depends on the basic types that are used. For what concerns the right-
hand side, we decompose this problem into simpler subproblems. More precisely,
we reduce this problem to the problem of deciding subtyping between boolean
combinations of theti ’s andt j ’s. This problem is simpler, in the sense that it involves
a strictly smaller nesting of channel types.

Using set-theoretic manipulations—in the case in point De Morgan’s laws—the
problem of deciding

(
^

^

^

i∈P

chνi(ti))∧∧∧ (
^

^

^

j∈N

¬¬¬chν j(t j)) = 0

can be shown to be equivalent to

10

(
^

^

^

i∈P

chνi(ti)) ≤ (
_

_

_

j∈N

chν j(t j)) . (12)

Because of equations (5) and (6), we can push the intersection on the left-hand side
inside the constructors and reduce (12) to the equation (10)we met in the previous
section, and that we recall below:

ch+(t1)∧∧∧ch−(t2) ≤
_

_

_

h∈H

ch+(th
3)∨∨∨

_

_

_

k∈K

ch−(tk
4) (10)

where we grouped covariant and contravariant types together. In this way we sim-
plified the left-hand side. Similarly we can get rid of redundant addenda on the
right-hand side of (10) by eliminating:

(1) all the covariant channel types on ath
3 for which there exists a covariant ad-

dendum on a smaller or equalth′
3 (since the former channel type is contained

in the latter);
(2) all contravariant channel types on atk

4 for which there exists a contravariant
addendum on a larger or equaltk′

4 (for the same reason as the above);
(3) all the covariant channels on ath

3 that is not larger than or equal tot2 (since
thench−(t2)∩ch+(th

3) = 0, so it does not change the inequation);
(4) all contravariant channels on atk

4 that is not smaller than or equal tot1 (since
thench+(t1)∩ch−(tk

4) = 0).

Then the key property for decomposing the problem (10) into simpler subproblems
is given by the following theorem:

Theorem 3.2 Suppose t1, t2, th
3, tk

4 ∈ T , k∈ K, h∈ H. Suppose moreover that the
following conditions hold:
c1. for all distinct h,h′ ∈ H, th3 6≤ th′

3 ;

c2. for all distinct k,k′ ∈ K, tk4 6≤ tk′
4 ;

c3. for all h∈ H, t2 ≤ th
3;

c4. for all k∈ K, tk4 ≤ t1.

Then

ch+(t1)∧∧∧ch−(t2) ≤
_

_

_

h∈H

ch+(th
3)∨∨∨

_

_

_

k∈K

ch−(tk
4) (10)

if and only if one of the following conditions holds

LE. t2 6≤ t1 or
R1. ∃h∈ H such that t1 ≤ th

3 or
R2. ∃k∈ K such that tk4 ≤ t2 or
CA. for every choice of atoms ah ≤ t1\\\th

3, with h∈ H, there exists k∈ K such that
tk
4 ≤ t2∨∨∨

W

W

W

h∈H ah.

The four hypotheses c1–c4 simply state that the right-hand side of the inequation
was simplified according to the rules (1–4) described right before the statement
of the theorem. The first condition (LE) says thatch+(t1)∧∧∧ ch−(t2) is empty. The
second condition (R1) and the third condition (R2) respectively make sure that
one of thech+(th

3) and, respectively, one of thech−(th
4) containsch+(t1)∧∧∧ch−(t2).

11

Finally the fourth and more involved2 condition (CA) says that, every time we add
to t2 atoms oft1 so that we are no longer below anyth

3 then we must end up above
some of thetk

4.

We have already shown at the beginning of this Section an example of the sensi-
tivity of the subtyping relation to atoms. To obtain another, more concrete example
of this fact, suppose there are three atomserr1,err2,exc and consider the case
wheret2 = int, t1 = t2∨∨∨ err1∨∨∨ err2∨∨∨ exc, t3 = t2∨∨∨ exc, t4 = t2∨∨∨ err1∨∨∨ err2.
It is easy to see thatch+(t1)∧∧∧ ch−(t2) 6≤ ch+(t3)∨∨∨ch−(t4) since, for example, the
typech(t2∨∨∨err1) is a subtype of the left-hand side, but not of the right-hand side.
However iferr1 = err2, the subtyping relation holds, because of condition (CA).
Indeed in that case the indexing setH of Theorem 3.2 is a singleton. The only atom
in t1\\\t3 is err1, and it is true thatt4 ≤ t2∨∨∨err1.

As announced, Theorem 3.2 decomposes the subtyping problemof (10) into a finite
set of subtyping problems on simpler types (we must simplifythe right hand side
of inequation (10) by verifying the inequalities of conditions c1–c4, and possibly
perform the|H|+ |K|+ 1 checks for LE, R1 and R1)and into the verification of
condition (CA).

The condition (CA) involves a universal quantification on possibly infinite sets
t1\\\th

3, and therefore it is not possible to use it for a decision algorithm as it is.
This problem can be avoided thanks to the following proposition

Proposition 3.3 If we replace condition (CA) with

CA∗. Let Hf ⊆ H be the set of those indices h for which t1\\\th
3 is finite. For every

choice of atoms ah ≤ t1\\\th
3, with h∈ H f , there exists k∈ K such that tk4 ≤

t2∨∨∨
W

W

W

h∈H f
ah.

then Theorem 3.2 still holds.

Therefore it suffices to check the condition just for thet1\\\th
3 that are finite. This can

be done effectively provided that we are able to:

(1) decide whether a type is finite and
(2) if it is the case, list all its atoms.

We will assume that this is possible for base types and prove that this implies that
it is possible for all types.

Lemma 3.4 There is an algorithm that decides whether a type t is finite and if it is
the case, outputs all its atoms.

Theorem 3.5 The subtyping relation is decidable.

We do not discuss here the complexity of the decision algorithm, nor the possibility
of finding more efficient ways of doing it. We leave it for future work.

2 The original condition (CA) as it can be found in [CDV05] was even more involved. We
renew our gratituted to the anonymous referee who suggesteda major simplification.

12

4 The Cπ calculus

We shall present a variant of theπ-calculus, that exploits the type system of Section
2. We will present its syntax, semantics, and typing rules, and prove the decidability
of the typing relation.

4.1 Patterns

As we explained in the introduction, if we want to fully exploit the expressiveness
of the type system, we must be able to check the type of the messages read on
a channel. The simplest solution would be to add an explicit type-case process
(e.g. [M : t]P which reduces toP or 0 according whetherM is of type t or not).
Here, instead, we choose a more general approach, by endowing input actions with
CDuce patterns. Pattern matching includes dynamic type checks as a special case,
and fits nicely in the semantic subtyping framework.

Definition 4.1 (Patterns) Given a type algebraT , and a set of variablesV, a
patternp on(V,T) is a term generated by the following grammar

Patterns p: := x capture,x∈ V
| t type constraint,t ∈ T

| p∧∧∧ p conjunction
| p ||| p alternative

such that for every subterm p1∧∧∧ p2 of p we have Var(p1)∩Var(p2) = ∅, and for
every subterm p1|||p2 of p we have Var(p1) = Var(p2) (where Var(p) denotes the set
of variables ofV occurring in p).

Patterns are rather basic: they can test if a value is of a given type, capture it, and
combine these tests via conjunctions and disjunctions. So for instancex∧∧∧ t is the
pattern that captures a value inx if it is of type t. As a matter of fact, the patterns
above lack the main capability peculiar of general patternsthat is to deconstruct
values. The reason is that here we consider a minimal type system in which the
only type constructors are for channel types, and their values are not “constructed”
from simpler values (e.g. pairs of values for product constructor) but are constants.
So here patterns act more as a placeholder and they are interesting in view of the
extension of our language with recursive types (Section 5.2) product types (Sec-
tion 5.1) or other type constructors.

Following [FCB02, BCF03] we define the semantics of patternsdirectly on models.
A pattern is matched against an element of the domainD of a model of the types
and the matching returns either a substitution for the free variables of the pattern,
or a failure, denoted byΩ:

Definition 4.2 Given a modelJK : T → D , an element d∈ D , and a pattern p,
the matching of d with p, noted by d/p, is the element ofDVar(p) ∪{Ω} defined as
follows:

13

d/t = {} if d ∈ JtK
d/t = Ω if d ∈ J¬¬¬tK
d/x = {x 7→ d}

d/p1∧∧∧ p2 = d/p1⊗d/p2
d/p1|||p2 = d/p1 if d/p1 6= Ω
d/p1|||p2 = d/p2 if d/p1 = Ω

whereγ1⊗ γ2 is Ω whenγ1 = Ω or γ2 = Ω and the union of the two otherwise.

A quite useful property of the pattern matching above is thatthe set of all elements
for which a patternp does not fail is the denotation of a type. Since this type is
unique, we denote it by***p+++. In other terms, for every (well-formed) patternp, there
exists a unique type***p+++ such thatJ***p+++K = {d ∈ Dom | d/p 6= Ω}. Not only, but
this type can be calculated. Similarly, consider a patternp and a typet ≤ ***p+++, then
there is also an algorithm that calculates the type environment t/p that associates
to each variablex of p theexactset of values thatx can capture whenp is matched
against values of typet. Formally

Theorem 4.3 There is an algorithm mapping every pattern p to a type***p+++ such
that J***p+++K = {d ∈ D | d/p 6= Ω}.

Theorem 4.4 There is an algorithm mapping every pair(t, p), where p is a pattern
and t a type such that t≤ ***p+++, to a type environment(t/p) ∈ T Var(p) such that
J(t/p)(x)K = {(d/p)(x) | d ∈ JtK}.

For such basic patterns the proofs of the properties above are really straightforward.
What is remarkable is that these properties hold for polyadic Cπ with recursive
types, as well (Section 5.2).

4.2 The language

The syntax of our calculus is very similar to that of the asynchronousπ-calculus
a variant of theπ-calculus for which message emission is non-blocking. The latter
is generally considered as the calculus representing the essence of name passing
with no redundant operation. The variant we consider is verysimilar to the original
calculus, but we permit patterned input prefix and guarded choice between different
patterns on the same input channel.

Channels α ::= x variables
| ct constant

Messages M::= n constant
| α channel

Processes P::= αM output
| ∑i∈I α(pi).Pi patterned input
| P1‖P2 parallel
| (νct)P restriction
| !P replication

whereI is a possibly empty finite set of indexes,t ranges over the types defined in
Section 2.1 andpi are patterns as given in Definition 4.1. As customary we use the
convention that the empty sum corresponds to the inert process, denoted by0.

We want to comment on the presence of the simplified form of summation we have
adopted: guarded sum of inputs on a single channel with possibly different pat-
terns. Choice operators are very useful for specifying nondeterministic behaviours,

14

Messages
Γ ⊢ n : bn

(const) Γ ⊢ ct : ch(t)
(chan)

Γ ⊢ x : Γ(x)
(var)

Γ ⊢ M : s≤ t
Γ ⊢ M : t

(subs)

Processes

Γ ⊢ P
Γ ⊢ (νct)P

(new) Γ ⊢ P
Γ ⊢!P

(repl)
Γ ⊢ M : t Γ ⊢ α : ch−(t)

Γ ⊢ αM
(output)

t≤
W

W

W

i∈I***pi+++
Γ ⊢ α : ch+(t) Γ , t/pi ⊢ Pi

(input)
Γ ⊢ ∑i∈Iα(pi).Pi

Γ ⊢ P1 Γ ⊢ P2
(para)

Γ ⊢ P1‖P2

Fig. 3. Typing rules

but give rise to problems when considering implementation issues. Two main kinds
of choice have to be considered:external choicethat leaves the decision about the
continuation to the external environment (usually having it dependent on the chan-
nel used by the environment to communicate) andinternal choicethat is performed
by the process regardless of external interactions. Thanksto patterns we can offer
an externally controllable choice, where the type of the received message, not the
used channel, determines the continuation. Internal choice can also be modelled by
specifying processes that perform input on the same channelaccording to the same
pattern.

The other important difference with standard asynchronousπ-calculus is that we
distinguish between channel variables and channel constants and that the latter are
decorated by the type of messages they communicate. This corresponds to our intu-
ition that every box is intimately associated to the type of the objects it can contain.
In what follows we will call channel constants also “typed channels”, “boxes”, or
“channel values” to distinguish them from channel variables.

Thevaluesof the language are the closed messages, that is to say the typed channels
and the constants: v ::= n | ct .

We useV to denote the set of all values. Every value is associated to atype: every
constantn is associated to an atomic basic typebn (we also assume that every
atomic basic typebn has its corresponding basic valuen), while every channel value
is associated with the channel type that transport messagesof the type indicated in
the index. So all the values can be typed by the rules (const),(chan), and (subs)
of Figure 3 (actually with an emptyΓ) where in the (subs) subsumption rule the
≤ is the subtyping relation induced by the model built to proveTheorem 2.4 (see
Appendix A.2).

15

R[] ::= [] | R[]‖P | P‖R[] | (νct)R[]

P−→ Q ⇒ R[P] −→ R[Q] P′ ≡ P−→ Q ⇒ P′ −→ Q

P‖0 ≡ P P‖Q≡ Q‖P P‖(Q‖R) ≡ (P‖Q)‖R

(νct)0 ≡ 0 (νct)P≡ (νdt)P{ct
; dt} !P≡!P‖P

(νct1
1)(νct2

2)P≡ (νct2
2)(νct1

1)P for c1 6= c2

(νct)(P‖Q)≡ P‖(νct)Q for ct 6∈ fn(P)

whereP{ct
; dt} is obtained fromP by renaming all free occurrences of the

box ct into dt , and assumesdt is fresh.

Fig. 4. Context and congruence closure

4.3 Semantics

Let M = (DM,J K
M

) be any model (that is, it satisfies Definition 2.3).M induces a
subtyping relation≤M defined ass≤M t

def
⇐⇒ JsK

M
⊆ JtK

M
. Consider the typing

rules for Message in Figure 3, use for the subsumption rule (subs) the≤M relation,
and denote byΓ ⊢M M : t the corresponding typing relation.

Now consider this new interpretation functionJ K
V

: T →P(V) defined asJtK
V

=
{v | Γ ⊢M v : t}. It turns out that this interpretation, whatever the model is, satisfies
the model conditions of Section 2.3 and furthermore it generates the same subtyp-
ing relation as≤M. The circle we mentioned in the Introduction is now closed.

Theorem 4.5 (Model of values)Let (D ,J K) be a model and≤ andΓ ⊢ M : t be,
respectively, the subtyping and typing relations it induces. LetJtKV = {v | Γ ⊢ v :
t}. Then(V ,JK

V
) is a model and s≤ t ⇐⇒ JsK

V
⊆ JtK

V
.

Since values are elements of a model of the types, Definition 4.2 applies ford being
a value. We can thus use it to define the reduction semantics ofour calculus:

ctv ‖ ∑
i∈I

ct(pi).Pi −→ Pj [v/p j]

whereP[σ] denotes the application of substitutionσ to processP. The asynchronous
output of avalueon the boxct synchronises with an input on the same box only
if at least one of the patterns guarding the sum matches the communicated value.
If more than one pattern matches, then one of them is non-deterministically cho-
sen and the corresponding process executed, but before its execution the pattern
variables are replaced by the captured values. More refined matching policies (best
match, first match, . . .) can be easily encoded by a proper use of type combinators
in patterns. As usual the notion of reduction must be completed with reductions
in evaluation contexts and up to structural congruence, whose definitions are sum-
marised in Figure 4.

This operational semantics is the same as that ofπ-calculus but the actual process

16

behavior has been refined in two points:(i) communication is subjected to pattern
matching and(ii) communication can happen only along values (boxes).

The use of pattern matching is what makes it necessary to distinguish between
typed channels and variables: matching is defined only for the formers as they are
values, while a matching on variables must be delayed until they will be bound to
a value.

Since we distinguish between variables and typed channels,it is reasonable to
require that communication takes place only if we have a physical channel that
can be used as a support for it; thus, we forbid synchronisation if the channel is
still a variable. However there is a more technical reason torequire this. Con-
sider an environmentΓ = x : 0. By subsumption we haveΓ ⊢ x : ch(int) and
Γ ⊢ x : ch−(string). Then, according to the typing rules of our system (see later
on) the processxciao ‖ x(y).x(y÷ y) is well typed, in the environmentΓ, but it
would give rise to a run time error by attempting to divide thestringciao by itself:

xciao‖x(y).x(y÷y) −→ x(ciao÷ciao)

This reduction cannot happen in our calculus, because we cannever instantiate a
variable of type0 (from a logical viewpoint, this corresponds to the classical ex
falso quodlibetdeduction rule).

4.4 Typing

In Figure 3, we summarise typing rules that guarantee that, in well typed processes,
channels communicate only values that correspond to their type.

The rules for messages do not deserve any particular comment. As customary, the
system deduces only good-formation of processes without assigning them any type.
The rules for replication and parallel composition are standard. The rule for restric-
tion is slightly different since we do not need to store in thetype environment the
type of the channel3 . In the rule for output we check that the message is compatible
with the type of the channel.

The rule for input is the most involved one. The premises of the rule first infer the
typet of the message that can be transmitted over the channelα, then for each sum-
mandi they use this type to calculate the type environment of the pattern variables
(the environment(t/pi) of Theorem 4.4) and check whether under this environ-
ment the summand processPi is typeable. This is all that is needed to have a sound
type system. However the input construct is like a typecase/matching expression,
so it seems reasonable to perform a check that(i) patterns are exhaustive and(ii)
there is no useless case4 . The first check is performed by the side condition of the

3 Strictly speaking, we do not restrict variables but values,so it would be formally wrong
to store it inΓ. For the same reason,α-conversion is handled as a structural equivalence
rule.
4 In functional programming these checks are necessary for soundness since an expression

17

(input) rule: t ≤
W

W

W

i∈I***pi+++ checks whether pattern matching is exhaustive, that is
if for whatever value (of typet) sent onα there exists at least one patternpi that
will accept it (the cases cover all possibilities). For the second condition one could
naively think to add a second side condition such as***pi +++∧t 6= 0 for all i ∈ I (we did
this naivety in [CDV05]), which should check that the pattern matching is not re-
dundant, by verifying that there does not exists a patternpi that will fail with every
value of typet (no case is useless). However such a check is meaningful onlyif t
is thebestpossible type we can deduce for the messages arriving onα. In a system
with subsumption this condition can be always satisfied by considering a largert
(e.g.,t =

W

W

W

i∈I***pi+++), thus, without ensuring that all cases of the pattern matching are
useful. Therefore we postpone the verification of this property till the definition of
the typing algorithm (Section 4.5) when this “best” type will be available.

As usual the basic result is the subject reduction, precededby a substitution lemma.
The proof of the theorem relies on the semantics of channel types as set of boxes,
and can be found in Appendix B.2

Lemma 4.6 (Substitution)
– If Γ, t/p⊢ M′ : t ′ andΓ ⊢ v : t, thenΓ ⊢ M′[v/p] : t ′.
– If Γ, t/p⊢ P andΓ ⊢ v : t, thenΓ ⊢ P[v/p].

Lemma 4.7 (Congruence)If Γ ⊢ P and P≡ Q, thenΓ ⊢ Q.

Theorem 4.8 (Subject reduction) If Γ ⊢ P and P→ P′, thenΓ ⊢ P′.

4.5 Typing algorithm

The decidability of the subtyping relation does not directly imply decidability of the
typing relation (only semi-decidability is straightforward). The type algorithm is
obtained from the typing rules in a standard way, namely by deleting the subsump-
tion rule and embedding the checking of the subtyping relation in the elimination
rules, in our case the (output) rule. As it is often the case, the typing algorithm also
requires to compute a least upper bound of some given form. Inparticular, the al-
gorithmic version of the (input) rules requires us to compute the least type of the
form ch+(s) which is above a given typet, and it is not so evident that such a type
exists (observe that our type algebra isnota complete lattice). Nevertheless, it turns
out that such a type does exist (which gives us the minimum typing property) and
furthermore it can be effectively computed.

Lemma 4.9 (Upper bound channel)For every type s≤ ch+(1) there exists a least
type t such that ch+(t) is an upper bound of s. We denote such type byC (s).

The algorithmic rules are then defined as in Figure 5. Soundness and complete-
ness of these rules with respect to those in Figure 3 are completely straightforward:

non-complying to them may yield a type-error. In process algebræ non-compliance would
just block synchronisation.

18

Messages

Γ ⊢ n : bn
(const) Γ ⊢ ct : ch(t)

(chan)
Γ ⊢ x : Γ(x)

(var)

Processes

Γ ⊢ P
Γ ⊢ (νct)P

(new) Γ ⊢ P
Γ ⊢!P

(repl)
Γ ⊢ M : t Γ ⊢ α : s s≤ ch−(t)

Γ ⊢ αM
(output)

C (s)≤
W

W

W

i∈I***pi+++
Γ ⊢ α : s Γ , C (s)/pi ⊢ Pi

(input)
Γ ⊢ ∑i∈Iα(pi).Pi

Γ ⊢ P1 Γ ⊢ P2
(para)

Γ ⊢ P1‖P2

Fig. 5. Algorithmic rules

soundness is obtained by a trivial application of the subsumption rule, while com-
pleteness can be easily deduced thanks to the fact that no type is inferred for pro-
cesses (only good formation is checked), by using the fact that the typeC (s) in
the algorithmic (input) rule is always smaller than or equalto the type used by the
corresponding rule in Figure 3. Lemma 4.9 and the decidability of (C (s)/p) (given
by Theorem 4.4) immediatly yield the following result.

Theorem 4.10 The typing relation is decidable.

Finally, recall that in Section 4.4 we hinted that we cannot statically check that all
the branches of a pattern match are useful until we do not deduce the minimum
type of the message that a channel can transport. Note that the algorithmic rules
deduce for a channel its minimum type, and if this minimum type is, say,s, then
by definitionC (s) is the minimum type of the messages that the channel trasports.
Therefore in order to check the usefulness of every branch itsuffices to add to both
the (input) rules in Figure 3 and 5 the side condition∀i ∈ I ,***pi +++∧C (s) 6= 0, and all
the previous results carry along.

4.6 An example

We present here an example of aCπ process. Consider the following situation. A
web server is waiting on a channelα. The client wants the server to perform some
computation on values it will send to the server. The server is able to perform two
different kinds of computation, on values of typet1 (say arithmetic operations), or
on values of typet2 (say list sorting). At the beginning of each session, the client
can decide which operations it wants the server to perform, by sending a channel to
the server, along which the communication can happen. The server checks the type
of the channel, and provides the corresponding service.

P = α(x : ch+(t1)).!x(y).P1+α(x : ch+(t2)).!x(y).P2

where we used theCDuce convention for patterns according to whichx : t is syn-
tactic sugar forx∧∧∧ t In the above process the channelα has typech+(ch+(t1)∨∨∨
ch+(t2)). Note that, as explained in Section 2.4 (equation (8)),ch+(t1)∨∨∨ch+(t2) 6=
ch+(t1∨∨∨ t2). This means that the channel the server received onα will communi-

19

cateeitheralways values of typet1 or always values of typet2, and not interleaved
sequences of the two, asch+(t1∨∨∨ t2) would do.

As we discussed in the Introduction, this distinction is notpresent in analogous ver-
sions of process calculi where the axiomch+(t1)∨∨∨ch+(t2) = ch+(t1∨∨∨ t2) is present.
If such an axion were added to our theory, then we would program P defensively,
as if α had the (morally larger) typech+(ch+(t1∨∨∨ t2))

P′ = α(x).!(x(y : t1).P1+x(y : t2).P2)
which is a less efficient server, since it performs pattern matching every time it
receives a value.

5 Extensions and variations

5.1 Polyadic version

The first extension we propose consists in adding product to our type constructors.
This is pretty straightforward. It requires addingt ::= t××× t to the productions of
types,M ::= (M,M) to the productions of messages, andp ::= (((p1,,,p2))) to the pro-
ductions of patterns with the condition that for every subterm (((p1,,,p2))) of a pattern
we haveVar(p1)∩Var(p2) = ∅.

The extensional interpretation becomesE () : T →P(B+D2+JT K) and requires
E (t1××× t2) = Jt1K× Jt2K. This completely characterises the subtyping relation. A
semantic model can be built, in analogy with Section 2.2. Thesubtyping relation is
still decidable, as well as the typing relation.

The extensions described above suffice to obtain the polyadic calculus. In particular
projections can be encoded by pattern matching. By using product types, together
with the partially recursive types we show next, we can also encode more structured
data, like lists or XML documents.

5.2 Partially recursive types

The types introduced so far can be represented as finite labelled trees. Recursive
types are obtained without changing the syntax, by allowingtrees to be infinite. As
in the type system ofCDuce we require such trees to be regular (so as they are
finitely representable) and with the property that every infinite branch contains in-
finitely many nodes labelled by the product constructor (so as to avoid meaningless
recursive definitions such ast = t∧∧∧ t).

Moreover we require that every branch can contain only finitely many nodes la-
belled with channel constructor. This amounts to require that the number of nested
channel constructors is always bound. Or equivalently, if we were to define re-
cursive types with equations, this amounts to forbid the recursive variable being
defined to be used inside a channel constructor (such asx = ch(x)∨∨∨int).

20

The reason for this is that, without this restriction, it is not possible to find a model.
To see why, observe that we could have a recursive typet such that

t = b∨∨∨ (ch(t)∧∧∧ch(b))

for some nonempty base typeb. If we have a model, eithert = b or t 6= b. Suppose
t = b, thench(t)∧∧∧ch(b) = ch(b) andb= t = b∨∨∨ch(b). The latter impliesch(b)≤ b
which is not true whenb is a base type. Therefore it must bet 6= b. According to
our semantics this impliesch(t)∧∧∧ch(b) = 0, because they are two distinct atoms.
Thust = b∨∨∨0 = b, contradiction.

Types are therefore stratified according to how many levels of nesting of the channel
constructor there are and this stratification allows us to construct the model using
the same ideas as presented in Section 2. There are two main usages for arbitrary
nested recursion of channels: one is to type “self application”, that is a channel
that can carry itself; the other is for the definition of typedencodings. In our type
system, we can already type self application by using, for instance, the typech(1):
a channel that can carry everything, can clearly carry itself. Alternatively we can
recover fully recursive types if we restrict to alocal version ofCπ (see Section 5.4
below) which is also enough for encoding functional languages [CDV06].

Furthermore, note that recursion is still allowed with other type constructors, and a
recursive type can appear inside a channel constructor provided that the number of
occurrences of channel constructors is finite. For instancewe are allowed to define
the typech(IBlist), whereIBlist is the type of heterogeneous lists of booleans and
integers, defined as

IBlist = ((int∨∨∨bool)× IBlist)∨∨∨ch(0)

(we usech(0) as the type of the empty list). Formally we have:

Definition 5.1 (Types) A type t is a possibly infinite regular tree generated by the
following productions

Types t ::= b | ch+(t) | ch−(t) | t××× t | 0 | 1 | ¬¬¬t | t∨∨∨ t | t∧∧∧ t

and such that on every infinite branch it has infinitely many occurrences of the
product constructor and finitely many occurrences of the channel constructors.

With such recursive types it becomes interesting to use recursive patterns. If we
relax the condition defined in Section 5.1 for pair patterns and introduce a “constant
pattern” as a case base for recursive pattern, then we can express the powerful
patterns ofCDuce.

Definition 5.2 (Patterns) A pattern p is a possibly infinite regular tree generated
by the following productions

Patterns p ::= x | t | (((p,,,p))) | (((x :=:=:= n))) | p∧∧∧ p | p|||p

where x denotes a variable, t a type, and n a basic value. Additionally we require
that on every infinite branch of p there are infinitely many occurrences of the pair
pattern, that for every subterm p1∧∧∧ p2 of p Var(p1)∩Var(p2) = ∅, and that for
every subterm p1|||p2 of p Var(p1) = Var(p2). Their semantics is defined as follows

21

d/t = {} if d ∈ JtK
d/t = Ω if d ∈ J¬¬¬tK
d/x = {x 7→ d}

d/(((x :=:=:= d))) = {x 7→ d}

d/p1∧∧∧ p2 = d/p1⊗d/p2

d/(((p1,,,p2))) = d/p1⊗d/p2

d/p1|||p2 = d/p1 if d/p1 6= Ω
d/p1|||p2 = d/p2 if d/p1 = Ω

where γ1 ⊗ γ2 is Ω when γ1 = Ω or γ2 = Ω and otherwise is the element
γ ∈ DDom(γ1)∪Dom(γ2) such that:

γ(x) =





γ1(x) if x ∈ Dom(γ1)\Dom(γ2),
γ2(x) if x ∈ Dom(γ2)\Dom(γ1),
(γ1(x),γ2(x)) if x ∈ Dom(γ2)∩Dom(γ1).

Let us give an example of recursive pattern that uses a constant pattern(((x :=:=:= n))). If
we match a value of the typeIBlist defined above, against the recursively defined
patternp=(((x : int,,,p)))|||(((,,,p)))|||(((x :=:=:= nil0))), then we capture inx the list of all integers
occurring in the matched value. More in details, the patternis composed of three
alternative subpatterns, each subpattern being applied only if the preceding ones
fail. The first subpattern matches if the head of the list is oftypeint. In that case
it captures the head inx and recursively applies the pattern to the tail. If the head
is not of typeint, then the second patterns skips it, and recursively appliesthe
pattern to the tail. The constant pattern is applied only if the previous two patterns
failed, that is if the matched value is not a pair (head,tail). This means that the
value is the empty list, and therefore we associatenil0 to x. The third case of the
the definition ofγ states that for the whole pattern,x is associated to the list—
actually the pair (head,tail)—of the values captured byx in each pair subpattern.
Both Theorems 4.3 and 4.4 hold also for this extension (the proofs are similar to
those found in [FCB02]) and the algorithm of the latter deduces for x the type
t = (int× t)∨∨∨ch(0), that is the type of the lists of integers.

This kind of recursive types and patterns are enough to encode XML data types and
manipulate them̀a la CDuce. The reader can refer to [BCF03] for more details.

5.3 Arrow types

We can extend the type system further by adding function types, so that processes
could sendCDuce expressions as messages. To construct the model, we need to
combine the techniques used forCDuce with the ones presented in this work.

However, we still cannot get full recursive types, due to thelimitation described
above. Moreover, we do not know whether the subtyping relation for this system
is decidable. The techniques used for the simple system cannot be extended here,
because we do not know how to decide whether an arrow type denotes a finite set.

22

5.4 The local calculus

We do not investigate in detail the last two extensions proposed above, because,
although theoretically challenging, they do not have much practical interest. In the
applications, we may not want to have the full power of theπ-calculus. In particular
it has been observed [Mer00] that theinput capability, the ability to use in input a
received channel, is difficult to implement. In practice it is convenient to restrict to
the so-calledlocal variant of theπ-calculus [Mer00], where the input capability is
not allowed.

In our case this restriction has other important consequences:

• the covariant channel typech+(t) is no longer necessary. The example of Section
5.2 cannot be constructed, and indeed it is possible construct a model of the types
with full recursion. The absence of input channel types makes also the decision
algorithm considerably simpler, as condition CA is invokedonly when channel
types of different polarity are present. In particular the subtyping of channel types
can be reduced to the following condition:ch−(t) ≤

W

i∈I ch−(ti) if and only if
there existsi ∈ I such thatti ≤ t.

• it is possible to define a type-respecting encoding ofCDuce intoCπ, similar to
the Milner-Turner encoding of the simply typedλ-calculus inπ (see for instance
[SW02]). This makes explicit arrow types not necessary. However the standard
translation of arrow types into channel types does not respect equality, therefore
to devise a type-respecting encoding a more subtle approachwas needed.

The contribution described above was carried out by the firstand the third authors,
together with Mariangiola Dezani [CDV06].

5.5 Alternative models

Hitherto, the whole discussion is based on the intuition that channels always have
both input and output capabilities, intuition that we materialised with the definition
of the model given in Appendix A.2. However, this is just aparticular model based
on aparticular intuition. As a matter of fact, the semantic subtyping approach pro-
vides two degrees of freedom in the definition of a model and, thus, of a subtyping
relation:

(1) We can give different definitions of the extensional interpretation (i.e., Defini-
tion 2.2).

(2) Once the extensional definition is set, there may exist different models, that
is, different premodels that satisfy Definition 2.3 for the givenE .

Both knobs can be turned to tune the subtyping relation, but between them the one
that really matters is the first one.

The extensional interpretation is the one that devises the characteristics of the sub-
typing relation: from our experience, different models induce slight variations to
the subtyping relation, if any at all. For instance, in the definition of CDuce the

23

chosen extensional interpretation admits models that induce different subtyping
relations [FCB02]. These models, however are rather difficult to find and differ
only in the degree of sharing in recursive types [Fri04]. Forthis reason, we believe
that, once the extensional interpretation is defined, the existence of a model matters
much more than its definition. Moreover in our case we conjecture that all models
for the extensional interpretation of Definition 2.2 inducethe same subtyping rela-
tion. This explains why we focused on the extensional interpretation and relegated
the definition of the model to Appendix A.2.

On the contrary it can be very interesting to study alternative definitions of the
extensional interpretation, since they correspond to different intuitive semantics
and induce substantially different subtyping relations. The reason why we chose our
current definition for the extensional interpretation is that it allows us to mix and
compare channels of different polarities. This interpretation pushed the approach
to its limits, as the issues with recursion and atomic types clearly show. But it
is possible to consider different interpretations, in order to either recover existing
subtyping relations, or make the subtyping relation more robust with respect to
some features. As an example, let us briefly hint at four alternative definitions of
the extensional interpretation.

(1) We can define the extensional interpretation so that it reflects an intuitive
model in which not only read-and-write channels but also read-only channels
and write-only channels are present. Here we would interpret ch+(t) as the set
of all read-only and read-and-write channels for a typessmaller than or equal
to t (and similarly forch−(t)). Althoughch(t) would still be the intersection
of ch+(t) andch−(t), this would substantially change the subtyping relation
(there no longer is a type of all channels, channels of different polarities are
less comparable, etc.) yielding a subtyping relation closer to the one defined
by Pierce and Sangiorgi [PS96].

(2) We can define an extensional interpretation sensitive tothe identity of indi-
vidual channels, that is, an interpretation in which the read-and-write channel
type no longer is atomic. We would then obtain a subtyping relation which
would be compatible with a language in which pattern matching can also test
the name of a channel.

(3) We can draw inspiration from the models ofCDuce and interpretch+(t) as
the set of (the interpretations of) functions of typeunit→→→ t, ch−(t) as the
set of (the interpretations of) functions of typet →→→ unit, andch(t) as their
intersection. Once more this would induce a substantially different subtyping
relation. In particular, this interpretation is compatible with an unconstrained
definition of recursive types: since inCDuce the intersection of two function
spaces is never empty, then the counterexample given in Section 5.2 no longer
works (b � t holds in all models).

(4) We can define a variant of the previous interpretation which instead of sin-
gle functions uses records of functions to interpret channels. In particular
we would interpretch+(t) as the record type{read: unit →→→ t}, ch−(t)

24

as the record type{write: t →→→ unit}, and finallych(t) as the record type
{read: unit→→→ t, write: t →→→ unit}. This interpretation, too, is compati-
ble with full recursion (as an aside, this is the way in which references types
are encoded and implemented in the languageCDuce, which explains why
pointers are possible even ifCDuce features fully recursive types) but keeps
the interpretation of read-only, write-only, and read-and-write channel types,
distinct. This interpretation should also induce a conservative extension of the
Pierce and Sangiorgi’s subtyping relation.

The four above are just some of the possible different interpretations for channel
types. Although in this work we considered one particular interpretation, we did not
do so with the purpose to fix it as the best possible interpretation, but rather with
the purpose to use it to illustrate how to apply the techniqueof semantic subtyping
to mobile processes.

6 Conclusion

Pierce and Sangiorgi’s subtyping for theπ-calculus, though very elegant, is struc-
turally very poor: it essentially amounts to compare the levels of nesting of chan-
nel constructors with the same polarity. In order to obtain amuch richer and ex-
pressive subtyping relation, we combine here their types with union, intersection,
and negation types. This is not a new idea—at least for what concerns unions and
intersections—, but the originality of our approach is thatthe theory is semantically
justified via a set theoretic interpretation of types as setsof values, which looks as
quite a reasonable interpretation. The naturalness of the interpretation is justified
and supported by several technical aspects, and reinforcedby the results exposed in
the follow up of this work [CDV06] where, together with Mariangiola Dezani, the
first and third author devised a local version ofCπ and defined a type-preserving
translation ofCDuce into the latter.

While the interpretation is very simple, its consequences are not. We have seen
that deciding subtyping requires to enumerate and check oneby one the atoms
that compose the types involved in the verification. Such a degree of complexity is
present only in the general framework. This is acceptable since our work aims at
establishing the foundational basis of subtyping forπ-calculus. Of course, such a
degree of complexity makes the calculus unfit for practical applications. However
in a practical scenario one would rather resort to the local version ofCπ as defined
in [CDV06] and, in that case, the extra complexity of subtyping disappears, the
subtyping algorithm being reduced to perform classic structural checks on syntactic
types.

The fact that here we have to descend to the very structure that composes types (the
world “atoms” is quite suggestive in this case) is not overlysurprising. The point is
that we are touching deep into the semantics of computations. This is witnessed by
the fact that some characteristics (in some case, some “oddities”) of Cπ are shared
by completely different paradigms for which a semantic subtyping technique was

25

used. For instance,CDuce function values require some special non-structural typ-
ing rule which uses negated literals. This kind of rule becomes necessary also for
Cπ as soon as one consider its local variant [CDV06]. A much morestriking corre-
spondence happens with atoms: we have shown that in order to decide the subtyping
relation inCπ one must be able to decide the atomicy of the types. Quite surpris-
ingly the same problem appears inλ-calculus (actually, in any semantic subtyping
based system) as soon as we try to extend it with polymorphic types. Imagine that
we embed our types (whatever they are) with type variablesX,Y, Then the
“natural” (semantic) extension of the subtyping relation is to quantify the interpre-
tations over all substitutions for the type variables:

t1 ≤ t2
def
⇐⇒ ∀s.Jt1[s/X]K⊆ Jt2[s/X]K . (13)

Consider now the following inequality (taken from [HFC05])wheret is a closed
type

(t,X)≤ (t ×¬¬¬t)∨∨∨ (X× t). (14)
It is easy to see that this inequality holds if and only ift is atomic. If t is not
atomic, then it has at least one non-empty proper subtype, and (13) does not hold
when we substitute this subtype forX. If insteadt is atomic, then for allX either
t ≤ X or t ≤¬¬¬X, whence (14). Note that this example does not use any fancy or
powerful type constructor, such as arrows or channels: it only uses products and
type variables. So it applies to all polymorphic extensionsof semantic subtyping
where, once more, deciding subtyping reduces to deciding whether some type is
atomic or not.

These and other similarities are discussed in [Cas05] to which the reader can refer
for deeper analysis and a discussion on perspectives.

Acknowledgements. This article, as well as the follow up in which Mariangi-
ola Dezani was involved, were conceived in thelingerie of the École Normale
Supérieure in Paris, on the white board near the Lavazza coffee machine. A neces-
sary treat for an all-Italian crew. Besides providing the white board and the coffee
machine (though, alas, we had to provide the coffee) theÉcole Normale Supérieure
offered Rocco a visiting professorship grant. Funding was also partially provided
by the European FET Project MyThS, and by French ACI project Tralala. We are
also grateful to Alain Frisch for discussions. We are extremely grateful to an anony-
mous referee who was able to simplify condition CA (the new condition is equiva-
lent to the original, but much simpler and intuitive).

We want to warmly thank Stefano Berardi and Ugo de’ Liguoro for having in-
vited us to contribute to this issue in honour of Mario Coppo,Mariangiola Dezani-
Ciancaglini, and Simona Ronchi della Rocca. A work about adding union and in-
tersection types (besides negation) to process algebrae seemed to us an appropriate
tribute to pay to the persons that founded this branch of typetheory. It is for us an
honour and a real pleasure to have this opportunity to express all the admiration,
respect, and friendship we have for them.

26

References

[AB05] L. Acciai and M. Boreale. XPi: A typed process calculus for XML messaging.
In FMOODS, number 3535 in LNCS, pages 47–66. Springer, 2005.

[BCF03] V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-friendly general
purpose language. InICFP ’03, 8th ACM International Conference on
Functional Programming, pages 51–63, Uppsala, Sweden, 2003. ACM Press.

[Bou92] G. Boudol. Asynchrony and theπ-calculus. Research Report 1702,
INRIA, http://www.inria.fr/rrrt/rr-1702.html. Also available from http://www-
sop.inria.fr/mimosa/personnel/Gerard.Boudol.html, 1992.

[Cas05] G. Castagna. Semantic subtyping: challenges, perspectives, and open problems.
In ICTCS 2005, Italian Conference on Theoretical Computer Science, number
3701 in Lecture Notes in Computer Science, pages 1–20. Springer, 2005.

[CDV05] G. Castagna, R. De Nicola, and D. Varacca. Semantic subtyping for theπ-
calculus. InLICS ’05, 20th Annual IEEE Symposium on Logic in Computer
Science. IEEE Computer Society Press, 2005.

[CDV06] G. Castagna, M. Dezani Ciancaglini, and D. Varacca.Encoding CDuce
into the Cπ-calculus. InCONCUR 2006, 17th. International Conference on
Concurrency Theory, number 4137 in LNCS, pages 310–326. Springer, 2006.

[CF05] G. Castagna and A. Frisch. A gentle introduction to semantic subtyping. In Proc.
of PPDP ’05, the 7th ACM SIGPLAN Int. Symp. on Principles and Practice
of Declarative Programming,ACM Press (full version) andICALP ’05, 32nd
Int. Colloquium on Automata, Languages and Programming,LNCS n. 3580,
Springer (summary), Lisboa, Portugal, 2005. Joint ICALP-PPDP keynote talk.

[CLP06] S. Carpineti, C. Laneve, and L. Padovani. Piduce – a project for experimenting
web services technologies. Unpublished manuscript. Available athttp://www.
cs.unibo.it/PiDuce/#pt, 2006.

[FCB02] A. Frisch, G. Castagna, and V. Benzaken. Semantic Subtyping. InLICS ’02,
17th Annual IEEE Symposium on Logic in Computer Science, pages 137–146.
IEEE Computer Society Press, 2002.

[Fri04] A. Frisch. Théorie, conception et réalisation d’un langage de programmation
fonctionnel adapt́e à XML. PhD thesis, Université Paris 7, December 2004.

[HFC05] H. Hosoya, A. Frisch, and G. Castagna. Parametric polymorphism for XML. In
POPL ’05, 32nd ACM Symposium on Principles of Programming Languages.
ACM Press, 2005.

[HR02] M. Hennessy and J. Riely. Resource access control in systems of mobile agents.
Information and Computation, 173:82–120, 2002.

[HT91] K. Honda and M. Tokoro. An object calculus for asynchronous communication.
In Proc. ECOOP 91, volume 512 ofLNCS, pages 133–147. Springer, 1991.

27

[Mer00] M. Merro. Locality in the pi-calculus and applications to distributed objects.
PhD thesis, Ecole des Mines de Paris, Nice, France, 2000.

[NFPV00] Rocco De Nicola, Gian Luigi Ferrari, Rosario Pugliese, and Betti Venneri.
Types for access control.Theor. Comput. Sci., 240(1):215–254, 2000.

[PS96] B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes.
Mathematical Structures in Computer Science, 6(5), 1996.

[Sew98] P. Sewell. Global/local subtyping and capability inference for a distributedπ-
calculus. InProc. of 25th ICALP, volume 1443 ofLNCS, pages 695–706, 1998.

[SW02] D. Sangiorgi and D. Walker.Theπ-calculus. Cambridge University Press, 2002.

[YH99] N. Yoshida and M. Hennessy. Subtyping and locality indistributed higher order
processes. InProc. of 10th CONCUR, LNCS n. 1664, pages 557–572, 1999.

A Proofs from Sections 2 and 3

A.1 Characterising inclusion (Theorem 3.2 and Proposition3.3)

In this section we first prove Theorem 3.2 and then strengthenthe result as in Propo-
sition 3.3.

We recall that in a boolean algebra, anatom is a minimal nonzero element. A
boolean algebra isatomic if every nonzero element is greater than or equal to an
atom. It is easy to prove that an atomic boolean algebra is equivalent to a subset of
the powerset of its atoms.

Let (D,∧∧∧,∨∨∨,0,1) be an atomic boolean algebra where, as customary,d′ ≤ d if and
only if d′∨∨∨d = d. For everyd ∈ D we denote↓d (that is, the set of all elements
smaller than or equal tod) asch+(d) and↑d (that is, the set of all elements larger
than or equal tod) asch−(d). We want to give an equivalent characterisation of the
equation

\

i∈I

ch+(di
1)∩

\

j∈J

ch−(d j
2) ⊆

[

h∈H

ch+(dh
3)∪

[

k∈K

ch−(dk
4)

that does not use the “operators”ch+(),ch−(). Notice that
\

i∈I

ch+(di
1) = ch+(

^

i∈I

di
1) and

\

j∈J

ch−(d j
2) = ch−(

_

j∈J

d j
2) .

Also, if there existh,h′ such thatdh′
3 ≤ dh

3, then we can ignoredh′
3 asch+(dh′

3) ⊆
ch+(dh

3). Dually for thedk
4. Therefore we can concentrate on the case

ch+(d1)∩ch−(d2) ⊆
[

h∈H

ch+(dh
3)∪

[

k∈K

ch−(dk
4)

where no twodh
3 are comparable, and nodk

4 are comparable.

The first case in which the inclusion holds is whench+(d1)∩ch−(d2) = ∅, which
happens exactly whend2 6≤ d1. If d2 ≤ d1, without loss of generality we can also
assume thatdh

3 ≥ d2 for all h ∈ H and thatdk
4 ≤ d1 for all k ∈ K. This is because

28

if dh̄
3 6≥ d2 for someh̄ then no element ofch−(d2) can be inch+(dh̄

3). We can thus
ignore such sets to test for the inclusion, and similarly forthedk

4’s.

The inclusion surely holds if for somēh we haved1 ≤ dh̄
3, or if for somek̄ we have

d2 ≥ dk̄
4, since then, for instance in the former case,ch+(d1) is contained inch+(dh̄

3)
and so is its intersection withch−(d2). The most difficult case occurs when

• d2 ≤ d1;
• for all h∈ H, dh

3 ≥ d2;
• for all k∈ K, dk

4 ≤ d1;
• for all h∈ H, dh

3 6≥ d1;
• for all k∈ K, dk

4 6≤ d2.

The way of thinking the inclusion is the following. (From nowon it will be easier to
think of D as a subset of the powerset of its atoms; therefore we will sometimes say
“contained” rather than “smaller”, and so on.) Consider ad in ch+(d1)∩ch−(d2).
If d is not below any of thedh

3 then it must be above one of thedk
4. Suppose there is

an elementx of d1 which is in nodh
3 (more precisely, suppose that there is an atom

d such thatd≤ d1 and for allh, d 6≤ dh
3; to stress that it is an atom denoted by {x}).

Thend2∨{x} is not contained in any of thedh
3, and it must contain one of thedk

4.
This implies that for suchdk

4, dk
4 \d2 ≤ {x} 5 . Consider now two elementsx1,x2 in

d1 such that ifx1 belongs todh
3 thenx2 does not belong todh

3. Thend2∨{x1,x2} is
not contained in any of thedh

3, and it must contain one of thedk
4. This implies that

for suchdk
4, dk

4 \d2 ≤ {x1,x2}.

More generally: for everyh ∈ H choose an elementxh ∈ d1\dh
3. Clearly we have

thatd2∨{xh | h∈ H} is not contained in any of thedh
3. Reasoning as above we then

have that there is adk
4 such thatdk

4 \d2 ≤ {xh | h∈ H}.

This proves the necessity of condition (CA): for every choice of xh ∈ d1\dh
3 there

must be adk
4 such thatdk

4 \d2 ≤ {xh | h∈ H}.

We argued that the condition (CA) is necessary. It is also sufficient: if the condition
holds, every setd included ind1, containingd2, and which is not contained in any
of thedh

3, must contain a set of the formd2∨{xh | h∈ H}: just pick one witness of
noncontainment for everydh

3. Thusd contains one of thedk
4.

We can strengthen the result as stated in Proposition 3.3. Consider the case where
for someh the setsd1\dh

3 are infinite. LetHi ⊆ H be the set of suchh. Pick h̄∈ Hi ,
and letH̄ = H \{h̄}. Since there are only finitely manydk

4, the condition is satisfied
if and only if for at least two (in fact infinitely many) different choicesx′

h̄
andx′′

h̄
we have that the samedk

4 satisfiesdk
4 \ d2 ≤ {xh | h ∈ H̄}∨∨∨ {x′

h̄
}, anddk

4 \ d2 ≤

{xh | h ∈ H̄}∨∨∨ {x′′
h̄
}. Therefore we must havedk

4 \ d2 ⊆ {xh | h ∈ H̄}. Repeating

this for every index inHi , we conclude thatdk
4 \ d2 ≤ {xh | h ∈ H \Hi}. Noting

that H \Hi = H f , we conclude the proof that the condition (CA) is equivalentto

5 It is in fact dk
4 \d2 = {x} , sincedk

4 6≤ d2.

29

condition (CA∗): for every choice ofxh ∈ d1\dh
3, h∈ H f , there must be adk

4 such
thatdk

4 \d2 ≤ {xh | h∈ H f }. (We could improve further by considering only those
d1\dh

3 whose cardinality is not greater than the number ofdk
4 - we do not need this

for our purposes.)

A.2 The existence of a model

We shall construct here a model for the simplest of our type systems. This amounts
to build a pre-model and then show that it satisfies Definition2.3. To understand
the definitions and the proofs in this section, it is advisable to read first Section 3
and Appendix A.1.

Types are stratified according to the height of the nesting ofthe channel constructor.
We define the height functionℏ(t) as follows:

– ℏ(b) = ℏ(0) = ℏ(1) = 0;
– ℏ(ch(t)) = ℏ(ch+(t)) = ℏ(ch−(t)) = ℏ(t)+1;
– ℏ(t1∨∨∨ t2) = ℏ(t1∧∧∧ t2) = max(ℏ(t1),ℏ(t2));
– ℏ(¬¬¬t) = ℏ(t).

Then we setTn
def
= {t | ℏ(t)≤ n} .

Our pre-model for the types is built in steps. We start by providing a model for
types of height 0, that is types inT0. Note that we must define the semantics only
for type constructors, because the interpretation of the combinators is determined
by the definition of pre-model. The only constructors of height 0 are the basic
types, for these we assume existence of a universe of interpretationB. We also
assume that every basic typeb has an interpretationBJbK ⊆ B. Finally, we need

a small technicality: we add to our types of height 0 the types

k︷ ︸︸ ︷
ch(. . .(ch(0))), that

we denote here ask. Although at higher levels these types are just syntactic sugar,
we need them at level 0 to witness the existence of infinitely many channel types.
The pre-model at level 0 is exactly formed by the basic types plus the positive
natural numbers to model thek. ThereforeD0 = B + N+ with JbK0 = BJbK and
JkK0 = {k} . The boolean combinators are interpreted by using the corresponding
set-theoretic combinators, according to Definition 2.1.

Using this pre-model we define a subtyping relation overT0 ast ≤0 t ′ if and only
if JtK0 ⊆ Jt ′K0. We shall denote by=0 the corresponding equivalence.

Now suppose we have a pre-modelDn for Tn, with corresponding preorder≤n and
equivalence=n. We call T̃n the set of equivalence classesTn/=n. ThenDn+1 is
defined as follows:

Dn+1
def
= B+ T̃n .

with the following interpretation of channel types:
– Jch+(t)Kn+1 = {[t ′]=n | t ′ ≤n t};
– Jch−(t)Kn+1 = {[t ′]=n | t ≤n t ′}.

In principle each of these pre-models defines a different preorder between types.

30

However, all such preorders coincide in the following sense:

Proposition A.1 Let t, t ′ ∈ Tn and k,h≥ n, then t≤k t ′ if and only if t≤h t ′.

Proof: To carry out the proof we use an interesting fact: every singleton of our pre-
models is denoted by some type. For elements ofB this was an assumption. For
elements of̃Tn, observe that the singleton{[t]=n} is denoted by the typech(t).

Suppose we have a modelDn for Tn, with corresponding preorder≤n and equiva-
lence=n. We callT̃n the set of equivalence classesTn/ =n. Then we setDn+1

def
=

B+ T̃n, with the semantics of the channel types being

Jch+(t)Kn+1 = {[t ′]=n | t ′ ≤n t} ;
Jch−(t)Kn+1 = {[t ′]=n | t ≤n t ′} ;
Jk+1lKn+1 = {[k]=n} .

Note that now the semantics of 1l= ch(0) is the expected one, and in general the
semantics ofk+1l coincides with the semantics ofch(k). Therefore in the seman-
tics at levels greater than 0 we can appropriately desugar the ks, and ignore their
existence.

When is a typet empty? Given a typet we put it in disjunctive normal form. Clearly
t is empty if and only if all summands are empty. If a summand contains literals
of both basic types and channel types it is easy to decide emptiness: if it contains
two positive literals of different kinds, then it is empty. If the positive literals are
all of one kind, it is empty if and only if it is empty when removing the negative
literals of the other kind. Finally the intersection of onlynegative literals is empty
if the two kinds separately cover their own universe of interpretation. (That is if the
union of all negated basic types isB and similarly for the channel types.)

Therefore it is enough to check emptiness for intersectionsof literals of one kind
only. For base types:

^

^

^

b∈P

b∧∧∧
^

^

^

b∈N

¬¬¬b .

For channel types:
^

^

^

i∈I

ch+(t i
1)∧∧∧

^

^

^

j∈J

ch−(t j
2)∧∧∧

^

^

^

h∈H

¬¬¬ch+(th
3)∧∧∧

^

^

^

k∈K

¬¬¬ch−(tk
4) .

Using equations (5) and (6) of Section 2 we can simplify the last expression to

ch+(t1)∧∧∧ch−(t2)∧∧∧
^

^

^

h∈H

¬¬¬ch+(th
3)∧∧∧

^

^

^

k∈K

¬¬¬ch−(tk
4) .

To prove Proposition A.1, we now prove by induction the following statement: let
t ∈ Tn, then

• t =n 0 if and only if t =n+1 0;
• |t|n = l if and only if |t|n+1 = l ;

where|t| denotes the cardinality oft.

31

We start by the casen = 0. The “algorithm” for checking emptiness works in the
same way for basic types. The only difference occurs for the typesk. The condition
to check at level 0 is the following

N∩
\

k∈P

JkK0 ⊆
[

k∈N

JkK0

which can be true only if there are two differentk∈ P or if the onlyk in P is also in
N. It is important here thatN is infinite, so no finite union of singletons can cover
it. Therefore the condition above is equivalent to

T̃0∩
\

k∈P

JkK1 ⊆
[

k∈N

JkK1

and thereforet =0 0 if and only if t =1 0. As for the cardinality: the proof is more
general and it is the same as the inductive step case that we show next.

For the inductive step suppose that we know that for every type t ∈ Tn we have

• t =n 0 if and only if t =n+1 0;
• |t|n = l if and only if |t|n+1 = l .

Now take a typet ∈ Tn+1, we want to prove that

• t =n+1 0 if and only if t =n+2 0;
• |t|n+1 = l if and only if |t|n+2 = l .

Again the “algorithm” for checking the emptiness of basic types does not change.
In the case of channel types we have to check that

Jch+(t1)Kn+1∩ Jch−(t2)Kn+1 ⊆
[

h∈H

Jch+(th
3)Kn+1∪

[

k∈K

Jch−(tk
4)Kn+1

if and only if

Jch+(t1)Kn+2∩ Jch−(t2)Kn+2 ⊆
[

h∈H

Jch+(th
3)Kn+2∪

[

k∈K

Jch−(tk
4)Kn+2 .

As argued in the previous section, the first condition is equivalent to:

LE. t2 6≤n t1 or
R1. ∃h∈ H such thatt1 ≤n th

3 or
R2. ∃k∈ K such thattk

4 ≤n t2 or
CA∗ the involved condition involving≤n and atoms.

The induction hypothesis gives us easily the equivalence ofthe first three conditions
at levelsn andn+1. For the condition (CA∗) note first that

• t2 ≤n t1
• for all h∈ H, th

3 ≥n t2
• for all k∈ K, tk

4 ≤n t1
• for all h∈ H, th

3 6≥n t1
• for all k∈ K, tk

4 6≤n t2

are equivalent to

• t2 ≤n+1 t1
• for all h∈ H, th

3 ≥n+1 t2
• for all k∈ K, tk

4 ≤n+1 t1
• for all h∈ H, th

3 6≥n+1 t1
• for all k∈ K, tk

4 6≤n+1 t2

because of the induction hypothesis.

We have to check that the condition (CA∗):

32

Let H f ,n be the set ofh ∈ H such that|t1\\\th
3|n finite. For everyah ∈ Atomn,

ah ≤n t1\\\th
3, h∈ H f ,n, there must be atk

4 such thattk
4\\\t2 ≤n

W

h∈H f ,n
ah.

is equivalent to the same condition where we replace all then with n+1.

Recall that since all singletons are denoted, atoms are exactly the singleton types.
We need a lemma to prove that the condition (CA∗) at leveln works on exactly the
same atoms as at leveln+1:

Lemma A.2 Suppose that for every t∈ Tn

– t =n 0 if and only if t=n+1 0;
– |t|n = l if and only if |t|n+1 = l.

Pick t∈Tn and an atom a∈Tn+1. If a≤n+1 t and|t|n is finite, then there exists an
atom a′ ∈ Tn with a=n+1 a′.

Proof: suppose|t|n = l with l finite. Since every singleton is denoted,t =n a1∨∨∨
. . .∨∨∨al for disjoint n-atomsai . Then the same equality is true at leveln+1. Since
a≤n+1 t, thena≤n+1 a1∨∨∨ . . .∨∨∨al from which we derive thata =n+1 ai for somei.
Thusa′ = ai satisfies the required condition.2

We are now going to check the equivalence of the conditions.

Suppose it is true for then+ 1 case. Then pick a choice ofn-atomsah, h ∈ H f ,n.
By the induction hypothesis theah are n+ 1-atoms, too. Also, by the induction
hypothesis|t1\\\th

3|n+1 is finite if and only if |t1\\\th
3|n is finite. ThusH f ,n = H f ,n+1.

Since (CA∗) is true at leveln+ 1, then there must be atk
4 such thattk

4\\\t2 ≤n+1
W

h∈H f ,n+1
ah. Which impliestk

4\\\t2 ≤n
W

h∈H f ,n
ah.

Conversely suppose it is true forn. Pick a choice ofn+ 1-atomsah, h ∈ H f ,n+1.
If one of theseah is not equivalent to ann-atom, then by Lemma A.2,|t1\\\th

3|n+1

would be infinite. Thus we can assume that allah aren-atoms. As above we have
H f ,n = H f ,n+1, and since (CA∗) is true at leveln, there must be atk

4 such that
tk
4\\\t2 ≤n

W

h∈H f ,n
ah. Which impliestk

4\\\t2 ≤n+1
W

h∈H f ,n+1
ah.

We have now to prove the condition on the cardinality. We start by observing that
all the atoms we have described above (when we proved that every singleton is
denoted) are atoms independently of the level. They are atoms because of their
shape. We now prove the following

• |t|n+1 = l implies|t|n+2 = l ;
• |t|n+1 ≥ l implies|t|n+2 ≥ l .

from which we can conclude|t|n+1 = l if and only if |t|n+2 = l .

Suppose|t|n+1 = l . Thent =n+1 a1∨∨∨ . . .∨∨∨al for some disjoint atoms. Thust =n+2

a1∨∨∨ . . .∨∨∨al , and since theai are still atoms (and they are still disjoint),|t|n+2 = l .

Suppose|t|n+1 ≥ l , thent ≥n+1 a1∨∨∨ . . .∨∨∨al for some disjoint atoms. Thust ≥n+2

a1∨∨∨ . . .∨∨∨al , and since theai are still atoms (and they are still disjoint),|t|n+2 ≥ l .
2

33

We finally observe that adding thek to our types is not restrictive, ask =k chk(0).

Hinging on Proposition A.1, we define preorder between typesas follows.

Definition A.3 (Order) Let t, t ′ ∈ Tn, then t≤∞ t ′ if and only if t≤n t ′.

Due to Proposition A.1, this relation is well defined and induces an equivalence=∞
on the set of typesT. Let T̃ be T /=∞, we are finally able to produce a unique
pre-modelD defined as:

D = B+ T̃ .

Where
– Jch+(t)K = {[t ′]=∞ | t ′ ≤∞ t};
– Jch−(t)K = {[t ′]=∞ | t ≤∞ t ′}.

This pre-model defines a new preorder between types that we denote by≤. How-
ever, the following proposition proves that≤ is not new but it is the limit of the
previous preorders, i.e.≤∞.

Proposition A.4 Let t, t ′∈T , then t≤ t ′ if and only if t≤∞ t ′.

Proof: We prove it by induction on the height of the types. That is weprove by
induction onn that if t ∈ Tn, then

• t = 0 if and only if t =∞ 0;
• |t|= l if and only if |t|∞ = l .

Note that to check emptiness of a type inTn+1 we only invoke types inTn.

The condition at level 0 only requires that the typesk be interpreted into distinct
singletons contained iñT , which is the case.

The second statement, and the whole inductive step are proven as in the proof of
Proposition A.1. 2

It is now easy to show the following.

Theorem A.5 The pre-model(D ,JK) is a model.

Proof: Consider the extensional interpretationE () of types as in Definition 2.2. We
have to check thatJtK = ∅ ⇐⇒ E (t) = ∅. Note that in fact the range ofE () is
P(B+JT K). By proposition A.4, we have that〈JT K,⊆〉 is isomorphic to〈T̃ ,≤〉.
Up to this isomorphism,E () coincides withJK. 2

A.3 Proof of decidability of finiteness

Given our model of types, we show that we can

(1) decide whether a type is finite
(2) if it is the case, list all its atoms

34

To prove our claim we proceed by induction on the height of thetypes. We strengthen
the statement by requiring that all atoms of a finite typet have the same height, or
lower, of t. We assume that at height 0, this is the case. It is a reasonable assump-
tion: for example it is the case if we have for base types the type of all integers
plus all constant types. Consider a typet of heightn+1 and assume that for lower
heights we can decide whether a type is finite and, if it is the case, list all its atoms.
By Theorem 3.2, this guarantees that we can also decide emptiness of all types of
heightn+1. We ask ourselves which atoms can be proved to belong tot. If we put
t in normal form, we obtain the disjunction of terms of the form

r = ch+(t1)∧∧∧ch−(t2)∧∧∧
^

^

^

i

¬¬¬ch+(t i
3)∧∧∧

^

^

^

j

¬¬¬ch−(t j
4) .

(We exclude base types, because they have been considered atheight 0, and “mixed
types”, which can be reduced to one of the “pure” cases.) Onlyatoms of the form
ch(s), can be contained in non-base types. For how manys we can have that
ch(s) ≤ t? A union is finite if and only if all its summands are, thust is finite if
and only if all ther ’s are finite. When isr finite? First of all it is finite when it is
empty, which we can test it by induction hypothesis.

Otherwise ifr is not empty, thenr is finite if and only ifch+(t1)∧∧∧ch−(t2) is finite,
which happens exactly whent2 ≤ t1 andt1∧∧∧¬¬¬t2 is finite. For the “if” part, note that
ch(s) belongs toch+(t1)∧∧∧ch−(t2), if and only if s= t2∨∨∨ s′ for somes′ ≤ t1∧∧∧¬¬¬t2.
Sincet1∧∧∧¬¬¬t2 is finite and of smaller height, then by induction hypothesiswe can
list all its atoms, thus all the correspondings′’s, thus all the correspondingch(t2∨∨∨s′)
that are all the possible candidates of atoms ofr. By induction hypothesis we also
have that all thes′ have at most heightn.

For the “only if” part it suffices to prove that ifch+(t1)∧∧∧ch−(t2) is infinite, then the
whole ofr is infinite. Assume that for noi, t1 ≤ t i

3 and for no j, t j
4 ≤ t2 (otherwise

r is empty). We have to find infinitely manys such thatt2 ≤ s≤ t1, s 6≤ t i
3 for all i

andt j
4 6≤ s for all j. Pick atomsai

3 ≤ t1∧∧∧¬¬¬t i
3 anda j

4 ≤ t j
4∧∧∧¬¬¬t2. Note that noai

3 can

coincide with anya j
4, because they are taken from disjoint sets. Then for any types′

such thatt2 ≤ s′ ≤ t1, the types := (s′∨∨∨
W

W

W

i a
i
3)∧∧∧¬¬¬

W

W

W

j a
j
4 belongs tor. It is possible

that for two differents′ the correspondings coincide. However such “equivalence
classes” ofs′ are finite. Since there are infinitely manys′, there are infinitely many
s, sor is infinite.

In summary, for everyr that formst we check whethert2 ≤ t1 andt1∧∧∧¬¬¬t2 is finite,
and at the end we find either thatt is infinite (if one of ther is) or that it is finite.
In the latter case we have a finite list of candidates to be the atoms oft (namely all
ch(s) for s included in the the varioust1∧∧∧¬¬¬t2) and to list all the atoms oft we just
to check for each candidate its inclusion int. Which we can do, since they are at
most of heightn+1.

35

B Proofs from Section 4

B.1 Proof of Theorem 4.5

We first show that(V ,JKV) is a pre-model. Inspecting the typing rules, it is easy to
show that for every valuev and every typest1, t2

(1) Γ ⊢ v : 1;
(2) Γ ⊢ v : t1 if and only if Γ 6⊢ v :¬¬¬t1;
(3) Γ ⊢ v : t1∧∧∧ t2 if and only if Γ ⊢ v : t1 andΓ ⊢ v : t2.

Point (1) is a simple application of the subsumption rule. For (2) suppose that there
existst such thatv : t andv :¬¬¬t. The only rule to deduce a negative type for a value
is the subsumption rule. Therefore there must be a types, such thatv : s, s≤ t and
s≤¬¬¬t. But thens= 0, impossible since the empty type is not inhabited. Suppose
instead there existst such that6⊢ v : t and 6⊢ v :¬¬¬t; if v = cs thench(s) is not smaller
thant nor than¬¬¬t, impossible sincech(s) is atomic. The same can be deduced from
the atomicity ofbn for v = n. Therefore(V ,JK

V
) is a pre-model.

By the subsumption rule we have that ifv : sands≤ t thenv : t. Therefores≤ t =⇒
JsK

V
⊆ JtK

V
. For the other direction, ifs 6≤ t, there is an atoma in s\\\t. For every

atoma there is a valuev such thatΓ ⊢ v : a (this is clearly true for channels, while
it was an assumption for basic types). By subsumptionΓ ⊢ v : s andΓ ⊢ v :¬¬¬t,
which impliesΓ 6⊢ v : t. ThusJsK

V
6⊆ JtK

V
.

To prove that it is a model we have to check thatJtK = ∅ ⇐⇒ E (t)=∅. Again the
range ofE () is P(B+JT K

V
). By the observation above, we have that〈JT K

V
,⊆〉

is isomorphic to〈T̃ ,≤〉. Up to this isomorphism,E () coincides withJKV . 2

B.2 Proof of the subject reduction

As usual, the crucial step is the substitution lemma 4.6. We need to prove

• If Γ, t/p⊢ M′ : t ′ andΓ ⊢ v : t, thenΓ ⊢ M′[v/p] : t ′.
• If Γ, t/p⊢ P andΓ ⊢ v : t thenΓ ⊢ P[v/p].

This is done by induction on the typing rules, by making use ofTheorem 4.4. Then
consider a well-typed premise of the reduction rule:Γ ⊢ ctv ‖ ∑i∈I ct(pi).Pi. This
means thatΓ ⊢ v : t andΓ , t/pi ⊢ Pi . Sincet ≤

W

W

W

i∈I***pi+++, there must be aj such
that⊢ v : ***p j+++. For all suchj, the substitutionv/p j is defined. By the substitution
lemma, for all suchj we haveΓ ⊢ Pj [v/p j].

B.3 Proof of Lemma 4.9

Take a nonempty types≤ ch+(1). This means that its disjunctive normal form
contains only channel types. Consider first the case wheres is composed of only
one clauses= ch+(t1)∧∧∧ch−(t2)∧∧∧

V

V

V

h¬¬¬ch+(th
3)∧∧∧

V

V

V

k¬¬¬ch−(tk
4). Sinces is not empty

we have

36

• t2 ≤ t1 and
• ∀h∈ H, t1 6≤ th

3 and
• ∀k∈ K, tk

4 6≤ t2 and
• there exists a choice of atomsah ≤ t1\\\th

3 for h ∈ H f such that for nok ∈ K,
tk
4 ≤ t2∨∨∨

W

W

W

h∈H f
ah.

Consider now some typet and the inequations≤ ch+(t). This is satisfied if an only
if s∧∧∧¬¬¬ch+(t) = 0. We can think ofch+(t) as an extrach+(th

3) added to the normal
form of s. In order to have thats∧∧∧¬¬¬ch+(t) is empty, we only have two possibilities.
The first is thatt1 ≤ t. Therefore the first candidate for leastt is preciselyt1. But
can it be smaller than this?

First, note that we must have thatt ≥ t2, as otherwise we cannot haves≤ ch+(t).
Therefore to obtain a smallert we must remove some atoms int1\ t2. Which ones?
Consider all possible choices of atomsah ≤ t1\\\th

3 for h∈ H f such that for nok∈ K,
tk
4 ≤ t2∨∨∨

W

W

W

h∈H f
ah. As noticed, sinces is not empty, there must be at least one such

choice.

We claim that none of thoseah can be removed fromt1. To show this, consider a
choice of atomsah as above withh∈ H f and leta = ah̄ for someh̄∈ H f . Consider
t = t1\a and recall we can considert as one extrath

3 in the normal form ofs. Now
we must check condition (CA∗) for this new clause. LetH• = H∪{•}, with t•3 = t.
Note thatt1\ t = a is finite, and thusH•

f = H f ∪{•}. By puttinga= a•, we can see
the above choice of atoms as a choice of atomsah, with h∈ H•

f . Indeed the atoma
plays the double role ofah̄ anda•.

In order for (CA∗) to be satisfied, we should be able to find atk
4 such thattk

4 ≤
t2∨∨∨

W

W

W

h∈H•
f
ah = t2∨∨∨

W

W

W

h∈H f
ah, which it is not possible by hypothesis. Then, such

atoms cannot be removed fromt1.

Now, consider an atoma that is not of this form. Reasoning in similar way as above
we can show that we can takea out of t1 if and only if for all possible choices
of atomsah ≤ H f , such that for nok ∈ K, tk

4 ≤ t2∨∨∨
W

W

W

h∈H f
ah, there isk̄ such that

t k̄
4 \ (t2∨∨∨

W

W

W

h∈H f
ah) = a.

How many such atoms there are? Only finitely many, as the universal quantification
above is finite. Therefore we can remove these atoms one by one. The correspond-
ing t is such thats≤ ch+(t) and moreover we cannot remove any other atom.
Finally all such atoms can be computed.

The above proves the statement for typess composed only of one clause. Consider
a types whose disjunctive normal form iss= s1∨∨∨ . . .∨∨∨ sn, and suppose for each
si the typeti is the least such thatsi ≤ ch+(ti). Then the typet = t1∨∨∨ . . .∨∨∨ tn is the
least such thats≤ ch+(t). Clearly it has the property. To show it is the least such,
remove one atoma from it and suppose it still has the property. Therefore nosi

containsa. Howevera belongs to one of theti. Therefore, by removinga from such
ti we would obtain a smallert ′i such thatsi ≤ ch+(t ′i), contradiction.

37

