Note

Unifying overloading and A-abstraction: A

Giuseppe Castagna”

Abstract

In this short note we present aminimal system to deal with overloaded functions with late binding,
in which A-abstractions are seen as a special case of overloaded functions with just one code. We
prove some relevant properties that this system enjoys, and show its connection with the A& -calculus.
We end by showing the practical interest of this system, in particular in modeling object-oriented
languages.

1 Introduction

In [6] we defined, together with Giorgio Ghelli and Giuseppe Longo, the A& -calculus, an extension of
the simply typed A-calculus with overloaded functions, subtyping and late binding. We used it to study
the foundation of object-oriented languages.

In A& overloaded functions are built by concatenating lambda abstractions. The application of an
overloaded function is syntactically distinguished from the one of ordinary functions (A-abstractions).

In this note we present a minimal systems, the A*-calculus, in which there is a unique operation of
abstraction, aswell asauniqueapplication. Theideaisto haveonly overloaded functionsand to consider
an ordinary function as an overloaded function for which only one code has been defined. The problem
in doing that is that, in A&, to implement late binding, i.e. the selection of the code of an overloaded
function by using the most precise information on the type of the argument, overloaded functions have
to usethe call-by-value strategy. If we want to faithfully reproduce 3-reduction, no particular evaluation
strategy must beimposed. In A this s obtained by the definition of a particular notion of reduction, we
cal C.

Althoughweinitially defined A" mainly for theoretical purposes, namely the unification of overloaded
and ordinary functions, it recently turned out that it has also apractical i nterest concerning object-oriented
languages.

Thisnoteisorganized asfollows. In Section 2 we briefly recall the definition of the A& -calculus. In
Section 3 we present the A -calculus. Section 4 is devoted to the properties of the At -calculus: we show
how A isrelated to A&, we provethe soundness of AU and of its type system. We end our exposition by
showing, in Section 5, the practical interest of this system.

2 TheA&-calculus

In this section we briefly survey the A&-calculus. The definition we present here is dlightly different
fromtheonein [6]. Thisvariant has been studiedin [3] and definitely adoptedin[7]. For amoredetailed
discussion the reader may refer to [6, 5, 7].

An overloaded function is formed by a set of ordinary functions (i.e. lambda-abstractions), each
one constituting a different branch of code. Overloaded functions are built as lists, starting by an
empty overloaded function denoted by €, and concatenating new branches by means of &; therefore
an overloaded function with n branches M; is written as ((...((e&M1)&M>)...)&Mp). The type of an

*CNRS. Département de Mathématiques et o’ Informatique. Ecole Normale Supérieure. 45 rue d' Ulm. 75230 Paris Cedex 05.

overloaded function is the set of the types of its branches. Thus if M;:§ — T; then the overloaded
function above hastype {S; — T1, & — To,...,S — Tn} (wealso usethe notation {§ — Ti}i<n.) The
application of an overloaded function is denoted by “«”. If we apply the function above to an argument
N of type Sthen we select the branch whose S “best approximates’ the type of the argument; i.e. we
select the branch j such that S; = mini=1.n{S[S< S}. Andthus

(&M1& ...&Mp)eN>* M| -N *)

where >* means “reducesin one or more stepsto”.
A set of arrow types {S, — Th}hen iSan overloaded typeif and only if, for al i, j € H thefollowing
conditions are satisfied:

if S<SjthenT <T, D
for every Smaximal in LB(S, Sj) there existsauniqueh € H such that §,=S ()]

The first condition assures the type safety of the system while the latter is a necessary and sufficient
condition to the existence of a “best approximating” branch in every application of an overloaded
function.

The features above model overloading. It remainsto include late binding. This can be done simply
by requiring that areduction as (*) can be performed only if N isa closed normal form.

The formal description of the calculusis given by the following definitions:

PreTypes T = AIT=>T|{T->T,....T=>T}

Subtyping
We define apartial order on the pretypes starting from a given order for the atomic types and we extend
it to higher pretypesin the following way:

$S<S i< Viel,3jed S —=T <U =V
SoNM<S—=T {Sj = Tj}jes <{Ui = Vitia

Types
A pretypeisatypeif all the overloaded pretypes that occur in it satisfy the conditions (1) and (2). We
denote by Types the set of types.

Terms

M:=x" [AXTM | M-M |g| M&T™M | MeM
where T € Types. The type indexing the & is used for the selection of the branch in overloaded
application and to type check overloaded functions.

Typing algorithm

For the sake of conciseness, we describe only the algorithmic typing rules. These rules return the
minimum of the types inferred for a term by the system that use the subsumption rule, and whose
definitionisgivenin [7].

[TAuT] xXT:T [TAUTE] e{}
M:T MWIS{S _>Ti}i<n NVVZSS’]%TFI
[intRol - eMis S T [{yinTRe] M&SThaN) (S = T }on
M:S—T N:W<S M:{S — T }i N:S Sj=mini¢ {S|S< S}
[—ELiM<] MNT — [{}ELIM] S el M-N:'Ilj e {S/5< S}

The condition that every pretype appearing in aterm must be atype, assures that the typing relation “:”
defined by the rules aboveis a subset of Termsx Types (i.e. terms are typed by types).

Reduction
The reduction t> is the compatible closure of the following notion of reduction (for definitions see [1]):

(B) AxT.M)N>M[x" :=N]
(Bs) If N:Sisclosed andin normal form, and S; = mini<p{S | S< S} then

.\ MieN forj<n

{S—=Tili<n . 1 J

(M1& nMy) N>{ My-N forj=n

For the A& -calculus and we proved, in [6], that it satisfy some fundamental properties like confluence,
subject reduction, and strong normalization of some relevant sub-calculi.

3 TheA'-calculus

In this section we define a minimal system implementing overloading with late binding. The goa isto
use as few operators as possible. Therefore we renounce to having “extensible” overloaded functions
(i.e. functionsto which one can add new branchesby the & operator). Termsare are built from variables
by an operator of abstraction and one of application. Types are built from a set of basic types by the
constructor for overloaded types. The key idea is to consider standard functions (A-abstractions) as
overloaded functions with just one branch. We use a special reduction rule (¢) in order to avoid the
use of call-by-value when the function at issue is formed by a unique branch (i.e. when we perform
[-reductions).

T
M

A| {T]_—>T]_./"'./Tn—>Tn} nZ]-
X| MM1:T1 =T, Mp: Th = Ty) | MM n>1

Since thereis only one type constructor, there is also only one subtyping rule:

Viel,3jed U <SandT <V
{Sj = Tj}jea < {Ui = Vi}iel

(subtype)

3.0.1 Types

As usual we have the rules of type good formation. Every atomic type belongs to Types. If for all
Ljel, @ (S,TieTypes) (b) (S <Sj=T <T))(c) (forevery Smaximal in LB(S,Sj) there exists a
uniqueh € | suchthat §,=9),then {S — Ti }ic| € Types

Note that variables are no longer indexed by their type. This because in the term Ax(M1:S; =
T1,--,Mn: S, = Tp) the variable x should be indexed in each branch by a different type (i.e. the
corresponding §). Thus we prefer to avoid indexing and introduce in the typing rul es typing contexts
(denoted by I'). We suppose to work modulo a-conversion so that the order in I" is hot meaningful:

3.0.2 Typesystem
[TAuT] M Faup X T(X)

Viel T,(xS)FspMi:T

[INTRO'] M Fan XM S = T {S = Tiha

MFapM:{S = Titia T Fab N:S;

[Eriv7] [Feop MN:T,
MNapM:S ST
[SuBSUMPTION] Mo M T

3.0.3 Typingalgorithm
Thetyping algorithm for Fgp is given by the following rules
[TauT] MExr(x)

Viel I,xS)FM:U <T
FEAXMi S = T)ia: {S = Titie

[INTRO]

M= M: —Tilia TEN:S .

fl—Mﬁ:?’,— Sj = minic| {S|S< S}
This agorithm is sound and complete with respect to gy, in the sense that a term is typable by
subsumption if and only if it is typable by the algorithm (the algorithm returns the minimum of types
inferred by the system with subsumption).

[ELIM]

3.0.4 Reduction
The optimal reduction rule for this system would be the following one

S;j least type compatible with the

opt . N Ty =
B AX(Mi : § = Uj)iaN >r Mj[x:=N] run-timetype of N

But clearly thisruleis surely intractable if not even undecidable. In general it will be necessary at |east
to compute a good dedl of the program this redex appearsin, in order to discover theright Sj. In A&
we adopted the simplest solution choosing to allow the reduction only after that this computation had
taken place, that is when the argument had reached its run-time type. This solution was inspired by
what happensin object-oriented programming in which a message is bound to a method only when the
receiver of the messageisafully evaluated object. Though, some reasonableimprovementsare possible.

We think that a good trade-off between the tractability of the reduction and its generality isto allow
reductions also when we are sure that however the computation evolves the selected branch is always
the same. Thisexactly iswhat the reduction () below does. More formally:

The selection of the branch of an overloaded function needs the (algorithmic) type of its argument.
Since this argument may be an open term (and variables are no longer indexed by their type) reduction
will depend on atyping context I'. Thuswe defineafamily of reductions, subscripted by typing contexts
>r C Termsx Terms, such that if M > N then FV(M) C dom(T").

We have the following notion of reduction:

(Q) LetS;=minici{S|U <S}andlFN:U. If Nisaclosednormal formor {S|i €1,S < S;} ={S;}
then
AX(Mi : § = Uj)iaN >r Mj[x:=N]

Then there are the rules for the context closure: the change of the context must be taken into account
when reducing inside A-abstractions:

Ml>r|\/|’ Nl>er
MN>rMN MN > MN/

Mi >r ocs) Mi
MM S =T) or AXC-MES =T

Notethat if M > N then FV(N) C FV (M) thusthe transitivity closure of > iswell-defined.
It is important to remark that the (3-reduction is the specia case of the {-reduction of a function
containing a unique branch.

4 Properties

We cannot relate AU directly to A& since their respective reduction rules are too different. Therefore, we
define A& *, a conservative extension of A& obtained by using a reduction rule anaogousto ().

4.05 TheA&*-calculus
The A& *-calculusis obtained by replacing in the A& calculusthe rule (Bs.) by the following one

(Bg) Let Sj=min=1.n{S|S< S}. If N:Sisclosed and in normal formor {S|i <n,S§ < §;} = {S;}
then
MieN forj<n

{S—Ti}i=1.n .
(g STmenys { o0

It is clear that the theory of A& ™ isan extension of the theory of A& sinceM g, N impliesM >g: N.

The proof of subject reduction for A&™* is strictly the same as the one for A& givenin [6] (the only
exception isthat in the case M = (N1&Np) e M» of Theorem 5.2 the argument M2 may not be in normal
form) while the one of confluence requires some slight modifications (two cases must be added in the
lemma and in the corresponding theorem givenin [6]. See[3].)

4.0.6 Subject reduction

Subject reduction can be directly proved on M. However we prefer to prove it by trandating A into
A&™ in order to better understand how the two systems are related.

More precisely, in order to prove that Al} satisfies the subject reduction property, we define a
trandation [[]]r- from A" to A&* with the following properties:

LITFMT & [MIr:T
2. M>rN = [M]Ir>*[[N]IF

It isthen clear that the subject reduction of AU follows from the subject reduction of A& *.
Define an arbitrary total order < on Types with the following property: if S< T then S< T. Given
an overloaded type {S — Ti }isi.» We denote by o the permutation that orders the §'s according to <.

1Therelation < isapreorder but not an order (see[6]). Therefore, strictly speaking, < is defined on Types/~ where S~ T iff
S<T < S This however does not affect the substance of what follows.

Thus§ < Sj implieso(i) < a(j). This permutation is used to translate A into A& *.

I
[[MNIIr
IAX(Mi : S = T)icaollr

Xr)

([MT]r«[[NTIr

¢ ((
& (W= To® NSO [[Mon)Ir (xyr)

& (o~ Tai =120 xS @ [[Mo) I (xcso))

& {Soi)=Tali=1.n\xSotm) [[M oI cSom)

The proof that this trand ation satisfies the two properties aboveis simple, and can be found in [3].

4.0.7 Church-Rosser
The system also satisfy the Church-Rosser property.

Theorem 4.1 For all I therelation > is Church-Rosser

Proof. This theorem can be proved by using the technique due to W. Tait and P. Martin-Lof (see [1]),
according to which it suffices to define a parallel reduction which satisfies the diamond property and
whose transitive closureis >-. See[3] for details. O

5 Practical motivations

As we said at the beginning, we use A& to study the foundation of object-oriented languages. More
precisely, messages are seen as overloaded functions and sending a message to an object corresponds
to apply the message to the object. Therefore, the selection of a branch for an overloaded function
corresponds to the selection of a method for a message. The ¢-reduction (or equivaently the Bg -
reduction), allows to precociously select a branch for a given application (i.e. a method for a given
message passing). In particular the system does not have to fully evaluate the argument of an overloaded
function (i.e. the receiver of amessage) to perform the selection. It just suffices that the computation of
the argument gets to a stage such that any further computation would not change the selection.

At run-time this kind of rule would hardly be used. Indeed, one does not want to early select or
partially evaluate methods but rather to apply them to concrete objects. On the contrary at compiletime
arulethat permitsthe early resolution of the dispatchingisessential for the production of efficient object
code. A preliminary study on early implementations of the overloaded-functionsbased language Dylan,
showed that on non optimized code about 30% of the time of computation is spent to perform the method
dispatching (source: Dylan group, Eastern Research and Technology, personal communication). It is
then clear that a mechanism which makes possible to solve the dispatching (branch selection) at compile
time is one of the main tasks in designing a compiler producing code comparable for speed to the code
produced by, say, a C++ compiler. The rule { (and Bg) goes in that direction. Such arule alows a
significative amount of resolution at compile time of method dispatching and, thus, the production of
efficient object code.

Also the fact that in A there is a unique notation for application is very important. Indeed, the
languages like CLOS, Cecil or Dylan that use lately binded overloaded functions (“generic functions’
in CLOS' jargon), never distinguish the application of aregular function from an overloaded one.

The absence of such a distinction is even more important in the single-dispatching object-oriented
languages like Simula, Smalltalk or C++. In [4] we have shown that the use of an overloaded function
for method definitions congtitutes a possible solution to the longstanding problem of binary methods

(see[2]). In particular when defining a new class it is possible to covariantly override the definition
of a binary method in a type safe way, by using an overloaded function. Now, if the binary method to
override is aregular function, then this solution works if and only if overloaded and regular functions
applicationshavethesame syntax . . . asinAl!. Otherwise, the solution would requireto the programmer
alook ahead, since he should define also the first binary method as an overloaded function (of just one
branch), look ahead that is contrary to the spirit of object-oriented programming.

Of course, al these advantages could have been obtained directly by considering A&* via the
trand ation we defined in Section 4. For example, to obtain aunique application (or to faithfully trandate
generic functions) it suffices to trandate every ordinary function into a single branched overloaded
function, so that every application becomes the application of an overloaded function (this is exactly
what wedoin[7] to have aunique application). However, thistrand ation seemsto suggest that A& istoo
powerful and that the same advantages can be obtained by using amuch simpler calculus, A indeed. In
this sense, AU constitutes a study toward the definition of aminimal calculusto interpret object-oriented
programming. This research is not without interest since a simpler calculus allows the definition of
a simpler interpretation of object-oriented languages, which should lead to a better understanding of
object-oriented features For example, in [5] most of the technical difficulties were caused by the use
of type annotation for &’'s and by the ordering of the branches. These problems do not subsist in A"
where there are no special type annotationsfor overloaded functions, and abstractions can be considered
equivalent modulo the branch ordering. On the other hand it istruethat AU istoo minimal. For example,
it does not alow to add a new branch or redefine an old one, as A& does. Thus the next step will be
to study how to allow such features. It will be possible, then, to define a metalanguage derived from
A&, aswedidin [5], by adding type declarations, coercions, super, and so on, and to interpret ageneric
functions based object-oriented language into it. The hope is that the resulting interpretation will be
much simpler then the one defined in [5], and that it will al allow to grasp a better understanding of
object-oriented languages. Another possibility for future research isthe extension of A to second order
type systems, on the lines of the work donein [3, 7] for A&.

References

[1] H.P. Barendregt. The Lambda Calculus Its Syntax and Semantics. North-Holland, 1984. Revised edition.

[2] K.Bruce, L. Cardelli, G. Castagna, The Hopkins Object Group, G. Leavens, and B. Pierce. On binary methods.
Theory and Practice of Object Systems, 1(3), 1996.

[3] G. Castagna Overloading, subtyping and late binding: functional foundation of object-oriented programming.
PhD thesis, Université Paris 7, January 1994. Appeared as LIENS technical report.

[4] G. Castagna. Covariance and contravariance: conflict without a cause. ACM Transactions on Programming
Languages and Systems, 17(3):431-447, 1995.

[5] G.Castagna. A meta-language for typed object-oriented languages. Theoretical Computer Science, 151(2):297—
352, November 1995. Extended abstract in the Proceedings of the 13th Conference on the Foundations of
Software Technology and Theoretical Computer Science; Lecture Notes in Computer Science number 761,
December 1993.

[6] G. Castagna, G. Ghelli, and G. Longo. A calculus for overloaded functions with subtyping. Information and
Computation, 117(1):115-135, 1995. A preliminary version was presented at the 1992 ACM Conference on
LISP and Functional Programming, San Francisco, June 1992.

[7] Giuseppe Castagna. Object-Oriented Programming: A Unified Foundation. Progressin Theoretica Computer
Science. Birkauser, Boston. To appear.

