
A formal account of contracts for Web services

S. Carpineti1, G. Castagna2, C. Laneve1, and L. Padovani3

1 Department of Computer Science, University of Bologna
2 École Normale Supérieure de Paris

3 Information Science and Technology Institute, University of Urbino

Abstract. We define a formal contract language along with subcontract
and compliance relations. We then extrapolate contracts out of processes,
that are a recursion-free fragment of ccs. We finally demonstrate that a
client completes its interactions with a service provided the correspond-
ing contracts comply. Our contract language may be used as a foundation
of Web services technologies, such as wsdl and wscl.

1 Introduction

The recent trend in Web services is fostering a computing scenario where loosely
coupled parties interact in a distributed and dynamic environment. Such in-
teractions are typically sequences of messages that are exchanged between the
parties. The environment, being dynamic, makes it not feasible to define or as-
semble parties statically. In this context, it is fundamental for clients to be able
to search at run-time services with the required capabilities, namely the format
of the exchanged messages, and the protocol – or contract – required to inter-
act successfully with the service. In turn, services are required to publish such
capabilities in some known repository.

The Web Service Description Language (wsdl) [6, 5, 4] provides a standard-
ized technology for describing the interface exposed by a service. Such description
includes the service location, the format (or schema) of the exchanged mes-
sages, the transfer mechanism to be used (i.e. soap-rpc, or others), and the
contract. In wsdl, contracts are basically limited to one-way (asynchronous)
and request/response (synchronous) interactions. The Web Service Conversa-
tion Language (wscl) [1] extends wsdl contracts by allowing the description
of arbitrary, possibly cyclic sequences of exchanged messages between commu-
nicating parties.

Both wsdl and wscl documents can be published in repositories [2, 7] so
that they can be searched and queried. However, this immediately poses an issue
related to the compatibility between different published contracts. It is necessary
to define precise notions of contract similarity and compatibility and use them
to perform service discovery in the same way as, say, type isomorphisms are
used to perform library searches [18, 8]. Unfortunately, neither wsdl nor wscl
can effectively define these notions, for the very simple reason that they do not
provide any formal characterization of their contract languages. This cries out

2 S. Carpineti, G. Castagna, C. Laneve, and L. Padovani

for a mathematical foundation of contracts and the formal relationship between
clients and contracts.

In this contribution we define a calculus for contracts along with a subcon-
tract relation, and we formalize the relationship between contracts and processes
(that is clients and services) exposing a given contract. Contracts are made of ac-
tions to be interpreted as either message types or communication ports. Actions
may be combined by means of two choice operators: + represents the external

choice, meaning that the interacting part decides which one of alternative con-
versations to carry on; ⊕ represents the internal choice, meaning that the choice
is not left to the interacting part. As a matter of facts, contracts are behavioral
types of processes that do not manifest internal moves and the parallel structure.
They are acceptance trees in Hennessy’s terminology [11, 12].

Then we devise a subcontract relation � such that a contract σ is a subcon-
tract of σ′ if σ manifests less interacting capabilities than σ′. The subcontract
relation can then be used for querying (Web services) repositories. A query for
a service with contract σ may safely return services with contract σ′ such that
σ � σ′. It is possible that interaction with a service that exposes a contract
that is bigger than the client requires may result into unused capabilities on the
server side. We argue that this is safe, because we are interested in the client’s
ability to complete the interaction. Such client completion property inspires a
relationship between client contracts and service ones – the contract completion

– that may be defined in terms of � and an appropriate complement operation
over contracts.

To illustrate our contracts at work we consider a recursion-free fragment of
the Calculus of Communicating Systems (ccs [13]). We define a compliance rela-
tion between processes such that a process – the client – interacting with another
– the service – is guaranteed to complete. For instance the clients (a.b | a)\a and
(a.b | a.c | a) \ a respectively comply with the services b and b | c; the two clients
do not comply with c. We then extrapolate a contract out of a process by means
of a type system defined using the expansion theorem in [15]. For instance, we
are able to deduce a.b | a ⊢ (a.(b.a + a.b)+ a.(a.b+ b.a)+ b)⊕ b. Finally we prove
our main result: if the contract of a client complies with the contract of a service,

then the client complies with the service.
The expressiveness of our contract language is gauge by encoding wsdl mes-

sage exchange patterns and some wscl conversations into our contract language.
Because of the � relation between contracts, we are able to draw some interest-
ing considerations about similar exchange patterns, and order them according to
the client’s need. As we consider the recursion-free fragment of ccs, we are not
able to deal with cyclic wscl conversations, but we point out in the conclusions
that their support requires well-known extensions to the contract language and
to the subcontract relation.

Related work. This research was inspired by “ccs without τ” [15] and by Hen-
nessy’s model of acceptance trees [11, 12]. In facts, our contracts are an alterna-
tive representation of finite acceptance trees. While the use of formal models to
describe communication protocols is not new (see for instance the exchange pat-

A formal account of contracts for Web services 3

terns in ssdl [19], which are based on csp and the π-calculus), to the best of our
knowledge the subcontract relation � is original. It is incomparable with may
testing preorder and it is less discriminating than the must testing preorder [14].
The stuck free conformance relation in [10], which is inspired by the theory of
refusal testing [16], is also more demanding than our subcontract relation. For
instance 0 is not related with a in [10] whilst 0 � a.

It is worth noticing that both must testing and stuck free conformance are
preserved by any ccs context without + thus allowing modular refinement. This
is not true for �. For instance a � a + b so one might think that a service with
contract a can be replaced by a service with contract a + b in any context.
However, the context C = b | b.a | [] distinguishes the two services (a + b can get
stuck while a cannot). The point is that the context C, representing a client,
does not comply with a, since it performs the actions b and b which are not
allowed by the contract a.

Structure of the paper. In Section 2 we formally define our language for con-
tracts along with subcontract and compliance relations. In Section 3 we relate
the language with existing technologies to specify service protocols. Our notion
of compliance between contracts is lifted to a notion of compliance between
processes in Section 4. Section 5 draws our conclusion and hints to future work.

2 The contract language

The syntax of contracts uses an infinite set of names N ranged over by a, b, c,
. . . , and a disjoint set of co-names N ranged over by a, b, c, We let a = a.
Contracts σ are defined by the following grammar:

σ ::= contracts
0 (void)
a.σ (input prefix)
a.σ (output prefix)
σ + σ (external choice)
σ ⊕ σ (internal choice)

Contracts are abstract definitions of conversation protocols between commu-
nicating parties. The contract 0 defines the empty conversation; the input prefix
a.σ defines a conversation protocol whose initial activity is to accept a message
on the name a – representing uris – and continuing as σ; the output prefix a.σ

defines a conversation protocol whose initial activity is to send a message to the
name a and continuing as σ. Contracts σ+σ′ and σ⊕σ′ define conversation pro-
tocols that follow either the conversation σ or σ′; in the former ones the choice is
left to the remote party, in the latter ones the choice being made locally. For ex-
ample, Login.(Continue+ End) describes the conversation protocol of a service
that is ready to accept Logins and will Continue or End the conversation accord-
ing to client’s request. This contract is different from Login.(Continue⊕ End)
where the decision whether to continue or to end is taken by the service.

4 S. Carpineti, G. Castagna, C. Laneve, and L. Padovani

In the rest of the paper, the trailing 0 is always omitted, α is used to range
over names and co-names, and

∑

i∈1..n σi and
⊕

i∈1..n σi abbreviate σ1 + · · ·+σn

and σ1 ⊕ · · · ⊕ σn, respectively. The language of σ, written L(σ), is the set of
strings on names and co-names inductively defined as follows:

L(0) = {ε}
L(α.σ) = {αs | s ∈ L(σ)}

L(σ1 + σ2) = L(σ1 ⊕ σ2) = L(σ1) ∪ L(σ2)

2.1 Subcontract relation and dual contracts

Contracts retain an obvious compatibility relation that relates the conversation
protocols of two communicating parties: a contract σ of a party complies with

σ′ of another party if the corresponding protocols match when they interact.
Such a definition of subcontract would require the notions of communicating
party, which is a process, and of contract exposed by it. We partially explore
this direction in Section 4; here we give a direct definition by sticking to a
structured operational semantics style. We begin by defining two notions that
are preliminary to compliance: subcontract and dual contract.

Definition 1 (Transition). Let σ X

α
7−→ be the least relation such that

0 X

α
7−→

β.σ X

α
7−→ if α 6= β

σ ⊕ σ′
X

α
7−→ if σ X

α
7−→ and σ′

X

α
7−→

σ + σ′
X

α
7−→ if σ X

α
7−→ and σ′

X

α
7−→

The transition relation of contracts, noted
α

7−→, is the least relation satisfying

the rules:
α.σ

α
7−→ σ

σ1
α

7−→ σ′
1 σ2

α
7−→ σ′

2

σ1 + σ2
α

7−→ σ′
1 ⊕ σ′

2

σ1
α

7−→ σ′
1 σ2 X

α
7−→

σ1 + σ2
α

7−→ σ′
1

σ1
α

7−→ σ′
1 σ2

α
7−→ σ′

2

σ1 ⊕ σ2
α

7−→ σ′
1 ⊕ σ′

2

σ1
α

7−→ σ′
1 σ2 X

α
7−→

σ1 ⊕ σ2
α

7−→ σ′
1

and closed under mirror cases for external and internal choices. We write σ
α

7−→
if there exists σ′ such that σ

α
7−→ σ′.

The relation
α

7−→ is different from standard transition relations for ccs pro-
cesses [13]. For example, there is always at most one contract σ′ such that

σ
α

7−→ σ′, while this is not the case in ccs (the process a.b + a.c has two differ-
ent a-successor states: b and c). This mismatch is due to the fact that contract
transitions define the evolution of conversation protocols from the perspective of

the communicating parties. Thus a.b + a.c
a

7−→ b ⊕ c because, once the activity

A formal account of contracts for Web services 5

a has been done, the communicating party is not aware of which conversation
path has been chosen. On the contrary, ccs transitions define the evolution of
processes from the perspective of the process itself.

We write σ(α) for the unique continuation of σ after α, that is the contract

σ′ such that σ
α

7−→ σ′.

Definition 2 (Ready sets and subcontracts). Let r range over finite sets

of names and co-names, called ready sets.

σ ⇓ r is the least relation such that:

0 ⇓ ∅
α.σ ⇓ {α}
(σ + σ′) ⇓ r ∪ r′ if σ ⇓ r and σ′ ⇓ r′

(σ ⊕ σ′) ⇓ r if either σ ⇓ r or σ′ ⇓ r

The subcontract relation � is the largest relation such that σ1 � σ2 implies:

1. if σ2 ⇓ r2 then σ1 ⇓ r1 with r1 ⊆ r2,

2. if σ1
α

7−→ σ′
1 and σ2

α
7−→ σ′

2 then σ′
1 � σ′

2.

Let σ1 ≃ σ2, called contract compatibility, if both σ1 � σ2 and σ2 � σ1.

The relation σ � σ′ verifies whether the external non-determinism of σ′ is
greater than the external non-determinism of σ and that this holds for every α-
successor of σ and σ′, provided both have such successors. For example a.(b⊕c) ≃
a.b + a.c ≃ a.b ⊕ a.c and a.b ⊕ b � b and b � b + a.c. It is worth to remark that
� is not transitive: the last two relations do not entail a.b ⊕ b � b + a.c, which
is false. This transitivity failure is not very problematic because σ and σ′ are
intended to play different roles in σ � σ′, as detailed by the compliance relation.
However, transitivity of � holds under lightweight conditions.

Proposition 1. If σ1 � σ2 and σ2 � σ3 and either L(σ1) ⊆ L(σ2) or L(σ3) ⊆
L(σ2), then σ1 � σ3.

The relation � is incomparable with may testing semantics [12]: we have
a ⊕ 0 � b, while these two processes are unrelated by may testing; conversely,
a⊕ b and a+ b are may-testing equivalent, while a+ b 6� a⊕ b. The relation � is
less discriminating than must testing semantics [12]: a and a + b are unrelated
in must testing while a � a + b.

The notion of dual contract is used to revert the capabilities of conversation
protocols. Informally, the dual contract is obtained by reverting actions with co-
actions, + with ⊕, and conversely. For example the dual contract of a⊕b is a+b.
However, this näıve transformation is fallible because in the contract language
some external choices are actually internal choices in disguise. For example,
a.b + a.c ≃ a.(b ⊕ c) but their dual contracts are respectively a.b ⊕ a.c and
a.(b + c), and they tell very different things. In the first one, the communicating
party cannot decide which action to perform after a, whereas this possibility is
granted in the second one. To avoid such misbehavior, we define dual contracts

6 S. Carpineti, G. Castagna, C. Laneve, and L. Padovani

on contracts in normal form. We use the same forms introduced in [12]. Let the
normed contract of σ, noted nc(σ), be

nc(σ)
def
=

⊕

σ⇓r

∑

α∈r α.nc(σ(α)) .

For example

nc((a.b ⊕ b.c) + (a.b.d ⊕ c.b)) = a.b.(0⊕ d)
⊕ (a.b.(0⊕ d) + c.b)
⊕ (a.b.(0⊕ d) + b.c)
⊕ (b.c + c.b)

Lemma 1. σ ≃ nc(σ) and L(σ) = L(nc(σ)).

Definition 3 (Dual contracts). The dual contract of σ, noted σ, is defined

as

σ
def
=

∑

σ⇓r

⊕

α∈r α.σ(α)

where, by convention, we have
⊕

σ∈∅ σ = 0.

The dual operator is not contravariant with respect to �. For example,
a � a.b, but a.b = a.b 6� a. For similar reasons, contract compatibility is not
preserved. For example, 0 ≃ 0 ⊕ a but 0 = 0 6≃ 0 + a = 0⊕ a. However a
limited form of contravariance, which will result fundamental in the following,
is satisfied by the dual operator.

Lemma 2. σ � σ ⊕ σ′.

2.2 Contract compliance

Every preliminary notion has been set for the definition of contract compliance.

Definition 4 (Contract compliance). A contract σ complies with σ′, noted

σ ≪ σ′, if and only if σ � σ′.

The notion of contract compliance is meant to be used for querying a Web
service repository. A client with contract σ will interact successfully with every
service with contract σ′ provided σ ≪ σ′. For example, consider a client whose
conversation protocol states that it intends to choose whether to be notified
either on a name a or on a name b. Its contract might be a ⊕ b. Querying a
repository for compliant services means returning every service whose conversa-
tion protocol is a+ b, or a+ b+ a, or a.c+ b, etc. The guarantee that we provide
(see Section 4) is that, whatever service returned by the repository is chosen,
the client will conclude his conversation. This asymmetry between the left hand
side of � (and of ≪) and the right hand side is the reason of the failure of tran-
sitivity. More precisely, in a.b⊕ b � b and in b � a.c+ b, we are guaranteeing the
termination of clients manifesting the two left hand sides contracts with respect
to services manifesting the two right hand side contracts. This property is not
transitive.

A formal account of contracts for Web services 7

3 On the expressive power of the contract language

In this section we relate our contract language to existing technologies for spec-
ifying service protocols.

3.1 Message exchange patterns in wsdl

The Web Service Description Language (wsdl) Version 1.1 [6] permits to de-
scribe and publish abstract and concrete descriptions of Web services. Such
descriptions include the schema [9] of messages exchanged between client and
server, the name and type of operations that the service exposes, as well as the
locations (urls) where the service can be contacted. In addition, it defines four
interaction patterns determining the order and direction of exchanged messages.
For instance, the request-response pattern is used to describe a synchronous op-
eration where the client issues a request and subsequently receives a response
from the service.

The second version of wsdl [3–5] allows users to agree on message exchange
patterns (mep) by specifying in the required pattern attribute of operation el-
ements an absolute uri that identifies the mep. It is important to notice that
these uris act as global identifiers (their content is not important) for meps,
whose semantics is usually given in plain English. In particular, wsdl 2.0 [4]
predefines four message exchange patterns (each pattern being uniquely identi-
fied by a different uri) for describing services where the interaction is initiated
by clients. Let us shortly discuss how the informal plain English semantics of
these patterns can be formally defined in our contract language. Consider the
wsdl 2.0 fragment

<operation name="A" pattern="http://www.w3.org/2006/01/wsdl/in-only">

<input messageLabel="In"/>

</operation>

<operation name="B"

pattern="http://www.w3.org/2006/01/wsdl/robust-in-only">

<input messageLabel="In"/>

<outfault messageLabel="Fault"/>

</operation>

<operation name="C" pattern="http://www.w3.org/2006/01/wsdl/in-out">

<input messageLabel="In"/>

<output messageLabel="Out"/>

<outfault messageLabel="Fault"/>

</operation>

<operation name="D" pattern="http://www.w3.org/2006/01/wsdl/in-opt-out">

<input messageLabel="In"/>

<output messageLabel="Out"/>

<outfault messageLabel="Fault"/>

</operation>

which defines four operations named A, B, C, and D. The first two operations
are asynchronous by accepting only an incoming message labeled In. The last

8 S. Carpineti, G. Castagna, C. Laneve, and L. Padovani

two operations are synchronous by accepting an incoming message labeled In

and replying with a message labeled Out. In the B operation a fault message can
occur after the input. The C operation always produces an output message (see
in-out in its pattern attribute), unless a fault occurs. In the D operation the
reply is optional, as stated by the in-opt-out exchange pattern attribute, and
again it may fail with Fault.

We can encode the contract of the pattern of the A operation in our contract
language as inOnly = In.End, that is an input action representing the client’s
request followed by a message End that is sent from the service to notify the
client that the interaction has completed.

The B operation can be encoded as

robustInOnly = In.(End⊕ Fault.End)

where after the client’s request, the interaction may follow two paths, represent-
ing successful and faulty computations respectively. In the former case the end
of the interaction is immediately signaled to the client. In the latter case a mes-
sage Fault is sent to the client, followed by End. The use of the internal choice
for combining the two paths states that it is the service that decides whether
the interaction is successful or not. This means that a client compliant with this
service can either stop after the request or it must be able to handle both the
End and Fault messages: the omission of handling, say, Fault would result into
an uncaught exception.

The need for an explicit End message to signal a terminated interaction is not
immediately evident. In principle, the optional fault message could have been
encoded as In.(0 ⊕ Fault). A client compliant with this service must be able
to receive and handle the Fault message, but it must also be able to complete
the interaction without further communication from the service. The point is
that the client cannot distinguish a completed interaction where the service has
internally decided to behave like 0 from an interaction where the service has
internally decided to behave like Fault, but it is taking a long time to respond.
By providing an explicit End message signaling a completed interaction, the
service tells the client not to wait for further messages. By this reasoning, the
End message after Fault is not strictly necessary, but we write it for uniformity.

By similar arguments the contract of the C operation can be encoded as

inOut = In.(Out.End⊕ Fault.End)

and the contract of the D operation as

inOptOut = In.(End⊕ Out.End⊕ Fault.End)

It is worth noticing how these contracts are ordered according to our defi-
nition of �. We have inOptOut � robustInOnly and robustInOnly � inOnly.
Indeed, a client compliant with inOptOut must be able to complete immediately
after the request, but it is also able to handle a Out message and a Fault mes-
sage. The robustInOnly can only produce an End message or a Fault message,

A formal account of contracts for Web services 9

hence it is “more deterministic” than inOptOut. Similarly, inOnly is more de-
terministic than robustInOnly since it can only send an End message after the
client’s request. Finally, note that inOptOut � inOut also holds.

3.2 Conversations in wscl

The wsdl message exchange patterns cover only the simplest forms of inter-
action between a client and a service. More involved forms of interactions, in
particular stateful interactions, cannot be captured if not as informal annota-
tion within the wsdl interface. The Web service conversation language wscl [1]
provides a more general specification language for describing complex conversa-

tions between two communicating parties, by means of an activity diagram. The
diagram is basically made of interactions which are connected with each other
by means of transitions. An interaction is a basic one-way or two-way commu-
nication between the client and the server. Two-way communications are just a
shorthand for two sequential one-way interactions. Each interaction has a name

and a list of document types that can be exchanged during its execution. A tran-
sition connects a source interaction with a destination interaction. A transition
may be labeled by a document type if it is active only when a message of that
specific document type was exchanged during the previous interaction.

in: Login

out: ValidLogin

out: InvalidLogin

in: Query

out: Catalog in: Purchase

out: Accepted

out: InvalidPayment

out: OutOfStock

in: Logout

[Accepted]

[OutOfStock]
[InvalidPayment]

��
��
��

��
��
��

��
��
��

��
��
��������

[ValidLogin]

[InvalidLogin]

Fig. 1. Contract of a simple e-commerce service as a wscl diagram.

Below we encode the contract σ of a simplified e-commerce service (Figure 1)
where the client is required to login before it can issue a query and thus receive
a catalog. From this point on, the client can decide whether to purchase an item
from the catalog or to logout and leave. In case of purchase, the service may
either report that the purchase was successful, or that the item is out-of-stock,
or that the client’s payment was refused:

σ
def
= Login.(InvalidLogin.End⊕ ValidLogin.Query.Catalog.(

Logout.End + Purchase.(
Accepted.End⊕ InvalidPayment.End⊕ OutOfStock.End)))

Notice that unlabeled transitions in Figure 1 correspond to external choices
in σ, whereas labeled transitions correspond to internal choices. It is also inter-
esting to notice that wscl explicitly accounts for a termination message (called

10 S. Carpineti, G. Castagna, C. Laneve, and L. Padovani

“empty” in the wscl specification, the final interaction on the right end in Fig-
ure 1) that is used for modeling the end of a conversation. The presence of this
termination message finds a natural justification in our formal contract language,
as explained above.

Now assume that the service is extended with a booking capability, so that
after looking at the catalog the client may book an item to be bought at some
later time. The contract of the service would change to σ′ as follows:

σ′ def
= . . .Logout.End+ Book.End + Purchase.(. . .)

We notice that σ � σ′ and L(σ) ⊆ L(σ′), that is σ′ offers more capabilities
than σ.

4 Compliance

Compliance relates a client process with a service process. A client is compliant
with a service if the client terminates (i.e. it has no more interactions to perform)
for every possible interaction with the service. That is, compliance induces a
completion property for the client but not for the service. In order to formalize
compliance we define processes and their dynamics. Then we demonstrate that
it is possible to associate a contract to a process such that (process) compliance
follows by the compliance of the corresponding contracts.

In this contribution, processes are finite ccs terms. The extension to ccs
terms is not trivial and left for future work. For the sake of simplicity we do
not include choice and relabeling operators. The transition relation is standard;
therefore we omit comments.

Definition 5. Processes P are defined by the following grammar:

P ::= 0 | a.P | a.P | P \ a | P |P

Let µ range over N ∪ N ∪ {τ}. The transition relation of processes, noted
µ

−→, is the least relation satisfying the rules:

(in)

a.P
a

−→ P

(out)

a.P
a

−→ P

(res)

P
µ

−→ Q µ 6∈ {a, a}

P \ a
µ

−→ Q \ a

(par)

P
µ

−→ Q

P |R
µ

−→ Q |R

(com)

P
α

−→ P ′ Q
α

−→ Q′

P |Q
τ

−→ P ′ |Q′

The transitions of P |Q have mirror cases that have been omitted.

We write
τ

=⇒ for
τ

−→
∗

and
α

=⇒ for
τ

−→
∗ α
−→

τ
−→

∗
.

The compliance of a client process with a service is defined as follows.

A formal account of contracts for Web services 11

Definition 6 (Compliance). Let P ‖Q −→ P ′ ‖Q′ be the least relation such

that:

– if P
τ

−→ P ′ then P ‖Q −→ P ′ ‖Q;

– if Q
τ

−→ Q′ then P ‖Q −→ P ‖Q′;

– if P
α

−→ P ′ and Q
α

−→ Q′ then P ‖Q −→ P ′ ‖Q′.

Let P ≪ Q, read P complies with Q, if one of the following holds:

1. P X

α
−→, or

2. P ‖Q −→ P ′ ‖Q′ and P ′ ≪ Q′.

Process compliance has been noted in the same way as contract compliance
in Section 2. This abuse is justified because the two notions are strongly related,
as we will prove shortly.

Processes expose (principal) contracts. This is defined by an inference system
that uses two auxiliary operators over contracts:

1. σ \ a is defined by induction on the structure of σ:

0 \ a = 0

(α.σ) \ a =

{

0 if α ∈ {a, a}
α.(σ \ a) otherwise

(σ + σ′) \ a = σ \ a + σ′ \ a

(σ ⊕ σ′) \ a = σ \ a ⊕ σ′ \ a

2. The operator “ | ” is commutative with 0 as identity, such that σ | (σ′⊕σ′′) =
(σ |σ′)⊕ (σ |σ′′), and σ | (σ′ + (σ′′ ⊕ σ′′′)) = σ | ((σ′ + σ′′)⊕ (σ′ + σ′′′)). This
allows us to define σ |σ′ when σ and σ′ are external choices of prefixes. Our
definition corresponds to the expansion law in [15]. Let σ =

∑

i∈I αi.σi and
σ′ =

∑

j∈J α′
j .σ

′
j , then

σ |σ′ def
=

∑

i∈I αi.(σi |σ′) +
∑

j∈J α′
j .(σ |σ′

j)

if αi 6= α′
j for every i ∈ I, j ∈ J

(

∑

i∈I αi.(σi |σ
′) +

∑

j∈J α′
j .(σ |σ′

j) +
⊕

αi=α′

j

(σi |σ
′
j)

)

⊕
⊕

αi=α′

j

(σi |σ′
j) otherwise

Definition 7. Let P ⊢ σ be the least relation such that

0 ⊢ 0
P ⊢ σ

a.P ⊢ a.σ

P ⊢ σ

a.P ⊢ a.σ

P ⊢ σ

P \ a ⊢ σ \ a

P ⊢ σ Q ⊢ σ′

P |Q ⊢ σ |σ′

As anticipated, compliance of processes may be inferred from compliance of
the corresponding contracts. This property, formalized in Theorem 1, requires
few preliminary statements.

Lemma 3. Let P ⊢ σ, P
µ

−→ P ′, and P ′ ⊢ σ′

12 S. Carpineti, G. Castagna, C. Laneve, and L. Padovani

(a) if µ = τ then σ � σ′, σ′ � σ, and L(σ′) ⊆ L(σ);
(b) if µ = α then σ(α) � σ′, σ′ � σ(α), and L(σ′) ⊆ L(σ(α)).

Proof. (Sketch) We proceed by induction on the derivation of P
µ

−→ P ′.
The base case corresponds to the application of either (in) or (out). Since

P has the form α.P ′ we have σ(α) = σ′. Therefore we conclude σ(α) � σ′,
σ′ � σ(α), and L(σ′) = L(σ(α)).

In the inductive case there are several sub-cases corresponding to the last
rule that has been applied. We discuss (com) and (par).

– (com) implies P = Q |R with Q
α

−→ Q′ and R
α

−→ R′. Let Q ⊢ σ1, Q′ ⊢ σ′
1,

R ⊢ σ2, and R′ ⊢ σ′
2. By definition of “ | ”, we have σ1 |σ2 =

⊕

i∈I σ′′
i with

σ′′
j = σ′

1 |σ
′
2 for some j ∈ I. Hence σ1 |σ2 � σ′

1 |σ
′
2 follows by definition of

� and σ′
1 |σ

′
2 � σ1 |σ2 follows by Lemma 2. It remains to show L(σ′

1 |σ
′
2) ⊆

L(σ1 |σ2). This is a straightforward consequence of the definition of “ | ”
and L(·).

– (par) implies P = Q |R with Q
µ

−→ Q′ and Q ⊢ σ1, R ⊢ σ2, and Q′ ⊢ σ′
1.

• If µ = τ , by definition of “ | ”, we have σ1 =
⊕

i∈I σ′′
i with σ′′

j = σ′
1

for some j ∈ I. Then σ1 |σ2 = (
⊕

i∈I σ′′
i) |σ2 =

⊕

i∈I(σ
′′
i |σ2) and

σ1 |σ2 � σ′
1 |σ2 follows by definition of � while σ′

1 |σ2 � σ1 |σ2 follows
by Lemma 2. By definition of L(·) we also conclude that L(σ′

1 |σ2) ⊆
L(σ1 |σ2).

• If µ = α, by the inductive hypothesis we have σ1(α) � σ′
1 and σ′

1 � σ(α).

Since Q
α

−→ Q′, by definition of “ | ” we have that σ1 |σ2 has the shape
ρ1⊕(ρ2+α.(σ′

1 |σ2)+ρ3)⊕ρ4 where an arbitrary number of the ρi’s may
be missing. Hence (σ1 |σ2)(α) = · · ·⊕ (σ′

1 |σ2)⊕· · · . Then (σ1 |σ2)(α) �
σ′

1 |σ2 follows by definition of � and σ′
1 |σ2 � (σ1 |σ2)(α) by Lemma 2.

By definition of L(·) we also conclude that L(σ′
1 |σ2) ⊆ L((σ1 |σ2)(α)).

⊓⊔

Theorem 1. If P ⊢ σ, Q ⊢ σ′, and σ ≪ σ′ then P ≪ Q.

Proof. A maximal computation of the system P ‖Q is a sequence of systems
P1 ‖Q1, . . . , Pn ‖Qn such that P1 = P , Q1 = Q, for every i = {1, . . . , n − 1} we
have Pi ‖Qi −→ Pi+1 ‖Qi+1, and Pn ‖Qn X−→. The proof is by induction on n.

If n = 0, then P ‖Q X−→. We have two possibilities: if P X

α
−→ then by definition

P ≪ Q. So let us suppose, by contradiction, that whenever P
α

−→ we have Q X

α
−→.

Since P ⊢ σ and Q ⊢ σ′ this means that for any ready set r of σ there is no
ready set s of σ′ such that r ∩ s 6= ∅. From P

α
−→ and P ⊢ σ we know that

σ ⇓ r and α ∈ r for some ready set r. That is, σ has at least one nonempty
ready set. Thus, from the definition of σ, we know that every ready set of σ is
not empty. By definition of contract compliance we know that σ � σ′ and from
the definition of � we have that any ready set s of σ′ shares at least an action
with r for some ready set r of σ, which is absurd.

If n > 0, assume that the theorem is true for any computation of length n−1.
We have three cases:

A formal account of contracts for Web services 13

(P −→ P ′) Assume P ′ ⊢ σ′′, then from Lemma 3(a) we know that σ′′ � σ and
L(σ′′) ⊆ L(σ), hence by Proposition 1 we have σ′′ � σ′ that is σ′′ ≪ σ′. By
the induction hypothesis we conclude that P ′ ≪ Q hence P ≪ Q.

(Q −→ Q′) Assume Q′ ⊢ σ′′, then from Lemma 3(a) we know that σ′ � σ′′ and
L(σ′′) ⊆ L(σ′), hence by Proposition 1 we have σ � σ′′ that is σ ≪ σ′′. By
the induction hypothesis we conclude that P ≪ Q′ hence P ≪ Q.

(P
α

−→ P ′ and Q
α

−→ Q′) Assume that P ′ ⊢ σ′′ and Q′ ⊢ σ′′′. From Lemma 3(b)
know that σ′′ � σ(α) and L(σ′′) ⊆ L(σ(α)), and by definition of dual
contract we have σ(α) = σ(α). Again from Lemma 3(b) we know that
σ′(α) � σ′′′ and L(σ′′′) ⊆ L(σ′(α)). By Proposition 1 we have σ′′ � σ′′′

that is σ′′ ≪ σ′′′. The computation starting from P ′ ‖Q′ has length n − 1,
by the induction hypothesis we have P ′ ≪ Q′ so we conclude P ≪ Q. ⊓⊔

5 Conclusion and future work

In this paper we have started an investigation aimed at the definition of a for-
mal contract language suitable for describing interactions of clients with Web
services. We have defined a precise notion of compatibility between services,
called subcontract relation, so that equivalent services can be safely replaced
with each other. This notion of compatibility is immediately applicable in any
query-based system for service discovery, as well as for verifying that a service
implementation respects its interface. To the best of our knowledge, this rela-
tion is original and it does not coincide with either must, or may, or testing
preorders. Based on the subcontract relation, we have provided a formal notion
of compliance, such that clients that are verified to be compliant with a contract
are guaranteed to successfully complete the interaction with any service that
exports that contract.

We have based our investigation on a very simple model of concurrency, the
Calculus of Communicating Systems [13] without recursion, since this is but the
first step of our investigation. Starting from this basis, we plan to pursue several
lines of research. First and foremost we want to explore whether it is possible
to modify our subcontract relation so that it is transitive, while preserving its
main properties. The lack of transitivity has a non negligible impact on the use
our relation. For instance, while it is possible to replace a given service with a
new service whose subcontract is greater than the original service’s contract, it
is not possible to renew this operation without taking into account the original
contract. After that we plan to study the addition of some form of recursion
in order to model protocols whose length is not statically bound, as well as a
better support of optional contracts. While these last points should not pose
any particular problem, the passage from a ccs-like formalism to a π-calculus
one will be much a more challenging task. Nevertheless this passage to a higher
order formalism looks crucial for more than one reason. First it will allow us
to take into account and generalize the forthcoming versions of wsdl. Also, it
will more faithfully mimic wscl protocols which discriminate on the content
of messages. Besides, the type of these parameters could also be used to define

14 S. Carpineti, G. Castagna, C. Laneve, and L. Padovani

contract isomorphisms to improve service discovery. In particular we will study
provable isomorphisms, that is, isomorphisms for which it is possible to exhibit
a process that “converts” the two contracts: for instance, imagine that we search
for a service that implements the contract In(Int).In(Int), that is, a service
that sequentially waits twice for an integer on the port In; the query may return
a reference to a service with a contract isomorphic to it, say, In(Int×Int)

together with a process that “proves” that these two contracts are isomorphic,
that is, in the specific case, a process that buffers the two inputs and sends the
pair of them on In: by composing this process with the original client (written
for the first contract) one obtains a client complying with the discovered service.

On the linguistic side we would like to explore new process constructions
that could take into account information available with contracts. For instance
imagine a client that wants to use a service exporting the contract (a + b) ⊕ a;
in the simple language of Section 2 the client cannot specify that it wants to
connect with b if available, and on a otherwise. We want also to devise query
languages for service discovery, in particular we aim to devise a simple set-
theoretic interpretation of contracts as sets of processes, use it to add union,
intersection, and negation operators for contracts, and subsequently use these
as query primitives.

A final issue brought by higher-order and whose exploration looks promising
is that higher-order channels will allow us to use a continuation passing style
(CPS) of programming. It is well-known that CPS can be used for stateless
implementation of interactive web-sessions [17], thus we plan to transpose such
a technique to contracts and resort to CPS to describe stateful interactions of
services.

Acknowledgments. This work was partially funded by the ACI project “Trans-
formation Languages for XML: Logics and Applications” (TraLaLA).

References

1. A. Banerji, C. Bartolini, D. Beringer, V. Chopella, et al. Web Services
Conversation Language (wscl) 1.0, Mar. 2002. http://www.w3.org/TR/2002/

NOTE-wscl10-20020314.

2. D. Beringer, H. Kuno, and M. Lemon. Using wscl in a uddi Registry 1.0, 2001.
UDDI Working Draft Best Practices Document, http://xml.coverpages.org/

HP-UDDI-wscl-5-16-01.pdf.

3. D. Booth and C. K. Liu. Web Services Description Language (wsdl)
Version 2.0 Part 0: Primer, Mar. 2006. http://www.w3.org/TR/2006/

CR-wsdl20-primer-20060327.
4. R. Chinnici, H. Haas, A. A. Lewis, J.-J. Moreau, et al. Web Services Description

Language (wsdl) Version 2.0 Part 2: Adjuncts, Mar. 2006. http://www.w3.org/

TR/2006/CR-wsdl20-adjuncts-20060327.

5. R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana. Web Services De-
scription Language (wsdl) Version 2.0 Part 1: Core Language, Mar. 2006. http:

//www.w3.org/TR/2006/CR-wsdl20-20060327.

A formal account of contracts for Web services 15

6. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Ser-
vices Description Language (wsdl) 1.1, 2001. http://www.w3.org/TR/2001/

NOTE-wsdl-20010315.
7. J. Colgrave and K. Januszewski. Using wsdl in a uddi registry, version 2.0.2. Tech-

nical note, OASIS, 2004. http://www.oasis-open.org/committees/uddi-spec/

doc/tn/uddi-spec-tc-tn-wsdl-v2.htm.
8. R. D. Cosmo. Isomorphisms of Types: from Lambda Calculus to Information Re-

trieval and Language Desig. Birkhauser, 1995. ISBN-0-8176-3763-X.
9. D. C. Fallside and P. Walmsley. XML Schema Part 0: Primer Second Edition, Oct.

2004. http://www.w3.org/TR/xmlschema-0/.
10. C. Fournet, C. A. R. Hoare, S. K. Rajamani, and J. Rehof. Stuck-free conformance.

Technical Report MSR-TR-2004-69, Microsoft Research, July 2004.
11. M. Hennessy. Acceptance trees. JACM: Journal of the ACM, 32(4):896–928, 1985.
12. M. C. B. Hennessy. Algebraic Theory of Processes. Foundation of Computing.

MIT Press, 1988.
13. R. Milner. A Calculus of Communicating Systems. Springer-Verlag New York,

Inc., Secaucus, NJ, USA, 1982.
14. R. D. Nicola and M. Hennessy. Testing equivalences for processes. Theor. Comput.

Sci, 34:83–133, 1984.
15. R. D. Nicola and M. Hennessy. CCS without tau’s. In TAPSOFT ’87/CAAP

’87: Proceedings of the International Joint Conference on Theory and Practice of
Software Development, Volume 1: Advanced Seminar on Foundations of Innovative
Software Development I and Colloquium on Trees in Algebra and Programming,
pages 138–152, London, UK, 1987. Springer-Verlag.

16. I. Phillips. Refusal testing. Theor. Comput. Sci., 50(3):241–284, 1987.
17. C. Queinnec. Inverting back the inversion of control or, continuations versus page-

centric programming. SIGPLAN Not., 38(2):57–64, 2003.
18. M. Rittri. Retrieving library functions by unifying types modulo linear isomor-

phism. RAIRO Theoretical Informatics and Applications, 27(6):523–540, 1993.
19. Savas Parastatidis and Jim Webber. MEP SSDL Protocol Framework, Apr. 2005.

http://ssdl.org.

