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1. INTRODUCTION

There is a general agreement that programming languagesiderarea computing and
mobile-code environments should be designed accordingpmariate principles, among
which distribution, location awareness, and security heerhost fundamental.

Cardelli and Gordon’s Mobile Ambients (MA) [Cardelli and Glon 1998] are one of
the first, and currently one of the most successful impleaténts of these principles into
a formal calculus. Their design is centered around fourdasetions: location, mobil-
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ity, communication by shared location, and authorizatmmbve based on acquisition of
names and capabilities. The ability or inability to crossibdaries, which is conferred by
the capabilitiesn andout, is at the core of the security model underlying MA. Pernaissi
to cross ambient boundaries is given by making the nameadolaito the clients requesting
access. Names are thus viewed as passwords, or cryptokiega:ambedded in a capabil-
ity, an ambient name provides the pass that enables thesstiogces else the cryptokey that
discloses the contents of that ambient.

While MA's model of security is suggestive, and powerful figrsimplicity, it does not
appear to be fully adequate for modeling realistic acceatrabpolicies. Security in MA
entirely depends on the ability by the naming-based authttian mechanism to filter out
unwanted clients: an authorization breach could grantaimals agents full access to all
the resources located inside the ambient boundary.

An assessment of security and access control in ambieredlwadculi is the main moti-
vation for the present paper. The focus of our analysis immandatoryi.e., system-wide)
access contropolicies (MAC) within a multilevel security system. In paxilar, the em-
phasis is on the specific aspects of MAC policies related tdidentiality, and their dif-
ferent implementations asilitary security (no read-up, no write-down) asdmmercial
security (no read-up, no write-up). For other calculi of rifibpin the literature, notably
for DTt [Riely and Hennessy 1998] and KLAIM [De Nicola et al. 1998],ia-depth study
of these aspects has already been conducted [Hennessyan@®02b; 2002a; De Nicola
et al. 2000; De Nicola et al. 2000]. Instead, to our knowleageattempt in this direction
has been made for MA-based calculi.

Our analysis, detailed in the first part of the paper, pointistbe shortcomings of MA
as a formal basis for reasoning about these concepts. lrtli@atnain difficulties come far
ahead of any formal reasoning, because the very meaningsaf bations such as “read
access” and “write access” by subjects to objects is diffioujrasp and characterize when
looked at from within MA.

To overcome these difficulties, we introduce a variant of NeoAmbients, name8oxed
AmbientgBA). Boxed Ambients inherit from MA the primitivess andout for mobility,
but notopen, and introduce direct primitives for communication acrassbient bound-
aries, between parent and child. This new form of commuitndits the design principles
of MA, and complements the existing constructs for ambiewtbitity, and local exchanges,
with finer-grained, and more effective, mechanisms for ambinteraction. The resulting
calculus retains the computational flavor of MA and the ebegaof its formal presentation.
On the other hand, the new communication model preservefettibility of typed com-
munications from MA, while providing more effective mears feasoning about access
control policies.

We study two versions of the calculus, based on synchronmiasynchronous commu-
nication, respectively. Interestingly, the new model ofnenunication sheds new insight
into the relationship between the two forms of interactidn.particular, we show that
classical encodings of the asynchronous model in termseokyimchronous one do not
carry over to calculi that combine non-local exchanges ayrhrohic system reconfigu-
ration based on mobility. We complement the definition of ¢aékulus with a study of
different type systems. A first type system provides stash@afety guarantees for com-
munication. A second type system enhances the typing oflityoahd develops a new
typing technique, based on different typing “modes” forgasses, in which processes and
their continuations may have different types while stilegerving subject reduction. A
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last type system combines the new technique with a richesa#types to provide for the
static detection of violations of MAC policies in a multikhsecurity environments. All the
type systems, in particular the access control type systerdesigned, and proved sound,
for both the synchronous and the asynchronous versionseafdltulus. Remarkably, the
moded typing system is initially motivated by the synchremeemantics but then proves
equally effective for the asynchronous calculus that wentadly adopt in our discussion
of access control.

Plan. Section 2 presents our analysis of security and accessotamiMA. Section 3
introduces the calculus of Boxed Ambients. Section 4 deéaitodings of additional prim-
itives for communications on named channels (BA relies amgmous channels). Sec-
tion 5 introduces the basic type system for the calculus.ti@6 compares the typing
systems of BA and MA with respect to mobility and communieati Section 7 develops
an enhanced type system based on the technique named “nypiteglt Section 8 studies
the asynchronous version of the calculus. Section 9 desedggpund typing system for
static access control, and illustrates its use with se\Bgdabrograms. Section 10 studies
a more extensive example: in particular, it shows that theese control typing system
can effectively be employed to specify (and statically ecéd diverse and powerful secu-
rity policies for a simple, but non-trivial, distributedrguage. Section 11 compares our
approach with related work, and Section 12 concludes withl fiemarks. Two separate
appendices collect the typing rules and the proofs of stibgeitiction and type soundness.

The paper integrates and extends the results reported igligBiu et al. 2001a] and
[Bugliesi et al. 2001b].

2. MOTIVATIONS FOR BEING BOXED

Mobile Ambients are named process of the foafi®] wherea is a name andP a pro-
cess. Processes can be composed in parallel, Bs @, be replicated as inP, exercise
a capability, as irM.P, declare local names as {ma)P, or simply do nothing as if.
Ambients may be nested to form a tree structure that can bardigally reconfigured by
exercising the capabilitigs, out andopen. In addition, ambients and processes may com-
municate. Communication is anonymous, and happens ingibeats. The configuration
(X)P | (M) represents the parallel composition of two processes, tiygub procesgM)
that “drops” the messag®l, and the input proces&)P that reads the messad and
continues a${x := M}, that isP where every free occurrence ptas been substituted
with M. Theopen capability has a fundamental interplay with communicationfact,
communication results from a combination of mobility amgening control. To exem-
plify, the synchronization between the input proceg® and the outpu¢M) in the system
(X)P | open b | b[{M) | Q] is enabled by exercising the capabilifyen b to unleash the
messagéM).

While fundamental in MA to enable communication across @ambboundaries, the
open capability appears to bring about serious security cormierdistributed applications.

Consider a scenario in which a procéssunning on hosh downloads an application
programQ from some other host over the network. This situation carepeasented by the
configuratiora[in h.Q] | h[P], whereQ is included in the pilot ambierst which is routed
to hin response to the download request frBmAs a result ofa exercising the capability
in h, the system evolves into the new configuratiga[Q] | P], where the download is
completed. The application prograghmay be running and computing withay but as
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long as it is encapsulated in& there is no way tha® andQ can effectively interact. To
enable these interactionB,will need to dissolve the transport ambient Dissolvinga
produces the new configuratidmiP | Q] where nowP andQ are granted free access to
each other’s resources, with the obvious problem that tisene way to tell whaQQ may

do with them. An alternative solution to the above scenaitwitreata as asandboxand
take the Java approach to securiB/clones itself and enters the sandbox to interact with
Q. Again, however, the kind of interaction betwd@andQ is not fully satisfactory: either
they interact freely withira, or are isolated from each other.

Static or dynamic analysis of incoming code are often adwmtas solutions to the
above problem: incoming code must be statically checkedcantified prior to being
granted access to resources and sensitive data. Variohsrautxplore this possibility,
proposing control-flow analyses [Nielson et al. 1999; Nialand Nielson 2000; Degano
et al. 2000] and type systems [Cardelli et al. 1999; Dezaan€aglini and Salvo 2000;
Bugliesi and Castagna 2001] for Mobile Ambients. The probieith these solutions is
that they may not be always feasible in practice: the souock ©f incoming software
may be not available for analysis, or else it may be too cormfdeguarantee a rigorous
assessment of its behavior. By that, we do not intend to umideror dismiss the role of
static analysis: instead, we take it as a motivation to seekdéw design principles and
more effective uses of static analysis. One such principteMobile Ambients, which
we advocate and investigate in this paper, is that ambi¢ertaiation should be controlled
by finer-grained policies to prevent from unrestricted tese access while still providing
effective communication primitives.

To motivate the point further, we discuss a simple but cale@gample of access control
in a multilevel security system. Multilevel security preguwses a lattice of security levels
and an assignment to every subject and object of a level ildltice. Based on these
levels, a read from an object by a subject is classified ssad-up(respectivelyread-
down if the level of the subject is higher than the level of theamldj and similarly for a
write operation. These notions cover aledirectaccesses resulting from the composition
of atomic operations: thus, for example, writing to (regpety, reading from) arf-level
object a piece of information read (or just coming) fromtafevel (with h > ¢) object
is considered as a write-down (respectively, readdufjelying on this classification, one
typically identifies two MAC security policiesnilitary security, which forbids (both direct
and indirect) read-up’s and write-down’s, and commeroémiusity that forbids read-up’s
and write-up’s.

2.1 Resource access control in multilevel security

Suppose we have a system consisting of a set of reso{irges. ,r,} and an agent named
athat runs prograr® and wants to access the resources available on the systaranirol
the access to the resources, one would typically refer tpfitenent of Defense 1985] and
set up a resource manager. In the Ambient Calculus the systeer consideration can be
represented as follows:

a[P] [ mlra[---] [---|rn[---] [R]
1Classic security handles these cases by the so-calfedperty [Bell and Padula 1976; Gollmann 1999]. As a

matter of fact, these references do not define precisely aivate-down accesss; instead, they give a definition
of no-write down policy
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Here,mis the name of the resource manager Rislthe associated process. To access, say,
ri, the agent needs to know the nanmto be able to move inside the resource manager:

m{a[P] |ra[---] | ---[rn[---] [R]

Looking at this configuration, we notice that the procBstoes not have an active role in
the system, as the interaction betwegR] andr; may only result from autonomous ac-
tions by either the agent or the resource (the same wouldikentith Levi and Sangiorgi's
Safe AmbientH_evi and Sangiorgi 2000]: only the use of a co-action couledicate the
move ofainto mto the presence of the co-capabilitymin R). The role of the ambierrh
is therefore reduced to the role of its name: it is simply th&t password required for the
access. Rather, it is each of this that needs to include its own manager.

We can thus formulate the problem in simpler terms, and loddctly at the case below:

Initial configuration: gP] | r[R]| (M)]

Ris the manager for, andM is the content: for the purpose of the example we assume
that the content is a value the agent wants to read.

Having defined the problem, we now look at different ways tack it in MA and
discuss their implications in terms of the security modetsiduced above.

2.1.1 First solution: agent dissolutionA first solution is based on the following pro-
tocol proposed by [Cardelli and Gordon 1998]. In order toesse, a first enters':

Enter: r[R| (M) |a[P]]

Now, the idea of the protocol is that the manaBeshould be the processden p, which
unleashes authorized clients that entered the resourbeveitpilot ambient nameg. In
other words, the protocol requires the client to know the eafrthe resource, as well the
name of the “port’p used for the access. Thus, the agent would first rename ticsplfo
comply with the rules of the protocol, and then enter: if theess ta is a read, the agent
will contain a reading process. Thus, after renaming, the cenfiguration would be as
follows:

Renaming: f[lopen p| (M) | p[(X)P]]
Finally, the resource manager enables the read, by opgning
Read Access: [topen p| (M) |p[(X)P]] — r[!open p| (M) | (X)P]

The protocol is elegant and robust: there are two passwhelagent needs to know, the
resource nameand the name of the popt There are, however, a number of unsatisfactory
aspects to it.

Afirst reason for being unsatisfied with the protocol is that hardly realistic to assume
that agents willing to read a value should be prepared to $ésotlied. A second problem
is that openingo[P] may be upsetting to the resource manager, or else to theroesou
itself, because there is no telling wHatight do once unleashed. For what we know, the
contents ofp could very well be the proces¢.P, with N a path ofin or out capabilities.
Unleashing this process insideould thus result im being carried away to possibly hostile
locations, or otherwise being made unavailable to forthiogrolients.

Further problems arise when we try to classify the protocobading to the MAC secu-
rity principles. As we noted, the action in the protocol teaéntually enables the read is
taken by the resource manager, which opens the incoming.algpeother words, it is the
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last step of the protocol that effectively determines theeas to the resource, and since the
process enclosed ipis an input process, it is classified as a read accessy{lcadtained
an output, this would have been a write access). In muliileseurity, it would then be
possible to further classify the access according to therggdevels associated withand
p, and use that definition to enforce either the military or¢benmercial security policy.
However, while this form of classification fits the protociblbecomes rather artificial
when applied to the primitives of the calculus. Indeed, sayhatopen p | p[P] is a read
(or write) by P is rather counter-intuitive, g P] undergoes the action rather than actively
participating into it. The problem is that the protocol igierly dependent on the effects of
open, but when exercised to enable a read/write requesty exchanges the roles of the
two participants in the request, as it is the subject, ratifien the object, that is accessed
(in fact, opened). As a result, the notion of read/write asdeecomes rather artificial.

2.1.2 Second solution: resource dissolutiorn alternative solution can be obtained
by a change of perspective. One could devise a differenbpabtwhere the active role
of the subject is rendered by a combination of open and inptglt. Thus, for instance,
the processpen r.(x)P could be interpreted, in the protocol, as a read request difnis
might work reasonably for read requests, even though trepretation is still weak, as
the access has also the side-effect of dissolving the resoliiven weaker would be the
interpretation obpen r.(M) as a write: after dissolvingthe outputM) really has nothing
to do with a write orr.

2.1.3 Third solution: agents and messengersa avoid indiscriminate dissolution
upon read and write, Cardelli and Gordon [Cardelli and Garii®98] suggest a different
approach, based on a protocol in which agents use specia¢atalacting as messengers
to communicate. The idea is to envisage two classes of mgssen

- output messengepn[N.(M)], whereN is a path to the location where the messafje
can be delivered

- input messengers N.(x)o[N~1.(x)] ], whereN is the path to the location where a value
can be read. Once read, the messenger goes back to its blogiagon (we informally
useN ! to denote the inverse path bf) where it delivers the value just read.

Thus, a read onwould be encoded by a protocol based on the following ingttadfigura-
tion:

alopen 0.(X)P | i[out a.in r.(x)o[out r.ina.(x)]]] | r['openi| (M)]

The protocol still requires cooperation by the resourceagan, which is expected to open
the input messenger. Also, looking at the primitive redurtsi, it would still be counter-
intuitive to say thabpen i | i[P] is a read access: the classification would be more realistic,
were it possible to identify as input-messenger within Unfortunately, there is no syn-
tactic way to tell messengers from ambients playing the @blpure” agents, nor is there
any syntactic way to detect “illegal” attempts to dissolpeife” agents. Defining a notion
of access, and attempting a syntactic classification wdwdcefore still be problematic, if
at all possible.

Types could be appealed to for more satisfactory solutione €ould devise a typed
partition of ambients into agents (i.e. ambients that cabeadissolved) and messengers
(as above). Based on the typed classification and on an assigrof security levels,
it would then be possible to classify access requests aogptd MAC policies. There
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would be only one remaining problem, which can be observeeaynining the protocol
structure and evolution. From the initial configuration:

afopen 0.(X)P | i[N.(x)0[N"1.(x)]]] | r[!openi | (M)]

via a sequence of reductions the input messenger reachiesitaation, it is opened there,
and consumel!. At this stage, the structure of the system is:

afopen 0.(X)P] | r[!openi | o[N .(M)]]

This is the encoding of a write hiyto a. In other words, a read byincludes a write by':

if the former is, say, a read-up, then the latter is a writeadoln other words, the protocol
has somehow the effect of merging read-up’s and write-dsyarid dually, write-up’s and
read-down’s. Therefore, military security could still becaunted for with this approach,
while commercial security could not.

2.2 Summary and Assessment

The survey of solutions we have given might still be incortgleven though we do not
see any fundamentally different approach to attack thelprbAs to the approaches we
have presented, none of them is entirely satisfactory. Safrtteem appear artificial, since
essential intuition is lost in the encoding of the proto&®P(1.1,§ 2.1.2). In others, the
intuition is partially recovered but only at the expensesailing to provide full account
for both military and commercial security (§ 2.1.3).

Summarizing, we may certainly say that the Ambient Calceheblesaccess control, in
that it provides constructs for encoding access proto@dpending on the protocol, types
may help define and check the desired security policies. @mther hand, the calculus
does not in itself suppothese mechanisms and policies, as it does not provideihdfat-
cilities to make it convenient or natural to reason aboutthAs we showed, the reasoning
is possible at the level of accgamtocols but when we look at the accegsmitivesthere
appears to be no general principle to which one can steagpga. We are thus in need
for different, finer-grained, constructs for ambient igetion and communication. The
new constructs should be designed carefully, so as to cangpiethe existing restrictions
on ambient mobility based on authorization, without bragkihem. In other words, the
access to remote resources should still require mobilégcle authorization: local access,
instead, could be made primitive.

To see how that can be accomplished, let us consider oncethepegotocol of § 2.1.3,
based on messengers. We can re-state it equivalently as/foll

alin r.ifout a.(x)o[in a.(x)]] | open 0.(X)out I.P] | r[lopeni| (M)]

In other words, it is now the agent that is responsible forrtteeves needed to reach the
resource, while the messenger just makesithand out moves needed for the access.
After the move ofa into r, and ofi out of a, the structure of the system (disregarding
and replication) is the followingt[openi | (M) | i[(X)Q]]. This is where the read takes
place. Now, instead of coding it, viepen, we can make it primitive, and do without
open. If we denote witlix)" input from the enclosing ambient, the read access is simply:
r[(M) | i[(x)'Q]]. Butthen, the whole protocol can be simplifiedin r.(x)'P] | r[(M)].

The choice of the communication primitives of Boxed Ambgetescribed next, are based
on these observations.
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3. BOXED AMBIENTS

Boxed Ambients are essentially Mobile Ambients that cafmeodpened. Processes in the
new calculus communicate, as in the Ambient Calculus, omamous channels inside
ambients. In addition, to compensate for the absenog®f, processes are equipped with
primitives for communication across ambient boundarietwieen parent and children.
Syntactically, this is achieved by means of tags specifttiedocation, i.e., the ambient,
where the communication takes place.

3.1 Syntax

Table | Boxed Ambients

Expressions Processes
M ::= a—qg nhames P:=0 stop

| x—z variables | M.P action

| inM enterM | (vn)P restriction

| outM exitM | PP composition

| M.M path | M[P] ambient

| P replication

Locations | (X1,...,%)"P input,k >0
n =M child | <M1,...,Mk>np 0utput,k> 0

| 1 parent

| * local

The untyped syntax of the polyadic calculus is summarizethinle 1. It includes two
syntactic categoriegxpressionandprocessesExpressions, ranged over W, N, include
namesvariablesandcapabilities We presuppose two mutually disjoint sets for variables
and names. Variables are ranged over by letters toward tth@fkiine alphabet, typically
X,Y,z, while the remaining lettera— g are reserved for names. The capabiliiileandout
enable movement and can be composed into non-epgths

Processes, ranged overByQ, R S, are built from the constructors afactivity, parallel
composition replication andrestriction inherited from ther-calculus, and from four ad-
ditional operatorsprefix MP, anonymous (polyadidhput (X)"P andoutput(M)"P and
ambient MP]. The notatiorM indicates a tuple of messagss. ..., My, and similarlyx”
is short forxy, ..., x. Whenk = 0 the input/output prefixes allow synchronization without
exchange of values. The superscripdenoting local communication, is omitted. Simi-
larly, we often omit trailing and isolated occurrencepfvriting M instead ofM.0, and
n[ ] instead ofn[0]. The input operato(X)"P is a binder for thevariablesX, whereas
the restriction operatofvn)P binds thename n in both cases the scope of the binder is
P. As it is customary, terms that aceconvertible are considered identical. The notions
of free namesndfree variablesof a process, notefih(P) andfv(P) respectively, arise as
expected (see Table I1), and so does the definitiorapture freesubstitutionP{X := M},
that is defined only ik andM are of the same arity. A processdmsedif it contains no
free variables.
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Table Il Free names and free variables

Free Names Free Variables

fn(x) =fn(1) =0 fv(x) =fv(1) =0

fn(n) = {n} fv(n)=0

fn(x) =0 fv(x) = {x}

fn(in M) = fn(out M) = fn(M) fv(in M) = fv(out M) = fv(M)
fn(M.M’") = fn(M) ufn(M’) fv(M.M") = fv(M) U fv(M’)

fn(0) =0 fv(0)=0

fn(M.P) = fn(M[P]) = fn(M) Ufn(P) fv(M.P) = f'v(M[P]) = fv(M) Ufv(P)
fn((vn)P) =fn(P) \ {n} fv((vn)P) = fv(P)

fn(Py | P2) = fn(Py) Ufn(P2) fv(Py | P2) = fu(P1) Uv(P,)
fn(!P) = fn(P) fv(!P) = fv(P)

fn((%)"P) = fn(P) Ufn(n) fv((X)P) = fv(P)Ufv(n) \ {X}
fn((M)P) = fn(P) Ufn(M) Ufn(n) fv((M)NP) = fv(P) Ufv(M) Ufv(n)

3.2 Operational Semantics

The operational semantics of the calculus is defined, asmasy, in terms of structural
congruence and reduction relation. Both these relatioms@mmarized in Table Ill. Struc-
tural congruence is the least congruence relation thatfiegtithgStruct)laws in Table 111,
The first group of laws are the familiar monoidal laws forand0. The second group of
laws is inherited from the Ambient Calculus.

The remaining laws in Table Il define the reduction relatiaich applies to closed
processes. Ambient mobility is governed by the ruleser)and (exit), inherited from
Mobile Ambients. The rule fo@local), and the structural rulgstruct)and(context)also are
defined as in MA. The remaining four rules define the redudioparent-child exchange.

The choice of the reductions for parent-child exchangestla@resulting model of com-
munication is inspired to Castagna and ViteBsal CalculugVitek and Castagna 1999],
from which Boxed Ambients also inherit the two principledatality andmediation Lo-
cality means that communication resourceslacal to ambients, and message exchanges
result from explicit read and write requests on those resgurin particular, the input pre-
fix (x)" can be seen as a request to read from the anonymous charatetlatto the child
n. In fact, given the anonymous nature of channét¥ can equivalently be seen as an
access to the ambient Dually, (M)! can be interpreted as write request to the parent am-
bient (equivalently, its local channel). Mediation imglidtnat remote communication, e.g.
between sibling ambients, is not possible: it either respmobility, or intervention by the
ambients’ parent. The implementation of these two priredfdased on the the term-level
constructs we have introduced for parent-child commuidodtas a number of interesting
consequences, that we discuss next.

3.2.1 Communication and access controRarent-child communication yields flexible
support for programming access control policies. If we tdileaccess control problem of
Section 2.1 we now have a fairly elegant solution, in whichals® recover a role for the
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Table Il Structural Equivalence and Reduction

Structural Congruence
(StructMonoid) P|Q=Q|P, P|(Q|R=(P|Q|R P|O0O=P

(Struct Res Dead) (vn)0 = O

(Struct Res Res) (vn)(vmP = (vm)(vn)P m=#n
(Struct Path Assoc) (MM).P = M.(M'.P)

(Struct Res Par) (vm(P|Q) = P|(vmQ ngfn(P)
(Struct Repl) P = IP|P

(Struct Res Amb) (vnim[P] = m[(vn)P] n#m
Mobility

(enter) alinb.P| Q] |b[R] — b[a]P| Q] |R]

(exit) albjouta.P| Q] |R] — b[P| Q] | aR]
Communication

(local) (P (M)Q — P{X:=M}|Q

(input n) (®)"P | n[(M)Q|R] — P{X:=M}|n[Q|R]
(input 1) n[(®)'P Q) | (M)R —— n[P{%:=M}| Q] IR
(output n) nN[(XP| Q] [ (M)"R — n[P{X:=M}|Q] IR
(output?) (®)P|n[(M)'Q|R] — P{X:=M}|n[Q|R]
Structural Rules

(struct) P=Q, — RR=S = P— S

(context) P— Q = E{P} — E{Q}
Evaluation Context E ::= — | (vn)E | P | E | n[E]

resource managen. Consider again the configuration
mia[P] [R|ra[---] - [rn[---]]

where now all ambients are boxed aathas entered the resource manager. The process
R may act as a mediator betwearand the resources. For instangssould be defined as
the parallel compositioR; | --- | R, where eaclR; is the process(k)(x)", fori € 1..n,

each waiting for upward output fromand forwarding it to théth resource. Some of the
R’s could be less generous with the agent, and ignore upward froma to request read
access om instead: {x)2(x)". Should any of the;’s be made non-accessible, one would
simply defineR; = 0. Of course, different definitions d® are possible. For instance, one
could defineR as the procesgk,r)(x)", that waits for upward requests froato write on

one of ther;’s, and forwards this request to the corresponding resource
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3.2.2 Communication and typing.The model of communication also eases the design
of type systems providing precise accounts of ambient heha\s we show in Section 5,
a rather simple structure of types suffices for that purposmbient and process types
are defined as two-place constructors describing the typge@xchanges that may take
place locally, and with the enclosing context. Interedtinipis simple type structure is all
that is needed to gain full control of ambient interactiohislis a consequence @ there
being no way for ambients to communicate directly acrossentiban one boundary, and
(ii) communication being the only means for ambient to interictexemplify, consider
the following configuration:

(x)PP | p[{M) | ()Q | al(N)']]

The top-level makes a downward request to readocal valueM, while ambiengy makes
an upward request to write the valdeto its parent. The downward inpx)PP may
only synchronize with the outpyM) local to p. Instead(x)Q may nondeterministically
synchronize with either output. Of course, type safety negthatM andN be of the same
type. Interestingly, however, exchanges of different g/pey take place within the same
ambient (or at top-level) without type confusion, as witttie following ambiennt:

()PP (x)9Q | p[(M)] | a[(N)]]

The two valued/ andN are local top andg, and may very well have different types: there
is no risk of type confusion, ax)PP reads fromp, while (x)9Q reads fromg. Types may
also be employed to complement the term-level support foesecontrol. By embedding
security levels in types, a type system may be defined to eefdAC security policies in
rather natural way (cf. Section 9).

3.2.2.1 Communication, distribution and location awarenesBhe new constructs for
communication fit well the principles of distribution anccltion awareness distinctive
of Mobile Ambients, according to which remote communicatahould require mobility
(and ambient opening), and mobility, in turn, should req@iuthorization (i.e. possession
of capabilities). Our semantics adds to this a new postilafiexchanging values, across
ambient boundaries. Remarkably, however, the new form ofrmaanication takes place
across just one one boundary, separating parent and cHiite @ommunication between
siblings still requires mobility, as in MA.

From a design perspective, our model of communication refihe notion of locality
from MA into that of proximity, and allows synchronization between processes that are
contiguousi.e., either local or separated by one boundary. In alleety this kind of
synchronization is required for mobility as well, and netmlbe assumed either implicitly,
asin MA, or explicitly as in the variants of MA in which moliiis subject to the presence
of co-capabilities [Levi and Sangiorgi 2000; Merro and Hessy 2002; Bugliesi et al.
2002].

In addition, the constructs for communication lend themselto be formulated in a
truly asynchronous setting, in which sending output to datker enclosing ambient does
not require synchronization. As of now, asynchronous ougaun either be considered
as the special case of synchronous output with null contiomaor else be accounted
for by introducing the following rule of structural equieadce inspired by [Boudol 1992]:
(M)"P = (M) | P. These interpretations are equivalent, and both type sowitid the
system of “simple” types of Section 5. Instead, the (typegliealence is lost with the
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system of “moded types” we introduce in § 7, and neither prietation is satisfactory: the
former is too restrictive, the latter is unsound. Fortuhateowever, we will be able to find

a formulation of reduction that reconciles asynchrony witbded typing in a sound and
flexible type system. We leave a thorough discussion on thiist po Section 8.

4. COMMUNICATION CHANNELS

Value exchange between BA processes can also take placeauchannels: we illustrate
several ways for encoding channels within the core calculosreason on the properties
of these encodings we introduce the following definition b§ervational congruence for
BA, that we directly inherit from MA [Cardelli and Gordon 194]. Given a proceds, we
write P |, if P has a top-level occurrence of an ambient name#ith n not restricted irP.
Formally,P | iff P= (vm)(P' | n[P”]) with n ¢ M. Then we say tha® exhibits the name
n, written P {},,, iff there exists a proce<d such thaP — Q andQ |, where— is the
reflexive and transitive closure ef—. Finally, two processeB andQ are observationally
congruent, writter® = Q, if C{P} |, iff C{Q} {n for all contextsC with C{P} andC{Q}
closed.

Based on this definition, we can re-establish some usefidreasonal equivalences.
In particular, the equivalencé!| !P =!P, from theTtrcalculus, and th@erfect firewall
equation from MA:(vn)n[P] == 0 for n ¢ fn(P). Both will be useful in the remainder of
this section.

4.1 Trcalculus channels

We start with the asynchronouscalculus, and then adapt our technique to handle the
synchronous case. The idea is straightforward, and bastrifited with an example: two
TEprocesses communicating over a charmaek inc(n) | c(x)P, may be represented in BA
as follows:c[(n)] | (X)°P. In other words, an output anin Ttis represented by an ambient
namedc (a buffer) holding the message which is output on the chamkeinput onc, in
turn, translates directly into the corresponding inpufigref BA. One problem with this
simple idea is that the buffer does not go away when its valgemsumed: in the example
above we have[(n)] | (X)°P — [ ] | P{x:= n}, which is unfortunate, becausg] % 0.

The problem can be solved by having the buffer “hide itselite the value it holds has

been consumedvp)p[] | a[(M)in p]. Now, lettinga{M] 2 (vp)p[] | a[{M)in p], we
define a compositional encoding of the (polyadic) asyncbwsm calculus as follows:
((va)P) = (va)(P)  (!P) =I(P) (a(b)) =a{b}
(P1Q) =(P) 1 (Q) (0)=0 (a(x)P) = (X)2(P)
These definitions extend readily to the case of the synclusmnaalculus by resorting to
the standard technique of representing synchronous olypuieans of a pair of messages

(send and acknowledge). Lettingn P andnm P denoter-calculussynchronousput and
output on channet, we define:

(ab.P) = (vnaf{(B,} [(r[OO]107(P)) r&fn(P)
(axQ) = (XyX()(Q) y ¢ Q)

and then extend the translation compositionally to the ieimg constructs. For both these
encodings one can prove thaBf— Q, in theTttcalculus, then(P) — = (Q) in BA.
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A simpler, and more robust, translation can be obtained neking BA with movement
co-capabilities a la Safe Ambients [Levi and Sangiorgi@0®s for Safe Ambients, the
addition of co-capabilities strengthens the algebraioth®f the calculus, and yields a
richer set of congruence laws. In particular, one higs= 0 for all n, as there is no way
that a context may test the presencengf (by a move or by an exchange). One can then
rely on the simple translation

(a(b)) =a[b]  (a®P) = (V*(P)

and extend it compositionally. The resulting translatismperationally sound in the
following sense:P — Q in timplies (P) — = (Q), and vice versa{P) — Q,
implies thatP — P’ in twith Q= (P').

4.2 Channels as persistent resources

A different way to represent channels is to interpret thenpasistent resources. This
interpretation is particularly meaningful Ambient-baseadculi, in which ambients may
be thought of as network nodes that provide a set of fixed gortthe interaction with
other nodes (cf. Section 10). This idea has a direct impléatiem in BA. The ambient
c[!(x)(x)] represents a buffer with an unbounded number of positidrsbtffer simply
waits for local input and, once received, releases locgbuut Input and output on the
buffer may then be implemented directly by the primitivesdownward communication
(b)¢ and(x)°. If we definechannel (c) = c[!(x)(x)]. then we have, as expected:

channel (c) | (b)® | (X)°P = = channel (c) | P{x:= b}

One may use this idea to represent persistent channels i tiadculus. To define the
encoding compositionally, we associate a chaspalwnerwith each input and/or output
on the corresponding name.

(a(b)) =channel *(a) | (b)2 (a(X)P) = channel * (a) | (X)2(P)

wherechannel * (c) = Ichannel (c). The presence of multiple copies of spawners and
channels is harmless, as one bhannel * (c) | channel * (c) = channel * (c), while mul-
tiple copies of the channel may be garbaged collected bygtsiral congruence:

channel * (c) | channel (c) = channel * (c).

It is also worth pointing out that an implementation of chealsnas replicated ambients
would not work in MA, because inputs and outputs could getitoglistinct copies of the
channel ambient. Since our representation does not remaltelity into the channel, this
problem goes away in our case.

4.3 Parent-child channeled communication a la Seal Calculus

Both the techniques we have illustrated can be extendetbto ehlue exchanges between
processes located in Boxed Ambients at different nestivgjde The extension yields a set
of communication protocols that are similar to those givempamitive in the Seal Calcu-
lus [Vitek and Castagna 1999]. In the Seal Calculus, one xpress output prefixes of the
form c"(M) requesting a write on the chanmalesiding in ambient (or seat) Dually, the
input prefixc' (x) denotes a read request on the chamnesiding in the parent ambient.
Upward output and downward input on local channels may beessed in similar ways.
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All these communication protocols can be expressed in thecaculus of Boxed Ambi-
ents: we focus on asynchronous communication, and detadakes of downward output
and upward input.

The intended reduction of a downward output is as follows:
c"(M) [ n[c(x)P | Q] — n[P{x:=M}|Q].

The channet is local ton, and the outer process writes onThere are several ways that
the reduction can be captured with the existing construetschoose a definition that make
the physical localization of explicit. The channet is represented as thwdannel (c), the
input prefixc(x) as a read ow:

c(X)P 2 channel * (c) | (X)°P.

Now, however, an output oa cannot be represented directly as we did above forthe
calculus channel, becausés located intan. To capture the desired behavior we can rely
on mobility:

(M) £ (vp)plin n.in c.(M)T].
The outpuiM is encapsulated into a “pilot” ambiept which enters and therc to deliver

the message (the name of the pilot ambipmhust be fresh). Then, the Seal Calculus
proces™(M) | n[c(x)P | Q] is encoded as follows:

(vp)p[in ninc.{M)'] | n[channel *(c) | (X)°P | Q]
— n[channel * (c) | c[!(x)(x) | (vp)P[O] ] | P{x:= M} | Q]
= n[channel *(c) | P{x:=M} | Q].

Remote inputs are slightly more complex, since the pilot i@mtbmust fetch the output
and bring it back. The intended reductiorciM) | n[c' (X)P | Q] — n[P{x:=M} | Q],
where the input from withim is defined as follows:

(P £ (vp)p[out niin c.(x) out c.in n.(x)] | (X)PP
Note that the definition depends on the namef the enclosing ambient: in a formal

definition, one needs to keep track of this information, artkred the encoding of the
asynchronous calculus with the following clauses:

(c™(b))n = (vp)p[in minc.(b)']

(CT<b>)n (vp)p [outnmc(b)r]

(c™(X)P)n = (vp)p[in m.in c.(X )Tout coutm(x)] | (X)P{(P)n
(c'"(X)P)n = (vp)plout n.inc.(x)Tout c.in n.(x)] | (X)P(P)n
(a[P])n al

5. TYPED BOXED AMBIENTS

As we stated at the outset, one of the goals in the design oédaxnbients is to enable
simple and effective static analyses of ambient and prdeeisavior, while preserving the
expressive power of the calculus. The definition of the tyystesn, given in this section,
proves that the design satisfies these requirements. Atrdrieiprocess types are defined
simply as two-place constructors describing the types@éttchanges that may take place
locally and with the enclosing context.

I
2,
=~

)
~
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5.1 Types and Typed Syntax

The typed syntax is derived directly from the untyped vergibthe calculus by associating

types with names and variables introduced by restrictiokimput prefixes. Accordingly,

we henceforth denote restricted processegusy A)P and input processes kg: W)P,

whereA is an ambient type and/ is a (tuple) expression type to be defined next. The

relations of structural congruence and reduction exteridddyped syntax as expected.
The structure of types is defined by the following producsion

Expression Types W ::= Amb[E,F]  ambient
| Cap[E] capability

Exchange Types JE ::= shh no exchange
| Wpx--xW tuple,k >0

Process Types T := Pro[E,F] composite exchange

The structure of types is superficially similar to that of quamion type systems for the
Ambient Calculus [Cardelli and Gordon 1999b; Cardelli et2399]. In [Cardelli and
Gordon 1999b] (and the core system of [Cardelli et al. 1998Mbients and processes
have types of the formhmb[E] and[E], respectively, wher& denotes the type of local
exchanges, and the typing rules ensure that processesyéfg] may only be enclosed

in ambients of typmb[E]. Capabilities, in turn, have types of the foftap[E], and the
type system guarantees that exercising a capability withtyipe will only unleash (i.e.
open ambient enclosing) processes Viitexchanges. Instead, our types are interpreted as
follows:

— AmbIE,F]: ambients that enclose processes of tfpgE, F],
— Cap[E]: capabilities exercised within ambients wiEhupward exchanges,
— ProlE,F]: processes with local and upward exchanges of t¥pasdF, respectively.

Notice that capability types disregard the local exchamgdéle ambients where they are
exercised: this is possible because exercising a capahilihin an ambient may only
cause that ambient to move, and the safety of ambient mphibity be established regard-
less of the ambient’s local exchanges. As for process typegive the intuitions about
composite exchange with few examples:

— (X:W)(x) : Pro[W,shh]. W is exchanged (read and written) locally, and there is no
upward exchange.

— (x:W)T(x)": Pro[shh,W]. W is exchanged (i.e. read from) upward, and then written to
ambientn. There is no local exchange, hence the tyfgeas the first component of the
process type. For the typing to be derivable, one needsnb[W, E] for some exchange
typeE.

— (W) T(y:W) ()™ | (y)) : Pro]W’,W]. W is exchanged (read from) upward, and then
forwarded to ambiem, whileW’ is exchanged (read and written) locally. Again, for the
typing to be derivable, one needs Amb[W, E] for some exchange tyfe.

— (x:W)(x)" : Pro[W,W]. W is read locally, and written upward.

These simple examples give a flavor of the flexibility of thencounication primitives:
like mobile ambients, boxed ambients are “places of comiens’, but unlike ambients
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they allow more than just one “topic” of conversation. Sfieally, every ambient may
exchange values of different types with any of its childras,long as the exchange is
directed from the ambient to the children. Instead, upwanmshmunication is subject to
more constraints: all the children must agree on the (upitype of exchange they may
direct to their parent.

5.2 Typing Rules

The judgments of the type system have two foris: M : W, read ‘expression M has
type W undef™”, and ' - P: T, read ‘process P has type T und€&r, wherel is a
type environment mapping names and variables into typeaddiition, we introduce the
following definition of subtyping.

DEFINITION SUBTYPING. Exchange subtyping, notegd, is the smallest preorder re-
lation over exchange types such thbit < E for every exchange type E. Process subtyping
is the smallest preorder relatiog over process types such thato[E,F] < Pro[E’,F] if
and only if ES E'.

The intuition for subtyping is simple: a silent exchange ehmays be subsumed by a
non-silent exchange. However, to ensure type soundnessutbtyping relations must
be defined and used with care in the typing rules. Remark#idydefinition disallows
seemingly harmless forms of depthsubtyping over capability types, such@sp[shh] <
CaplE], and further relations over process types, F«e[E,shh] < Pro[E,F]. In addition,
the typing rules will allow uses of subsumption only in camjtion with process subtyping,
notwith exchange subtyping. To motivate these restrictioresfivgt need to introduce the
typing rules. Below, we discuss the most interesting ones.

5.2.1 Typing of ExpressionsRules (N) and (QuT), below, define the constraints for
ambient mobility to be safe, and explain why capability ty@&e built around a single
component.

(IN) (OuT)
F-M:Amb[F,.E] F'<F  T[+M:Amb[E,F] F'<F
I+inM: Cap[F'] I+ out M : Cap[F']

The intuition is as follows: take a capability, sayn, and suppose that this capability is
exercised within ambient, say. If mhas upward exchanges of typé thenin n: Cap[F’].
Now, if n: Amb|[F, E], in order for the move ofm into n to be safe, one must ensure that
the typeF of the local exchanges ofbe equal to the typE’ of the upward exchanges of
m. In fact, the typing can be slightly more flexible, fomifhas no upward exchange, then
F’ = shh < F, andm may safely move intm. Dual reasoning applies to the (@) rule:
the upward exchanges of the exiting ambient must have g#eempatible with the type
of the upward exchanges of the ambient being exited. TReHPrule has the same format
as the corresponding rule in type systems for Mobile Amisigmamely:

(PATH)
I Mj:Cap[F] T F Ma:Cap[F]

I+ M1.Mz: Cap[F]
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5.2.2 Typing of Processes

(DEAD) (NEW) (PARALLEL)
rn:WkEP:[EF] MtP:Pro[E,F] TFQ:ProlE,F]
MN-0:[EF] M (vn:W)P: [E,F] M-P|Q:Pro[E,F]
(SuBsuM PrROC) (REPLICATION)
rEP:T TKT I+ P:Pro[E,F]
rep:T’ I+ 1P: ProlE,F]
(PREFIX) (AmB)
MEM:Cap[F] TFP:ProlE,F] M'EM:AmblE,F] T+ P:ProlE,F]
I+ M.P:ProlE,F] = M[P] : Pro[F,G]

(DEAD), (NEW), (PARALLEL), (REPLICATION) and the subsumption rule are standard. In
the (REFIX) rule, the typing of the capabilityl ensures, via the (), (OuT), and (RATH)
rules introduced earlier, that each of the ambients beagtsed as a result of exercisikig
have local exchanges of type compatible with the upwardaxgas of the current ambient
(that is, the one moved byl). The rule (AvB) establishes the conditions that must be
satisfied forP to be safely enclosed iW: specifically, the exchanges Bfmust have the
same type& andF as the exchanges declared fér In fact,P could be locally silent, and
the typing ofM[P] be derivable fronT” F P : Pro[shh, F] by subsumption. In addition, if

I M : Amb|[E,shh], andl F P: Pro[E,shh], then by (AuB) ' - M[P] : Pro[shh,G], and
then by subsumptioh - M[P] : Pro[F,G], for anyF andG.

(INPUT %) (OUTPUT *)

%W P: Pro|W,E] FEM:W T FP:ProlW,E]

Ik (%:W)P: Pro]W,E] Ik (M)P: Pro|W,E]

(INPUT M) (OuTPUT M)

FEM:AmbW,E] F&WHFP:T FFN:AmbW,E] TFM:W T[HP:T

rEEWMP:T FE(MNP:T

(INPUTT) (OuTPUTT)

F.%:WH P: Pro[E,W| FEM:W T FP:Pro[E,W]

Mk (%:W)'P: Pro[E,W] [+ (M)'P: Pro[E,W|
The rules for input/output are not surprising. We use thetion ™ - M : W for [ - My :
Wi, ..., T F Mg : W In all cases, the rules require that the type of the exchamgkies

comply with the local exchange type of the target ambientexgsected. Interestingly,
the rules for downward input/output,NPUT M) and (QUTPUT M), do not impose any
constraint on the types of the local and upward exchanges.

As we noted earlier, it would be tempting to extend the suibtypelations, and their use
in the type system in several ways. Unfortunately, suchresibms are unsound. We first
show that subtyping between upward silent and upward nenigprocesses is unsound
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when combined with the typing of parallel composition. Totiveite, consider allowing
the relationPro[E, shh] < Pro[E, F], for F # shh. Then take the ambieafin b.0 | (M)'P]
with, M : W for some typ&V, and note that b.0 can be typed aBro[shh,shh] regardless of
the type ot. By the additional subtyping rule, we could then type theaplakrcomposition
asPro[shh,W]. However, ifb : Amb[W’ F] for someW’ # W, the ambiena could move
into b and have unsound upward exchanges after the move. By digahlbtyping on the
upward component of process types, instexih b.0 | (M)'P] does not type check as the
types that can be deduced for the prociess.0 may only be of the fornPro[E ,W’'] or
Pro[E,shh] for some exchangE. The same example shows that subtyping for capability
types is unsound. To see the problem, note that by allowimgshh] < Cap[W], one
derivesin b : Cap[shh], hencein b : Cap|W’] by subsumption, with the same problem we
just explained. Finally, any form of non-trivial subtypiagbient types is clearly unsound,
as ambients are read/write resources, and consequentijhes must be invariantin the
component exchange types.

The type system rules ensures that all process exchangiete and across ambient bound-
aries, are type correct. This follows directly from the sdijreduction property stated
below.

THEOREM SUBJECTREDUCTION. fTFP: T andP— Q,thenl FQ: T.

PROOF A corollary of Theorem 7.2.

6. TYPED MOBILITY AND EXCHANGES — MOBILE VERSUS BOXED AMBIENTS

Having defined the type system, we now look at the impact oihtypn mobility and
communication, and contrast it with mobility and commutimmain Mobile Ambients.

We already remarked that mobility is orthogonal to the I@alhanges within ambients.
Thus, the types of the local exchanges of an ambient do rexttdfie ambient’s capability
to move. On the other hand, the presence of upward exchamngssemhforce somewhat
severe constraints over ambient mobility. Specificallyb@ants with upward exchanges of
typeW may only traverse ambients whose local exchanges havéiype

However, when we compare the flexibility of mobility and conmication in Boxed
Ambients versus the corresponding constructs provided blild Ambients, we find that
the two calculi are essentially equivalent. We study thiatienship in the rest of this sec-
tion. We start by sketching a translation of BA into MA. Thést&nce of such a translation
should not come as a surprise: by allowing ambient dissmiuthe open capability is, at
least in principle, powerful enough to code communicatioroas boundaries (indeed, in
Section 2 we argued that this ability to dissolve boundasgso powerful and hard to
control, and we have introduced communication across baigglto dispense with it).
However, when we look at the translation more closely, we mdimber of subtle prob-
lems, for which we were able to find only partial solutions. Ve shall see, a more
satisfactory encoding can be found for the asynchronowsaenf BA (cf. Section 8).

6.1 From boxed to mobile ambients

The idea of the translation draws on Gonthier’s coaleshirogding of thatrcalculus from
[Cardelliand Gordon 1999b]. We represent each boxed arhbi¢ma corresponding MA
ambient, and provide the latter with a local buffdm[P] ) = n[ch[!open pk] | {P)],
where (P) is the translation oP. The buffer opens a packgk which is intended to carry
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input or output inside the buffer itself. The nanwdsandpk are “well-known”, i.e. they are
global reserved names which are used unifoffy all ambients (and the top level). This
yields a translation in which the buffeh is used to implement all the local and non-local
exchanges involving in the source term. Specifically, a local input operatiorhimitan
ambientn generates an input packet that enters the buffer assoeidgted, reads an input
after having been opened, then creates a return packedxitsathes buffer and continues
with the rest of the process:

{((X)PYyn = (VK)( pk[in ch.(X)k[out ch.{P)n]] | openk)

The behavior of an output operation is captured in the same Whe idea carries over
directly to the case of downward exchanges. It only requarego-step move for the pack-
ets: first into the ambient, then into associated buffer. ddse of upward communication
is similar. In this case, however, we need to know the namithe enclosing ambient.

((X)TP)n = (VK)( pkout n.in ch.(x)k[out ch.in n.{PYn]] | open k)

{((X)™P)n = (VK)( pk[in m.in ch.(X)k[out ch.out m.{P)]] | open k)

A problem with this encoding is that the translation allowsehronizations that are not
possible in the source term: specifically, the translatibri>o"P | n[n[(q)'Q]] has a
reduction to the translation &¥{x:=q} | n[n[Q] ].

We have not been able to find encodings that solve this prahiefact, for this and other
encodings we have investigated, the inherent non-det&miaf the reductions for value
exchanged, combined with a synchronous semantics, appeaquire a choice operator
to be modeled in a satisfactory way in MA. Of course we do neotwee that a satisfactory
encoding for the synchronous calculus can be found. On ther diand, the problems we
outlined do suggest that the new form of communication isatationally interesting in
itself, irrespective of its import on security.

6.2 From mobile to boxed ambients

Because of the presencedfen in MA, a translation of Mobile Ambients in our calculus
appears problematic, if at all possible. Nevertheless, \ag still argue that typed com-
munication and mobility in MA are captured with essentially loss of expressive power
in BA. To see that, it is instructive to note that the type egstof Section 5 section can
be specialized to only allow upward-silent ambient typeshef form Ambl[E,shh], thus
effectively inhibiting all forms of upward exchanges (ttiidlows from the format of the
(AMB) rule). The specialized type system provides full flextiifior mobility, while still
allowing flexible forms of communication. In particular:

— Mobility for Boxed Ambients is as flexibleiagout-mobility for typed Mobile Ambients.
This follows by the format of the {) and (QuT) rules. Capabilities exercised within
upward silent ambients have tyap[shh], andshh < F for everyF: consequently,
upward silent ambients have full freedom of moving acrosbiant boundaries. Fur-
thermore, since Boxed Ambients may not be opened, they mag megardless of the
local exchanges of the ambients they traverse. As a consegueith the specialized

2This uniform use of the same name is problematic in extentlingranslation to the typed cases. The problem
is easily solved, however, by choosing names indexed byyfiestof their local exchanges (cf. Section 8.1).
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type system, an ambient can move independently of its type péthe type of its (in-
termediate and final) destinations.

— Communication is as flexible as in the Ambient Calculus, @vére absence of upward
exchanges “Upward silent” does not imply “non-communicating”: anward-silent
ambient may very well move to a target ambianand communicate with it by means
of downward reads and writes kyitself. Indeed, an ambient may access all of its
children’s anonymous channels as well as those of any inoganinbient, and all these
exchanges may be of different types. In addition, the antliey hold local exchanges
of yet a different type. The encoding of channels given § 42 also be used for
encoding local exchanges of different types: the amtighik:W)(x)] can be viewed
as a local channel of typeW, whose input output operators gpe W)© and(M)¢: the
type system allows (encoded) channels of different typegtaosed in the same ambient.

Having illustrated the flexibility of the specialized typgstem, it is obvious that giving

up upward exchanges is a problem: for instance, we would @ablte to type-check pilot

ambients, such as those used in the encoding of the charnc@iedunications of § 4.3,

whose function is to silently carry a process to a certairtidason where the process
eventually delivers its output to and/or receives inpuirfiits enclosing context. We solve
the problem in the next section, where we study a refined tygesn that supports a more
flexible, and type safe, integration of upward communicatiod mobility.

7. MODED TYPING

The design of the new type system is based on the observatidrambients enclosing
upward-silent processes have no way to interfere with tleallexchanges of their en-
closing environments: as a consequence, such ambients afely sove across other
ambients, regardless of the types of the latter. The newgypem uses type modifiers to
characterize the computation progress of processes apdrticular, to identify the silent

and non-silent phases of the computation of the processéassend within ambients. The
resulting typing technique, which we cafloded typingprovides more precise information
about ambient exchanges and, based on that, more flexibtegt/for several interesting

systems, notably for the channels encoding of § 4.3 and &etitoding of the distributed
language in Section 10.

7.1 Moded Types

The new type system is built arountbdedypes defined by extending the structure of the
types of Section 5 (hencefortegular types) as follows:

Expression Types W:= Amb[E,F] | Cap[E] | Amb°[E,F]
Exchange Types E:= shh|Wj x - x W
Process Types  T:= Pro|E,F] | Pro[E,*F] | Pro[E,°F] | Pro[E,*F]

Capability types and ambient types of the foAmb|[E,F] are exactly as in Section 5.
Processes enclosed by regular ambient types have regataagstypeBrolE, F], deduced
by the same rules. On the other hanthdedambient types of the formAmb°[E,F] are
associated with “pilot” ambients (in the sense we gave inigeet.3), whose enclosed
processes are assigned moded types, according to the iftdioationale:
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— ProlE, *W]: upward silent processes with local exchanges of &yp€he typeV signals
that processes with this type may safely be composed inlgbvéth processes with
upward exchanges of typ#.

— ProlE,°W]: processes with local exchanges of tfpand upward exchanges of typé
The upward exchanges are temporarily inactive becauseativegs is moving.

— Pro[E, “W]: processes with local exchanges of tyehat evolve into processes of type
Pro[E,°W] or Pro[E, “W)] after performing upward exchanges of tyjye

The syntax allows the formation of process types of the fBroiE, *shh], Pro[E, °shh] and
Pro[E, “shh]: even though these types do not fit the above intuitions, anticsafely be
dispensed with, they are convenient in stating definitionstgping rules. The following
notation is assumed throughoutis a metavariable that ranges over the modesanda,
while ? is a metavariable that ranges over the{ses, A} and the blank character. In other
words,*F denotes any of the exchang®s, °F,°F, while °F denotes eithetF or F. We
sometimes use_* to denote an arbitrary exchange type.

To illustrate the use of the modes associated with procgestyconsider the following
process, wherd: W: (xW')(x)™ | in n.(M)Tout n: Pro[W',°W]. The left component
of this process does not have upward exchanges. Conseguémt: Amb[W' E]| for
someE, we can freely choose a type for the upward exchanges, anccdedW’) (x)™ :
Pro[W',*W]. The right component, instead, does have upward exchabggis, currently
silent because the output prefix is blocked by the move:ithagM) out n: Pro]W’,°W],
provided thatn : Amb[W,W"]. The typePro[W’,°W] can also be assigned to the par-
allel composition, which is indeed currently silent. lestingly, the typePro[W’,°W]
cannot be assigned to the continuation procésh'out n (nor to the parallel composi-
tion (xW')(x)™ | (M)Tout n), because, after consuming the capabilityn, the upward
exchanges of this process become active: at this stageahtigge for the process is
Pro[W', #W], signaling that after the upward exchange the processeagain an upward-
silent phase.

As the example shows, processes that are subject to modied tyfay have different
types (in fact, different modes, with the same type) at diife stages of their computation.
This does not break subject reduction, as it would seem. dt) faocesses with moded
types may be involved in a reduction only when enclosed wiiti ambient: the mode
of the enclosed process changes according to the procesgess, but the type of the
ambient itself is invariant through the reduction.

A final remark is in order to explain the role of tmeodedambient typedAmb°[E, F].
These types are needed to control the behavior of ambierepses enclosed within
upward-silent ambients. In particular, for the system tesbend, we need to make sure
that non-silent ambients never exit their parent duringupeard-silent phases of the lat-
ter. Moded process types, by themselves, do not help. Tohgeprbblem, assume that
an ambient, sag, is currently silent and moving across ambients with locahanges of
type, sayW. Also assume that contains a non-silent ambiebtwith upward exchanges
of typeW’ incompatible withw/. As long asb is enclosed int@, its upward exchanges
do not interfere with the local exchangasof the ambients traversed fay but if b exits
a, then its upward exchanges may cause a type mismatch. TeeAwb°[E,F] come to
the rescue, as the typing rule ensure that any ambient wéth tsype can only be exited by
ambients which have no upward exchanges.
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7.2 Subtyping

The modes associated with the new class of processes indicteasubtype structure for
process types.

DEFINITION PROCESSSUBTYPING.
Let < denote the relation of exchange subtyp- Pro[E, *F]

ing introduced in Definition 5.1. Process sub- Ve N
typing is the smallest reflexive and transitive re-

lation such thatPro[shh, *F] < Pro[E,*F] and Pro[E,F] Pro[E, °F]
in addition, satisfies the diagram on the right N /
forallE and F. Pro[E,*F]

The intuition underlying process subtyping is as follows.we said, the typBro| _, *E]
identifies upward-silent processes that move their enafpsinbient only through locations
with local exchanges of typE. Clearly, any such process can always be considered as a
process of typ@®ro[_, E] that is, as a process whose upward exchanges are oEtypel
that moves the enclosing ambient only through locationh Wital exchanges of type.

In fact, it can also be considered as a process of BpE_, °E], i.e. a temporarily upward-
silent process whose upward exchanges will become actiyendren its enclosing ambi-
entis in a context with local exchanges of typeThe two typesro| -, E] andPro| _, °E]
are incompatible, as processes of the first type may not lerestto be (even temporarily)
upward-silent, while processes of the second type may moessambients regardless of
the types of the latter (and therefore across ambients wibocakexchanges are of a type
different fromE). On the other hand, the two types have a common super-typethie
typePro[ _, “E] which identifies processes that may be currently upwark@eind whose
enclosing ambients are guaranteed to reside in contextdedal exchanges of type.

7.3 Moded Judgments and Typing Rules

The additional expressive power of the new type system tefwm a more flexible typ-
ing of capabilities, which in turn is enabled by the mode®eaisded with process types.
Capabilities are typed in two modes: a “regular’ mode, ahtype system of Section
5, and a “silent” mode in which some of the constraints on iitglgan be lifted without
consequences on safety.

The silent mode for typing capabilities is accounted for byeav form of judgment,
denoted by FoM : Cap[E], which is useful when typing capability paths: if typed itest
mode, every intermediate move on the path may safely distl@ba type of the ambient
traversed along the move. The new type system includeseatitiing rules from § 5, and
new rules for deriving silent typings of capabilities, andaed types for processes (the
complete set of rules is collected in Appendix A).

7.3.1 Typing for ExpressionsWe start with the rules for capabilities built around
moded-typed ambients.

(IN©) (OuT 0)
r=M:Amb°[F.E] F'<F rM:Amb°[E,F]

I+in M : Cap[F'] I+ out M : Cap[shh]
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The (IN o) rule has the exact same format as the correspondingr(le of Section 5.
Instead, for the reasons we explained earlier, exiting @t pimbient requires the exiting
ambient to be upward silent. The next rules derive modedmaetys for capabilities.

(PoLYCAP) (POLY PATH)
=M : Cap[E] oMy : Cap[Ea] T FeMz: Cap[Ey]
oM : Cap[E] I FoM1.Mz : Cap[Ep]

By (PoLy CapP), well-typed capabilities type check also under silentrigp In addition,
capability paths can be typed with more flexibility in silembde. According to the (®LY-
PaTH) rule, one may disregard the exchange types of the ambientrsed at intermediate
steps on the path (as no exchanges take place during thpsg atel only needs to trace
precise information on the last move on the path. This affelst corresponds to interpret-
ing Cap[E] as the type of capability paths whosst move requires upward exchanges of
type E. The silent typing of capabilities we just illustrated issddn conjunction with the
typing of processes in prefix form, to derive moded types asliseuss next.

7.3.2 Typing of Processes'’Regular” types for processes are deduced by the same
typing rules introduced in § 5. Moded process types are ddrby new rules: we start
with the rules for prefixed processes of the faurP.

(PREFIX o) (PREFIX A)
teM: Cap[G] T+ P:ProlE, “F] oM : Cap[F] T FP:ProlE,*F]
= M.P:ProlE,°F] I M.P:ProlE,°F]

The (RREFIX o) rule is one of the cornerstones of the moded typing systértiftd the
restriction, distinctive of the (ReFIX) rule of Section 5, that the exchange ty@en the
type of M must be compatible with the tyge of the upward exchanges &f As a con-
sequenceM may be exercised irrespective of the type This is only sound ifP has a
o-moded type, for in that cadeis itself a prefix, and hence upward silent whdris ex-
ercised. On the other hand, inPFix A) P may be have active upward exchanges, and
thus the rule imposes the same constraints as the regwar(#® rule, by requiring the
upward exchanges &fl andP to be consistent (equal). In other words, tast move of
the prefix must be compatible with the upward exchanges tiggptocess may have right
after. Notice also that, by subsumptionREFix A) assigns moving types to processes of
the formM.P with P of typePro[E, F].

(PREFIX o)
MEM:Cap[F] TFP:Pro[E,*F]

[+ M.P:Pro[E,*F]

The rule (RREFIX ) types silent processes running in a context whose upwaridagges
(if any) have typd-. In this case, the regular typing of the pahguarantees th& is type
compatible with the local exchanges of the ambients hit emtove.

The next two rules apply to parallel compositions: two rudesd an appeal to subsump-



24 . Bugliesi M., Castagna G., and Crafa S.

tion, capture all cases.

(PARALLEL P LEFT) (PARALLEL P RIGHT)
I=P:Pro[E,"F] T+ Q:Pro[E,"F] I~P:Pro[E,"F] T+ Q:Pro[E,"F]
rP|Q:ProlE,"F] I'=P|Q:ProlE,"F]

If P andQ are upward-silent (i.e. with upward exchang€3, thenP | Q is also upward
silent (with upward exchangeé$). P | Q can be typed as moving (that is, with upward
exchangesF), only when(i) either one ofP or Q is moving and(ii) the other process is
upward silent and type compatible with the exchanges of theimy process. The same
reasoning applies to the other modes. Two rules are needwhtiie the two cases when
the moving subprocess Bor Q.

The rules for the inactive process and processes built festrictions present no sur-
prise. This is not true of replicated processes: given theyogence lawP =P | | P, the
reasoning we just made about parallel composition imples the only mode derivable
for a replicated proces$is the silent mode, provided thatis also silent. Consequently,
the only two possible types for a replicated process are guteg” type (deduced by the
(REPLICATION) rule of Section 5) or a silent type, derived as follows:

(REPL )
I P:ProlE,*F]

[ F1P:Pro[E,*F]

For processes in ambient form we need new rules. The rules(Arom 8§ 5 is modified
(see Appendix A) to deduce upward-silent types, compatifiteall the other modes. Two
new rules handle the cases processes enclosed in pilot mis\biepending on whether
such processes are moving or not.

(AMB A ) (AmB o)
FM:Amb[E,F] TFP:Pro[E,"F]  [+M:Amb’[E,F] T FP:Pro[E,°F]
[ - M[P] : Pro[F,*H] [ - M[P] : Pro[G,H]

In (AMB A) Pis not moving, and the rule imposes type constraints eqentdb those im-
posed by the (A1B) rule: this is needed for soundness, as the judgfiénP : Pro[E, ~F]
could be derived by subsumption froimt P : Pro[E,F]. Instead, ifP is moving, as in
(AMmB o), its upward exchanges are blocked by the move, and therdiier type of the
local exchanges of the procdd$P] can be chosen arbitrarily, as the unrestrai@dd the
conclusion indicates.

We conclude with the rules for input-output.

(INPUT * L) (OUTPUT * )

[, %W F P: Pro|W,*F] FEM:W [ +P:ProlW,"F]
M (XW)P: Pro]W,"F] I+ (M)P: Pro|W,HF]
(INPUT T A) (OUTPUT T A)

%W F P: Pro[F, W] FEM:W [ FP:Pro[F,2W|

[+ (%W)'P: Pro[F, W] [+ (M)'P: Pro[F, W]
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Local communications are not affected by modes: it is thegraddhe continuation process
that determines the moded type of the input/output pro¢ssk.iA process that starts with
an upward exchange has a non-moving type, for obvious reaaond its type depends on
the type of the continuation. If the continuation is of type[F, *W] or Pro[F, W], then the
process —which is clearly not silent— can be type®asgF, W]. These cases are captured
by the rule (NPUT/OuUTPUT 1) of 8 5 (together with subsumption for the cdze[F, *W]).
If instead the continuation has typeo[F, “W] or Pro[F,°W], as in (NPUT/OUTPUT 1 A),
we can just say that the process may eventually evolve into\ang process, hence the
typePro[F, “W] in the conclusion.

Finally, downward communications are not affected by whethe target ambient is
moded or not. The rules from 8 5 work just as well for the newteys two new rules,
with the same format, handle the case when target ambierdded

(INPUTM o) (OUTPUTM o)
FFM:Amb*W,E] FXWFP:T TFN:Amb°W,E] TFM:W T+P:T
MEWMP:T FE (MNP T

As a final remark, note that in all the output rules, the typifighe expressioM being
output is subject to “regular” typing. As a consequenceabidjty paths may be commu-
nicated only if well-typed under regular typing. This réstion could be lifted, had we
employed capability types with modes, instead of typingatéliies with moded judge-
ments. In fact, adding capability types with modes woulcigdiresult into a slightly more
expressive system (one which would allow “moded” paths tedm@municated). On the
other hand, the current solution has the advantage of iieguitinimal changes to the syn-
tax of expression types, those occurring in the typed syraad for this reason it had our
preference.

7.4 Subject Reduction

Subject reduction for the new system is proved followingdtamdard technique: a detailed
proofs is in Appendix B.

THEOREM SUBJECTREDUCTION. IfTFP: T andP— Qthenl FQ:T.

We illustrate the moded-type system at work on two examligst consider the following
process, where we use the primitive typetsandbool for convenience:

(x:int)P | b[(5)"in a] | a] (x: bool)Q]

This process is clearly type safe (insofarR&nd Q are safe), as the upward exchange
in b is compatible with the local exchanges of tyipé occurring at top level. Once the
exchange is consumelbecomes upward silent, and may safely move &teven though
ahasbool exchanges. With the the system of Section 5, the processypéd. To see that,
first observe that the ambient nangandb may only be assigned the typasb|[bool, _]
andAmb]_,int]. Then, for the process to type-check, we would need to déngeyping
(5)Tin a: Pro[_,int]. This fails because the move ingoviolates the type constraint that
requiresint to be compatible with the local exchangesof

Instead, with the moded type system one can deBy&n a: Pro[_, °int], provided thab
is assigned a pilot ambient type. Below we give a type déawdor b[ (5)'in a], assuming
thatl" is the type environmerat: Amb[bool,_],b: Amb°[_,int].
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I'+a: Amb[bool,_]
I+ina:Caplbool] T +O0:Pro[,int]
IFina0:Pro[, int]
r=5:int I+ina0:Pro[,“int]
MFb:Amb°[int] M+ (5)'ina0: Pro[_,int]
I+ b[(5)'in a] : Profint, ]

Notice, further, that after the upward exchange and the nitees, the residual process
b[] can be given any type, in particular the tyPeo[bool, ] needed to type-check the
occurrence of this process within

(PREFIX 0)

(SUBSUMPTION

(OuTPUTTA)
(Amb A)

As second example, we look at the typed version of the chammiding of Section 4.3.
In the typed case, the encoding is defined as follows (seé&8etB):

(c™(x))n = (vp:Amb®°[shh,W])p[in m.in c.(x)"]

(c(x))n = (vp:Amb°[shh,W])p[out n.in c.(x)']

(C"(xW).P)n = (VP:Amb°[W,W])p[in m.in c.(x W) out c.out m.(x)] | (xW)P(P)n

(cT(xW).Pyn = (VP:Amb°[W,W])p[out n.in c.(xW)Tout c.in n.(x)] | (xW)P(P)n
Remarkably, the definition is independent of the types oftilee ambientsm andn tra-
versed by the ambient: this flexibility is enabled by the typing gb as a pilot ambient.
We give a type derivation for the case of downward input asaggntative. With no loss
of generality, we make the following assumptiorist- {P) n:Pro[E,’F], with I' a type
environment in whichm:Amb?[G, H],c:Amb[W, shh] and p:Amb°[W, W], andE,F, G and
H are arbitrary exchange types. We reconstruct a type daivédr the judgment:

[+ p[in min c.(xW) out c.out m.(x)] : Pro[E, *F].
This judgment is derived by (M8 o), provided that the process enclosegican be typed
with modeo, i.e. if
[ Fin m.in c.(xW) out c.out m.(x) : Pro]W, W]
This follows by (RREFIX o) from " Fein m:Cap[G] and
I Fin c.(xW) out c.out m.(x) : Pro[W, W].

G is the type of the local exchangesrin and moded typing allowS to be any type, irre-
spective oW (notice that this is would not be true without moded typeshagidgement
I Fin c.(xW) out c.out m.(x) : Pro]W, W] is derivable only ifG < W). The last judgment
follows by (PREFIX A) from I Fein c:Cap[W] and from

[+ (xW)Tout c.out m.(x) : Pro|W, 2W].
This judgment can be derived byNpuT 1 A) from
I, XW F out c.out m.(x):Pro[W, “W].

Again, we rely on moded typing: the whole process type-cheifkce the move that pre-
cedes the upward output routes the ambient into an envirohwi¢h the right exchange
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type. Deriving the last judgment is not difficult. Fromx:W Feout m:Cap[H] and from
I, xW F (x):Pro[W, W], we havel',xW F out m.(X) : Pro[W,°W]. Again, moded types
are required here, d5x:W F out m.(x) : Pro[W, W] is not derivable.

Now, from the last judgment and from x:W o out c:Cap[shh] an application of (RE-
FIX o) yieldsI",x:W I out c.out m.{x):Pro[W,°W] as desired. To conclude, we obtain the
desired typing fronPro[W, W] < Pro[W, “W|, by subsumption and lPUT 1 A).

8. ASYNCHRONOUS BOXED AMBIENTS

A calculus for distributed computation cannot rely on sylectousrendez-vouas the only
mechanism for process interaction and value exchange.ethdke fundamental role of
asynchronous primitives in distributed systems is welllenstood (cf. [Fournet et al. 1996;
Cardelli 1999]), and motivated by widely agreed designgigles and practical experience
with implementation [Bryce and Vitek 2001; Fournet et alo@D

As we noted in Section 3, asynchronous exchanges can beerecbwn BA by recon-
sidering the semantics of the output process forms. Inqadsi, we suggested two solu-
tions for making the outpuM)"P asynchronous: either code it by using continuation-less
outputs (so that the asynchronous outf/)"P is encoded by the parallel composition
(M)" | P), or introduce the structural layM)"P = (M)1 | P. The first solution allows
synchronous and asynchronous output to coexist, the sesobuiibn yields a purely asyn-
chronous calculus.

Both the alternatives have a fundamental problem, namalyglitting an output form
into a parallel composition has the effect of essentiallfedéng moded typing. Moded
typing is possible, and effective, only along a single tdreahile the coding of asyn-
chronous output introduces parallel compositions anddsaw residual following an out-
put. In particular, withn =1, (M)"P and (M)" | P are only equivalent under the type
system of § 5, not with moded types (thus subject congrueaitsafith (M)TP = (M)! | P
and moded typing).

To see the problem, consider the processnt)P | b[(5)!in a] | a[(x : bool)Q], whose
typing we studied in Section 7. If we takB)'in a and transform it as suggested above, the
process does not type check, as the typing[¢8)' | in a] is not derivable, even under the
assumption thab : Amb°[_,int]. The problem is with the rules for parallel composition,
which require the following typing to be derivablet a.0 : Pro[_,*int]. This fails due to
the format of the (REFIX o) rule, which has the same requirements aBgRX).

Fortunately, however, the problem is not a consequence déchtyping and asynchrony
being inherently incompatible. To see that, observe th&viyi P the continuatior® could
be typed with a mode independently of whether the prefix densynchronous or asyn-
chronous output. All that matters f&rto receive a sound “moving” type is thél) gets
delivered to the parent ambient before unleastitngnce delivered, whether or ng¥)
also synchronizes with local input is irrelevant. Basedhia bbservation, asynchronous
output and moded typing can be reconciled by resorting to e rmareful definition of the
congruence law, namely, one in whi¢h)"P = (M)" | P only if n #1. Instead, when
n =1, we re-state the congruence law as a reduction and makeatidocaware so that the
output is delivered to the appropriate ambieiftM)'P | Q] — (M) | n[P | Q].

With this reduction, the problem with moded types is sohadupward output followed
by a move, such adN)'in n.P may safely be typed with mode (based on the modefor
the type ofin n.P) regardless of whether the output synchronizes or not.
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We can now define the asynchronous calculus formally. Theefty syntax is unchanged,
as one can still interpré{M)" as the proceséV)"0. Instead, the semantics is different, as
input and output prefixes synchronize only when the latteelmaill continuation. Table IV
summarizes the new top-level reductions, and the new cengrilaws for asynchronous
communication.

Table IV Asynchronous reductions

Structural Congruence
(Struct Output) (M)'P = (M) | P (n #1)

Communication

(local) (KW)P | (M) — P{X:=M}
(inputn) (X:W)"P | n[(M) | Q] — P{%:=M} |n[Q]
(input 1) n[(X:W)'P| Q] | (M) — n[P{Xx:=M}|Q]
(outputn) (M)" [ n[P] — n[(M) |P]
(output?) n[(M)P|Q] — (M) |n[P|Q]

The relation of asynchronous reduction is obtained by @ptathe communication re-
duction of Table IIl with the corresponding reductions irbfalV. Notice that the se-
mantics of the output fornM)P is now truly asynchronous, @is unleashed regardless
of whether there is a matching input process. To illustratsider again our running
example: with the asynchronous semantics, one has thevfolicssequence of reductions

(x:int)P | b[(5)!in a] | a[(x : bool)Q] => (x:int)P | (5) | a[b[] | (x: bool)Q]

Interestingly, the new reductions are compatible, and dpwith the moded typing system.
Type soundness follows directly from the following two réésfproved in Appendix B).

LEMMA SUBJECTCONGRUENCE Assume) #1. Then,[ - (M)TP: T if and only if
= (M)"|P:T,where both judgements are derived in the system of Séttion

THEOREM SUBJECTREDUCTION IN THE ASYNCHRONOUSCALCULUS. Letl+-P:
T with the system of Section 7, and-P> Q with the asynchronous reduction rules. Then
rQ:T.

8.1 Asynchronous Boxed Ambient vs Mobile Ambients

We mentioned in Section 6 that the asynchronous semantidsesithe definition of more
robust translation of Boxed Ambients in MA. The translatisdefined formally in in Table
V. To ease the presentation, we restrict to a monadic verdi@A in which only names
(and not capabilities) can be exchanged. There is no fundiindifficulty in extending

3Indeed, although operationally equivalent, the two termsd:be distinguished to reflect their respective nature,
namely: (M)"0 indicates an output operation with null continuation, whiM)" denotes a piece of data which
has been delivered 1 (whenn # x), or a one-place buffer , when= .
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the definition to the general case (some care is requiredridlbahe typed exchange of
capabilities).

The translation is typed: with respect to the untyped cdmentain difference is in the
use of a family of nameshy andpk, indexed on types, with the implicit assumption that
chw, pky : Amb[W] for all typeW. This indexing is required for typing, as each pair of
names enables exchanges of the corresponding type.

Table V Encoding of BA into MA

Types:
(Amb]W,E]) = Amb[{W)], (Amb[shh,E]) = Amb]shh]
{Pro[W,E]) = Pro[{W)], {Pro[shh,E]} = shh

Type environments{xs : Wi,...,Xn :Wh) =x1: (Wi ),...,Xn: (Wh)

Terms: assume + n: Amb[W,W'] andl" - m: Amb|W"  E]

(I>(@P)n = (vk:Amb[(W})])(open k|
pkw[(Q) | in chw.K[out chw. (T >P)n]])
(> (x:W)P)n = (vk: Amb[{W)])(open k|
pkw[in chw.(x: {W))k[out chw.{T >P)n]])
(Te(@™P)n = (Vk: Amb[(W)])(open k|
pkwr[(Q) | in m.in chyw k[ out chyyr.out m{T>P)n]])
(o> (xX:W")™P), = (vk: Amb[{W)])(open k|
pkyy [in m.in chyyr.(x: {W" ) )k[ out chyr.out m{T >P)n]])
(F>(q)"P)n = (Vk: Amb[{W)])(open kK |
pkW/[<q) | out N.in ChW/.k[OUt chyy.in n.(rl> P)n] ])
(o> (x:W)TP)n = (vk: Amb[(W)])(open K |
pky[out n.in chyy.(x: (W) )k[out chyy.inn.{T>P)n]])

(F>m[P])n = m[chy[lopen pkyr] | {T'>P)m]

(FTePQ)n = (ToP)n| (T>Q)n
(Fe>(vm:W)P), = (vm: (W) (I, m:Wp>P),
(T>M.P), = MAT>P),

(To!P)n = (TP,

The translation has interesting properties. It is type gméag, namely: if[ - P :
Pro[E,F] in BA, then one can show thgtl ) - (' >P) : (Pro[E,F]). Also, the trans-
lation simulates the reductions of the source (asynchrencaiculus correctly. Unfortu-
nately, there are still two remaining problems. First thensiation is not fully compo-
sitional, as the complete encoding needs a further stepddaagbuffer to the top level:
(F>P) = (T'>P)wp | chw[] whereW is the type of the local exchangesffSecondly,
the protocols that implement the exchanges across bowsdare not atomic, and hence
subject to interferences. To make them atomic, one would ha¢her hypotheses of the
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source term, akin to those encompassed by the noti@mgfe-threadednestefined for
Safe Ambients [Levi and Sangiorgi 2000]. For instance, far ipward exchanges to be
implemented correctly, we would need to assume that theemiexited at the start of the
protocol does not move until the ambideais back inton (hence the protocol is complete).

8.2 Synchrony versus asynchrony

The choice of synchronous versus asynchronous commuuridadis various consequences
on the calculus, specifically, on the security guarantesisddin be made for it.

On one side, it is well known that synchronous output geesratrd-to-detect flow
of information based on synchronization. For example, whgh synchronous semantics,
in the systema[Q | b[(M)P] ], the sub-ambierih gets to know exactly when (and i€)
makes a downward read to its contents, thus causing an itffdie of information from
the reader to the writer: this makes non-interference [@ogand Meseguer 1982; Focardi
and Gorrieri 1997] hard to satisfy.

On the other hand, by adopting asynchronous output we afé#gtgive up media-
tion (see § 3), that is, control over the interactions betweelingiambients. With the
synchronous semantics, no ambient can be “spoiled” witkxpeeted (and possibly un-
wanted) output by its enclosing or enclosed ambients. Axample, consider the system
a[ (xW)PP | b[c[ (M) | Q]]] which type-checks provided thad :W and the ambient
has typeAmb[W, F] for someF. With the synchronous reductions there is no way for the
upward output irc and the downward input ia to synchronize.

Instead, in the asynchronous case, the initial configuragiolves into the process
al (xW)PP | b[(M) | ¢[Q]]]. and by a further reduction the ambiemgets hold of the
messagéM) without any mediation by. Similarly, two siblings may establish a hidden
channel, ag[a] (xW)'P] | c[(M)TQ]] reduces in two steps tifa[P{x:= M}] | ¢[Q]].
Both situations result in security breaches, based on thgepice of hidden channels, that
cannot be prevented by the primitives of the calculus, amitds. Fortunately, however,
one can resort to types and type analysis to provide strosgmirity guarantees, and en-
hanced policies for access control. We discuss this aspélotinext section.

9. ACCESS CONTROL BY TYPING

The access control framework we address is an instance efahdard Mandatory Access
Control policies in multi-level security environments [Band Padula 1976; Gollmann
1999]. The domain of security levels is assumed to be adglic<), whose elements are
ranged over by, 0, 1. Based on an assignmenof security levels to subject and objects,
one defines &ecurity policyas a ternary boolean predicaté on subject levelsobject
levels andaccess modes’, % € {w,r,rw,—} (the mode “-”, denoting “no access”, is
introduced for convenience, to make the notation unifo@pecifically, an access to an
objecto by a subjecsis legal under? if and only if 22(y(s),y(0), <) holds true. Military
security (no read-up, no write-down) and commercial ségyrio read-up, no write-up)
can be enforced by the following security policies:

Pl (p,0,r) al o=p Pcom(p,0, ) 2 o=p for &€ {r,w,rw}
Pui(p,o,w) 2 p=0  Peom(p,0,—) = true

Pi(p,0,w) = 0 =p

Pl (p,0,—) 2 true
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9.1 Subjects, objects and security levels for Boxed Ambients

We study this form of access control for the asynchronousiearof the calculus discussed
in the previous section. Processes take the role of subjebtle ambients take the role of
objects, and we rely on the notion of access we have assummdytiout, namely(x)"P
and(M)"P represent processes (subjects) attempting to accessilth@ anread and write
mode, respectively, where#l)'P and(x)'P represent processes requesting an access to
their parent ambient, again in read and write mode. We maésetimotions formal, and
define the import of a security policy in the calculus by inlnging a tagged version of the
asynchronous reduction relation in which any unauthor&eckss to an ambient results
into a distinguished error-reduction.

The relation of tagged reduction is denoteéh ;) and defined in terms of a security
environmeny that associates names (and variables) to security levelsa aecurity level
o that identifies the clearance of the processes involvedametiuction. Security environ-
ments are formed just as typing environments, accordinigaddllowing production:

yi=@ | y,X:0

where iny,x: o it is understood that ¢ Dom(y). Based on that, we take any reduction to
a distinguished process temr as the formal counterpart of an access violation.

The reductions, summarized in Table VI, should be undedstasily. In particular, note
that in the reductions for non-local input/output the céeaae of a process enclosed in an
ambient is determined by the security level associated thighambient's name. This is
consistent with the format of the reduction§®). To illustrate, consider

P = h[¢[out hin h.)'Q | (M)]] | (v)'R
wherey(h) = T andy(¢) = L, and leto = L be any security level. Then we have
P — oy N1 inh.IQ[(M)] | ()R by (EXIT)
— @y N1 1inh(¥)'Q] |R{x:=M} by (INPUTN)
— @y NAMXTQ]] | R{x:=M} by (ENTER)
—(oy err by (ERRINPUT?), (ERR AMB), (ERR PAR

Here, the error reduction arises from the low-level prodesislel attempting to read from
h, a top-level ambient. As we discuss next, this illegal afieis detected statically by
the type system. It is worth remarking that ther@@sdynamic access control intended in
the tagged reduction: access control will be providedcadyi, by typing, and the tagged
semantics is only defined to give a formal statement of thedoess result for the type
system.

Finally, note that reductions tar only result from attempts to read or write on non-local
resources. As such, we disregard errors resulting from tyisenatches in any of the local
or non-local exchanges of values (in fact, for well-typedqasses the absence of such
errors is guaranteed by subject reduction).

9.2 Access Control Types and Typing rules

The new classes of types extend the types of Section 7 withagsspecifying the security
clearance of capabilities and ambient names, and addiiithioamation of the on the read
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Table VI Asynchronous Tagged Reduction

Top-level reductions

(INPUT %) (R:W)P| (M) —> 5y P{X:=M}

(INPUT N) (X:W)"P [ n[(M) | Q] —(sy) P{X:=M}|n[Q] if £(0,y(n),r)
(ERR INPUTN) (R:W)"P | n[Q] —(gy) err if ~2(a,y(n),r)
(INPUTT) n[(%:W)'P | Q] [ (M) — oy n[P{X:=M}|Q] if Z(y(n),o.r)
(ERR INPUTT) N[(X:W)'P| Q] — gy err if =2 (y(n),0,r)
(OUTPUTN) (M) | n[P] —(ay) n[(M) | P] if Z(0,y(n),w)
(ERR OUTPUTN) (M) n[P] — gy err if =2(0,y(n),w)
(ouTPUTY) [<|\7|>TQ|R] — oy (M)[N[QIR] if @( (n),0,w)
(ERR OUTPUTY) (M)’ QIR] — gy err 2(y(n),0,w)
(ENTER) alin b.P| Q] [b[R] — 5y b[A[P|Q] |R]

(EXIT) a[bloutaP| Q] |R] — gy b[P|Q] |a[R]

Structural Reductions: the symmetric reductions for (Raxjl (Err Par) are omitted.
The rules (New) and (Err New) assume-AAmb’[_, ]

STRUCT) PP=P P—4Gy Q Q=Q = P —gy Q

(

(ERR STRUCT) Q=P P —gy err = Q —— gy err

(NEW) P — o ynp) Q= (VWAP — 6y (VMA)Q
(ERRNEW) P —G.ynp) er = (VWAP — 5, err
(PAR) P—@©y Q= P|R —@y QIR
(ERR PAR) P — oy er = P|IR — (o) €rr

(AMB) P —py Q P=Y@ = aP] — gy aQ]
(ERR AMB) P —yay e = aP] — gy err

and write access requests on such names.
Ambient Types A = OAmb[E,F, ] | cOAmb°[E,F, &]
Expression Types W ::= A | oCap[E, «|
Exchange Types [ ::= shh | Wix---xW,
Process Types T := Pro|E,F,&] | Pro|E,'F, o]

The new types are interpreted similarly to the types we thiced in the previous sec-
tions. In particular, the exchange componeatand F (with their modesy) have the
same interpretation as in Section 7. The meaning of the nempoaents is as follows.
In cAmb[E,F, <7, 0 is the clearance of ambients with this type, asds (a sound esti-
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mate of) the access mode of the upward exchanges of theosenglprocesses. Similarly,
oCaplF, #7] is the type of a capability that can be exercised within anianthwith clear-
ancea, upward exchanges of tyfpeand access mode'. Finally, Pro[E,*F, «7] is the type

of a process with local and upward exchanges of type, reispbcE andF, and access
mode.«Z. Note that process types are associated with two modes:cttess modey
defines the mode in which the process accesses the chanaieldan its parent ambient;
the exchange modg defines whether the process is silent, moving or both. We do no
explicitly associate security levels with process typastéad, we type check processes at
a given security level, by introducing judgments of the fdriag P: T, whereT is process
type, ando a security level. The typing rules are collected in Appendlixnost of them
are the direct generalization of the corresponding rule€ddation 7, and so are most of the
rules for processes, with the exceptions discussed belaasstuime the following partial
ordering on access modes:< {r,w} < rw.

9.2.1 Typing of Capabilities.In addition to the usual type safety constraints, rules (I
and (QuT) introduce the constraints relative to the security poliogler consideration.

(IN) (OuT)

r-M:0Amb’[E.F, %] Z2(p,0,«/) GKE T[+M:0AmblE,F, 8] G<F, &/ <%

IEinM: pCap|G, <] I Fout M : pCap[G, #/]

Specifically, an In” reduction is well-typed only if the security levels of th@d ambients
involved in the move are compatible. Dually, aat move type checks only if the type
of the upward exchanges of the exiting ambient are alreadgrapassed by the upward
component of the type of the exited ambient. The rulestPspecializes in the natural
way to the case in whichl is a pilot ambient (cf. Appendix A).

9.2.2 Typing of PrefixesThe typing rules for prefixes have the same rationale as those
of the moded typing system. For example,

(PREFIX 0)
oM :pCap[G,#] T kg P:Pro[E,°F, ]

[ o M.P: Pro[E,°F, <]

states that we can safely disregard the access mdbenever the process and, therefore,
the pilot ambient containing it are in a silent phase.

9.2.3 Typing of AmbientsThe typing rules for ambients define the clearance level
at which the enclosed processes should be type-checké&disienclosed into @-level
ambient, therP is type-checked at clearance In addition, the rules predicate well-
typing to the security policy under consideration. A regmgsative of these rules is the rule
(AmMB):

(AmB)
Ma:oAmblE,F,&/| T FgP:ProE,F o] (0,p, o)
+pa[P] : Pro[F,*H, %]
The constraintimposed by the poliey¥ can safely be lifted for ambients whose enclosing

processes are moving (or silent), as in that case there ipwand access to be checked
(cf. the (AmB o) rule in Appendix A).
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9.2.4 Typing of input/outputThe rules for local exchanges are straightforward: they
enforce no access control, as processes are always gracessao their local resources.
The rules for downward input/output relate the types of tgut-output processes and
their continuations, as in the type system of Section 7. Hitamh, they enforce the con-
straint that processes at clearamoead only from (rule NPUT M) and write only to (rule
OuTPUT M) ambients of clearange compatible witho according to the given security
policy. The rule for upward exchange do not impose any aco@sisol and just check that
the access modes are correct: this is sound, as the upwarsisescare already regulated
by the rules for ambients, and by the rules governing mabilit

9.2.5 Subtyping and SubsumptioBubtyping over exchange and process types ex-
tends uniformly to the new set of types. As in the type systefrtee previous sections,
subtyping is only reflexive on capability and ambient typescess subtyping, in turn, is
the direct extension of the subtyping relation of Sectiodefined as follows:

Pro[E,*F] <7 Pro[E' }2F]
Pro[E,MF, o] < Pro[E/ /%F, /]

wherey; are (possibly empty) modes, argd is the subtyping relation for processes de-
fined in Section 7. Richer subtyping relations, such as dowalg a relatiorPro[E, F, r] <
Pro[E,F, rw], would be desirable, but turn out to be unsound. To see tHaqmowith this
form of subtyping, consider a system with military secustyd two security levels[ and
1 with L < T. Take therT” to be a type environment such tHa) = L Amb[W,shh,r]
and ' (h) = TAmb[shh,W,rw]. Under these assumptions, the judgmEnt in £.0:
Pro[shh,W,r] is derivable by the type system of this section for &y If, by subtyp-
ing, we upgrade the previous typing judgmenttd 1 in £.0 : Pro[shh,W,rw], and take
M of typeW, the following judgment is derivablef - in £.0 | (M)" : Pro[shh, W, rw].
From this judgment, and from the assumptiofh) = TAmb[shh,W,rw], we then have
I F1 h[in .0 (M)'] : Pro[W,F, &], for any typeF and modez. This typing is unsound,
however, because can move into and make a write access to the low-level ambignt
thus violating the military security policy we had assumed.

9.3 Soundness of the Type System

The main purpose of the type system of this section is tocsthtidetect access violations,
with respect to the underlying security policy. As we statéol (and prove in Appendix

B), the type system does provide these guarantees undeddit®oaal hypothesis that the
security policy isstable in the sense of the following definition.

DEFINITION STABLE SECURITY PoLICIES. We say that a security policy is stable
if and only if it satisfies the following conditions

(1) if Z(o,p,o)and Z(p,1,</) then# (0,1, ).
(2) if #(0,p,«)and¥ < & then#(0,p,%¢). O

Military and Commercial security, as defined in this sectiare both examples of stable
policies.

Given a type environmeiit, and a security assignmepntve say thay is I'-consistentf
and only if for allx € dom("), I'(x) = Amb?[...] impliesy(x) = 0. We use this definition
to state the soundness of our type system:
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THEOREM TYPE SOUNDNESS Assume thaf 4 P: T. Then for every -consistent
security assignmernt and process Q such that P—>f0‘y) Q we have Q- g, err.

To exemplify the effects of typing, consider the followingaenple from Section 8.
h[[(0'P] | £[(M)'Q]].

If we assume that the clearance of ambierg strictly higher than the clearance 6&nd

/', then a type system based on a “no read-up” policy shouldtréje above process as

ill-typed, because not secure. This is indeed the case faiypa system: to see that, note

that the procesé{ (x)'P] is type checked at the clearance of the enclosing ambijearid

the side condition to the (M8 A) rules fails to be satisfied under a “no read-up” policy.
A similar reasoning shows that the unsafe process

h[¢[out h.in h.(xW)T | (N)] | (M)] | ()¢

where/ andh have clearance and T respectively, is ill-typed, aé insideh performs a
read up-operation. In particular, in order fBrto type check, the subproceissh. (x:W)!
enclosed ir¥ can only be typed at level with the process typ€ro[E,"W, «7], for r
/. However, the judgmerit -, in h.(xW)! : Pro[E,"W, 7] must come fronf - in h:
1 Cap|W, 7], which is not derivable since the clearancef the ambienh is greater than
the clearance of, contradicting the hypothesis of rulen(.

9.4 Discussion

The notion of access control encompassed by the type syatairthe corresponding no-
tion of type soundness we have addressed can be furthegstesred. To motivate, con-
sider the following program:

h[ (secre} | £[ (vt)t[out h.(x)in £.()]] | (X)'P]

operating under commercial security (no-read-up/noeauip). If we assume thédtand

¢ have clearance, respectivé,and |, commercial security should prevefito read the
secretfrom h. In fact, our type system does provide this guarantee. Fdrjs given
clearancer, then the type system rejedte)!P as ill-typed (becausgx)! is a read-up). If
insteady : L, the type failure arises dKk)'in ¢..., which is also classified as read-up in
this case. However, one can play the following trick:

h[(secre} | £[ (vt : T)t[out h.(x)"in £.(x)]] | (X)P]

The ambient creates a Trojan horgethat is entitled to exchange values wih nowt
reads thesecret and then, once back infpit delivers it upward, td. This program type-
checks in our system, and indeed, there is no reductiarrtovolved in the computation,
as none of the read and write operation violate any accesstonnstraint.

On the other hand, it may reasonably be argued that one shoaidnt such situations.
In fact, the type system may easily be extended to accourthéocases of interest. If
we look at the example, we notice that the problem arises asutrof thesecret a high
value, being communicated to the ambiénwhich is low. In the current system this goes
unnoticed, as the typing rules enforce no constraint @istiip between the security levels
of an ambient and those of the values the ambient may exche®geh constraints are
easily incorporated in the type system by means of new tyfringation rules. Given any
exchange typ&, let A(E) denote the security level associated viithdefined as follows:

A(GAmb[E, F]) = A(GCap[E]) =0, A(Wo x - - x W) = A(Wy) U---LIA(Wh) , A(shh) = L
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Based on that, we can define type formation rules enforciegetkpected constraints,
namely that ambients (and processes) of clearantry only exchange values of clear-
ance at moso.

(ENV ©) (ENV n) (TYPEshh)
r'-W n¢ Dom(l) Mo
ko rLn:Wko I+ shh
(TyPE CAP) (TyPEAMB) (TyPEPROC)
r-e g AME)=<o i=12 - AE)=<xoc i=12
I - aCaplE] I - 6Amb|[E1, Ep) I kg Pro[E1, Ep)

These rules can be incorporated in the type system, so astoectinat all types used in a
derivation are well-formed. With the extended system tlsé éxample would be rejected,
because the high valigecretmay no longer be exchanged with a low-level ambient like
¢. There is still the possibility fof to exploitt to obtaining access to data storechirbut
only the only data that can eventually flowftonust have low level, which is acceptable.

9.5 Examples

We demonstrate the import of the type system in enforcingpgiffe access control policies
on several examples.

9.5.1 Wrappers.As a solution for the problem of resource protection and sscen-
trol in wide-area networks, Sewell and Vitek [Sewell andei2000] propose an extension
of the Tecalculus, known as thBox Tcalculus. Within this calculus, they develop a pro-
gramming technique, based wmappers whereby untrusted code can be secured into an
isolatedbox and its interactions with the enclosing environment fdteby a process, the
wrapper, that only forwards legitimate messages between the bosagtam and its en-
closing environment via secured channels. The paradigreaimple of that work can be
rephrased in our syntax as follows:

(va.b) (alP] [ 1()*(x)° [ b[Q] ).

P andQ are arbitrary processes that are encapsulated in ambiaat®éd boxes” in the
terminology of [Sewell and Vitek 2000]) with private narmeeandb, and placed in parallel
with a process that forwards messages feotmb. Notice that ambient boundaries prevent
any direct interaction betwedmandQ, and the name restrictions @andb ensure that
the only possible exchanges with the environment are fiténg the process(x)2(x)P.
Thus, as in Boxeds, we can rely on wrappers to provide interesting securityrgniees:
specifically, the above configuration prevenj<j from leaking secrets tB and i) P and
Q from corrupting the environment.

With the type system of Section 9, we can provide further gntaes. If we defina to
be a high-level ambient argla low-level ambient, then the type system built over mijitar
security will detect any unwanted access fr@o P regardless of context that encloses
a[P] andb[Q]. In addition, military security may be employed in the tygstem also to
detect any attempt by andQ to access the environment: for that purpose, we only need
to type-check the configuration at a clearance incomparmitiethe clearance ad andb.
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9.5.2 Firewalls. We now look at the protocol for firewall crossing defined in {@alli
and Gordon 1999b] and refined in [Levi and Sangiorgi 2000]e Photocol can be ex-
pressed in our calculus as follows:

Firewall = (vf)f[k[out f.{in f)2] | ...]
Agent = afin k.(X)out k-x.Q]

The idea is to let thégent across theFirewall f by means of a shared k&y In [Cardelli
and Gordon 1999b], the kdyis used as the name of a pilot ambient that drives the agent
into the protocol and is then dissolved. Our coding follotwes same idea, but implements
it differently, relying on communicationa entersk from which it receives the capabil-
ity in f to be exercised aftesut k to drive a into the firewall. Interestingly, the pro-
cessa[in k.(x)out k-x.Q], where a capability is first read (locally) and then exertiae
the same nesting level is well-typed in our system (this istn@ of the type system of
[Cardelli and Gordon 1999b]).

Having authenticated an incoming agent, the firewall may th@vide other security
guarantees. For example, we may want to ensure that pracessee the firewall can ac-
cess the resources of the agent that crossed the firewalipbthie converse. This guaran-
tee can be provided with commercial security, by the typegassentsf : pAmb[E, F, .o/
andk : kAmblshh,shh], wherek < @, E andF are appropriate types, and is an appro-
priate access right (note that this constraint are defingtdfgu the firewall, independently
from the interacting agent).

To illustrate the effect of these type assignments, consideneric agerd[ P] entering
the firewall, and assume that: aAmb[G,H,%]. To cross the firewalla must accept
write requests fronk: with commercial security, this is possible onlyif< k and this, by
transitivity, implies thatr < @. Now observe that commercial security prevents low-level
ambients (such a&) contained in high-level ambients (suchfgdrom attempting upward
exchanges. Them, < @ impliesH = shh. In summary, the type assignment enforcegon
a security level strictly smaller than the level ifand this implies that any agent entering
the firewall f cannot directly access to local resourced oéis desired.

The protocol we just discussed depends on the assumptibththéirewall knows the
name of the incoming agent. To overcome the problem, we niagreassume thatitself
is also a password which is part of the protocol, or devise pemocol that relies on two
passwordsk andh, and structure the agent and the firewall as follows:

Firewall = (vf)f[K[out f.(in )] | ...]
Agent = hlin k.(X)out k.()2 | a[ (x).out h.x.Q]]
10. DISTRIBUTED LANGUAGE SECURITY

We conclude with a more extended example that illustratadticess control typing system
on a simple, but non-trivial distributed language. The lzage is defined in [Cardelli et al.
2000], with the following syntax.

The computational model is that of various distributedaatiof thertcalculus in the liter-
ature, such as those described by Amadio and Prasad [AmadiBrasad 1994] and Hen-
nessy and Riely’s B calculus [Riely and Hennessy 1998]. A network consists ofie
nodes that contain named channels and anonymous threatisgnd channel names can
be restricted). Channels are represented as persistenirces, as suggested in Section
4. Threads are the active components of a network. They ca mcross nodes of the
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Table VII' A simple distributed language

W:= Node
| Ch(w)

Types

Network Net:= node n[Cro]
| (vn:W)Net

| Net| Net

Cro::=channel ¢
|thread [Th
| Cro | Cro
| (veW)Cro

Crowd

Threads Th:=gon.Th
| e(x)
| c(x).Th

|fork (Cro).Th

type of nodes
type of channels

node
restriction
network composition

channel

thread

crowd composition
restriction

migration

output to a channel
input from a channel
fork a new crowd

| spawn n[Cro].Th spawn a hew node

network, communicate over local channels (i.e. residinthersame node), fork into a new
set of channels and threads or spawn a new node. The typensyktiee language presents
no surprise: threads are well-typed(if their access to channels are well-typed &ingl
they fork and spawn well-typed crowds and networks. Thelatte well typed if they are
formed by well-typed subcomponents. We omit the typingsudnd refer the interested
reader to [Cardelli et al. 2000] for further details.

We illustrate the semantics (and the typing) of the languweitfethe following program:

node n[channel rcv |
(veW)t hr ead|rev(x).f or k (channel ¢ |t hread|c(y).P]).gox.ack(c)]]

which is well-typed under the hypothesefNode rcv:Ch(Node, andackCh(Ch(W)).
The program simulates the behaviour of a deemon that listeiseme public pontcv and
once contacted, it forks to establish the connection on suitrer private port. The deemon
is located at node, containing the channetv and a single thread. The thread waits for
a request omcv; subsequently it spawns a private chanm& be shared with the node
communicated orcv and a new thread that listens on this channel; finally it comicates
the private name to the nodex. The deemon will typically interact with remote clients of
the following structure:

node m[ channel ack | thread[f ork(t hread[gon.rcv(m)]).ack(y). ...]]

The client is located at nodws, which allocates the channatk and spawns a thread that
first forks into a new thread that movesndo communicate over the chanmel the name
of its origin nodem, and then waits to receive on chanaekthe private name on which to
establish the communication with
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We give a typed encoding for this language by relying on tipay system of Section 9.
The encoding is defined in Figure VIII. We initially assumatthll types (from the source
language) have the same security level. Later, we will snely encodings for enhanced
versions of the source language in which we associate difféevels with channels, nodes,
and threads. To ease the notation, we woifenb[E] for cAmb|E, shh, <], omitting the
security levelo when it is not relevant to the discussion. Also, we B8yachto denote the
empty tuple type.

Table VIII Encoding of the distributed language

Types
(Node) = Amb|shh]
(Ch(w)) = Amb[(W)]
Net:
( (vn:NodeNet) - = (vn: {(Node)) (Net) r
{(ve:Ch(W))Net) - = (ve: (Ch(W))) (Net)r c:w
(Net | Neb)r = (Net)r | (Neg)r
(node n[Cro] ) = n[(Cro){]
Crowd:
((vm:NodgCro) ] = (vm:{Node)) (Cro) P
{(ve:Ch(W))Cro) = (vei{Ch(W)))(Cro) ..y
(Croq | Crop) R = (Crop){ | (Croz) .
(thread [Th)D — (vt: Amb]shh])t[ {Th) ]
(channel c) = c[!(x(T(c)))(x)]
Threads
(((?(x)))?t t = (vw: Amb°[shh, (T'(c)),w])w[out t.in c.(x)T] t
{c(x).Th) ¢ = (vr: Amb°[(T ()>>7<<F(C)>> ) (x: (T(c))) (Th)
. | rlout t.in c.(X t((I'(C)))) .out C.in t.(X) ]
(gomTh) ! = outninm (Thyp
(fork (channel (c)).Thy ! — (vs: Amb[Synch) ()3(Th) !

(Th
| clout t.(1((x: (T (c)) ) (X )) | sfout cint.()])]
(vs: Amb[Synclh) ()S<(Th>) /
| (v’ Ambl[shh)t [out t.({TH )™M | Slout t'int.()])]
(fork (Croy | Croy). Th))nt = (fork (Crop).fork (Crop). Th)) nt
(fork ((ve:Ch(W))Cro). Th))nt = (v (Ch(W))) (fork (Cro). Th))'r1
(fork ((vm Node)Cro) Th))nt (vm: (Node) ) (f ork (Cro).Thy M
{spawn m[Cra]. Thy I = (vs: Amb[Synch) ()3(Th) !
| mlout t.out n.({Cro) | slout minn.int.()])]

(fork (thread[TH]).Thy

The encoding of a network is parametric in a type environmethitat we use to record
the types of the values transported by channels (we neetbtinisplement channels and
their operations, as the parameter of an input channel isypet in the source calculus).
The encoding of a crowd is parametrized also by the curredénf the crowd; the en-
coding of thread expressions has as further parameter the abthe ambient that encloses
the (translation of) the thread.
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Nodes are represented as silent ambients whose sub-ambigtde either channels
or threads. Threads also are enclosed into silent ambieiitts ffesh names), and thread
migration is obtained by having threads exit the curren&aad enter the destination node.
A few additional remarks are in order for the encoding of #u® First, in the encoding
of fork and spawn we need a synchronization ambsdwttrigger the continuation of the
thread. Second, the encoding of forks must be given by casélseoconcerned crowd:
since we do not havepen (as in [Cardelli et al. 2000]) we cannot make a whole crowd
exit the thread and unleash it in the node; instead, we matte ®agle component of the
crowd exit the thread individually. Finally, the encodingrgput/output on channels needs
fresh pilot ambients, namea for writer andr for reader, which exit the current thread,
enter the channel at issue and synchronize (and, in the ¢asaders, bring the message
back). As in Section 4.3, we need the moded typing systempe-tyheck these pilot
ambients. Readers and writers are not upward silent arhichegtl to move across nodes,
which are locally silent. Nevertheless, they are well-typecause, by moded typing, one
can infer that their upward exchanges become active onlywhey are inside (an ambient
encoding) a channel (with local exchanges of the right type)

Below, we sketch the translation of the daemon program:

N[ rev[!(x: R)(X)] | (ve: Ch{W))(vt : Amb[shh]))t[ {rcv(X). -theRest) ] |

whereR = Amb[Amb([shh]], the encoding of the type afv. The (translation of the) outer
thread, enclosed in the ambignstarts by spawning a pilot ambienthat exitst and goes
to the ambientcv to fetch the input which triggers the continuation of “thetfeof the
thread.

. t[(vr: Amb°[RR 1]) (xR)"( _theRest) | r[out t.in rcv.(x:R) .out rev.int.(x)]] ...

Again, note that typing the readess a pilot ambient is needed for the move @it oft
to type-check, even thoudhs upward silent.

10.1 Access Control Policies

We now discuss how to specify, and statically enforce, thffé access control policies
in the distributed language. We do this by way of the encadingparticular, we study
various ways for introducing security levels in the soumeguage, and for each of them,
we define a corresponding encoding into the access confrelystem of Section 9. Then,
we study how the access control policies induced by our tygeem translate back into
corresponding policies in the source language.

The first policy results from associating channel types dnelatds with security levels,
thus interpreting threads and channels as subjects anctgfjespectively. The translation
is easily adapted to this case. ldie al -consistent security assignment (see Section 9.3),
then:

(aCh(W)) — GAmb[(W)]
(othread[TH)? = (vt: GAmb[shh]). ..
(et = (vw: y(t)Amb°[shh, (T (c)),w])...

(
{(c(x).Th) ?’t = (vr: y(t)Amb°[{T(c)), (Tl (c)),r])...
(fork (TH).Th) ?‘t = (vs: Amb[Synch)(vt’: y(t)Amb][shh])...
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Here, commercial and military security for the result of trenslation correspond directly
to commercial and military security for the source termsciBt our example, if we take
the channetcv to be high (i.ercv: TCh(Node) and the outer thread af to be low (i.e.
node n[...thread_L[rcv(x)...]]), then military and commercial security policies would
both reject the the attempt by the thread to readawas a read-up. This results from
the failure to type-check the the pilot ambienwhich must be given low-clearance, since
the thread has low clearance:

(vr: LAmb°[R,Rr]) (xR)"( _theRest) | r[out t.in rev.(x:R)!.out rev.in t.(x)]

The culprit is the sub-terrim rev.(x:R)'. By trying to construct a typing derivation for the
termr[...], we discover that we need to type-chéckev.(x:R) atlevel L, i.e. we need a
derivation for

rev: T{Ch(Nod@) F inrev.(xR)" : Pro[_, _,1]

To derive this judgement, we must apply the rul&@rix A) because the process will
be upward-active right after the move. But then we need avaligon for the judgement
rcv: T (Ch(Node) + inrcv: LCapl.,r], which instead fails because the clearamcef
rcv is incompatible with the clearance of the capability: this judgement is not derivable
under any “no read-up” policy.

An alternative policy is to endow node types with securityels. Accordingly, threads
receive the security level of the node in which they are e@athis is a common situation
in practice, where it is usually implemented in the form ofatjtion of the nodes in trusted
and distrusted (i.e., with just two security levels). We cawdify the encoding as follows:

{oNode) GAmb[shh]
(thread[Th) = (vt: y(n)Amb][shh])...

Note that with this policy a thread can move into a node of amgll However, once there,
it can access only resources (channels) which are comeatiith its own level. In our
example, if we give the nodesecurity level higher than node, then the thread forked in
m can still move inton but it will be allowed to writercv only if we declared the channel
rcv to be of a level compatible with the security policy in use émellevel ofm.

If we want to forbid threads to move into “incompatible” nadéhis is usually needed in
two cases: when we partition nodes in reliable and not ridiabd want sensible threads to
be executed only on reliable nodes, or when we partitioraiifisen trusted and distrusted
and we want sensible nodes to execute only trusted threadsamwmodify the translation
so that moving threads notify their entrance to the node émsgr:

{oNodé€) = oAmb[Synch
(node n[Cro])r = n[{Cro)} |!()]
(thread[Th) (vt: y(n)Amb[shh, Synchw])...
(fork (TH).Th) ?’t (vs: Amb[Synch)(vt’: y(t)Amb[shh, Synchw]) ...
(gomTh) M = outninm.()! (Th)
Any attempt by a thread to move into a non compatible node s#iethread ill-typed.

In particular the use of commercial security in the resultha translation, corresponds
in the distributed language to ensure a node-protecticicypsince a node will run only
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threads of security level higher than or equal to its levélisineans that a node runs only
threads coming from nodes it trusts. Instead the use ofanjlgecurity enforces a thread-
protection policy since a thread will run only on nodes wittt@rity level higher than or
equal to its level. This means that sensitive threads witidmeonly on reliable nodes. We
leave the task to verify that the translation enforces thenided policies to the interested
reader.

11. RELATED WORK

Besides Mobile Ambients and Seals, whose relationshigsBoixed Ambients have been
discussed all along, our approach shares motivations sasupierficially similar to Sewell
and Vitek's Box7t[Sewell and Vitek 2000]. The technical development, howgigeen-
tirely different. We do not provide direct mechanisms fonstiuctingwrappers rather we
propose new constructs for ambient interaction in the giteémprovide easier-to-monitor
communications. Also, our form of communication is anonysiaand based on a notion
of locality which is absent in the Bor-Calculus. Finally Boxrdoes not consider mobility
which is a fundamental component of this work.

In [Hennessy and Riely 2002b] Hennessy and Riely developa system for access
control in the Decalculus, a distributed variant ofcalculus where processes are located,
and may migrate across locations. ImZommunication occurs via named channels that
are associated with read and write capabilities: the tygeesy controls that each process
reading or writing on a channel possesses the appropriptdbddy. A similar technique is
adopted by De Nicolat. al.in [De Nicola et al. 2000] for KLAIM, a distributed language
based on a variant of Linda with multiple “tuple spaces”. Thain difference with our
approach lies in the topological structure aftland KLAIM) locations and Boxed Am-
bient processes. Inthe topology of locations is completely flat, while in BA arabts
may be nested at will: the interplay between the dynamidmgstructure determined by
moves, and the dynamic binding of the parent locatiéor upward communication makes
access control for BA more complex. In [Riely and Henness§9]9the type system for
Drtis extended to cope withartially typed networksin which some of the agents (and/or
locations) are untyped, hence untrusted: type safety fon setworks requires a form of
dynamic type checking. We discuss our plans towards su@mnsixin in Section 12.

Our approach is also related to the work by Hennessy and Rielthe security T
calculus[Hennessy and Riely 2002a], a variant of tieealculus in which processes are
syntactically defined as running at a given security levelBA, instead, we assume that
the security levels are specified by types, and the clearaseeciated with an ambient-
type represents the clearance of resources and the pram@ssned in ambients with that
ambient. Besides access control, in [Hennessy and Rielg2#l@be authors also conduct
an analysis of information flow, and develop a type systerhghavides static guarantees
of non-interferencedefined in terms of testing equivalence. Our current acceasol
type system does not provide such guarantees: it only enthaestatic detection of access
violations, and of certain forms of implicit flows via hiddehannels. We investigate a-
type based analysis of information flow in Boxed Ambients itoanpanion paper [Crafa
et al. 2002], where we develop static type system for nonfiettence.

Our type systems for BA are clearly related to other work ontoal and data flow anal-
ysis [Bugliesi and Castagna 2001; Nielson et al. 1999; Nreklsnd Nielson 2000], and
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typing system for Mobile Ambients. In [Cardelli and Gordo®9Bb] types guarantees ab-
sence of type confusion for communications. The type systefijCardelli et al. 1999]
and [Zimmer 2000] provide control over ambients moves aneham. Furthermore, the
introduction ofgroup names [Cardelli et al. 2000] and the possibility of creatiresh
groups, give flexible ways to statically prevent unwantezpagation of names. The pow-
erful type discipline for Safe Ambients, presented in [Land Sangiorgi 2000], adds finer
control over ambient interactions and removegadlve interferenceresulting from non-
deterministic choices between logically incompatibleemttions. All those approaches
are orthogonal to the access control issue we studied. Vievbahat similar typing dis-
ciplines as well as the use of group names, can be adaptedxedBambients to obtain
similar strong results. A paper more directly related tosoigr[Dezani-Ciancaglini and
Salvo 2000], where ambient types were associated with aigetavel, having a crucial
role in secure interactions. The difference is that in [éZ2iancaglini and Salvo 2000]
the security checks are performed upon ambient opening aveésnwhile in our work we
focus on read and write operations.

A final mention goes to Merro and Sassone’s recent paper oedAmbients [Merro
and Sassone 2002], in which they provide BA with a novel andgrful type system that
combines a rich notion of value subtyping with mobility tgpeThe former is based on
read/write exchange types, the latter draws on the noti@mifient groups from [Cardelli
et al. 2000]. In addition, they study the use of co-capaédiin BA as a means to express
explicit permission to access ambients. As noted by thecasithheir typing technique
appears orthogonal, hence fully compatible with our systémoded types. We have not
yet investigated the possibility of integrating the twotsys by incorporating our access
control types. Plan for future include work in that directio

12. CONCLUSIONS

We have presented BA, a novel ambient-based process caloulthich ambients cannot
be opened, and new primitives provide for a controlled fornvalue exchange across
ambient boundaries, between parent and child. The desigimeotalculus is motivated
by security concerns. Removing theen capability ensures that the code of untrusted
agents will never mingle freely within trusted ambients &edce reduces the potential of
security threats. The new communication primitives, imfalow more concise encodings
of several programming examples, while at the same timeigirgy more effective means
for access control. We have developed two semantics fordlmilus, and studied their
inter-relationships as well as their respective relatmsvith Mobile Ambients. Arguably,
the synchronous semantics is not adequate for distribudetpatations. Nevertheless, it
is useful as it motivates the design of the moded typing systdich, in turn, provides
insight into how the asynchronous reductions can be cordbiith a flexible typing of
communication and ambient mobility.

We have complemented the definition of the calculus with dystf different type sys-
tems. In particular, we have developed a sound type systeaté@ass control in multilevel
security, that combines static guarantees of safety forge® interaction, with the static
detection of any malicious or accidental violations of theehded security policy.

There are several aspects relative to the type theory of Béjta computational properties
that deserve to be explored. We conclude our presentatiatidoyissing some of these
aspects below.
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12.1 Typing

As other ambient-based calculi, BA suffers from a certacklaf flexibility in the typ-
ing of value exchange. In particular, the type of a boxed amibis the union of all of
the potential interactions that ambient may engage. Somesfof dynamic typing could
be appealed to address this limitation. On the other hanel,sbould notice that boxed
ambients have communication capabilities richer thandfambvertised in their types. In
particular, a boxed ambient may use sub-ambients to haddotions of different types us-
ing downward communication. In fact, we have shown that olécan be encoded in the
calculus: in the implementation of a programming languaaged on BA, channels would
clearly need to be made primitive, as done in the Seal ca¢calnd its implementations
[Bryce and Vitek 2001].

A possible extension of our type system would be to enrichcimeent structure of
ambient types with a further component for downward comrmation. This would be
useful, for instance, to limit the power of an enclosing aaniion its sub-ambients. We
believe this to be a viable option, that could be incorpatateour type system with no
fundamental difficulty. On the other hand, this usage of $ypentrasts with our current
interpretation of ambient types as interfaces, which dbearvhat the context sees of an
ambient. In addition, an ambient can protect itself froneitglosing context by relying on
term-level constructs (by wrapping ambients or hidingitha@imes).

A more serious limitation of the current access control tggsetem of BA is that it
assumes a centralized form of typing, where all the compisneha system are type-
checked under the same ‘global’ assumptions on the typesmkr. We are currently
investigating two ways to overcome this limitation. Oneusioin is to rely on forms of
dynamic typing, as it is done in other type systems for Mofflafe) Ambients [Bugliesi
and Castagna 2001], and other calculi [Riely and Hennes89;18e Nicola et al. 2000].
Specifically, as in [Bugliesi and Castagna 2001], the idea idefine a typed variant of
BA in which each ambient carries a type environment, to be éisestatic, andocal type
checking. To ensure type soundness, static typing mustite@mmplemented by a form
of just-in-time type checking taking place an ambient cessa boundary, to ensure the
consistency of the local type assumptions of the moving hadarget ambients.

An alternative solution is to introduce new primitives, ed®n cryptography, to protect
trusted (i.e. typed) migrating agents against the untcusites they traverse, and to rely
on a type system that separates trusted and untrusted aadwhbitk allowing safe inter-
actions with untrusted sites. Work in this direction hasrbastiated in [Bugliesi et al.
2002]

12.2 Semantics and implementation

The implementation of BA poses some new interesting probl€dm one side, the absence
of open simplifies the problem with respect to MA. In current implemtegions of Mobile
Ambients [Sangiorgi and A. 2001; Fournet et al. 2000], theropg of an ambient is a
rather complex operation that transforms the opened arhbiema forwarder for all the
synchronization requests from the ambient’s parent andmem. No such mechanism is
required for BA.

On the other side, the semantics of communication poses mpleientation chal-
lenges, which result from the inherent nondeterminism esyinchronization of the local
input/output operation in BA. In particular, with the cunteeductions (both synchronous
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and asynchronous), an outp{N) may nondeterministically synchronize with an input
from from the parent, or from a child, or from a (local) sildiprocess. This semantics
has a strong motivation in our design, namely it enforcesrtterpretation of anonymous
channels as resources locatesideambients: indeed, our very definition of access control
relies on this interpretation.

One could devise different reductions, such as those deffiakx.

(x)"Pn[(M)!Q|R] — P{x:=M}|n[Q|R]
(M)"P [ n[(X)'Q|R] — P[n[Q{x:=M} |R]

These reduction yield a semantics which is similar to thapaed in [Castagna et al. 2001]
for the Seal Calculus, and is based on the idea that each antbimes equipped with two
mutually non-interfering channels, respectively for lbaad upward communications. Hi-
erarchical communication, whose rules are shown abovadisated by a pair of distinct

constructors, simultaneously on input and output, so tbataommunication interference
is possible. The upward channel can be thought of as a gatestexeen parent and child,
located at the child’s and traveling with it, and poses ndipalar implementation chal-

lenges.

One problem with adopting this semantics for BA, is that#uiés in a poorly expressive
calculus. For instance, it would not be possible to encodédim of message broadcasting
implemented by the following terna[! (M) ]. Hereais as an “information site” which any
ambient can enter to get a copyMf(reading it from upward, after having enterad The
same protocol could hardly be expressed with the reductioven above, as they require
an ambient to know the names of its children in order to cominata with them. We can
recover expressiveness, as suggested in [Bugliesi et @2]2By introducing co-actions
of the formcoin(x) having the effect of binding the name of an incoming ambierthe
variablex. Using this form of co-actions, we can program the informasite as follows:
a[! coin(x).(M)X], and have clients be codedeisn a(x)'P].

When it comes to access control, however, this encodingpislematic as it exchanges
the roles of readers and writers. In the initial example ihis client that reads from the
server; in its coding, it is the server that writes to themieThus, while the new reduc-
tions would simplify the implementation, they would alsodermine our access control
framework.

A solution we are currently investigating is to adopt theragyonous semantics, as
defined in Section 8, and implement it with reductions suchhase displayed above.
A similar study has been conducted for the synchronous stesanf BA in the recent
paper [Bugliesi et al. 2002]. That paper provides a partéitson based on the use of a
(mixed) guarded-choice operator, which in turn requiresrapglex (cf. [Nestmann 2000])
form distributed consensus to capture the desired syn&tations. It appears that a more
satisfactory implementation is possible for the asynchusnsemantics of BA, as in that
we could rely on a more treatable form of choice, based on putinhoice operator. Our
plans of future research include work in that direction.
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A. TYPING RULES

We list the complete set of rules for the type systems desdrib Sections 5, 7, and 9.
In order to have a more compact set of rules, we Hisé¢o denote any of the exchanges
AF,*F,°F, and us€’F to denote eithefF or F. Similarly we useAmb’[E,F,.«/] to de-
note eitherAmb[E,F,.«7] or Amb°[E,F,.2/]. The use of such shorthands make it possible
to express the rules of § 5, 8 7 as instances of the rules Istulv: specifically, the
type system of § 7 derives by erasing security levels andssat®des, and the system of
§ 5 from further erasing all rules that involve non-empty ras@n the types, and moded
judgements.

A.1 Good Environments and Expressions

(EMPTY) (VAR) (NAME) (PROJECTION
MN-o x¢Dom() Mo ngDomT) rM)=W TFo
ko FXx:Wko rn:Wto r=M:w
(IN) (OurT)
F=M:pAmb’[E,F, 8] #(c,p,«/) G<E F+M:0AmbE,F,. %] G<F, & <%
IkinM:oCap[G,</] Ik out M: pCap[G, <]
(PATH) (OuT o)
=Mj:0CaplE, ] T'FMz:oCaplE, o] I'FM:oAmb°[E,F, 4]
I+ M1.M; : 6CaplE, /] I+ out M : pCaplshh, /]
(PoLY PATH) (PoLYCAP)
I toM; : pCap[F,.«/] T oM, :0CaplE, % I'+M:0CaplE, o]
I toMy.My : 6Cap[E, %] I toM : oCap[E, #|

A.2 Good Processes

(PREFIX) (PREFIX 0)

I'-M:oCap[F,&] T tgP:ProlE,F, o] I'teM:pCap|G, %] T s P: ProlE,°F, ]
kg M.P: ProlE,F, ] kg M.P:Pro[E,°F, ]

(PREFIX A) (PREFIX o)

IteM:oCap[F,o7] I F¢P:Pro[E,*F ] IFM:oCap[F,/] TFgP:Pro[E,*F, o]
ko M.P:Pro[E,°F, | ko M.P:Pro[E,*F, <]

(PAR) (PAR )

Mo P:Pro[E,F,.«] TtgQ:ProlE,F o] ko P:ProlE,*F.&/] k4 Q:ProlE,*F, |
MtoP|Q:ProlE.F, ] Mo P|Q.Q|P:ProlE,F, o]

(DEAD) (NEW) (REPL®) (RePL)

Mo rn:pAmb’[E,FlFoP:T o P:ProlE,*F,.</] ko P:ProlE,F,o]

MFe0:T  [hg(vn:pAmb’E,F])P:T  THo!P:Pro[E,*F,&/] T o!P:Pro[E,F, ]
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(AmB) (SUBSUMPTION)
lFa:0cAmb[E,F,&/] T+qP:ProlE,F ] Z(0,p,&) MkeP:T TLT
+pa[P] : Pro[F,*H, %] MkeP:T!
(AMB A)

FFa:0Amb°[E.F,o/] ThoP:Pro[E,*F.o/] 2(0.p,)

I ko a[P] : Pro[F,"H, %

(AMB o)
Mta:ocAmb°[E,F,&/] T +gP:ProlE,°F, o]

I Fpa[P] : Pro[G,*H, %]

In the input rules below, we make the usual assumption th&tHfxy, ... xx thenW =
W x -+ x W, and we use the notatidn X : W as a shorthand fdr,xq : Wi, ... X : Wk.

(INPUT%) (OuTPUTx)

FX:WkgP:ProW,’F | FEM :W T g P:ProW x --- x W, °F, <]

I (X:W)P: ProlW,F, &/ Mo (M1,...,M)P: ProWy x --- x W, °F, 7]
(INPUTM)

MX:WhkgP:Pro[EMF, o] THM: pAmb?[W,G.,,@] P(0,p,r)

Mo (R:W)MP: Pro[E MF, 7]

(OuTPUTM)
FTENG:W THoP:ProlEMF /] THM:pAmb? Wy x - x W, G, %] 2(0,p,w)

M Fo (N1, ... ,NOMP: Pro[E *F, o]

(INPUTT) (INPUTT A)
F%:WhkgP:ProfFW,&] <o M%:WhkoP:ProfF,°W, o] r <o
I (%: W)'P: Pro[F,W, ] ko (X2 W)'P: Pro[F, *W, /]

(OuTPUTY)

FEMicW T g P:ProlF,Wo x - x W, ] w <./

M Fo (M1,..., M) P Pro[F,Wp x -+ x W, o]

(OuTPUTT A)
F=Mi:W TEgP:ProfF, A (Wox - x W), o] w<&

M Fo (M1,..., M) TP Pro[F,2 (Wy x - x W), /]

For the asynchronous calculus we need two additional rolegrbcesses forms:

(ASYNCHOUTPUT)
M=Mi:W

M hg (M1, M) : ProWy x - x Wk, °F, 7]
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(ASYNCHOUTPUTM)
FENGCW T EM:pAmb? W x - x W, G, %]  2(0,p.w)

Mo (Ng,...,NOM 2 Pro[E,*F, <]

B. PROOFS OF SUBJECT REDUCTION AND TYPE SOUNDNESS

The existence of multiple typing rules for the same syntdctim causes a proliferation of
typing derivations for the same judgment. The following teenshows that we can focus
attention on derivations of more regular shape withoutriggjenerality.

LEMMA TYPING OF PROCESSES

Ambients.Assumel” -, a[P] : T. Then there exisE andF exchanges, and/ and %
access modes, such thab[E,*F, %] < T andl’ F, a[P] : Pro[E, *F, %] is derivable from
the following assumptions, whek andK are arbitrary exchanges:

(a1) eitherl Fa:oAmb[H,E, ], andl k¢ P: Pro[H,E, /] and #(0,p, <)
(ap) orT Fa:oAmb°[H,E,«], andl k¢ P: Pro[H,“E, ] and #(0,p, &)
(ag) orl a:ocAmb°[H,K, «] and 4 P: Pro[H,°K, ]

Parallel Composition.Assumel” -5 P | Q: T. Then there exisH andE (exchanges)
and.«7 (access mode) such that-¢ P | Q : Pro[E,’E, <] with Pro[E,’E, /] < T, and
the last judgment is derivable from the following assumpsio
(c1) if T <Pro[H,E, ] thenl kg P: TandlNkc Q: T
(cz) if T=Pro[H,°E, ] then eithell” -5 P: Pro[H,*E,./] andl -5 Q: Pro[H,°E, .«/],

orl g P:Pro[H,°E, /] andl’ 5 Q: Pro[H,*E, .«]

(cg) if T=Pro[H,*E,.«/] then eithef -5 P: Pro[H,"E, &] andl k¢ Q: Pro[H,“E,.«],
orl Fg P:Pro[H,*E, ]| T 5 Q: Pro[H,°E, &,

orelsel k¢ P: Pro[H,E, o/ andl' -4 Q: Pro[H,E, /]

Prefix. Assumerl ¢ M.P: T. Then there exisH and E exchanges, andy access
mode such thaf -5 M.P: Pro[H,’E, .«7] with Pro[H,’E,.«/] < T, and the last judgment
is derivable from the following assumptions, whésds any exchangeZ is any access
mode, ang any security level:

(p1) if T < Pro[H,E, «] thenl - M : oCap[E, /] andl ¢ P: T
(p2) if Pro[H,°E, /] < T thenl oM : pCap[G, #] andrl kg P : Pro[H,°E, /],
orl FoM : oCaplE, o] andl k¢ Q: Pro[H,*E, «].

Input. Assumel k4 (X: W)"P: T. Then there exisE, F, G, .7, andp such that:

(i1) if n=xthenl,X:W s P:ProW,’E, | <T

(i) if N =M thenl,&: W k5 P: Pro[EMF,.&7] < T, T - M : pAmb’|W, G, 7], and
P(0,p,r).

(i3) if n=1thenl X:WtqsP:Pro[EW, ] < T,
or,X:W kg P:ProlE, "W, o] < T, withr < &
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Output. Assumd kg (M1,...,Mk)"P: T. Then there exisE, F, G, W, ..., W, <7, and
p such that:

(01) if N =x%thenl FgP:ProW x --- x W, ’E, 7] < T andl" - M; : W,.

(02) if N =Nthenl 4 P:Pro[E*F,.o7] < T,T N :pAmb? Wi x --- x W, G, 27], and
I+ M;: W, with Z(0,p,w)

(03) if n=1thenl kg P:Pro[E;Wy x --- x W, 7] < T,
orl ko P:Pro[E, (W x --- x W), /] < T, with T = M; : W andw < .«7.

PROOF We need to show that we have captured all the possible cases.

Ambients.The judgment +, a[P] : T must have been derived by an application of one
of the (AmB) rules followed by any number of subsumption steps. An inpe of the
typing rules for ambients proves the claim.

Parallel Composition.The first part of is obvious, the second part is proved asidlo

(c1). T < Pro[H,E, ¢7] covers two casest = Pro[H,*E, /] or T = Pro[H,E,.«]. In
the first casel kg P | Q: T must be derived by @R o) from I -5 P : Pro|H',*E, &/|
andrl’ 5 Q: Pro[H',*E, «/], with H' < H, followed by one or more subsumption steps.
Thusl kg P: Pro[H,°E, <] andl' k¢ Q: Pro[H,*E, «7] are also derivable, and from these
judgments one derives thie-g P | Q: Pro[H,°E, /] by (PAR e).

In the second casé€, g P | Q: T must have been derived either from the judgements
It P:Pro[H’,*E, /] andl' -5 Q: Pro[H’,*E, &/] by (PAR ) followed by subsumption
(with H' < H), or from the judgementS 4 P : Pro[H',E, .&/] andrl 4 Q: Pro[H’.E,.&/],
by (Par) again followed by subsumption. In both cafés; P: Pro[H,E, &/] andl 5 Q:
Pro[H,E, «7] are derivable. From these judgments one deriveg P | Q: Pro[H,E, &/]
by (PAR).

(c2). T =6 P| Q: T may have been derived fromtg P | Q : Pro[H’,*E, .«/], by sub-
sumption withH’ < H, and with and™ 4 P | Q: Pro[H’,*E, .«] derived by (RR e) from
kg P:Pro[H',*E, <] andl 4 Q: Pro[H’,*E,.«7]. From the last two judgments, by
subsumption, one derivés-4 P : Pro[H,*E, <] andl 5 Q: Pro[H,°E, &/, from which
6P| Q:T derives by (RR o).

The only other possibility is thdt -5 P | Q: T has been derived by &R o) from the
judgement$ g P: Pro[H',*E, «/] andl -5 Q: Pro[H’,°E, ], or from the judgements
Itg P:Pro[H,°E, &] andl k4 Q: Pro[H',*E,.«/] (with H" < H) followed by one or
more subsumption steps. As in the previous cases, the prthofvé by observing that the
subsumption steps can be permuted up to the premises ofaRecjRule.

(c3). T F6 P | Q: T may have been derived fromtg P : Pro[H",E, /] andl" k5 Q:
Pro[H',E, ] by (PAR), for H' < H, followed by one or more subsumption steps. From
these two judgments, by subsumption one derivés; P : Pro[H,E,&/] andl k5 Q:
Pro[H,E, «7]. Then the desired judgment derives by} followed by subsumption.

Otherwise,l k¢ P | Q: T must have been derived byAR p € {e,0,A}) from the
judgements$ kg P: Pro[H’ ME, .«/] andl k4 Q: Pro[H',*E,.<7], or from the judgements
g P:Pro[H',*E, «] andl 5 Q: Pro[H’ ME, «7], with H' < H, followed by one or more
subsumption steps. In all these cases, by subsumptiongoivesl” -5 P: Pro[H,“E, &/
andl ¢ Q: Pro[H,°E, &), or T ¢ P : Pro[H,*E, .«] andl k4 Q: Pro[H,*E, «/]. The
the judgement 5 P | Q: Pro[H,“E, .| derives by (BRR A).
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Prefix:. The first part of the claim is obvious. For the second part; fibserve that the
rules for prefixes never derive types of the foPm[H, 2 E, «7]. Then, the proof follows by
an inspection of the typing rules for prefixes and by obsey¥ivat any subsumption step
based on a subtyping relation of the foRmo[H' E, /] < Pro[H,E, /] permutes with
each of the prefix rules.

Input/Output:. By an inspection of the typing rulesJ
A second lemma proves a useful property of upward silentgsses.

LEMMA UPWARD SILENT PROCESSESIf T 4 P: Pro[E,*H,.«] is derivable with
H = shh, thenl 5 P: Pro[E,*H, ..

PrROOF By induction on the derivation df - P : Pro[E, “H, &7, and observing tha&
may not have either of the forni&: W)'Q and(Mg,...,My)' Q.

LEMMA in MOVES PRESERVE TYPES If I a[inb.P| Q] | b[R] : T is derivable,
thensoid Fob[a[P | Q] |R] : T.

PrROOF By Lemma B.1, the judgment in the hypothesis must have begwed from
I p B[R] : Pro[E,*F, </] andl" -, a[in b.P | Q] : Pro[E,*F, /], for suitableE andF
exchanges and’ access mode such thBto[E,*F, o] < T . We first show that” -,
b[a[P| Q] | R] : Pro[E,*F, /] is derivable.

The proof is a case analysis of the possible types of theeuhstofa[in b.P | Q] and
b[R], guided by Lemma B.1. From -, b[R] : Pro[E,*F, /], we know thatl" - b :
TAmb?[l,L, %] andl F R: Pro[l, L, %] for any exchange typk and suitabler, L and
2. Now we look a@a]in b.P | Q] and the possible types of its components, as informed by
Lemma B.1, and show that-; a[P | Q] : Pro[l,*J, %] for everyd.

By Lemma B.1, we finde’ < E such thaf F, afin b.P | Q] : Pro[E',*F, .«] is derivable
by any of the sets of assumptions defined by cdags— (az). We next consider those
cases.

(a1) Inthis casd F a:ocAmb[H,E’, %], andl g in b.P | Q: Pro[H,E’, %] (in fact, we
also have#(o,p, %), but we may disregard this hypothesis, as it follows by treopr
below). LetT = Pro[H,E’, %]: by (c1) we know thaf Fgin b.P: T andln;Q: T, and
by (p1) thatl' Fin b: oCap[E',¢] andl’ -5 P: T. From the former judgment and from
I - b:tAmb?[I,J, 4], an inspection of the rulex) shows thaE’ < | and #(0,1,%).
Froml g P: T and fromll' ¢ Q: T, one had ks P | Q: T by (ParR). From the
last judgment and frorfi - a: cAmb[H,E’, %] and #(0,T1,%), by (AMB), one derives
It:aP| Q] :ProlE,*J,%]. Thenl - a[P|Q] : Pro[l,*J, %] by subsumption, as
desired.

(a2) Inthis casd -a:cAmb°[H,E’,¢] andl g in b.P| Q: Pro[H,“E’,¢]. By Lemma
B.1 we can assume thBttg in b.P | Q: Pro[H,“E’, %] derives from the three sets of
assumptions defined by ca&®s), which we consider below.

(c31) T Fgin b.P:Pro[H,*E’,%] andl ¢ Q: Pro[H,*E’,¢]. FromT Fgin b.P:
Pro[H,*E’, %], by (p1) we havel k5 P: Pro[H,*E’,¢] andl - in b: aCap[E’,¥].
From the last judgment, and the typingloén inspection of the rulax) shows that
E' <l and 2(0,1,%). FromT 4 P: Pro[H,*E’, %] andl k5 Q : Pro[H,*E', %]
one derive§ 5P| Q: Pro[H,*E’, %] by (PAR A). From the last judgment and from
I+ a:oAmb°[H,E',¢] and #(0,1,%), one derives - a[P | Q] : Pro[E’,*J, #]
by (AmB #). Now, T g a[P | Q] : Prol[l,*J, 4] derives by subsumption.
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(c32) T Fgin b.P: Pro[H,2E',%¥] andl k5 Q: Pro[H,*E’,¢]. By Lemma B.1, we

may assume thdt 4 in b.P: Pro[H,“E’, %] has been derived from the two sets of
assumptions defined by cag®). First observe that for all exchangEsand access
modes?’, I' Fein b: aCap[F, €] impliesT | in b: aCap[F,%¢]. Then we can reason
as follows.
In (p21), one had™ | in b: 6Cap[G, 2] andT 4 P : Pro[H,°E’, %], with no con-
straint on the relationship between the exchan@esnd E’, the access modes
and 2, and the security levels ando. FromT +g P : Pro[H,°E’',%¢] andT kg
Q : Pro[H,*E’,¥], one has k¢ P | Q: Pro[H,°E’,%¢] by (PAR o). Then,I F
a[P | Q] : Pro[l,*J, 4] derives directly by (MB o) fromT k¢ P | Q: Pro[H,°E’, %]
andl - a: cAmb°[H,E’,¥].

In (p22) one has Finb:oCaplE',¢] andl ¢ P: Pro[H,“E’,¥]. From the former
judgment, an inspection of the rulen] shows thatE’ < | and £(0,1,%). From
Itg P: Pro[H,*E’', %] and froml 5 Q: Pro[H,*E’,¢], one derive§ ;P | Q:
Pro[H,“E’, %] by (PR A), and ther k¢ a[P | Q] : Pro[l,*J, %] by (AmB *), which
is applicable since?(0,1,%), followed by subsumption.

(c33) T Fgin b.P: Pro[H,E’, %] andl -5 Q : Pro[H,E’,%¢]. This case is similar to
the casga;) proved above, with the difference that naws a pilot ambient. Rea-
soning as in that case, one derifesqs P | Q: Pro[H,E’, %], and them ;P | Q:
Pro[H,“E’, %] by subsumption, foE’ < | and £(0,1,%). Now, from the last judg-
ment and fronT - a: cAmb°[H,E’,¢] and #(0,1,%) we derivel - a[P| Q] :
Pro[E’,*J, %] by (AMB A) and then, by subsumptidn-; a[P | Q] : Pro[l,*J, 4.

(ag) Inthis casd F a:ocAmb°[H,K,%] andl g in b.P | Q: Pro[H,°K,%]. By Lemma

B.1 we can assume thBtrg in b.P | Q: Pro[H,°K, %] has been derived from the two

pairs of assumptions defined by cdsg), which we consider below.

(c21) T Fginb.P:Pro[H,*K, €] andl 5 Q: Pro[H,°K,%]. By (p1) we know thaf” +
inb:oCap[K, %] andl k4 P: Pro[H,*K,%]. Now, froml" -5 P: Pro[H,*K,%] and
INt6Q:Pro[H,°K,%] one derive$ k5 P | Q: Pro[H,°K, %] by (PaR o). Now, from
the last judgmentand+ a: Amb°[H,K, %], one derive$ F: a[P | Q] : Pro]l,*J, #]
directly by (AMB o).

(C22) Tkginb.P:Pro[H,°K, %] andl 5 Q: Pro[H,*K,%]. The proof further splits
in the two subcases defined lgg,) and proceeds as in cage;2) above, withE’
replaced byK.

From the previous analysis we halie-; a[P | Q] : Pro[l,*J, 4] for any J. From the
hypothesis, we had inferred that- R : Prol,?L, %], for a suitableL. Choosing) = L,

by the appropriate (& ?) rule, we then deriv€ F: R | a[P| Q] : Pro[l,’L,%]. From
the last judgment and frorfi - b : TAmb?[I,L, %] we conclude -, b[R|a[P | Q]] :
Pro[E,*F, <] using the appropriate (M8 ?) rule (the same rule used in the derivation of
o B[R] : Pro[E,*F,«/]). O

LEMMA out MOVES PRESERVE TYPESIf T Fpa[blouta.P| Q] | R] : T is derivable,
thensoid Fob[P| Q] |a[R] : T.

PrROOF By Lemma B.1, there exidE,F exchanges, and8 access mode such that
Pro[E,*F, %] < T and the judgment in the hypothesis must have been derivedlfre,
a[blouta.P| Q] | R] : Pro[E,*F, #]. This implies thal” -, a[R] : Pro[E,*F, %] is also
derivable. To prove the lemma, we thus need to showiiltgt b[P | Q] : Pro[E,*F, #)].
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We distinguish two cases, depending on the typa,afamely:I" - a: TAmb’[l,E, %],
orl-a: tAmb°[l,K, %] for some exchangdsandK, security levelt and access mode
% (note that Lemma B.1 ensures tlatan be chosen so thathas the indicated types).
For each of the two cases, we lookkgbut a.P | Q] | Rand at the possible types of its
components, as informed by Lemma B.1.

Casel I-a: TAmb?[I,E,%]. Froml ,a[blout a.P | Q] | R] : Pro[E,*F, <], by Lem-
maB.1 (a;) and(ap)) it follows that 2 (1,p, %) andl - bjout a.P | Q] | R: Pro[l ME, %]
for anyl, andu either absent or equal to.

Now, by two applications of Lemma B.1 (to the parallel conipos, and then to the
process in ambient form), it follows that there exists< | such thaf” ¢ bjout a.P | Q] :
Pro[H,*E,¥] is derivable by any of the three sets of assumptions definexhbgqa;) —
(az). We consider those cases below.

(a1) Inthis casd - b:0Amb[L,H,.«/], andl Fgouta.P | Q: T with T = Pro[L,H, /]
and#(o,1,4). By (c1) we know that” g out a.P: T andl' k¢ Q: T. From the first
judgment, by(ps1), one had I out a: oCap[H, /] andl -5 P: T. An inspection of
the typing rules shows thatl out a: oCap[H, «/] must have been derived by the rule
(OuT). Then the typing ok s, in fact,l - a: TAmb[H,E, %], and furthermoréd < E
and« < %. SinceZ is stable, by assumption, from? (1,p,%) and« < % we have
Z(1,p,4): this, together with?? (0,1, &), implies# (o, p, ). Now, froml g P: T
andl+6 Q: T one had +¢ P | Q: T by (Par), and from this judgment and from
I'Fb:oAmb[L,H, /] one derives -, b[P | Q] : Pro[H,*F, %] by (AmB).

Thenl™ F, b[P | Q] : Pro[E,*F, %] derives by subsumption, given that< E.

(a2) In this casel’ F b: 6Amb°[L,H, /] andl kg out a.P | Q: Pro[L,*H, /], with
Z(0,1,47). By Lemma B.1 we can assume tHat-g out a.P | Q: Pro[L,*H, /]
derives from one of the three sets of assumptions defined &y(cg). We consider
these cases below.

(c31) T FgoutaP:Pro[L,*H, o] andl 5 Q: Pro[L,*H, «7]. FromTl Fsout a.P:
Pro[L,*H, 7], by (p1) we havel 5 P: Pro[L,*H, /] andl I- out a: 0Cap[H,.«/],
with the last judgment derived by the ruleT). Thus the typing oA must bd™ F a:
TAmbll,E,¥], and moreoveH < E and.«” < ¥. Reasoning as in case;) above,
it follows that #2(o,p, 7). From[ 5 P: Pro[L,*H,&/] andl" 5 Q: Pro[L,*H, .&]
one derive§ 5P| Q: Pro[L,%*H,&] by (PAR A). From the last judgment and from
I+ b:oAmb°[L,H,.«/], one derives by (AB *) I -, b[P | Q] : Pro[H,*J, %] for
anyJ and thus, in particular, fo = F. Now, " ko b[P | Q] : Pro[E,*F, %] derives
by subsumption, ad < E.

(c32) T Fgouta.P:ProlL,“H, /] andl 5 Q: Pro[L,*H, </]. By Lemma B.1, we
may assume thdtt out a.P: Pro[L, “H, <] has been derived from the two pairs of
assumptions defined by cag®).

In (p2.1), one had toout a: 6Cap|G, 2] andl ¢ P : Pro[L,°H, ¢/], with G any
exchangeZ any access mode, aaany security level. From ¢ P: Pro[L,°H, «7]
and Froml" 5 Q: Pro[L,*H, .<7] one derive§ k¢ P | Q: Pro[L,°H, <] by (PAR o).
Then, we derivé -, b[P | Q] : Pro[E, *F, 4] directly by (AmB o).

In (p22), one hag Feout a: oCap[H,.«7] andl ¢ P: Pro[L,%H, &7].

If the typing ofais I - a: TAmbl[l,E, %], thenl” Foout a: oCap[H, /] must have
been derived froni F out a: oCap[H, 7], which implies thaH < E and&/ < %.
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Reasoning as in cagey), it follows again that#(o,p, «/). Then, froml 45 P :
Pro[L,“H, <] andl 5 Q: Pro[L,*H, <] one derived 5 P | Q: Pro[L,*H, <]
by (PaR A). From this last judgment and fromt b: cAmb°[L,H, /], one derives
o b[P| Q] : [E,*F, %] by (AMB A) and subsumption withl < E.

Instead, if the typing ok is I + a: cAmb°[H,E, «/] thenl toout a: aCap[H, &
impliesH = shh. But then, from the hypothesistg P : Pro[L,*H,.«/], by Lemma
B.2, it follows that alsol’ k¢ P : Pro[L,°H,.«/] is derivable. Therl k¢ P | Q:
Pro[L,°H,.«7] is derivable by (RR o). Now I F, b[P | Q] : Pro[H,*F, #] derives
by (AmB o), andl" -, b[P | Q] : Pro[E,*F, %] by subsumption.

(ca3) I'kFgouta.P:ProlL,H,o] andl 5 Q: Pro[L,H, &/]. This case has the same
hypothesis as the caéa ) above, save thditis typed as a pilot ambient. Reasoning as
in that case, one derivés-q P | Q: Pro[L,H, /], and therf 5P| Q:Pro[L,*H, ]
by subsumption, withd < E. The proof proceeds as {@a;): only, it uses (MB A)
instead of (AvB).

(ag) Inthiscasd Fb:oAmb°[L,K, ] andl Fgouta.P| Q: Pro[L,°K,.«/]. By Lemma
B.1 we can assume thBt-5 out a.P | Q: Pro[L,°K, «7] has been derived from any of
the two sets of assumptions defined by c@se, which we consider below.

(c21) T Fgouta.P:Pro[L,*K, /] andl’ -5 Q: Pro[L,°K, «7]. By (p1) we know that
ko P:ProlL,*K,«]. Froml k4 P: Pro|L,*K,.«] andl 4 Q : Pro[L,°K <] one
derivesl ¢ P | Q: Pro[L,°K, 7] by (PAR o). From the last judgment and from
IFb:oAmb°[L,K, /], one derives -, b[P | Q] : Pro[E,*F, ] directly by (AmB
o).

(C22) T Fgouta.P:Pro[L,°K,.«’] andl' k¢ Q: Pro|L,*K, «7]. The proof further splits
in the two subcases defined fy2) and proceeds as in cases;,) above, withH
replaced byK.

Casel Fa:tTAmb°[I,K,.«7]. Froml -, a[b[out a.P | Q] | R] : Pro[E,*F, «/], by Lem-
ma B.1(a1) and(az), and then(c;) — (c3), it follows that there exist$él < | such that
I ¢ blout a.P | Q] : Pro[H,*K, 7] is derivable by any of the three sets of assumptions
defined by case®;) — (a3). We consider those cases below: as we shall see, most of them
are vacuous, given the typing afas a pilot ambient.

(a1) In this casel” b : cAmb[L,H,.«/] andl g out a.P | Q: Pro[L,H,.«7]. This is
one of the vacuous cases. To see that, notelthat out a.P | Q: Pro[L,H, &/] im-
plies, by(c1) and (p1), thatl' F out a: oCap[H, /] is derivable. An inspection of
the typing rules shows that this is not possible, as we anently assuming that +
a: cAmb°[H,K,.<7], and hence the only derivable judgmentsdot a are of the form
I Foout a: oCap[shh,.<7] for some moder .

(a2) Inthiscasd b:0Amb°[L,H, <] andl Fgouta.P | Q: Pro[L,*H,.«]. By Lemma
B.1 we can assume thBt-5 out a.P | Q: Pro[L,%H, /] derives from any of the three
sets of assumptions defined by césg. We consider these cases below.

In case(cs1) one had kg out a.P: Pro[L,*H, <] andl 5 Q : Pro[L,“H, &/]: this is
another vacuous case, for the reason given above. Simitarbe(cs3) is vacuous as
INkFgoutaP:Pro[lL,H, & andl ¢ Q: Pro[L,H, &].

In case(cz2), I Fg out a.P: Pro[L,“H,.«/] andl 5 Q: Pro[L,*H, «/]. By Lemma
B.1, we may assume thBt-, out a.P : Pro[L,“H, «7] has been derived from one of the
two pairs of assumptions defined by cépe).
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In (p21), one had toout a: 0Cap[G, Z] andl kg P: Pro[L,°H, «], for any G, 2,

ando. Froml 4 P: Pro]L,°H, /] and froml 5 Q: Pro[L,*H, /] one derives 4

P|Q:Pro[L,°H,&7] by (PR o). Then,I" -, b[P | Q] : Pro[E,*F, %] derives directly
by (AMB o).

In (p22), one had toout a: oCap[H,.«] andTl Fq P: Pro[L,“H,.«/]. The typing
of aandrl Feout a: oCap[H, .| imply thatH = shh. But then, from the hypothesis
I P:ProlL,%H, ], by Lemma B.2, it follows that alsb -4 P : Pro[L,°H, &] is
derivable. Now, k¢ P | Q: Pro[L,°H, 7] is derivable by (BR o), and thenl -,
b[P| Q] : Pro[E,*F, %] directly by (AMB o).

(ag) Inthis casd +b:oAmb°[L,J,«] andl 5 out a.P | Q: Pro[L,°J, «/]. By Lemma
B.1 we can assume that-g out a.P | Q: Pro[L,°J, &/]. has been derived from one of
the two pairs of assumptions defined by césg. Case(cz1) is vacuous, as it implies
IkgoutaP:ProL,*d, /] andl k¢ Q: Pro[L,°J, &].

In case(C2), [ Fgout a.P: Pro[L,°J,./] andl 4 Q: Pro[L,*J, «7]. The proof further
splits into the two subcases defined (pg), namely: (i) T Foout a: 0Cap[G, 2] and
It P:Pro[L,°Jd,«], and(ii) T Feout a: oCap[J,&] andl 4 P: Pro[L,%J,.«7]. In
the first subcase, the claim follows as in cdpe1) above, by a final application of
(AMB o). In the second] = shh and the claim follows as in cagp22). O

LEMMA TYPE ENVIRONMENTS. Letl" F?U : Z denote any of the judgmeniisoM :
W,TFM:Worl+sP:T.

(1) If T Fothenl o forevery[’ CT.

(2) If TH?U:Zthenrl Fo.

(3) If I,x:W,I"F?U :Zandx ¢ fn(U) thenl,[" U : Z.
(4) If I,F?U:Zandl,I"+othenl,I" -7 U : Z.

PrROOF By induction on the derivation of the first judgments in eatthe hypotheses.
LEMMA SUBSTITUTION.

(1) Assumd ,xg:Wi, ..., %Wk, I’ F?M:W. ForallNg,... Ny, if Vie {1...K} I, T+ N:W,
thenl”, I’ F? M{x := N; }:W.

(2) Assume X WA, ..., XcWk, ' o P T. ForallNg,... Ny, if Vie {1...k} I,I" F N :
W, thenl,I"" Fg P{x :=Ni} : T.

PrRoOOF The proofis by induction on the derivations of first judgrtssin the hypotheses
and a case analysis on the last applied rule. Most casesvfdilectly by the induction
hypothesis: we give a proof of the representative cases.

(1) (Projection) The hypothesis i ,x1: Wi, ..., x W, I’ =y :W. We have two cases
to consider. Ify = x for somei € {1...k}, then it must be the case that = W
and the claim follows from the hypothedisI’ F N; : W. If y & {xq,...,X}, from
FoxaWL . XeWe, T/ =yt W, by Lemma B.5.3 we havie, I’ -y : W. This concludes
the proof since sincg= y{x; := N }.

(In) The hypothesis i§,x1: W, ..., %W, " Fin M : 0Cap|G, 4], derived from the
judgment, x3: W, ..., Xk Wk, ' - M : pAmb?[F,E, /] with G < F and #(a,p, %).
By the induction hypothesis it follows that, ' - M{x := Ni} : pAmb’[F,E,.«/].
Then, the desired judgment derives by an application ofdke(iN).
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(2) (Prefix) The hypothesis i§,x1:W, ..., x W, " g M.P: Pro|E, F, &/, derived from
Moxg Wi, .. X W, T = Mz oCapl|F, 7] and froml xg : WA, ..., % : W, T Fg P
Pro[E,F,</]. By the induction hypothesid;,I" F M{x := Nj} : aCap[F, «/] and
I, ko P{x := N} : Pro[E,F, ] are both derivable. Then, the judgeménf’ -
M{x := Ni}.P{xi := Ni} : Pro[E,F, /] derives by (REFIX).

(New) The hypothesis i§,x;:Wi, ..., X Wk, I’ F¢ (Vy:pAmb?[E,F, o7])P: T, derived
from [, xg: WA, .., %W, T, y:pAmb?[E,F,.&7] ¢ P: T. By Lemma B.5.2, we have
MX0 W, - X Wk, T, y:pAmb?[E, F, @7 - o, hence thay ¢ {xy,...,x}. By the in-
duction hypothesis we have thatl” y:pAmb’[E,F, o] F¢ P{x := N;} : T. Now,
from the last judgment, by (Kw), one derives , I’ 4 (Vy:pAmb?[E,F,.&]) (P{x :=
Ni}) : T. This is the judgment we wished to derive,yag {xi,...,X,} implies that
(vy:pAmb?[E,F,&])(P{x := Ni}) = ((vy:pAmb’[E,F, &/])P){x := N }.

(Output N) The judgement in the hypothesisisxg:Wi, ..., %W, I Fo (M)NP :
T. By Lemma B.1(0) there existE, F, G, W, &/, andp such that the judge-
mentsl, X WA, ..., %Wk, T’ = N 2 pAmb? (W, G, 7], T, X3 WA, ..., Xk W, T/ - Mt W,
andl, xg W, ..., %W, ' Fo P: Pro[E,*F,.«7] < T are derivable and? (g, p,w) holds
true. By the induction hypothesig I’ - N{x; := Ni} : pAmb’|W, G, &/], andl", "’ I-
M{x := N} :W andl',l"" 5 P{x := Ni} : Pro[E,}F, 7] are all derivable. Then,
by (OutpPuT N) and subsumption one derives the desired judgriieht(M{x; :=
N INDE=NE P = N ) - T,

LEMMA SYNCHRONOUS EXCHANGE PRESERVES TYPES

(1) T kg (X : W, WP | (Mg, M)Q T, thenl g P{X :=M;} | Q: T

(2) IfI kg (X12W1,...,XkZV\4<)nP‘ n[(Ml,...,Mk)Q| R] ' T,
thenl Fo P{X% =M} |InN[Q|R] : T

(3) T kg (M1,...,MJP | N[(xg :Wa,...,x:W)'Q|R] : T,
thenl F P n[Q{xi:=Mi} |R] : T

4) kg (M,...,M)"P | n[(xg: Wi, ..., X WKQ|R] : T,
thenl Fo P | n[Q{x :=M;i} |R] : T

(5) T kg (X0 :Wa,... . X WP | n[(Mg,...,M)'Q|R] : T,
thenl Fo P{X% =M} |InN[Q|R] : T

PROOF We only give three cases as representative: 1 (local exehal (downward
input) and 5 (upward output). The remaining cases are hdrsitheilarly.

1.. By repeated applications of Lemma B.1 (on the parallel casitjpm, and then on
the component processes), it follows tlat Pro[W; x --- x W, ”F, «7], for some access
</, and exchange typ&. The judgment in the hypothesis must have been derived from
X i Wa, .o X Wk Fg P2 ProfWy x - - ><V\4<,?1F,427], fromTl kg M : W (i = 1..k) and
froml kg Q: Pro[Wy x - x W, 2 F, /| by arule AR ?,) whereh is either 1 or 2. From
the first two judgments, by Lemma B.6, we know tRats P{X := M;} : ProWj x --- x
W, F, o7]. Thenl g P{x := M;i} | Q: Pro[Wy x --- x W, F, .| derives directly by the
given (PAR %) rule.

2.. The judgment in the hypothesis must have been derived frenutlgements g
(X1 WA, .. WP T and T Fg n[(My,...,M)Q | R] : T” for appropriateT’ and
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T”. Let = be the (partial) derivation from these two judgments to thdgjment in the
hypothesis.

Fromrl kg (X1 : WA, ..., X : W)"P: T, by Lemma B.1i,) and subsumption, we know
thatl, X, Wy, ..., X Wk Fg P: T/, andl" - n: pAmb?[\Nl x -+ x Wk, E, o] for someE, p
and« (we also know that”? (o, p, r), but this is only useful in the proof of type soundness,
not here). We take the case whefh n: pAmb[W; x --- x W, E, 7] as representative: the
remaining cases are similar, as the reasoning only depentleedocal exchanges of the
processes involved in the reduction.

Froml Fg n[(M1,...,M)Q | R] : T” andl' F n: pAmb[Wj x --- x W, E, &/], by Lem-
ma B.1, we know that?(p, 0, &), and there must exi$t such thatPro[E,*F, o] < T”,
andl Fg n[(Mg,...,M)Q| R] : Pro[E,*F, @] derives froml" -5 (My,...,Mk)Q | R:
ProWj x --- x W, E, .«7]. From the last judgment, by Lemma B(d3), we know that
o R:ProWy x --- x W, E, /] andT +p (My,...,Mk)Q : Pro[Wy X --- x W, E, &7].
From the last judgment, by Lemma B(43), I - M; : W, and (by subsumption) algo-,
Q: Pro[Wy x --- x W, E, o7]. From this judgment anfl Fp R: Pro[Wy x --- x W, E, &]
we then derivel F, Q | R: Pro[W; x --- x W, E, ] by (PAR). From the last judg-
ment, froml" - n: pAmbWj x --- x W, E, /] and# (p, 0, &) one derive§ Fon[Q | R] :
Pro[E,*F, «/] by (AmB), and therl k¢ n[Q| R] : T” by subsumption.

Froml = M; : W andl,x; : WA, ..., Xk : Wk F¢ P : T’ which we had derived above, by
LemmaB.6J kg P{X :=M;}: T'. Finally, fromll' b P{x:=M;}:T'andl ks n[Q | R] :
T”, the judgment g P{x ;= M;} | n[Q| R] : T derives by the same steps usedin

5.. The judgment in the hypothesis must have been derived frenuttgement§ 4
(X1 :WA,... . X WP T/, andl Fg n[(Mg,...,M) Q| R] : T” for suitableT’ andT”. Let
= be the (partial) derivation from these two judgments to tldgjment in the hypothesis

From the first judgment, by Lemma B(ly,), there exist€E such thatPro[Wj x --- x
W, ’E, @] < T andlM, xg W, ..., Xk : Wk o P2 Pro[Wy x --- x W, °E, .&].

FromT g n[(My,...,M)'Q| R] : T and the judgment we just derived, by Lemma
B.1.(a1) — (ag), there existdH < W x --- x W such thatPro[H,*E, /] < T” andTl ¢
n[(Mg,...,M)'Q|R] : Pro[H,*E, ] is derived from either of the sets of hypotheses
defined by the case&;) and (ap). The case(az) may be dispensed with, as it im-
plies that a derivation exists for the judgmént-g (My,...,M)'Q | R: Pro[l,°K, %]
(for somel, K and %), while such derivation does not exist: if the judgment iregion
were derivable, then by Lemma B(t), eitherl kg (My,...,M)'Q : Pro[l,°K, %] or
Mo (My,...,M)'Q: Pro[l,*K, %], would be derivable, contradicting Lemma Bdg).

The caseda;) and(az) are similar: we prove the second, which is more complex,
and leave the first to the reader. The hypothesed aren : pAmb°[l,H, %] andl -,
(My,...,M)'Q | R: Pro[l,“H,%]. From the last judgment, by Lemma B(d;) (and
the reasoning we just made about céag), it follows thatl™ ko (My,...,M)'Q: T* is
derivable withT* such thatPro[l ,H,%] < T*. This, by Lemma B.103) implies that
H # shh: from this, sinceH <Wj x --- x W, it follows thatH =W x --- x W,. Lemma
B.1.(03) appliedtd Fp (Mg, ..., M)'Q: T* also implied” - M; : W andl’ FoQ:T*. Then
Mo Q| R:Pro[l,%H, %] derives by the same steps that derifee, (My,...,My) Q| R:
Pro[l,“H, %] fromT 5 (My,...,M)TQ: T~

Now fromI™ F M; : W and froml™, xg : Wi, ..., X : W o P2 Pro[Wj x - -- x Wk, ’E, 7],
which we had derived above, by Lemma B.6, we hBve; P{x := M;} : Pro[Wj x --- x
V\&,’-’E,%], and ther™ g P{x := M;} : T’ by subsumption. We are ready to conclude:
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from I Fn:pAmb°[l,H, %] andl I, Q | R: Pro[l,*H, %] we derivel ¢ n[Q | R] :
Pro[H,*E, «], and thed 5 n[Q | R] : T”. From the last judgment and frofrt- P{x; :=
Mi}: T’, one derive$ kg P{x :=M;} | n[Q | R] : T by the steps used i, O

LEMMA ASYNCHRONOUS EXCHANGE PRESERVES TYPES

(1) Tk (X : W, ... X WP | (Mg, ... M) : T, thenl Fg P{x :=M;}: T

(2) BTk (X : Wi, ... WP n[{Mq, ... M) | Q] : T,
thenl Fo P{X :=M;} |n[Q]: T
(3) T kg (Mg,...,M) | n[(Xe :WA,...,%:W)P| Q] : T,
thenl Fo N[P{x :=M;} | Q] : T
(4) T FoP|Nn[(My,....,M)'Q|R] : Tthenl Fg P | (Mg,...,M) | N[Q|R] : T
(5) If I kg (My,...,MQ™ [ n[Q] : T thenl ¢ n[(My,...,M() [ Q] : T

PrROOF The cases 1, 2 and 3 follow by the corresponding cases of leeBun, by
(i) choosing0 as the continuation of the output process, &myl observing that™ 4
(Mg,...,My) : T if and only if I g (My,...,M)0: T. In case 4 the proof is similar to
the corresponding case of Lemma B.7 (in fact, the proof igplm and follows without
appealing to Lemma B.6). Case 5 is left to the reader.

LEMMA SUBJECTCONGRUENCE

Q) frFgP: TandP=Qthenl 5 Q: T.
(2) fTFgP: TandQ=Pthenl 5 Q: T.

PROOF By simultaneous induction on the depths of the derivatadiis= Q andQ = P.

(1) Tk P: TandP=Qthenl -5 Q: T.

(Struct Refl) The hypothesis i® = P, and the proof follows directly from the as-

sumption” g P: T.

(Struct Symm) ThenP = Q derives fromQ =P. I 4 Q: T follows by induction

hypothesig?2).

(Struct Trans) ThenP = Q derives fromP = RandR = Q for someR. FromP =R

andl’ 4 P: T, by induction hypothesi€l) I' ¢ R: T. From the last judgment, and

from R= Q, again by induction hypothegi$) ' -5 Q: T.

(Struct Par Assoc)We prove this case as representativg$truct Par Dead) and

(Struct Par Comm). The hypothesests P | (Q|R): TandP| (Q|R) =(P|Q) |R

By Lemma B.1, there exig andF such thaPro[E,’F,«/] < T andl' s P| (Q|R):

Pro[E,°F, «/]. Also, we may safely focus on derivations from the assunmgtitefined

by casegci)—(c3).

(c1). T < Pro[E,F,.«]: By two further applications of Lemma B (%3 ), we know that

the judgment in the hypothesis is derivable frbmg P: T, - Q: T andlN ¢ R: T.

Then the judgmerf 5 P | (Q | R) : T follows by two applications of (&R).

(c2). T = Pro[E,°F,.«/]. By two applications of Lemma B.(c,), we can focus on

the following cases:

— [tgP:Pro[E,°F,«],T ¢ Q: Pro[E,*F, <] andl' k5 R: Pro[E, *F, &/]. To derive
the judgment 4 (P | Q) | R: T, apply (RAR o) twice and then subsumption.

— FgP:ProlE,*F, ], T 5 Q:Pro|E,°F, /] andl’ -5 R: Pro[E,*F, </]. As above,
apply (R\R o) twice and then subsumption.
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— kg P:ProlE,*F, ], T 5 Q: Pro[E,*F, <] andl -5 R: Pro[E,°F, «7]. Apply
(PAR e) and then (RR o), followed by subsumption.

(c3). T =Pro[E,*F,«]. The proof is similar to the previous case, with more sub-

cases to consider, but no further difficulty.

(Struct Res Dead)The hypothesis igvx:\W)0 = 0. The judgment g (v W)0: T

must have been derived fromxW k5 0: T/, for T' < T (andW = cAmb’[E,F, 7]

for someE, F and«?). Thusl,xW I ¢ and hence Lemma B.1.3 and B.1.2 yi€Eld o.

The judgmenf 5 0: T derives now by ([ZAD).

(Struct Res Res)The hypothesis iguxW) (vy:W" )P = (vy:W') (vxW)P, andrl 4

(VW) (vy:W)P : T must have been derived fromxW,y : W' Fg P: T/, with T < T.

From the last judgment, by two applications of the rule{, followed by subsump-

tion, we derivel kg (Vy:W') (vxW)P : T as desired.

(Struct Res Par)The hypothesis isvxW)(P | Q) = P | (vxW)Q with x ¢ fn(P). The

judgment” kg (VW) (P | Q) : T must have been derived fromxW g (P | Q) : T*

with T* < T. The last judgment, in turn, must have been derived ffogrW 5 P: T’

andl, xW k5 Q: T” for suitableT’ andT"”. From the first of the two judgments, by the

Lemma B.5.3 one deducé&s-, P: T'. From the second, by (W) I o (VxW)Q:

T". NowT kg P | (vxW)Q: T by the suitable rule for parallel composition.

(Struct Res Amb) The hypothesis igsvxW)M[P] = M[ (vxW)P] with x ¢ fn(M).

The judgment ¢ (VW)M[P] : T must be derived froni’ ,xW -, P: T', for a

suitableT’, and froml",xW F M : pAmb’[E,F, «/]. Let = be the typing derivation

from these two judgments to the judgment in the hypothedeeX ¢ fn(M), Lemma

B.1.3 applied to the first judgment implies that- M : pAmb?[E,F,«/]. From the

second judgmerit -, (vXW)P : T’ derives by (New). Now I g M[(WW)P'] = T

derives by the same steps usedin

(Struct Path Assoc)The hypotheses af®.M’).P = M.(M'.P) andl" k¢ (M.M').P:

T. We have to distinguish two cases depending on the Ty informed by Lemma

B.1:

(p1). T < Pro[E,F,&]: inthis casd s P: T andl F M.M’ : 6Cap[F, &/]. The last

judgment must have been derived fromr M’ : cCaplF, «/] andl" - M’ : 6Cap[F, #]

by the rule (RTH). Then, by two applications of {@EFIX), we have thal k4

M.(M’.P) : T is derivable, as desired.

(p2). T =ProlE,°F,«/] or T = Pro|E, “F, &/]. We have the following subcases:

— 'FoM.M': pCap|G, &) andrl 4 P : Pro[E,°F, &]. The first judgment must have
been derived by (BLYPATH) from I FoM : tCap[H, %], for someH, ¢, andt, and
from I FoM’ : pCap|G, H]. Thenl kg M.(M'.P) : Pro[E,°F, &/] derives by two
applications of (REFIX o).

— ['FeM.M': oCaplF, «/] andl 4 P: Pro[E, *F, &]. The first judgment must have
been derived by (BLYPATH) from I FoM : pCap[H, %] andl" Fo M’ : aCap[F, &7].
Thenl ¢ M.(M'.P) : Pro[E, °F, &] derives by (REFIX A) and (RREFIX o).

A final subsumption step deriv€s-s M.(M'.P) : Pro[E, “F, &7], in both cases.

(Struct Repl) The hypothesisis? =P | !P. The judgmenf F4 !P: T must have been

derived froml" - P: T’ with T" < Pro[E,F, /] < T. If T' = Pro[E, F, &], one derives

ko !'P:T' by (REPL) and ther 4 P | !P: T by (PaR) followed by subsumption. If

T’ = Pro[E,*F, &, one derive$ 5 !P: T' by (REPLe) and therl 5 P |!P: T by

(PAR o) followed by subsumption.



Boxed Ambients . 61

(Struct Cong Par) The hypothesisi® | R= Q | Rderived fromP = Q. The judgment
I 6 P | R: T must have been derived fromt-4 P: T’ andl -5 R: T” for suitable
T’ andT”. Let = the partial derivation from these two judgmentdité, P | R: T.
By the induction hypothesid) onP=Q, one had +;Q: T'. Thenl F¢ Q | R: T
derives by the same steps usedin
The remaining congruence cases, nan8tyuct Cong Action), (Struct Cong Agent
), (Struct Cong Input), (Struct Cong Output), (Struct Cong New), (Struct Cong
Repl) are all proved similarly to the previous case.

(2) fTFgP: TandQ=Pthenl 5 Q: T.
The proof follows by the same analysis of case 1. In d&rict Symm), we use
the induction hypothesi€l), in place of(2). In all the remaining cases, we use the
induction hypothesi€) in place of(1). The only nontrivial cases afStruct Par As-
soc) which is symmetric to the corresponding subcase of 1(8trict Path Assoc)
which we give below.
(Struct Path Assoc)The hypotheses aid.(M'.P) = (M.M’).P andl ¢ M.(M'.P) :
T. We have to distinguish two cases depending on the Ty informed by Lemma
B.1:
(p1). T < ProE,F,#]: in this casel - M : oCap|F,«/] andl s M'.P: T. By
Lemma B.1(p;), applied to the judgmerft ko M'.P : T, it follows thatl - M’ :
oCap[F,«/] andl ¢ P: T. Thenl - M.M’ : oCap[F, /] derives from (RTH), and
ko (M.M").P: T by (PREFIX).
(p2). T =ProlE,°F, <] or T = Pro|E, “F, &/]. We have two sub-cases.
In the first sub-case, one hBsoM : pCap|G, %] andl - M'.P: Pro[E,°F, «/]. By
Lemma B.1(p;), applied to the judgmerit 5 M’.P : Pro[E,°F, ], it follows that
eitherl FoM’ : 1Cap[H, %] andl -4 P : Pro[E,°F, &, or I FeM’ : oCap[F, «/] and
I g P’ : Pro[E,*F,«7]. In the first case apply @LYPATH) to derivel - M.M’ :
1Cap[H, %], and then (REFIX o). In the second case, applydPr PATH) to derive
I M.M’: oCap[F, #/], and then (REFIX A).
In the second sub-cadefo M. : oCap[F, <] andl -5 M".P: Pro[E, “F, &/], and the
proof is similar to the one just given.

LEMMA SUBJECTCONGRUENCE THE ASYNCHRONOUS CASE Taken #1. Then,
FrE(MP:Tif and only if I = (M) | P: T, where both judgements are derived in
the system of Section 7.

PrROOF The proof follows almost directly by an inspection of theityg rules.

THEOREM TYPE PRESERVATION FOR SYNCHRONOUS REDUCTIONIf g P: T and
P— Qthenl ¢ Q: T.

PROOF By induction on the derivation d® — Q. The cases of top-level reduction
follow by Lemmas B.3, B.4 and B.7. The inductive cases folthwectly by the induction
hypothesis, with an additional appeal to Lemma B.9 for treeea reduction via structural
congruence. O

THEOREM TYPE PRESERVATION FOR TAGGED ASYNCHRONOUS REDUCTION
Given a type environmeriit, say that a security assignmenis I -consistenif and only
if for all x € dom(I"), I'(x) = cAmb’[...] impliesy(x) = 0. Now assume thdt 5 P: T.
Then for everyl-consistent assignmewtand proces® such thaP — ) Q, we have
M-6Q:T.
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PROOF. By induction on the derivation d®® — ) Q. The cases of top-level move
reductions follow by Lemmas B.3, B.4. The cases of commuiuindollows by Lemma
B.8. As for the inductive steps, the proof if guided by theuntive cases of definition of
the tagged reduction (cf. Section 9.1):

— case (RR) follows by the inductive hypothesis and an applicationted aippropriate
(PAR ?) rule

— case ($Rrucr) follows by the induction hypothesis and Lemma B.9.

— case (M:w) follows again by the induction hypothesis, as the side @&ardto the rule
guarantees that the assignmerin : p) is (I, n : A)-consistent.

— case (AB) also follows by the induction hypothesis, abeingl'-consistent implies
thatl" -5 a[P] : T depends ol k) P: T’ for a suitableT’.

THEOREM TYPE SOUNDNESS If I 45 P: T, then for evenf -consistent security as-
signment, and procesgsuch thaP _ﬁo‘v) Qwe haveQ #—(gyerr.

PROOF. We first show thaP /— ) err: to show that, it is more convenient to prove
the contrapositive, namely thBt — ) err impliesI” P : T. The proof proceeds by
induction on the derivation @ — g, err.

— For the basis of induction, we assume, for the purpose dfadiction, thatP — )
err andll -5 P: T. Then we have four possible cases: we give the proof of the cas
(ERR OUTPUTYT) as representative.
In this case, the redex has the foRr n[(M)'Q | R] and the reduction terr implies
that—22(y(n),0,w). Sinceyis I'-compatible, it must be the case tiiat y(n)Amb?[_, ]
for suitable types and access modes. From our hypothesisP | n[(M)'Q |R] : T
by repeated applications of LemmaB.1, it follows that theivd¢ion depends on the
side-condition#?(y(n),o,w) to the (AmB) or the (AMB A) rule yielding the sought
contradiction (that the judgment is derived by either oftheules, and not by (B o)
follows by the same reasoning as in case 5 of Lemma B.7).

— For the inductive steps we have to consider several caéés. 4+, err by (ERR
STRUCT), then there exist® such thatP = Q andQ — 5, err. By the induction
hypothesis, this implieE }-cQ: T, and then proof follows by Lemma B.9. The cases
in which P — ) err by any of the contextual reductions follow directly by the
induction hypothesis, noting that a process term is wedktyif and only if so are all of
its sub-terms.

The proof of the theorem follows now by subject reductionori” 5 P: T and from
P — (0,y)" Q, by Theorem B.12 we know thétr5 Q: T, and we have just proved that

this implies thaQ /— g yerr.



