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1. INTRODUCTION

There is a general agreement that programming languages forwide-area computing and
mobile-code environments should be designed according to appropriate principles, among
which distribution, location awareness, and security are the most fundamental.

Cardelli and Gordon’s Mobile Ambients (MA) [Cardelli and Gordon 1998] are one of
the first, and currently one of the most successful implementations of these principles into
a formal calculus. Their design is centered around four basic notions: location, mobil-
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ity, communication by shared location, and authorization to move based on acquisition of
names and capabilities. The ability or inability to cross boundaries, which is conferred by
the capabilitiesin andout, is at the core of the security model underlying MA. Permission
to cross ambient boundaries is given by making the name available to the clients requesting
access. Names are thus viewed as passwords, or cryptokeys: when embedded in a capabil-
ity, an ambient name provides the pass that enables the access to, or else the cryptokey that
discloses the contents of that ambient.

While MA’s model of security is suggestive, and powerful forits simplicity, it does not
appear to be fully adequate for modeling realistic access control policies. Security in MA
entirely depends on the ability by the naming-based authorization mechanism to filter out
unwanted clients: an authorization breach could grant malicious agents full access to all
the resources located inside the ambient boundary.

An assessment of security and access control in ambient-based calculi is the main moti-
vation for the present paper. The focus of our analysis is onmandatory(i.e., system-wide)
access controlpolicies (MAC) within a multilevel security system. In particular, the em-
phasis is on the specific aspects of MAC policies related to confidentiality, and their dif-
ferent implementations asmilitary security (no read-up, no write-down) andcommercial
security (no read-up, no write-up). For other calculi of mobility in the literature, notably
for Dπ [Riely and Hennessy 1998] and KLAIM [De Nicola et al. 1998], an in-depth study
of these aspects has already been conducted [Hennessy and Riely 2002b; 2002a; De Nicola
et al. 2000; De Nicola et al. 2000]. Instead, to our knowledge, no attempt in this direction
has been made for MA-based calculi.

Our analysis, detailed in the first part of the paper, points out the shortcomings of MA
as a formal basis for reasoning about these concepts. In fact, the main difficulties come far
ahead of any formal reasoning, because the very meaning of basic notions such as “read
access” and “write access” by subjects to objects is difficult to grasp and characterize when
looked at from within MA.

To overcome these difficulties, we introduce a variant of Mobile Ambients, namedBoxed
Ambients(BA). Boxed Ambients inherit from MA the primitivesin andout for mobility,
but notopen, and introduce direct primitives for communication acrossambient bound-
aries, between parent and child. This new form of communication fits the design principles
of MA, and complements the existing constructs for ambient mobility, and local exchanges,
with finer-grained, and more effective, mechanisms for ambient interaction. The resulting
calculus retains the computational flavor of MA and the elegance of its formal presentation.
On the other hand, the new communication model preserves theflexibility of typed com-
munications from MA, while providing more effective means for reasoning about access
control policies.

We study two versions of the calculus, based on synchronous and asynchronous commu-
nication, respectively. Interestingly, the new model of communication sheds new insight
into the relationship between the two forms of interaction.In particular, we show that
classical encodings of the asynchronous model in terms of the synchronous one do not
carry over to calculi that combine non-local exchanges and dynamic system reconfigu-
ration based on mobility. We complement the definition of thecalculus with a study of
different type systems. A first type system provides standard safety guarantees for com-
munication. A second type system enhances the typing of mobility and develops a new
typing technique, based on different typing “modes” for processes, in which processes and
their continuations may have different types while still preserving subject reduction. A
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last type system combines the new technique with a richer class of types to provide for the
static detection of violations of MAC policies in a multilevel security environments. All the
type systems, in particular the access control type system are designed, and proved sound,
for both the synchronous and the asynchronous versions of the calculus. Remarkably, the
moded typing system is initially motivated by the synchronous semantics but then proves
equally effective for the asynchronous calculus that we eventually adopt in our discussion
of access control.

Plan. Section 2 presents our analysis of security and access control in MA. Section 3
introduces the calculus of Boxed Ambients. Section 4 details encodings of additional prim-
itives for communications on named channels (BA relies on anonymous channels). Sec-
tion 5 introduces the basic type system for the calculus. Section 6 compares the typing
systems of BA and MA with respect to mobility and communication. Section 7 develops
an enhanced type system based on the technique named “moded typing”. Section 8 studies
the asynchronous version of the calculus. Section 9 develops a sound typing system for
static access control, and illustrates its use with severalBA programs. Section 10 studies
a more extensive example: in particular, it shows that the access control typing system
can effectively be employed to specify (and statically enforce) diverse and powerful secu-
rity policies for a simple, but non-trivial, distributed language. Section 11 compares our
approach with related work, and Section 12 concludes with final remarks. Two separate
appendices collect the typing rules and the proofs of subject reduction and type soundness.

The paper integrates and extends the results reported in [Bugliesi et al. 2001a] and
[Bugliesi et al. 2001b].

2. MOTIVATIONS FOR BEING BOXED

Mobile Ambients are named process of the forma[[P℄℄ wherea is a name andP a pro-
cess. Processes can be composed in parallel, as inP j Q, be replicated as in !P, exercise
a capability, as inM:P, declare local names as in(νa)P, or simply do nothing as in0.
Ambients may be nested to form a tree structure that can be dynamically reconfigured by
exercising the capabilitiesin;out andopen. In addition, ambients and processes may com-
municate. Communication is anonymous, and happens inside ambients. The configuration(x)P j hMi represents the parallel composition of two processes, the output processhMi
that “drops” the messageM, and the input process(x)P that reads the messageM and
continues asPfx := Mg, that isP where every free occurrence ofx has been substituted
with M. Theopen capability has a fundamental interplay with communication: in fact,
communication results from a combination of mobility andopening control. To exem-
plify, the synchronization between the input process(x)P and the outputhMi in the system(x)P j open b j b[[hMi j Q℄℄ is enabled by exercising the capabilityopen b to unleash the
messagehMi.

While fundamental in MA to enable communication across ambient boundaries, theopen capability appears to bring about serious security concerns in distributed applications.
Consider a scenario in which a processP running on hosth downloads an application

programQ from some other host over the network. This situation can be represented by the
configurationa[[ in h:Q℄℄ j h[[P℄℄ , whereQ is included in the pilot ambienta which is routed
to h in response to the download request fromP. As a result ofa exercising the capabilityin h, the system evolves into the new configurationh[[a[[Q℄℄ j P℄℄ , where the download is
completed. The application programQ may be running and computing withina, but as
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long as it is encapsulated intoa, there is no way thatP andQ can effectively interact. To
enable these interactions,P will need to dissolve the transport ambienta. Dissolvinga
produces the new configurationh[[P j Q℄℄ where nowP andQ are granted free access to
each other’s resources, with the obvious problem that thereis no way to tell whatQ may
do with them. An alternative solution to the above scenario is to treata as asandboxand
take the Java approach to security:P clones itself and enters the sandbox to interact with
Q. Again, however, the kind of interaction betweenP andQ is not fully satisfactory: either
they interact freely withina, or are isolated from each other.

Static or dynamic analysis of incoming code are often advocated as solutions to the
above problem: incoming code must be statically checked andcertified prior to being
granted access to resources and sensitive data. Various authors explore this possibility,
proposing control-flow analyses [Nielson et al. 1999; Nielson and Nielson 2000; Degano
et al. 2000] and type systems [Cardelli et al. 1999; Dezani-Ciancaglini and Salvo 2000;
Bugliesi and Castagna 2001] for Mobile Ambients. The problem with these solutions is
that they may not be always feasible in practice: the source code of incoming software
may be not available for analysis, or else it may be too complex to guarantee a rigorous
assessment of its behavior. By that, we do not intend to undermine or dismiss the role of
static analysis: instead, we take it as a motivation to seek for new design principles and
more effective uses of static analysis. One such principle for Mobile Ambients, which
we advocate and investigate in this paper, is that ambient interaction should be controlled
by finer-grained policies to prevent from unrestricted resource access while still providing
effective communication primitives.

To motivate the point further, we discuss a simple but concrete example of access control
in a multilevel security system. Multilevel security presupposes a lattice of security levels
and an assignment to every subject and object of a level in this lattice. Based on these
levels, a read from an object by a subject is classified as aread-up(respectively,read-
down) if the level of the subject is higher than the level of the object, and similarly for a
write operation. These notions cover alsoindirectaccesses resulting from the composition
of atomic operations: thus, for example, writing to (respectively, reading from) aǹ -level
object a piece of information read (or just coming) from anh-level (with h > `) object
is considered as a write-down (respectively, read-up)1). Relying on this classification, one
typically identifies two MAC security policies:military security, which forbids (both direct
and indirect) read-up’s and write-down’s, and commercial security that forbids read-up’s
and write-up’s.

2.1 Resource access control in multilevel security

Suppose we have a system consisting of a set of resourcesfr1; : : : ; rng and an agent named
a that runs programP and wants to access the resources available on the system. Tocontrol
the access to the resources, one would typically refer to [Department of Defense 1985] and
set up a resource manager. In the Ambient Calculus the systemunder consideration can be
represented as follows:

a[[P℄℄ j m[[ r1[[ � � � ℄℄ j � � � j rn[[ � � � ℄℄ j R℄℄
1Classic security handles these cases by the so-called?-property [Bell and Padula 1976; Gollmann 1999]. As a
matter of fact, these references do not define precisely whatawrite-down accessis; instead, they give a definition
of no-write down policy.
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Here,m is the name of the resource manager andR is the associated process. To access, say,
r i , the agenta needs to know the namem to be able to move inside the resource manager:

m[[a[[P℄℄ j r1[[ � � � ℄℄ j � � � j rn[[ � � � ℄℄ j R℄℄
Looking at this configuration, we notice that the processR does not have an active role in
the system, as the interaction betweena[[P℄℄ andr i may only result from autonomous ac-
tions by either the agent or the resource (the same would be true with Levi and Sangiorgi’s
Safe Ambients[Levi and Sangiorgi 2000]: only the use of a co-action could predicate the
move ofa into m to the presence of the co-capabilityin m in R). The role of the ambientm
is therefore reduced to the role of its name: it is simply the first password required for the
access. Rather, it is each of ther i ’s that needs to include its own manager.

We can thus formulate the problem in simpler terms, and look directly at the case below:

Initial configuration: a[[P℄℄ j r[[R j hMi ℄℄
R is the manager forr, andM is the content: for the purpose of the example we assume
that the content is a value the agent wants to read.

Having defined the problem, we now look at different ways to attack it in MA and
discuss their implications in terms of the security models introduced above.

2.1.1 First solution: agent dissolution.A first solution is based on the following pro-
tocol proposed by [Cardelli and Gordon 1998]. In order to accessr, a first entersr:

Enter: r[[R j hMi j a[[P℄℄ ℄℄
Now, the idea of the protocol is that the managerR should be the process !open p, which
unleashes authorized clients that entered the resource within a pilot ambient namedp. In
other words, the protocol requires the client to know the name of the resource, as well the
name of the “port”p used for the access. Thus, the agent would first rename itselfto p to
comply with the rules of the protocol, and then enter: if the access tor is a read, the agent
will contain a reading process. Thus, after renaming, the new configuration would be as
follows:

Renaming: r[[ ! open p j hMi j p[[ (x)P℄℄ ℄℄
Finally, the resource manager enables the read, by openingp:

Read Access: r[[ ! open p j hMi j p[[ (x)P℄℄ ℄℄ �! r[[ ! open p j hMi j (x)P℄℄
The protocol is elegant and robust: there are two passwords the agent needs to know, the
resource namer and the name of the portp. There are, however, a number of unsatisfactory
aspects to it.

A first reason for being unsatisfied with the protocol is that it is hardly realistic to assume
that agents willing to read a value should be prepared to be dissolved. A second problem
is that openingp[[P℄℄ may be upsetting to the resource manager, or else to the resource
itself, because there is no telling whatP might do once unleashed. For what we know, the
contents ofp could very well be the processN:P, with N a path ofin or out capabilities.
Unleashing this process insider could thus result inr being carried away to possibly hostile
locations, or otherwise being made unavailable to forthcoming clients.

Further problems arise when we try to classify the protocol according to the MAC secu-
rity principles. As we noted, the action in the protocol thateventually enables the read is
taken by the resource manager, which opens the incoming agent. In other words, it is the
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last step of the protocol that effectively determines the access to the resource, and since the
process enclosed inp is an input process, it is classified as a read access (hadp contained
an output, this would have been a write access). In multilevel security, it would then be
possible to further classify the access according to the security levels associated withr and
p, and use that definition to enforce either the military or thecommercial security policy.

However, while this form of classification fits the protocol,it becomes rather artificial
when applied to the primitives of the calculus. Indeed, saying thatopen p j p[[P℄℄ is a read
(or write) byP is rather counter-intuitive, asp[[P℄℄ undergoes the action rather than actively
participating into it. The problem is that the protocol is entirely dependent on the effects ofopen, but when exercised to enable a read/write request,open exchanges the roles of the
two participants in the request, as it is the subject, ratherthan the object, that is accessed
(in fact, opened). As a result, the notion of read/write access becomes rather artificial.

2.1.2 Second solution: resource dissolution..An alternative solution can be obtained
by a change of perspective. One could devise a different protocol where the active role
of the subject is rendered by a combination of open and input/output. Thus, for instance,
the processopen r:(x)P could be interpreted, in the protocol, as a read request onr. This
might work reasonably for read requests, even though the interpretation is still weak, as
the access has also the side-effect of dissolving the resource. Even weaker would be the
interpretation ofopen r:hMi as a write: after dissolvingr the outputhMi really has nothing
to do with a write onr.

2.1.3 Third solution: agents and messengers..To avoid indiscriminate dissolution
upon read and write, Cardelli and Gordon [Cardelli and Gordon 1998] suggest a different
approach, based on a protocol in which agents use special ambients acting as messengers
to communicate. The idea is to envisage two classes of messengers:

- output messenger: o[[N:hMi ℄℄ , whereN is a path to the location where the messageM
can be delivered

- input messengers: i[[N:(x)o[[N�1:hxi ℄℄ ℄℄ , whereN is the path to the location where a value
can be read. Once read, the messenger goes back to its original location (we informally
useN�1 to denote the inverse path ofM) where it delivers the value just read.

Thus, a read onr would be encoded by a protocol based on the following initialconfigura-
tion:

a[[open o:(x)P j i[[out a:in r:(x)o[[out r:in a:hxi ℄℄ ℄℄ ℄℄ j r[[ ! open i j hMi ℄℄
The protocol still requires cooperation by the resource manager, which is expected to open
the input messenger. Also, looking at the primitive reductions, it would still be counter-
intuitive to say thatopen i j i[[P℄℄ is a read access: the classification would be more realistic,
were it possible to identifyi as input-messenger withinr. Unfortunately, there is no syn-
tactic way to tell messengers from ambients playing the roleof “pure” agents, nor is there
any syntactic way to detect “illegal” attempts to dissolve “pure” agents. Defining a notion
of access, and attempting a syntactic classification would therefore still be problematic, if
at all possible.

Types could be appealed to for more satisfactory solution. One could devise a typed
partition of ambients into agents (i.e. ambients that cannot be dissolved) and messengers
(as above). Based on the typed classification and on an assignment of security levels,
it would then be possible to classify access requests according to MAC policies. There
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would be only one remaining problem, which can be observed byexamining the protocol
structure and evolution. From the initial configuration:

a[[open o:(x)P j i[[N:(x)o[[N�1:hxi ℄℄ ℄℄ ℄℄ j r[[ ! open i j hMi ℄℄
via a sequence of reductions the input messenger reaches itsdestination, it is opened there,
and consumesM. At this stage, the structure of the system is:

a[[open o:(x)P℄℄ j r[[ ! open i j o[[N�1:hMi ℄℄ ℄℄
This is the encoding of a write byr to a. In other words, a read bya includes a write byr:
if the former is, say, a read-up, then the latter is a write-down. In other words, the protocol
has somehow the effect of merging read-up’s and write-down’s, and dually, write-up’s and
read-down’s. Therefore, military security could still be accounted for with this approach,
while commercial security could not.

2.2 Summary and Assessment

The survey of solutions we have given might still be incomplete, even though we do not
see any fundamentally different approach to attack the problem. As to the approaches we
have presented, none of them is entirely satisfactory. Someof them appear artificial, since
essential intuition is lost in the encoding of the protocol (§ 2.1.1,§ 2.1.2). In others, the
intuition is partially recovered but only at the expenses offailing to provide full account
for both military and commercial security (§ 2.1.3).

Summarizing, we may certainly say that the Ambient Calculusenablesaccess control, in
that it provides constructs for encoding access protocols.Depending on the protocol, types
may help define and check the desired security policies. On the other hand, the calculus
does not in itself supportthese mechanisms and policies, as it does not provide built-in fa-
cilities to make it convenient or natural to reason about them. As we showed, the reasoning
is possible at the level of accessprotocols, but when we look at the accessprimitivesthere
appears to be no general principle to which one can steadily appeal. We are thus in need
for different, finer-grained, constructs for ambient interaction and communication. The
new constructs should be designed carefully, so as to complement the existing restrictions
on ambient mobility based on authorization, without breaking them. In other words, the
access to remote resources should still require mobility, hence authorization: local access,
instead, could be made primitive.

To see how that can be accomplished, let us consider once morethe protocol of § 2.1.3,
based on messengers. We can re-state it equivalently as follows:

a[[ in r:i[[out a:(x)o[[ in a:hxi ℄℄ ℄℄ j open o:(x)out r:P℄℄ j r[[ ! open i j hMi ℄℄
In other words, it is now the agent that is responsible for themoves needed to reach the
resource, while the messenger just makes thein and out moves needed for the access.
After the move ofa into r, and ofi out of a, the structure of the system (disregardinga
and replication) is the following:r[[open i j hMi j i[[ (x)Q℄℄ ℄℄ . This is where the read takes
place. Now, instead of coding it, viaopen, we can make it primitive, and do without
open. If we denote with(x)" input from the enclosing ambient, the read access is simply:
r[[ hMi j i[[ (x)"Q℄℄ ℄℄ . But then, the whole protocol can be simplified:a[[ in r:(x)"P℄℄ j r[[ hMi ℄℄ .
The choice of the communication primitives of Boxed Ambients, described next, are based
on these observations.



8 � Bugliesi M., Castagna G., and Crafa S.

3. BOXED AMBIENTS

Boxed Ambients are essentially Mobile Ambients that cannotbe opened. Processes in the
new calculus communicate, as in the Ambient Calculus, on anonymous channels inside
ambients. In addition, to compensate for the absence ofopen, processes are equipped with
primitives for communication across ambient boundaries, between parent and children.
Syntactically, this is achieved by means of tags specifyingthe location , i.e., the ambient,
where the communication takes place.

3.1 Syntax

Table I Boxed Ambients

Expressions

M ::= a�q namesj x�z variablesj in M enterMj out M exit Mj M:M path

Locations

η ::= M childj " parentj ? local

Processes

P ::= 0 stopj M:P actionj (νn)P restrictionj P j P compositionj M[[P℄℄ ambientj !P replicationj (x1; : : : ;xk)ηP input,k> 0j hM1; : : : ;MkiηP output,k> 0

The untyped syntax of the polyadic calculus is summarized inTable I. It includes two
syntactic categories,expressionsandprocesses. Expressions, ranged over byM;N, include
names, variablesandcapabilities. We presuppose two mutually disjoint sets for variables
and names. Variables are ranged over by letters toward the end of the alphabet, typically
x;y;z, while the remaining lettersa�q are reserved for names. The capabilitiesin andout
enable movement and can be composed into non-emptypaths.

Processes, ranged over byP;Q;R;S, are built from the constructors ofinactivity, parallel
composition, replicationandrestriction inherited from theπ-calculus, and from four ad-
ditional operators:prefix M:P, anonymous (polyadic)input (x̃)ηP andoutputhM̃iηP and
ambient M[[P℄℄ . The notationM̃ indicates a tuple of messagesM1; : : : ;Mk, and similarly ˜x
is short forx1; : : : ;xk. Whenk = 0 the input/output prefixes allow synchronization without
exchange of values. The superscript? denoting local communication, is omitted. Simi-
larly, we often omit trailing and isolated occurrences of0, writing M instead ofM:0, and
n[[ ℄℄ instead ofn[[0℄℄ . The input operator(x̃)ηP is a binder for thevariablesx̃, whereas
the restriction operator(νn)P binds thename n: in both cases the scope of the binder is
P. As it is customary, terms that areα-convertible are considered identical. The notions
of free namesandfree variablesof a process, notedfn(P) andfv(P) respectively, arise as
expected (see Table II), and so does the definition ofcapture freesubstitutionPfx̃ := M̃g,
that is defined only if ˜x andM̃ are of the same arity. A process isclosedif it contains no
free variables.
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Table II Free names and free variables

Free Names Free Variables

fn(?) = fn(") = /0 fv(?) = fv(") = /0

fn(n) = fng fv(n) = /0
fn(x) = /0 fv(x) = fxg
fn(in M) = fn(out M) = fn(M) fv(in M) = fv(out M) = fv(M)
fn(M:M0) = fn(M)[ fn(M0) fv(M:M0) = fv(M)[ fv(M0)
fn(0) = /0 fv(0) = /0
fn(M:P) = fn(M[[P℄℄ ) = fn(M)[ fn(P) fv(M:P) = fv(M[[P℄℄ ) = fv(M)[ fv(P)
fn((νn)P) = fn(P)nfng fv((νn)P) = fv(P)
fn(P1 j P2) = fn(P1)[ fn(P2) fv(P1 j P2) = fv(P1)[ fv(P2)
fn(!P) = fn(P) fv(!P) = fv(P)
fn((x̃)ηP) = fn(P)[ fn(η) fv((x̃)P) = fv(P)[ fv(η)nfx̃g
fn(hM̃iηP) = fn(P)[ fn(M̃)[ fn(η) fv(hM̃iηP) = fv(P)[ fv(M̃)[ fv(η)

3.2 Operational Semantics

The operational semantics of the calculus is defined, as customary, in terms of structural
congruence and reduction relation. Both these relations are summarized in Table III. Struc-
tural congruence is the least congruence relation that satisfies the(Struct)laws in Table III.
The first group of laws are the familiar monoidal laws forj and0. The second group of
laws is inherited from the Ambient Calculus.

The remaining laws in Table III define the reduction relation, which applies to closed
processes. Ambient mobility is governed by the rules(enter) and (exit), inherited from
Mobile Ambients. The rule for(local), and the structural rules(struct)and(context)also are
defined as in MA. The remaining four rules define the reductionfor parent-child exchange.

The choice of the reductions for parent-child exchanges, and the resulting model of com-
munication is inspired to Castagna and Vitek’sSeal Calculus[Vitek and Castagna 1999],
from which Boxed Ambients also inherit the two principles oflocality andmediation. Lo-
cality means that communication resources arelocal to ambients, and message exchanges
result from explicit read and write requests on those resources. In particular, the input pre-
fix (x)n can be seen as a request to read from the anonymous channel located into the child
n. In fact, given the anonymous nature of channels,(x)n can equivalently be seen as an
access to the ambientn. Dually,hMi" can be interpreted as write request to the parent am-
bient (equivalently, its local channel). Mediation implies that remote communication, e.g.
between sibling ambients, is not possible: it either requires mobility, or intervention by the
ambients’ parent. The implementation of these two principles based on the the term-level
constructs we have introduced for parent-child communication has a number of interesting
consequences, that we discuss next.

3.2.1 Communication and access control..Parent-child communication yields flexible
support for programming access control policies. If we takethe access control problem of
Section 2.1 we now have a fairly elegant solution, in which wealso recover a role for the
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Table III Structural Equivalence and Reduction

Structural Congruence

(Struct Monoid) P j Q�Q j P; P j (Q j R)� (P j Q) j R; P j 0� P

(Struct Res Dead) (νn)0 � 0

(Struct Res Res) (νn)(νm)P � (νm)(νn)P m 6= n

(Struct Path Assoc) (M:M0):P � M:(M0:P)
(Struct Res Par) (νn)(P j Q) � P j (νn)Q n 62 fn(P)
(Struct Repl) !P � !P j P

(Struct Res Amb) (νn)m[[P℄℄ � m[[ (νn)P℄℄ n 6= m

Mobility

(enter) a[[ in b:P j Q℄℄ j b[[R℄℄ �! b[[a[[P j Q℄℄ j R℄℄
(exit) a[[b[[out a:P j Q℄℄ j R℄℄ �! b[[P j Q℄℄ j a[[R℄℄
Communication

(local) (x̃)P j hM̃iQ �! Pfx̃ := M̃g j Q

(input n) (x̃)nP j n[[hM̃iQ j R℄℄ �! Pfx̃ := M̃g j n[[Q j R℄℄
(input") n[[ (x̃)"P j Q℄℄ j hM̃iR �! n[[Pfx̃ := M̃g j Q℄℄ j R

(output n) n[[ (x̃)P j Q℄℄ j hM̃inR �! n[[Pfx̃ := M̃g j Q℄℄ j R

(output") (x̃)P j n[[hM̃i"Q j R℄℄ �! Pfx̃ := M̃g j n[[Q j R℄℄
Structural Rules

(struct) P�Q; �! R; R� S ) P �! S

(context) P �! Q ) EfPg �! EfQg
Evaluation Context E ::= � j (νn)E j P j E j n[[E ℄℄

resource managerm. Consider again the configuration

m[[a[[P℄℄ j R j r1[[ � � � ℄℄ j � � � j rn[[ � � � ℄℄ ℄℄
where now all ambients are boxed anda has entered the resource manager. The process
R may act as a mediator betweena and the resources. For instance,R could be defined as
the parallel compositionR1 j � � � j Rn where eachRi is the process !(x)hxir i , for i 2 1::n,
each waiting for upward output froma and forwarding it to theith resource. Some of the
Ri ’s could be less generous with the agent, and ignore upward input froma to request read
access ona instead: !(x)ahxir i . Should any of ther i ’s be made non-accessible, one would
simply defineRi = 0. Of course, different definitions ofR are possible. For instance, one
could defineRas the process !(x; r)hxir , that waits for upward requests froma to write on
one of ther i ’s, and forwards this request to the corresponding resource.
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3.2.2 Communication and typing..The model of communication also eases the design
of type systems providing precise accounts of ambient behavior. As we show in Section 5,
a rather simple structure of types suffices for that purpose.Ambient and process types
are defined as two-place constructors describing the types of the exchanges that may take
place locally, and with the enclosing context. Interestingly, this simple type structure is all
that is needed to gain full control of ambient interaction. This is a consequence of(i) there
being no way for ambients to communicate directly across more than one boundary, and(ii) communication being the only means for ambient to interact.To exemplify, consider
the following configuration:(x)pP j p[[hMi j (x)Q j q[[hNi" ℄℄ ℄℄
The top-level makes a downward request to readp’s local valueM, while ambientq makes
an upward request to write the valueN to its parent. The downward input(x)pP may
only synchronize with the outputhMi local to p. Instead,(x)Q may nondeterministically
synchronize with either output. Of course, type safety requires thatM andN be of the same
type. Interestingly, however, exchanges of different types may take place within the same
ambient (or at top-level) without type confusion, as withinthe following ambientn:

n[[ (x)pP j (x)qQ j p[[hMi ℄℄ j q[[ hNi ℄℄ ℄℄
The two valuesM andN are local top andq, and may very well have different types: there
is no risk of type confusion, as(x)pP reads fromp, while (x)qQ reads fromq. Types may
also be employed to complement the term-level support for access control. By embedding
security levels in types, a type system may be defined to enforce MAC security policies in
rather natural way (cf. Section 9).

3.2.2.1 Communication, distribution and location awareness..The new constructs for
communication fit well the principles of distribution and location awareness distinctive
of Mobile Ambients, according to which remote communication should require mobility
(and ambient opening), and mobility, in turn, should require authorization (i.e. possession
of capabilities). Our semantics adds to this a new possibility of exchanging values, across
ambient boundaries. Remarkably, however, the new form of communication takes place
across just one one boundary, separating parent and child, while communication between
siblings still requires mobility, as in MA.

From a design perspective, our model of communication refines the notion of locality
from MA into that of proximity, and allows synchronization between processes that are
contiguous, i.e., either local or separated by one boundary. In all respects, this kind of
synchronization is required for mobility as well, and needsto be assumed either implicitly,
as in MA, or explicitly as in the variants of MA in which mobility is subject to the presence
of co-capabilities [Levi and Sangiorgi 2000; Merro and Hennessy 2002; Bugliesi et al.
2002].

In addition, the constructs for communication lend themselves to be formulated in a
truly asynchronous setting, in which sending output to a nested or enclosing ambient does
not require synchronization. As of now, asynchronous output can either be considered
as the special case of synchronous output with null continuation, or else be accounted
for by introducing the following rule of structural equivalence inspired by [Boudol 1992]:hMiηP� hMiη j P. These interpretations are equivalent, and both type sound, with the
system of “simple” types of Section 5. Instead, the (typed) equivalence is lost with the
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system of “moded types” we introduce in § 7, and neither interpretation is satisfactory: the
former is too restrictive, the latter is unsound. Fortunately, however, we will be able to find
a formulation of reduction that reconciles asynchrony withmoded typing in a sound and
flexible type system. We leave a thorough discussion on this point to Section 8.

4. COMMUNICATION CHANNELS

Value exchange between BA processes can also take place on named channels: we illustrate
several ways for encoding channels within the core calculus. To reason on the properties
of these encodings we introduce the following definition of observational congruence for
BA, that we directly inherit from MA [Cardelli and Gordon 1999a]. Given a processP, we
write P#n if P has a top-level occurrence of an ambient namedn, with n not restricted inP.
Formally,P #n iff P� (νm̃)(P0 j n[[P00 ℄℄ ) with n 62 m̃. Then we say thatP exhibits the name
n, written P+n, iff there exists a processQ such thatP =)Q andQ #n, where=) is the
reflexive and transitive closure of�!. Finally, two processesP andQ are observationally
congruent, writtenP�= Q, if CfPg +n iff CfQg +n for all contextsC with CfPg andCfQg
closed.

Based on this definition, we can re-establish some useful observational equivalences.
In particular, the equivalence !P j !P�=!P, from theπ-calculus, and theperfect firewall
equation from MA:(νn)n[[P℄℄ �= 0 for n 62 fn(P). Both will be useful in the remainder of
this section.

4.1 π-calculus channels

We start with the asynchronousπ-calculus, and then adapt our technique to handle the
synchronous case. The idea is straightforward, and best illustrated with an example: two
π-processes communicating over a channelc, as inchni j c(x)P, may be represented in BA
as follows:c[[hni ℄℄ j (x)cP. In other words, an output onc in π is represented by an ambient
namedc (a buffer) holding the message which is output on the channel. An input onc, in
turn, translates directly into the corresponding input prefix of BA. One problem with this
simple idea is that the buffer does not go away when its value is consumed: in the example
above we havec[[hni ℄℄ j (x)cP�! c[[ ℄℄ j Pfx := ng, which is unfortunate, becausec[[ ℄℄ 6�= 0.
The problem can be solved by having the buffer “hide itself” once the value it holds has

been consumed:(νp)p[[ ℄℄ j a[[hM̃iin p℄℄ . Now, lettingaf[M̃ ℄g 4= (νp)p[[ ℄℄ j a[[hM̃iin p℄℄ , we
define a compositional encoding of the (polyadic) asynchronousπ calculus as follows:hh(νa)Pii = (νa)hhPii hh !Pii =! hhPii hhahb̃i ii = af[ b̃℄ghhP j Qii = hhPii j hhQii hh0ii = 0 hha(x̃)Pii = (x̃)a hhPii
These definitions extend readily to the case of the synchronousπ-calculus by resorting to
the standard technique of representing synchronous outputby means of a pair of messages
(send and acknowledge). Lettingnm:P andn̄m:P denoteπ-calculussynchronousinput and
output on channeln, we define:hh āb̃:Pii = (νr)af[ (b̃; r) ℄g j (r[[ ()hi ℄℄ j ()r hhPii) r 62 fn(P)hhax̃:Qii = (x̃;y)ahiy hhQii y 62 fv(Q)
and then extend the translation compositionally to the remaining constructs. For both these
encodings one can prove that ifP�!Q, in theπ calculus, thenhhPii �! �= hhQii in BA.
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A simpler, and more robust, translation can be obtained by extending BA with movement
co-capabilities à la Safe Ambients [Levi and Sangiorgi 2000]. As for Safe Ambients, the
addition of co-capabilities strengthens the algebraic theory of the calculus, and yields a
richer set of congruence laws. In particular, one hasn[[ ℄℄ �= 0 for all n, as there is no way
that a context may test the presence ofn[[ ℄℄ (by a move or by an exchange). One can then
rely on the simple translationhhahb̃i ii = a[[ b̃℄℄ hha(x̃)Pii = (x̃)a hhPii
and extend it compositionally. The resulting translation is operationally sound. in the
following sense:P�! Q in π implies hhPii �! �= hhQii , and vice versa,hhPii �! Q,
implies thatP�! P0 in π with Q�= hhP0 ii .
4.2 Channels as persistent resources

A different way to represent channels is to interpret them aspersistent resources. This
interpretation is particularly meaningful Ambient-basedcalculi, in which ambients may
be thought of as network nodes that provide a set of fixed portsfor the interaction with
other nodes (cf. Section 10). This idea has a direct implementation in BA. The ambient
c[[ !(x)hxi ℄℄ represents a buffer with an unbounded number of positions: the buffer simply
waits for local input and, once received, releases local output. Input and output on the
buffer may then be implemented directly by the primitives for downward communicationhbic and(x)c. If we definechannel(c) = c[[ !(x)hxi ℄℄ . then we have, as expected:

channel(c) j hbic j (x)cP =) �= channel(c) j Pfx := bg
One may use this idea to represent persistent channels in theπ calculus. To define the
encoding compositionally, we associate a channelspawnerwith each input and/or output
on the corresponding name.hhahb̃iii = channel*(a) j hb̃ia hha(x̃)Pii = channel*(a) j (x̃)a hhPii
wherechannel*(c) = ! channel(c). The presence of multiple copies of spawners and
channels is harmless, as one haschannel*(c) j channel*(c)�= channel*(c), while mul-
tiple copies of the channel may be garbaged collected by structural congruence:

channel*(c) j channel(c)� channel*(c):
It is also worth pointing out that an implementation of channels as replicated ambients
would not work in MA, because inputs and outputs could get lost in distinct copies of the
channel ambient. Since our representation does not requiremobility into the channel, this
problem goes away in our case.

4.3 Parent-child channeled communication à la Seal Calculus

Both the techniques we have illustrated can be extended to allow value exchanges between
processes located in Boxed Ambients at different nesting levels. The extension yields a set
of communication protocols that are similar to those given as primitive in the Seal Calcu-
lus [Vitek and Castagna 1999]. In the Seal Calculus, one can express output prefixes of the
form cnhMi requesting a write on the channelc residing in ambient (or seal)n. Dually, the
input prefixc"(x) denotes a read request on the channelc residing in the parent ambient.
Upward output and downward input on local channels may be expressed in similar ways.
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All these communication protocols can be expressed in the core calculus of Boxed Ambi-
ents: we focus on asynchronous communication, and detail the cases of downward output
and upward input.

The intended reduction of a downward output is as follows:

cnhMi j n[[c(x)P j Q℄℄ �! n[[Pfx := Mg j Q℄℄ :
The channelc is local ton, and the outer process writes onc. There are several ways that
the reduction can be captured with the existing constructs:we choose a definition that make
the physical localization ofc explicit. The channelc is represented as thechannel(c), the
input prefixc(x) as a read onc:

c(x)P 4= channel*(c) j (x)cP:
Now, however, an output onc cannot be represented directly as we did above for theπ-
calculus channel, becausec is located inton. To capture the desired behavior we can rely
on mobility:

cnhMi 4= (νp)p[[ in n:in c:hMi" ℄℄ :
The outputM is encapsulated into a “pilot” ambientp, which entersn and thenc to deliver
the message (the name of the pilot ambientp must be fresh). Then, the Seal Calculus
processcnhMi j n[[c(x)P j Q℄℄ is encoded as follows:(νp)p[[ in n:in c:hMi" ℄℄ j n[[channel*(c) j (x)cP j Q℄℄=) n[[channel*(c) j c[[ !(x)hxi j (νp)p[[0℄℄ ℄℄ j Pfx := Mg j Q℄℄�= n[[channel*(c) j Pfx := Mg j Q℄℄ :
Remote inputs are slightly more complex, since the pilot ambient must fetch the output
and bring it back. The intended reduction ischMi j n[[c"(x)P j Q℄℄ �! n[[Pfx := Mg j Q℄℄ ,
where the input from withinn is defined as follows:

c"(x)P 4= (νp)p[[out n:in c:(x)"out c:in n:hxi ℄℄ j (x)pP:
Note that the definition depends on the namen of the enclosing ambient: in a formal
definition, one needs to keep track of this information, and extend the encoding of the
asynchronousπ calculus with the following clauses:hhcmhbiiin = (νp)p[[ in m:in c:hbi" ℄℄hhc"hbi iin = (νp)p[[out n:in c:hbi" ℄℄hhcm(x)Piin = (νp)p[[ in m:in c:(x)"out c:out m:hxi ℄℄ j (x)p hhPiinhhc"(x)Piin = (νp)p[[out n:in c:(x)"out c:in n:hxi ℄℄ j (x)p hhPiinhha[[P℄℄ iin = a[[ hhPiia ℄℄
5. TYPED BOXED AMBIENTS

As we stated at the outset, one of the goals in the design of Boxed Ambients is to enable
simple and effective static analyses of ambient and processbehavior, while preserving the
expressive power of the calculus. The definition of the type system, given in this section,
proves that the design satisfies these requirements. Ambient and process types are defined
simply as two-place constructors describing the types of the exchanges that may take place
locally and with the enclosing context.
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5.1 Types and Typed Syntax

The typed syntax is derived directly from the untyped version of the calculus by associating
types with names and variables introduced by restrictions and input prefixes. Accordingly,
we henceforth denote restricted processes by(νn: A)P and input processes by(x̃: W̃)P,
whereA is an ambient type and̃W is a (tuple) expression type to be defined next. The
relations of structural congruence and reduction extend tothe typed syntax as expected.

The structure of types is defined by the following productions.

Expression Types W ::= Amb[E;F ℄ ambientj Cap[E℄ capability

Exchange Types E;F ::= shh no exchangej W1��� ��Wk tuple,k> 0

Process Types T ::= Pro[E;F℄ composite exchange

The structure of types is superficially similar to that of companion type systems for the
Ambient Calculus [Cardelli and Gordon 1999b; Cardelli et al. 1999]. In [Cardelli and
Gordon 1999b] (and the core system of [Cardelli et al. 1999]), ambients and processes
have types of the formAmb[E℄ and [E℄, respectively, whereE denotes the type of local
exchanges, and the typing rules ensure that processes with type [E℄ may only be enclosed
in ambients of typeAmb[E℄. Capabilities, in turn, have types of the formCap[E℄, and the
type system guarantees that exercising a capability with this type will only unleash (i.e.
open ambient enclosing) processes withE-exchanges. Instead, our types are interpreted as
follows:

– Amb[E;F ℄: ambients that enclose processes of typePro[E;F℄,
– Cap[E℄: capabilities exercised within ambients withE upward exchanges,

– Pro[E;F ℄: processes with local and upward exchanges of typesE andF , respectively.

Notice that capability types disregard the local exchangesof the ambients where they are
exercised: this is possible because exercising a capability within an ambient may only
cause that ambient to move, and the safety of ambient mobility may be established regard-
less of the ambient’s local exchanges. As for process types,we give the intuitions about
composite exchange with few examples:

– (x:W)hxi : Pro[W;shh℄. W is exchanged (read and written) locally, and there is no
upward exchange.

– (x:W)"hxin : Pro[shh;W℄. W is exchanged (i.e. read from) upward, and then written to
ambientn. There is no local exchange, hence the typeshh as the first component of the
process type. For the typing to be derivable, one needsn :Amb[W;E℄ for some exchange
typeE.

– (x:W)"(y:W0)(hxin j hyi) : Pro[W0;W℄. W is exchanged (read from) upward, and then
forwarded to ambientn, whileW0 is exchanged (read and written) locally. Again, for the
typing to be derivable, one needsn : Amb[W;E℄ for some exchange typeE.

– (x:W)hxi" : Pro[W;W℄. W is read locally, and written upward.

These simple examples give a flavor of the flexibility of the communication primitives:
like mobile ambients, boxed ambients are “places of conversation”, but unlike ambients
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they allow more than just one “topic” of conversation. Specifically, every ambient may
exchange values of different types with any of its children,as long as the exchange is
directed from the ambient to the children. Instead, upward communication is subject to
more constraints: all the children must agree on the (unique) type of exchange they may
direct to their parent.

5.2 Typing Rules

The judgments of the type system have two forms:Γ ` M : W, read “expression M has
type W underΓ”, and Γ ` P : T, read “process P has type T underΓ”, where Γ is a
type environment mapping names and variables into types. Inaddition, we introduce the
following definition of subtyping.

DEFINITION SUBTYPING. Exchange subtyping, noted6, is the smallest preorder re-
lation over exchange types such thatshh6E for every exchange type E. Process subtyping
is the smallest preorder relation6 over process types such thatPro[E;F ℄ 6 Pro[E0;F ℄ if
and only if E6 E0.
The intuition for subtyping is simple: a silent exchange canalways be subsumed by a
non-silent exchange. However, to ensure type soundness, the subtyping relations must
be defined and used with care in the typing rules. Remarkably,the definition disallows
seemingly harmless forms ofin depthsubtyping over capability types, such asCap[shh℄�Cap[E℄, and further relations over process types, likePro[E;shh℄6 Pro[E;F ℄. In addition,
the typing rules will allow uses of subsumption only in conjunction with process subtyping,
notwith exchange subtyping. To motivate these restrictions, we first need to introduce the
typing rules. Below, we discuss the most interesting ones.

5.2.1 Typing of Expressions.Rules (IN) and (OUT), below, define the constraints for
ambient mobility to be safe, and explain why capability types are built around a single
component.

(IN)

Γ `M : Amb[F;E℄ F 0 6 F

Γ ` in M : Cap[F 0℄ (OUT)

Γ `M : Amb[E;F ℄ F 0 6 F

Γ ` out M : Cap[F 0℄
The intuition is as follows: take a capability, sayin n, and suppose that this capability is
exercised within ambient, say,m. If mhas upward exchanges of typeF 0, thenin n :Cap[F 0℄.
Now, if n : Amb[F;E℄, in order for the move ofm into n to be safe, one must ensure that
the typeF of the local exchanges ofn be equal to the typeF 0 of the upward exchanges of
m. In fact, the typing can be slightly more flexible, for ifm has no upward exchange, then
F 0 = shh 6 F , andm may safely move inton. Dual reasoning applies to the (OUT) rule:
the upward exchanges of the exiting ambient must have type6-compatible with the type
of the upward exchanges of the ambient being exited. The (PATH) rule has the same format
as the corresponding rule in type systems for Mobile Ambients, namely:

(PATH)
Γ `M1:Cap[F ℄ Γ `M2:Cap[F℄

Γ `M1:M2 : Cap[F ℄



Boxed Ambients � 17

5.2.2 Typing of Processes

(DEAD)

Γ ` 0 : [E;F ℄ (NEW)

Γ;n : W ` P : [E;F℄
Γ ` (νn:W)P : [E;F ℄ (PARALLEL )

Γ ` P : Pro[E;F ℄ Γ `Q : Pro[E;F ℄
Γ ` P j Q : Pro[E;F℄

(SUBSUM PROC)

Γ ` P : T T 6 T 0
Γ ` P : T 0 (REPLICATION)

Γ ` P : Pro[E;F ℄
Γ ` !P : Pro[E;F℄

(PREFIX)

Γ `M : Cap[F ℄ Γ ` P : Pro[E;F ℄
Γ `M:P : Pro[E;F ℄ (AMB)

Γ `M : Amb[E;F ℄ Γ ` P : Pro[E;F ℄
Γ `M[[P℄℄ : Pro[F;G℄

(DEAD), (NEW), (PARALLEL ), (REPLICATION) and the subsumption rule are standard. In
the (PREFIX) rule, the typing of the capabilityM ensures, via the (IN), (OUT), and (PATH)
rules introduced earlier, that each of the ambients being traversed as a result of exercisingM
have local exchanges of type compatible with the upward exchanges of the current ambient
(that is, the one moved byM). The rule (AMB) establishes the conditions that must be
satisfied forP to be safely enclosed inM: specifically, the exchanges ofP must have the
same typesE andF as the exchanges declared forM. In fact,P could be locally silent, and
the typing ofM[[P℄℄ be derivable fromΓ ` P : Pro[shh;F ℄ by subsumption. In addition, if
Γ `M : Amb[E;shh℄, andΓ ` P : Pro[E;shh℄, then by (AMB) Γ `M[[P℄℄ : Pro[shh;G℄, and
then by subsumptionΓ `M[[P℄℄ : Pro[F;G℄, for anyF andG.

(INPUT ?)

Γ; x̃:W̃ ` P : Pro[W̃;E℄
Γ ` (x̃:W̃)P : Pro[W̃;E℄ (OUTPUT ?)

Γ ` M̃ : W̃ Γ ` P : Pro[W̃;E℄
Γ ` hM̃iP : Pro[W̃;E℄

(INPUT M)

Γ `M : Amb[W̃;E℄ Γ; x̃:W̃ ` P : T

Γ ` (x̃:W̃)MP : T

(OUTPUT M)

Γ ` N : Amb[W̃;E℄ Γ ` M̃ : W̃ Γ ` P : T

Γ ` hM̃iNP : T

(INPUT ")

Γ; x̃:W̃ ` P : Pro[E;W̃℄
Γ ` (x̃:W̃)"P : Pro[E;W̃℄ (OUTPUT ")

Γ ` M̃ : W̃ Γ ` P : Pro[E;W̃℄
Γ ` hM̃i"P : Pro[E;W̃℄

The rules for input/output are not surprising. We use the notationΓ ` M̃ : W̃ for Γ `M1 :
W1; : : : ; Γ `Mk : Wk. In all cases, the rules require that the type of the exchanged values
comply with the local exchange type of the target ambient, asexpected. Interestingly,
the rules for downward input/output, (INPUT M) and (OUTPUT M), do not impose any
constraint on the types of the local and upward exchanges.

As we noted earlier, it would be tempting to extend the subtyping relations, and their use
in the type system in several ways. Unfortunately, such extensions are unsound. We first
show that subtyping between upward silent and upward non-silent processes is unsound
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when combined with the typing of parallel composition. To motivate, consider allowing
the relationPro[E;shh℄6 Pro[E;F ℄, for F 6= shh. Then take the ambienta[[ in b:0 j hMi"P℄℄
with, M :W for some typeW, and note thatin b:0can be typed asPro[shh;shh℄ regardless of
the type ofb. By the additional subtyping rule, we could then type the parallel composition
asPro[shh;W℄. However, ifb : Amb[W0;F ℄ for someW0 6= W, the ambienta could move
into b and have unsound upward exchanges after the move. By disabling subtyping on the
upward component of process types, instead,a[[ in b:0 j hMi"P℄℄ does not type check as the
types that can be deduced for the processin b:0 may only be of the formPro[E ;W0℄ orPro[E;shh℄ for some exchangeE. The same example shows that subtyping for capability
types is unsound. To see the problem, note that by allowingCap[shh℄ � Cap[W℄, one
derivesin b : Cap[shh℄, hencein b : Cap[W0℄ by subsumption, with the same problem we
just explained. Finally, any form of non-trivial subtypingambient types is clearly unsound,
as ambients are read/write resources, and consequently their types must be invariant in the
component exchange types.

The type system rules ensures that all process exchanges, inside and across ambient bound-
aries, are type correct. This follows directly from the subject reduction property stated
below.

THEOREM SUBJECT REDUCTION. If Γ ` P : T and P�!Q, thenΓ `Q : T.

PROOF. A corollary of Theorem 7.2.

6. TYPED MOBILITY AND EXCHANGES – MOBILE VERSUS BOXED AMBIENTS

Having defined the type system, we now look at the impact of typing on mobility and
communication, and contrast it with mobility and communication in Mobile Ambients.

We already remarked that mobility is orthogonal to the localexchanges within ambients.
Thus, the types of the local exchanges of an ambient do not affect the ambient’s capability
to move. On the other hand, the presence of upward exchanges does enforce somewhat
severe constraints over ambient mobility. Specifically, ambients with upward exchanges of
typeW may only traverse ambients whose local exchanges have typeW.

However, when we compare the flexibility of mobility and communication in Boxed
Ambients versus the corresponding constructs provided by Mobile Ambients, we find that
the two calculi are essentially equivalent. We study this relationship in the rest of this sec-
tion. We start by sketching a translation of BA into MA. The existence of such a translation
should not come as a surprise: by allowing ambient dissolution, the open capability is, at
least in principle, powerful enough to code communication across boundaries (indeed, in
Section 2 we argued that this ability to dissolve boundariesis too powerful and hard to
control, and we have introduced communication across boundaries to dispense with it).
However, when we look at the translation more closely, we finda number of subtle prob-
lems, for which we were able to find only partial solutions. Aswe shall see, a more
satisfactory encoding can be found for the asynchronous version of BA (cf. Section 8).

6.1 From boxed to mobile ambients

The idea of the translation draws on Gonthier’s coaleshing encoding of theπ-calculus from
[Cardelli and Gordon 1999b]. We represent each boxed ambient with a corresponding MA
ambient, and provide the latter with a local buffer:hhn[[P℄℄ ii = n[[h[[ ! open pk ℄℄ j hhPii ℄℄ ,
wherehhPii is the translation ofP. The buffer opens a packetpk which is intended to carry
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input or output inside the buffer itself. The namesh andpk are “well-known”, i.e. they are
global reserved names which are used uniformly2 for all ambients (and the top level). This
yields a translation in which the bufferh is used to implement all the local and non-local
exchanges involvingn in the source term. Specifically, a local input operation within an
ambientn generates an input packet that enters the buffer associatedwith n, reads an input
after having been opened, then creates a return packed that exits the buffer and continues
with the rest of the process:hh(x)Piin = (νk)( pk[[ in h:(x)k[[out h:hhPiin ℄℄ ℄℄ j open k )
The behavior of an output operation is captured in the same way. The idea carries over
directly to the case of downward exchanges. It only requiresa two-step move for the pack-
ets: first into the ambient, then into associated buffer. Thecase of upward communication
is similar. In this case, however, we need to know the namen of the enclosing ambient.hh(x)"Piin = (νk)( pk[[out n:in h:(x)k[[out h:in n:hhPiin ℄℄ ℄℄ j open k )hh(x)mPiin = (νk)( pk[[ in m:in h:(x)k[[out h:out m:hhPiin ℄℄ ℄℄ j open k )
A problem with this encoding is that the translation allows synchronizations that are not
possible in the source term: specifically, the translation of (x)nP j n[[n[[hqi"Q℄℄ ℄℄ has a
reduction to the translation ofPfx := qg j n[[n[[Q℄℄ ℄℄ .

We have not been able to find encodings that solve this problem: in fact, for this and other
encodings we have investigated, the inherent non-determinism of the reductions for value
exchanged, combined with a synchronous semantics, appear to require a choice operator
to be modeled in a satisfactory way in MA. Of course we do not exclude that a satisfactory
encoding for the synchronous calculus can be found. On the other hand, the problems we
outlined do suggest that the new form of communication is computationally interesting in
itself, irrespective of its import on security.

6.2 From mobile to boxed ambients

Because of the presence ofopen in MA, a translation of Mobile Ambients in our calculus
appears problematic, if at all possible. Nevertheless, we may still argue that typed com-
munication and mobility in MA are captured with essentiallyno loss of expressive power
in BA. To see that, it is instructive to note that the type system of Section 5 section can
be specialized to only allow upward-silent ambient types ofthe formAmb[E;shh℄, thus
effectively inhibiting all forms of upward exchanges (thisfollows from the format of the
(AMB) rule). The specialized type system provides full flexibility for mobility, while still
allowing flexible forms of communication. In particular:

– Mobility for Boxed Ambients is as flexible asin=out-mobility for typed Mobile Ambients.
This follows by the format of the (IN) and (OUT) rules. Capabilities exercised within
upward silent ambients have typeCap[shh℄, andshh 6 F for every F : consequently,
upward silent ambients have full freedom of moving across ambient boundaries. Fur-
thermore, since Boxed Ambients may not be opened, they may move regardless of the
local exchanges of the ambients they traverse. As a consequence, with the specialized

2This uniform use of the same name is problematic in extendingthe translation to the typed cases. The problem
is easily solved, however, by choosing names indexed by the types of their local exchanges (cf. Section 8.1).
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type system, an ambient can move independently of its type, and of the type of its (in-
termediate and final) destinations.

– Communication is as flexible as in the Ambient Calculus, evenin the absence of upward
exchanges. “Upward silent” does not imply “non-communicating”: an upward-silent
ambient may very well move to a target ambienta, and communicate with it by means
of downward reads and writes bya itself. Indeed, an ambient may access all of its
children’s anonymous channels as well as those of any incoming ambient, and all these
exchanges may be of different types. In addition, the ambient may hold local exchanges
of yet a different type. The encoding of channels given § 4.2 can also be used for
encoding local exchanges of different types: the ambientc[[ !(x:W)hxi ℄℄ can be viewed
as a local channelc of typeW, whose input output operators are(x:W)c andhMic: the
type system allows (encoded) channels of different types tobe used in the same ambient.

Having illustrated the flexibility of the specialized type system, it is obvious that giving
up upward exchanges is a problem: for instance, we would not be able to type-check pilot
ambients, such as those used in the encoding of the channeledcommunications of § 4.3,
whose function is to silently carry a process to a certain destination where the process
eventually delivers its output to and/or receives input from its enclosing context. We solve
the problem in the next section, where we study a refined type system that supports a more
flexible, and type safe, integration of upward communication and mobility.

7. MODED TYPING

The design of the new type system is based on the observation that ambients enclosing
upward-silent processes have no way to interfere with the local exchanges of their en-
closing environments: as a consequence, such ambients may safely move across other
ambients, regardless of the types of the latter. The new typesystem uses type modifiers to
characterize the computation progress of processes and, inparticular, to identify the silent
and non-silent phases of the computation of the processes enclosed within ambients. The
resulting typing technique, which we callmoded typing, provides more precise information
about ambient exchanges and, based on that, more flexible typings for several interesting
systems, notably for the channels encoding of § 4.3 and for the encoding of the distributed
language in Section 10.

7.1 Moded Types

The new type system is built aroundmodedtypes defined by extending the structure of the
types of Section 5 (henceforthregular types) as follows:

Expression Types W::= Amb[E;F℄ j Cap[E℄ j AmbÆ[E;F ℄
Exchange Types E::= shh jW1��� ��Wk

Process Types T::= Pro[E;F ℄ j Pro[E;�F ℄ j Pro[E;ÆF ℄ j Pro[E;MF ℄
Capability types and ambient types of the formAmb[E;F ℄ are exactly as in Section 5.
Processes enclosed by regular ambient types have regular process typesPro[E;F℄, deduced
by the same rules. On the other hand,modedambient types of the formAmbÆ[E;F℄ are
associated with “pilot” ambients (in the sense we gave in Section 4.3), whose enclosed
processes are assigned moded types, according to the following rationale:
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– Pro[E;�W℄: upward silent processes with local exchanges of typeE. The typeW signals
that processes with this type may safely be composed in parallel with processes with
upward exchanges of typeW.

– Pro[E;ÆW℄: processes with local exchanges of typeE and upward exchanges of typeW.
The upward exchanges are temporarily inactive because the process is moving.

– Pro[E;MW℄: processes with local exchanges of typeE, that evolve into processes of typePro[E;ÆW℄ orPro[E;MW℄ after performing upward exchanges of typeW.

The syntax allows the formation of process types of the formPro[E;�shh℄,Pro[E;Æshh℄ andPro[E;Mshh℄: even though these types do not fit the above intuitions, and could safely be
dispensed with, they are convenient in stating definitions and typing rules. The following
notation is assumed throughout:µ is a metavariable that ranges over the modesÆ;� andM,
while ? is a metavariable that ranges over the setfÆ;�;Mg and the blank character. In other
words,µF denotes any of the exchangesMF;�F;ÆF , while ?F denotes eitherµF or F . We
sometimes use “” to denote an arbitrary exchange type.

To illustrate the use of the modes associated with process types, consider the following
process, whereM : W: (x:W0)hxim j in n:hMi"out n : Pro[W0;ÆW℄. The left component
of this process does not have upward exchanges. Consequently, if m : Amb[W0;E℄ for
someE, we can freely choose a type for the upward exchanges, and deduce(x:W0)hxim :Pro[W0;�W℄. The right component, instead, does have upward exchanges,but is currently
silent because the output prefix is blocked by the move: thusin n:hMi"out n : Pro[W0;ÆW℄,
provided thatn : Amb[W;W00℄. The typePro[W0;ÆW℄ can also be assigned to the par-
allel composition, which is indeed currently silent. Interestingly, the typePro[W0;ÆW℄
cannot be assigned to the continuation processhMi"out n (nor to the parallel composi-
tion (x:W0)hxim j hMi"out n), because, after consuming the capabilityin n, the upward
exchanges of this process become active: at this stage, a legal type for the process isPro[W0;MW℄, signaling that after the upward exchange the process enters again an upward-
silent phase.

As the example shows, processes that are subject to moded typing may have different
types (in fact, different modes, with the same type) at different stages of their computation.
This does not break subject reduction, as it would seem. In fact, processes with moded
types may be involved in a reduction only when enclosed within an ambient: the mode
of the enclosed process changes according to the process’ progress, but the type of the
ambient itself is invariant through the reduction.

A final remark is in order to explain the role of themodedambient typesAmbÆ[E;F ℄.
These types are needed to control the behavior of ambient processes enclosed within
upward-silent ambients. In particular, for the system to besound, we need to make sure
that non-silent ambients never exit their parent during theupward-silent phases of the lat-
ter. Moded process types, by themselves, do not help. To see the problem, assume that
an ambient, saya, is currently silent and moving across ambients with local exchanges of
type, say,W. Also assume thata contains a non-silent ambientb with upward exchanges
of typeW0 incompatible withW. As long asb is enclosed intoa, its upward exchanges
do not interfere with the local exchangesW of the ambients traversed bya: but if b exits
a, then its upward exchanges may cause a type mismatch. The typesAmbÆ[E;F ℄ come to
the rescue, as the typing rule ensure that any ambient with such type can only be exited by
ambients which have no upward exchanges.
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7.2 Subtyping

The modes associated with the new class of processes induce aricher subtype structure for
process types.

DEFINITION PROCESSSUBTYPING.
Let6 denote the relation of exchange subtyp-
ing introduced in Definition 5.1. Process sub-
typing is the smallest reflexive and transitive re-
lation such thatPro[shh;µF ℄ 6 Pro[E;µF ℄ and
in addition, satisfies the diagram on the right
for all E and F.

Pro[E;MF ℄% -Pro[E;F ℄ Pro[E;ÆF ℄- %Pro[E;�F ℄
The intuition underlying process subtyping is as follows. As we said, the typePro[ ;�E℄

identifies upward-silent processes that move their enclosing ambient only through locations
with local exchanges of typeE. Clearly, any such process can always be considered as a
process of typePro[ ;E℄ that is, as a process whose upward exchanges are of typeE and
that moves the enclosing ambient only through locations with local exchanges of typeE.
In fact, it can also be considered as a process of typePro[ ;ÆE℄, i.e. a temporarily upward-
silent process whose upward exchanges will become active only when its enclosing ambi-
ent is in a context with local exchanges of typeE. The two typesPro[ ;E℄ andPro[ ;ÆE℄
are incompatible, as processes of the first type may not be assumed to be (even temporarily)
upward-silent, while processes of the second type may move across ambients regardless of
the types of the latter (and therefore across ambients whoselocal exchanges are of a type
different fromE). On the other hand, the two types have a common super-type, i.e. the
typePro[ ;ME℄ which identifies processes that may be currently upward-active, and whose
enclosing ambients are guaranteed to reside in contexts with local exchanges of typeE.

7.3 Moded Judgments and Typing Rules

The additional expressive power of the new type system results from a more flexible typ-
ing of capabilities, which in turn is enabled by the modes associated with process types.
Capabilities are typed in two modes: a “regular” mode, as in the type system of Section
5, and a “silent” mode in which some of the constraints on mobility can be lifted without
consequences on safety.

The silent mode for typing capabilities is accounted for by anew form of judgment,
denoted byΓ Æ̀M : Cap[E℄, which is useful when typing capability paths: if typed in silent
mode, every intermediate move on the path may safely disregard the type of the ambient
traversed along the move. The new type system includes all the typing rules from § 5, and
new rules for deriving silent typings of capabilities, and moded types for processes (the
complete set of rules is collected in Appendix A).

7.3.1 Typing for Expressions.We start with the rules for capabilities built around
moded-typed ambients.

(IN Æ)

Γ `M : AmbÆ[F;E℄ F 0 6 F

Γ ` in M : Cap[F 0℄ (OUT Æ)

Γ `M : AmbÆ[E;F ℄
Γ ` out M : Cap[shh℄



Boxed Ambients � 23

The (IN Æ) rule has the exact same format as the corresponding (IN) rule of Section 5.
Instead, for the reasons we explained earlier, exiting a pilot ambient requires the exiting
ambient to be upward silent. The next rules derive moded judgments for capabilities.

(POLYCAP)
Γ `M : Cap[E℄
Γ Æ̀M : Cap[E℄ (POLYPATH)

Γ Æ̀M1 : Cap[E1℄ Γ Æ̀M2 : Cap[E2℄
Γ Æ̀M1:M2 : Cap[E2℄

By (POLYCAP), well-typed capabilities type check also under silent typing. In addition,
capability paths can be typed with more flexibility in silentmode. According to the (POLY-
PATH) rule, one may disregard the exchange types of the ambients traversed at intermediate
steps on the path (as no exchanges take place during those steps) and only needs to trace
precise information on the last move on the path. This effectively corresponds to interpret-
ing Cap[E℄ as the type of capability paths whoselast move requires upward exchanges of
typeE. The silent typing of capabilities we just illustrated is used in conjunction with the
typing of processes in prefix form, to derive moded types as wediscuss next.

7.3.2 Typing of Processes.“Regular” types for processes are deduced by the same
typing rules introduced in § 5. Moded process types are derived by new rules: we start
with the rules for prefixed processes of the formM:P.

(PREFIX Æ)

Γ Æ̀M : Cap[G℄ Γ ` P : Pro[E;ÆF ℄
Γ `M:P : Pro[E;ÆF ℄ (PREFIX M)

Γ Æ̀M : Cap[F ℄ Γ ` P : Pro[E;MF ℄
Γ `M:P : Pro[E;ÆF ℄

The (PREFIX Æ) rule is one of the cornerstones of the moded typing system. It lifts the
restriction, distinctive of the (PREFIX) rule of Section 5, that the exchange typeG in the
type ofM must be compatible with the typeF of the upward exchanges ofP. As a con-
sequence,M may be exercised irrespective of the typeF . This is only sound ifP has aÆ-moded type, for in that caseP is itself a prefix, and hence upward silent whenM is ex-
ercised. On the other hand, in (PREFIX M) P may be have active upward exchanges, and
thus the rule imposes the same constraints as the regular (PREFIX) rule, by requiring the
upward exchanges ofM andP to be consistent (equal). In other words, thelast move of
the prefix must be compatible with the upward exchanges that the process may have right
after. Notice also that, by subsumption, (PREFIX M) assigns moving types to processes of
the formM:P with P of typePro[E;F℄.

(PREFIX �)

Γ `M : Cap[F℄ Γ ` P : Pro[E;�F ℄
Γ `M:P : Pro[E;�F ℄

The rule (PREFIX �) types silent processes running in a context whose upward exchanges
(if any) have typeF . In this case, the regular typing of the pathM guarantees thatP is type
compatible with the local exchanges of the ambients hit on the move.

The next two rules apply to parallel compositions: two rules, and an appeal to subsump-
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tion, capture all cases.

(PARALLEL µ LEFT)

Γ ` P : Pro[E;µF ℄ Γ `Q : Pro[E;�F ℄
Γ ` P j Q : Pro[E;µF ℄ (PARALLEL µ RIGHT)

Γ ` P : Pro[E;�F ℄ Γ `Q : Pro[E;µF ℄
Γ ` P j Q : Pro[E;µF℄

If P andQ are upward-silent (i.e. with upward exchanges�F), thenP j Q is also upward
silent (with upward exchanges�F). P j Q can be typed as moving (that is, with upward
exchangesÆF), only when(i) either one ofP or Q is moving and(ii) the other process is
upward silent and type compatible with the exchanges of the moving process. The same
reasoning applies to the other modes. Two rules are needed tohandle the two cases when
the moving subprocess isP or Q.

The rules for the inactive process and processes built from restrictions present no sur-
prise. This is not true of replicated processes: given the congruence law !P� P j ! P, the
reasoning we just made about parallel composition implies that the only mode derivable
for a replicated process !P is the silent mode, provided thatP is also silent. Consequently,
the only two possible types for a replicated process are a “regular” type (deduced by the
(REPLICATION) rule of Section 5) or a silent type, derived as follows:

(REPL �)

Γ ` P : Pro[E;�F ℄
Γ ` !P : Pro[E;�F ℄

For processes in ambient form we need new rules. The rule (AMB) from § 5 is modified
(see Appendix A) to deduce upward-silent types, compatiblewith all the other modes. Two
new rules handle the cases processes enclosed in pilot ambients, depending on whether
such processes are moving or not.

(AMB M )

Γ `M : AmbÆ[E;F ℄ Γ ` P : Pro[E;MF ℄
Γ `M[[P℄℄ : Pro[F;�H℄ (AMB Æ )

Γ `M : AmbÆ[E;F ℄ Γ ` P : Pro[E;ÆF ℄
Γ `M[[P℄℄ : Pro[G;�H℄

In (AMB M) P is not moving, and the rule imposes type constraints equivalent to those im-
posed by the (AMB) rule: this is needed for soundness, as the judgmentΓ ` P : Pro[E;MF ℄
could be derived by subsumption fromΓ ` P : Pro[E;F ℄. Instead, ifP is moving, as in
(AMB Æ), its upward exchanges are blocked by the move, and therefore the type of the
local exchanges of the processM[[P℄℄ can be chosen arbitrarily, as the unrestrainedG in the
conclusion indicates.

We conclude with the rules for input-output.

(INPUT ? µ)

Γ; x̃:W̃ ` P : Pro[W̃;µF ℄
Γ ` (x̃:W̃)P : Pro[W̃;µF ℄ (OUTPUT ? µ)

Γ ` M̃ : W̃ Γ ` P : Pro[W̃;µF℄
Γ ` hM̃iP : Pro[W̃;µF ℄

(INPUT " M)

Γ; x̃:W̃ ` P : Pro[F;MW̃℄
Γ ` (x̃:W̃)"P : Pro[F;MW̃℄ (OUTPUT " M)

Γ ` M̃ : W̃ Γ ` P : Pro[F;MW̃℄
Γ ` hM̃i"P : Pro[F;MW̃℄
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Local communications are not affected by modes: it is the mode of the continuation process
that determines the moded type of the input/output process itself. A process that starts with
an upward exchange has a non-moving type, for obvious reasons, and its type depends on
the type of the continuation. If the continuation is of typePro[F;�W℄ orPro[F;W℄, then the
process —which is clearly not silent— can be typed asPro[F;W℄. These cases are captured
by the rule (INPUT/OUTPUT ") of § 5 (together with subsumption for the casePro[F;�W℄).
If instead the continuation has typePro[F;MW℄ orPro[F;ÆW℄, as in (INPUT/OUTPUT "M),
we can just say that the process may eventually evolve into a moving process, hence the
typePro[F;MW℄ in the conclusion.

Finally, downward communications are not affected by whether the target ambient is
moded or not. The rules from § 5 work just as well for the new system: two new rules,
with the same format, handle the case when target ambient is moded:

(INPUT M Æ)

Γ `M : AmbÆ[W̃;E℄ Γ; x̃:W̃ ` P : T

Γ ` (x̃:W̃)MP : T

(OUTPUT M Æ)

Γ ` N : AmbÆ[W̃;E℄ Γ ` M̃ : W̃ Γ ` P : T

Γ ` hM̃iNP : T

As a final remark, note that in all the output rules, the typingof the expressionM being
output is subject to “regular” typing. As a consequence, capability paths may be commu-
nicated only if well-typed under regular typing. This restriction could be lifted, had we
employed capability types with modes, instead of typing capabilities with moded judge-
ments. In fact, adding capability types with modes would indeed result into a slightly more
expressive system (one which would allow “moded” paths to becommunicated). On the
other hand, the current solution has the advantage of requiring minimal changes to the syn-
tax of expression types, those occurring in the typed syntax, and for this reason it had our
preference.

7.4 Subject Reduction

Subject reduction for the new system is proved following thestandard technique: a detailed
proofs is in Appendix B.

THEOREM SUBJECT REDUCTION. If Γ ` P : T and P�!Q thenΓ `Q : T.

We illustrate the moded-type system at work on two examples.First consider the following
process, where we use the primitive typesint andbool for convenience:(x : int)P j b[[h5i" in a℄℄ j a[[ (x : bool)Q℄℄
This process is clearly type safe (insofar asP andQ are safe), as the upward exchange
in b is compatible with the local exchanges of typeint occurring at top level. Once the
exchange is consumed,b becomes upward silent, and may safely move intoa, even though
a hasboolexchanges. With the the system of Section 5, the process is ill-typed. To see that,
first observe that the ambient namesa andb may only be assigned the typesAmb[bool; ℄
andAmb[ ; int℄. Then, for the process to type-check, we would need to derivethe typingh5i"in a : Pro[ ; int℄. This fails because the move intoa violates the type constraint that
requiresint to be compatible with the local exchanges ofa.

Instead, with the moded type system one can deriveh5i"in a :Pro[ ;Æint℄, provided thatb
is assigned a pilot ambient type. Below we give a type derivation for b[[h5i"in a℄℄ , assuming
thatΓ is the type environmenta : Amb[bool; ℄;b : AmbÆ[ ; int℄.
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Γ ` b : AmbÆ[ ; int℄ Γ ` 5 : int

Γ ` a : Amb[bool; ℄
Γ ` in a : Cap[bool℄ Γ ` 0 : Pro[ ;Æint℄

(PREFIX Æ)
Γ ` in a:0 : Pro[ ;Æint℄

(SUBSUMPTION)
Γ ` in a:0 : Pro[ ;Mint℄

(OUTPUT "M)
Γ ` h5i"in a:0 : Pro[ ;Mint℄

(AmbM)
Γ ` b[[h5i"in a℄℄ : Pro[int; ℄

Notice, further, that after the upward exchange and the moveinto a, the residual process
b[[ ℄℄ can be given any type, in particular the typePro[bool; ℄ needed to type-check the
occurrence of this process withina.

As second example, we look at the typed version of the channelencoding of Section 4.3.
In the typed case, the encoding is defined as follows (see Section 4.3):hhcmhxiiin = (νp:AmbÆ[shh;W℄)p[[ in m:in c:hxi" ℄℄hhc"hxi iin = (νp:AmbÆ[shh;W℄)p[[out n:in c:hxi" ℄℄hhcm(x:W):Piin = (νp:AmbÆ[W;W℄)p[[ in m:in c:(x:W)"out c:out m:hxi ℄℄ j (x:W)p hhPiinhhc"(x:W):Piin = (νp:AmbÆ[W;W℄)p[[out n:in c:(x:W)"out c:in n:hxi ℄℄ j (x:W)p hhPiin

Remarkably, the definition is independent of the types of thetwo ambientsm andn tra-
versed by the ambientp: this flexibility is enabled by the typing ofp as a pilot ambient.
We give a type derivation for the case of downward input as representative. With no loss
of generality, we make the following assumptions:Γ ` hhPiin:Pro[E;?F℄, with Γ a type
environment in whichm:Amb?[G;H℄;c:Amb[W;shh℄ and p:AmbÆ[W;W℄, andE;F;G and
H are arbitrary exchange types. We reconstruct a type derivation for the judgment:

Γ ` p[[ in m:in c:(x:W)"out c:out m:hxi ℄℄ : Pro[E;�F ℄:
This judgment is derived by (AMB Æ), provided that the process enclosed inp can be typed
with modeÆ, i.e. if

Γ ` in m:in c:(x:W)"out c:out m:hxi : Pro[W;ÆW℄:
This follows by (PREFIX Æ) from Γ Æ̀ in m:Cap[G℄ and

Γ ` in c:(x:W)"out c:out m:hxi : Pro[W;ÆW℄:
G is the type of the local exchanges inm, and moded typing allowsG to be any type, irre-
spective ofW (notice that this is would not be true without moded types as the judgement
Γ ` in c:(x:W)"out c:out m:hxi : Pro[W;W℄ is derivable only ifG6W). The last judgment
follows by (PREFIX M) from Γ Æ̀ in c:Cap[W℄ and from

Γ ` (x:W)"out c:out m:hxi : Pro[W;MW℄:
This judgment can be derived by (INPUT " M) from

Γ;x:W ` out c:out m:hxi:Pro[W;MW℄:
Again, we rely on moded typing: the whole process type-checks since the move that pre-
cedes the upward output routes the ambient into an environment with the right exchange
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type. Deriving the last judgment is not difficult. FromΓ;x:W Æ̀out m:Cap[H℄ and from
Γ;x:W ` hxi:Pro[W;ÆW℄, we haveΓ;x:W ` out m:hxi : Pro[W;ÆW℄. Again, moded types
are required here, asΓ;x:W ` out m:hxi : Pro[W;W℄ is not derivable.

Now, from the last judgment and fromΓ;x:W Æ̀out c:Cap[shh℄ an application of (PRE-
FIX Æ) yieldsΓ;x:W ` out c:out m:hxi:Pro[W;ÆW℄ as desired. To conclude, we obtain the
desired typing fromPro[W;ÆW℄6 Pro[W;MW℄, by subsumption and (INPUT " M).

8. ASYNCHRONOUS BOXED AMBIENTS

A calculus for distributed computation cannot rely on synchronousrendez-vousas the only
mechanism for process interaction and value exchange. Indeed, the fundamental role of
asynchronous primitives in distributed systems is well-understood (cf. [Fournet et al. 1996;
Cardelli 1999]), and motivated by widely agreed design principles and practical experience
with implementation [Bryce and Vitek 2001; Fournet et al. 2000].

As we noted in Section 3, asynchronous exchanges can be recovered in BA by recon-
sidering the semantics of the output process forms. In particular, we suggested two solu-
tions for making the outputhMiηP asynchronous: either code it by using continuation-less
outputs (so that the asynchronous outputhMiηP is encoded by the parallel compositionhMiη j P), or introduce the structural lawhMiηP� hMiη j P. The first solution allows
synchronous and asynchronous output to coexist, the secondsolution yields a purely asyn-
chronous calculus.

Both the alternatives have a fundamental problem, namely that splitting an output form
into a parallel composition has the effect of essentially defeating moded typing. Moded
typing is possible, and effective, only along a single thread, while the coding of asyn-
chronous output introduces parallel compositions and leaves no residual following an out-
put. In particular, withη =", hMiηP and hMiη j P are only equivalent under the type
system of § 5, not with moded types (thus subject congruence fails withhMi"P� hMi" j P
and moded typing).

To see the problem, consider the process(x : int)P j b[[h5i" in a℄℄ j a[[ (x : bool)Q℄℄ , whose
typing we studied in Section 7. If we takeh5i"in a and transform it as suggested above, the
process does not type check, as the typing ofb[[h5i" j in a℄℄ is not derivable, even under the
assumption thatb : AmbÆ[ ; int℄. The problem is with the rules for parallel composition,
which require the following typing to be derivable:in a:0 : Pro[ ;�int℄. This fails due to
the format of the (PREFIX �) rule, which has the same requirements as (PREFIX).

Fortunately, however, the problem is not a consequence of moded typing and asynchrony
being inherently incompatible. To see that, observe that inhMi"P the continuationP could
be typed with a mode independently of whether the prefix denotes synchronous or asyn-
chronous output. All that matters forP to receive a sound “moving” type is thathMi gets
delivered to the parent ambient before unleashingP: once delivered, whether or nothMi
also synchronizes with local input is irrelevant. Based on this observation, asynchronous
output and moded typing can be reconciled by resorting to a more careful definition of the
congruence law, namely, one in whichhMiηP� hMiη j P only if η 6=". Instead, when
η =", we re-state the congruence law as a reduction and make it location-aware so that the
output is delivered to the appropriate ambient:n[[hMi"P j Q℄℄ �! hMi j n[[P j Q℄℄ .

With this reduction, the problem with moded types is solved:an upward output followed
by a move, such ashNi"in n:P may safely be typed with modeM (based on the modeÆ for
the type ofin n:P) regardless of whether the output synchronizes or not.
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We can now define the asynchronous calculus formally. The (typed) syntax is unchanged,
as one can still interpret3 hMiη as the processhMiη0. Instead, the semantics is different, as
input and output prefixes synchronize only when the latter have null continuation. Table IV
summarizes the new top-level reductions, and the new congruence laws for asynchronous
communication.

Table IV Asynchronous reductions

Structural Congruence

(Struct Output) hM̃iηP � hM̃iη j P (η 6=")
Communication

(local) (x̃ : W̃)P j hM̃i �! Pfx̃ := M̃g
(input n) (x̃ : W̃)nP j n[[ hM̃i j Q℄℄ �! Pfx̃ := M̃g j n[[Q℄℄
(input") n[[ (x̃ : W̃)"P j Q℄℄ j hM̃i �! n[[Pfx̃ := M̃g j Q℄℄
(outputn) hM̃in j n[[P℄℄ �! n[[ hM̃i j P℄℄
(output") n[[hM̃i"P j Q℄℄ �! hM̃i j n[[P j Q℄℄

The relation of asynchronous reduction is obtained by replacing the communication re-
duction of Table III with the corresponding reductions in Table IV. Notice that the se-
mantics of the output formhMiηP is now truly asynchronous, asP is unleashed regardless
of whether there is a matching input process. To illustrate,consider again our running
example: with the asynchronous semantics, one has the following sequence of reductions(x : int)P j b[[h5i" in a℄℄ j a[[ (x : bool)Q℄℄ =) (x : int)P j h5i j a[[b[[ ℄℄ j (x : bool)Q℄℄
Interestingly, the new reductions are compatible, and sound, with the moded typing system.
Type soundness follows directly from the following two results (proved in Appendix B).

LEMMA SUBJECT CONGRUENCE. Assumeη 6=". Then,Γ ` hMiηP : T if and only if
Γ ` hMiη j P : T, where both judgements are derived in the system of Section7.

THEOREM SUBJECT REDUCTION IN THE ASYNCHRONOUSCALCULUS. Let Γ ` P :
T with the system of Section 7, and P�!Q with the asynchronous reduction rules. Then
Γ `Q : T.

8.1 Asynchronous Boxed Ambient vs Mobile Ambients

We mentioned in Section 6 that the asynchronous semantics enables the definition of more
robust translation of Boxed Ambients in MA. The translationis defined formally in in Table
V. To ease the presentation, we restrict to a monadic versionof BA in which only names
(and not capabilities) can be exchanged. There is no fundamental difficulty in extending

3Indeed, although operationally equivalent, the two terms could be distinguished to reflect their respective nature,
namely: hMiη0 indicates an output operation with null continuation, while hMiη denotes a piece of data which
has been delivered toη (whenη 6= ?), or a one-place buffer , whenη = ?.
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the definition to the general case (some care is required to handle the typed exchange of
capabilities).

The translation is typed: with respect to the untyped case, the main difference is in the
use of a family of nameshW andpk, indexed on types, with the implicit assumption thathW;pkW : Amb[W℄ for all typeW. This indexing is required for typing, as each pair of
names enables exchanges of the corresponding type.

Table V Encoding of BA into MA

Types:hhAmb[W;E℄ii = Amb[hhW ii ℄; hhAmb[shh;E℄ii = Amb[shh℄hhPro[W;E℄ii = Pro[hhW ii ℄; hhPro[shh;E℄ii = shh
Type environments:hhx1 : W1; : : : ;xn : Wn ii = x1 : hhW1 ii ; : : : ;xn : hhWn ii
Terms: assumeΓ ` n : Amb[W;W0℄ andΓ `m : Amb[W00;E℄hhΓ. hqiPiin = (νk : Amb[hhW ii ℄)(open k jpkW[[hqi j in hW:k[[out hW:hhΓ.Piin ℄℄ ℄℄ )hhΓ. (x : W)Piin = (νk : Amb[hhW ii ℄)(open k jpkW[[ in hW:(x: hhW ii)k[[out hW:hhΓ.Piin ℄℄ ℄℄ )hhΓ. hqimPiin = (νk : Amb[hhW ii ℄)(open k jpkW00 [[ hqi j in m:in hW00 :k[[out hW00 :out mhhΓ.Piin ℄℄ ℄℄ )hhΓ. (x : W00)mPiin = (νk : Amb[hhW ii ℄)(open k jpkW00 [[ in m:in hW00 :(x:hhW00 ii)k[[out hW00 :out mhhΓ.Piin ℄℄ ℄℄ )hhΓ. hqi"Piin = (νk : Amb[hhW ii ℄)(open k jpkW0 [[hqi j out n:in hW0 :k[[out hW0 :in n:hhΓ.Piin ℄℄ ℄℄ )hhΓ. (x : W0)"Piin = (νk : Amb[hhW ii ℄)(open k jpkW0 [[out n:in hW0 :(x: hhW0 ii)k[[out hW0 :in n:hhΓ.Piin ℄℄ ℄℄ )hhΓ.m[[P℄℄ iin = m[[hW00 [[ !open pkW00 ℄℄ j hhΓ.Piim ℄℄hhΓ.P j Qiin = hhΓ.Piin j hhΓ.QiinhhΓ. (νm : W)Piin = (νm : hhW ii)hhΓ;m : W .PiinhhΓ.M:Piin = M:hhΓ.PiinhhΓ.! Piin = ! hhΓ.Piin

The translation has interesting properties. It is type preserving, namely: ifΓ ` P :Pro[E;F ℄ in BA, then one can show thathhΓii ` hhΓ.Pii : hhPro[E;F℄ ii . Also, the trans-
lation simulates the reductions of the source (asynchronous) calculus correctly. Unfortu-
nately, there are still two remaining problems. First the translation is not fully compo-
sitional, as the complete encoding needs a further step, to add a buffer to the top level:hhΓ.Pii = hhΓ.Pii top j hW[[ ℄℄ whereW is the type of the local exchanges ofP. Secondly,
the protocols that implement the exchanges across boundaries are not atomic, and hence
subject to interferences. To make them atomic, one would need further hypotheses of the
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source term, akin to those encompassed by the notion ofsingle-threadednessdefined for
Safe Ambients [Levi and Sangiorgi 2000]. For instance, for the upward exchanges to be
implemented correctly, we would need to assume that the ambientn exited at the start of the
protocol does not move until the ambientk is back inton (hence the protocol is complete).

8.2 Synchrony versus asynchrony

The choice of synchronous versus asynchronous communication has various consequences
on the calculus, specifically, on the security guarantees that can be made for it.

On one side, it is well known that synchronous output generates hard-to-detect flow
of information based on synchronization. For example, withthe synchronous semantics,
in the systema[[Q j b[[ hMiP℄℄ ℄℄ , the sub-ambientb gets to know exactly when (and if)Q
makes a downward read to its contents, thus causing an implicit flow of information from
the reader to the writer: this makes non-interference [Goguen and Meseguer 1982; Focardi
and Gorrieri 1997] hard to satisfy.

On the other hand, by adopting asynchronous output we effectively give up media-
tion (see § 3), that is, control over the interactions between sibling ambients. With the
synchronous semantics, no ambient can be “spoiled” with unexpected (and possibly un-
wanted) output by its enclosing or enclosed ambients. As an example, consider the system
a[[ (x:W)bP j b[[c[[ hMi" j Q℄℄ ℄℄ ℄℄ which type-checks provided thatM :W and the ambientb
has typeAmb[W;F℄ for someF . With the synchronous reductions there is no way for the
upward output inc and the downward input ina to synchronize.

Instead, in the asynchronous case, the initial configuration evolves into the process
a[[ (x:W)bP j b[[hMi j c[[Q℄℄ ℄℄ ℄℄ , and by a further reduction the ambienta gets hold of the
messagehMi without any mediation byb. Similarly, two siblings may establish a hidden
channel, asb[[a[[ (x:W)"P℄℄ j c[[ hMi"Q℄℄ ℄℄ reduces in two steps tob[[a[[Pfx := Mg ℄℄ j c[[Q℄℄ ℄℄ .
Both situations result in security breaches, based on the presence of hidden channels, that
cannot be prevented by the primitives of the calculus, as it stands. Fortunately, however,
one can resort to types and type analysis to provide strongersecurity guarantees, and en-
hanced policies for access control. We discuss this aspect in the next section.

9. ACCESS CONTROL BY TYPING

The access control framework we address is an instance of thestandard Mandatory Access
Control policies in multi-level security environments [Bell and Padula 1976; Gollmann
1999]. The domain of security levels is assumed to be a lattice (Σ;�), whose elements are
ranged over byρ;σ;τ. Based on an assignmentγ of security levels to subject and objects,
one defines asecurity policyas a ternary boolean predicateP on subject levels, object
levels, andaccess modesA ;B 2 fw; r; rw;�g (the mode “�”, denoting “no access”, is
introduced for convenience, to make the notation uniform).Specifically, an accessA to an
objecto by a subjects is legal underP if and only ifP(γ(s);γ(o);A ) holds true. Military
security (no read-up, no write-down) and commercial security (no read-up, no write-up)
can be enforced by the following security policies:PMil (ρ;σ; r) 4= σ� ρ PCom(ρ;σ;A ) 4= σ� ρ for A 2 fr;w; rwgPMil (ρ;σ;w) 4= ρ� σ PCom(ρ;σ;�) 4= truePMil (ρ;σ; rw) 4= σ = ρPMil (ρ;σ;�) 4= true
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9.1 Subjects, objects and security levels for Boxed Ambients

We study this form of access control for the asynchronous version of the calculus discussed
in the previous section. Processes take the role of subjects, while ambients take the role of
objects, and we rely on the notion of access we have assumed throughout, namely:(x)nP
andhMinP represent processes (subjects) attempting to access the child n in read and write
mode, respectively, whereashMi"P and(x)"P represent processes requesting an access to
their parent ambient, again in read and write mode. We make these notions formal, and
define the import of a security policy in the calculus by introducing a tagged version of the
asynchronous reduction relation in which any unauthorizedaccess to an ambient results
into a distinguished error-reduction.

The relation of tagged reduction is denoted�!(σ;γ) and defined in terms of a security
environmentγ that associates names (and variables) to security levels, and a security level
σ that identifies the clearance of the processes involved in the reduction. Security environ-
ments are formed just as typing environments, according to the following production:

γ ::=? j γ;x : σ

where inγ;x : σ it is understood thatx =2 Dom(γ). Based on that, we take any reduction to
a distinguished process termerr as the formal counterpart of an access violation.

The reductions, summarized in Table VI, should be understood easily. In particular, note
that in the reductions for non-local input/output the clearance of a process enclosed in an
ambient is determined by the security level associated withthe ambient’s name. This is
consistent with the format of the reduction (AMB). To illustrate, consider

P � h[[`[[out h:in h:(x)"Q j hMi ℄℄ ℄℄ j (y)`R
whereγ(h) => andγ(`) =?, and letσ�? be any security level. Then we have

P �!(σ;γ) h[[ ℄℄ j `[[ in h:(x)"Q j hMi ℄℄ j (y)`R by (EXIT)�!(σ;γ) h[[ ℄℄ j `[[ in h:(x)"Q℄℄ j Rfx := Mg by (INPUT n)�!(σ;γ) h[[`[[ (x)"Q℄℄ ℄℄ j Rfx := Mg by (ENTER)�!(σ;γ) err by (ERR INPUT"), (ERR AMB), (ERR PAR)

Here, the error reduction arises from the low-level processinside` attempting to read from
h, a top-level ambient. As we discuss next, this illegal attempt is detected statically by
the type system. It is worth remarking that there isno dynamic access control intended in
the tagged reduction: access control will be provided statically, by typing, and the tagged
semantics is only defined to give a formal statement of the soundness result for the type
system.

Finally, note that reductions toerr only result from attempts to read or write on non-local
resources. As such, we disregard errors resulting from typemismatches in any of the local
or non-local exchanges of values (in fact, for well-typed processes the absence of such
errors is guaranteed by subject reduction).

9.2 Access Control Types and Typing rules

The new classes of types extend the types of Section 7 with newtags specifying the security
clearance of capabilities and ambient names, and additional information of the on the read
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Table VI Asynchronous Tagged Reduction

Top-level reductions(INPUT ?) (x̃ : W̃)P j hM̃i �!(σ;γ) Pfx̃ := M̃g(INPUT n) (x̃ : W̃)nP j n[[hM̃i j Q℄℄ �!(σ;γ) Pfx̃ := M̃g j n[[Q℄℄ if P(σ;γ(n); r)(ERR INPUTn) (x̃ : W̃)nP j n[[Q℄℄ �!(σ;γ) err if :P(σ;γ(n); r)(INPUT ") n[[ (x̃ : W̃)"P j Q℄℄ j hM̃i �!(σ;γ) n[[Pfx̃ := M̃g j Q℄℄ if P(γ(n);σ; r)(ERR INPUT") n[[ (x̃ : W̃)"P j Q℄℄ �!(σ;γ) err if :P(γ(n);σ; r)(OUTPUT n) hM̃in j n[[P℄℄ �!(σ;γ) n[[hM̃i j P℄℄ if P(σ;γ(n);w)(ERR OUTPUTn) hM̃in j n[[P℄℄ �!(σ;γ) err if :P(σ;γ(n);w)(OUTPUT") n[[hM̃i"Q j R℄℄ �!(σ;γ) hM̃i j n[[Q j R℄℄ if P(γ(n);σ;w)(ERR OUTPUT") n[[hM̃i"Q j R℄℄ �!(σ;γ) err if :P(γ(n);σ;w)(ENTER) a[[ in b:P j Q℄℄ j b[[R℄℄ �!(σ;γ) b[[a[[P j Q℄℄ j R℄℄(EXIT) a[[b[[out a:P j Q℄℄ j R℄℄ �!(σ;γ) b[[P j Q℄℄ j a[[R℄℄
Structural Reductions: the symmetric reductions for (Par)and (Err Par) are omitted.
The rules (New) and (Err New) assume A= ρAmb?[ ; ℄(STRUCT) P0 � P P �!(σ;γ) Q Q�Q0 ) P0 �!(σ;γ) Q0(ERR STRUCT) Q� P P �!(σ;γ) err ) Q �!(σ;γ) err(NEW) P �!(σ;(γ;n:ρ)) Q ) (νn:A)P �!(σ;γ) (νn:A)Q(ERR NEW) P �!(σ;(γ;n:ρ)) err ) (νn:A)P �!(σ;γ) err(PAR) P �!(σ;γ) Q ) P j R �!(σ;γ) Q j R(ERR PAR) P �!(σ;γ) err ) P j R �!(σ;γ) err(AMB) P �!(ρ;γ) Q ρ = γ(a) ) a[[P℄℄ �!(σ;γ) a[[Q℄℄(ERR AMB) P �!(γ(a);γ) err ) a[[P℄℄ �!(σ;γ) err

and write access requests on such names.

Ambient Types A ::= σAmb[E;F;A ℄ j σAmbÆ[E;F;A ℄
Expression Types W ::= A j σCap[E;A ℄
Exchange Types E;F ::= shh j W1��� ��Wn

Process Types T ::= Pro[E;F;A ℄ j Pro[E;µF;A ℄
The new types are interpreted similarly to the types we introduced in the previous sec-
tions. In particular, the exchange componentsE and F (with their modesµ) have the
same interpretation as in Section 7. The meaning of the new components is as follows.
In σAmb[E;F;A ℄, σ is the clearance of ambients with this type, andA is (a sound esti-
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mate of) the access mode of the upward exchanges of their enclosing processes. Similarly,
σCap[F;A ℄ is the type of a capability that can be exercised within an ambient with clear-
anceσ, upward exchanges of typeF and access modeA . Finally,Pro[E;µF;A ℄ is the type
of a process with local and upward exchanges of type, respectively E andF , and access
modeA . Note that process types are associated with two modes: the access modeA
defines the mode in which the process accesses the channel located in its parent ambient;
the exchange modeµ defines whether the process is silent, moving or both. We do not
explicitly associate security levels with process types: instead, we type check processes at
a given security level, by introducing judgments of the formΓ `σ P : T, whereT is process
type, andσ a security level. The typing rules are collected in AppendixA: most of them
are the direct generalization of the corresponding rules inSection 7, and so are most of the
rules for processes, with the exceptions discussed below. We assume the following partial
ordering on access modes:�6 fr;wg6 rw.

9.2.1 Typing of Capabilities.In addition to the usual type safety constraints, rules (IN)
and (OUT) introduce the constraints relative to the security policyunder consideration.

(IN)

Γ ` M : σAmb?[E;F;B℄ P(ρ;σ;A ) G6 E

Γ ` in M : ρCap[G;A ℄ (OUT)

Γ ` M : σAmb[E;F;B℄ G6 F; A 6B
Γ ` out M : ρCap[G;A ℄

Specifically, an “in” reduction is well-typed only if the security levels of the two ambients
involved in the move are compatible. Dually, anout move type checks only if the type
of the upward exchanges of the exiting ambient are already encompassed by the upward
component of the type of the exited ambient. The rule (OUT) specializes in the natural
way to the case in whichM is a pilot ambient (cf. Appendix A).

9.2.2 Typing of Prefixes.The typing rules for prefixes have the same rationale as those
of the moded typing system. For example,

(PREFIX Æ)

Γ Æ̀M : ρCap[G;B℄ Γ `σ P : Pro[E;ÆF;A ℄
Γ `σ M:P : Pro[E;ÆF;A ℄

states that we can safely disregard the access modeB whenever the process and, therefore,
the pilot ambient containing it are in a silent phase.

9.2.3 Typing of Ambients.The typing rules for ambients define the clearance level
at which the enclosed processes should be type-checked: ifP is enclosed into aσ-level
ambient, thenP is type-checked at clearanceσ. In addition, the rules predicate well-
typing to the security policy under consideration. A representative of these rules is the rule
(AMB):

(AMB)
Γ ` a : σAmb[E;F;A ℄ Γ `σ P : Pro[E;F;A ℄ P(σ;ρ;A )

Γ `ρ a[[P℄℄ : Pro[F;�H;B℄
The constraint imposed by the policyP can safely be lifted for ambients whose enclosing
processes are moving (or silent), as in that case there is no upward access to be checked
(cf. the (AMB Æ) rule in Appendix A).
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9.2.4 Typing of input/output.The rules for local exchanges are straightforward: they
enforce no access control, as processes are always granted access to their local resources.
The rules for downward input/output relate the types of the input-output processes and
their continuations, as in the type system of Section 7. In addition, they enforce the con-
straint that processes at clearanceσ read only from (rule INPUT M) and write only to (rule
OUTPUT M) ambients of clearanceρ compatible withσ according to the given security
policy. The rule for upward exchange do not impose any accesscontrol and just check that
the access modes are correct: this is sound, as the upward accesses are already regulated
by the rules for ambients, and by the rules governing mobility.

9.2.5 Subtyping and Subsumption.Subtyping over exchange and process types ex-
tends uniformly to the new set of types. As in the type systemsof the previous sections,
subtyping is only reflexive on capability and ambient types.Process subtyping, in turn, is
the direct extension of the subtyping relation of Section 7,defined as follows:Pro[E;µ1F ℄67 Pro[E0;µ2F ℄Pro[E;µ1F;A ℄6 Pro[E0;µ2F;A ℄
whereµi are (possibly empty) modes, and67 is the subtyping relation for processes de-
fined in Section 7. Richer subtyping relations, such as one allowing a relationPro[E;F; r℄6Pro[E;F; rw℄, would be desirable, but turn out to be unsound. To see the problem with this
form of subtyping, consider a system with military securityand two security levels,> and? with ? � >. Take thenΓ to be a type environment such thatΓ(`) = ?Amb[W;shh; r℄
and Γ(h) = >Amb[shh;W; rw℄. Under these assumptions, the judgmentΓ `> in `:0 :Pro[shh;W; r℄ is derivable by the type system of this section for anyW. If, by subtyp-
ing, we upgrade the previous typing judgment toΓ `> in `:0 : Pro[shh;W; rw℄, and take
M of typeW, the following judgment is derivable:Γ `> in `:0 j hMi" : Pro[shh;W; rw℄.
From this judgment, and from the assumptionΓ(h) = >Amb[shh;W; rw℄, we then have
Γ `> h[[ in `:0 j hMi" ℄℄ : Pro[W;F;A ℄, for any typeF and modeA . This typing is unsound,
however, becauseh can move intò and make a write access to the low-level ambient`,
thus violating the military security policy we had assumed.

9.3 Soundness of the Type System

The main purpose of the type system of this section is to statically detect access violations,
with respect to the underlying security policy. As we state below (and prove in Appendix
B), the type system does provide these guarantees under the additional hypothesis that the
security policy isstable, in the sense of the following definition.

DEFINITION STABLE SECURITY POLICIES. We say that a security policyP is stable
if and only if it satisfies the following conditions

(1) if P(σ;ρ;A ) andP(ρ;τ;A ) thenP(σ;τ;A ).
(2) if P(σ;ρ;A ) andC 6A thenP(σ;ρ;C ).
Military and Commercial security, as defined in this section, are both examples of stable
policies.

Given a type environmentΓ, and a security assignmentγ we say thatγ is Γ-consistentif
and only if for allx2 dom(Γ), Γ(x) = σAmb?[: : : ℄ impliesγ(x) = σ. We use this definition
to state the soundness of our type system:
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THEOREM TYPE SOUNDNESS. Assume thatΓ `σ P : T. Then for everyΓ-consistent
security assignmentγ, and process Q such that P�!�(σ;γ) Q we have Q�!(σ;γ)6 err.
To exemplify the effects of typing, consider the following example from Section 8.

h[[ `[[ (x)"P℄℄ j `0[[hMi"Q℄℄ ℄℄ :
If we assume that the clearance of ambienth is strictly higher than the clearance of` and`0, then a type system based on a “no read-up” policy should reject the above process as
ill-typed, because not secure. This is indeed the case for our type system: to see that, note
that the process̀[[ (x)"P℄℄ is type checked at the clearance of the enclosing ambienth, and
the side condition to the (AMB M) rules fails to be satisfied under a “no read-up” policy.

A similar reasoning shows that the unsafe process

h[[`[[out h:in h:(x:W)" j hNi ℄℄ j hMi ℄℄ j (y)`
where` andh have clearance? and> respectively, is ill-typed, as̀ insideh performs a
read up-operation. In particular, in order forP to type check, the subprocessin h:(x:W)"
enclosed iǹ can only be typed at level? with the process typePro[E;µW;A ℄, for r 6A . However, the judgmentΓ `? in h:(x:W)" : Pro[E;µW;A ℄ must come fromΓ ` in h :?Cap[W;A ℄, which is not derivable since the clearance? of the ambienth is greater than
the clearance of̀, contradicting the hypothesis of rule (IN).

9.4 Discussion

The notion of access control encompassed by the type system,and the corresponding no-
tion of type soundness we have addressed can be further strengthened. To motivate, con-
sider the following program:

h[[hsecreti j `[[ (νt)t[[out h:(x)"in `:hxi ℄℄ ℄℄ j (x)tP℄℄
operating under commercial security (no-read-up/no-write-up). If we assume thath and` have clearance, respective,> and?, commercial security should prevent` to read the
secretfrom h. In fact, our type system does provide this guarantee. For, if t is given
clearance>, then the type system rejects(x)tP as ill-typed (because(x)t is a read-up). If
instead,t : ?, the type failure arises at(x)"in ` : : : , which is also classified as read-up in
this case. However, one can play the following trick:

h[[hsecreti j `[[ (νt :>)t[[out h:(x)"in `:hxi" ℄℄ ℄℄ j (x)P℄℄
The ambient̀ creates a Trojan horset that is entitled to exchange values withh: now t
reads thesecret, and then, once back intò, it delivers it upward, toP. This program type-
checks in our system, and indeed, there is no reduction toerr involved in the computation,
as none of the read and write operation violate any access control constraint.

On the other hand, it may reasonably be argued that one shouldprevent such situations.
In fact, the type system may easily be extended to account forthe cases of interest. If
we look at the example, we notice that the problem arises as a result of thesecret, a high
value, being communicated to the ambient`, which is low. In the current system this goes
unnoticed, as the typing rules enforce no constraint relationship between the security levels
of an ambient and those of the values the ambient may exchange. Such constraints are
easily incorporated in the type system by means of new typingformation rules. Given any
exchange typeE, let λ(E) denote the security level associated withE, defined as follows:

λ(σAmb[E;F ℄) = λ(σCap[E℄) = σ ; λ(W1��� ��Wn) = λ(W1)t�� �tλ(Wn) ; λ(shh) =?
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Based on that, we can define type formation rules enforcing the expected constraints,
namely that ambients (and processes) of clearanceσ may only exchange values of clear-
ance at mostσ.

(ENV �)? ` � (ENV n)
Γ `W n =2 Dom(Γ)

Γ;n : W ` � (TYPE shh)
Γ ` �

Γ ` shh
(TYPE CAP)

Γ ` E

Γ ` σCap[E℄ (TYPE AMB)

Γ ` Ei λ(Ei)� σ i = 1;2
Γ ` σAmb[E1;E2℄ (TYPE PROC)

Γ ` Ei λ(Ei)� σ i = 1;2
Γ `σ Pro[E1;E2℄

These rules can be incorporated in the type system, so as to ensure that all types used in a
derivation are well-formed. With the extended system the last example would be rejected,
because the high valuesecretmay no longer be exchanged with a low-level ambient like`. There is still the possibility for̀ to exploitt to obtaining access to data stored inh, but
only the only data that can eventually flow to` must have low level, which is acceptable.

9.5 Examples

We demonstrate the import of the type system in enforcing effective access control policies
on several examples.

9.5.1 Wrappers.As a solution for the problem of resource protection and access con-
trol in wide-area networks, Sewell and Vitek [Sewell and Vitek 2000] propose an extension
of theπ-calculus, known as theBoxπ-calculus. Within this calculus, they develop a pro-
gramming technique, based onwrappers, whereby untrusted code can be secured into an
isolatedbox, and its interactions with the enclosing environment filtered by a process, the
wrapper, that only forwards legitimate messages between the boxed program and its en-
closing environment via secured channels. The paradigmatic example of that work can be
rephrased in our syntax as follows:(νa;b)�a[[P℄℄ j !(x)ahxib j b[[Q℄℄� :
P andQ are arbitrary processes that are encapsulated in ambients (“named boxes” in the
terminology of [Sewell and Vitek 2000]) with private namesa andb, and placed in parallel
with a process that forwards messages froma to b. Notice that ambient boundaries prevent
any direct interaction betweenP andQ, and the name restrictions ona andb ensure that
the only possible exchanges with the environment are filtered by the process !(x)ahxib.
Thus, as in Boxed-π, we can rely on wrappers to provide interesting security guarantees:
specifically, the above configuration prevents (i) Q from leaking secrets toP and (ii ) P and
Q from corrupting the environment.

With the type system of Section 9, we can provide further guarantees. If we definea to
be a high-level ambient andb a low-level ambient, then the type system built over military
security will detect any unwanted access fromQ to P regardless of context that encloses
a[[P℄℄ andb[[Q℄℄ . In addition, military security may be employed in the type system also to
detect any attempt byP andQ to access the environment: for that purpose, we only need
to type-check the configuration at a clearance incomparablewith the clearance ofa andb.
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9.5.2 Firewalls. We now look at the protocol for firewall crossing defined in [Cardelli
and Gordon 1999b] and refined in [Levi and Sangiorgi 2000]. The protocol can be ex-
pressed in our calculus as follows:

Firewall = (ν f )f [[k[[out f :hin f ia ℄℄ j : : : ℄℄
Agent = a[[ in k:(x)out k:x:Q℄℄

The idea is to let theAgent across theFirewall f by means of a shared keyk. In [Cardelli
and Gordon 1999b], the keyk is used as the name of a pilot ambient that drives the agent
into the protocol and is then dissolved. Our coding follows the same idea, but implements
it differently, relying on communication:a entersk from which it receives the capabil-
ity in f to be exercised afterout k to drive a into the firewall. Interestingly, the pro-
cessa[[ in k:(x)out k:x:Q℄℄ , where a capability is first read (locally) and then exercised at
the same nesting level is well-typed in our system (this is not true of the type system of
[Cardelli and Gordon 1999b]).

Having authenticated an incoming agent, the firewall may then provide other security
guarantees. For example, we may want to ensure that processes inside the firewall can ac-
cess the resources of the agent that crossed the firewall, butnot the converse. This guaran-
tee can be provided with commercial security, by the type assignmentsf : φAmb[E;F;A ℄
and k : κAmb[shh;shh℄, whereκ � φ, E andF are appropriate types, andA is an appro-
priate access right (note that this constraint are defined just for the firewall, independently
from the interacting agent).

To illustrate the effect of these type assignments, consider a generic agenta[[P℄℄ entering
the firewall, and assume thata : αAmb[G;H;B℄. To cross the firewall,a must accept
write requests fromk: with commercial security, this is possible only ifα� κ and this, by
transitivity, implies thatα � φ. Now observe that commercial security prevents low-level
ambients (such asa) contained in high-level ambients (such asf ) from attempting upward
exchanges. Then,α� φ impliesH = shh. In summary, the type assignment enforces ona
a security level strictly smaller than the level off , and this implies that any agent entering
the firewall f cannot directly access to local resources off , as desired.

The protocol we just discussed depends on the assumption that the firewall knows the
name of the incoming agent. To overcome the problem, we may either assume thata itself
is also a password which is part of the protocol, or devise newprotocol that relies on two
passwords,k andh, and structure the agent and the firewall as follows:

Firewall = (ν f )f [[k[[out f :hin f ih ℄℄ j : : : ℄℄
Agent = h[[ in k:(x)out k:hxia j a[[ (x):out h:x:Q℄℄ ℄℄

10. DISTRIBUTED LANGUAGE SECURITY

We conclude with a more extended example that illustrates the access control typing system
on a simple, but non-trivial distributed language. The language is defined in [Cardelli et al.
2000], with the following syntax.
The computational model is that of various distributed variant of theπ calculus in the liter-
ature, such as those described by Amadio and Prasad [Amadio and Prasad 1994] and Hen-
nessy and Riely’s Dπ calculus [Riely and Hennessy 1998]. A network consists of named
nodes that contain named channels and anonymous threads (node and channel names can
be restricted). Channels are represented as persistent resources, as suggested in Section
4. Threads are the active components of a network. They can move across nodes of the
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Table VII A simple distributed language

Types W::= Node type of nodesj Ch(W) type of channels

Network Net::= node n[Cro℄ nodej (νn:W)Net restrictionj Netj Net network composition

Crowd Cro::= channel c channelj thread [Th℄ threadj Cro j Cro crowd compositionj (νc:W)Cro restriction

Threads Th::= go n:Th migrationj c(x) output to a channelj c(x):Th input from a channelj fork (Cro):Th fork a new crowdj spawn n[Cro℄:Th spawn a new node

network, communicate over local channels (i.e. residing onthe same node), fork into a new
set of channels and threads or spawn a new node. The type system of the language presents
no surprise: threads are well-typed if(i) their access to channels are well-typed and(ii)
they fork and spawn well-typed crowds and networks. The latter are well typed if they are
formed by well-typed subcomponents. We omit the typing rules, and refer the interested
reader to [Cardelli et al. 2000] for further details.

We illustrate the semantics (and the typing) of the languagewith the following program:

node n[channel rcv j(νc:W)thread[rcv(x):fork(channelc j thread[c(y):P℄):gox:ack(c)℄℄
which is well-typed under the hypothesesn:Node, rcv:Ch(Node), and ack:Ch(Ch(W)).
The program simulates the behaviour of a dæmon that listens on some public portrcv and
once contacted, it forks to establish the connection on someother private port. The dæmon
is located at noden, containing the channelrcv and a single thread. The thread waits for
a request onrcv; subsequently it spawns a private channelc to be shared with the nodex
communicated onrcv and a new thread that listens on this channel; finally it communicates
the private namec to the nodex. The dæmon will typically interact with remote clients of
the following structure:

node m[ channelack j thread[fork(thread[gon:rcv(m)℄):ack(y): : : : ℄ ℄
The client is located at nodem, which allocates the channelack, and spawns a thread that
first forks into a new thread that moves ton to communicate over the channelrcv the name
of its origin nodem, and then waits to receive on channelackthe private name on which to
establish the communication withn.
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We give a typed encoding for this language by relying on the typing system of Section 9.
The encoding is defined in Figure VIII. We initially assume that all types (from the source
language) have the same security level. Later, we will studynew encodings for enhanced
versions of the source language in which we associate different levels with channels, nodes,
and threads. To ease the notation, we writeσAmb[E℄ for σAmb[E;shh;A ℄, omitting the
security levelσ when it is not relevant to the discussion. Also, we useSynchto denote the
empty tuple type.

Table VIII Encoding of the distributed language

Types:hhNodeii = Amb[shh℄hhCh(W)ii = Amb[hhW ii ℄
Net:hh(νn:Node)NetiiΓ = (νn: hhNodeii)hhNetiiΓhh(νc:Ch(W))NetiiΓ = (νc: hhCh(W)ii)hhNetiiΓ;c:WhhNet1 j Net2iiΓ = hhNet1 iiΓ j hhNet2iiΓhhnode n[Cro℄iiΓ = n[[ hhCroiin

Γ ℄℄
Crowd:hh(νm:Node)Croiin

Γ = (νm:hhNodeii)hhCroiin
Γhh(νc:Ch(W))Croiin

Γ = (νc: hhCh(W) ii)hhCroiin
Γ;c:WhhCro1 j Cro2iin

Γ = hhCro1 iin
Γ j hhCro2 iin

Γhhthread [Th℄iin
Γ = (νt : Amb[shh℄)t[[ hhThiin;t

Γ ℄℄hhchannel ciin
Γ = c[[ !(x:hhΓ(c) ii)hxi ℄℄

Threads:hh c̄(x) iin;t
Γ = (νw: AmbÆ[shh; hhΓ(c)ii ;w℄)w[[out t:in c:hxi" ℄℄hhc(x):Thiin;t

Γ = (νr : AmbÆ[hhΓ(c) ii ; hhΓ(c)ii ; r℄) (x: hhΓ(c)ii)r hhThiin;t
Γj r[[out t:in c:(x: hhΓ(c) ii)":out c:in t:hxi ℄℄hhgo m:Thiin;t

Γ = out n:in m:hhThiin;t
Γhhfork (channel(c)):Thiin;t

Γ = (νs: Amb[Synch℄) ()shhThiin;t
Γj c[[out t:(!((x:hhΓ(c) ii)hxi) j s[[out c:in t:hi ℄℄ ) ℄℄hhfork (thread[Th0℄):Thiin;t

Γ = (νs: Amb[Synch℄) ()shhThiin;t
Γj (νt 0 : Amb[shh℄)t0[[out t:(hhTh0 iin;t 0

Γ j s[[out t 0:in t:hi ℄℄ ) ℄℄hhfork (Cro1 j Cro2):Thiin;t
Γ = hhfork (Cro1):fork (Cro2):Thiin;t

Γhhfork ((νc:Ch(W))Cro):Thiin;t
Γ = (νc: hhCh(W) ii)hhfork (Cro):Thiin;t

Γ;c:Whhfork ((νm:Node)Cro):Thiin;t
Γ = (νm:hhNodeii)hhfork (Cro):Thiin;t

Γhhspawn m[Cro℄:Thiin;t
Γ = (νs: Amb[Synch℄) ()shhThiin;t

Γj m[[out t:out n:(hhCroiim
Γ j s[[out m:in n:in t:hi ℄℄ ) ℄℄

The encoding of a network is parametric in a type environmentΓ that we use to record
the types of the values transported by channels (we need thisto implement channels and
their operations, as the parameter of an input channel is nottyped in the source calculus).
The encoding of a crowd is parametrized also by the current noden of the crowd; the en-
coding of thread expressions has as further parameter the name of the ambient that encloses
the (translation of) the thread.
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Nodes are represented as silent ambients whose sub-ambients encode either channels
or threads. Threads also are enclosed into silent ambients (with fresh names), and thread
migration is obtained by having threads exit the current node and enter the destination node.
A few additional remarks are in order for the encoding of threads. First, in the encoding
of fork and spawn we need a synchronization ambients to trigger the continuation of the
thread. Second, the encoding of forks must be given by cases on the concerned crowd:
since we do not haveopen (as in [Cardelli et al. 2000]) we cannot make a whole crowd
exit the thread and unleash it in the node; instead, we make each single component of the
crowd exit the thread individually. Finally, the encoding of input/output on channels needs
fresh pilot ambients, namedw for writer andr for reader, which exit the current thread,
enter the channel at issue and synchronize (and, in the case of readers, bring the message
back). As in Section 4.3, we need the moded typing system to type-check these pilot
ambients. Readers and writers are not upward silent and still need to move across nodes,
which are locally silent. Nevertheless, they are well-typed because, by moded typing, one
can infer that their upward exchanges become active only when they are inside (an ambient
encoding) a channel (with local exchanges of the right type).

Below, we sketch the translation of the daemon program:

n[[ rcv[[ !(x : R)hxi ℄℄ j (νc : ChhhW ii)(νt : Amb[shh℄))t[[ hh rcv(x): theRestii ℄℄ ℄℄
whereR= Amb[Amb[shh℄℄, the encoding of the type ofrcv. The (translation of the) outer
thread, enclosed in the ambientt, starts by spawning a pilot ambientr that exitst and goes
to the ambientrcv to fetch the input which triggers the continuation of “the rest” of the
thread.: : : t[[ (νr : AmbÆ[R;R; r℄) (x:R)rhh theRestii j r[[out t:in rcv:(x:R)":out rcv:in t:hxi ℄℄ ℄℄ : : :
Again, note that typing the readerr as a pilot ambient is needed for the move ofr out of t
to type-check, even thought is upward silent.

10.1 Access Control Policies

We now discuss how to specify, and statically enforce, different access control policies
in the distributed language. We do this by way of the encoding. In particular, we study
various ways for introducing security levels in the source language, and for each of them,
we define a corresponding encoding into the access control type system of Section 9. Then,
we study how the access control policies induced by our type system translate back into
corresponding policies in the source language.

The first policy results from associating channel types and threads with security levels,
thus interpreting threads and channels as subjects and objects, respectively. The translation
is easily adapted to this case. Letγ be aΓ-consistent security assignment (see Section 9.3),
then: hhσCh(W)ii = σAmb[hhW ii ℄hhσthread[Th℄iin

Γ = (νt : σAmb[shh℄) : : :hh c̄(x) iin;t
Γ = (νw: γ(t)AmbÆ[shh; hhΓ(c) ii ;w℄) : : :hhc(x):Thiin;t

Γ = (νr : γ(t)AmbÆ[hhΓ(c) ii ; hhΓ(c) ii ; r℄) : : :hhfork (Th0):Thiin;t
Γ = (νs: Amb[Synch℄)(νt 0 : γ(t)Amb[shh℄) : : :
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Here, commercial and military security for the result of thetranslation correspond directly
to commercial and military security for the source terms. Back to our example, if we take
the channelrcv to be high (i.e.rcv:>Ch(Node)) and the outer thread ofn to be low (i.e.
node n[: : :thread?[rcv(x) : : : ℄℄), then military and commercial security policies would
both reject the the attempt by the thread to read onrcv as a read-up. This results from
the failure to type-check the the pilot ambientr, which must be given low-clearance, since
the threadt has low clearance:(νr : ?AmbÆ[R;R; r℄) (x:R)rhh theRestii j r[[out t:in rcv:(x:R)":out rcv:in t:hxi ℄℄
The culprit is the sub-termin rcv:(x:R)". By trying to construct a typing derivation for the
termr[[ : : : ℄℄ , we discover that we need to type-checkin rcv:(x:R)" at level?, i.e. we need a
derivation for

rcv :>hhCh(Node) ii `? in rcv:(x:R)" : Pro[ ; ; r℄
To derive this judgement, we must apply the rule (PREFIX M) because the process will
be upward-active right after the move. But then we need a derivation for the judgement
rcv :>hhCh(Node) ii `? in rcv :?Cap[ ; r℄, which instead fails because the clearance> of
rcv is incompatible with the clearance? of the capability: this judgement is not derivable
under any “no read-up” policy.

An alternative policy is to endow node types with security levels. Accordingly, threads
receive the security level of the node in which they are created. This is a common situation
in practice, where it is usually implemented in the form of a partition of the nodes in trusted
and distrusted (i.e., with just two security levels). We canmodify the encoding as follows:hhσNodeii = σAmb[shh℄hhthread[Th℄iin

Γ = (νt : γ(n)Amb[shh℄) : : :
Note that with this policy a thread can move into a node of any level. However, once there,
it can access only resources (channels) which are compatible with its own level. In our
example, if we give the noden security level higher than nodem, then the thread forked in
m can still move inton but it will be allowed to writercv only if we declared the channel
rcv to be of a level compatible with the security policy in use andthe level ofm.

If we want to forbid threads to move into “incompatible” nodes (this is usually needed in
two cases: when we partition nodes in reliable and not reliable and want sensible threads to
be executed only on reliable nodes, or when we partition threads in trusted and distrusted
and we want sensible nodes to execute only trusted threads) we can modify the translation
so that moving threads notify their entrance to the node theyenter:hhσNodeii = σAmb[Synch℄hhnode n[Cro℄iiΓ = n[[ hhCroiin

Γ j !() ℄℄hhthread[Th℄iin
Γ = (νt : γ(n)Amb[shh;Synch;w℄) : : :hhfork (Th0):Thiin;t

Γ = (νs: Amb[Synch℄)(νt 0 : γ(t)Amb[shh;Synch;w℄) : : :hhgo m:Thiin;t
Γ = out n:in m:hi" hhThiin;t

Γ

Any attempt by a thread to move into a non compatible node makes the thread ill-typed.
In particular the use of commercial security in the result ofthe translation, corresponds
in the distributed language to ensure a node-protection policy since a node will run only
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threads of security level higher than or equal to its level. This means that a node runs only
threads coming from nodes it trusts. Instead the use of military security enforces a thread-
protection policy since a thread will run only on nodes with security level higher than or
equal to its level. This means that sensitive threads will berun only on reliable nodes. We
leave the task to verify that the translation enforces the intended policies to the interested
reader.

11. RELATED WORK

Besides Mobile Ambients and Seals, whose relationships with Boxed Ambients have been
discussed all along, our approach shares motivations, and is superficially similar to Sewell
and Vitek’s Box-π [Sewell and Vitek 2000]. The technical development, however, is en-
tirely different. We do not provide direct mechanisms for constructingwrappers, rather we
propose new constructs for ambient interaction in the attempt to provide easier-to-monitor
communications. Also, our form of communication is anonymous, and based on a notion
of locality which is absent in the Box-π Calculus. Finally Box-π does not consider mobility
which is a fundamental component of this work.

In [Hennessy and Riely 2002b] Hennessy and Riely develop a type system for access
control in the Dπ-calculus, a distributed variant ofπ-calculus where processes are located,
and may migrate across locations. In Dπ, communication occurs via named channels that
are associated with read and write capabilities: the type system controls that each process
reading or writing on a channel possesses the appropriate capability. A similar technique is
adopted by De Nicolaet. al. in [De Nicola et al. 2000] for KLAIM, a distributed language
based on a variant of Linda with multiple “tuple spaces”. Themain difference with our
approach lies in the topological structure of Dπ (and KLAIM) locations and Boxed Am-
bient processes. In Dπ the topology of locations is completely flat, while in BA ambients
may be nested at will: the interplay between the dynamic nesting structure determined by
moves, and the dynamic binding of the parent location" for upward communication makes
access control for BA more complex. In [Riely and Hennessy 1999], the type system for
Dπ is extended to cope withpartially typed networks, in which some of the agents (and/or
locations) are untyped, hence untrusted: type safety for such networks requires a form of
dynamic type checking. We discuss our plans towards such extension in Section 12.

Our approach is also related to the work by Hennessy and Rielyon thesecurityπ-
calculus[Hennessy and Riely 2002a], a variant of theπ-calculus in which processes are
syntactically defined as running at a given security level. In BA, instead, we assume that
the security levels are specified by types, and the clearanceassociated with an ambient-
type represents the clearance of resources and the process contained in ambients with that
ambient. Besides access control, in [Hennessy and Riely 2002a] the authors also conduct
an analysis of information flow, and develop a type system that provides static guarantees
of non-interference, defined in terms of testing equivalence. Our current accesscontrol
type system does not provide such guarantees: it only ensures the static detection of access
violations, and of certain forms of implicit flows via hiddenchannels. We investigate a-
type based analysis of information flow in Boxed Ambients in acompanion paper [Crafa
et al. 2002], where we develop static type system for non interference.

Our type systems for BA are clearly related to other work on control and data flow anal-
ysis [Bugliesi and Castagna 2001; Nielson et al. 1999; Nielson and Nielson 2000], and



Boxed Ambients � 43

typing system for Mobile Ambients. In [Cardelli and Gordon 1999b] types guarantees ab-
sence of type confusion for communications. The type systems of [Cardelli et al. 1999]
and [Zimmer 2000] provide control over ambients moves and opening. Furthermore, the
introduction ofgroup names [Cardelli et al. 2000] and the possibility of creatingfresh
groups, give flexible ways to statically prevent unwanted propagation of names. The pow-
erful type discipline for Safe Ambients, presented in [Leviand Sangiorgi 2000], adds finer
control over ambient interactions and removes allgrave interference, resulting from non-
deterministic choices between logically incompatible interactions. All those approaches
are orthogonal to the access control issue we studied. We believe that similar typing dis-
ciplines as well as the use of group names, can be adapted to Boxed Ambients to obtain
similar strong results. A paper more directly related to ours is [Dezani-Ciancaglini and
Salvo 2000], where ambient types were associated with a security level, having a crucial
role in secure interactions. The difference is that in [Dezani-Ciancaglini and Salvo 2000]
the security checks are performed upon ambient opening and moves, while in our work we
focus on read and write operations.

A final mention goes to Merro and Sassone’s recent paper on Boxed Ambients [Merro
and Sassone 2002], in which they provide BA with a novel and powerful type system that
combines a rich notion of value subtyping with mobility types. The former is based on
read/write exchange types, the latter draws on the notion ofambient groups from [Cardelli
et al. 2000]. In addition, they study the use of co-capabilities in BA as a means to express
explicit permission to access ambients. As noted by the authors, their typing technique
appears orthogonal, hence fully compatible with our systemof moded types. We have not
yet investigated the possibility of integrating the two system by incorporating our access
control types. Plan for future include work in that direction.

12. CONCLUSIONS

We have presented BA, a novel ambient-based process calculus in which ambients cannot
be opened, and new primitives provide for a controlled form of value exchange across
ambient boundaries, between parent and child. The design ofthe calculus is motivated
by security concerns. Removing theopen capability ensures that the code of untrusted
agents will never mingle freely within trusted ambients andhence reduces the potential of
security threats. The new communication primitives, in turn, allow more concise encodings
of several programming examples, while at the same time providing more effective means
for access control. We have developed two semantics for the calculus, and studied their
inter-relationships as well as their respective relationship with Mobile Ambients. Arguably,
the synchronous semantics is not adequate for distributed computations. Nevertheless, it
is useful as it motivates the design of the moded typing system which, in turn, provides
insight into how the asynchronous reductions can be combined with a flexible typing of
communication and ambient mobility.

We have complemented the definition of the calculus with a study of different type sys-
tems. In particular, we have developed a sound type system for access control in multilevel
security, that combines static guarantees of safety for process interaction, with the static
detection of any malicious or accidental violations of the intended security policy.

There are several aspects relative to the type theory of BA, and its computational properties
that deserve to be explored. We conclude our presentation bydiscussing some of these
aspects below.
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12.1 Typing

As other ambient-based calculi, BA suffers from a certain lack of flexibility in the typ-
ing of value exchange. In particular, the type of a boxed ambient is the union of all of
the potential interactions that ambient may engage. Some forms of dynamic typing could
be appealed to address this limitation. On the other hand, one should notice that boxed
ambients have communication capabilities richer than those advertised in their types. In
particular, a boxed ambient may use sub-ambients to hold interactions of different types us-
ing downward communication. In fact, we have shown that channels can be encoded in the
calculus: in the implementation of a programming language based on BA, channels would
clearly need to be made primitive, as done in the Seal calculus, and its implementations
[Bryce and Vitek 2001].

A possible extension of our type system would be to enrich thecurrent structure of
ambient types with a further component for downward communication. This would be
useful, for instance, to limit the power of an enclosing ambient on its sub-ambients. We
believe this to be a viable option, that could be incorporated in our type system with no
fundamental difficulty. On the other hand, this usage of types contrasts with our current
interpretation of ambient types as interfaces, which describe what the context sees of an
ambient. In addition, an ambient can protect itself from itsenclosing context by relying on
term-level constructs (by wrapping ambients or hiding their names).

A more serious limitation of the current access control typesystem of BA is that it
assumes a centralized form of typing, where all the components of a system are type-
checked under the same ‘global’ assumptions on the types of names. We are currently
investigating two ways to overcome this limitation. One solution is to rely on forms of
dynamic typing, as it is done in other type systems for Mobile(Safe) Ambients [Bugliesi
and Castagna 2001], and other calculi [Riely and Hennessy 1999; De Nicola et al. 2000].
Specifically, as in [Bugliesi and Castagna 2001], the idea isto define a typed variant of
BA in which each ambient carries a type environment, to be used for static, andlocal type
checking. To ensure type soundness, static typing must thenbe complemented by a form
of just-in-time type checking taking place an ambient crosses a boundary, to ensure the
consistency of the local type assumptions of the moving and the target ambients.

An alternative solution is to introduce new primitives, based on cryptography, to protect
trusted (i.e. typed) migrating agents against the untrusted sites they traverse, and to rely
on a type system that separates trusted and untrusted and code, while allowing safe inter-
actions with untrusted sites. Work in this direction has been initiated in [Bugliesi et al.
2002]

12.2 Semantics and implementation

The implementation of BA poses some new interesting problems. On one side, the absence
of open simplifies the problem with respect to MA. In current implementations of Mobile
Ambients [Sangiorgi and A. 2001; Fournet et al. 2000], the opening of an ambient is a
rather complex operation that transforms the opened ambient into a forwarder for all the
synchronization requests from the ambient’s parent and children. No such mechanism is
required for BA.

On the other side, the semantics of communication poses new implementation chal-
lenges, which result from the inherent nondeterminism in the synchronization of the local
input/output operation in BA. In particular, with the current reductions (both synchronous
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and asynchronous), an outputhMi may nondeterministically synchronize with an input
from from the parent, or from a child, or from a (local) sibling process. This semantics
has a strong motivation in our design, namely it enforces theinterpretation of anonymous
channels as resources locatedinsideambients: indeed, our very definition of access control
relies on this interpretation.

One could devise different reductions, such as those definedbelow.(x)nP j n[[hMi"Q j R℄℄ �! Pfx := Mg j n[[Q j R℄℄hMinP j n[[ (x)"Q j R℄℄ �! P j n[[Qfx := Mg j R℄℄
These reduction yield a semantics which is similar to that adopted in [Castagna et al. 2001]
for the Seal Calculus, and is based on the idea that each ambient comes equipped with two
mutually non-interfering channels, respectively for local and upward communications. Hi-
erarchical communication, whose rules are shown above, is indicated by a pair of distinct
constructors, simultaneously on input and output, so that no communication interference
is possible. The upward channel can be thought of as a gatewaybetween parent and child,
located at the child’s and traveling with it, and poses no particular implementation chal-
lenges.

One problem with adopting this semantics for BA, is that it results in a poorly expressive
calculus. For instance, it would not be possible to encode the form of message broadcasting
implemented by the following term:a[[ ! hMi ℄℄ . Herea is as an “information site” which any
ambient can enter to get a copy ofM (reading it from upward, after having entereda). The
same protocol could hardly be expressed with the reductionsgiven above, as they require
an ambient to know the names of its children in order to communicate with them. We can
recover expressiveness, as suggested in [Bugliesi et al. 2002], by introducing co-actions
of the formoin(x) having the effect of binding the name of an incoming ambient to the
variablex. Using this form of co-actions, we can program the information site as follows:
a[[ ! oin(x):hMix ℄℄ , and have clients be coded asc[[ in a(x)"P℄℄ .

When it comes to access control, however, this encoding is problematic as it exchanges
the roles of readers and writers. In the initial example it isthe client that reads from the
server; in its coding, it is the server that writes to the client. Thus, while the new reduc-
tions would simplify the implementation, they would also undermine our access control
framework.

A solution we are currently investigating is to adopt the asynchronous semantics, as
defined in Section 8, and implement it with reductions such asthose displayed above.
A similar study has been conducted for the synchronous semantics of BA in the recent
paper [Bugliesi et al. 2002]. That paper provides a partial solution based on the use of a
(mixed) guarded-choice operator, which in turn requires a complex (cf. [Nestmann 2000])
form distributed consensus to capture the desired synchronizations. It appears that a more
satisfactory implementation is possible for the asynchronous semantics of BA, as in that
we could rely on a more treatable form of choice, based on an input-choice operator. Our
plans of future research include work in that direction.
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A. TYPING RULES

We list the complete set of rules for the type systems described in Sections 5, 7, and 9.
In order to have a more compact set of rules, we useµF to denote any of the exchangesMF;�F;ÆF , and use?F to denote eitherµF or F . Similarly we useAmb?[E;F;A ℄ to de-
note eitherAmb[E;F;A ℄ or AmbÆ[E;F;A ℄. The use of such shorthands make it possible
to express the rules of § 5, § 7 as instances of the rules listedbelow: specifically, the
type system of § 7 derives by erasing security levels and access modes, and the system of
§ 5 from further erasing all rules that involve non-empty modes on the types, and moded
judgements.

A.1 Good Environments and Expressions

(EMPTY)? ` � (VAR)

Γ ` � x 62 Dom(Γ)
Γ;x : W ` � (NAME)

Γ ` � n 62 Dom(Γ)
Γ;n : W ` � (PROJECTION)

Γ(M) =W Γ ` �
Γ ` M : W

(IN)

Γ ` M : ρAmb?[E;F;B℄ P(σ;ρ;A ) G6E

Γ ` in M : σCap[G;A ℄ (OUT)

Γ ` M : σAmb[E;F;B℄ G6F; A 6B
Γ ` out M : ρCap[G;A ℄

(PATH)

Γ ` M1 : σCap[E;A ℄ Γ ` M2 : σCap[E;A ℄
Γ ` M1:M2 : σCap[E;A ℄ (OUT Æ)

Γ ` M : σAmbÆ[E;F;B℄
Γ ` out M : ρCap[shh;A ℄

(POLYPATH)

Γ Æ̀M1 : ρCap[F;A ℄ Γ Æ̀M2 : σCap[E;B℄
Γ Æ̀M1:M2 : σCap[E;B℄ (POLYCAP)

Γ ` M : σCap[E;A ℄
Γ Æ̀M : σCap[E;A ℄

A.2 Good Processes
(PREFIX)

Γ ` M : σCap[F;A ℄ Γ `σ P : Pro[E;F;A ℄
Γ `σ M:P : Pro[E;F;A ℄ (PREFIX Æ)

Γ Æ̀M : ρCap[G;B℄ Γ `σ P : Pro[E;ÆF;A ℄
Γ `σ M:P : Pro[E;ÆF;A ℄

(PREFIXM)

Γ Æ̀M : σCap[F;A ℄ Γ `σ P : Pro[E;MF;A ℄
Γ `σ M:P : Pro[E;ÆF;A ℄ (PREFIX �)

Γ ` M : σCap[F;A ℄ Γ `σ P : Pro[E;�F;A ℄
Γ `σ M:P : Pro[E;�F;A ℄

(PAR)

Γ `σ P : Pro[E;F;A ℄ Γ `σ Q : Pro[E;F;A ℄
Γ `σ P j Q : Pro[E;F;A ℄ (PAR µ)

Γ `σ P : Pro[E;µF;A ℄ Γ `σ Q : Pro[E;�F;A ℄
Γ `σ P j Q;Q j P : Pro[E;µF;A ℄

(DEAD)

Γ ` �
Γ `σ 0 : T

(NEW)

Γ;n : ρAmb?[E;F ℄ `σ P : T

Γ `σ (νn:ρAmb?[E;F ℄)P : T

(REPL�)
Γ `σ P : Pro[E;�F;A ℄
Γ `σ! P : Pro[E;�F;A ℄ (REPL)

Γ `σ P : Pro[E;F;A ℄
Γ `σ! P : Pro[E;F;A ℄
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(AMB)

Γ ` a : σAmb[E;F;A ℄ Γ `σ P : Pro[E;F;A ℄ P(σ;ρ;A )
Γ `ρ a[[P℄℄ : Pro[F;�H;B℄ (SUBSUMPTION)

Γ `σ P : T T6T 0
Γ `σ P : T 0

(AMB M)

Γ ` a : σAmbÆ[E;F;A ℄ Γ `σ P : Pro[E;MF;A ℄ P(σ;ρ;A )
Γ `ρ a[[P℄℄ : Pro[F;�H;B℄

(AMB Æ)

Γ ` a : σAmbÆ[E;F;A ℄ Γ `σ P : Pro[E;ÆF;A ℄
Γ `ρ a[[P℄℄ : Pro[G;�H;B℄

In the input rules below, we make the usual assumption that ifx̃ = x1; : : :xk thenW =
W1��� ��Wk, and we use the notationΓ; x̃ : W as a shorthand forΓ;x1 : W1; : : :xk : Wk.

(INPUT?)

Γ; x̃ : W `σ P : Pro[W;?F;A ℄
Γ `σ (x̃ : W)P : Pro[W;?F;A ℄ (OUTPUT?)

Γ ` Mi : Wi Γ `σ P : Pro[W1��� ��Wk;?F;A ℄
Γ `σ hM1; : : : ;MkiP : Pro[W1��� ��Wk;?F;A ℄

(INPUT M)

Γ; x̃ : W `σ P : Pro[E;µF;A ℄ Γ ` M : ρAmb?[W;G;B℄ P(σ;ρ;r)
Γ `σ (x̃ : W)MP : Pro[E;µF;A ℄

(OUTPUT M)

Γ ` Ni : Wi Γ `σ P : Pro[E;µF;A ℄ Γ ` M : ρAmb?[W1��� ��Wk;G;B℄ P(σ;ρ;w)
Γ `σ hN1; : : : ;NkiMP : Pro[E;µF;A ℄

(INPUT")

Γ; x̃: W `σ P : Pro[F;W;A ℄ r6A
Γ `σ (x̃: W)"P : Pro[F;W;A ℄ (INPUT" M)

Γ; x̃: W `σ P : Pro[F;MW;A ℄ r6A
Γ `σ (x̃: W)"P : Pro[F;MW;A ℄

(OUTPUT")

Γ ` Mi : Wi Γ `σ P : Pro[F;W1��� ��Wk;A ℄ w6A
Γ `σ hM1; : : : ;Mki"P : Pro[F;W1��� ��Wk;A ℄

(OUTPUT" M)

Γ ` Mi : Wi Γ `σ P : Pro[F;M(W1��� ��Wk);A ℄ w6A
Γ `σ hM1; : : : ;Mki"P : Pro[F;M(W1��� ��Wk);A ℄

For the asynchronous calculus we need two additional rules for processes forms:

(ASYNCH OUTPUT)

Γ ` Mi : Wi

Γ `σ hM1; : : : ;Mki : Pro[W1��� ��Wk;�F;A ℄
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(ASYNCH OUTPUT M)

Γ ` Ni : Wi Γ ` M : ρAmb?[W1��� ��Wk;G;B℄ P(σ;ρ;w)
Γ `σ hN1; : : : ;NkiM : Pro[E;�F;A ℄

B. PROOFS OF SUBJECT REDUCTION AND TYPE SOUNDNESS

The existence of multiple typing rules for the same syntactic form causes a proliferation of
typing derivations for the same judgment. The following lemma shows that we can focus
attention on derivations of more regular shape without losing generality.

LEMMA TYPING OF PROCESSES.

Ambients.AssumeΓ `ρ a[[P℄℄ : T. Then there existE andF exchanges, andA andB
access modes, such thatPro[E;�F;B℄6 T andΓ `ρ a[[P℄℄ : Pro[E;�F;B℄ is derivable from
the following assumptions, whereH andK are arbitrary exchanges:(a1) eitherΓ ` a : σAmb[H;E;A ℄, andΓ `σ P : Pro[H;E;A ℄ andP(σ;ρ;A )(a2) or Γ ` a : σAmbÆ[H;E;A ℄, andΓ `σ P : Pro[H;ME;A ℄ andP(σ;ρ;A )(a3) or Γ ` a : σAmbÆ[H;K;A ℄ andΓ `σ P : Pro[H;ÆK;A ℄

Parallel Composition.AssumeΓ `σ P j Q : T. Then there existH andE (exchanges)
andA (access mode) such thatΓ `σ P j Q : Pro[E;?E;A ℄ with Pro[E;?E;A ℄ 6 T, and
the last judgment is derivable from the following assumptions.(c1) if T 6 Pro[H;E;A ℄ thenΓ `σ P : T andΓ `σ Q : T(c2) if T = Pro[H;ÆE;A ℄ then eitherΓ `σ P : Pro[H;�E;A ℄ andΓ `σ Q : Pro[H;ÆE;A ℄,

or Γ `σ P : Pro[H;ÆE;A ℄ andΓ `σ Q : Pro[H;�E;A ℄(c3) if T = Pro[H;ME;A ℄ then eitherΓ `σ P : Pro[H;�E;A ℄ andΓ `σ Q : Pro[H;ME;A ℄,
or Γ `σ P : Pro[H;ME;A ℄ Γ `σ Q : Pro[H;�E;A ℄,
or elseΓ `σ P : Pro[H;E;A ℄ andΓ `σ Q : Pro[H;E;A ℄
Prefix. AssumeΓ `σ M:P : T. Then there existH and E exchanges, andA access

mode such thatΓ `σ M:P : Pro[H;?E;A ℄ with Pro[H;?E;A ℄6 T, and the last judgment
is derivable from the following assumptions, whereG is any exchange,B is any access
mode, andρ any security level:(p1) if T 6 Pro[H;E;A ℄ thenΓ `M : σCap[E;A ℄ andΓ `σ P : T(p2) if Pro[H;ÆE;A ℄6 T thenΓ Æ̀M : ρCap[G;B℄ andΓ `σ P : Pro[H;ÆE;A ℄,

or Γ Æ̀M : σCap[E;A ℄ andΓ `σ Q : Pro[H;ME;A ℄.
Input. AssumeΓ `σ (x̃ : W)ηP : T. Then there existE, F , G,A , andρ such that:(i1) if η = ? thenΓ; x̃ : W `σ P : Pro[W;?E;A ℄6 T(i2) if η = M then Γ; x̃ : W `σ P : Pro[E;µF;A ℄ 6 T, Γ ` M : ρAmb?[W;G;A ℄, andP(σ;ρ; r).(i3) if η = " thenΓ; x̃ : W `σ P : Pro[E;W;A ℄6 T,
or Γ; x̃ : W `σ P : Pro[E;MW;A ℄6 T, with r 6A
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Output. AssumeΓ `σ hM1; : : : ;MkiηP : T. Then there existE, F , G, W1; : : : ;Wk,A , and
ρ such that:(o1) if η = ? thenΓ `σ P : Pro[W1��� ��Wk;?E;A ℄6 T andΓ `Mi : Wi .(o2) if η = N thenΓ `σ P : Pro[E;µF;A ℄ 6 T, Γ ` N : ρAmb?[W1��� ��Wk;G;A ℄, and

Γ `Mi : Wi , withP(σ;ρ;w)(o3) if η = " thenΓ `σ P : Pro[E;W1��� ��Wk;A ℄6 T,
or Γ `σ P : Pro[E;M(W1��� ��Wk);A ℄6 T, with Γ `Mi : Wi andw6A .

PROOF. We need to show that we have captured all the possible cases.

Ambients.The judgmentΓ `ρ a[[P℄℄ : T must have been derived by an application of one
of the (AMB) rules followed by any number of subsumption steps. An inspection of the
typing rules for ambients proves the claim.

Parallel Composition.The first part of is obvious, the second part is proved as follows.(c1). T 6 Pro[H;E;A ℄ covers two cases:T = Pro[H;�E;A ℄ or T = Pro[H;E;A ℄. In
the first case,Γ `σ P j Q : T must be derived by (PAR �) from Γ `σ P : Pro[H 0;�E;A ℄
andΓ `σ Q : Pro[H 0;�E;A ℄, with H 0 6 H, followed by one or more subsumption steps.
ThusΓ `σ P : Pro[H;�E;A ℄ andΓ `σ Q : Pro[H;�E;A ℄ are also derivable, and from these
judgments one derives theΓ `σ P j Q : Pro[H;�E;A ℄ by (PAR �).

In the second case,Γ `σ P j Q : T must have been derived either from the judgements
Γ `σ P : Pro[H 0;�E;A ℄ andΓ `σ Q : Pro[H 0;�E;A ℄ by (PAR �) followed by subsumption
(with H 0 6H), or from the judgementsΓ `σ P : Pro[H 0;E;A ℄ andΓ `σ Q : Pro[H 0;E;A ℄,
by (PAR) again followed by subsumption. In both casesΓ`σ P : Pro[H;E;A ℄ andΓ `σ Q :Pro[H;E;A ℄ are derivable. From these judgments one derivesΓ `σ P j Q : Pro[H;E;A ℄
by (PAR).(c2). Γ `σ P j Q : T may have been derived fromΓ `σ P j Q : Pro[H 0;�E;A ℄, by sub-
sumption withH 0 6 H, and with andΓ `σ P j Q : Pro[H 0;�E;A ℄ derived by (PAR �) from
Γ `σ P : Pro[H 0;�E;A ℄ andΓ `σ Q : Pro[H 0;�E;A ℄. From the last two judgments, by
subsumption, one derivesΓ `σ P : Pro[H;�E;A ℄ andΓ `σ Q : Pro[H;ÆE;A ℄, from which
Γ `σ P j Q : T derives by (PAR Æ).

The only other possibility is thatΓ `σ P j Q : T has been derived by (PAR Æ) from the
judgementsΓ `σ P : Pro[H 0;�E;A ℄ andΓ `σ Q : Pro[H 0;ÆE;A ℄, or from the judgements
Γ `σ P : Pro[H 0;ÆE;A ℄ andΓ `σ Q : Pro[H 0;�E;A ℄ (with H 0 6 H) followed by one or
more subsumption steps. As in the previous cases, the proof follows by observing that the
subsumption steps can be permuted up to the premises of the (PAR Æ) rule.(c3). Γ `σ P j Q : T may have been derived fromΓ `σ P : Pro[H 0;E;A ℄ andΓ `σ Q :Pro[H 0;E;A ℄ by (PAR), for H 0 6 H, followed by one or more subsumption steps. From
these two judgments, by subsumption one derivesΓ `σ P : Pro[H;E;A ℄ and Γ `σ Q :Pro[H;E;A ℄. Then the desired judgment derives by (PAR) followed by subsumption.

Otherwise,Γ `σ P j Q : T must have been derived by (PAR µ 2 f�;Æ;Mg) from the
judgementsΓ `σ P : Pro[H 0;µE;A ℄ andΓ `σ Q : Pro[H 0;�E;A ℄, or from the judgements
Γ`σ P :Pro[H 0;�E;A ℄ andΓ`σ Q :Pro[H 0;µE;A ℄, with H 06H, followed by one or more
subsumption steps. In all these cases, by subsumption, one derivesΓ `σ P : Pro[H;ME;A ℄
andΓ `σ Q : Pro[H;�E;A ℄, or Γ `σ P : Pro[H;�E;A ℄ andΓ `σ Q : Pro[H;ME;A ℄. The
the judgementΓ `σ P j Q : Pro[H;ME;A ℄ derives by (PAR M).
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Prefix:. The first part of the claim is obvious. For the second part, first observe that the
rules for prefixes never derive types of the formPro[H;ME;A ℄. Then, the proof follows by
an inspection of the typing rules for prefixes and by observing that any subsumption step
based on a subtyping relation of the formPro[H 0;E;A ℄ 6 Pro[H;E;A ℄ permutes with
each of the prefix rules.

Input/Output:. By an inspection of the typing rules.

A second lemma proves a useful property of upward silent processes.

LEMMA UPWARD SILENT PROCESSES. If Γ `σ P : Pro[E;MH;A ℄ is derivable with
H = shh, thenΓ `σ P : Pro[E;�H;A ℄.

PROOF. By induction on the derivation ofΓ `σ P : Pro[E;MH;A ℄, and observing thatP
may not have either of the forms(x̃ : W)"Q andhM1; : : : ;Mki"Q.

LEMMA in MOVES PRESERVE TYPES. If Γ `ρ a[[ in b:P j Q℄℄ j b[[R℄℄ : T is derivable,
then so isΓ `ρ b[[a[[P j Q℄℄ j R℄℄ : T.

PROOF. By Lemma B.1, the judgment in the hypothesis must have been derived from
Γ `ρ b[[R℄℄ : Pro[E;�F;A ℄ and Γ `ρ a[[ in b:P j Q℄℄ : Pro[E;�F;A ℄, for suitableE and F
exchanges andA access mode such thatPro[E;�F;A ℄ 6 T . We first show thatΓ `ρ
b[[a[[P j Q℄℄ j R℄℄ : Pro[E;�F;A ℄ is derivable.

The proof is a case analysis of the possible types of the sub-terms ofa[[ in b:P j Q℄℄ and
b[[R℄℄ , guided by Lemma B.1. FromΓ `ρ b[[R℄℄ : Pro[E;�F;A ℄, we know thatΓ ` b :
τAmb?[I ;L;B℄ andΓ `τ R : Pro[I ;?L;B℄ for any exchange typeI , and suitableτ, L andB. Now we look ata[[ in b:P j Q℄℄ and the possible types of its components, as informed by
Lemma B.1, and show thatΓ `τ a[[P j Q℄℄ : Pro[I ;�J;B℄ for everyJ.

By Lemma B.1, we findE0 6E such thatΓ `ρ a[[ in b:P j Q℄℄ : Pro[E0;�F;A ℄ is derivable
by any of the sets of assumptions defined by cases(a1) – (a3). We next consider those
cases.(a1) In this caseΓ ` a : σAmb[H;E0;C ℄, andΓ `σ in b:P j Q : Pro[H;E0;C ℄ (in fact, we

also haveP(σ;ρ;C ), but we may disregard this hypothesis, as it follows by the proof
below). LetT = Pro[H;E0;C ℄: by (c1) we know thatΓ `σ in b:P : T andΓ `σ Q : T, and
by (p1) thatΓ ` in b : σCap[E0;C ℄ andΓ `σ P : T. From the former judgment and from
Γ ` b : τAmb?[I ;J;B℄, an inspection of the rule (IN) shows thatE0 6 I andP(σ;τ;C ).
From Γ `σ P : T and fromΓ `σ Q : T, one hasΓ `σ P j Q : T by (PAR). From the
last judgment and fromΓ ` a : σAmb[H;E0;C ℄ andP(σ;τ;C ), by (AMB), one derives
Γ `τ a[[P j Q℄℄ : Pro[E0;�J;B℄. ThenΓ `τ a[[P j Q℄℄ : Pro[I ;�J;B℄ by subsumption, as
desired.(a2) In this caseΓ ` a : σAmbÆ[H;E0;C ℄ andΓ `σ in b:P jQ : Pro[H;ME0;C ℄. By Lemma
B.1 we can assume thatΓ `σ in b:P j Q : Pro[H;ME0;C ℄ derives from the three sets of
assumptions defined by case(c3), which we consider below.(c3:1) Γ `σ in b:P : Pro[H;�E0;C ℄ and Γ `σ Q : Pro[H;ME0;C ℄. From Γ `σ in b:P :Pro[H;�E0;C ℄, by (p1) we haveΓ `σ P : Pro[H;�E0;C ℄ andΓ ` in b : σCap[E0;C ℄.

From the last judgment, and the typing ofb an inspection of the rule (IN) shows that
E0 6 I andP(σ;τ;C ). From Γ `σ P : Pro[H;�E0;C ℄ andΓ `σ Q : Pro[H;ME0;C ℄
one derivesΓ `σ P jQ : Pro[H;ME0;C ℄ by (PAR M). From the last judgment and from
Γ ` a : σAmbÆ[H;E0;C ℄ andP(σ;τ;C ), one derivesΓ `τ a[[P j Q℄℄ : Pro[E0;�J;B℄
by (AMB M). Now,Γ `σ a[[P j Q℄℄ : Pro[I ;�J;B℄ derives by subsumption.
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may assume thatΓ `σ in b:P : Pro[H;ME0;C ℄ has been derived from the two sets of
assumptions defined by case(p2). First observe that for all exchangesF and access
modesC , Γ Æ̀ in b : σCap[F;C ℄ impliesΓ ` in b : σCap[F;C ℄. Then we can reason
as follows.
In (p2:1), one hasΓ ` in b : σCap[G;D ℄ andΓ `σ P : Pro[H;ÆE0;C ℄, with no con-
straint on the relationship between the exchangesG and E0, the access modesC
andD , and the security levelsσ and σ. From Γ `σ P : Pro[H;ÆE0;C ℄ and Γ `σ
Q : Pro[H;�E0;C ℄, one hasΓ `σ P j Q : Pro[H;ÆE0;C ℄ by (PAR Æ). Then, Γ `τ
a[[P j Q℄℄ : Pro[I ;�J;B℄ derives directly by (AMB Æ) from Γ `σ P j Q : Pro[H;ÆE0;C ℄
andΓ ` a : σAmbÆ[H;E0;C ℄.
In (p2:2) one hasΓ ` in b : σCap[E0;C ℄ andΓ `σ P : Pro[H;ME0;C ℄. From the former
judgment, an inspection of the rule (IN) shows thatE0 6 I andP(σ;τ;C ). From
Γ `σ P : Pro[H;ME0;C ℄ and fromΓ `σ Q : Pro[H;�E0;C ℄, one derivesΓ `σ P j Q :Pro[H;ME0;C ℄ by (PAR M), and thenΓ `τ a[[P j Q℄℄ : Pro[I ;�J;B℄ by (AMB M), which
is applicable sinceP(σ;τ;C ), followed by subsumption.(c3:3) Γ `σ in b:P : Pro[H;E0;C ℄ andΓ `σ Q : Pro[H;E0;C ℄. This case is similar to
the case(a1) proved above, with the difference that nowa is a pilot ambient. Rea-
soning as in that case, one derivesΓ `σ P j Q : Pro[H;E0;C ℄, and thenΓ `σ P j Q :Pro[H;ME0;C ℄ by subsumption, forE0 6 I andP(σ;τ;C ). Now, from the last judg-
ment and fromΓ ` a : σAmbÆ[H;E0;C ℄ andP(σ;τ;C ) we deriveΓ `τ a[[P j Q℄℄ :Pro[E0;�J;B℄ by (AMB M) and then, by subsumptionΓ `τ a[[P j Q℄℄ : Pro[I ;�J;B℄.(a3) In this caseΓ ` a : σAmbÆ[H;K;C ℄ andΓ `σ in b:P j Q : Pro[H;ÆK;C ℄. By Lemma

B.1 we can assume thatΓ `σ in b:P j Q : Pro[H;ÆK;C ℄ has been derived from the two
pairs of assumptions defined by case(c2), which we consider below.(c2:1) Γ`σ in b:P :Pro[H;�K;C ℄ andΓ`σ Q :Pro[H;ÆK;C ℄. By (p1) we know thatΓ`in b : σCap[K;C ℄ andΓ `σ P : Pro[H;�K;C ℄. Now, fromΓ `σ P : Pro[H;�K;C ℄ and

Γ `σ Q : Pro[H;ÆK;C ℄ one derivesΓ `σ P jQ : Pro[H;ÆK;C ℄ by (PAR Æ). Now, from
the last judgment andΓ ` a : AmbÆ[H;K;C ℄, one derivesΓ `τ a[[P j Q℄℄ : Pro[I ;�J;B℄
directly by (AMB Æ).(c2:2) Γ `σ in b:P : Pro[H;ÆK;C ℄ andΓ `σ Q : Pro[H;�K;C ℄. The proof further splits
in the two subcases defined by(p2) and proceeds as in case(c3:2) above, withE0
replaced byK.

From the previous analysis we haveΓ `τ a[[P j Q℄℄ : Pro[I ;�J;B℄ for any J. From the
hypothesis, we had inferred thatΓ `τ R : Pro[I ;?L;B℄, for a suitableL. ChoosingJ = L,
by the appropriate (PAR ?) rule, we then deriveΓ `τ R j a[[P j Q℄℄ : Pro[I ;?L;B℄. From
the last judgment and fromΓ ` b : τAmb?[I ;L;B℄ we concludeΓ `ρ b[[R j a[[P j Q℄℄ ℄℄ :Pro[E;�F;A ℄ using the appropriate (AMB ?) rule (the same rule used in the derivation of
Γ `ρ b[[R℄℄ : Pro[E;�F;A ℄).

LEMMA out MOVES PRESERVE TYPES. If Γ`ρ a[[b[[out a:P j Q℄℄ j R℄℄ : T is derivable,
then so isΓ `ρ b[[P j Q℄℄ j a[[R℄℄ : T.

PROOF. By Lemma B.1, there existE;F exchanges, andB access mode such thatPro[E;�F;B℄ 6 T and the judgment in the hypothesis must have been derived from Γ `ρ
a[[b[[out a:P j Q℄℄ j R℄℄ : Pro[E;�F;B℄. This implies thatΓ `ρ a[[R℄℄ : Pro[E;�F;B℄ is also
derivable. To prove the lemma, we thus need to show thatΓ `ρ b[[P j Q℄℄ : Pro[E;�F;B℄.
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We distinguish two cases, depending on the type ofa, namely:Γ ` a : τAmb?[I ;E;C ℄,
or Γ ` a : τAmbÆ[I ;K;C ℄ for some exchangesI andK, security levelτ and access modeC (note that Lemma B.1 ensures thatE can be chosen so thata has the indicated types).
For each of the two cases, we look atb[[out a:P j Q℄℄ j R and at the possible types of its
components, as informed by Lemma B.1.

CaseΓ` a : τAmb?[I ;E;C ℄. FromΓ `ρ a[[b[[out a:P j Q℄℄ j R℄℄ : Pro[E;�F;A ℄, by Lem-
ma B.1 ((a1) and(a2)) it follows thatP(τ;ρ;C ) andΓ`τ b[[out a:P j Q℄℄ jR:Pro[I ;µE;C ℄
for anyI , andµ either absent or equal toM.

Now, by two applications of Lemma B.1 (to the parallel composition, and then to the
process in ambient form), it follows that there existsH 6 I such thatΓ `τ b[[out a:P j Q℄℄ :Pro[H;�E;C ℄ is derivable by any of the three sets of assumptions defined bycases(a1) –(a3). We consider those cases below.(a1) In this caseΓ ` b : σAmb[L;H;A ℄, andΓ `σ out a:P j Q : T with T = Pro[L;H;A ℄

andP(σ;τ;A ). By (c1) we know thatΓ `σ out a:P : T andΓ `σ Q : T. From the first
judgment, by(p1), one hasΓ ` out a : σCap[H;A ℄ andΓ `σ P : T. An inspection of
the typing rules shows thatΓ ` out a : σCap[H;A ℄ must have been derived by the rule
(OUT). Then the typing ofa is, in fact,Γ ` a : τAmb[H;E;C ℄, and furthermoreH 6 E
andA 6 C . SinceP is stable, by assumption, fromP(τ;ρ;C ) andA 6 C we haveP(τ;ρ;A ): this, together withP(σ;τ;A ), impliesP(σ;ρ;A ). Now, fromΓ `σ P : T
andΓ `σ Q : T one hasΓ `σ P j Q : T by (PAR), and from this judgment and from
Γ ` b : σAmb[L;H;A ℄ one derivesΓ `ρ b[[P j Q℄℄ : Pro[H;�F;B℄ by (AMB).
ThenΓ `ρ b[[P j Q℄℄ : Pro[E;�F;B℄ derives by subsumption, given thatH 6 E.(a2) In this caseΓ ` b : σAmbÆ[L;H;A ℄ and Γ `σ out a:P j Q : Pro[L;MH;A ℄, withP(σ;τ;A ). By Lemma B.1 we can assume thatΓ `σ out a:P j Q : Pro[L;MH;A ℄
derives from one of the three sets of assumptions defined by case (c3). We consider
these cases below.(c3:1) Γ `σ out a:P : Pro[L;�H;A ℄ andΓ `σ Q : Pro[L;MH;A ℄. FromΓ `σ out a:P :Pro[L;�H;A ℄, by (p1) we haveΓ `σ P : Pro[L;�H;A ℄ andΓ ` out a : σCap[H;A ℄,

with the last judgment derived by the rule (OUT). Thus the typing ofa must beΓ ` a :
τAmb[I ;E;C ℄, and moreoverH 6 E andA 6 C . Reasoning as in case(a1) above,
it follows thatP(σ;ρ;A ). FromΓ `σ P : Pro[L;�H;A ℄ andΓ `σ Q : Pro[L;MH;A ℄
one derivesΓ `σ P jQ : Pro[L;MH;A ℄ by (PAR M). From the last judgment and from
Γ ` b : σAmbÆ[L;H;A ℄, one derives by (AMB M) Γ `ρ b[[P j Q℄℄ : Pro[H;�J;B℄ for
anyJ and thus, in particular, forJ = F . Now, Γ `ρ b[[P j Q℄℄ : Pro[E;�F;B℄ derives
by subsumption, asH 6 E.(c3:2) Γ `σ out a:P : Pro[L;MH;A ℄ andΓ `σ Q : Pro[L;�H;A ℄. By Lemma B.1, we
may assume thatΓ `σ out a:P : Pro[L;MH;A ℄ has been derived from the two pairs of
assumptions defined by case(p2).
In (p2:1), one hasΓ Æ̀out a : σCap[G;D ℄ andΓ `σ P : Pro[L;ÆH;A ℄, with G any
exchange,D any access mode, andσ any security level. FromΓ `σ P : Pro[L;ÆH;A ℄
and FromΓ `σ Q : Pro[L;�H;A ℄ one derivesΓ `σ P j Q : Pro[L;ÆH;A ℄ by (PAR Æ).
Then, we deriveΓ `ρ b[[P j Q℄℄ : Pro[E;�F;B℄ directly by (AMB Æ).
In (p2:2), one hasΓ Æ̀out a : σCap[H;A ℄ andΓ `σ P : Pro[L;MH;A ℄.
If the typing of a is Γ ` a : τAmb[I ;E;C ℄, thenΓ Æ̀out a : σCap[H;A ℄ must have
been derived fromΓ ` out a : σCap[H;A ℄, which implies thatH 6 E andA 6 C .
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Reasoning as in case(a1), it follows again thatP(σ;ρ;A ). Then, fromΓ `σ P :Pro[L;MH;A ℄ andΓ `σ Q : Pro[L;�H;A ℄ one derivesΓ `σ P j Q : Pro[L;MH;A ℄
by (PAR M). From this last judgment and fromΓ ` b : σAmbÆ[L;H;A ℄, one derives
Γ `ρ b[[P j Q℄℄ : [E;�F;B℄ by (AMB M) and subsumption withH 6 E.
Instead, if the typing ofa is Γ ` a : σAmbÆ[H;E;A ℄ thenΓ Æ̀out a : σCap[H;A ℄
impliesH = shh. But then, from the hypothesisΓ `σ P : Pro[L;MH;A ℄, by Lemma
B.2, it follows that alsoΓ `σ P : Pro[L;ÆH;A ℄ is derivable. ThenΓ `σ P j Q :Pro[L;ÆH;A ℄ is derivable by (PAR Æ). Now Γ `ρ b[[P j Q℄℄ : Pro[H;�F;B℄ derives
by (AMB Æ), andΓ `ρ b[[P j Q℄℄ : Pro[E;�F;B℄ by subsumption.(c3:3) Γ `σ out a:P : Pro[L;H;A ℄ andΓ `σ Q : Pro[L;H;A ℄. This case has the same
hypothesis as the case(a1) above, save thatb is typed as a pilot ambient. Reasoning as
in that case, one derivesΓ`σ P jQ :Pro[L;H;A ℄, and thenΓ`σ P jQ :Pro[L;MH;A ℄
by subsumption, withH 6 E. The proof proceeds as in(a1): only, it uses (AMB M)
instead of (AMB).(a3) In this caseΓ ` b : σAmbÆ[L;K;A ℄ andΓ `σ out a:P jQ : Pro[L;ÆK;A ℄. By Lemma

B.1 we can assume thatΓ `σ out a:P j Q : Pro[L;ÆK;A ℄ has been derived from any of
the two sets of assumptions defined by case(c2), which we consider below.(c2:1) Γ `σ out a:P : Pro[L;�K;A ℄ andΓ `σ Q : Pro[L;ÆK;A ℄. By (p1) we know that

Γ `σ P : Pro[L;�K;A ℄. FromΓ `σ P : Pro[L;�K;A ℄ andΓ `σ Q : Pro[L;ÆK;A ℄ one
derivesΓ `σ P j Q : Pro[L;ÆK;A ℄ by (PAR Æ). From the last judgment and from
Γ ` b : σAmbÆ[L;K;A ℄, one derivesΓ `ρ b[[P j Q℄℄ : Pro[E;�F;B℄ directly by (AMBÆ).(c2:2) Γ `σ out a:P : Pro[L;ÆK;A ℄ andΓ `σ Q : Pro[L;�K;A ℄. The proof further splits
in the two subcases defined by(p2) and proceeds as in case(c3:2) above, withH
replaced byK.

CaseΓ` a : τAmbÆ[I ;K;A ℄. FromΓ`ρ a[[b[[out a:P j Q℄℄ j R℄℄ :Pro[E;�F;A ℄, by Lem-
ma B.1(a1) and (a2), and then(c1) – (c3), it follows that there existsH 6 I such that
Γ `τ b[[out a:P j Q℄℄ : Pro[H;�K;A ℄ is derivable by any of the three sets of assumptions
defined by cases(a1) – (a3). We consider those cases below: as we shall see, most of them
are vacuous, given the typing ofa as a pilot ambient.(a1) In this caseΓ ` b : σAmb[L;H;A ℄ and Γ `σ out a:P j Q : Pro[L;H;A ℄. This is

one of the vacuous cases. To see that, note thatΓ `σ out a:P j Q : Pro[L;H;A ℄ im-
plies, by (c1) and (p1), that Γ ` out a : σCap[H;A ℄ is derivable. An inspection of
the typing rules shows that this is not possible, as we are currently assuming thatΓ `
a : σAmbÆ[H;K;A ℄, and hence the only derivable judgments forout a are of the form
Γ Æ̀out a : σCap[shh;A ℄ for some modeA .(a2) In this caseΓ ` b : σAmbÆ[L;H;A ℄ andΓ`σ out a:P jQ :Pro[L;MH;A ℄. By Lemma
B.1 we can assume thatΓ `σ out a:P j Q : Pro[L;MH;A ℄ derives from any of the three
sets of assumptions defined by case(c3). We consider these cases below.
In case(c3:1) one hasΓ `σ out a:P : Pro[L;�H;A ℄ andΓ `σ Q : Pro[L;MH;A ℄: this is
another vacuous case, for the reason given above. Similarly, case(c3:3) is vacuous as
Γ `σ out a:P : Pro[L;H;A ℄ andΓ `σ Q : Pro[L;H;A ℄.
In case(c3:2), Γ `σ out a:P : Pro[L;MH;A ℄ andΓ `σ Q : Pro[L;�H;A ℄. By Lemma
B.1, we may assume thatΓ `σ out a:P : Pro[L;MH;A ℄ has been derived from one of the
two pairs of assumptions defined by case(p2).
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In (p2:1), one hasΓ Æ̀out a : σCap[G;D ℄ andΓ `σ P : Pro[L;ÆH;A ℄, for anyG, D ,
andσ. FromΓ `σ P : Pro[L;ÆH;A ℄ and fromΓ `σ Q : Pro[L;�H;A ℄ one derivesΓ `σ
P j Q : Pro[L;ÆH;A ℄ by (PAR Æ). Then,Γ `ρ b[[P j Q℄℄ : Pro[E;�F;B℄ derives directly
by (AMB Æ).
In (p2:2), one hasΓ Æ̀out a : σCap[H;A ℄ and Γ `σ P : Pro[L;MH;A ℄. The typing
of a andΓ Æ̀out a : σCap[H;A ℄ imply that H = shh. But then, from the hypothesis
Γ `σ P : Pro[L;MH;A ℄, by Lemma B.2, it follows that alsoΓ `σ P : Pro[L;ÆH;A ℄ is
derivable. Now,Γ `σ P j Q : Pro[L;ÆH;A ℄ is derivable by (PAR Æ), and thenΓ `ρ
b[[P j Q℄℄ : Pro[E;�F;B℄ directly by (AMB Æ).(a3) In this caseΓ ` b : σAmbÆ[L;J;A ℄ andΓ `σ out a:P j Q : Pro[L;ÆJ;A ℄. By Lemma
B.1 we can assume thatΓ `σ out a:P j Q : Pro[L;ÆJ;A ℄. has been derived from one of
the two pairs of assumptions defined by case(c2). Case(c2:1) is vacuous, as it implies
Γ `σ out a:P : Pro[L;�J;A ℄ andΓ `σ Q : Pro[L;ÆJ;A ℄.
In case(c2:2), Γ `σ out a:P : Pro[L;ÆJ;A ℄ andΓ `σ Q : Pro[L;�J;A ℄. The proof further
splits into the two subcases defined by(p2), namely: (i) Γ Æ̀out a : σCap[G;D ℄ and
Γ `σ P : Pro[L;ÆJ;A ℄, and(ii) Γ Æ̀out a : σCap[J;A ℄ andΓ `σ P : Pro[L;MJ;A ℄. In
the first subcase, the claim follows as in case(p2:1) above, by a final application of
(AMB Æ). In the second,J = shh and the claim follows as in case(p2:2).
LEMMA TYPE ENVIRONMENTS. Let Γ `? U : Z denote any of the judgmentsΓ Æ̀M :

W, Γ `M : W or Γ `σ P : T.

(1) If Γ ` � thenΓ0 ` � for everyΓ0 � Γ.
(2) If Γ `? U : Z thenΓ ` �.
(3) If Γ;x : W;Γ0 `? U : Z andx 62 fn(U) thenΓ;Γ0 `? U : Z.
(4) If Γ;`? U : Z andΓ;Γ0 ` � thenΓ;Γ0 `? U : Z.

PROOF. By induction on the derivation of the first judgments in eachof the hypotheses.

LEMMA SUBSTITUTION.

(1) AssumeΓ;x1:W1; : : : ;xk:Wk;Γ0 `? M:W. For allN1; : : :Nk, if 8i 2 f1: : :kg Γ;Γ0 `Ni :Wi ,
thenΓ;Γ0 `? Mfxi := Nig:W.

(2) AssumeΓ;x1:W1; : : : ;xk:Wk;Γ0 `σ P : T. For all N1; : : :Nk, if 8i 2 f1: : :kg Γ;Γ0 ` Ni :
Wi , thenΓ;Γ0 `σ Pfxi := Nig : T.

PROOF. The proof is by induction on the derivations of first judgments in the hypotheses
and a case analysis on the last applied rule. Most cases follow directly by the induction
hypothesis: we give a proof of the representative cases.

(1) (Projection) The hypothesis isΓ;x1:W1; : : : ;xk:Wk;Γ0 ` y : W. We have two cases
to consider. Ify = xi for somei 2 f1: : :kg, then it must be the case thatW = Wi

and the claim follows from the hypothesisΓ;Γ0 ` Ni : Wi . If y 62 fx1; : : : ;xkg, from
Γ;x1:W1; : : : ;xk:Wk;Γ0 ` y : W, by Lemma B.5.3 we haveΓ;Γ0 ` y : W. This concludes
the proof since sincey= yfxi := Nig.
(In) The hypothesis isΓ;x1:W1; : : : ;xk:Wk;Γ0 ` in M : σCap[G;B℄, derived from the
judgmentΓ;x1:W1; : : : ;xk:Wk;Γ0 ` M : ρAmb?[F;E;A ℄ with G6 F andP(σ;ρ;B).
By the induction hypothesis it follows thatΓ;Γ0 ` Mfxi := Nig : ρAmb?[F;E;A ℄.
Then, the desired judgment derives by an application of the rule (IN).
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(2) (Prefix) The hypothesis isΓ;x1:W1; : : : ;xk:Wk;Γ0 `σ M:P : Pro[E;F;A ℄, derived from
Γ;x1 : W1; : : : ;xk : Wk;Γ0 ` M : σCap[F;A ℄ and fromΓ;x1 : W1; : : : ;xk : Wk;Γ0 `σ P :Pro[E;F;A ℄. By the induction hypothesis,Γ;Γ0 ` Mfxi := Nig : σCap[F;A ℄ and
Γ;Γ0 `σ Pfxi := Nig : Pro[E;F;A ℄ are both derivable. Then, the judgementΓ;Γ0 `σ
Mfxi := Nig:Pfxi := Nig : Pro[E;F;A ℄ derives by (PREFIX).

(New)The hypothesis isΓ;x1:W1; : : : ;xk:Wk;Γ0 `σ (νy:ρAmb?[E;F;A ℄)P : T, derived
from Γ;x1:W1; ::;xk:Wk;Γ0;y:ρAmb?[E;F;A ℄ `σ P : T. By Lemma B.5.2, we have
Γ;x1:W1; ::;xk:Wk;Γ0;y:ρAmb?[E;F;A ℄ ` �, hence thaty 62 fx1; : : : ;xkg. By the in-
duction hypothesis we have thatΓ;Γ0;y:ρAmb?[E;F;A ℄ `σ Pfxi := Nig : T. Now,
from the last judgment, by (NEW), one derivesΓ;Γ0 `σ (νy:ρAmb?[E;F;A ℄)(Pfxi :=
Nig) : T. This is the judgment we wished to derive, asy 62 fx1; : : : ;xng implies that(νy:ρAmb?[E;F;A ℄)(Pfxi := Nig) = ((νy:ρAmb?[E;F;A ℄)P)fxi := Nig.
(Output N) The judgement in the hypothesis isΓ;x1:W1; : : : ;xk:Wk;Γ0 `σ hMiNP :
T. By Lemma B.1.(o2) there existE, F , G, W, A , and ρ such that the judge-
mentsΓ;x1:W1; : : : ;xk:Wk;Γ0 ` N : ρAmb?[W;G;A ℄, Γ;x1:W1; : : : ;xk:Wk;Γ0 ` M : W,
andΓ;x1:W1; : : : ;xk:Wk;Γ0 `σ P :Pro[E;µF;A ℄6T are derivable andP(σ;ρ;w) holds
true. By the induction hypothesisΓ;Γ0 ` Nfxi := Nig : ρAmb?[W;G;A ℄, andΓ;Γ0 `
Mfxi := Nig : W and Γ;Γ0 `σ Pfxi := Nig : Pro[E;µF;A ℄ are all derivable. Then,
by (OUTPUT N) and subsumption one derives the desired judgmentΓ;Γ0hMfxi :=
NigiNfxi :=NigPfxi := Nig : T.

LEMMA SYNCHRONOUS EXCHANGE PRESERVES TYPES.

(1) If Γ `σ (x1 : W1; : : : ;xk : Wk)P j hM1; : : : ;MkiQ : T, thenΓ `σ Pfxi := Mig j Q : T

(2) If Γ `σ (x1 : W1; : : : ;xk : Wk)nP j n[[hM1; : : : ;MkiQ j R℄℄ : T,
thenΓ `σ Pfxi := Mig j n[[Q j R℄℄ : T

(3) If Γ `σ hM1; : : : ;MkiP j n[[ (x1 : W1; : : : ;xk : Wk)"Q j R℄℄ : T,
thenΓ `σ P j n[[Qfxi := Mig j R℄℄ : T

(4) If Γ `σ hM1; : : : ;MkinP j n[[ (x1 : W1; : : : ;xk : Wk)Q j R℄℄ : T,
thenΓ `σ P j n[[Qfxi := Mig j R℄℄ : T

(5) If Γ `σ (x1 : W1; : : : ;xk : Wk)P j n[[hM1; : : : ;Mki"Q j R℄℄ : T,
thenΓ `σ Pfxi := Mig j n[[Q j R℄℄ : T

PROOF. We only give three cases as representative: 1 (local exchange), 2 (downward
input) and 5 (upward output). The remaining cases are handled similarly.

1.. By repeated applications of Lemma B.1 (on the parallel composition, and then on
the component processes), it follows thatT = Pro[W1��� ��Wk;?F;A ℄, for some accessA , and exchange type?F . The judgment in the hypothesis must have been derived from
Γ;x1 : W1; : : :xk : Wk `σ P : Pro[W1� �� � �Wk;?1 F;A ℄, from Γ `σ Mi : Wi (i = 1::k) and
from Γ `σ Q : Pro[W1��� ��Wk;?2 F;A ℄ by a rule (PAR ?h) whereh is either 1 or 2. From
the first two judgments, by Lemma B.6, we know thatΓ `σ Pfxi := Mig : Pro[W1��� ��
Wk;?1 F;A ℄. ThenΓ `σ Pfxi := Mig j Q : Pro[W1��� ��Wk;?F;A ℄ derives directly by the
given (PAR ?h) rule.

2.. The judgment in the hypothesis must have been derived from the judgementsΓ `σ(x1 : W1; : : : ;xk : Wk)nP : T 0 andΓ `σ n[[ hM1; : : : ;MkiQ j R℄℄ : T 00 for appropriateT 0 and
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T 00. Let Ξ be the (partial) derivation from these two judgments to the judgment in the
hypothesis.

FromΓ `σ (x1 : W1; : : : ;xk : Wk)nP : T 0, by Lemma B.1(i2) and subsumption, we know
thatΓ;x1 : W1; : : : ;xk : Wk `σ P : T 0, andΓ ` n : ρAmb?[W1��� ��Wk;E;A ℄ for someE, ρ
andA (we also know thatP(σ;ρ; r), but this is only useful in the proof of type soundness,
not here). We take the case whenΓ ` n : ρAmb[W1��� ��Wk;E;A ℄ as representative: the
remaining cases are similar, as the reasoning only depends on the local exchanges of the
processes involved in the reduction.

FromΓ `σ n[[hM1; : : : ;MkiQ j R℄℄ : T 00 andΓ ` n : ρAmb[W1��� ��Wk;E;A ℄, by Lem-
ma B.1, we know thatP(ρ;σ;A ), and there must existF such thatPro[E;�F;A ℄ 6 T 00,
and Γ `σ n[[hM1; : : : ;MkiQ j R℄℄ : Pro[E;�F;A ℄ derives fromΓ `ρ hM1; : : : ;MkiQ j R :Pro[W1� �� � �Wk;E;A ℄. From the last judgment, by Lemma B.1.(c3), we know that
Γ `ρ R : Pro[W1� �� � �Wk;E;A ℄ and Γ `ρ hM1; : : : ;MkiQ : Pro[W1� �� � �Wk;E;A ℄.
From the last judgment, by Lemma B.1.(o1), Γ `Mi : Wi , and (by subsumption) alsoΓ `ρ
Q : Pro[W1��� � �Wk;E;A ℄. From this judgment andΓ `ρ R : Pro[W1��� � �Wk;E;A ℄
we then deriveΓ `ρ Q j R : Pro[W1� �� � �Wk;E;A ℄ by (PAR). From the last judg-
ment, fromΓ` n : ρAmb[W1��� ��Wk;E;A ℄ andP(ρ;σ;A ) one derivesΓ `σ n[[Q j R℄℄ :Pro[E;�F;A ℄ by (AMB), and thenΓ `σ n[[Q j R℄℄ : T 00 by subsumption.

From Γ ` Mi : Wi andΓ;x1 : W1; : : : ;xk : Wk `σ P : T 0 which we had derived above, by
Lemma B.6,Γ`σ Pfxi := Mig : T 0. Finally, fromΓ `σ Pfxi := Mig : T 0 andΓ`σ n[[Q j R℄℄ :
T 00, the judgmentΓ `σ Pfxi := Mig j n[[Q j R℄℄ : T derives by the same steps used inΞ.

5.. The judgment in the hypothesis must have been derived from the judgementsΓ `σ(x1 :W1; : : : ;xk :Wk)P : T 0, andΓ`σ n[[hM1; : : : ;Mki"Q j R℄℄ : T 00 for suitableT 0 andT 00. Let
Ξ be the (partial) derivation from these two judgments to the judgment in the hypothesis

From the first judgment, by Lemma B.1.(i1), there existsE such thatPro[W1� �� � �
Wk;?E;A ℄6 T 0 andΓ;x1 : W1; : : : ;xk : Wk `σ P : Pro[W1��� ��Wk;?E;A ℄.

From Γ `σ n[[ hM1; : : : ;Mki"Q j R℄℄ : T 00 and the judgment we just derived, by Lemma
B.1.(a1) – (a3), there existsH 6W1� �� � �Wk such thatPro[H;�E;A ℄ 6 T 00 andΓ `σ
n[[hM1; : : : ;Mki"Q j R℄℄ : Pro[H;�E;A ℄ is derived from either of the sets of hypotheses
defined by the cases(a1) and (a2). The case(a3) may be dispensed with, as it im-
plies that a derivation exists for the judgmentΓ `σ hM1; : : : ;Mki"Q j R : Pro[I ;ÆK;B℄
(for someI , K andB), while such derivation does not exist: if the judgment in question
were derivable, then by Lemma B.1.(c2), eitherΓ `σ hM1; : : : ;Mki"Q : Pro[I ;ÆK;B℄ or
Γ `σ hM1; : : : ;Mki"Q : Pro[I ;�K;B℄, would be derivable, contradicting Lemma B.1.(o3).

The cases(a1) and (a2) are similar: we prove the second, which is more complex,
and leave the first to the reader. The hypotheses areΓ ` n : ρAmbÆ[I ;H;B℄ and Γ `ρhM1; : : : ;Mki"Q j R : Pro[I ;MH;B℄. From the last judgment, by Lemma B.1.(c3) (and
the reasoning we just made about case(a3)), it follows thatΓ `ρ hM1; : : : ;Mki"Q : T� is
derivable withT� such thatPro[I ;H;B℄ 6 T�. This, by Lemma B.1.(o3) implies that
H 6= shh: from this, sinceH 6W1��� ��Wk, it follows thatH = W1��� ��Wk. Lemma
B.1.(o3) applied toΓ`ρ hM1; : : : ;Mki"Q : T� also impliesΓ`Mi :Wi andΓ`ρ Q : T�. Then
Γ `ρ Q j R : Pro[I ;MH;B℄ derives by the same steps that derivedΓ `ρ hM1; : : : ;Mki"Q j R :Pro[I ;MH;B℄ from Γ `ρ hM1; : : : ;Mki"Q : T�.

Now from Γ `Mi : Wi and fromΓ;x1 : W1; : : : ;xk : Wk `ρ P : Pro[W1��� ��Wk;?E;A ℄,
which we had derived above, by Lemma B.6, we haveΓ `σ Pfxi := Mig : Pro[W1��� ��
Wk;?E;A ℄, and thenΓ `σ Pfxi := Mig : T 0 by subsumption. We are ready to conclude:
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from Γ ` n : ρAmbÆ[I ;H;B℄ andΓ `ρ Q j R : Pro[I ;MH;B℄ we deriveΓ `σ n[[Q j R℄℄ :Pro[H;�E;A ℄, and thenΓ`σ n[[Q j R℄℄ : T 00. From the last judgment and fromΓ`σ Pfxi :=
Mig : T 0, one derivesΓ `σ Pfxi := Mig j n[[Q j R℄℄ : T by the steps used inΞ,

LEMMA ASYNCHRONOUS EXCHANGE PRESERVES TYPES.

(1) If Γ `σ (x1 : W1; : : : ;xk : Wk)P j hM1; : : : ;Mki : T, thenΓ `σ Pfxi := Mig : T

(2) If Γ `σ (x1 : W1; : : : ;xk : Wk)nP j n[[hM1; : : : ;Mki j Q℄℄ : T,
thenΓ `σ Pfxi := Mig j n[[Q℄℄ : T

(3) If Γ `σ hM1; : : : ;Mki j n[[ (x1 : W1; : : : ;xk : Wk)"P j Q℄℄ : T,
thenΓ `σ n[[Pfxi := Mig j Q℄℄ : T

(4) If Γ `σ P j n[[hM1; : : : ;Mki"Q j R℄℄ : T thenΓ `σ P j hM1; : : : ;Mki j n[[Q j R℄℄ : T

(5) If Γ `σ hM1; : : : ;Mkin j n[[Q℄℄ : T thenΓ `σ n[[hM1; : : : ;Mki j Q℄℄ : T

PROOF. The cases 1, 2 and 3 follow by the corresponding cases of Lemma B.7, by(i) choosing0 as the continuation of the output process, and(ii) observing thatΓ `σhM1; : : : ;Mki : T if and only if Γ `σ hM1; : : : ;Mki0 : T. In case 4 the proof is similar to
the corresponding case of Lemma B.7 (in fact, the proof is simpler, and follows without
appealing to Lemma B.6). Case 5 is left to the reader.

LEMMA SUBJECT CONGRUENCE.

(1) If Γ `σ P : T andP�Q thenΓ `σ Q : T.
(2) If Γ `σ P : T andQ� P thenΓ `σ Q : T.

PROOF. By simultaneous induction on the depths of the derivationsof P�Q andQ�P.

(1) If Γ `σ P : T andP�Q thenΓ `σ Q : T.
(Struct Refl) The hypothesis isP� P, and the proof follows directly from the as-
sumptionΓ `σ P : T.
(Struct Symm) ThenP� Q derives fromQ� P. Γ `σ Q : T follows by induction
hypothesis(2).
(Struct Trans) ThenP�Q derives fromP� R andR�Q for someR. FromP� R
andΓ `σ P : T, by induction hypothesis(1) Γ `σ R : T. From the last judgment, and
from R�Q, again by induction hypothesis(1) Γ `σ Q : T.
(Struct Par Assoc)We prove this case as representative of(Struct Par Dead) and
(Struct Par Comm). The hypothesesΓ `σ P j (Q j R) : T andP j (Q j R)� (P jQ) jR.
By Lemma B.1, there existE andF such thatPro[E;?F;A ℄6 T andΓ `σ P j (Q j R) :Pro[E;?F;A ℄. Also, we may safely focus on derivations from the assumptions defined
by cases(c1)–(c3).(c1). T6Pro[E;F;A ℄: By two further applications of Lemma B.1.(c1), we know that
the judgment in the hypothesis is derivable fromΓ `σ P : T, Γ `σ Q : T andΓ `σ R : T.
Then the judgmentΓ `σ P j (Q j R) : T follows by two applications of (PAR).(c2). T = Pro[E;ÆF;A ℄. By two applications of Lemma B.1.(c2), we can focus on
the following cases:
– Γ`σ P : Pro[E;ÆF;A ℄, Γ`σ Q :Pro[E;�F;A ℄ andΓ`σ R:Pro[E;�F;A ℄. To derive

the judgmentΓ `σ (P j Q) j R : T, apply (PAR Æ) twice and then subsumption.
– Γ`σ P :Pro[E;�F;A ℄, Γ`σ Q :Pro[E;ÆF;A ℄ andΓ`σ R:Pro[E;�F;A ℄. As above,

apply (PAR Æ) twice and then subsumption.
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– Γ `σ P : Pro[E;�F;A ℄, Γ `σ Q : Pro[E;�F;A ℄ andΓ `σ R : Pro[E;ÆF;A ℄. Apply
(PAR �) and then (PAR Æ), followed by subsumption.(c3). T = Pro[E;MF;A ℄. The proof is similar to the previous case, with more sub-

cases to consider, but no further difficulty.
(Struct Res Dead)The hypothesis is(νx:W)0� 0. The judgmentΓ `σ (νx:W)0 : T
must have been derived fromΓ;x:W `σ 0 : T 0, for T 0 6 T (andW = σAmb?[E;F;A ℄
for someE;F andA ). ThusΓ;x:W ` � and hence Lemma B.1.3 and B.1.2 yieldΓ` �.
The judgmentΓ `σ 0 : T derives now by (DEAD).
(Struct Res Res)The hypothesis is(νx:W)(νy:W0)P� (νy:W0)(νx:W)P, andΓ `σ(νx:W)(νy:W0)P : T must have been derived fromΓ;x:W;y : W0 `σ P : T 0, with T 6 T.
From the last judgment, by two applications of the rule (NEW), followed by subsump-
tion, we deriveΓ `σ (νy:W0)(νx:W)P : T as desired.
(Struct Res Par)The hypothesis is(νx:W)(P jQ)�P j (νx:W)Q with x 62 fn(P). The
judgmentΓ `σ (νx:W)(P j Q) : T must have been derived fromΓ;x:W `σ (P j Q) : T�
with T� 6 T. The last judgment, in turn, must have been derived fromΓ;x:W `σ P : T 0
andΓ;x:W `σ Q : T 00 for suitableT 0 andT 00. From the first of the two judgments, by the
Lemma B.5.3 one deducesΓ `σ P : T 0. From the second, by (NEW) Γ `σ (νx:W)Q :
T 00. Now Γ `σ P j (νx:W)Q : T by the suitable rule for parallel composition.
(Struct Res Amb) The hypothesis is(νx:W)M[[P℄℄ � M[[ (νx:W)P℄℄ with x 62 fn(M).
The judgmentΓ `σ (νx:W)M[[P℄℄ : T must be derived fromΓ;x:W `ρ P : T 0, for a
suitableT 0, and fromΓ;x:W ` M : ρAmb?[E;F;A ℄. Let Ξ be the typing derivation
from these two judgments to the judgment in the hypothesis. Sincex 62 fn(M), Lemma
B.1.3 applied to the first judgment implies thatΓ ` M : ρAmb?[E;F;A ℄. From the
second judgmentΓ `ρ (νx:W)P : T 0 derives by (NEW). Now Γ `σ M[[ (νx:W)P0 ℄℄ : T
derives by the same steps used inΞ.
(Struct Path Assoc)The hypotheses are(M:M0):P�M:(M0:P) andΓ `σ (M:M0):P :
T. We have to distinguish two cases depending on the typeT, as informed by Lemma
B.1:(p1). T 6 Pro[E;F;A ℄: in this caseΓ `σ P : T andΓ `M:M0 : σCap[F;A ℄. The last
judgment must have been derived fromΓ `M0 : σCap[F;A ℄ andΓ `M0 : σCap[F;A ℄
by the rule (PATH). Then, by two applications of (PREFIX), we have thatΓ `σ
M:(M0:P) : T is derivable, as desired.(p2). T = Pro[E;ÆF;A ℄ or T = Pro[E;MF;A ℄. We have the following subcases:
– Γ Æ̀M:M0 : ρCap[G;B℄ andΓ `σ P : Pro[E;ÆF;A ℄. The first judgment must have

been derived by (POLYPATH) from Γ Æ̀M : τCap[H;C ℄, for someH, C , andτ, and
from Γ Æ̀M0 : ρCap[G;B℄. ThenΓ `σ M:(M0:P) : Pro[E;ÆF;A ℄ derives by two
applications of (PREFIX Æ).

– Γ Æ̀M:M0 : σCap[F;A ℄ andΓ `σ P : Pro[E;MF;A ℄. The first judgment must have
been derived by (POLYPATH) from Γ Æ̀M : ρCap[H;B℄ andΓ Æ̀M0 : σCap[F;A ℄.
ThenΓ `σ M:(M0:P) : Pro[E;ÆF;A ℄ derives by (PREFIX M) and (PREFIX Æ).

A final subsumption step derivesΓ `σ M:(M0:P) : Pro[E;MF;A ℄, in both cases.
(Struct Repl) The hypothesis is !P�P j !P. The judgmentΓ`σ !P : T must have been
derived fromΓ`σ P : T 0 with T 06Pro[E;F;A ℄6T. If T 0 =Pro[E;F;A ℄, one derives
Γ `σ !P : T 0 by (REPL) and thenΓ `σ P j !P : T by (PAR) followed by subsumption. If
T 0 = Pro[E;�F;A ℄, one derivesΓ `σ !P : T 0 by (REPL �) and thenΓ `σ P j !P : T by
(PAR �) followed by subsumption.
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(Struct Cong Par)The hypothesis isP j R�Q j Rderived fromP�Q. The judgment
Γ `σ P j R : T must have been derived fromΓ `σ P : T 0 andΓ `σ R : T 00 for suitable
T 0 andT 00. Let Ξ the partial derivation from these two judgments toΓ `σ P j R : T.
By the induction hypothesis(1) on P�Q, one hasΓ `σ Q : T 0. ThenΓ `σ Q j R : T
derives by the same steps used inΞ.
The remaining congruence cases, namely(Struct Cong Action), (Struct Cong Agent
), (Struct Cong Input) , (Struct Cong Output), (Struct Cong New), (Struct Cong
Repl) are all proved similarly to the previous case.

(2) If Γ `σ P : T andQ� P thenΓ `σ Q : T.
The proof follows by the same analysis of case 1. In case(Struct Symm), we use
the induction hypothesis(1), in place of(2). In all the remaining cases, we use the
induction hypothesis(2) in place of(1). The only nontrivial cases are(Struct Par As-
soc), which is symmetric to the corresponding subcase of 1, and(Struct Path Assoc),
which we give below.
(Struct Path Assoc)The hypotheses areM:(M0:P)� (M:M0):P andΓ `σ M:(M0:P) :
T. We have to distinguish two cases depending on the typeT, as informed by Lemma
B.1:(p1). T 6 Pro[E;F;A ℄: in this caseΓ ` M : σCap[F;A ℄ and Γ `σ M0:P : T. By
Lemma B.1.(p1), applied to the judgmentΓ `σ M0:P : T, it follows that Γ ` M0 :
σCap[F;A ℄ andΓ `σ P : T. ThenΓ ` M:M0 : σCap[F;A ℄ derives from (PATH), and
Γ `σ (M:M0):P : T by (PREFIX).(p2). T = Pro[E;ÆF;A ℄ or T = Pro[E;MF;A ℄. We have two sub-cases.
In the first sub-case, one hasΓ Æ̀M : ρCap[G;B℄ andΓ ` M0:P : Pro[E;ÆF;A ℄. By
Lemma B.1.(p1), applied to the judgmentΓ `σ M0:P : Pro[E;ÆF;A ℄, it follows that
eitherΓ Æ̀M0 : τCap[H;C ℄ andΓ `σ P : Pro[E;ÆF;A ℄, or Γ Æ̀M0 : σCap[F;A ℄ and
Γ `σ P0 : Pro[E;MF;A ℄. In the first case apply (POLYPATH) to deriveΓ ` M:M0 :
τCap[H;C ℄, and then (PREFIX Æ). In the second case, apply (POLYPATH) to derive
Γ `M:M0 : σCap[F;A ℄, and then (PREFIX M).
In the second sub-case,Γ Æ̀M: : σCap[F;A ℄ andΓ `σ M0:P : Pro[E;MF;A ℄, and the
proof is similar to the one just given.

LEMMA SUBJECT CONGRUENCE: THE ASYNCHRONOUS CASE. Take η 6=". Then,
Γ ` hMiηP : T if and only if Γ ` hMiη j P : T, where both judgements are derived in
the system of Section 7.

PROOF. The proof follows almost directly by an inspection of the typing rules.

THEOREM TYPE PRESERVATION FOR SYNCHRONOUS REDUCTION. If Γ`σ P : T and
P�!Q thenΓ `σ Q : T.

PROOF. By induction on the derivation ofP�! Q. The cases of top-level reduction
follow by Lemmas B.3, B.4 and B.7. The inductive cases followdirectly by the induction
hypothesis, with an additional appeal to Lemma B.9 for the case of reduction via structural
congruence.

THEOREM TYPE PRESERVATION FOR TAGGED ASYNCHRONOUS REDUCTION.
Given a type environmentΓ, say that a security assignmentγ is Γ-consistentif and only

if for all x2 dom(Γ), Γ(x) = σAmb?[: : : ℄ impliesγ(x) = σ. Now assume thatΓ `σ P : T.
Then for everyΓ-consistent assignmentγ and processQ such thatP�!(σ;γ) Q, we have
Γ `σ Q : T.
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PROOF. By induction on the derivation ofP�!(σ;γ) Q. The cases of top-level move
reductions follow by Lemmas B.3, B.4. The cases of communication follows by Lemma
B.8. As for the inductive steps, the proof if guided by the inductive cases of definition of
the tagged reduction (cf. Section 9.1):

– case (PAR) follows by the inductive hypothesis and an application of the appropriate
(PAR ?) rule

– case (STRUCT) follows by the induction hypothesis and Lemma B.9.
– case (NEW) follows again by the induction hypothesis, as the side condition to the rule

guarantees that the assignmentγ;(n : ρ) is (Γ;n : A)-consistent.
– case (AMB) also follows by the induction hypothesis, asγ beingΓ-consistent implies

thatΓ `σ a[[P℄℄ : T depends onΓ `γ(a) P : T 0 for a suitableT 0.
THEOREM TYPE SOUNDNESS. If Γ `σ P : T, then for everyΓ-consistent security as-

signment, and processQ such thatP �!�(σ;γ) Q we haveQ �!(σ;γ)6 err.
PROOF. We first show thatP �!(σ;γ)6 err: to show that, it is more convenient to prove

the contrapositive, namely thatP �!(σ;γ) err impliesΓ 6 `σP : T. The proof proceeds by
induction on the derivation ofP �!(σ;γ) err.
– For the basis of induction, we assume, for the purpose of contradiction, thatP �!(σ;γ)err andΓ `σ P : T. Then we have four possible cases: we give the proof of the case

(ERR OUTPUT") as representative.
In this case, the redex has the formP j n[[hMi"Q j R℄℄ and the reduction toerr implies
that:P(γ(n);σ;w). Sinceγ is Γ-compatible, it must be the case thatΓ ` γ(n)Amb?[ ; ℄
for suitable types and access modes. From our hypothesisΓ `σ P j n[[ hMi"Q j R℄℄ : T
by repeated applications of LemmaB.1, it follows that the derivation depends on the
side-conditionP(γ(n);σ;w) to the (AMB) or the (AMB M) rule yielding the sought
contradiction (that the judgment is derived by either of these rules, and not by (AMB Æ)
follows by the same reasoning as in case 5 of Lemma B.7).

– For the inductive steps we have to consider several cases. If P �!(σ;γ) err by (ERR

STRUCT), then there existsQ such thatP� Q andQ �!(σ;γ) err. By the induction
hypothesis, this impliesΓ 6 `σQ : T, and then proof follows by Lemma B.9. The cases
in which P �!(σ;γ) err by any of the contextual reductions follow directly by the
induction hypothesis, noting that a process term is well-typed if and only if so are all of
its sub-terms.

The proof of the theorem follows now by subject reduction. From Γ `σ P : T and from
P �! (σ;γ)� Q, by Theorem B.12 we know thatΓ `σ Q : T, and we have just proved that
this implies thatQ �!(σ;γ)6 err.


