
A meta-language for typed object-oriented languages

Giuseppe Castagna

C.N.R.S.
LIENS, 45 rue d’Ulm, 75005 Paris. FRANCE

e-mail: castagna@dmi.ens.fr

In [13] we defined the λ&-calculus, a simple extension of the typed λ-
calculus to model typed object-oriented languages. This paper is the con-
tinuation or, rather, the companion of [13] since it analyzes the practical
counterpart of the theoretical issues introduced there. Indeed, to develop
a formal study of type systems for object-oriented languages we define a
meta-language based on λ& and we show, by a practical example, how it
can be used it to prove properties of a language. To this purpose, we de-
fine a toy object-oriented language and its type-checking algorithm; then
we translate this toy language into our meta-language. The translation
gives the semantics of the toy language and a theorem on the translation
of well-typed programs proves the correctness of the type-checker of the
toy language.
As an aside we also illustrate the expressivity of the λ&-based model
by showing how to translate existing features like multiple inheritance
and multiple dispatch, but also by integrating in the toy language new
features directly suggested by the model, such as first-class messages, a
generalization of the use of super and the use of explicit coercions. An
important novelty with respect to previous systems is that we show how
to model multiple dispatch also in the presence of a notion of receiver (i.e.
of a privileged argument to which the message is passed), a notion that
is absent in languages like CLOS.

1 Introduction

In [13] we introduced the λ&-calculus. It is a simple extension of the typed
lambda calculus to deal with overloaded functions, subtyping and late binding.

1 Supported by grant no. 203.01.56 of the Consiglio Nazionale delle Ricerche, Comi-
tato Nazionale delle Scienze Matematiche, Italy, to work at LIENS

An extended abstract of this paper has appeared in the 13th Conference on
Foundations of Software Technology and Theoretical Computer Science. Bombay,
December 1993. LNCS 761. Springer-Verlag

Article published in Theoretical Computer Sciences 151(2):297-352, 1995

The main motivation of its definition was to give a kernel calculus possess-
ing the key properties of object-oriented programming. In the same paper,
we showed how this calculus could be intuitively used to model some features
of object-oriented programming. This yields a model orthogonal to the ones
proposed in the literature so far. Thus we returned to object-oriented program-
ming and we reviewed it in the light of the model arising from the λ&-calculus.
The experiment was surprising since we had a completely new vision of some
of the mechanisms more or less present in object-oriented programming: it
improved our comprehension of some features like class definition, inheritance
and code sharing. And we were able to deal with some features (such as mul-
tiple dispatch or the extension of the set of methods of a certain class) and
introduce new ones (such as first class messages or a generalization of “super”)
the usual models could not. But above all it suggested a type discipline for
objects, easy to understand (also by a programmer, even if he/she has no
knowledge of second order logic) or, at least, to explain.

However, λ& is inadequate for a formal study of the properties of real
object-oriented languages, and it was not meant for this: it is a calculus not a
meta-language; thus, even if it possesses the key mechanisms to model object-
oriented features, it cannot be used to “reason about” (i.e. to prove properties
of) an object-oriented language.

For this reason in this paper we define a meta-language (i.e. a language
to reason about —object-oriented— languages) 2 that we call λ object. This
language is still based on the key mechanisms of λ& (essentially, overloading
and late binding) but it is enriched by those features (like commands to define
new types, to work on their representations, to handle the subtyping hierarchy,
to change the type of a term, to modify the discipline of dispatching etc.) that
are necessary to reproduce the constructs of a programming language and that
λ& lacks.

We also show, by a practical example, how to use λ object to prove prop-
erties of an object-oriented language. To this purpose we define a simple toy
object-oriented language. This language is a mix of Objective-C and CLOS
constructs: there is a notion of receiver (i.e. a privileged object to which the
message is sent), but also the possibility of performing multiple dispatch. 3 .
We also define an algorithm to type-check the programs of this language. We
then translate the programs of the toy object-oriented language into λ object.
We prove that every well-typed program of the former is translated into a
well-typed program of the latter. Since the latter enjoys the subject-reduction
property, this implies that the reduction of the translated program never goes
wrong on a type error. In particular this proves the correctness of the type-
checker for the toy language.

2 In this case the prefix “meta” is used w.r.t. the object-oriented languages
3 In λ object, the modelling of multiple dispatch à la CLOS (i.e. without identifying
a receiver) is even simpler.

2

This paper constitutes the continuation or, rather, the companion of [13],
since it shows the practical counterpart of the theoretical issues introduced
in [13]. Consequently, the logical order of the paper would be the definition of
λ object, of the toy language, of the translation and the proof of the properties.
But we do not follow this order in the presentation, where we start with
the toy language. Indeed, the reader may not be acquainted with the model
induced by λ& (and in particular with the implementation of method lookup
as the resolution of overloading). Thus we prefer to recall this model along
the lines describing the toy language (whose constructs should be familiar to
the reader), rather than introduce it directly by the meta-language. Therefore,
the paper is organized as follows: section 2 gives an informal description of
the toy language and of its type discipline. In section 3 we briefly summarize
the λ&-calculus. In section 4 we describe λ object: we define its operational
semantics, its type discipline and we prove the subject reduction theorem. In
section 5 we describe the translation of the toy language into λ object, and,
via this translation, we prove the correctness of the type discipline for the toy
language. In section 6 we state the precise correspondence between λ object
and λ&. Section 7 describes the addition of polymorphism to the toy language.
Section 8 concludes the paper and suggests some directions for future work.
For space reasons we cannot give full details of every issue in the paper. These
can be found in the author’s PhD. thesis [10].

2 The toy language

In this section we briefly discuss (a certain kind of) object-oriented pro-
gramming by gradually introducing a toy functional object-oriented language.
For the functional core of this language we use the syntax of an explicitly typed
version of ML. The syntax of the object-oriented components is inspired by
Objective C (see [21] and [20]). This does not aim to be a comprehensive pre-
sentation of object-oriented features. Far from that, it tends to present some
kernel features of object-oriented programming from our particular perspec-
tive, which is the one we acquired in defining and developing the λ&-calculus,
the basic calculus our model. In this section we just give an informal presen-
tation of the language. The formal presentation can be found in appendix A.

2.1 Objects and messages

Object-oriented programs are built around objects. An object is a program-
ming unit that associates data with the operations that can use or affect these
data. These operations are called methods; the data they affect are the instance
variables of the object. In short, an object is a programming unit formed by
a data structure and a group of procedures which affect it. The instance vari-
ables of an object are private to the object itself; they can be accessed only

3

through the methods of the object. An object can only respond to messages
that are sent or passed to it. A message is simply the name of a method that
was defined for that object.

Message passing is a key feature of object-oriented programming: the ex-
ecution of an object-oriented program proceeds by the exchange of messages
between objects. Every language has its own syntax for messages. For our toy
language we use the following one:

[receiver message]

The receiver is an object (or more generally an expression returning an object).
When it receives a message, the run-time system selects among the methods
defined for that object the one whose name corresponds to the passed message.
The existence of such a method should be statically checked (i.e. verified at
compile time) by a type checking algorithm.

There are two ways to model message passing. One is to consider an object
as a record of methods and message passing as dot selection (e.g. in Eiffel;
see [19]). The other is to consider message passing as functional application,
where the message is (the identifier of) the function and the receiver is its
argument (this technique is used by the languages CLOS [16] and Dylan [2]).
In this paper we choose this second solution. However, in order to formalize this
approach, ordinary functions do not suffice. The fact that a method belongs to
a specific object implies that the implementation of message passing is different
from that of the customary function application. Two main characteristics
distinguish messages from ordinary functions:

– Overloading : Two objects can respond differently to the same message. For
instance, the code executed when sending a message inverse to an object
representing a matrix will be different from the one executed when the
same message is sent to an object representing a real number. However,
all the objects of a given class (e.g. all objects of class matrix) respond
to a message in the same way 4 . If we assume that the type of an object
is its class, then this amounts to saying that messages are identifiers of
overloaded functions, since the code to execute is chosen according to the
type (the class) of the argument (the receiver). Each method associated to
the message m constitutes a branch of the overloaded function referred to
by m.

– Late Binding : The second crucial difference between function application
and message passing is that a function is bound to its meaning at compile
time while the meaning of a message can be decided only at run-time when
the receiving object is known. This feature, called late-binding 5 , is one of

4 This is not true in delegation-based object-oriented languages.
5 Object-oriented literature, usually prefers the to call it dynamic binding . For
the difference between late and dynamic binding and the reason why we use the
adjective “late” see [12,10].

4

the most powerful characteristics of object-oriented programming, since it
allows incremental definition and code reuse. The advantage of late binding
is shown by the following example: suppose that a graphical editor is coded
using an object-oriented style; it uses the classes Line and Square which
are subclasses (subtypes) of Picture; suppose also that a method draw is
defined on all three classes. If the selection of the methods is performed at
compile time (we call this discipline of selection “early binding”), then an
overloaded function application like the following one

λxPicture.(. . . [x draw] . . .)
is always executed using the draw code for pictures, since the compile time
type of x is Picture. Using late binding, the code for draw is chosen only
when the x parameter has been bound and evaluated, on the basis of the
run-time type of x, i.e. according to whether x is bound to a line or a square
or a picture.

Therefore, in our model, overloading and late binding are the basic mecha-
nisms. 6

2.2 Classes and programs

The name of a class is used as the type of its objects and constitutes an
“atomic type” of our type system. We restrict our attention to a functional
case of object-oriented programming; thus the instance variables of an object
are modified by an operation update which returns a new object of the same
type of the current object. We show the syntax of class definition in our toy
language by an example:

class 2DPoint
{
x:Int = 0;
y:Int = 0

}
norm = sqrt(self.x^2 + self.y^2);
erase = (update{x = 0});
move = fn(dx:Int,dy:Int) => (update{x=self.x+dx; y=self.y+dy})

[[
norm: Real,
erase: 2DPoint,
move: (Int x Int) -> 2DPoint

6 The use of late binding automatically introduces a further distinction between
ordinary functional application and message passing: while the former can be dealt
with by either call-by-value or call-by-name, the latter can be performed only when
the run-time type of the argument is known, i.e. when the argument is fully evalu-
ated (closed and in normal form). In view of our analogy “messages as overloaded
functions” this (nearly) corresponds to say that message passing (i.e. overloaded
application) acts by call-by-value: see proposition 4.2 and corollary 7.

5

]]

A 2DPoint object represents a point of the cartesian plane: two instances
variables define the position of the object; it responds to messages to return
its norm, to erase its x-coordinate and to move.

Instances of a class are created by means of the command new. Since the
name of a class is used as the type of its instances then new(2DPoint):2DPoint.

A program in our toy language is a sequence of definitions of classes followed
by an expression (the body of the program) where objects of these classes are
created and interact by exchanging messages.

2.3 Refinement

It is possible to define new classes by refining existing ones. The refinement
induces on the atomic types two different hierarchies generated by two distinct
mechanisms: inheritance, which is the mechanism that allows the reuse of code
written for other classes and which concerns the definition of the objects. The
other is subtyping, which is the mechanism that allows the use of one object
instead of another of a different class and which concerns the computation of
the objects. It is well-known that these hierarchies are distinct (see [14]). In
our toy language we take a simpler approach, including in it only subtyping.
Thus it is not possible to have “pure” inheritance (i.e. code reuse without
the substitutivity given by subtyping) 7 . We use the keyword is in the class
definition to define the subtype relation among classes. A typical example of
its use is:

class 2DColorPoint is 2DPoint
{
x:Int = 0;
y:Int = 0;
c:String = "black"

}
isWhite = (self.c == "white")
move = fn(dx:Int,dy:Int) =>

(update{x=self.x+dx; y=self.y+dy; c="white"})
[[
isWhite: Bool
move: (Int x Int) -> 2DColorPoint

]]

The methods norm and erase are inherited from 2DPoint. The method
move is redefined (overridden) so that if a colored point is moved, then its
color is set to white. The keyword is says that 2DColorPoint is a subtype
of 2DPoint (denoted by 2DColorPoint ≤ 2DPoint). It is possible to specify
more then one superclass after is, by separating the ancestors by commas

7 In the overloading-based model, pure inheritance can be dealt with by the intro-
duction of union types in a second order framework: see chapter 11 of [10]

6

(multiple inheritance).

To substitute values of some type by those of another type some require-
ments must be satisfied. If the type at issue is a class then the following
conditions must hold:

(i) state coherence: The set of the instance variables of a given class should
contain those of all its superclasses. Moreover common variables must
appear with the same type.

(ii) covariance: A method that overrides another method must specialize it,
in the sense that the type of the new method must be a subtype of the
type of the old method.

(iii) multiple inheritance: When a class is defined by multiple refinement, the
methods that are in common to more than one unrelated supertype must
be explicitly redefined

To avoid ambiguity in the selection, we have chosen not to use a class prece-
dence list (as in CLOS) but rather the explicit redefinition of common methods
(as in Eiffel) which is less syntax dependent and mathematically cleaner.

2.4 Extending classes

Refinement is not the only way to specialize classes. It would be very an-
noying if every time we have to add a method to a class we were obliged to
define a new class: the existing objects of the old class could not use the new
method. The same is true also in the case that a method of a class must be
redefined: overriding would not suffice. For this reason, some object-oriented
languages offer the capability to add new methods to existing classes or to
redefine the old ones (this capability is very important in persistent systems).
In our toy language this can be done by the following expression:

extend classname
methodDefinitions
interface

in expr

the newly defined methods are available in the expression expr. Remark that,
by this construction, we do not define a new class but only new methods; in
other terms we do not modify the existing types but only (the environment
of) the expressions. This is possible in our system since the type of an ob-
ject is not bound to the procedures that can work on it (this is the peculiar
feature that distinguish it from the abstract data types and the “objects as
records” approaches). Finally, the extension of a class affects all its subtypes,
in the sense that when you extend a class with a method then that method is
available to the objects of every subtype of that class. 8

8 Addition and redefinition of methods are implemented by some object-oriented
languages (e.g. Objective-C [21], CLOS [16] and Dylan [2]). Anyway it must be clear
that these features constitute a trade-off between encapsulation and flexibility, and

7

2.5 Super, self and the use of coercions

The use of the reserved keyword self is well-known: it denotes, in a method,
the receiver of the message that invoked that method. Though, in view of our
analogy of messages as identifiers of overloaded functions, self assumes also
another meaning. Indeed, recall that the receiver of a message is the argument
of the overloaded function denoted by that message. Thus, in the definition of
a method, self is the formal parameter of the overloaded function in which
that method appears as a branch.

Also the use of super is well-known: when we send a message to super,
the effect is the same as sending it to self but with the difference that the
selection is performed as if the receiver were an instance of a super-class. Here
we generalize this usual meaning of super in two ways: the selection does
not assume that the receiver is self, but takes as receiver the parameter of
super; and super does not necessarily appear in the receiver position, but it
is a first-class value (i.e. it can appear in any context its type it allows to).
Finally, since we use multiple inheritance without class precedence lists, we
are obliged to specify in the expression the supertype from which to start the
search of the method 9 . Thus the general syntax of super is super[A](exp).
When a message is sent to this expression then exp is considered the receiver
but the search of the method is started from the class A (which then must be
a supertype of the class of exp).

Very close to the use of super is the use of coercions. By a coercion one
changes the class of an object to a supertype. The difference between them is
that super changes the class of an object only in the first message passing,
while coerce changes it for the whole life of the object. The syntax is the same
as that of super: thus we write coerce[A](exp) to change to A the type of
the expression exp. A short example can clarify the behavior of super and
coerce: suppose we have these three classes

• a class A in which we define a method m1

• a class B subtype of A in which we define a method m2 whose body
contains the expression [self m1]

• a class C subtype of B in which we override both m1 and m2.

Let M be an object of type C. Consider now [super[B](M) m2] and
[coerce[B](M) m2]. In both cases the method selected is the one defined
in B. But in the body of m2 the meaning of self is, in the former case, M ,
while in the latter it is coerce[B](M): therefore the method used for [self
m1] will be the one defined in C when using super and the one in A when

thus should be coupled with some further mechanism of protection. For example
Dylan has a function freeze-methods which prevents certain methods associated
with a message from being replaced or removed.
9 For instance, this is what is done in Fibonacci [1], developed at the University of
Pisa

8

using coerce. To sum up, coerce changes the class of its argument and super

changes the rule of selection of the method in message passing (it is a coercion
that is used only once and then disappears) 10 .

2.6 Multiple dispatch

In this toy language it is possible to base the choice of the methods not
only on the class of the receiver of a message but also on the class of possible
parameters of the message. This feature is called multiple dispatch and the
method at issue is usually referred as a multi-method (see e.g. [18]). An example
of multi-method in our toy language is:

extend 2DPoint
compare = & fn(p:2DPoint) => ([self norm] == [p norm])

& fn(p:2DColorPoint) => [p isWhite];
[[compare:#{2DPoint -> Bool; 2DColorPoint ->Bool}]]

in ...

If the parameter of compare is a 2DPoint then the first line is executed;
the second one if it is (a subtype of) a 2DColorPoint. Note that the type of
a multi-method appears in the interface as the set of the types of the possible
choices (the reason why we prefixed the type by # is explained in the next
section).

The number of parameters on which the dispatch is performed may be
different in every branch. For this reason, when a message denoting a multi-
method is sent, we must single out those parameters the dispatching is per-
formed on. This is done by including them inside the brackets of the message-
passing, after the message. Thus the general syntax of message passing is:

[receiver message parameter, ... , parameter]

For example, consider a class C with the following interface: [[msg:#{Int
-> (Int -> Bool), Int x Int -> Bool}]]; if M is of class C then the ex-
pression [M msg 3] 4 selects the first branch while [M msg 3,4] selects
the second one. We have to impose a restriction in our system: super cannot
work with multiple dispatching; when super selects a multi-method, it works
as coerce.

2.7 Messages as first class values: adding overloading

Messages are identifiers of overloaded functions. But, up to now, overloaded
functions can be defined only through class definitions. Thus the next step is to
introduce explicit definitions for overloaded functions and to render them (and
thus messages) first class values. The gain is evident: for example we can have

10 It is interesting that with our generalization of super it is possible to predetermine
the life of a coercion: for example, super[A](super[A](M)) coerces M to A only
for the first two messages passed to it.

9

functions accepting or calculating messages (indeed overloaded functions) and
to write message passing of the form [receiver f(x)] (see [10] for an example).

We use the syntax of message passing for overloaded application; thus in
[exp0 exp exp1,. . . , expn] we have that exp is the overloaded function and
exp0,exp1,. . . ,expn are the arguments. We use the syntax of multi-methods
to define overloaded functions. Therefore we build an overloaded function by
concatenating the various branches by &; the type of each parameter of each
branch must be an atomic type. The type of an overloaded function is the set
of the types of its branches. For example an overloaded “plus” working both
on integers and reals can be defined in the following way:

let plus = (& (fn(x:Real,y:Real) => x real_plus y)
& (fn(x:Int,y:Int) => x int_plus y))

which has type {Real × Real → Real, Int × Int → Int}. Thus, the sum of
two numbers, x and y, using plus is written [x plus y].

Finally note that the use of # in the interfaces is necessary to distinguish
multi-methods from ordinary methods returning an overloaded function: use
the same interface as in the section before but without “#” i.e. [[msg:{Int
-> (Int -> Bool), Int x Int -> Bool}]]; the absence of # indicates that
msg is now a ordinary method returning an overloaded function (thus the
expression [3 [M msg]] 4 selects the first branch while [(3,4)[M msg

]] selects the second one). 11

2.8 Type checking of the toy language

In this section we describe the type system of our toy language. We define
here only the rules for the object-oriented part of the language, since the
typing of the functional part is quite standard.

Types
The types that can be used in a program of our toy-language are: Class-names
which are user-defined atomic types. Product types (T ×T ′), for pairs. Arrow
types T → T ′, for ordinary functions. Sets of arrow types {A1 → T1, . . . , An →
Tn} called overloaded types and used for overloaded functions (we call A1. . .
An and T1. . . Tn input and output types respectively). In an overloaded type
there cannot be two different arrow types with the same input type (input

11 Note that the use of the syntax of message passing also for overloaded application,
while providing a conceptual uniformity, has a major drawback: when the overloaded
function has more than one argument then the arguments have to be “split” around
the overloaded function. In case of binary infix overloaded operators, like plus, this
turns out to be very readable. But, apart from these special cases, it remains a
problem and it may suggest us to consider a different syntax for message passing
where the message is the left argument, as done in CLOS (see [18]).

10

type uniqueness).

R ::= 〈〈`1 : T1; . . . ; `n : Tn〉〉 (record types)

T ::= A | T → T | (T × . . .× T) (raw types)

| {(A1 × . . . × Am1)→ T1, . . . , (A
′
1 × . . .×A′mn)→ Tn} (mi≥1)

V ::= T | #{(A1× . . .×Am1)→ T1, . . . , (A
′
1× . . .×A′mn)→ Tn} (interface types)

In the following we use the meta-variables T, U and W to range over raw types.
If T denotes the type {Ui → Ti}i=1..n−1 then T ∪ {Un → Tn} denotes the type
{Ui → Ti}i=1..n if Un → Tn is different from all the arrow types in T , and it
denotes T itself otherwise. In other terms ∪ denotes the usual set-theoretic
union.

Rules for Subtyping

The subtyping relation is predefined by the system on the built-in atomic
types; the programmer defines it on the atomic types (i.e. the classes) he intro-
duces, by means of the construct is. This relation is automatically extended
to arrow types and product types by the usual rules (pairwise ordering for
products and contravariance in the left argument for the arrow constructor).
To define the subtyping relation on overloaded types, note that an overloaded
function can be substituted for another overloaded function if for every branch
of the latter there is at least one in the former that can substitute for it. Thus
an overloaded type is smaller than another if for every arrow type in the latter
there is at least one smaller arrow type in the former. Formally:

for all i ∈ I, there exists j ∈ J such that C ` D′′i ≤ D′j and C ` U ′j ≤ U ′′i
C ` {D′j → U ′j}j∈J ≤ {D′′i → U ′′i }i∈I

where C is a type constraint system, formed by the union of constraints like
(A1≤A2), that records the subtyping relation on the atomic types. The sub-
typing rules are summarized in appendix A.2.

Well-formed types

By subtyping relation above we select among the raw types those that
satisfy the conditions given for the refinement in section 2.3. In particular the
last two conditions, reformulated in terms of overloading, become:

(i) covariance: In an overloaded type, if an input type is a subtype of another
input type then their corresponding output types must be in the same
relation.

11

(ii) multiple inheritance: In an overloaded type, if two unrelated input types
have a common subtype, then for every maximal type of the set of their
common subtypes there must be one branch whose input type is that
maximal type.

The inheritance condition, as we formulated it in the previous section, said that
methods in common to more than one unrelated ancestor must be redefined
to disambiguate the selection. To see that this is equivalent to the rule (2.)
we have written above, note that when we define a class by refinement of
some other classes, this exactly corresponds to defining a common subtype,
which is also maximal (since it is not possible in the language to construct a
type greater than another which has already been defined). If two unrelated
ancestors respond to a same message then they both appear as input types
in the type of this message and, thus, the condition says that a new branch
(method) must be defined for the new maximal subtype

The types that satisfy the two conditions above are called well-formed types
(the condition of state coherence concerns the definition of a class and will be
checked directly on terms). We denote the set of well-formed types by Types.
Since the membership to Types depends on the definition of the subtyping
relation on the atomic types, we index the symbol of membership by a type
constraint system.

Notation 1 Let S ⊆ Types. We denote by LBC(S) the set {T ∈C Types | ∀T ′∈
S, C ` T ≤ T ′} of lower bounds of S with respect to the subtyping relation
defined by C. 2

Definition 2 (well-formed types)

(i) A ∈C Types for each A atomic
(ii) if T1, T2 ∈C Types then T1 → T2 ∈C Types and T1 × T2 ∈C Types

(iii) if for all i, j ∈ I
(a) Di, Ti ∈C Types
(b) if C ` Di ≤ Dj then C ` Ti ≤ Tj
(c) for all maximal types D in LBC({Di, Dj}) there exists h∈I such that

Dh = D
(d) if i 6= j then Di 6= Dj

then {Di → Ti}i∈I ∈C Types

By analogy we will denote by AtomicTypes the set of atomic types (the
names of all classes) and by RecordTypes the set of the record types whose
fields are associated to well-formed types.

Rules for Terms

(i) The type of an object is (the name of) its class.
(ii) The type of a coercion is the class specified in it, provided that it is a

supertype of the type of the argument.
(iii) The type of a super is the class specified in it, provided that it is a

supertype of the type of the argument

12

(iv) The type of self is the name of the class whose definition self appears
in.

(v) The type of an overloaded function is the set of the types of its branches
(vi) The type of an overloaded application is the output type of the branch

whose input type “best approximates” the static type of the argument.
This branch is selected among all the branches whose input type is a
supertype of the type of the argument and it is the one with the least
input type.

These are all the typing rules we need to type the object-oriented part of
the toy language, since we said that messages are nothing but overloaded
functions and message passing reduces to overloading application. However,
to fully understand message passing we must specify which overloaded function
a message denotes. Consider again message passing: we said that the receiver
is the argument of the overloaded function the selection is based on. Suppose
that you are defining a class C and remember that inside the body of a method,
the receiver is denoted by self. Then there are two cases:

(i) The method msg=exp is not a multi-method and returns (according to
the interface) the type T. This corresponds to adding to the overloaded
function denoted by msg the branch fn(self:C).exp whose type is
C → T .

(ii) We have the multi-method
msg = & fn(x1:A1,...,xi:Ai) => expr1: :

& fn(y1:B1,...,yj:Bj) => exprn
which returns the type #{(A1 × . . .× Ai) → T1,...,(B1 × . . .× Bj)

→ Tn}. This corresponds to adding to the overloaded function denoted by
msg the n branches fn(self:C, x1:A1, . . . ,xi:Ai) => expr1 . . . fn(self:
C, y1:B1, ..., yj:Bi) => exprn of types (C×A1×. . .×Ai) → T1, ...,
(C ×B1 × . . .× Bj) → Tn

In conclusion a message denotes an overloaded function that possesses one
branch for every class in which a method has been defined for it, and one
branch for every branch of a multi-method associated to it. Message passing
is typed as the overloaded application. The selection of the branch corresponds
to the search for the least supertype of the class of the receiver (a class is a
supertype of itself) in which a method has been defined for the message (this
is the usual method look-up mechanism of Smalltalk [17]).

Formally, we define the relation C;S; Γ ` p:T , where C is a type-constraint
system, p a program, T a well-formed type and Γ and S are partial functions
between the following sets: Γ: (V ars∪{self})→ Types and S:AtomicTypes
→ RecordTypes. Γ records the types of the various identifiers. The function
S records the type of the internal states of the classes. In particular Γ(self)
is the current class and the domain of S (i.e. the values for which S is defined)
is the set of (the names of) the classes defined up to that point. We give here
just the most significant type-checking rules followed by a short comment. All

13

the rules are summarized in appendix A.3.

[New] C;S; Γ ` new(A):A A ∈ dom(S)
The type of a new object is the name of its class. Of course this class must

have been previously defined, and thus we check that A ∈ dom(S).

[Read] C;S; Γ ` self.`:T S(Γ(self)) = 〈〈...`:T...〉〉
The expression self.` reads the value of an instance variable of an object

and thus it must be contained inside the body of a method. Then Γ(self)
is the type (i.e., the class-name) of the current object and S(Γ(self)) is the
record type of its internal state.

[Write]
C;S; Γ ` r:R

C;S; Γ ` (update r) : Γ(self)
C ` R b S(Γ(self))

As in the previous rule this expression must be contained in a method.
When by (update r) we update some instance variables, we have to check
that the fields specified belong to the instance variables of the current class
(R b S(Γ(self)); see appendix A.2 for b); note that we need to specify only
the instance variables we want to modify. The type of the expression is then
the current class (which is recorded in Γ(self)).

[OvAbst]
C;S; Γ ` exp1:T1 . . . C;S; Γ ` expn:Tn
C;S; Γ ` &exp1& . . . & expn:{T1, ... ,Tn}

{T1, ... ,Tn}∈CTypes

The type of an overloaded function is the set of the types of its branches
(the Ti’s are arrow types). Also, one has to check that the obtained type is
well formed.

[OvAppl]
C;S; Γ ` exp: {Di → Ti}i∈I C;S; Γ ` expj:Aj (j=0..n)

C;S; Γ ` [exp0 exp exp1, . . . , expn]:Th
if Dh = mini∈I{Di | C ` A0 × A1 × . . . × An ≤ Di}.

When we pass a message or, more generally, we perform an overloaded
application we look at the type of the function, exp, and we select the branch
whose input type best approximates the type of the argument. The argument
is (exp0,expr1,...,exprn) and the selected branch is the branch h such that
Dh = mini∈I{Di | C ` A0 × A1 × . . . × An ≤ Di}. Note that if the set
{Di | C ` A0 × A1 × . . . × An ≤ Di, i ∈ I} is not empty the the min exists
thanks to the condition of multiple inheritance in the type of exp. If it is empty
then the expression is not well-typed.

[Coerce]
C;S; Γ ` exp:A

C;S; Γ ` coerce[A′](exp):A′
C ` A ≤ A′

The construct coerce[A′](exp) says to consider exp (whose type is A) as
if it were of type A′. This is a type safe operation if and only if A≤ A′. The
same rule can be use for super, too.

Then, we have a special rule for multi-methods

[Multi]
C;S; Γ ` exp1:T1 . . . C;S; Γ ` expn:Tn

C;S; Γ ` &exp1& . . . & expn:#{T1, ... ,Tn}
{T1, ... ,Tn}∈CTypes

Note that this rule and [OvAbst] assign two different types to the same
expression &exp1&...& expn; however this ambiguity is solved by the use of
in the interfaces. If that expression is to be used as an overloaded function
(and thus it is applied to an argument) then it must be typed by [OvAbst].

14

The rule [Multi], instead, is used to type multi-methods; it cannot be used
otherwise, since there is no elimination rule for # (the # disappears thanks
to the definition of “;”—see the rule [Class]—where the branches are “dis-
tributed” on the more general type of the message, which has no #).

Finally let us consider the typing of a class definition. We need to take a
short detour. A class definition is always of the form:

class A is A1,...,An r: R m1=exp1;...;mm=expm [[m1:V1,...,mm:Vm]] in p

where we use the notation r:R to denote that the instance variables have
type R and initial values given by r. The whole program is well-typed if
the class definition is well-typed and the program p is well-typed under an
environment including the new definitions introduced by this class. To obtain
this environment we have to update the type of the messages by adding the
types of the the new branches defined in the class. We have to distinguish the
case of a simple method from that of a multi-method. For every message mi in
the interface such that Vi is a raw type we must update its current type Γ(mi)
in the following way: Γ(mi) := Γ(mi)∪{A→ Vi} (where we use the convention
that Γ(mi) = {} if mi 6∈dom(Γ)). If the type of a message in the interface is
preceded by a #, then the associated method is a multi-method; recall that
the type of its argument is the cartesian product of the type of the current
class with the types the dispatch is performed on (see the rule [OvAppl]).
For example, if in the interface above mi:#{D → U,D′ → T} then we have to
perform the following updating: Γ(mi) := Γ(mi)∪{(A×D)→ U, (A×D′)→ T}.
More generally, we define

A ; V =

 {(A×Di)→ Ui}i∈I if V≡#{Di → Ui}i∈I
{A→ V } otherwise

thus the updating of Γ gets: Γ(mi) := Γ(mi) ∪ {A ; Vi}.
Now we can write the rule [Class]. In order to shorten it we use the following

abbreviations:
- S ′ ≡ S[A← R] the function S where to the class A is associated the type

of its internal state R.
- C ′ ≡ C ∪ (

⋃
i=1..nA ≤ Ai) the set C extended by the type constraints

generated by the definition
- I ≡ [[m1 : V1,...,mm : Vm]] the interface of the class
- Γ′ ≡ Γ[mi ← Γ(mi) ∪ {A ; Vi}]i=1..m the environment Γ where the

(overloaded) type of the messages is updated with the type of the new
methods (branches) added by the class-definition

C;S; Γ ` r:R C ′;S ′; Γ′[self← A] ` expj:Vj (j=1..k) C ′;S ′; Γ′ ` p : T

C;S; Γ ` class A is A1,...,An r:R m1=exp1;...;mk=expk I in p : T
if A 6∈ dom(S), for i = 1..n; C ` R ≤strict S(Ai) and for i = 1..k; Γ(mi) ∪ {A ;

Vi} ∈C′ Types

15

Let us examine, in more detail, the single parts of this rule. First we assure
that a class with this name does not already exist (A 6∈ dom(S)), we check
the type of the initial values of the instance variables (C;S; Γ ` r:R) and
we verify that the type of the internal state of the class is compatible with
(i.e. it is an extension of) the states of its ancestors (C ` R ≤strict S(Ai) for
i = 1..n 12) (see appendix A.2 for the definition of ≤strict, and [10] or [5] for
motivations). Then we check that the defined messages possess well-formed
overloaded types (Γ(mi) ∪ {A ; Vi} ∈C′ Types), i.e. that they satisfy the
conditions of covariance, multiple subtyping and input type uniqueness. We
also check that the methods have the type declared in the interface (expj : Vj),
and this check is performed in an environment where we have recorded in C ′

the newly introduced type constraints, in S ′ the type of the internal state of
the current object and in Γ′ also the types of the new methods (for a possible
mutual recursion). Finally we type the rest of the program where the class is
declared. In order to implement the protection mechanisms we restore in the
environment the old values for self.

Finally, the rule [Extend] (see appendix A.3) is a special case of the rule
[Class] where there are no type constraints and no instance variables to
check; we have just to check that the class in the extend expression has been
already defined (i.e. A ∈ dom(S)). Note that because of the definition of ∪
and the condition of input type uniqueness, if mi has already been defined for
the class A then Γ(mi)∪{A ; Vi} ∈ Types if and only if {A ; Vi} ∈ Γ(mi).
In other terms if we redefine a method the new definition has to possess the
same type as the old one.

3 The λ&-calculus

In this section we briefly recall the main definitions of the λ&-calculus,
defined in [13]. What we present here is a slight variant of the calculus defined
in [13]; this variant has been studied in [10]. For a more detailed discussion
the reader may refer to [13,12,10].

An overloaded function is formed by a set of ordinary functions (i.e. lambda-
abstractions), each one constituting a different branch. Overloaded functions
are built as lists, starting by an empty overloaded function denoted by ε, and
concatenating new branches by means of &; therefore an overloaded function
with n branches Mi is written as ((...((ε&M1)&M2)...)&Mn). The type of an
overloaded function is the set of the types of its branches. Thus if Mi:Ui → Ti
then the overloaded function above has type {U1 → T1, U2 → T2,. . . ,Un →
Tn}. The application of an overloaded function (i.e. the message passing) is
denoted by “•”. If we apply the function above to an argument N of type
U then we select the branch whose Ui “best approximates” the type of the
argument; i.e. we select the branch j s.t. Uj = min{Ui|U ≤ Ui}. And thus

12 The ancestor must have been already declared, otherwise S is not defined

16

(ε&M1& . . .&Mn)•N �+ Mj·N (*)
where �+ means “reduces in one or more steps to”.

A set of arrow types {Uh → Th}h∈H is an overloaded type if and only if, for
all Ui and Uj in {Uh}h∈H, it satisfies these two conditions:

(1) if Ui ≤ Uj then Ti ≤ Tj
(2) if U is maximal in LB(Ui, Uj) then there exists a unique h ∈ H such

that Uh = U

These are exactly the conditions of section 2.8; i.e. we select those pretypes
that satisfy the conditions of covariance, multiple inheritance and input type
uniqueness.

This models overloading: it remains to include late binding. This can simply
be done by requiring that a reduction as (*) can be performed only if N is a
closed normal form.

The formal description of the calculus is given by the following definitions:

PreTypes T :: = A |T → T | {T ′1 → T ′′1 , . . . , T
′
n → T ′′n}

Subtyping
We define a partial order on the pretypes starting from a given order for the
atomic types and we extend it to higher pretypes in the following way:

U2 ≤ U1 T1 ≤ T2

U1 → T1 ≤ U2 → T2

∀i ∈ I,∃j ∈ J U ′j → T ′j ≤ U ′′i → T ′′i
{U ′j → T ′j}j∈J ≤ {U ′′i → T ′′i }i∈I

Types
A pretype is also a type if all the overloaded types that occur in it satisfy the
conditions (1) and (2). We denote by Types the set of types. Types are equal
modulo the ordering of the arrows in the overloaded types.

Terms
M :: = xT | λxTM |M·M | ε |M&TM |M•M

The type indexing the & is used for the selection of the branch in overloaded
application and to type check overloaded functions.

Type-checking Rules
The type checking rules are very close to those for the toy object-oriented
language. Indeed they are more general since any type can appear as input
type of an overloaded function. We do not need any type context Γ since the
variables are indexed by their type.

[Taut] xT :T

[→Intro]
M :T

λxU.M :U → T

[→Elim≤]
M :U → T N :W ≤ U

M·N :T

17

[Tautε] ε: {}

[{}Intro]
M :W1 ≤ {Ui → Ti}i∈I N :W2 ≤ U → T

(M&{Ui→Ti}i∈I⊕(U→T)N): {Ui → Ti}i∈I ⊕ (U → T)

[{}Elim]
M : {Ui → Ti}i∈I N :U Uj = mini∈I{Ui|U ≤ Ui}

M•N :Tj
whereevery pretype in the rules is a well-formed type (i.e. it belongs to Types)
and {U1 → T1, . . . , Un → Tn} ⊕ (U → T) has the following definition:

=

 {U1 → T1, . . . , Ui−1 → Ti−1, Ui+1 → Ti+1, . . . Un → Tn, U → T} if U = Ui

{U1 → T1, . . . , . . . Un → Tn, U → T} otherwise

Reduction
The reduction � is the compatible closure of the following notion of reduction
(for definitions see [4]):

β) (λxT .M)N �M [xT := N]
β&) If N :U is closed and in normal form, and Uj = mini=1..n{Ui|U ≤ Ui}

then

(M1&{Ui→Ti}i=1..nM2)•N �

M1•N for j < n

M2·N for j = n

In the λ&-calculus there are infinitely many fixed point combinators (see [4]).
For example we can define a Turing’s fixed point combinator ΘT for every
type T . Recall that the Turing’s fixed point combinator is characterized by
the fact that ΘF �∗ F (ΘF). Then define S ≡ (T → T)→ T . If ES is a closed
term of type S then

AT ≡ (ES&{{}→S,{{}→S}→S}λx{{}→S}.λyT→T .y((x•x)y)

has type {{} → S, {{} → S} → S}. Define ΘT ≡ AT •AT : S. Then for
F :T → T we obtain

ΘTF ≡ (A•A)F �∗ F ((A•A)F) ≡ F (ΘTF)

And ΘT has type (T → T)→ T (for more details see chapter 3 of [10]).

One of the most compelling extensions of λ& is the one with explicit coercions
(λ&+coerce). Informally, an explicit coercion is a term that changes the type
of its argument which, however, maintains its functionalities. This feature
is crucial in λ&, where types determine the computation: the capability to
change types implies a greater control over the execution. In particular, it is
possible to drive the selection towards a given branch by applying an explicit
coercion to the argument of an overloaded function.

More formally, the extension of λ& by explicit coercions is obtained by
adding to the terms coerceT (M), by adding the following typing rule and

18

reduction:

[Coerce]
`M :S ≤ T

` coerceT (M):T

(coerce) coerceT (M)◦N �M ◦N
where by ◦we denote either • or ·.

For the λ&-calculus and it extension with explicit coercions we proved,
in [13,10], some fundamental theorems like the Church-Rosser property, the
theorem of subject reduction, and the strong normalization of some relevant
sub-calculi.

4 λ object

In this section we define the meta-language λ object. We pass from a cal-
culus, which possesses an equational presentation, to a language, which thus
is associated to a reduction strategy and a set of values. It is as if we had
the λ-calculus and we wanted to define the SECD machine. The analogy is
quite suggestive since, as in the case of the SECD machine, we do not want an
exact correspondence with the λ-calculus (e.g. as the one between the SECD
machine and the λV : see [22]); rather we aim to define a language that im-
plements the “general” behavior of the λ&-calculus, and that constitutes a
meta-language for object-oriented languages. A meta-language is conceived
to “speak about”, to describe a language. Thus it must possess the syntactic
structures to reproduce the constructs of that language, structures that are
not generally present in a calculus. To this end we provide λ object with con-
structs to define new atomic types, to define a subtyping hierarchy on them,
to work on the implementation of a value of atomic type, to define recursive
terms, to change the type of a term and to deal with super. We give an oper-
ational semantics for untyped terms, we define a notion of run-time type error
and a type-checking algorithm. Finally we prove the subject reduction theo-
rem (thus the correctness of the type-checker) which plays a key role, being
λ object intended for typed object-oriented languages.

The main decision in the definition of λ object is how to represent objects.
This decision will drive the rest of the definition of the language. Running
languages usually implement objects by records formed by three kinds of fields:
fields containing the values of the instance variables, fields used by the system
(for example for garbage collection) and a special field containing a reference
to the class of the object. Obviously in this theoretical account we are not
interested in the fields for the system, hence an object in λ object will be
formed only by the values of its instance variables (the so-called internal state)
and by a tag indicating the class of the object. The tag of an object must
uniquely determine the type of the object, for in our approach the selection of

19

a method is based on the type of the object. There are two reasonable ways
to do it, and in both of them the name of the class is considered an atomic
type:

(a) An object is a record whose fields are the instance variables plus a special
empty field whose type is the name of the class.

(b) An object is a record whose fields are the instance variables and which is
given a tag, say A, by applying it to a special constructor inA. In other
terms, intag is the constructor for the values of (atomic) type tag whose
internal representation is given by the record of the instance variables.

For λ object we choose to use the solution (b) for, even if it needs the intro-
duction of new operations and new typing rules, it has the advantage that,
as in our toy language, the type of an object is its class. Thus types will be
conserved during the translation from the toy language to λ object. Further-
more the operational semantics of λ object will be simplified. Henceforth we
will not distinguish among the terms “tag”, “atomic type” and “class-name”
since in λ object they coincide.

To resume, in λ object objects are “tagged terms” of the form inA(M) where
A is the tag and M represents the internal state. When we have an overloaded
application M•N we first reduce M to a term (M1&M2) and N to a tagged
term, and then we perform the branch selection according to the obtained
tag, that is the name of the class of the object. The selected method must
be able to access the instance variables of the object, i.e. to get inside the in
construct. To this purpose we use a function denoted out that composed with
in gives the identity.

4.0.1 Pretypes

We use A and B (possibly subscripted) to denote atomic types.

T :: = A | T×T | T → T | {(A1×. . .×Am1)→ T1, . . . , (B1×. . .×Bmn)→ Tn}

where in the last production n,mi ≥ 1

4.0.2 Terms

Here we define the raw terms of the language, i.e. terms that have not
been type checked yet. Terms are composed by an expression preceded by a
(possibly empty) suite of declarations. We use the metavariable M to range
over expressions and P to range over terms:

M ::=xT | λxT.M | M·M | ε | M&TM | M•M

| <M ,M> | π1(M) | π2(M) | µxT .M

| coerceA(M) | superA(M) | inA(M) | outA(M)

P ::=M | let A ≤ A1, ... , An in P | let A hide T in P

20

Declarations cope with atomic types: they can be used to define the subtyping
relation on atomic types and to declare a new atomic type by associating to
it a representation type (i.e. the type of the internal state). More precisely
the declaration let A hide T in P declares the atomic type A and associates
it to the type T used for its representation. This declaration introduces two
constructors inA:T → A and outA:A → T which form a retraction pair from
T to A.

4.0.3 Tagged values

We have to be a little more precise about tagged values: a tagged value is
everything an overloaded function can perform its selection on. Thus it can be
an object of the form inA(M) but also the coercion of an object, the super of
an object and, since we have multiple dispatch, a tuple of objects. Thus a tag
is either an atomic type or a product of atomic types. We use the metavariable
D to range over tags; tagged values are ranged over by GD where D is the
tag.

GD: : = inD(M) | coerceD(M) | superD(M) | <GA1
1 , GA2

2 , . . . , GAn
n >

In the last case of the production above D is (A1 × . . . × An)

4.0.4 Operational Semantics

We define the values of λ object, i.e. those terms that are considered as
results; values are ranged over by G.

G ::= x | (λxT .M) | ε | (M1&TM2) | <G1 , G2>

| coerceA(M) | superA(M) | inA(M)

The operational semantics for λ object is given by the reduction⇒; this reduc-
tion includes a type constraint system 13 C that is built along the reduction
by the declarations (let A ≤ A1 . . . An in P) and that is used in the rule(s)
for the selection of the branch. In the following, we use ◦ to denote either · or
• and D(C) to denote the mini=1..n{Di|C ` D ≤ Di}

Axioms

(C , πi(<G1 , G2>)) ⇒ (C , Gi) i=1,2

(C , outA1(inA2(M))) ⇒ (C , M)

(C , outA1(coerceA2(M))) ⇒ (C , outA1(M))

(C , outA1(superA2(M))) ⇒ (C , outA1(M))

(C , µx.M) ⇒ (C , M [x := µx.M])

(C , (λx.M)·N) ⇒ (C , M [x := N])

13 At this stage it would be more correct to call it a “tag constraint system”

21

(C , (M1&{D1→T1,...,Dn→Tn}M2)•GD) ⇒ (C , M1•G
D) if Dn 6= D(C)

(C , (M1&{D1→T1,...,Dn→Tn}M2)•GD) ⇒ (C , M2 ·GD) if Dn = D(C) and
GD 6≡ superD(M)

(C , (M1&{D1→T1,...,Dn→Tn}M2)•GD) ⇒ (C , M2 ·M) if Dn = D(C) and
GD ≡ superD(M)

(C , let A ≤ A1 . . . An in P) ⇒ (C ∪ (A ≤ A1) ∪ . . . ∪ (A ≤ An) , P)

(C , let A hide T in P) ⇒ (C , P)

Context Rules

(C , M)⇒ (C , M ′)

(C , <M ,N >)⇒ (C , <M ′ , N >)

(C , M)⇒ (C , M ′)

(C , <G ,M>)⇒ (C , <G ,M ′>)

(C , M)⇒ (C , M ′)

(C , πi(M))⇒ (C , πi(M ′))

(C , M)⇒ (C , M ′)

(C , outA(M))⇒ (C , outA(M ′))

(C , M)⇒ (C , M ′)

(C , M ◦N)⇒ (C , M ′ ◦N)

(C , M)⇒ (C , M ′)

(C , (N1&N2)•M)⇒ (C , (N1&N2)•M ′)

The semantics for pairs is the standard one. Three axioms and a rule de-
scribe the behavior of out and give it access to the internal state of an object.
Functional application is implemented by call-by-name; anyway, this is not a
necessary condition and the call-by-value would fit as well.

The three axioms and two rules for overloaded functions deserve more at-
tention: in an overloaded application we first reduce the function (the term
on the left) to an &-term and then its argument to a tagged value; then the
reduction is performed according to the index of the &-term. In a sense, we
perform a “call-by-tagged-value” (but for well-typed programs this notion co-
incides with the usual call-by-value: see corollary 7). It is worth noting that
this selection does not use types: no type checking is performed, only a match
of tags and some constraints is done; indeed, we still do not have any “type”
here, but some tags indexing the terms. Note the difference when the tagged
value is a super: in that case the argument of the super is passed to the selected
branch instead of the whole tagged value.

Finally, the declaration (let A ≤ A1 . . . An in P) modifies the type con-
straints in which to evaluate the body P , while (let A hide T in P) serves
only to the type checker, and thus, operationally, is simply discarded.

4.0.5 Programs and type errors

The operational semantics above is given for untyped terms, thus its compu-
tations may genrate type errors. Now we define which terms are the programs
of λ object and when a reduction ends by a type error.

Definition 3 A program in λ object is a closed term P different from ε.

22

We use the notation P ⇒ P ′ to say that (C,P) ⇒ (C ′, P ′) for some C and
C ′ and we denote by

∗⇒ the reflexive and transitive closure of ⇒. Given a
term M , we say that it is in normal form if and only if there does not exist
an N such that M ⇒ N . Let P be a closed term in normal form. If P is not
a value then it is always possible to use the context rules of the operational
semantics to decompose P to find the least subterm that is not a value and
where the reduction is stuck. Let us call this subterm the critical subterm of
P . For example, consider:

((M1&M2) • ((superA(M)) · (N))) · (M ′)

This term is in normal form. Indeed, since it is an application we first try to
reduce ((M1&M2) • ((superA(M)) · (N))); then for the sixth context rule we
try to reduce (superA(M)) · (N); again for the fifth context rule we try to
reduce (superA(M)); but it is a value different from a λ-abstraction and we
are stuck. Thus, in this case, the critical subterm is (superA(M)) · (N). Note
that the critical subterm (of a closed normal non-value term) always exists
and is unique, since it is found by an algorithm which is deterministic (since
the operational semantics is deterministic) and terminating (since the size of
the term at issue always decreases).

Definition 4 (type-error) Let P be a program. If P
∗⇒P ′, P ′ is in normal

form and it is not a value then we say that P produces a type error. Further-
more if the critical subterm of P ′ is of the form ((M1&TM2)•GD) then we say
that P produces an “undefined method” type error.

The “undefined method” error is raised when we try to reduce an overloaded
application of a &-term to a tagged value, and D(C) (i.e. mini=1..n{Di|C `
D ≤ Di}) is not defined. This means that it is not possible to select a branch
for the object passed to the function. This can be due either because the set
{Di|D ≤ Di , i = 1..n} is empty or because it has no minimum. In object-
oriented terms the former case means that a wrong message has been sent to
the object and in the latter that the conditions on multiple inheritance have
not been respected.

4.1 The type system

We have defined programs and how to compute them; then we have singled
out those computation that produce a “type error”. Now we have to justify
the use of the adjective type in front of the word “error”. To this purpose
we define a type system for the raw terms, so that the well-typed programs
will not produce these errors. The complete definitions of this section are
summarized in appendix B.

4.1.1 Types

As in the case of λ&-calculus and of our toy language we first define an
order on the pretypes and then we select among them those that satisfy the

23

conditions for covariance, multiple inheritance and input type uniqueness. The
subtyping relation on pretypes and the good formation for types are exactly
the same as those defined for our toy language in section 2.8 and by the
definition 2, with the only modification that the set of atomic types is relative
to a program and it is formed by all the pretypes that have been declared by
a let . . . hide definition

Definition 5
(i) A ∈C,S Types for each A ∈ dom(S)

(ii) if T1, T2 ∈C,S Types then T1 → T2 ∈C,S Types and T1 × T2 ∈C,S Types
(iii) if for all i, j ∈ I

(a) (Di, Ti ∈C,S Types)
(b) if C ` Di ≤ Dj then C ` Ti ≤ Tj)
(c) for each maximal type D in LBC({Di, Dj}) there exists h∈I such that

Dh = D
(d) if i 6= j then Di 6= Dj

then {Di → Ti}i∈I ∈C,S Types

4.1.2 Type checking rules

The type checking rules are parametric in a type constraint system C and
a function S from atomic types to types. These are used respectively to store
the type constraints and the implementation types defined in the declarations;
this is performed by the following rules

[NewType]
C , S[A← T] ` P :U

C, S ` let A hide T in P :U
A 6∈ dom(S), T ∈C,STypes and T not atomic

[Constraint]
C ∪ (A ≤ Ai)1=1..n, S ` P :T

C, S ` let A ≤ A1, ... , An in P :T
if C ` S(A) ≤ S(Ai) and A does not appear in C

In the [NewType] rule we require that the representation type of a class
is not another class; this is very reasonable, for the new atomic type would be
completely equivalent to the one of its representation, but it would require a
further in and out to access the internal state. In the last rule we require that
A does not appear in any type constraint. In this way the ordering on atomic
types is defined stepwise in the top-down sense. In this way the subtyping
relation forms a dag. 14

The rules for the terms of λ object that already belongs to the λ& syntax
are the same as the corresponding one in λ& (just add some C and S in the
right places). The rules for the expressions that do not belong to the syntax
of λ& are:

[Coerce]
C, S `M :B

C, S ` coerceA(M):A
C ` B ≤ A and A ∈C,S Types

14 Equivalently we could have defined C so that to satisfy this property.

24

[Super]
C, S `M :B

C, S ` superA(M):A
C ` B ≤ A and A ∈C,S Types

[In]
C, S `M :T

C, S ` inA(M):A
C ` T ≤ S(A) and A ∈C,S Types

[Out]
C, S `M :B

C, S ` outA(M):S(A)
C ` B ≤ A and A ∈C,S Types

Note that an atomic type A can be used in an expression like coerceA, superA

and so on, only if A ∈C,S Types, i.e. it has been previously defined by a
let hide declaration.

4.2 Some results

Proposition 6 Let M :T ; if M is closed and in normal form then M is a
value.

Proof. The proof is obtained by induction on M . 2

A consequence of this proposition is the following corollary which justifies the
rules for the overloaded application in the operational semantics:

Corollary 7 If a program is in normal form and it is typed by a (possibly
unary) product of atomic types, then it is a tagged value.

Recall that it is not possible to reduce inside a λ-abstraction. Therefore if
in the evaluation of a program we reduce a term of the form M•N , then,
in particular, N must be closed. To perform the selection of a branch (the
β&-reduction) N must also be a value; thus, by the corollary above it must
be a tagged value. Therefore in a well-typed program overloaded application
is implemented by the usual call-by-value, since the only values allowed as
arguments by the type checker are tagged values.

Lemma 8 (substitution lemma) Let C, S `M :U , C, S ` N :T ′ and C ` T ′ ≤
T ; then C, S `M [xT := N]:U ′, where C ` U ′ ≤ U

Proof. By induction on M . The only difficult case is M≡M1•M2, whose proof
follows the pattern of the corresponding case in the next theorem. 2

Theorem 9 (Subject Reduction) Let C, S ` P :T ; if (C,P)
∗⇒(C ′, P ′) then

C ′, S ` P ′:T ′ and C ′ ` T ′ ≤ T .

Proof. The proof consists in an induction on P where we use the substitution
lemma above.

It suffices to prove the theorem for⇒; the thesis follows by a simple induc-
tion on the number of steps of the reduction. Thus, we proceed by induction
on the structure of P . When P is a value then the thesis is trivially satisfied.
When P is of the form (let ... in P ′) or of the form πi(M), then the proof is a
straightforward use of the induction hypothesis. The remaining cases are (in
the rest of the proof we omit C and S since they do not change):

P≡outA(M) . Where M :A′ ≤ A. The only case of reduction is that M ⇒

25

M ′ and P ′≡ outA(M ′); but from the induction hypothesis it follows that
M ′:B ≤ A′ ≤ A; thus also P ′ is well-typed and possess the same type as P .

P≡M1·M2 where M1:U → T and M2:W ≤ U . We have two subcases:
(i) M1 ⇒ M ′

1 , then by induction hypothesis M ′
1:U ′ → T ′ with U ≤ U ′

and T ′ ≤ T . Since W ≤ U ≤ U ′, then by rule [→Elim(≤)] we obtain
M ′

1M2:T ′ ≤ T
(ii) M1≡λxU.M3 and P ⇒ M3[x := M2] , with M3:T . Thus, by Lemma 8,

M3[x := M2]:T ′ with T ′ ≤ T .
P≡M1•M2 where M1: {Di → Ui}i∈I and M2:D.

Let Dh = mini∈I{Di|D ≤ Di}. Thus T = Uh. We have three subcases:
(i) M1 ⇒ M ′

1 then by induction M ′
1: {D′j → U ′j}j∈J with {D′j → U ′j}j∈J ≤

{Di → Ui}i∈I Let D′k = minj∈J{D′j|D ≤ D′j}. Thus M ′
1•M2:U ′k. There-

fore we have to prove that U ′k ≤ Uh
Since {D′j → U ′j}j∈J ≤ {Di → Ui}i∈I , then for all i ∈ I there exists

j ∈ J such that D′j → U ′j ≤ Di → Ui. For i = h we choose a certain

h̃ ∈ J which satisfies this condition that is:

D′
h̃
→ U ′

h̃
≤ Dh → Uh (1)

We now have the following inequalities:

D ≤ Dh (2)

by hypothesis, since Dh = mini∈I{Di|D ≤ Di};

Dh ≤ D′
h̃

(3)

follows from (1);

D ≤ D′
h̃

(4)

follows from (2) and (3);

U ′
h̃
≤ Uh (5)

follows from (1);

D′k ≤ D′
h̃

(6)

by (4), since D′
h̃

belongs to a set with D′k as least element;

U ′k ≤ U ′
h̃

(7)

follows from (6) and the covariance rule on {D′j → U ′j}j∈J
Finally, by (5) and (7), one has that U ′k ≤ Uh

(ii) M2 ⇒ M ′
2 then by induction hypothesis M ′

2:D′ with D′ ≤ D. Let
Dk = mini∈I{Di|D′ ≤ Di}. Thus M1•M

′
2:Uk. Since D′ ≤ D ≤ Dh then

26

Dk ≤ Dh; thus, by the covariance rule in {Di → Ui}i∈I , we obtain
Uk ≤ Uh.

(iii) M1≡ (N1&N2) and M2 is a tagged value. Then we have three cases,
that is M ⇒ (N1•M2) (case Dh 6= Dn) or M ⇒ (N2·M2) (case Dh = Dn

and M2 different from super) or M ⇒ (N2·M3) (case Dh = Dn and
M3≡ superD(M2)). According to the case it easy to use [{}Elim] or
[→Elim(≤)] or [→Elim(≤)] and [Super] to show that the terms have
type Uh or smaller.

2

Proposition 10 If P ⇒ P ′ and P is closed then also P ′ is closed

Proof. A simple induction on the rules of the operational semantics. 2

Corollary 11 Let P be a well-typed program. If P
∗⇒P ′ and P ′ is in normal

form then P ′ is a value

Proof. By theorem 9 P ′ is well-typed and by proposition 10 it is closed. The
thesis follows from proposition 6. 2

This corollary states that well-typed programs reduce to values, and thus do
not produce type errors.

4.3 Encoding of record

In λ object it is possible to encode the updatable records defined in [25].
They are constructed starting from an empty record value, denoted by 〈 〉,
and by two elementary operations:

- Overwriting 〈r ← `i = M〉; if `i is not present in r, then it adds a field
of label `i and value M to the record r; otherwise replaces the value of
the field with label `i by the value M .

- Extraction r.`i; extracts the value corresponding to the label `i, provided
that a field having that label is present.

The encoding is defined as follows. Let L1, L2, . . . be an infinite list of isolated
types 15 , and introduce for each Li a constant `i:Li. Then a record type is
encoded in the following way:

〈〈`1:V1; . . . ; `n:Vn〉〉 ≡ {L1 → V1, . . . , Ln → Vn}
while the encoding of record values is given by:

〈 〉 = ε

r.`i = r•`i

〈r ← `i = M〉 = (r &IλxLi .M) where I ≡ (S ⊕ {Li → T})
if r:S and M :T

Where ⊕ is the one defined in section 3. For the properties and the limits of
this encoding see [10].

15 A type T is isolated if for every type S, S≤T or T≤S implies S = T .

27

5 Translation

As we have already said, we will not give a direct semantics to the toy
language. Instead we translate its programs into λ object.

The key theorem of this section states that a well-typed program of the
toy language is translated into a well typed term of λ object ; this result
validates the algorithm of type-checking we have given for the toy object-
oriented language in section 2.8, since it assures that type errors can never
occur during the computation of well-typed programs.

We split the definition of the interpreter in three parts: we first translate
programs where methods are neither mutually recursive nor multi-methods;
then by slight modifications we introduce also multi-methods and finally, in
the third subsection, we introduce also recursive methods. In order to ease
the presentation we only give the intuitive rules that constitute the trans-
lation. The detailed presentation of the formal translation is postponed to
appendix C.

5.1 Simple methods without recursion

We first give the intuitive translation of all the object-oriented commands
of the language:

– A message is an identifier of an overloaded function; thus it is translated in
a variable possessing a (raw) overloaded type; i.e. [[m]] = m{Ai→Ti}i∈I where
{Ai|i ∈ I} is the set of the classes where the message m has been defined,
and the Ti’s are the corresponding types appearing in the interfaces.

– Message passing is the application of an overloaded function; i.e. [[[exp0

exp exp1, . . . , expn]]] = [[exp]]•[[(exp0, exp1, . . . , expn)]]
– In the definition of a method, self represents the receiver of the mes-

sage that invoked the method. Thus we translate a method msg=exp into
λselfA.[[exp]], where A is the current class. This will form a branch of the
overloaded function denoted by the (translation of the) message msg.

– new(A) defines a value of type A. More exactly it defines inA(r) where r
is the record value containing the initial values of the instance variables of
the class A.

– update unpacks self in its representation (record) type, modifies its value
(i.e. the internal state) and packs it again in its original type. Thus for
example [[(update {x = 3})]] = inA(〈outA(selfA)← x = 3〉); again A is the
current class.

– super[A](exp) and coerce[A](exp) are respectively translated into
superA([[exp]]) and coerceA([[exp]]).

– The operation extend corresponds to adding a branch to an overloaded
function. It has the following intuitive interpretation
[[extend A m = exp [[. . .]] in exp′]] =

28

(let m = (m&λselfA.[[exp]]) in [[exp′]]).
– Finally we have the most complex construct: the class definition. By a class

definition one defines a new atomic type, a set of type constraints on this
atomic type and some branches of overloaded function. The intuitive inter-
pretation of, say, (class A is A1,A2 {x:Int=3} m = exp [[m : T]]

in p) is:
let A hide 〈〈x : Int〉〉 in
let A ≤ A1, A2 in
let m = (m&λselfA.[[exp]]) in [[p]]

Of course the initial value 3 of x must be recorded during the translation
so that this value could be used in the translation of new(A).

5.2 With multi-methods

Let us now add multi-methods. Intuitively we have to change only three
things:

– The type of a message must take into account also the multi-methods, thus
[[m]] = m{Ai;Ti}i∈I—note in the index the use of ; in the place of → used
in the previous section—where again {Ai|i ∈ I} is the set of the classes
where the message m has been defined, and the Ti’s are the corresponding
types appearing in the interfaces.

– The method msg=exp is translated as before into λselfA.[[exp]], if it is a nor-
mal method (A is the current class). If it is a multi-method then exp must
be of the form &...&.... For example exp may be:

mesg = & fn(x1:C1; x2:C2) => exp1
& fn(y1:C1; y2:C3) => exp2
& fn(z:C2) => exp3

Then, using some pattern matching in the lambda calculus, the multi-
method is translated into
let mesg = (mesg

&λ(selfA, xC1
1 , xC2

2).[[exp1]]

&λ(selfA, yC1
1 , yC3

2).[[exp2]]
&λ(selfA, zC2).[[exp3]])

– In the translation of extend we have to translate the multi-methods in the
same way as above.

5.3 With recursive methods

We now give the translation in the case that methods can be defined mu-
tually recursively. The only thing we have to change is the interpretation of
the methods, and then apply it both to the translation of the class definition
and the one of extend. Intuitively without multi-methods if we have:

extend B with

29

m1 = exp1

m2 = exp2...
mn = expn
[[...]] in exp

this is translated into
let (m1,m2, . . . ,mn) = µ(m1,m2, . . . ,mn).

((m1&λselfB.[[exp1]]) , (m2&λselfB.[[exp2]]) , . . . , (mn&λselfB.[[expn]]))
in [[exp]]

Of course we have to put the right types to the variables and the ampersands,
and to deal with multi-methods. This is handled in appendix C.3

5.4 Correctness of the type-checking

We next prove that every well-typed program of the toy-language is trans-
lated in a well-typed term of λ object. The semantics of the toy-language is
given in terms of the translation we have just defined; also the notion of type
error for the toy language comes from this translation: a program is type safe
when its translation, if it stops, stops on a value. Thus, by the results of sec-
tion 4.2 the translation of a well-typed program is type safe, which means that
the type checker for λ object is correct.

More formally the interpretation function [[]] of a program p will be param-
eterized by an environment of free variablesΓ an environment of the initial
states I, and by the type of the current object A that will index the interpre-
tation (i.e. [[p]]Γ I A : see appendix C). So that the theorem of correctness of
the type system for the toy language is formulated as follows:

Theorem 12 For every type constraint C, type environment Γ and for every
I ∈ InitState and S : ClassNames →RecordTypes such that for any A
atomic I(A):S(A), if C;S; Γ ` p:T then C;S ` [[p]]Γ I Γ(self):T

6 λ object and λ&

In this section we show the exact correspondence between λ object and λ&
by presenting how the former can be encoded in λ&+coerce. We are not able
to translate the whole λ object; we have to restrain our attention to those
programs that do not contain super. This was quite predictable since the
introduction of super had required the modification of the rule β&. First,
we recall the encoding of surjective pairings in λ&, which are similar to the
encoding of record types. Distinguish two isolated types P1 and P2 together
with two constants π1 : P1 and π2 : P2 then (T1 × T2) ≡ {P1 → T1, P2 →
T2}, πi(M) ≡ M•πi, and <M1 ,M2> ≡ (ε&λxP1.M1&λxP2.M2) (for xPi 6∈
FV (Mi)). The rules of subtyping, typing and reduction are the special cases
of the rules of λ& (and thus of λ&+coerce).

30

6.1 The encoding of the types

We start by codifying the types of λ object. Recall that in λ object every
atomic type is associated to a type used for its representation. This association
is always relative to a program in which it is described. Thus given a well-typed
program P we define

(i) The set of atomic types defined in the program P :

AP =

A ∪ AP ′ if P ≡ let A hide T in P ′

AP ′ if P ≡ let A ≤ A1, . . . , An in P ′

Ø otherwise

(ii) The set of type constraints generated in the program P :

CP =

(A≤A1) ∪ ... ∪ (A≤An) ∪ CP ′ if P ≡ let A ≤ A1, . . . , An in P ′

CP ′ if P ≡ let A hide T in P ′

Ø otherwise

(iii) The function that for every atomic type A in AP returns the representa-
tion type associated in P .

SP =

SP ′ [A← T] if P ≡ let A hide T in P ′

SP ′ if P ≡ let A ≤ A1, . . . , An in P ′

Ø otherwise

Then the translation of the types of λ object relative to a program P is defined
in the following way 16

Definition 13 For every well-typed program P , we translate a type T ∈CP ,SP
Types into the set of λ&-pretypes generated from the po-set of atomic types
(AP ,≤) where ≤ is the transitive and reflexive closure of CP . The translation
is defined by induction on the structure of T :

[[A]] = A× [[SP (A)]]

[[A1 × A2]] = [[A1]]× [[A2]]

[[S → T]] = [[S]]→ [[T]]

[[{Si → Ti}i∈I]] = {[[Si]]→ [[Ti]]}i∈I
The definition above is well defined. To prove it associate to every T ∈CP ,SP
Types the weight w(T) defined as follows

w(A) = n if A has been the n-th atomic type defined in the program P .
w(S → T) = w(S × T) = max{w(S), w(T)}

16 As a matter of facts there cannot be in λ object only user defined atomic types;
there must be at least one predefined atomic type * together with a constant ? : * to
start the definitions (see the implementation in CamlLight of λ object described
in [10]). This does not change the essence of what follows. Just imagine that also
λ&contains * and ? and that they are translated by the identity.

31

w({Si → Ti}i∈I) = maxi∈I{w(Si), w(Ti)}
Then it is easy to verify that, thanks to rules for typing and type good for-
mation of λ object, the translation of a type is always given in terms of the
translations of types with a minor weight or with the same weight but a less
deep syntax tree (remember that the translation is given w.r.t. a well-typed
program P , and thus the definitions let ... hide ... cannot be circular)

The weight above is also used to prove the following proposition

Proposition 14 CP ` S ≤ T ⇔ [[S]] ≤ [[T]]

Proof. Let d(T) denote the depth of the syntax tree of T and associate to
every subtyping judgment S ≤ T the pair (w(S) + w(T), d(S) + d(T)). Then
the result follows from a straightforward induction on the lexicographical order
of the pairs. The only non trivial case is when S ≤ T is A1 ≤ A2:
(⇐) If A1 ≤ A2 in λ& then this must have been obtained by transitivity and
reflexivity from CP . Thus CP ` A1 ≤ A2

(⇒) Vice versa if CP ` A1 ≤ A2 then

[[A1]] ≤ [[A2]] ⇔ A1 × [[SP (A1)]] ≤ A2 × [[SP (A2)]]

⇔ A1 ≤ A2 ∧ [[SP (A1)]] ≤ [[SP (A2)]]

The first factor (i.e. A1 ≤ A2) follows from CP ` A1 ≤ A2 and definition 13.
The second (i.e. [[SP (A1)]] ≤ [[SP (A2)]]) follows from the induction hypothe-
sis since the left component of the associated pair strictly decreases (indeed
w([[SP (Ai)]]) � w(Ai) for i = 1, 2). 2

This proposition has the following important corollary

Corollary 15 Uj = mini∈I{Ui|U ≤ Ui} ⇔ [[Uj]] = mini∈I{[[Ui]]|[[U]] ≤ [[Ui]]}
We can now define precisely the target calculus of the translation that we call
TARGETP

Definition 16 The target calculus TARGETP of the translation relative to
a well-typed program P has as raw terms the set of the λ&+coerce terms con-
structed from a denumerable set of variables, the constants to encode pairings,
and a constant cA of each A ∈ AP . Its set of types is formed by AP plus the
pretypes that are in the image of the translation of definition 13 plus the types
to encode pairings and to type fixpoint combinators. The subtyping relation is
the one generated from (AP ,≤) on the pretypes. The typing rules are those of
λ&+coerce.

Thus TARGETP is λ&+coerce but without some types. In particular A×[[T]]
belongs to the types of TARGETP if and only if let A hide T appears in P .

This is precisely stated by the following theorem

Theorem 17 The translation of a well-formed type of λ object satisfies the
condition of type formation of λ&(+coerce)

Proof. The result follows nearly immediately from definition 16 and from
proposition 14. Just note that the types added for fixpoint combinators do

32

not interfere with the condition (c) in definition 2. 2

Note that the statement of the theorem would not hold if we had not restricted
the types of TARGETP . This because A1 = A2uA3 does not imply SP (A1) =
SP (A2) u SP (A3).

6.2 The encoding of the terms

We can now give the translation for the terms

Definition 18 We give the translation relative to a well-typed program P , of
a term of λ object that does not contain super.

[[xT]] = x[[T]]

[[inA(M)]] = coerce[[A]]((cA , [[M]])) cA is the constant of type A
[[outA(M)]] = π2([[M]])
[[coerceA(M)]] = coerce[[A]]([[M]])
[[λxT .M]] = λx[[T]].[[M]]
[[(M&TN)]] = ([[M]]&[[T]][[N]])
[[M ◦N]] = [[M]] ◦ [[N]]
[[<M ,N>]] = < [[M]] , [[N]]>
[[πi(M)]] = π′i([[M]]) i = 1, 2
[[µxT .M]] = Θ[[T]](λx

[[T]].[[M]])
[[let . . . in P ′]] = [[P ′]]

where Θ is defined as in section 3

Strictly speaking we should have constructed SP along the translation in the
following way: [[let A hide T in P ′]]S = [[P ′]]S[A←T]; however, in the rest of
this section, the declarations play a secondary role thus we prefer to deal
with them more informally; consequently in the following we omit all the type
constraint systems, understanding that they are all relative to the type system
of a given program. Note also that we have distinguished two different pairings:
one denoted by (,) with projections πi, the other < , > with projections π′i.
The former is used to codify objects, the latter to encode the pairings of
λ object. We differentiated them so that they cannot interfere one with the
other.

Theorem 19 If M :T then there exists T ′ such that [[M]]: [[T ′]] ≤ [[T]]

Proof. The proof consists in a straightforward induction on the structure of
the program and uses proposition 14. Just note that [[M]]: [[T]] does not hold
because of the definition of [[outA(M)]] 2

To conclude this section we have to prove the correctness of our translation,
i.e. that if a program of λ object reduces to a value then its translation reduces
to the translation of the value. To prove it we need two technical lemmas. Let
us denote by N↓ the normal form of N .

Lemma 20 Let N be a tagged value. If N :D then [[N]] has a normal form
and [[N]]↓: [[D]]

33

Proof. A trivial induction on the structure of tagged terms. Note that the
coercion in the translation of inA blocks the type. 2

Lemma 21 (substitution) [[M [xT : = N]]] = [[M]][x[[T]]: = [[N]]]

Proof. A straightforward induction on M . Just note for the proof that Θ is
a closed term. 2

Theorem 22 If M ⇒ N then [[M]] �+
β∪β&∪(coerce) [[N]]

Proof. By induction on the definition of ⇒. It suffices to prove the theorem
for the axioms of λ object. The result then follows by a straightforward use of
the induction hypothesis. We have six cases (the axioms for the declarations
are trivially solved and we do not consider the axioms for super).

(i) πi(<G1 , G2>) ⇒ Gi straightforward
(ii) outA1(inA2(M)) ⇒ M

[[outA1(inA2(M))]] = π2([[inA2(M)]])

= π2(coerce[[A2]]((cA2 , [[M]]))

≡ (coerce[[A2]]((cA2 , [[M]])))•π2

�(coerce) π2((cA2 , [[M]]))

�+
β&∪β [[M]]

(iii) outA1(coerceA2(M)) ⇒ outA1(M)

[[outA1(coerceA2(M))]] = π2([[coerceA2(M)]])

= π2(coerce[[A2]]([[M]]))

�(coerce) π2([[M]])

= [[outA1(M)]]

(iv) µxT .M ⇒ M [xT := µxT .M]

[[µxT .M]] = Θ[[T]](λx
[[T]].[[M]])

�∗ (λx[[T]].[[M]])(Θ[[T]](λx
[[T]].[[M]]))

�β [[M]][x[[T]]: = [[µxT .M]]]

= [[M [xT := µxT .M]]] by lemma 21

(v) (λxT .M)·N ⇒ M [xT := N]

[[(λxT .M)·N]] = (λx[[T]].[[M]])[[N]]

�β [[M]][x[[T]]: = [[N]]]

= [[M [xT : = N]]] by lemma 21

34

(vi) (M1&TM2)•GD ⇒ Mi◦GD immediate from corollary 15 and lemma 20

2

7 Adding polymorphism to the toy language

Consider again the definitions of the classes 2DPoint and 2DColorPoint

given in sections 2.2 and 2.3. In 2DPoint a method for the message erase

is defined; this method returns a copy of the receiver, with the field x set to
zero. Thus, after the definition of 2DPoint, and according to the typing rules
of section 2.8, the message erase has the following type:

erase : {2DPoint→ 2DPoint}

In words, this type assignment means that the message erase can be sent to
any object of a class smaller than or equal to 2DPoint, and that the result has
type 2DPoint.

The method for erase can be used by the objects of class 2DColorPoint.
Therefore, the method is not redefined (overridden) in the definition of this
class, but, instead, it is inherited . Since the definition of erase persists un-
changed, then also its type does so. This has a nasty consequence: if we send
the message erase to an object of class 2DColorPoint then, for the type-
checker, the result is an object of type 2DPoint, rather than 2DColorPoint.
Therefore the following expression

let aColorPoint = [new(2DColorPoint) erase]
in [aColorPoint isWhite]

would be rejected by the type-checker, since this one would assign to aColorPoint
the type 2DPoint. Note that this problem is already present in λ& and, thus,
in λ object: consider an overloaded function copy whose definition is of the
form (. . .& λself C1. self & . . .). Thus

copy: {..., C1 → C1, ...}
Let C2 be a subtype of C1 and suppose that the application of copy to a term
of type C2 selects the branch defined for C1. Then the result of the application
has type C1, rather than C2, as it would be natural.

This problem is well known in the field of type theoretic research on object-
oriented programming, where it is designated as the “loss of information prob-
lem”. It was already pointed out for the record-based models in Cardelli’s
seminal paper [9]. And it is also present in some commercial object-oriented
languages (e.g. O2: see [3]). This problem was tackled—and overcome— for the
record-based approach, by many authors, notably [8,25,26,23,15]. In all these
propositions the solution is to pass to formalism with second order types.
In [11] we adopted the same solution for the overloading-based model. Thus
we defined a formalism—called F&

≤—to model second order “ad hoc” poly-

35

morphism 17 . Very briefly, the rough idea is to define a type system that types
the previous function copy in the following way:

copy: {..., ∀X≤C1.X → X, ...}
In words, it means that copy is no longer a message that, if applied to an
argument of type smaller than or equal to C1, returns a result of type C1, but,
instead, it is a function that, if applied to an argument of type X, smaller
than or equal to C1, returns a result of the same type, X, of the argument.

The same technique can be applied to erase. Indeed, to transfer the the-
oretic results of F&

≤ (foremost, the absence of loss of information) to object-
oriented programming we do not have to redefine the toy object-oriented lan-
guage from scratch: few modifications to the toy language of section 2 suffice.
Informally, from the point of view of our toy object-oriented language, the gain
of considering a second order system is embodied by the fact that we can use
the reserved keyword Mytype in the class interfaces. This keyword denotes the
type of the receiver of a message (we borrowed Mytype from [6]; examples of
other keywords with the same use are “like current” [19] and myclass [7]).
Note that by inheritance the type of the receiver of a message can be smaller
than the class(-name) for which the method has been defined: in our previous
example the receiver of the method defined for 2DPoint was a 2DColorPoint.
The use of this keyword can be shown by slightly modifying the definitions of
the classes 2DPoint and 2DColorPoint of sections 2.2 and 2.3.

class 2DPoint
{
x:Int = 0;
y:Int = 0

}
norm = sqrt(self.x^2 + self.y^2);
erase = (update{x = 0});
move = fn(dx:Int,dy:Int) => (update{x=self.x+dx; y=self.y+dy})

[[
norm: Real;
erase: Mytype;
move: (Int x Int) -> 2DPoint

]]

class 2DColorPoint is 2DPoint
{
x:Int = 0;
y:Int = 0;
c:String = "black"

}

17 According to the classification of [24], the mechanism of overloading is often
referred as “ad hoc” polymorphism.

36

isWhite = (self.c == "white")
move = fn(dx:Int,dy:Int) =>

(update{x=self.x+dx; y=self.y+dy; c="white"})
[[

isWhite: Bool
move: (Int x Int) -> Mytype

]]

Remark that we have modified only the interfaces, using in two places the
keyword Mytype. Recall that in the original toy language, the type system as-
signed to the term [new(2DColorPoint) erase] the type 2DPoint. Now, the
keyword Mytype in the interface says that the type returned by sending erase

is the same as the type of the receiver. In the case of [new(2DColorPoint)
erase], therefore, the type inferred is 2DColorPoint.

Note also that, in the interface of 2DColorPoint, the message move returns
Mytype instead of 2DPoint. The other way round is not allowed, i.e. it is
not possible to replace Mytype by a class-name. For example the following
definition

extend 2DColorPoint
erase = new(2DColorPoint)

[[erase: 2DColorPoint]]

would not be well-typed since the method erase in 2DPoint returned
Mytype. Indeed, the identifier—more precisely, the type variable—Mytype that
occurs in the interface of 2DPoint may assume any type smaller than or equal
to 2DPoint, and thus, in particular, also a type smaller than 2DColorPoint.
In that case the covariance condition would not be respected 18 .

Let see how the intuitive interpretation of these constructs is formally re-
flected in the type discipline of our toy language.

We just consider a restricted version of the toy language, without multiple
dispatching and in which messages (overloaded functions) are not first class,
i.e. they can be neither the argument nor the result of a function. We impose
this restriction in order to maintain to a minimum the modifications we have
to make to the type system. However, on the basis of the results in [11], the
is no conceptual problem to include also these features (see [10]).

We modify the language by adding the following productions

Terms v ::= new(Mytype)

Raw Types T ::= Mytype

We do not detail the modifications to make to the definitions of the types and
of the terms in order to exclude first class messages. They are very simple and
the reader can easily find them out.

18 Of course in the previous example it would have been more reasonable that move in
2DPoint returned (Int x Int) -> Mytype rather than (Int x Int) -> 2DPoint.

37

Recall that Mytype denotes the type of the receiver of the message, and
that, in the body of a method, the receiver is denoted by self. Thus self

is of type Mytype, and we have to modify the type-checking rule [Taut] in
order to take into account the new type of self; we split the rule [Taut] (see
appendix A.3) in two rules

[TautVar] C;S; Γ ` x : Γ(x) for x ∈ V ars

[TautSelf] C;S; Γ ` self : Mytype
As before, we use Γ(self) to record the current class (see the rule [Class]

below).
Then we must modify the rule [Write] since now the update of the internal

state returns a value of type Mytype.

[Write]
C;S; Γ ` r:R

C;S; Γ ` (update r): Mytype
if C ` R b S(Γ(self))

We must also extend the rule [New] to include the case new(Mytype):Mytype.
Consider the typing of the body of a method: an expression of type Mytype

can appear inside this body. We know that Mytype is the type of the receiver,
and, thus, it will be instantiated by a type smaller than or equal to the type
of the current class (the method at issue will be inherited only by subclasses
of the current class). Thus, in the typing of a method we have to record
that Mytype is smaller than the current class, i.e. that Mytype ≤ Γ(self).
This constraint is, for example, used to type expressions like [v message] or
super[A](v) when v : Mytype. Thus, we have to replace the old rule [Class]
by the following one

C;S; Γ ` r:R
C ′ ∪ {Mytype≤Γ(self)};S ′; Γ′[self← A] ` expj:Vj (j=1..m)

C ′;S ′; Γ′ ` p : T

C;S; Γ ` class A is A1,...,An r:R m1=exp1;...;mm=expm I in p : T

if A 6∈ dom(S), for i = 1..n C ` R ≤strict S(Ai) and for i = 1..m Γ(mi)∪{A ;

Vi} ∈C′ Types
Where C ′, S ′ and Γ′ are defined as in section 2.8. Similar modifications are
required for the rule [Extend].

Finally during message passing we have to instantiate Mytype, with the type
of the receiver

[OvAppl]
C;S; Γ ` exp1: {Ai → Ti}i∈I C;S; Γ ` exp2:A

C;S; Γ ` [exp2 exp1]:Th[Mytype: = A]
Ah = mini∈I{Ai | C ` A ≤ Ai}

Note that since overloaded functions are not first class then the type Th does
not contain overloaded types. This avoids possible name-clashes in the substi-
tution [Mytype: = A]. 19

19 However there is no conceptual difficulty to allow also first class overloaded func-
tions. The problem is that it would require us to change our notation for overloaded
types. Indeed, to avoid name clashes in the rule [OvAppl] every overloaded type

38

In this framework the overloaded type

{A1 → T1, . . . , An → Tn} (8)

has a completely new meaning, which is quite different from the one it had
in the case without polymorphism. Consider the branch corresponding to
the type Ai → Ti. Note, first, that Mytype can appear “free” in Ti. In the
non-polymorphic case Ai → Ti meant that the branch accepted a receiver of
type smaller than Ai and returned the type Ti. With the introduction of the
polymorphism—i.e. of the type variable Mytype—this type means that the
corresponding branch accepts a receiver of type A smaller than or equal to Ai
and returns a result of type Ti[Mytype := A]. Thus, in order to make explicit
the exact functionality hidden under the notation of the type (8) the notation
to use should be

{∀Mytype≤A1.Mytype→ T1, . . . ,∀Mytype≤An.Mytype→ Tn}

or alternatively (using the notation of [11], where the type of the parameter
is quantified externally to the overloaded type)

∀Mytype{A1.Mytype→ T1, . . . , An.Mytype→ Tn}

In both cases Mytype is a type variable bound by a quantifier that delimits
the range of the overloaded type.

To end this section we have to give the rules of good type formation for this
new system. The conditions for multiple inheritance and input type uniqueness
(definition 2, (c) and (d)) persist unchanged. What changes is the covariance
condition, since it has to take into account that Mytype may occur in the
interfaces. More precisely, it must allow, when redefining a method given for a
class A, to replace a covariant occurrence of A by Mytype: this is what we have
done, say, at the beginning of this section, in the definition of 2DColorPoint
where for move we replaced 2DPoint by Mytype.

Thus one has to modify the condition (b) in the definition 2 of type good
formation in the following way

(b) if C ` Di ≤ Dj then C∪{Mytype ≤ Di} ` Ti ≤ Tj

The formal correctness of this condition can be found in [11,10].

8 Conclusion and future work

As we already said in the introduction, this paper constitutes the compan-
ion of [13]. In that paper we defined a kernel calculus, λ&, to study the formal

should bear a type variable along with it: this type variable is the one denoting the
type of the receiver. An example of how it can be done can be found in [10].

39

properties of overloading and late binding. In this paper we defined a meta-
language, λ object, to formalize the correspondence between overloading with
late binding, and the object-oriented programming. The two papers are in a
sense, mutually recursive: to establish λ& we always kept in mind the formal-
ization of object-oriented programming; to establish λ object we were driven
by the formalization given to the calculus.

An example has been used to show how it is possible, via λ object, to
establish a formal correspondence between the overloading-based model and
the object-oriented programming: we defined a toy functional object-oriented
language, we translated it into λ object and we used this translation to prove
properties of the toy language.

In the last section we hinted at the formalization of overloaded types in a
second order framework and we showed how to apply the theoretical results
of such a study to the definition and the typing of object-oriented languages.
The typing rules written in that section are not pulled out of thin air, nor
do they rely on just intuition, but they are based on the formal analysis
developed in [11] (see for more details [10]). In a sense, with the second order
system, we followed the same path that we used for the case of simple typing:
driven by our intuition of object-oriented languages we first defined a formal
calculus—λ& for simple typing and F&

≤ for polymorphic types—, then we
applied the results coming from the formalization to the practice of object-
oriented programming. The final step consists of giving a formal proof of the
correspondence between the theory and its application, by defining a meta-
language in which to interpret and translate, object-oriented languages. This
is what we did, with this paper, for the case of simple typing; this is what is
still missing for the second order case. The work developed here is the base for
such a definition. Indeed, as the passage to the second order has required just
a few changes to the definition of the toy language, in the same way the meta-
language for polymorphic object-oriented languages should be obtained by
introducing a few modifications to λ object. The passage, however, cannot be
so smooth as it was for the toy language: in that case we modified a particular
language, while in the new case we have to define a meta-language that must
be valid for a wide class of (polymorphic) object-oriented languages. Many
problems must first be solved, foremost the introduction of implicit parametric
polymorphism, which we are currently working on. 20 Also, some mechanisms
to deal with the dynamic definitions of new classes (see the discussion in
Appendix C.1) should be introduced.

20 Indeed, the polymorphism we used in our toy language is somewhat an half-way
implicit-explicit polymorphism, since we have a type variable in the language —i.e.
Mytype— but types are not explicitly passed to functions. For a wider discussion
see chapter 11 of [10]

40

Acknowledgments

Many ideas of this work come from several discussions with Luca Cardelli,
Giorgio Ghelli, Giuseppe Longo, Eugenio Moggi and Benjamin Pierce. I am
especially grateful to Allyn Dimock, Maribel Fernández and Benjamin Pierce
for their precise as well as useful comments on an early version of this paper.
Finally, I want also to thank the referees of TCS for their useful comments.
In particular one of them, whose report was the most accurate and detailed
report I have ever seen.

References

[1] A. Albano, R. Bergamini, G. Ghelli, and R. Orsini. An object data model with
roles. In Proceedings of the 19th VLDB Conference, Dublin, 1993.

[2] Apple Computer Inc., Eastern Research and Technology. Dylan: an object-
oriented dynamic language, April 1992.

[3] F. Bancilhon, C. Delobel, and P. Kanellakis (eds.). Implementing an Object-
Oriented database system: The story of O2. Morgan Kaufmann, 1992.

[4] H.P. Barendregt. The Lambda Calculus Its Syntax and Semantics. North-
Holland, 1984. Revised edition.

[5] K. B. Bruce. Safe type checking in a statically typed object-oriented
programming language. In 20th Ann. ACM Symp. on Principles of
Programming Languages. ACM Press, 1993.

[6] K.B. Bruce. A paradigmatic object-oriented programming language: Design,
static typing and semantics. Journal of Functional Programming, 4(2):127–206,
1994.

[7] P.S. Canning, W.R. Cook, W.L. Hill, and W.G. Orthoff. Interfaces for strongly-
typed object-oriented programming. In OOPSLA ’89, New Orleans, October
1989.

[8] L. Cardelli and P. Wegner. On understanding types, data abstraction, and
polymorphism. Computing Surveys, 17(4):471–522, December 1985.

[9] Luca Cardelli. A semantics of multiple inheritance. Information and
Computation, 76:138–164, 1988. A previous version can be found in Semantics
of Data Types, LNCS 173, 51-67, Springer-Verlag, 1984.

[10] G. Castagna. Overloading, subtyping and late binding: functional foundation
of object-oriented programming. PhD thesis, Université Paris 7, January 1994.
Appeared as LIENS technical report.

[11] G. Castagna. Integration of parametric and ”ad hoc” second order
polymorphism in a calculus with subtyping. Formal Aspects of Computing,
1995. Springer Verlag. To appear. Part of this work appeared in the Proc. of the
4th International Workshop on Database Programming Languages, Wordkshop
in Computing series, Springer Verlag.

41

[12] G. Castagna, G. Ghelli, and G. Longo. A semantics for λ&-early: a calculus
with overloading and early binding. In M. Bezem and J.F. Groote, editors,
International Conference on Typed Lambda Calculi and Applications, number
664 in Lecture Notes in Computer Science, pages 107–123, Utrecht, The
Netherlands, March 1993. Springer-Verlag.

[13] G. Castagna, G. Ghelli, and G. Longo. A calculus for overloaded functions
with subtyping. Information and Computation, 117(1):115–135, 1995. A
preliminary version has been presented at the 1992 ACM Conference on LISP
and Functional Programming , San Francisco, June 1992.

[14] W.R. Cook, W.L. Hill, and P.S. Canning. Inheritance is not subtyping. 17th
Ann. ACM Symp. on Principles of Programming Languages, January 1990.

[15] P. L. Curien and G. Ghelli. Coherence of subsumption, minimum typing and
the type checking in F≤. Mathematical Structures in Computer Science, 2(1),
1992.

[16] L.G. DeMichiel and R.P. Gabriel. Common lisp object system overview. In
Bézivin, Hullot, Cointe, and Lieberman, editors, Proc. of ECOOP ’87 European
Conference on Object-Oriented Programming, number 276 in LNCS, pages 151–
170, Paris, France, June 1987. Springer-Verlag.

[17] A. Goldberg and D. Robson. Smalltalk-80: The Language and Its
Implementation. Addison-Wesley, Reading, Mass., 1983.

[18] S.K. Keene. Object-Oriented Programming in Common Lisp: A Programming
Guide to CLOS. Addison-Wesley, 1989.

[19] Bertrand Meyer. Eiffel: The Language. Prentice Hall, 1991.

[20] NeXT Computer Inc. NeXTstep-concepts. Chapter 3: Object-Oriented
Programming and Objective-C, 2.0 edition, 1991.

[21] L.J. Pinson and R.S. Wiener. Objective-C: Object-Oriented Programming
Techniques. Addison-Wesley, 1992.

[22] G.D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical
Computer Science, 1, 1975.

[23] D. Rémy. Typechecking records and variants in a natural extension of ML. In
16th Ann. ACM Symp. on Principles of Programming Languages, 1989.

[24] C. Strachey. Fundamental concepts in programming languages. Lecture notes
for International Summer School in Computer Programming, Copenhagen,
August 1967.

[25] Mitchell Wand. Complete type inference for simple objects. In 2nd Ann. Symp.
on Logic in Computer Science, 1987.

[26] Mitchell Wand. Corrigendum: Complete type inference for simple objects. In
3rd Ann. Symp. on Logic in Computer Science, 1988.

42

A Specification of the toy language

A.1 Terms

r ::= {`1=exp1; . . . ; `n=expn}

exp ::= x

| fn(x1 : T1, ..., xn : Tn) => exp
| exp1(exp2)

| (exp, . . . , exp)
| fst(exp) | snd(exp)
| let x:T = exp in exp
| extend classname

(message = method;)+

interface
in exp
| new(classname)
| self

| (self.`)

| (update r)

| super[A](exp)
| coerce[A](exp)
| & fn(x1:A1, ..., xn1 : An1) => exp1

& fn(x1:A1, ..., xn2 : An2) => exp2

...
& fn(x1 : A1,...,xnm : Anm) => expm (m≥1)

| [exp0exp exp1 . . . expn] (n≥0)

p ::= exp
| class classname [is classname (, classname)∗]

instanceVariables
(message = method;)∗

interface
in p

method ::= exp

message ::= x

interface ::= [[message : V ; ...;message : V]]

43

instanceV ariables ::= {`1 : T1=exp1; . . . ; `n : Tn=expn}

A.2 Subtyping

C ∪ (A1 ≤ A2) ` A1 ≤ A2

C ` T2 ≤ T1 C ` U1 ≤ U2

C ` T1 → U1 ≤ T2 → U2

C ` U1 ≤ T1 . . . C ` Un ≤ Tn
C ` (U1 × . . . × Un) ≤ (T1 × . . . × Tn)

for all i ∈ I, there exists j ∈ J such that C ` D′′i ≤ D′j and C ` U ′j ≤ U ′′i
C ` {D′j → U ′j}j∈J ≤ {D′′i → U ′′i }i∈I

C ` U1 ≤ T1 . . . C ` Uk ≤ Tk
C ` 〈〈`1:U1; . . . ; `k:Uk; . . . ; `k+j:Uk+j〉〉 ≤ 〈〈`1:T1; . . . ; `k:Tk〉〉

The (pre)order for all types is given by the reflexive and transitive closure
of the rules above.

A.2.1 Auxiliary Notation

C ` 〈〈`1:T1; . . . ; `k:Tk; . . . ; `k+j:Tk+j〉〉 ≤strict 〈〈`1:T1; . . . ; `k:Tk〉〉

C ` U1 ≤ T1 . . . C ` Uk ≤ Tk
C ` 〈〈`1:U1; . . . ; `k:Uk〉〉 b 〈〈`1:T1; . . . ; `k:Tk; . . . ; `k+j:Tk+j〉〉

A.3 Typing Rules

Let

Γ: (V ars ∪ {self})→ Types

S: AtomicTypes→ RecordTypes

Then we have the following typing rules:

[Taut] C;S; Γ ` x : Γ(x) x ∈ (Vars∪{self})

[Funct]
C;S; Γ[x← T] ` exp:U

C;S; Γ ` fn(x:T) => exp : T → U
if T ∈CTypes

[Appl]
C;S; Γ ` exp1:T → U C;S; Γ ` exp2:W

C;S; Γ ` exp1(exp2) : U
if C `W ≤ T

44

[Prod]
C;S; Γ ` exp1:T1 . . . C;S; Γ ` expn:Tn
C;S; Γ ` (exp1, . . . ,expn): (T1 × . . . × Tn)

[Record]
C;S; Γ ` exp1:T1 . . . C;S; Γ ` expn:Tn

C;S; Γ ` {`1 = exp1; . . . ;`n = expn} : 〈〈`1 : T1; . . . ; `n : Tn〉〉

[Let]
C;S; Γ ` exp′:W C;S; Γ[x← T] ` exp:U

C;S; Γ ` let x : T = exp′ in exp : U
if C `W ≤ T

[New] C;S; Γ ` new(A):A if A ∈ dom(S)

[Read] C;S; Γ ` self.`:T if S(Γ(self)) = 〈〈...`:T...〉〉

[Write]
C;S; Γ ` r:R

C;S; Γ ` (update r) : Γ(self)
if C ` R b S(Γ(self))

[OvAbst]
C;S; Γ ` exp1:T1 . . . C;S; Γ ` expn:Tn

C;S; Γ ` &exp1& . . . & expn:{T1, ... ,Tn}
{T1, ... ,Tn}∈CTypes

[OvAppl]
C;S; Γ ` exp: {Di → Ti}i∈I C;S; Γ ` expj:Aj (j=0..n)

C;S; Γ ` [exp0 exp exp1, . . . , expn]:Th
if Dh = mini∈I{Di | C ` A0xA1x . . . An ≤ Di}.

[Coerce]
C;S; Γ ` exp:A

C;S; Γ ` coerce[A′](exp):A′
if C ` A ≤ A′

[Super]
C;S; Γ ` exp:A

C;S; Γ ` super[A′](exp):A′
if C ` A ≤ A′

[Multi]
C;S; Γ ` exp1:T1 . . . C;S; Γ ` expn:Tn

C;S; Γ ` &exp1& . . . & expn:#{T1, ... ,Tn}
{T1, ... ,Tn}∈CTypes

[Extend]
C;S; Γ′[self← A] ` expj : Vj (j=1..k) C;S; Γ′ ` exp : T

C;S; Γ ` extend A m1=exp1;...;mk=expk [[m1:V1,...,mk:Vk]] in exp:T

A ∈ dom(S) and for i = 1..k Γ(mi) ∪ {A ; Vi} ∈C Types

[Class]
C;S; Γ ` r:R C ′;S ′; Γ′[self← A] ` expj:Vj (j=1..k) C ′;S ′; Γ′ ` p : T

C;S; Γ ` class A is A1,...,An r:R m1=exp1;...;mk=expk I in p : T

if A 6∈ dom(S), for i = 1..n C ` R ≤strict S(Ai) and
for i = 1..k Γ(mi) ∪ {A ; Vi} ∈C′ Types

Where:

- A ; V =

 {(A×Di)→ Ui}i∈I if V≡#{Di → Ui}i∈I
{A→ V } otherwise

- S ′ ≡ S[A← R]
- C ′ ≡ C ∪ (

⋃
i=1..nA ≤ Ai)

- I ≡ [[m1 : V1,...,mm : Vm]]

- Γ′ ≡ Γ[mi ← Γ(mi) ∪ {A ; Vi}]i=1..m

45

B Type system of λ object

B.1 Types

(i) A ∈C,S Types for each A ∈ dom(S)
(ii) if T1, T2 ∈C,S Types then T1 → T2 ∈C,S Types and T1 × T2 ∈C,S Types

(iii) if for all i, j ∈ I
(a) (Di, Ti ∈C,S Types)
(b) if C ` Di ≤ Dj then C ` Ti ≤ Tj)
(c) for all maximal type D in LBC({Di, Dj}) there exists h∈I such that

Dh = D
(d) if i 6= j then Di 6= Dj

then {Di → Ti}i∈I ∈C,S Types

B.2 Typing rules

[NewType]
C , S[A← T] ` P :U

C, S ` let A hide T in P :U
A 6∈ dom(S), T ∈C,STypes and T not atomic

[Constraint]
C ∪ (A ≤ Ai), S ` P :T

C, S ` let A ≤ A1, ... , An in P :T
if C ` S(A) ≤ S(Ai) and A does not appear in C

[Taut] C, S ` xT :T

[→ Intro]
C, S `M :T ′

λxT.M :T → T ′
T ∈C,S Types

[→ Elim(≤)]
C, S `M :U → T N :W

C,S `M·N :T
C `W ≤ U

[Tautε] C, S ` ε: {}

[{}Intro+]
C, S `M :W1 ≤ {Ui → Vi}i∈I C, S ` N :W2 ≤ U → V

C, S ` (M&{Ui→Vi}i∈I⊕(U→V)N): {Ui → Vi}i∈I ⊕ (U → V)
{Ui → Vi}i∈I ⊕ (U → V) ∈C,STypes

The rules for the expressions that do not belong to the syntax of λ& are:

[{}Elim]
C, S `M : {Ui → Ti}i∈I C, S ` N :U

C, S `M•N :Tj
Uj =mini∈I{Ui|C ` U≤Ui}

[Pair]
C, S `M :T1 C, S ` N :T2

C, S ` <M ,N>:T1 × T2

46

[Proj]
C, S `M :T1 × T2

C, S ` πi(M):Ti
for i = 1, 2

[Coerce]
C, S `M :B

C, S ` coerceA(M):A
C ` B ≤ A and A ∈C,S Types

[Super]
C, S `M :B

C, S ` superA(M):A
C ` B ≤ A and A ∈C,S Types

[In]
C, S `M :T

C, S ` inA(M):A
C ` T ≤ S(A) and A ∈C,S Types

[Out]
C, S `M :B

C, S ` outA(M):S(A)
C ` B ≤ A and A ∈C,S Types

[Fix]
C, S `M :T

µxT.M :T
T ∈C,S Types

C Formal definition of the translation

C.1 Simple methods without recursion

Unfortunately the formal interpretation is not so smooth as the intuitive
one. Most of the problems derive from the fact that, in λ object, the vari-
ables are typed. Thus, when we translate a set of methods into an overloaded
function, we have to concatenate branches so that the resulting term has the
required overloaded type.

Formally, let L be the set of the programs of the toy-language; we define
the translation from L to Terms (the set of the raw terms of λ object) using
three functions. The first is the function that describes the translation itself:

=[[]] : L → Envs→ InitState→ AtomicTypes→ Terms

Where:

Envs = V ars→ RawTypes This parameter records the type
of the identifiers. It is ranged
over by the metavariable Γ.

InitState = ClassNames→ RecordV alues This parameter stores the initial
value of the instance variables of
each class: it is used in the in-
terpretation of new. It is ranged
over by the metavariable I.

47

AtomicTypes This parameter is the current
class, and it is used in the trans-
lation of a method.

Therefore =[[p]]Γ I A is the term of λ object that translates the program p.

The definition of = is given in term of two auxiliary functions M and
T . M[[p]](m) returns the (overloaded) term associated to the message m
by the definitions in p; T [[p]](m) returns the (raw) type that indexes the
variable (translation of) m. Of course, if p is well typed we expect that
M[[p]](m): T [[p]](m).

It is necessary to introduce these auxiliary functions in order to overcome
one of the major drawbacks of λ&. Suppose we have three classes A,B and C
with C defined by multiple inheritance from A and B (C ≤ A,B). Suppose
also that A and B can respond to the same message m; then by the condition
of multiple inheritance one has also to define a branch for m with input type
C. In object-oriented languages, as in our toy language, the logical order is to
define first the branches for A and B and then, at the moment of the definition
of C, to append the new branch for C. Thus the definition of m would be of
the form

m≡ (ε

&{A→T1}λselfA.M1 &{A→T1,B→T2}λselfB.M2 (C.1)

&{A→T1,B→T2,C→T3}λselfC .M3)

This is very reasonable but unfortunately the term above is not well typed,
since the second index {A → T1, B → T2} is not a well formed type. In λ&
the branch written to solve the ambiguity of multiple inheritance must always
precede at least one of the branches of its direct ancestors. In the case above
for example the following definition is well typed

m ≡ (ε &{A→T1}λselfA.M1 &{A→T1,C→T3}λselfC .M3 &{A→T1,C→T3,B→T2}λselfB.M2)

This problem can be framed in the more general problem of the definition of
dynamic types. λ& completely lacks the notion of time, or better the order
of the definition of types. Atomic types are given all at once, and there is
no perception of the temporal dependence of type definitions. Thus dynamic
types cannot be modeled, and for this reason in our toy language all the class
definitions have to precede the expression to execute. Actually we are working
on the definition of a type system in which the types use time stamps, so that
the definition of m as in (C.1) is well typed. The idea is that an expression
with type {A→ T1, B → T2} has a well-formed type if all its sub-expressions
use types that are older than the definition of C.

However for the moment we do not have time stamps; thus to translate
our toy language we have to use the functions M and T that pre-scan the
program to translate, and build the messages in the reverse way, from the

48

latest method defined to the first one. Thus to translate a program we are
obliged to scan it twice: once to construct methods by reading the definition
in the reverse way, the other to translate the whole program.

Since the function M[[]] uses in its definition the function =[[]], it needs
the same parameters as = in order to pass them to it; for T [[]] no parameter
is needed. Formally:

Definition 23

T [[]] : L → V ars→ Types

(i) T [[class B is A1,... ,Ap r : R m1=exp1 . . .mn=expn[[m1:T1 . . .mn :
Tn]] in p]](m) =

=

 T [[p]](mj)⊕ {B → Tj} for m = mj

T [[p]](m) else

(ii) T [[]] is the function that returns {} in all the other cases.

Definition 24

M[[]] : L → Envs→ InitState→ AtomicTypes→ V ars→ Terms

(i) M[[class B is A1,... ,Aq r:R m1=exp1 . . .mn=expn[[m1:T1 . . .mn :
Tn]] in p]]Γ I A(m) =

=

((M[[p]]Γ′ I A(mj))

&T [[p]](mj)⊕{B→Tj}λselfB.=[[expj]]Γ[self←B] I[B←r]B)
for m = mj

M[[p]]Γ I A(m) else

(ii) M[[]] is the function that returns ε in all the other cases.

Where Γ′ = Γ[mi ← Γ(mi)⊕ {B → Ti}]i=1..n.

Note that in =[[expj]]Γ I[B←r]B we have used Γ instead of Γ′ since we stated
that the methods are not mutually recursive.

Definition 25 (Translation)

(i) =[[x]]Γ I A = xΓ(x)

(ii) =[[exp1(exp2)]]Γ I A = =[[exp1]]Γ I A=[[exp2]]Γ I A
(iii) =[[fn(x:T) => exp]]Γ I A = λxT.=[[exp]]Γ[x←T] I A

(iv) =[[let x:T = exp1 in exp2]]Γ I A = (λxT.=[[exp2]]Γ[x←T] I A)(=[[exp1]]Γ I A)
(v) =[[(exp1,...,expn)]]Γ I A =< =[[exp1]]Γ I A, ...,=[[expn]]Γ I A >

(vi) =[[fst(exp)]]Γ I A = π1(=[[exp]]Γ I A)
(vii) =[[snd(exp)]]Γ I A = π2(=[[exp]]Γ I A)

(viii) =[[new(B)]]Γ I A = inB(I(B))
(ix) =[[[exp0 exp exp1, ..., expn]]]Γ I A = =[[exp]]Γ I A•=[[(exp0,exp1,...,expn)]]Γ I A
(x) =[[super[B](exp)]]Γ I A = superB(=[[exp]]Γ I A)

(xi) =[[coerce[B](exp)]]Γ I A = coerceB(=[[exp]]Γ I A)
(xii) =[[self]]Γ I A = selfA

49

(xiii) =[[self.`]]Γ I A = (outA(self A)).`
(xiv) =[[(update r)]]Γ I A = inA(〈outA(self A) ← `1 = =[[exp1]]Γ I A... ← `n =

=[[expn]]Γ I A〉)
where r ≡ {`1 = exp1; ... ; `n = expn}

(xv) =[[extend B m1=exp1...;mn=expn [[m1:T1;...;mn:Tn]] in exp]]Γ I A =

(λm
Γ(m1)⊕{B→T1}
1 ...λmΓ(mn)⊕{B→Tn}

n .=[[exp]]Γ′ I A)

(m
Γ(m1)
1 &Γ(m1)⊕{B→T1}λselfB.=[[exp1]]Γ I B) · · ·

(mΓ(mn)
n &Γ(mn)⊕{B→Tn}λselfB.=[[expn]]Γ I B)

In the last rule Γ′ = Γ[mi ← Γ(mi)⊕ {B → Ti}].
It still remains to give the translation of the programs.

Let p the program
class B is A1,... ,Aq r:R m1=exp1 . . .mn=expn[[m1:T1 . . .mn:Tn]] in p′

then

=[[p]]Γ I A =
let B hide R in
let B ≤ A1...Aq in

=[[p′]]Γ I[B←r]A[m
(T [[p]](mi))
i :=M[[p]]Γ I A(mi)]i=1..n

C.2 With multi-methods

Define an arbitrary total order � on Types with the following property: if
S ≤ T then S � T . Given an overloaded type {Si → Ti}i=i..n we denote by
σ the permutation that orders the Si’s according to �. Thus Si ≤ Sj implies
σ(i) ≤ σ(j). The intuitive translation given in section 5.2 is then formalized
by modifying the definitions of the previous section in the following way:

Definition 26

T [[]] : L → V ars→ Types

(i) T [[class B is A1,... ,Aq r : R m1=exp1 . . .mn=expn[[m1:V1 . . .mn :
Vn]] in p]](m) =

=

 T [[p]](mj)⊕ {B ; Vj} for m = mj

T [[p]](m) else

(ii) T [[]] is the function that returns {} in all the other cases.

The definition of M[[.]] : L → Envs → InitState → AtomicTypes →
V ars→ Terms gets quite harder:

Definition 27

– M[[class B is A1,... ,Aq r:R m1=exp1 . . .mn=expn[[m1:V1 . . .mn:Vn]]
in p]]Γ I A(m) =

(i) If m≡mj for some j ∈ [1..n] and Vj is a raw type, then the definition is
as before

((M[[p]]Γ′ I A(mj))&
T [[p]](mj)⊕{B→Vj}λselfB.=[[expj]]Γ[self←B] I[B←r]B)

50

(ii) If m≡mj for some j ∈ [1..n] and Vj ≡ #{Di → Ti}i=1..h, then we are in
the case of multi-method and expj must be of the following form:

& fn(x1:D1) => expj1
...

& fn(xh:Dh) => expjh
then M is defined in the following way:
(· · · ((M[[p]]Γ′ I A(mj)

&T [[p]](mj)⊕{B×Dσ(1)→Tσ(1)}λ(selfB, x
Dσ(1)

σ(1)).=[[expjσ(1)
]]Γ[self←B] I[B←r]B)

...
&(T [[p]](mj)⊕...⊕{B×Dσ(h−1)→Tσ(h−1)})⊕{B×Dσ(h)→Tσ(h)}

λ(selfB, x
Dσ(h)

σ(h)).=[[expjσ(h)
]]Γ[self←B] I[B←r]B)

Where Γ′ = Γ[mi ← Γ(mi)⊕ {B ; Ti}]i=1..n and σ is the permutation
described above

(iii) Else the definition of M is M[[p]]Γ I A(m)
– M[[.]] is the function that returns ε in all the other cases.

Finally we have to modify the definition of = for extend. We do not write it
here since the modifications follow the pattern of those we have done in the
definition above. This definition, however can be found in the case 14 of the
theorem 30.

C.3 With recursive methods

To cope with recursive (possibly multi-) methods we have to change the
definition of M in the following way:

Definition 28 Let p′ denote the program class B is A1,... ,Aq r:R
m1=exp1 . . .mn=expn[[m1:V1 . . .mn : Vn]] in p; then

– M[[p′]]Γ I A(m) =

 πj(M) for m = mj

M[[p]]Γ I A(m) else

Where Γ′ = Γ[mi ← Γ(mi) ⊕ {B → Ti}]i=1..n and M has the following
definition:

M ≡ µ(mT [[p′]](m1)

1 , . . . ,mT [[p′]](mn)

n).(M1, . . . ,Mn)

where
(i) If Vj is a raw type then

Mj ≡ ((M[[p]]Γ′ I A(mj))&
T [[p]](mj)⊕{B;Vj}λselfB.=[[expj]]Γ′[self←B] I[B←r]B)

(ii) If j ∈ [1..n] and Vj ≡ #{Di → Ti}i=1..h, then expj must be of the following
form:

& fn(x1:D1) => expj1
...

51

& fn(xh:Dh) => expjh
then Mj is defined in the following way:
(· · · ((M[[p]]Γ′ I A(mj)

&T [[p]](mj)⊕{B×Dσ(1)→Tσ(1)}λ(selfB, x
Dσ(1)

σ(1)).=[[expjσ(1)
]]Γ′[self←B] I[B←r]B)

...
&(T [[p]](mj)⊕...⊕{B×Dσ(h−1)→Tσ(h−1)})⊕{B×Dσ(h)→Tσ(h)}

λ(selfB, x
Dσ(h)

σ(h)).=[[expjσ(h)
]]Γ′[self←B] I[B←r]B)

where σ has the usual property.
– M[[.]] is the function that returns ε in all the other cases.

Similar modifications are to be done in the interpretation of extend.

C.4 Correctness of the type-checking

We prove something stronger than the well typing of a term obtained by
translating a well-typed program: we prove that the translated program pos-
sesses the same type as its translation; note indeed that the types of the toy
language are the same as those of λ object.

Since the definition of =[[.]] is mutually recursive with M[[.]] then the the-
orem must be proved mutually recursively with a theorem on M[[.]]. Thus
the main theorem will be split in two propositions. But first we need some
auxiliary notation:

Notation 29 We denote by Cp the set of type constraints declared in p, that is
Cp = Ø if p is an expression and C(classA isA1...An ... in p′) = (A ≤ A1)∪ ...∪(A ≤
An)∪Cp′. We denote by Sp the stores of the internal states defined in p: again
Sp = Ø if p is an expression and S(classA is...r:R...in p′) = [A ← R] · Sp′ (here ·
denotes simple juxtaposition)

Theorem 30 For every type constraint C, type environment Γ; for every I ∈
InitState and S : ClassNames →RecordTypes such that I(A):S(A) (for
every A atomic); if

C;S; Γ ` p:T
then

(i) for all m ∈ V ars C ∪ Cp;S · Sp ` M[[p]]Γ I Γ(self)(m): T [[p]](m)
(ii) C;S ` =[[p]]Γ I Γ(self):T

Proof. We prove the theorem only for the case in which there are no mutually
recursive methods; recursive terms do not pose any problem from the view-
point of type-checking, but render the proof more unreadable. The proof goes
by induction on p. When p is formed only by an expression then the part 1 of
the theorem is trivially proved by [Tautε]. Thus in the rest of the proof we
will prove the the part 1 of the theorem only when when p is is of the form
class A is ...[[...]] .

(i) p ≡ x but then =[[x]]Γ I Γ(self)=x
Γ(x): Γ(x) thus we have the result.

(ii) p ≡exp1(exp2) then C;S; Γ ` exp1 : T1 → T and C;S; Γ ` exp2 : T2 ≤ T1.

52

By induction C;S ` =[[exp1]]Γ I Γ(self):T1 → T and C;S ` =[[exp2]]Γ I Γ(self):T2.
We obtain the thesis by [→Elim(≤)].

(iii) p ≡ (fn x:T1 =>exp) then C;S; Γ[x ← T1] ` exp:T2 where T≡T1 → T2.
By induction C;S ` =[[exp]]Γ[x←T1] I Γ(self):T2. Therefore
C;S ` λxT1 .=[[exp]]Γ[x←T1] I Γ(self):T1 → T2.

(iv) p ≡ (let x:T1 = exp in exp′); combine the techniques of the previous
two cases.

(v) p ≡ snd(exp) a straightforward use of the induction hypothesis.
(vi) p ≡ fst(exp) a straightforward use of the induction hypothesis.
(vii) p ≡ new(A). By hypothesis I(A):S(A) therefore inA(I(A)) is well typed

and has type A.
(viii) p ≡ [exp0 exp exp1, . . . ,expn] then C;S; Γ ` exp : {Di → Ti}i∈I and

C;S; Γ ` expi : Ai with Dj = mini∈I{Di|C ` A0× ...×An ≤ Di} and T≡
Tj. From the induction hypothesis C;S ` =[[exp]]Γ I Γ(self): {Di → Ti}i∈I
and C;S ` =[[(exp0, exp1, ..., expn)]]Γ I Γ(self): A0×...×An. Then the thesis
is obtained by [{}Elim].

(ix) p ≡ coerce[A](exp) thus T≡A and C;S; Γ ` exp : T1≤ A. By induction
hypothesis C;S ` =[[exp]]Γ I Γ(self):T1. Thus coerceA(=[[exp]]Γ I Γ(self)) is
well-typed and has type A.

(x) p ≡ super[A](exp). As the previous case.
(xi) p ≡ self straightforward

(xii) p ≡ (self.`) Then S(Γ(self)) = 〈〈...`:T...〉〉.
Since selfΓ(self): Γ(self) and outΓ(self): Γ(self)→ S(Γ(self)) then

outΓ(self)(selfΓ(self)) : 〈〈...`:T...〉〉. Thus (outΓ(self)(selfΓ(self))).`:T .
(xiii) p ≡ update(r) Then T ≡ Γ(self) , C;S; Γ ` r : R and C ` S(Γ(self)) b

R. If r≡{`1=exp1;...;`n=expn} then by induction hypothesis

C;S ` 〈`1 = =[[exp1]]Γ I Γ(self); ...; `n = =[[expn]]Γ I Γ(self)〉:R

By definition outΓ(self)(selfΓ(self)):S(Γ(self)). Since C ` S(Γ(self)) b R
then
(〈outΓ(self)(selfΓ(self))← `1 = =[[exp1]]Γ I Γ(self)...← `n = =[[expn]]Γ I Γ(self)〉)
is well typed and has type S(Γ(self)).
Therefore also =[[p]]Γ I Γ(self) ≡ inΓ(self)(〈outΓ(self)(selfΓ(self)) ← ...〉) is
well-typed and has type Γ(self).

(xiv) We prove w.l.o.g. the case for extend with only one multi-method: the
case with ordinary methods is a slight modification of this case that can be
deduced from the next case; extensions including more than one method
can be translated in a suite of extensions with only one method, since,
we recall, we do not consider the case of mutually recursive methods.

Let p ≡ extend A m=&exp1 . . . &expn in [[m:V]] in exp

where V ≡#{D1 → T1,. . . ,Dn → Tn}
and Di ≡ Ai1 × . . . × Aini
and expi ≡ fn(xi1: .Ai1,...,x

i
ni

: .Aini) => exp′i (for i = 1..n)

53

Let exp∗1 denote the following expression:

fn(self:A, xi1: .Ai1,...,x
i
ni

: .Aini) => exp′i

Then p is translated into:
(λmΓ(m)⊕{A;V }.=[[exp]]Γ I Γ(self))

(mΓ(m)

&Γ(m)⊕{A×Dσ(1)→Tσ(1)}=[[exp∗1]]Γ I B
...

&(Γ(m)⊕{A×Dσ(1)→Tσ(1)}⊕...⊕{A×Dσ(n−1)→Tσ(n−1)})⊕{A×Dσ(n)→Tσ(n)}=[[exp∗n]]Γ I B
)

By hypothesis

C;S; Γ[self ← A] ` &exp1...&expn:V

and thus it is clear that

C;S; Γ[self ← A] ` &expσ(1)...&expσ(n):V

Therefore

C;S; Γ ` &exp∗σ(1)...&exp∗σ(n):A ; V (C.2)

Also by hypothesis

C;S; Γ[m← Γ(m) ∪ {A ; V }] ` exp:T (C.3)

Note now that given an overloaded type V if V ∪ {S → T} is a well
formed overloaded type then

1. Also V ⊕ {S → T} is well formed
2. V ∪ {S → T} = V ⊕ {S → T}
Thus from (C.3) we obtain

C;S; Γ[m← Γ(m)⊕ {A ; V }] ` exp:T

We can now apply the induction hypothesis obtaining:

C;S ` λmΓ(m)⊕{A;V }.=[[exp]]Γ I Γ(self): (Γ(m)⊕ {A ; V })→ T

Thus the thesis holds if we prove that the term

(· · · (m&Γ(m)⊕... . . .&(Γ(m)⊕{A×Dσ(1)→Tσ(1)}⊕...)⊕{A×Dσ(n)→Tσ(n)} . . .)

has type Γ(m)⊕{A ; V } This can be proved by induction on n: for n = 1
the thesis is a strightforward application of the induction hypothesis on
exp∗1 for (C.2). Consider now

(· · · (m&Γ(m)⊕... . . .&(Γ(m)⊕{A×Dσ(1)→Tσ(1)}⊕...)⊕{A×Dσ(i)→Tσ(i)}=[[exp∗i]]Γ I B)

54

Using the induction hypothesis on (C.2) it easy to see that the thesis
fails only if Γ(m) ⊕ {A × Dσ(1) → Tσ(1)} ⊕ ... ⊕ {A × Dσ(i) → Tσ(i)}
is not a well formed overloaded type. But since Γ(m) ⊕ {A ; V } is
well-formed, thus the previous type (which is a “subset” of this) surely
satisfies the conditions of covariance and input type uniqueness. And
thanks to the definition of σ it also satisfies the condition of multiple
inheritance: if A × Dσ(i) has a strict lower bound in common with any
other input type, then all the branches with maximal input types (which
must already be in Γ(m)⊕{A ; V }) are already in Γ(m)⊕{A×Dσ(1) →
Tσ(1)} ⊕ ...⊕ {A×Dσ(i) → Tσ(i)}, for either they are in Γ(m) or they are
of the form {A×Dσ(j) → Tσ(j)} but then, because of the condition on σ,
we have σ(j) < σ(i).

(xv) As in the previous case we consider a simpler version where we have only
one ancestor and one method in the class declaration: the general case
can be obtained by adding some indexing in the right places.
p ≡class A is A′ r:R m = exp [[m:V]] in p′. This is the only

case where the proof of the first part of the theorem is non-trivial thus:
1. We have to prove that for all m ∈ Vars

C ∪ Cp;S ` M[[p]]Γ I Γ(self)(m): T [[p]](m)

If m 6≡ m then the thesis follows from the induction hypothesis.
Otherwise let first consider the case when m = exp is not a multi-
method; then T [[p]](m) = T [[p′]](m)⊕{A→ V }. Since p is well-typed
then it is easy to prove that T [[p]](m) is a well-formed type; moreover
it holds that
M[[p]]Γ I Γ(self)(m) = (M[[p′]]Γ′ I Γ(self)(m)

&(T [[p′]](m))⊕{A→V }λselfA.=[[exp]]Γ I[A←r]A
)

By induction hypothesis C∪Cp′ ;S·Sp′ ` M[[p′]]Γ′ I Γ(self)(m): T [[p′]](m).
Furthermore by hypothesis we have that

C ∪ (A ≤ A′);S[A← R]; Γ[self← A] ` exp:V
By induction hypothesis on the part 2 of the theorem we have

C ∪ (A ≤ A′);S[A← R] ` =[[exp]]Γ[self←A] I[A←r]A:V
(Note that r:R and thus the hypothesis on I and S holds). By con-
struction exp is not affected by the declarations in p′ thus one also
has

C ∪ (A ≤ A′) ∪ Cp′ ;S[A← R] · Sp′ ` =[[exp]]Γ[self←A] I[A←r]A:V
which is equivalent to

C ∪ Cp;S · Sp ` =[[exp]]Γ[self←A] I[A←r]A:V
But then

C ∪ Cp;S · Sp ` λselfA.=[[exp]]Γ[self←A] I[A←r]A:A→ V

The thesis follows by the rule [{}Intro].
In the case of a multi-method then exp must be of the form (&

exp1 ... & expn) and V ≡ #{D1 → T1,. . . ,Dn → Tn}. Again since

55

p is well-typed it can be shown that T [[p]] is a well-formed type. Then
define exp∗i as in the previous case. Thus we have to prove under the
assumptions C ∪ Cp and S · Sp that

(M[[p′]]Γ′ I Γ(self)(m)

&T [[p′]](m)⊕{A×Dσ(1)→Tσ(1)}=[[exp∗σ(1)]]Γ[self←A] I[A←r]A
...

&(T [[p′]](m)⊕...⊕{A×Dσ(n−1)→Tσ(n−1)})⊕{A×Dσ(n)→Tσ(n)}=[[exp∗σ(h)]]Γ[self←A] I[A←r]A
)

has type T [[p′]](m)⊕{A ; V } This can be shown by induction on n.
For n = 1 use the induction hypothesis on p′. For n > 1 the proof is
exactly the same as the corresponding one of the previous case.

2. We know that C;S; Γ ` p:T and we have to prove that under the
hypothesis C and S the following expression

let A hide R in
let A ≤ A′ in
=[[p′]]Γ I A[m(T [[p]](m)) :=M[[p]]Γ I A(m)]

has type T . Thus we prove that
C ∪ (A ≤ A′);S[A← R] ` =[[p′]]Γ I[A←r] Γ(self):T
R ≤ S(A′)
M[[p]]Γ I Γ(self)(m): T [[p]](m) so that we substitute the variablemT [[p]](m)

by a term of the same type.
The first two conditions follow from the fact that C;S; Γ ` p : T and
by induction hypothesis on p′.

Clearly mT [[p]](m) appears after the declarations given in p′ since in
λ object no expressions can precede a let . . . in declaration. Thus
the thesis follows if we prove the point (iii) in an environment where
also the constraints of p′ are considered. Thus what we need to prove
is that:
C ∪ (A ≤ A′) ∪ Cp′ ;S[A← R] · Sp′ ` M[[p]]Γ I Γ(self)(m): T [[p]](m)
But since (A ≤ A′) ∪ Cp′ = Cp and [A ← R] · Sp′ = Sp then it is

exactly what we have proved in the proposition 1 of the theorem

2

56

