Type-Based XML Projection

Véronigue Benzakent! Giuseppe Castagna? Dario Colazzo! Kim Nguyént
LRI, Université Paris-Sud 11, Orsay - France 2 Ecole Normale Supérieure de Paris - France
ABSTRACT As shown in [14, 9], XML navigation specifications expressed

gueries tend to be very selective, especially in terms ofidwnt
structure. Therefore, pruning may yield significant impments
both in terms of execution time and in terms of memory usage (f
main-memory XML query engines, very large documents can not
be queried without pruning).

XML data projection (or pruning) is one of the main optiminat
techniques recently adopted in the context of main-memadviL. X
query-engines. The underlying idea is quite simple: givepery
Q over a documenb, the subtrees dD not necessary to evaluate
Q are pruned, thus obtaining a smaller documBht ThenQ is
executed oveb’, hence avoiding to allocate and process nodes that 1 1 State of the art
will never be reached by navigational specification®in

In this article, we propose a new approach, based on typas, th
greatly improves current solutions. Besides providing pamable
or greater precision and far lesser pruning overhead outisal,
unlike current approaches, takes into account backwars| gxed-
icates, and can be applied to multiple queries rather thantqu
single ones. A side contribution is a new type system for KPat
able to handle backward axes, which we devise in order toyappl
our solution.

The soundness of our approach is formally proved. Furthezmo
we prove that the approach is also complete (i.e., yieldbdst
possible type-driven pruning) for a relevant class of cqeer@nd
DTDS, which include nearly all the queries used in the XMark and
XPathMark benchmarks. These benchmarks are also usedtto tes
our implementation and show and gauge the practical berwdfits

Marian and Siméon[14] propose that the actual data-needs of
queryQ (that is, the part of data that is necessary to the execution
of the query) is determined by statically extracting allhjzain Q.
These paths are then applied@oat load time, in a SAX-event
based fashion, in order to prune unneeded parts of data.€the t
nique is powerful since(i) it applies to most of XQuergore, (ii)
it can be applied to a set of queries over the same documetht, an
(iii) it does not require ang priori knowledge of the structure of
D. However, this technique suffers some limitations. Fitst,doc-
ument loader-pruner is not able to mandgekward axesor path
expressions with predicates (sometimes called “qualijievkich,
especially the latter, can contain precious informatioptimise
pruning. Also, as a consequence (6f), the technique does not
behave efficiently in terms of loading time and pruning ps&ni
(hence, memory allocation) wheif occurs in paths. Indeed, when

our solution. . . o ! .
// is present in a projection path, the pruning process reguoe
visit all descendants of a node in order to decide whethendtie
1. MOTIVATIONS AND CONTRIBUTION contains a useful descendant. What is worst is that pruring t
As explained by Marian and Siméon [14], main-memory XML tends to be quite high and it drastically increases (togettith
query engines are often the primary choice for applicattbas do memory consumption) when the number of augments in the
not wish or cannot afford to build secondary storage indexésad pruning path-set. As a matter of facts, in this techniqueniiy
a database before query processing. One of the main optiarisa correspondsf to computing a further query, whose _tlme and-mem
techniques recently adopted in this context is XML datagutpn ory occupation may be comparable to those required to caenput
(or pruning) [14, 9]. the original query. In particular, in this technique evecgorrence
The basic idea behind document projection is very simple and Of // may yield a full exploration of the tree (e.g. see in [14] the
powerful at the same time. Given a quepyover a documenb, test for the XMark [17] query Q7 which only contains thrég

sub-trees oD that are not necessary to evalu@tare pruned, thus ~ Steps and for which just computing the pruning takes longant
yielding a smaller documei. ThenQ s executed ovel’, hence executing the query on the original document). Thereforanp

avoiding to allocate and process nodes that will never behesiby ~ INg execution overhead and its high memory footprint mayjeo
navigational specifications i@. This ensures that evaluation over ~ardise the gains obtained by using the pruned documentlifiina
D' is equivalent to and more efficient than the evaluation &er as we explain in Section 5, the precision of pruning drabicte-

grades (even nullified) for queries containing the XPathresgions
descendant ::node[cond, which are very useful and used in prac-

Permission to copy without fee all or part of this materiajianted provided tice.

that the copies are not made or distributed for direct consfakadvantage, Bressaret al. [9] introduce a different and quite precise XML
the VLDB copyright notice and the title of the publicatiortsts date appear, pruning technique for a subset of XQuery FLWR expressiote T
and notice is given that copying is by permission of the Veayde Data technique is based on theoriori knowledge of a data-guide far.
Base Endowment. To copy otherwise, or to republish, to postesvers The documenD is first matched against an abstract representation
or to redistribute to lists, requires a fee and/or speciaipgsion from the of Q. Pruning is then performed at run time, it is very precisel,an
publisher, ACM. | . ’ - 2
VLDB ‘06, September 12-15, 2006, Seoul, Korea. thanks to the use of some indexes over the data-guide, itensu

Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09. good improvements in terms of query execution time. However

the technique is one-query oriented, in the sense that itatdre
applied to multiple queries, it does not handle XPath piaeis,
and cannot handle backward axes (recall that the encodfj@5]o
are defined for XPath, and no extension to XQuery-like laggsa
is known). Also, the approach requires the constructionraad-
agement of the data-guide and of adequate indexes.

1.2 Our contribution

In this article, we present a new pruning approach which is ap
plicable in the presence of typed XML data. This is often tase;
as most applications require that data are valid with redpesome
external schema (e.@1D or XML Schema).

Our technique combines the advantages of the previously men
tioned works while relaxing their limitations. Unlike [18], our
approach accounts for backward axes, performs a fine-gtaimai-
ysis of predicates, allows (unlike [9]) for dealing with tmlves of
gueries, and (unlike [14]) cannot be jeopardised by prurmivey-
head. Our solution provides comparable or greater pretiian
the other approaches, while it requires always negligibleprun-
ing overhead. Moreover, contrary to [14, 9], our approacfois
mally proved to besound(pruning does not alter the result of que-
ries) and, furthermore, we can also prove it todoenpletg(it pro-
duces the best possible type-driven pruning) for a subatasiss
of queries anaTDs.

For the sake of presentation we introduce our frameworkrieeth
steps. In the first step, we consider a simplified version citkP
we dub XPath, which includes only upward/downward axes and
unnested disjunctive predicates. We define for XPatbtatic anal-
ysis that determines a set of type namesgype projector that is
then used to prune the document(s). One of the particuléures
of this approach is that our pruning algorithm is charasestiby a
constant (and low) memory consumption and by an executioe ti
linear in the size of the document to prune. More precisepyua-
ing based on type projectors is equivalent to a single befsrone-
pass traversal of the parsed document (it simply discaefaahts
not generated by any of the names in the projector). So if elafdxd
in query processors, pruning can be executed during paasidfpr
validation and brings no overhead, while if used as an eateool
it requires a time always smaller than or equal to the timel use
parse the queried document. Soundness and (partial) ctenpkes
results for the static analysis are stated.

The second step consists of extending the analysis to theewho
XPath (more precisely, to XPath 1.0), that is, we need to Sow
to deal with missing axes and with general predicates aseatéfin
the XPath specification. This is done by associating to edeatiX
query Q a XPath query P which soundly approximate®, in the
sense that the projector inferred f@iis also a sound projector for
Q.
The final step is to extend the approach to XQuery (hence, to
XPath 2.0). This is obtained by defining a path extractioro-alg
rithm as done in [14]. Our path extraction algorithm impreve
several aspects (in particular, in terms of extracted pattisctiv-
ity) the one of [14]. It also computes the XPatipproximation of
the extracted paths so that the static analysis of the fepten be
directly applied to them.

We gauged and validated our approach by testing it both on the

XPathMark [12] and on the XMark [17] benchmarks. This valida
tion confirmed expected results: thanks to the handling ckbard
axes and of predicates the precision of our pruning is in ggmne-
ticeably higher than for current approaches; the prunimegtis lin-

ear in the size of the queried document and has a very low memor
footprint; the time of the static analysis is always nedigi(lower
than half a second) even for complex queries emds. But bench-

marks also brought unexpected (and pleasant) resultsrticydar,
they showed that type-based pruning brings benefits thatgortal
those of the reduced size of the pruned document: by exdualin
whole set of data structures (those whose type names ar@-not i
cluded in the type projector), the pruning may drasticaéiguce
the resources that must be allocated at run-time by the query
cessor. For instance, our benchmarks show that for sevévalri
and XPathMark queries our pruning yields a document whase si
is two thirds of the size of the original document, but thergue
can then be processed using three times less memory than when
processed on the original document. This is a very impogdairt,
especially for DOM-based processors, or memory sensitivegs-
sors as Galax [1]. As an aside we want to stress that our tgadni
relies on the definition of a new type system for XPath ableaio-h
dle backward axes, which constitutes a contribution onvits.o

The article is organised as follows. Section 2 introducesicdba
definitions and notations: data modelfD, validation, projection,
type projector. In Section 3 we define XPatind its semantics,
and formally describe how general XPath predicates canloedbp
approximated in it. In Section 4 we present our type projecto
inference algorithm for XPathstate its formal properties, and deal
with the missing XPath axes. In Section 5 we extend our ajgbproa
to XQuery. Section 6 discusses our implementation and teploe
results of our benchmarks. We finally conclude in Section 7 by
presenting the perspectives of this work.

For space reasons all proofs of properties are omitted fiom t
presentation. They can be found in the extended versionisf th
work.

2. NOTATIONS
2.1 Data Model

For the sake of concision we present our solution for a siiepli
version of the XQuery data model where we do not consider node
attributes. The extension of our approach to attributesrasght-
forward (and included in our implementation, see Sectian/)
instance of the XQuery data model can then be generated by the
following grammar:

Trees t =
Forest f

s | liff]
O f,f |t

Essentially, it is an ordered sequence of labelled ordgesd(ran-
ged over byt), that is an orderefbrest(ranged over byf), where
each node has a uniqigentifier (ranged over by) and where()
denotes the empty forest. Tree nodes are labelleeldyent tags
(ranged over byt) while, without loss of generality, we consider
only leaves that are text nodes (that is, strings, rangedtws) or
empty trees (that is, elements that label the empty forest).

We define a complete partial ordef on forests (and thus on
trees) by relating a forest with the forests obtained eitlyerdding
or by deleting subforests:

DEFINITION 2.1 (PROJECTION(=)). Given two forests f and
f’ we say that fis aprojectionof f, noted as f= f, if f’ is ob-
tained by replacing some subforests of f by the empty forest.

DEFINITION 2.2 (GoOD FORMATION). A forestiswell formed
if every identifieri occurs in it at most once. Given a well-formed
forest f and an identifier occurring in it, we denote by @i the
unique subtree t of f such thatts ort =1;[f’]. The set of identi-
fiers of a forest f is then defined as (d$3= {i | 3t. f@i =t}

Henceforth we will consider only well-formed forests andneo
found the notions of a node with that of the identifier of thel@o

DEFINITION 2.3 (RooT ID). Given atreet, ift=5 ort =
li[f] then we define Root(t) =i.

2.2 DTDs and validation

In this work we present the approach forps, but the treatment
for XML Schema is similat Following [13] we define @TD as
a local tree grammayr namely a pair(X,E) whereX is a distin-
guishedname(actually, a non-terminal meta-variable) aBds a
set of productions (oedge$ of the form{X; — Ry,...,Xn — Rn}
such that

1. theX’s are pairwise distinct;

2. eachR; is of the formg[ri] or String, whereg; is an el-
ement tag, and eaah is a regular expression ovelames
{Xg, . Xk

3. for each paiX; — g;[ri] andX; — aj[rj], i = j if and only if
aj = aj;

4. Xis inJ {X1,...,%n} (it denotes the root element type).

In the following we writeNamesr) for the set of all names used in
r andDN(E) for the set of names definedin(that is,{Xj ... Xn}).

We also say that is a regular expression ovéK,E), if r is a
regular expression over namesDiN(E). We will useW, X,Y, Z

to range ovemames We use Greek letters to range over sets of
names (in particular we useto stress that the set of names is a
type projectoricf. Def 2.6] andk andT to stress that the set is used
as a context or as a type, respectively [cf. Section 4.1]) &utal
range over sets of (node) identifiers. When speaking s we
will often identify them with their set of edgds, leaving the root

X as implicit.

DEFINITION 2.4 (VALID TREEY. A tree t isvalid with re-
spect to abTD (X, E), if there exists a mapping (interpretation)
from Idgt) to DN(E) such that:

1. O(Rootldt)) = X

2. for eachi in lds(t), if t@i = 5 thenO(i) =Y and (Y —

String) € E
3. for eachi in lds(t), ift@i = li[t1,...,tn], thenO(i) — I[r] € E
andO(Rootldts)),...,0(Rootldty)) is generated by r.
In this case we say that t is-valid with respect t@X, E) and write
t €g (X, E) to indicate it.

Algorithms to validate XML trees are well known (see [13]neEy
validation algorithm produces, as a side effect, an inetgtion for
the validated tree. Note thattifs valid with respect to @TD, then
there is a unique interpretatidhfromt to thepTp. This is a direct
consequence of the fact that,bmDs, element tags determine their
content (as stated by the third condition on local tree gransin

2.3 Type projectors

Given a treet valid with respect to 7D (X,E), we can use
subsets 0DN(E) to project that tree. Essentially, only nodes that
are associated with names in the projecting subs®N(E) are
kept in the projection. Of course not every subset of names ca
be used to project a tree, since we want to delete whole mshtre
(not nodes in the middle of a tree), thus if we discard someejam
we must also discard all the names it generates. In orderfioede
formally this notion we need to define the reachability rielatg,
that we introduce below together with several other detingithat
we use later in the paper.

1The extension of our approach to XML Schema simply needs
some special treatment of local elements. More difficultdad

is to modify it so as to obtain efficient pruning also for thewne
XPath 2.0 tests that check the schema of nodes. See thegi@tus
in our conclusion.

DEFINITION 2.5 (FORWARD REACHABILITY). GivenaDbTD
(X,E)and Ze DN(E), we write Z=g Y ifandonly if Z— ajr] € E
and Y € Namegr). We use=¢ and=-£ to denote respectively the
transitive closure and the transitive and reflexive closafres>g.

Strings of names are callazhainsand ranged over by, ¢, c/,...

In particular we us€haingy g (Y) to denote the set of all chains
rooted aty, defined adY X ... Xn | Y =g X1 =g ... =€ Xy,n >

0}. We useNamesc) to denote the set of all names occurring in a
chainc.

DEFINITION 2.6 (TYPE-PROJECTORS$. GivenabpTD (X,E),
a (possibly empty) set of namms- DN(E) is atype projectorfor
(X,E) if and only if there exists € Chaingx g)(X) such that
n= |) Namesc)
ceC

A type projector is thus a set of names generated (i.e. redie
a suite of productions starting from the root of tb&p. A type
projector can be used to prune a valid tree as follows:

DEFINITION 2.7 (TyPEDRIVEN PROJECTIONY. Letrtbe a
type projector for(X,E) and t a forest or tree such thatt; (X, E).
TheTeprojection of t, noted as\j11, is defined as follows:

L[f\ogrt = Li[f\grg O(i) em
[f\gt = 0 O() ¢ m
s \oTt =5 O(i) em
s\on = 0 O@) ¢ m
(f, fN\or = (F\gm), (F\cm)

In words, pruning erases (by replacing it by an empty foreggry
node that corresponds to a name nottn

LEMMA 2.8. Let Tt be a type projector foi(X,E). Then for
every tree te (X, E) it holds (t\gm) <t.

3. XPATH AND XPATH ¢

In XPath, queries are expressed by defining a path of steps sep
rated by/. For instance,
Q /descendant :: author
/child: :text[self: :node="Dante']
/parent: :book/child: :title

is the query that returns all titles of books whose authoBiarite”.
First, the navigational part instructs to descend to alt teodes
whose parent is an authofdescendant :: author/child :: text),
then the predicate selects those nodes that are the striaigtéD
([self::node="Dante']l), and finally the navigation ascends to
the book element and descends to the title.

The inference rules we define in Section 4 do not work directly
on queries such &3. The rules are defined for XPdth subset of
XPath that we introduce in this section. XPaithcludes downward
and upward axes and a special kind of predicates. In ordeato s
ically analyseQ (or any other XPath query that is not in XP3th
we will find a XPatK query that approximate® soundly with re-
spect to the pruning inferred by the rules (Section 3.3), asel it
to deduce the pruning fap.2 Of course, these approximations, as
well as those we introduce later on, will only be used to deiee
the pruning: the pruned document will be queried by the ngbi
query.

For the sake of presentation, we first deal with “simple pgaths
that is, path expressions with upward and downward axes ialwh
no predicate occurs. Then, in Section 3.2 we add XRatdicates,

2For instance, the approximation of our sample qu@ig obtained
by replacing inQ the predicatdself: :node] for the current one.

i.e. disjunctions of simple predicates, and finally in Satt8.3 we
show how to approximate generic XPath conditions into XRath
The missing axes are dealt with in Section 4.3.

3.1 Simple paths

Simple paths are defined by the following grammar:

SPath ::= Step| SPatlySPath| /SPath
Step ;= AXis::Test
AXxis = self |child |descendant
| parent | ancestor | ancestor-or-self
| descendant-or-self
Test ;= tag|node | text

wheretag is a meta-variable ranging over element tags. Hencefor-
ward, we omit the treatment of leading(i.e., absolute paths) and
of descendant-or-self andancestor-or-self axes: their han-
dling would blur definitions and can be easily deduced from th
rest.

The formal semantics of paths is given in three definitionstf
we formaliseTestfiltering, then Axis selections, and finally we
combine the two notions to define the semantics of a singfe ste
Axis:: Test The definitions comply with the W3C XPath seman-
tics [2].

DEFINITION 3.1 (HLTERING). Given a tree t and a set of
nodes SC Ids(t) we define

Sl = {ies|t@i =I[f]}
S:t node S
Sittext = {ieS|Is.t@ =5}

DEFINITION 3.2 (AXES SELECTION. Given a tree t and a
set of nodes § Ids(t) (called context nodes), we defifeted; (S)
as the set of nodes resulting by applying Step to each node in S

[self](S) = . .

[eniraly(S) = Ukesli’| (i,i) € &(1)}

[parent]y(S = Usesl | (i) € £(1)}

[descendant],(9 = Uiesi'| (i.i') € £(1)*}

[ancestor](S) = Uiesli'| (") €& M)}
where& (t) is theedge relatiorof t, that is,&(t) = {(i,i’) | t@i =
li[f,t’, f'] A Rootldt’) =i}, and&(t)" is its transitive closure.

DEFINITION 3.3 (SMPLE PATH SEMANTICS). Givent, aset

SC Ids(t) and a path SPath, we define the evaluation of path SPath

over S nodes as follows:
[Axis:: Tesf, (9
[SPath /SPath]; (S)

([Axid);(S)) ::t Test
[SPath]; ([SPath];(S))

3.2 Predicates

XPath queries use predicates to express some filtering condi
tions that cannot be expressed by simple paths. Predicates m
structural conditiongdirectly expressed by means of paths) with
non-structural conditiongexpressed by functions, operators, val-
ues, etc...).

We have seen an example of a non-structural condition in the

query Q extracting all book titles of books written by Dante, de-
fined at the beginning of the section. The best pruning forQhe
query is the one that deletes all books whose authors do clotia
Dante. To implement such a pruning, one should extract fieen t
guery value-based conditions (e.g. being equal to “Dant&his
would drastically complicate the treatment without brimgia sig-
nificant gain: previous experiments have shown that nawigat

specifications are already sufficient to obtain importanprione-
ments in memory reduction and query execution time [14]. déen
we'd rather abstract out non-structural conditions and/ satain
structural ones. More precisely, our analysis will have twkonly
on conditions defined as follows:

SPath | Condor Cond

Cond

XPatH is then defined by the following grammar:
Path ::= Step| StepgCond | Path/Path

We will use meta-variableBath andP to range over these paths,
and reserv&Pathfor simple paths an@ for general XPath queries.
Note that the definition oCond uses simple paths, therefore in
XPatH conditions are not nested.

Semantics of XPaffs paths is defined by substituting in Defini-
tion 3.3Pathfor SPathand by adding the following cases

[self ::node[C]];(S) = {i € S| Check[C](i)}
[Axis:: Tes{C][;(S) = [Axis:: Tes{self ::node[C]];(S)
whereCheck[Cond(i) is the following boolean function:

Check[Path (i) [Path];({i}) # @
Check|C; or Cy(i) Check|C4](i) v Check[Cy](i)

3.3 Handling XPath predicates

The predicates of the previous section cover only a smatl par
of XPath. If we want to apply our analysis to XPath and XQuery
we must be able to deal with the more general expressionsinsed
conditions.

In this section we show how to rewrite every predicBbe ex-
pressible in XPath to a simple conditi@ondsuch thatCondis a
sound approximation dExpwith respect to data needs: the prun-
ing determined folCondpreserves the semantics férp In other
words, if we take a generic XPath que@yand approximate all its
predicates to infer a projectar, then the execution of (the original)
Q on a given document or on the document prunedtyyeld the
same result. This rewriting, together with the treatmentnigs-
ing axes of Section 4.3, allows us to deal with a large subet o
XQuery and XPath queries, covering those in XPathMark [12] a
XMark [17] benchmarks.

More formally, we show how to rewrite an expressierpinto a
conditionCond whereExpis defined as

Exp::= Q| Exp op Exg f(Expy,...,EXp,) | AEXp

whereope{eq, ne, 1t, 1e, gt, ge, =, !'=, <, <=, >, >=, is, <K,
>>, or, and} is an operatorAExpranges over arithmetic expres-
sions (see [2]) and base values (PCDATRA)anges over XPath and
XQuery functions and operators [5] such @sunt, contains,
is-zero,not, empty, etc., andQ is a generic XPath query, that
is:

Q = Step| StepExp | Step'Q | StegExp/Q

The rewriting is obtained by a path-extracting funct®rhat ap-
plied to an expressioBxpreturns a set asimplepaths whosedr”
constitutes the approximation Bikp3

Let us outline the rewriting by an example. Consider the pred
cate[position()>1 and parent: :node/book/author="Danté"

SFor lack of space we cannot present the full treatment ofipred
cates that we have implemented in our prototype. In pagicwe
do not consider absolute paths (although they need speest t
ment they do not introduce any significant problem) nor we for
mally define the approximation for each XPath and XQuery func
tion.

and year>1313]. In our system this predicate is approximated by
[self::node or parent::node/book/authoror year]. Es-
sentially, given a predicatExp we obtain a conditiorCond that
soundly approximates it by retaining the disjunction of situc-
tural conditions (likeparent : :node/book/author andyearin the
previous example), plus eith@escendant-or-self: :node Or
self ::node if some non-structural condition is present (for in-
stance,position()>1). The choice betweegelf: :node and
descendant-or-self: :node depends on the functions and oper-
ators used in the condition: for instance functions fkesition

or count requireself:inode Since their execution requires only
the root nodes; instead a function suctsasing needs the whole
tree. Therefore we suppose to have a predefined funEtitat for
eachf returns eithetlescendant-or-self::node Or self::node.
For the sake of generality we suppose that this function m¢pe
on the position of the argument mary function. Thus, for, say,
count (SPath andstring(SPath, we haveP(count (SPath) =
SPathyF (count,1) = SPatl/self :inode, andP(string (SPath) =
SPath/F (string,1) = SPatlfdescendant-or-self :: node. For-
mally, we have:

P(Step = {Steg

P(StegExg) = StepP(Exp)

P(Step'Q) — StepP(Q)
P(StepExg/Q) = Step/(P(Q)UP(Exp)
P(Exp op Exp) = P(Exp UP(Exg)
P(f(ExpL,-.-.Exp)) = Ui=1n(P(Exp)/F(f,i)U

U{self ::node}

where we used the notati@tepA as a shorthand to denote the set
{Step/SPath| SPathe A} whenA s a set of simple paths (similarly
for A/Step.

The presence ofself :: node} in the last line is motivated by
the fact that when we have a non structural condition, pathstm
not be used to restrict the inferred projectors, since tlosald/not
yield a sound approximation. More precisely, wHexpis purely
structural, that is it only involves paths in (possibly rehtcondi-
tions, then these paths are extracted to refine the project@r
instance, indescendant :: node[child :: a we can use the con-
dition [child: :a] to refine projection inference : we select only
element types having amchild. On the other hand, whebxpis
not purely structural, as iflescendant :: node[not(child :: a)
or descendant :: node[count(child :: @)<5|, we can not use the
same projector as fatescendant :: node[child :: &): if we use
[child :: @] to restrict the projection, we would alter the result
of the last two queries, so the projector would be unsound. To
guarantee soundness, we extract paths from the argumentnd
count and add the conditiofiself :: node} to ensure that we do
not prune nodes necessary to the evaluation of the functios
for the two queries, after condition rewriting, we have tip@m@x-
imating querydescendant :: node[child :: @ or self :: node],
yielding a sound projector.

To resume, to indicate the fact that, in the presence of natiypu
structural conditions, paths must not be used to restrietried
projectors, we add the always true conditipself :: node}. Of
course, we could have adopted more precise (and compldx) tec
niques, but we preferred this solution as we consider it algoon-
promise between precision and simplicity.

We want also to stress that here we reach the limits of XQuery

and XPath type systems. If we had worked on more advanced XML

languages such &Duce [6] orCQL [7] their richer type system (it
includes union, intersection, negation, and singletorsypvould
allow us to precisely capture more predicates and use thema fo
much finer pruning (as it is done {BQL query optimisation).

4. STATIC ANALYSIS

In this section we define deduction rules to statically irfifem
a XPatH pathP and apTD E a type-projector for an input docu-
ment validatinge. We show that the analysis is sound, and that
it enjoys completeness for a large class of queries vhés a -
guarded and non-recursizerD (see Definition 4.3 below). Sound-
ness means that executing the query on the original docuameht
on the document pruned by the inferred projector yields Hraes
result. Completeness means that if we take a type projectalier
(i.e., more selective) than the inferred one, then thergtexi docu-
ment validatinge for which the result of the two executions is not
the same. When the conditions bmbs or on queries are relaxed
the analysis is still sound but it may be not complete. Nénadesss,
as we will illustrate, it still is very precise.

In order to define our static type inference we proceed in two

steps.

1. Given a pathP and abpTD E we typeP by the set of all
elements that may appear in the result of applyihtp a
document validating:. This is done in Section 4.1 (actually,
we will be more precise and tygeby the set of all names of
E thatgeneratethe elements in the result).

2. We use the type inference at the previous point to define the
inference of type projectors. In particular we will use the
cases in which the previous type inference returns the empty
set to determine the points in which pruning must be per-
formed. This is done in Section 4.2.

4.1 Type inference

Given a pathPathand abTD E we want to find a set of names
of E that generates elements that can be found in the res#lt of
Formally, we want to infer a setC DN(E) such that

vt e E. O([Path]; (Rootld(t)) C T 1)

which states the soundness of the analysis.

Moreover, we aim at an analysis which is precise enough to gua
antee, on a large class of types and for a large class of guénit
whenever the path semantics is empty over all possibleringtof
the inputdTD, then the inferred type is empty, as well:

Wt ep E. O([Path];(Rootld(t)) =@ = 1= 2)

(the converse is a consequence of (1)). The precision testri
by (2) will then be used during the inference of type-prajestto
discard elements that are useless in the evaluatiGathf

We start by inferring types for single-step paths.

DEFINITION4.1 (SNGLE STEPTYPING). Let E be aDTD
andt C DN(E), then:
Ag(T,ancestor

Ag(T,child

% UverdZ | Z=¢ Y}
Ag(T,parent)

)

)

UverdZ | Y =€ Z}

Uver{Z | Z=€ Y}

Ag(T,descendant UyeddZ | Y =¢ 2}
Ag(T,self T

Te(ma) = {Y|Yet E(Y)=al]}
Te(T,node) = T
Te(t,text) = {Y|Ye1, E(Y)=String}

The type of a single step quefyis:: Testfor thepTD (X, E) is then
given byTe (A ({X},Axis), Tes}. Soundness of this definition, i.e.
property (1), is given by the following lemma.

LEMMA 4.2. Lett be a tredJ-valid with respect to theTp E.
For every SC Ids(t) and typet, if O(S) C t then
1. O([Axig);(S)) € Ag(t,Axis)
2. O(S::t Tesh C Te(t, Tes)

Primitive Single Step

> g Axis:inode : (Ag(Zr,AXis) , Zx UAE(Z, AXis))

Axise {self, child, descendant}

> g AXis:inode : (Ag(Z,AXis)) NZk , Ag(Zk, AXis)NZk)

Axise {parent, ancestor}

> b self :Test (Tg(Zr, Tes, (3 NAg(Te(Zr, Tesh,ancestor)) UTg (2, Tes)

VX € %;,Pj e Cond, ({X},%)tePj: =

Test# node

1=1{%[3}.5 # 2}

> Fg self :inode[Cond : (T, (Z« NAE(T,ancestor))UT)

Encoded Single Step‘

T hg AXis:inode/self :Test T’ Testtnode
A
> g Axis:: Test: 3/

Axis# self

T g Axis:: Testself ::node[Cond : &' Test/ node
\
T kg Axis:: TesfCond : &/

AXis# self

Composed paths|

5 g Step: 37

" kg Path: ¥/

3 b Step/Path: 3’

Figure 1: Inference rules for single step queries

The presence of upward axes makes the typing of composesl path The judgementtc,K¢) Fe Path: (1r,k;) means that given aTD

much more difficult. To ensure precision, i.e. property (¢ have
to be careful in dealing witbbTps in which an element may occur
in the content of different elements. The naive solutionststing
of inferring a type for composed paths by composing the fonst
we just defined for single steps, works only in the absencepef u

E, starting from the names iz and the current context;, the path
Pathgenerates the namesin an updated context;.

An environment(t,K) is well-formed with respect t&, if T C
DN(E), andk C TUAEg(T,ancestor), that is, if the context con-
tains only names that occur in chains ending with names iA

ward axes. This can be illustrated by an example. Consider th judgement g Path: 5’ is well formed if bothZ and’ are well

following DTD rooted atX:
{X =Y, Z], Y — aW,String|, Z — b[String, W — d[Y?]}

and observe that occurs in two different element content defini-
tions. If we consider the patself :: ¢/child :: @/parent :: node
over documents of the abowerp, then the precise type that this
path should have i§X}. However, by using Definition 4.1 we end
up with {X,W}. This is because the first step seletg and then,
according to Definition 4.1, the second step sel¢Xt3V}, asY is
in the content definition of these two names.

To solve this problem we introduce particular types, catted-

formed with respect t&. It is easy to see that the type inference
rules of Figure 1 preserve well-formedness.

The rules are relatively simple to understand. The first tweg
implement our main idea: when we follow an aXgis we com-
pute the type byAg (21, Axis); if the axis is a downward one, then
we add this type to the current context, otherwise if the &xin
upward one, then we intersect it with the current contexth{ior
the type part and for the context part). The rule fenf :: Test
is slightly more difficult since it discards from the curresgt of
nodes those that do not satisfy the test: the type is compayed
Te (¢, Tesd, while the context is obtained by erasing all the names
that were in there just because they generated one of therdest

texts to be updated at each step and containing names already ennodes; to do it it generates (the type of) all ancestors ohtiues

countered in previous steps. We then use them to refine type in
ence for upward axes. In the previous example, when typieg th
first step we build @ontext{X,Y} indicating that for the moment
the two names are the only ones visited by the traversal. ,;Mien
use Definition 4.1 to typgarent thus obtaining{X,W}, as be-
fore, but this time we intersect it with the context thus ahitey

the precise answeiX}.

This idea is formalised by the (deterministic) type systdig-
ure 1. We use the meta-variableo range over types arxlover
contexts, both denoting sets of names defined by the DpotE.
An environment, ranged over I, is a pair(t,K); we useX; and
>« to denote the first and second projectiorzpfespectively.

Environments ¥ = (T,K)
Judgements J = ZXtgPath: X

satisfying the test, and intersects them with the curremteod.
These first three rules are enough to type all the paths ofoitme f
Axis:: Testsince, as stated by the fifth typing rule, all remaining
cases are encoded Agis:: node/self :: Test The fourth rule is
the most difficult one: recall thafondis a disjunction ofsimple
paths; the typea is obtained by discarding frorg; all (names of)
nodes for whichCondnever holds; thus for eack in Z; we com-
pute the type of all the paths @ond and keep irt only names for
which at least one path may yield a non-empty result; theestnt
then is computed as in the third rule, by discarding from tbe-c
text all names that generated only names discarded ¥on®nce
more, all the remaining cases of conditional steps are exttog
this one, as stated by the sixth rule. Finally, step comjuosit
dealt as a logical cut.

The type system is sound. It is also completedops that are
x-guarded, non-recursive, and parent-unambiguous. ivelyf a
DTD is x-guarded when every union occurring in its productions
is guarded by« (or by +), it is non recursive if the depth of all
documents validating it is bound, while it is parent-unagoioius if
no name types both the parent and a strict ancestor of thatpzre
another name. Formally, we have the following definition

DEFINITION 4.3. Let(X,E) be abTD.

1. E isx-guardedf for each Y— I[r] in E, the regular expres-
sion is a product r=ry,...,rn, and whenever;rcontains a
union, then = (r')x;

2. E isnon-recursivef it is never the case that¥>§ Y, for any
name Ye DN(E);

3. E isparent-unambiguousf for all chains ¢ and names,¥
such that cY Z Chaingy g)(X) the following implication

cYCZ € Chaingy g)(X) = C =¢
holds € denotes the empty chain).

node[Cond—is not precise for the parent axis. For instance, con-
sider the followingdTD rooted atX

{X—=a[Y,Z],Y —b[Z], Z—C[]}
and the queryself :: a/child :: b/child :: ¢/parent :: node.
The precise type of this query should P&}. However, the inferred
type is{X,Y}. Thisis because the last stegrent :: node is typed
with the context{X,Y,Z} and this contain®\g ({Z},parent) =
{X,Y}. HereZ is the type for thec node selected byhild :: c
and theAg(,) operator assigns {X,Y} as parent type, even if
thereal parent type foiZ in this case should bgy}. Hence, the
intersections operated by the type rule fetrent are not pow-
erful enough to guarantee precision for cases like this dnea
nutshell, this happens because in the presence of pardigiaons
DTDS the type analysis may produce contexts containing false pa
ent types (with respect the current type This suggests that to be
extremely precise, instead of sets of names, contexts dhatiier
be sets othainsof names, computed and opportunely managed by
the type analysis. Howevér) managing sets of chains instead of

Non-recursivity ane-guardedness are properties enjoyed by a large simple sets of names dramatically complicates the trectinaese

number of commonly usedTDs. As an example, the reader can
consider thepTDs of the XML Query Use Cases [3]: among the

to recursive axes lik@escendant, (ii) the problem may arise only
for queries that use parent axis and the concomitance ohpare

ten DTDs defined in the Use Cases, seven are both non-recursiveambiguity make the event rare in practice, diiid the loss of pre-

and x-guarded, one is only-guarded, one is only non-recursive,
and just one does not satisfy either property. Furthermareoer-
sonal experience is that most of tbeDs available on the web are
x-guarded. Concerning the parent-unambiguous propethguadh
DTDs satisfying this property are less frequent (five on theotens

in [3]), its absence is in practice not very problematic sines we
will see, only the presence of therent axis may hinder com-
pleteness.

THEOREM4.4 (SOUNDNESS ANDCOMPLETENESY. Let
(X,E) be abpTD and P a path. If({X},{X}) Fg P: (1,K) then

(soundness):
T2 Ute,e D([P]i (Rootidt)))

Furthermore, if(X, E) is x-guarded and non-recursive, and parent-
unambiguous , then we also have (completeness):

T C Ukee D([P]; (Rootldt)))

cision looks in most cases negligible. Therefore we comsitiéhat
such a small gain (remember that completeness is just santg ic
on the cake since while it helps to gauge the precision of fhe a
proach its absence does not hinder its application) did umsitfy
the dramatic increase in complexity needed to handle tlss.ca

Note also that the type system, hence the completeness, resul
is stated for predicates of the form described in SectiontBe&re-
fore it does not account for the approximations introduce8eéc-
tion 3.3. However very few non-structural conditions canele
pressed at the level of types, so the impact of these appatixins
on completeness is very light.

4.2 Type-Projection inference

In this section we use the type inference of the previoudmect
to infer type-projectors. Once more naive solutions do notkw
For instance, for simple patt$tep /... /Step, we may consider
as type projector with respect {X,E) the setlUi_1 T U {X},

To see why completeness does not hold in general consider thewhere fori = 1...n:

following DTD rooted aX and which is recursive and netguarded
{X—=c|Y|Z],Y — a]Yx*,String, Z— b[String }

and the following two querieself :: c[child :: a/child ::band
self ::c/child:: a/parent :: node The type inferred for the first

({X},{X}) Fe Step/.../Step: (1i,—-)
(we use “" as a placeholder for uninteresting parameters). This
definition is sound but not precise at all, as can be seen bsicton
eringdescendant :: node/Path the use of the above union yields

query contains botl andZ. These are useless since the query is a set containing, defined as

always empty. This is due to the nerguarded uniory | Z: if we

had(Y | Z)« instead, then the query might yield a non-empty result,

thereforeY andZ must correctly (and completely) be in the query

type. The second query shows the reason why completeness doe

not hold in presence of recursion and backward axes (remursi

with only forward axes does not pose any problem for complete

ness). The type of the second query should¥¢, but instead the
type{X,Y} is inferred. This is due to the recursidn— a[Yx,...]:
sinceY =g Y, onceY is reached it is kept in the inferred type for
every backward ste.

For queries over parent-ambiguonsDs, completeness does not
hold because the fourth rule in Figure 1—the one defineddar ::

4The techniques developed in [11, 10] can be adapted to recove

completeness for cases like the first query, while a moreistiph
cated type analysis could solve the problem with the secdnd.
view of the precision of the current approach this is not aniy
and we leave this investigation as future work.

({X},{X}) Fg descendant ::node : (T1,—)

that is, all descendants of the ra¥t(no pruning is performed).
Instead, we would like to discard, at least, all names thatdar
scendants oK but that are not ancestors of a node matctitath
These are the nam&se Tg (Ag({X},descendant), node) such
that

({Y},K) Fg descendant :: node/Path: (@, —)
for some appropriate context A similar reasoning applies to
ancestor.

Such a selection is performed by the inference rules of Eigur
For paths formed by a single step, if the step has no condfiicst
rule), then the type inference of the previous section isughp
otherwise (second rule) the step is transformed into a cexyphth
(a simple trick to avoid the definition of several rules). mka to
the third rule the type inference can work on just one noddiate,
and thanks to the fourth and fifth rule, it just analyses pathsse

Base and induction |

>te Step: (1,k) ZI-g StefCond/self ::node: T

({X1},K) IFePi1y

({Xn},K) IFE P T

if no other

> e Step: TUK > IFg StegCond : T

(X4, Xk,) e P: U T fule applies

i=1l.n

Encoded Rules|

Y I-g AXis::node/self I TeSYP T Testtnode
3 I Axis:: TesyP: T

A
AXis# self

Y I-g Axis:: Tesfself ::node[Cond/P:T Testt node
> kg Axis:: TesfCond /P: T

%
AXis# self

Primitive Rules |

({Y},K)FEself :Test = ZIFgP:T

({Y},K) FE self ::node[Pjor...orPy): £ ZIFgP:t ZIFeR:Tj

n>1

({Y},K) IFE self :: TesyP: {Y}UT

({Y},K) Fg AXis:inode : ({X1,....% 1K) ({%},k)FeP: & (,K)IFgP:T

({Y},K) IFg self ::node[Pior...orPy)/P: {Y}UTUT1U---UTn

AXxis€ {parent,child}

({Y},K) IFg Axis::node/P: {Y}UTUT

({Y},K) FE desc :inode : ({Xg,...,Xn},K") ({X},K') Fg desc :

‘node/P: ¥

1= {% |5t # 2}

(1,k’) IFg child ::node/P: 1’

({Y},K) IFg desc ::node/P: TUT

({Y},K) Fg ancs inode : ({X1,....,%n},K) ({X},K') Fg ancs :node/P: & (T,K') g parent ::node/P: T

T={X | % # B} U{Y)

({Y},K) IFg ancs ::node/P:TUT

T={X | #2}u{Y}

Figure 2: Projectors inference rules (whereancs and desc are shorthands for ancestor and descendant)

components have one of the following three forrfig:self::Test

(i) self:inode[Cond, or (iii) Axis:node. These three cases are
handled by the “Primitive Rules” of Figure 2: The first rulenltes
the casegi) simply by collecting the current context. The second
rule handles the cagé), by collecting besides the context also all
the parts that are necessary to compute the condition (whittte
rule is expanded in its more general form); the c@sé is handled
by the last three rules which are nothing but slight varisgiof
the same rule according to the particular axis taken int@aac
each rule infers the type obtained by discarding from the type

{X1,...,Xn} of the step, all names that are useless for the rest of the 2.

path, and then uses thigo continue the inference of the projector.

THEOREM4.5 (SOUNDNESS OF PROJECTOR INFERENGQE
Let (X,E) be aDpTD and P a path. If({X},{X}) IFg P: 1, then
T is a type projector fofX,E) and for every te E

[[P]]t\d(Rootlc(t)) = [P]; (Rootldt))

The above theorem states that executing the qieon a treet
returns the same set of nodes as executing it\git the treet
pruned by the inferred projector. From a practical perspedt
is important to notice that according to standard XPath sgice
the semantics of a query contaiosly the nodes of the result of
the query not their sub-trees. The latter may thus be prugetd
inferred projector. Therefore, if we want toaterialisethe result
of a query we must not cut these nodes, and rather use theproje
tionT =1 UAg(1”,descendant) where({X},{X}) IFe P: 17" and
({X}L{XH) FeP: (17;-).

Completeness requires not only completeness of the typersys
(thus, x-guarded, non-recursive, and parent-unambiguouss),
but also the following condition on queries:

DEFINITION 4.6. An XPath query Q istrongly-specifiedf (i)
its predicates do not use backward axés) along Q and along
each path in the predicates of Q there are no two consecypieg- (
sibly conditional) steps whose Test partrisde, and (iii) each
predicate in Q contains at most one path and this does not ter-
minate by a step whose Teshisde.

For instance, among the following queries, only the first &awve
strongly-specified.

1. descendant:inode/self::a lancestor::node
descendant:inode[child::b]/self::afparent::node

3. descendant::node/ancestor::node/self::a

4. descendant:inode[child::b/child:inode]/self::a

4. child:: a [descendant:inode/parent:: b])/child::C

Once more, we are in presence of a very common class of queries
for instance, almost all paths in the XMark and XPathMarkdben
marks are strongly specified.

THEOREM4.7 (COMPLETENESS OF PROJECTOR INFERENGE
Let(X,E) be ax-guarded, non-recursive, and parent-unambiguous
DTD, and P a strongly-specified path. (X}, {X}) IFg P: 1, then
there exists & E such that for each ¥ 1, if =1\ ({Y}U
Ag({Y},descendant)), then

[Plt, n(Rootidt)) # [Pl (Rootid))

The fact that completeness may not hold for reguarded, non-
recursive, or parent-ambiguons Ds, is a consequence of the anal-
ogous property of the type system. To see that also stroegisga-
tion is a necessary condition consider documents valid rggpect
to the followingDTD rooted atX:

{X—=aY,W],W—[],Y —Db[Z], Z—d[]}.

Query them by the following query which not strongly-spesifi
since it does not satisfy conditidii) of Definition 4.6
self ::a@[child :: node].

{X,Y} is an optimal projector for this query, but the presence of
the conditionself :: node makes the system to include algo
in the inferred projector, thus breaking completeness. c€oring
the presence of backward axes in predicates, consider g qu
self :: a[descendant :: node/ancestor :: a which does not sat-
isfy condition(i). An optimal projector for this query on the same
DTD is {X,Y}. However, since thencestor condition is true
for all descendants dd nodes,{W,Z} is included in the projec-
tor as well. Finally, it is straightforward to check that thaery
self ::alchild :: b or child :: c|, which does not satisfy condi-
tion (iii), is not complete for the santerp.

Of course, it is possible to state completeness for othesseln
of queries but, once more, this seems an excellent compedoeis
tween simplicity and generality.

THEOREM4.8 (DECIDABILITY). Given a path P, &TD E,
and an environmenrX well-formed with respect to E, the inference
of a context’ and a typer suchthatt Fg P: ¥ andZIFg P:tTis
decidable.

4.3 Adding sibling, preceding and following
axes.

We could deal with the missing XPath axes by adding specific
inference rules. Instead we opt to use an approximation exeth
axes in term of the previous ones, since it appears as thedmst
promise between simplicity and efficiency.

The approximation is performed by two logical rewriting pes.

In the first pass we rewrite preceding and following axes &sisp
fied in the W3C specifications [4]. Namely, we substitute estep
Axis:: Testwith Axis€ {preceding,following} by the follow-
ing equivalent pathncestor-or-self ::node/(AXis-sibling) ::
node/descendant-or-self :: Test

The second pass is the one which introduces the approximatio
since it replaces all steps of the formi\xis:Test with
Axis€ {preceding-sibling,following-sibling} by the path
parent:node/child:: Test

Clearly, the static analysis of the approximation yieldesslpre-
cise projection than the one we could obtain by working diyec
on the original query. However, we still achieve good prieciof
pruning in practice as we will show in Section 6. For instarime
applying the above rewriting to XPathMark queries Q9 and Q11
we were able to prune a document down to 7.5% of its original
size.

5. EXTENSION TO XQUERY

In this section we extend the technique to XQuery. More pre-
cisely to the FLWR core of XQuery described by the following
grammar:

g == O | 9,9 | <tagg<ftag> | Exp

| for Xxin (returnq]|let X=(qreturn(

| if gthenQelseq
where the definition oExp(given in Section 3.3) is extended with
variables, and with generic XPath expressi@Qsf Section 3.3 that
can be rooted at a variable or /At

Exp:=x|Q|x/Q| /Q| ExpopExg f(Exp..,Exp) | AExp

Without loss of generality, we assume that FLWR expresstms
not occur inif-conditions nor in predicates (every query can be put

into this form by adding appropriatest-expressions). Also, we do
not consider either queries which first construct new elémand
then navigate on them (these are rarely used in practicejhnee
containing XQuery clauses likerder_by, switch_case, etc.:
our approach can be easily extended to both cases.

In order to apply the previous analysis to infer a projectord,
we first extract a set of XPaftrexpressions frony, denoting the
data needs fog. This set of paths is extracted from the query by
the extraction functiorE, whose definition is given in Figure 3.
The extraction function has the forB(q,I,m). The first parame-
ter is the query at issue. The second paraniefsran environment
that keeps track of bindings of the for(w; for P) or (x; letP),
whose scopey is in (see the definition of " in the last two lines
of Figure 3, and observe, by a simple induction reasonireg,eh-
vironments contain paths already in XPathFinally, mis a flag
indicating whetheq is a query that serves to materialise a partial
or final result M= 1), or that just selects a set of nodes whose de-
scendants are not needed-€ 0). Thus, the set of path expressions
(possibly containing qualifiers) extracted from a top-leyeery q
isE(q,2,1).

Once the set of paths are extracted from a qugnye use it to
infer a projector forg according to rules in Section 4.2. Formally,
for eachP, extracted fromg we deduce a projectar;, and use for
the wholeq the union of these projectors (projectors are closed by
union). Also, note that the extracted path of a closed quéiynat
contain free variables since possible free variables arsigtent
roots that must be solved before the analysis.

Most of the rules in Figure 3 are not difficult to understarmere-
fore only few of them deserve further commentary. The flag is
needed since each path determining the resuft (1) must be ex-
tended withdescendant-or-self, in order to project on all nodes
needed in the query result. This is done by the lines 6, 8, &d 1
of the definition. Expressions are dealt in a way similar @ plath
extractorP of Section 3.3; the extractéritself is used in line 12 to
produce simple paths (where we used the notadic{ P, ..., Pn})
for Pror...orP,, and omitted the—straightforward—rules for sin-
gle step paths). Also note that when a result is computedgIth
and 5) paths in “for"-environments are added (“let” are atidaly
if their binding variable is used).

These rules subsume and enhance the whole Marian and Ssnéon
technique [14]. In particulari) the technique we use to exclude
useless intermediate paths is simpler and more com(igcive do
not need to distinguish between two kinds of extracted phtits
more simply, we always manage a unique set of path expression
and(iii) last but not least, our path extractor can be used even if the
user cannot access an XQuery to XQuery-Core compiler, wiBich
necessary for [14].

Before applying the extraction functidato a queryg we apply
some heuristics that rewriggso to improve the pruning capability
of the inferred paths. Among these heuristics the most itapois
the one that rewrites

for y in Q/descendant-or-self::node
return if C(y) then else ()

into
for y in
Q/descendant-or-self: :node[C(self ::node)]
return (

whenevelC(y) is a condition referring only tgy and does not use
external functions@(self ::node) is obtained by replacingelf :
node for all occurrences of free inC). If we applyE to the first
query, then a path ending l@g¢scendant-or-self:inode is ex-
tracted thus annulling further pruning: the entire foresfested

1. E(O,I,m) = O
2. E(AEXpT,1) = {P| (x forP)erl}
3. E(AExprl,0) = o
4. E((t1,%),I,m) = E(qi,,mUE(qe,I,m)
5. E(<tag>g</tag>,",m) = {P | (x forP)el}UE(q,l',1)
6. E(xI,1) =
7. E(x,I",0) = {P| (x —P)erl}
8. E(/PT,1) = {/P/descendant-or-self ::node}
9. E(/RT,0) = {/P}
10. E(x/PT,1) =
11. E(Stepq,l",m) = Step’E(q,I',m)
12, E(StefExp/q.r,m — Steflor (P(Exp)] /E(q,,m)
13. E(Exp, op Exp,,m) = E(Exp,l,mUE(Exp,I,m)
14. E(f(Expy,...,EXp),,m) =
15. E(if gthenqj else gp,,m) =
16. E(for Xin q; return gp,I,m) = E(q,l,0)UE(q,TUT’,m)
17. E(let x=0p return gp,l’,m) = E(qs,l,0)UE(ge,F U, m)

{P/descendant-or-self :inode | (X, —P)erl}

{P'/P/descendant-or-self :inode | (x; —P')el}

Ui=1n(E(Exp,T,0)/F(f,i)) U{self ::node}
E(9,l,0)UE(qy, I, 1) UE(q2, T, H)U{P | (x;, —P)eTl}

(wherel = {(x; for P) | P € E(q,l,0)})
(wherel” = {(x; letP) | P € E(qy,I,0)})

Figure 3: XQuery path extraction

by Q is loaded in main memory. This also happens with the ap-
proaches of Bressagt al. [9] and of Marian and Siméon [14]. In
our and Marian and Siméon'’s approach the query can be rewritt
as above (this is not possible in [9] since their subset of &Qu
does not include predicates). However, Marian and Siméuatis
based pruning degenerates (no further pruning is perfoyrakso
for the second query, since tdescendant-or-self:inode ends
up in the set of pruner paths, thus selecting all nodes. Bhie+t
cause their approach cannot manage predicates. In ouraabpro
instead predicates are taken into account and therefoyenmales
satisfyingC(y) are kept by the projector, thus yielding a very pre-
cise pruning.

It is important to stress that despite their specific form firet
kind of queries is very common in practice since they are gend
from XQuery—XQuery-Core compilation of a non negligible class
of queries (for instance Q13 of the XPathMark) or when rengit
upward axes into downward ones. This latter observationvsho
that the application of rewriting rules rules of [15] to ex¢eMarian
and Siméon’s approach to upward axes is not feasible siree th
rewriting may completely compromise pruning.

6. EXPERIMENTS

We have implemented a complete version of the algorithm de-
fined for full XPath. The code (availablelgttp: //www.1lri.fr/
~kn) is written in OCaml, uses the PXP library for parsing XML
documents, and its correctness was verified for all testterAlie
path extraction of Section 5, it performs the rewriting eneted
in Sections 3.3 and 4.3, and the static analysis defined in Sec
tion 4. The latter is extended to deal with attributes, wité wild-
card testelement (), with {descendant,ancestor}-or-self
and {preceding,following}-siblings axes, and with abso-
lute paths. It also uses a couple of heuristics. One heuristirites
theDTD E so that every nam¥ defined a& — Stringoccurs ex-
actly once in the right hand side of an edgeEofthis enhances
the precision of pruning by reducing the number of confliats o
the leaves of the tree. The other heuristic keeps track ofiépeh
of elements in the paths in order to improve pruning, esfigdia
presence of recursiveTDs (this latter heuristics could be embed-
ded in the formal treatment, but we preferred to keep it sémpl
Pruning is then performeih streamingand merely consists of a

one-pass traversal of the document. We also added an optadna
idation option, that makes it possible to prune the docunmérile
validating it. Programs that use an external validator temefore
prune their document without any overhead.

We performed our tests on a GNU/Linux desktop, with 3GHz
processor, 512 MB of RAM and a single S-ATA hard-drive, us-
ing DTDS, document generator, and queries of XMark and XPath-
Mark (the latter is interesting because its queries uséhalbwail-
able axes). Queries were processed by the latest versioalak G
(that is, the 0.5.0). Swap was disabled to test memory limits

For what concerns the overhead of the optimisation, tests co
firmed that it is always negligible, both in memory and time-co
sumption: the only noticeable overhead is pruning time,ciwhs
linear in the size of the pruned document, but can be embedded
in document parsing and/or validation (e.g., for 60MB doeuts
computing the projector took around 0.5s while pruning aad s
ing the pruned document to disk was always below 10s). These
results were confirmed by further experiments on lenges (e.g.
XHTML) and long XPath expressions (twenty steps or so).

In Table 1 we report part of the results of our tests. For speae
sons just a selection of XMark (QM) and XPathMark (QP) querie
are presented.

Projector efficiency. The fourth line of Table 1 reports the ef-
fect of inferred projectors and it is an indicator of the séiéty of

the query. For several XMark queries the size of the prunedi-do
ment is around 70-80% of the size of the original documenis Th
is due to the fact that XMark documents contain mixed-cdnten
<description> elements which account for about 70% of the to-
tal size. Thus, queries whose execution requires the wiasieenot

of <description> elements, preserve a large part of the file. On
the contrary, for very selective queries like QM06, 99.7%ttud
document is discarded. Finally, for queries that are vetlelse-
lective, like QP13, the whole document has to be kept. It Ehoe
noted in Table 1, fourth line, that for all XMark queries buti@4

we could prune more than 95% of the original document.

Execution time and memory occupation. The comparison of
performances of the Galax query engine on an original dootime
and its pruned version is given in Figures 4 and 5, which respe
tively report the processing times and main memory occopdtr
documents of 56MB. They show that time and memory gains are

§§§§§§Q&Q&
S &3 g & &

D ¥ HLH O QA QX O 90O Y v e N O
LS L L PP LEL PP g
c o o o 000 oo o o o o

Original Document Size (MB)

930 2048100 202 2048964 112 313 258 291 123 190 168 123 459 123 369 134 79 224 403

Pruned Document Size(MB) 25 53 42 139 24 24 89 50 46 50 98 133 199 35 98 28 107 78 152 42
Main Memory Usage (MB) 374 90 380 512 245 512 391 399 433 434 488 467 466 466 483 456 460 504 459 465
Gain in Size (% of original) 25 03 34696 1.15 2.5 80.4 157/5 16.8 80.4 69.6 73.2 80.4 7.5 80.4 7.5 80.4 98.2 67.9 10.4

Gain in Speed x faster) 17.8 110.1 28.2 3.9 626 7.5 15 3.6 3.7 43 15 29 26 11 46 42 16 10 3.6 36

*: biggest file the XMark generator was able to produce.

Table 1: Sizes (in MBytes) of the biggest document processédanks to pruning, size of its pruned version, and memory use to
process the latter. Percent of the pruned document and speag of the execution time for a 56MB document.

Processing Time (in s)

Figure 4: Processing time of a query on original (56MB) and
pruned documents

similar.

These gains translate in practice into much faster exetsitod
the possibility to process much larger documents. The ingro
ment can be measured by looking at the first and last lines -of Ta
ble 1. The first line reports the size of the largest documtenas
possible to process thanks to pruning. This must be compeitad
the fact that, for all queries, the largest document thatbmapro-
cessed without pruning is 68MBytes large. The last line r&po
how many times the execution on a pruned document is fastar th
the execution on the original document. It is important ttertbat,
depending on the nature of the query, the gain can be muclemhigh
than the proportion given by the percent of the size of thenpru

400

Memory (in MB)

oMo 3
oMo
oMo 7
oM 4
oMis
oMo
oPo;
oro2
oro3
OP04
oPos
OPoe
QP07
orog
orog
QP10
QP11
OP12>
QP13
OP2;
OP23

Query

Figure 5: Memory used to process a query on original (56MB)
and pruned documents

out some (types of) nodes is twofold: first, the fan out of thewd
ment is reduced and this may impact memory usage for endiaés t
chase sibling pointers and, second, the number of elememses
reduced, which may reduce memory occupation when shredding
These results are a clear-cut improvement over currentitdch
ogy. While we cannot directly compare processing perforcean
since no implementation of the other pruning approachesilis p
licly available, we want to stress two point$) with one exception
(QM14) the amount of pruning on common experiments is always
equal or better with our approach than the others @rcerform-
ing pruning never is a bottleneck in our case thanks to faattahr
solution consists of a single bufferless one pass travefgak in-

ing. For instance, for queries such as QM14, QP6, and QP21 theput document (on our 512MB machine we were able to efficiently

size of the pruned document is two-thirds of the size of thgial
document, but they can then be processed from three to foesti
faster and, as Figure 5 shows, using three times less meimany t

when processed on the original. The latter is a huge gain when
one knows that memory usage is one of the main bottlenecks for

real life query processing (e.g., in DOM-based implemeéoreat of
XPath or XSLT processors).

Quite informative, as well, is the data in the second lineaf T
ble 1 which reports, for each query, the size in MB of the maxim
pruned document. It is interesting to see that, while theimam
size for an unpruned document is 68MB, we can process dodsmen
for which the projection has a size of 152MB (on disk). This is
due to the fact that projecting a document not only reducesize
but also itscomplexityby reducing the number of types of nodes.
This simplification of the document reduces the amount ofaext
information the query engine has to keep for each node amdeco
guently, its memory usage. More precisely, the benefit ohimg

prune arbitrary large documents, while in case of [14] pngrian
end up using as much memory as the execution of the query).

7. CONCLUSION AND FUTURE WORK

The benchmarks show the clear advantages of applying our op-
timisation technique to query XML documents, and the charac
teristics of our solution make it profitable in all appliaati sce-
narios. We discussed several aspects for which our appiioach
proves the state of the art: for performances (better pgymimore
speedup, less memory consumption), for the analysis tqabsi
(linear pruning time, negligible memory and time consurmp}j
for its generality (handling of all axes and of predicates)d, last
but not least, for the formal foundation it provides (cotresss for-
mally proved, limits of the approach formally stated).

Future work will be pursued in three distinct areas: formed d
velopments, database integration, and implementatioesss

For what concerns the formal treatment, we have to integrate [5] XQuery 1.0 and XPath 2.0 Functions and Operators.

in it the heuristics used in the implementation of the statialy- http://www.w3.org/xquery-operators.

sis and to formally state the soundness and completenessnef s [6] V. Benzaken, G. Castagna, and A. Frisch. CDuce: an
approximations presented in the work. Also, it should beygas XML-centric general-purpose language.l@FP '03, 8th
adapt the approach to work in the absencebs, by using data- ACM Int. Conf. on Functional Programminpages 51-63,
guides/path-summaries instead. We intend also to adagechHt 2003.

nique to optimise queries written iBQL [7] the query language [7] V. Benzaken, G. Castagna, and C. Miachon. A full

of CDuce [6] as we said at the end of Section 3, their rich type pattern_based paradigm for XML query processing?A‘DL
system will allow us to assign more precise types to quefias ('05, the 7th Int. Symp. on Practical Aspects of Declarative
instance, it will be possible to capture by types many XPaghlip Languagesnhumber 3350 in LNCS. Springer, 2005.
cates, since disjunction, conjunctions and negations edrabdled [8] V. Benzaken, C. Delobel, and G. Harrus. Clustering

by the corresponding type operators and the value of atéghand strategies in @ an overview. InBuilding an

element contents can be expressed by singleton types) asdah Object-Oriented Database System: the Story gfMorgan
perform more selective pruning. Finally, we want to modifyro Kaufman, 1992.

approach so that it can yield efficient pruning also in thespree [9] S.Bressan, B. Catania, Z. Lacroix, Y-G Li, and

of XPath 2.0 predicates that test the XML Schema of nodese Not A Maddaléna. Acceler:alting queriés by pr;ming XML
indeed that such predicates are blockers for pruning: we hav documentsData Knowl. Eng.54(2):211-240, 2005.

leave the entire subtree intact so that the engine can virdyit
has the specified schema. But since the projector inferelgee a
rithm already statically checks this property, the ideacisrtake
the inference algorithm also rewrite predicates so as td phs
schema tests down where they are strictly necessary, thksgna
further pruning possible.

From a database perspective we want to study the integration
of our optimisation technique with classical database or@ar
technique must be viewed as a preliminary step that can Iteefur
combined with more traditional database optimisationsreviire-

[10] D. ColazzoPath Correctness for XML Queries:
Characterization and Static Type CheckifhD thesis, Dip.
di Informatica, Universita di Pisa, 2004.

[11] D. Colazzo, G. Ghelli, P. Manghi, and C. Sartiani. Tyfas
Path Correctness for XML Queries. IBFP '04, 9th ACM
Int. Conf. on Functional Programmin@004.

[12] M. Franceschet. XPathMark - An XPath benchmark for
XMark generated data. I{Sym 2005, 3rd Int. XML
Database SymposiyaNCS n. 3671, 2005.

cisely, as our technique is able to take into account the lvadg [13] D. Lee, M. Mani, and M. Murata. Reasoning about XML
in the line of [8], it could help the database administratodéduce Schema Languages using Formal Language Theory.
relevant clustering strategies of XML data on disk and tordefi Technical report, IBM Aimaden Research, 2000.
well-adapted indexes and/or materialised views. Secantpmin- [14] A.Marian and J. Simeon. Projecting XML documents. In
ing technique can also be used for pruning indexes. For ebearifip VLDB '03, pages 213-224, 2003.
indexes over element tags are present before query proggdite [15] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath:
in the TIMBER system), the index can be pruned as well. In TIM- Looking forward. InProc. EDBT Workshop (XMLDM)
BER, for a 472 MB document, such an index can reach a 241MB volume 2490 oLNCS pages 109-127. Springer, 2002.
size [16], thus it is worth being pruned, in order to improwefer [16] S. Paparizos and H.V. Jagadish. Pattern tree algeBeis:or
management and concurrent query evaluations. sequences? MLDB, 2005.

Finally, implementation-wise, the natural extension of work [17] A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey,
is to interface our pruning system with a query processirgjren I. Manolescu, and R. Busse. XMark: A benchmark for XML
This would bring several advantagés; the pruning overhead would data management. MLDB 02, pages 974-985, 2002.

be diluted in the parsing/validation phase &fiid an interaction
between the query engine and the loading module would peovid
a way not only to prune the document but to start answering the
query in streaming, when possible.

Acknowledgements. We would like to thank Haiming Chen for
pointing us an error in the two typing systems of a prelimynaer-
sion of this work. This work benefitted from several discaoasi
with and suggestions from loana Manolescu and Carlo Sartian
Two of the three VLDB anonymous referees provided very use-
ful feedback. This work was partially funded by the FrenchlAC
project “Transformation Langages for XML: Logics and Appli
cations” (TraLaLA) and the French ACI young researcher gxbj
“WebStand”.

8. REFERENCES

[1] Galax.http://www.galaxquery.org.

[2] XML Path Language (XPath) 2.0.
http://wuw.w3.org/TR/xpath20.

[3] XML Query Use Cases.
http://wuw.w3.org/TR/xquery-use-cases/.

[4] XQuery 1.0 and XPath 2.0 Formal Semantics.
http://wuw.w3.org/TR/xquery-semantics.

