
An overview of Boxed Ambients
(Abstract)

Giuseppe Castagna1
Département d’Informatique,́Ecole Normale Suṕerieure, Paris, France

Lecture on joint work with

Michele Bugliesi and Silvia Crafa2
Dipartimento d’Informatica, Universit̀a Ca’ Foscari, Venezia, Italy

In this lecture we present some work we published in [2,3] and hint at some
new current lines of research on information flow and security.

More precisely, we describe the calculus ofBoxed Ambientsa variant of Cardelli
and Gordon’sMobile Ambients[4] a calculus of mobile and dynamically reconfig-
urable agents. Boxed Ambients inherit from Mobile Ambients (part of) the mobil-
ity primitives but rely on a completely different model of communication. The new
communication primitives fit nicely the design principles of Mobile Ambients, and
complement the existing constructs for ambient mobility with finer-grained, and
more effective, mechanisms for ambient interaction. As a result Boxed Ambients
retain the expressive power and the computational flavor of Ambient Calculus, as
well as the elegance of its formal presentation. In addition, they enhance the flex-
ibility of typed communications over Mobile Ambients, and provide new insight
into the relationship between synchronous and asynchronous input-output.

1. Mobile Ambients

Ambients are named process of the forma[[P]] wherea is a name andP a process.
Processes can be composed in parallel, as inP j Q, exercise a capability, as inM:P , declare local names as in(�x)P , or simply do nothing as in0. Ambients
may be nested to form a tree structure that can be dynamically reconfigured by
exercising the capabilitiesin; out andopen. In addition, ambients and processes
may communicate. Communication is anonymous, and happens inside ambients.
The configuration(x)P j hMi represents the parallel composition of two processes,
the output processhMi “dropping” the messageM , and the input process(x)P
reading the messageM and continuing asPfx := Mg. Theopen capability has a1 Email: Giuseppe.Castagna@ens.fr2 Email: fmichele,silviag@dsi.unive.it

c2001 Published by Elsevier Science B. V.

G. Castagna
fundamental interplay with communication: in fact, communication results from a
combination of mobility andopening control. To exemplify, consider two ambients
running in parallel as in the following configurationa[[(x)P j Q]] j b[[hMi j R]] .
The exchange of the valueM from b to the processP enclosed ina happens as a
result of, say, firstb moving insidea, and thena openingb. Thus, ifQ is the processopen b, andR is in a, communication is the result of the following sequence of
reductions:a[[(x)P j open b]] j b[[hMi j in a]]

➞ a[[(x)P j open b j b[[hMi]]]] by exercisingin a
➞ a[[(x)P j hMi]] by open b, unleashingM
➞ a[[Pfx := Mg]] by local communication

2. A case against ambient opening

While fundamental to the Ambient Calculus for the reasons just illustrated, an unre-
stricted use of theopen capability appears to bring about serious security concerns
in wide-area distributed applications.

Consider a scenario where a client agentc wants to access some informationM
in a resourcer on a remote hosth. This situation can be modeled by the configura-
tion c[[in h:P]] j h[[r [[hMi j Q]]]] . As a result ofc exercising the capabilityin h,
the system evolves into the new configurationh[[a[[P]] j r [[hMi j Q]]]] . Now how
can the client access the resource? A first solution is that ther entersc and once
there it is opened; but it seems strange that in order to access a resource an agent
must dissolve it. A second solution is that the client enters the resource and then
it is opened; but it is even stranger that in order to access a resource an agenthas
in some sense to commit a suicide. The only reasonable solution is then that the
resource and the client use some protocol relying on exchanges of some temporary
agents; but in that case it becomes difficult to determine whether it isc that accessesr or vice-versa.

Static or dynamic analysis of incoming code are often advocated as solutions
to the above problem but these solutions may not be always possible, or feasible,
in practice. This is not meant to dismiss the role of static analysis. To thecon-
trary, it should be taken as a motivation to seek new design principles enabling
a more effective use of static analysis. One such principle for Mobile Ambients,
which leaded to the definition of Boxed Ambients is that resource access should
not rely on some kind of protocol but instead be already accounted for at the level
of communication primitives.

3. Boxed Ambients: overview and main results

Boxed Ambients result from Cardelli and Gordon’s Mobile Ambients essentiallyby
dropping theopen capability while retaining thein andout capabilities for mobility.
Disallowingopen represents a rather drastic departure from the Ambient Calculus,
and requires new primitives for process communication.

2

G. Castagna
As in the Ambient Calculus, processes in the new calculus communicate via

anonymous channels, inside ambients. This is a formal parsimony that simplifies
the definition of the new calculus while not involving any loss of expressive power:
in fact, named communication channels can be coded in faithful ways using the
existing primitives. In addition, to compensate for the absence ofopen, Boxed
Ambients are equipped with primitives for communication across ambient bound-
aries, between parent and children. Syntactically, this is obtained by meansof tags
specifying thelocation where the communication has to take place: for instance,(x)nP indicates an input from child ambientn, while hMi" is an output to the
parent ambient.

The choice of these primitives, and the resulting model of communication is in-
spired to Castagna and Vitek’sSeal Calculus[7], from which Boxed Ambients also
inherit the two principles ofmediationandlocality. Mediation implies that remote
communication, i.e., between sibling ambients, is not possible: it either requires
mobility, or intervention by the ambients’ parent. Locality means that communi-
cation resources arelocal to ambients, and message exchanges result from explicit
read and write requests on those resources. To exemplify, consider the following
nested configuration:n[[(x)pP j p[[hMi j (x)Q j q[[hNi"]]]]]]
Ambientn makes a downward request to readp’s local valueM , while ambientq makes an upward write request to communicate its valueN to its parent. The
downward input request(x)pP may only synchronize with the outputhMi local
to p. Instead,(x)Q may non-deterministically synchronize with either output: of
course, type safety requires thatM andN be of the same type. Interestingly, how-
ever, exchanges of different types may take place within the same ambient without
type confusion: n[[(x)pP j (x)qQ j p[[hMi]] j q[[hNi]]]]
The two valuesM andN are local top andq, respectively, and may very well have
different types: there is no risk of type confusion, as(x)pP requests a read fromp,
while (x)qQ requests a read fromq.

The ressource access case of previous section can thus be handled by the defini-
tion in the hosth of a monitor processR that manages the accesses to the ressource
(for exampleh[[a[[P]] j !((x)rhxia) j r [[Q]]]] where!((x)rhxia) is the monitor pro-
cess).

This flexibility of communication results from the combination of two design
choices: directed input/output operations, and resource locality. In fact, these
choices have other interesting consequences.� They provide the calculus with fine-grained primitives for ambient interaction,

and with clear notions of resource ownership and access request. Based on that,
Boxed Ambients enable a rather direct formalization of classical security policies
for resource protection and access control: this is not easy (if at all possible) with
Mobile Ambients (see [3]).� They ease the design of type systems providing precise accounts of ambient be-

3

G. Castagna
havior. As we show in [2], a rather simple structure of types suffices for that
purpose. Ambient and process types are defined simply as two-place construc-
tors describing the types of exchanges that may take place locally, and with the
enclosing context. Interestingly, this simple type structure is all that is needed
to give a full account of ambient interaction. This is a consequence of(i) there
being no way for ambients to communicate directly across more than one bound-
ary, and(ii) communication being the only means for ambient to interact. Based
on that, the typing of Boxed Ambients provides for more flexibility of commu-
nication and mobility than existing type systems for Mobile Ambients.� Finally, resource locality and directed input/output provide new insight into the
relation between the synchronous and asynchronous models of communication.
Specifically, the classic�-calculus relations between synchronous and asynchro-
nous output, as stated by Boudol in [1], no longer hold as a result of combining
remote communications, resource locality and mobility. More precisely asyn-
chronous output mayno longerbe viewed as a special case of synchronous out-
put with null continuation, neither can it be encoded by structural equivalence,
by stipulating thathMiP � hMi j P . As we show in [2] these two solutions,
which are equivalent in the�-calculus, have rather different consequences in
Boxed Ambients.

4. Boxed Ambients and Information Flow

In [3] we describe in detail how it is possible to modify the Boxed Ambient type
system in order to use for enforcing classic mandatory access control (MAC) secu-
rity policies. However it is well know that such policies are not enough to ensure
the absence of insecure information flows. They can ensure that a subject will never
be allowed to access (either directly or indirectly) the resources it hasnot the right
to access, but they cannot ensure that the subject will not get hold of the informa-
tion stored in these resources. A classical example ish[[: : : j (x:bool)(if x then t[[]] else f [[]]) j c[[: : :]]]]
Even thoughc does not perform an access to the local channel ofh it can determine
its value by testing (e.g., by exercising anin capability) the presence of thet or f
ambient: the value ofx flowed fromh to c.

In order to determine the presence of such flows one relies on some notion of
process equivalence to state anon-interferenceproperty. The rough idea is to par-
tition agents (and resources) into top-secret and low-secret classes,and define as
secure every system in which the behavior of top-secret processes does not “inter-
fere” with the behavior of low secret ones, in the sense that the behavior of the latter
does not depend on that of the former.

This needs the definition of some behavioral equivalence on processes. While
the presence of the full-fledged communication primitives of [2] is interestingin
dealing with MAC policies (as it naturally renders the complete palette of access
modes), the definition of behavioral equivalences is greatly simplified by a reduced
number of possible interaction. Moreover a tighter control on parent-child com-

4

G. Castagna
munication offers better guarantees of the absence of implicit information flows.
Therefore we modify the semantics of Boxed Ambients on the lines of theshared
channelsemantics of [5] and allow only two (instead of four) non-local basic inter-
actions, described by the following reduction rules:(input n) (x)nP j n[[hMi"Q j R]] ➞ Pfx := Mg j n[[Q j R]](output n) hMinP j n[[(x)"Q j R]] ➞ P j n[[Qfx := Mg j R]]
We then establish the convention to consider the former as a read access ton and
the latter as a write access ton. This corresponds to the the view of an ambient as
having two channels: a private channel which is only available for local exchanges,
and an “upward channel” which the ambient offers to its enclosing context for read
and write access.

Based on this intuition, one then may try to adapt to our framework the defi-
nition of non-interferencefirst introduced in Goguen and Meseguer’s seminal pa-
per [6]. In that paper non-interference was defined as the property that the output
of low-secret subjects did not depend on the input of top-secret subjects. In our
framework subjects are ambients and their output is easily identifiable withupward
communications (being the calculus synchronous the sole observation of the out-
put actions may not suffice). So to study non-interference it is reasonable to use as
barbs the actions of upward communication, to define equivalence in terms of weak
barbed congruence (weak, as it does not matter “how long” to produce the ouput
takes) and define as “interference free” any process whose behavior is insensitive
to operations on top-secret names.

References

[1] G. Boudol. Asynchrony and the�-calculus. Research Report 1702, INRIA,
http://www-sop.inria.fr/mimosa/personnel/Gerard.Boudol.html, 1992.

[2] M. Bugliesi, G. Castagna, and S. Crafa. Boxed ambients. In TACS 2001, number 2215
in LNCS, pages 38–63, Sendai, Japan, 2001. Springer.

[3] M. Bugliesi, G. Castagna, and S. Crafa. Reasoning about security in mobile ambients.
In CONCUR 2001, number 2154 in LNCS, pages 102–120, 2001. Springer.

[4] L. Cardelli and A. Gordon. Mobile ambients. InProceedings of POPL ’98. ACM
Press, 1998.

[5] G. Castagna, G. Ghelli, and F. Zappa. Typing mobility in the Seal Calculus. In
CONCUR 2001, number 2154 in LNCS, pages 82–101, 2001. Springer.

[6] J.A. Goguen and J. Meseguer. Security policy and security models. InProceedings of
Symposium on Secrecy and Privacy, pages 11–20. IEEE Computer Society, 1982.

[7] J. Vitek and G. Castagna. Seal: A framework for secure mobile computations. In
Internet Programming Languages, number 1686 in LNCS, pages 47–77. Springer,
1999.

5

