
Language-IntegratedQueries: a BOLDR Approach
Véronique Benzaken

Université Paris-Sud, France

Giuseppe Castagna

CNRS, Univ Paris Diderot, France

Laurent Daynes

Oracle France, France

Julien Lopez

Université Paris-Sud, France

Kim Nguy
˜
ên

Université Paris-Sud, France

Romain Vernoux

ENS Paris-Saclay, France

ABSTRACT
We present BOLDR, a modular framework that enables the evalu-

ation in databases of queries containing application logic and, in

particular, user-defined functions. BOLDR also allows the nesting

of queries for different databases of possibly different data models.

The framework detects the boundaries of queries present in an

application, translates them into an intermediate representation

together with the relevant language environment, rewrites them in

order to avoid query avalanches and to make the most out of data-

base optimizations, and converts the results back to the application.

Our experiments show that the techniques we implemented are ap-

plicable to real-world database applications, successfully handling

a variety of language-integrated queries with good performances.

KEYWORDS
Language-integrated queries, databases, data-centric languages, R

ACM Reference Format:
Véronique Benzaken, Giuseppe Castagna, Laurent Daynes, Julien Lopez, Kim

Nguy
˜
ên, and Romain Vernoux. 2018. Language-Integrated Queries: a BOLDR

Approach. In Proceedings of TheWeb Conference 2018 (WWW’18 Companion).
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3184558.3185973

1 INTRODUCTION
The increasing need for sophisticated data analysis encourages the

use of programming languages that either better fit a specific task

(e.g., R or Python for statistical analysis and data mining) or manip-

ulate specific data formats (e.g., JavaScript for JSON). Support for

data analysis in data processing platforms cannot follow the pace of

innovation sustained by these languages. Therefore, databases are

working on supporting these languages: Oracle R Enterprise [18],

and PL/R for R; PL/Python [19], Amazon Redshift [2], Hive [3], and

SPARK [4] for Python; or MongoDB [14] and Cassandra’s CQL [5]

for JavaScript. APIs for these embedded languages are low-level,

and data is accessed by custom operations, yielding non-portable

code. In opposite to this ad hoc approach, language-integrated

querying, popularized with Microsoft’s LINQ framework [13], pro-

poses to extend programming languages with a querying syntax

and to represent external data in the model of the language, thus

shielding programmers from having to learn the syntax or data

model of databases. To that end, LINQ exposes the language to a

set of standard query operators that external data providers must

This paper is published under the Creative Commons Attribution 4.0 International

(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution.

WWW’18 Companion, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC BY 4.0 License.

ACM ISBN 978-1-4503-5640-4/18/04.

https://doi.org/10.1145/3184558.3185973

implement. However, LINQ suffers from a key limitation: queries

can only execute if they can be translated into this set of operators.

For instance, the LINQ query

db.Employee.Where(x => x.sal >= 2000 * getRate("USD", x.cur))

which is intended to return the set of all employees which salary

converted in USD is greater than 2000, will throw an error at run-

time since LINQ fails to translate the function getRate to an equiv-

alent database expression. One solution is to define getRate in the

database, but this hinders portability and may not be possible at all

if the function references runtime values of the language. A more

common workaround is to rewrite the code as follows:

db.Employee.AsEnumerable()

.Where(x => x.sal >= 2000 * getRate("USD", x.cur))

But this hides huge performance issues: all the data is imported in

the runtime of the language, potentially causing important network

delays and out-of-memory errors, and the filter is evaluated in main

memory thus neglecting all possible database optimizations.

In this work, we introduce BOLDR (Breaking boundaries Of
Language and Data Representations), a language-integrated query

framework that allows arbitrary expressions from the host language
(language from which the query comes from) to occur in queries

and be evaluated in a database, thus lifting a key limitation of

the existing solutions. Additionally, BOLDR is tied neither to a

particular combination of database and programming language,

nor to querying only one database at a time: for instance, BOLDR

allows a NoSQL query targeting a HBase server to be nested in a

SQL query targeting a relational database. BOLDR first translates

queries into aQuery IntermediateRepresentation (or QIR for short),

an untyped λ-calculus with data-manipulation builtin operators,

then applies a normalization process that may perform a partial

evaluation of the QIR expression. This partial evaluation composes

distinct queries that may occur separated in the code of the host

language into larger queries, thus reducing the communication

overhead between the client runtime and the database and allowing

databases to perform whole query optimizations. Finally, BOLDR

translates and sends the queries to the targeted databases.

Consider again our LINQ query containing the call to getRate.

In BOLDR, its translation produces a QIR expression according to

three different scenarios: (i) if getRate can be translated into the

query language of the targeted database, then the whole expression

is translated into a single query expressed in the query language of

the targeted database; (ii) if getRate cannot be entirely translated but
contains one or several queries that can be translated, then BOLDR

produces the corresponding translated subqueries and sends them

to their respective databases, and combines the results at QIR level;

(iii) if getRate cannot be translated at all, then BOLDR creates a

query containing the serialized host language abstract syntax tree

of getRate to be potentially executed on the database side.

https://doi.org/10.1145/3184558.3185973
https://doi.org/10.1145/3184558.3185973

Figure 1: Evaluation of a BOLDR host language program

Our implementation of BOLDR uses Truffle [23], a framework

developed by Oracle Labs to implement programming languages.

Several features make Truffle appealing to BOLDR: first, Truffle im-

plementations of languages must compile to an executable abstract

syntax tree that BOLDR can directly manipulate; second, languages

implemented with Truffle can be executed on any JVM, making

their addition as an external language effortless in databases writ-

ten in Java (e.g., Cassandra, HBase, . . .), and relatively simple in

others such as PostgreSQL. Third, work on one Truffle language

can easily be transposed to other Truffle languages.

Our implementation currently supports the PostgreSQL, HBase
and Hive databases, as well as FastR [17] (Truffle implementation of

the R language) and Oracle’s SimpleLanguage (a dynamic language

with syntax and features inspired by JavaScript). The following R

program illustrates the key aspects of BOLDR:

1 # Exchange rate between rfrom and rto

2 getRate = function(rfrom, rto) {

3 # table change has three columns: cfrom, cto, rate

4 t = tableRef("change", "PostgreSQL")

5 if (rfrom == rto) 1

6 else subset(t, cfrom == rfrom && cto == rto, c(rate))
7 }

8 # Employees earning at least minSalary in the cur currency

9 atLeast = function(minSalary, cur) {

10 # table employee has two columns: name, sal

11 t = tableRef("employee", "PostgreSQL")

12 subset(t, sal >= minSalary * getRate("USD", cur), c(name))
13 }

14 richUSPeople = atLeast(2000, "USD")

15 richEURPeople = atLeast(2000, "EUR")

16 print(executeQuery(richUSPeople))
17 print(executeQuery(richEURPeople))

This example is a standard R program with two exceptions: the

function tableRef (Line 4 and 11) referencing an external source in

lieu of creating a data frame (R implementation of tables) from a text

file; and the function executeQuery (Line 16 and 17) that evaluates a

query. We recall that in R, the c function creates a vector, the subset

function filters a table using a predicate, and optionally keeps only

the specified columns. The first function getRate takes the code of

two currencies and queries a table using subset to get their exchange

rate. The second function atLeast takes a minimum salary and a

currency code and retrieves the names of the employees earning at

least the minimal salary. Since the salary is stored in dollars in the

database, the getRate function is used to perform the conversion.

In BOLDR, subset is overloaded to build an intermediate query

representation if applied on an external source reference. The first

call to atLeast(2000, "USD") builds a query and captures the variables

in the local scope. When executeQuery is called, then (i) the interme-

diate query is normalized, inlining all bound variables with their

values; (ii) the normalized query is translated into the target data-

base language (here SQL); and (iii) the resulting query is evaluated

in the database and the results are sent back. After normalization

and translation, the query generated for the first call on Line 14 is:

SELECT name FROM employee WHERE sal >= 2000 * 1

which is optimal, in the sense that a single SQL query is generated.

The code generated for the second call is also optimal thanks to the

interplay between lazy building of the query and normalization:

SELECT name FROM employee WHERE sal >= 2000 *

(SELECT rate FROM change WHERE rfrom = "USD" AND rto = "EUR")

Therefore, BOLDR not only supports user-defined functions (UDFs)

in queries, it also merges subqueries together to create fewer and

larger queries, thus benefiting from database optimizations and

avoiding the “query avalanche” phenomenon [12].

While similar approaches exist (see Section 8 on related work),

BOLDR outperforms them on UDFs that cannot be completely

translated. For instance, consider:

1 getRate = function(rfrom, rto) {

2 cfrom = c("EUR", "EUR", "USD", "USD", "JPY", "JPY")

3 cto = c("USD", "JPY", "EUR", "JPY", "EUR", "USD")

4 rate = c(1.44, 129, 0.88, 114, 0.0077, 0.0088)

5 t = data.frame(cfrom, cto, rate)

6 if (rfrom == rto) 1

7 else subset(t, cfrom == rfrom && cto == rto, c(rate))
8 }

This function builds an in-memory data frame using the builtin

function data.frame. BOLDR cannot translate it to QIR since it calls

the underlying runtime, so instead it generates the following query:

SELECT name FROM employee

WHERE sal >= 2000 * R.eval("@...", array("USD", "EUR"))

where the string "@..." is a reference to a closure for getRate.

Mixing different data sources is supported, although less effi-

ciently. For instance, we could refer to anHBase table in the function

getRate. BOLDR would still be able to evaluate the query by sending

a subquery to both the HBase and PostgreSQL databases, and by

executing in main memory what could not be translated.

The general flow of query evaluation in BOLDR is described in

Figure 1. During the evaluation 1 of a host program, QIR terms

are lazily accumulated. Their evaluation, when triggered, is dele-

gated to the QIR runtime 2 that normalizes 3 the QIR terms to

defragment them, then translates 4 them to new QIR terms that

contain database language queries (e.g., in SQL). Next, the pieces

of these terms are evaluated where they belong, either in main-

memory 5 or in a database 7 . “Frozen” host language expressions

occurring in these terms are evaluated either by the runtime of the

host language that called the QIR evaluation 6 , or in the runtime

embedded in a target database 8 . Results are then translated from

the database to QIR 9 , then from QIR to the host language 10 .

Overview andContributions. In this work, we introduce BOLDR,
a multi-language framework for integrated queries with a unique

combination of features such as the possibility of executing user-

defined functions in databases, of partially evaluating and merging

distinct query fragments, and of defining single queries that operate

on data from different data sources. Our technical developments

are organized as follows. We first give a formal definition of QIR

(Section 3). We then present the translation from QIR to query lan-

guages and focus on a translation from QIR to SQL, as well as a

type system ensuring that well-typed queries translate into SQL

and are avalanche-free (Section 4). We continue by presenting a

normalization procedure on the QIR to optimize the translation of

a query (Section 5). We next describe the translation from the host

language R to QIR (Section 6). Finally, we discuss experimental re-

sults (Section 7) of our implementation that supports the languages

R and SimpleLanguage and the databases PostgreSQL, HBase and

Hive. We show that queries generated by BOLDR perform on a par

with hand-written ones, and that UDFs can be efficiently executed

in a corresponding runtime embedded in a target database.

2 DEFINITIONS
We give some basic definitions used throughout the presentation.

Definition 2.1 (Host language). A host language H is a 4-tuple

(EH , IH ,VH ,
H
→) where:

• EH is a set of syntactic expressions
• IH is a set of variables, IH ⊂ EH
• VH is a set of values
•

H
→ : 2

IH×VH × EH → 2
IH×VH × VH , is the evaluation function

We abstract a host language H by reducing it to its bare compo-

nents: a syntax given by a set of expressions EH , a set of variables

IH , and a set of values VH . Lastly we assume that the semantics

of H is given by a partial evaluation function
H
→. This function

takes an evaluation environment (a set of pairs of variables and

values, ranged over by σ) and an expression and returns a new

environment and a value resulting from the evaluation of the input

expression. To integrate a host language we need to be able to

manipulate syntactic expressions of the language, inspect and build

environments, and have access to an interpreter for the language.

Definition 2.2 (Database language). A database language D with

support for a host languageH is a 4-tuple (ED ,VD ,OD ,
D
→)where:

• ED is a set of syntactic expressions
• VD is a set of values
• OD is a set of supported data operators
•

D
→ : 2

IH×VH × ED → 2
IH×VH × VD is the evaluation function

Similarly to host languages, we abstract a database language

D as a syntax ED , a set of values VD , and an evaluation func-

tion
D
→ which takes anH environment and a database expression

and returns a newH environment and a database value. Such an

evaluation function allows us to abstract the behavior of modern

databases that support queries containing foreign function calls.

Last, but not least, a database language exposes the set OD of data

operators it supports, which will play a crucial role in building

queries that can be efficiently executed by a database back-end.

3 QUERY INTERMEDIATE REPRESENTATION
3.1 Core calculus
In this section, we define our Query Intermediate Representation,

a λ-calculus with recursive functions, constants, basic operations,

data structures, data operators, and foreign language expressions.

Definition 3.1. Given a countable set of variables IQIR, we define
the set of QIR expressions, denoted by EQIR and ranged over by q,
as the set of finite productions of the following grammar:

q ::=x | funx (x)→q | q q | c | op (q, . . . ,q) | ifq thenq elseq
| { l :q, . . . , l :q } | [] | q ::q | q@@@q
| q · l | q as x ::x ? q : q | o⟨q, . . . ,q | q, . . . ,q⟩ | ■H(σ , e)

whereH is a host language.

Besides lambda-terms, QIR expressions include constants (integers,

strings, . . .), and some builtin operations (arithmetic operations,

. . .). The data model consists of records and sequences. Records

are deconstructed through field projections. Sequences are decon-

structed by the list matching destructor whose four arguments are:

the list to destruct, a pattern that binds the head and the tail of the

list to variables, the term to evaluate (with the bound variables in

scope) when the list is not empty, and the term to return when the

list is empty. The new additions to these mundane constructs are

database operators and host language expressions. A database opera-

tor o⟨q1 . . . ,qn | q′
1
, . . . ,q′m⟩ is similar to the notion of operator in

the relational algebra. Its arguments are divided in two groups: the

qi expressions are called configurations and influence the behavior

of the operator; the q′i expressions are the sub-collections that are
operated on. Finally, a host expression ■H(σ , e) is an opaque con-

struct that contains an evaluation environment σ and an expression

e of the host languageH . We use the following syntactic shortcuts:

• [q1, . . . ,qn] stands for q1 :: . . . ::qn :: []
• funf (x1, . . . ,xn)→q stands for funf (x1)→(. . . (funf (xn)→q))
• q (q1, . . . ,qn) stands for (. . . (q q1) . . .) qn

Functions can be defined recursively by using the recursion variable

that indexes the fun keyword, that we omit when useless.

Definition 3.2 (Reduction rules). Let →δ ⊂ EQIR × EQIR be a re-

duction relation for basic operators and →⊂ EQIR × EQIR be the

reduction relation defined by:

(funf (x)→q1) q2 → q1 {f /funf (x)→q1, x/q2 }
if true thenq1 elseq2 → q1
if false thenq1 elseq2 → q2

{ . . . , l : q, . . . } · l → q
[] as x ::y ? qlist : qempty → qempty

qhead ::qtail as x ::y ? qlist : qempty → qlist {x/qhead, y/qtail }
[]@@@q → q
q@@@ [] → q

(q1 ::q2)@@@q3 → q1 :: (q2@@@q3)
(q1 ::q2)@@@q3 → q1 :: (q2@@@q3)

where q{x1/q1, . . . ,xn/qn } denotes the standard capture avoiding

substitution. We define the reduction relation of QIR expressions

as the context closure of the relation→δ ∪ →.

Crucially, embedded host expressions as well as database opera-

tor applications whose arguments are all reduced are irreducible.

3.2 Extended semantics
We next define how to interface host languages and databases

with QIR. We introduce the notion of driver, a set of functions that
translate values from one world to another.

Definition 3.3 (Language driver). Let H be a host language. A

language driver for H is a 3-tuple (H
−−→
EXP,

−−→
VALH ,H

−−→
VAL) of total

functions such that:

• H−−→
EXP : 2

IH×VH × EH → EQIR ∪ {Ω} takes an H environment

and anH expression and translates the expression into QIR

•
−−→
VALH : VQIR → VH ∪ {Ω} translates QIR values toH values

• H−−→
VAL : VH → VQIR ∪ {Ω} translates H values to QIR values

where the special value Ω denotes a failure to translate.

Definition 3.4. (Database driver) Let D be a database language.

A database driver for D is a 3-tuple (
−−→
EXPD ,

−−→
VALD ,D

−−→
VAL) of total

functions such that:

•
−−→
EXPD : EQIR → ED ∪ {Ω} translates a QIR expression into D

•
−−→
VALD : VQIR → VD ∪ {Ω} translates QIR values to D values

• D−−→
VAL : VD → VQIR ∪ {Ω} translates D values to QIR values

where the special value Ω denotes a failure to translate.

We are now equipped to define the semantics of QIR terms,

extended to host expressions and database operators.

Definition 3.5 (Extended QIR semantics). Let H be a host lan-

guage, (H
−−→
EXP,

−−→
VALH ,H

−−→
VAL) a driver forH ,D a database language,

and (
−−→
EXPD ,

−−→
VALD ,D

−−→
VAL) a driver for D. We define the extended

semantics σ ,q ↠ σ ′,q′ of QIR by the following set of rules:

q → q′

σ , q ↠ σ , q′
σ ∪ σ ′, e H

→σ ′′, w

σ , ■H (σ ′, e)↠ σ ′′,H
−−→
VAL(w)

−−→
EXPD (o ⟨q1, . . . , qn | q′

1
, . . . , q′m ⟩) = e

σ , e D
→σ ′, w

o ∈ OD

e , Ω
D−−→
VAL(w) , Ω

σ , o ⟨q1, . . . , qn | q′
1
, . . . , q′m ⟩ ↠ σ ′,D

−−→
VAL(w)

Since QIR is an intermediate language from a host language to

a database language, the evaluation of QIR terms will always be

initiated from the host language runtime. It is therefore natural

for the extended semantics to evaluate a QIR term in a given host

language environment. If this QIR term is neither a database op-

erator nor a host language expression, then the simple semantics

of Definition 3.2 is used to evaluate the term, otherwise the ex-

tended semantics of Definition 3.5 is used. Host expressions are

evaluated using the evaluation relation of the host language in the

environment formed by the union of the current running environ-

ment and the captured environment. This allows us to simulate the

behavior of most dynamic languages (in particular R, Python, and

JavaScript) that allow a function to reference an undefined global

variable as long as it is defined when the function is called. Last,

but not least, the evaluation of a database operator consists in (i)
finding a database language that supports this operator, (ii) use the
database driver for that language to translate the QIR term into a

native query, (iii) use the evaluation function of the database to

evaluate the query, and (iv) translate the results back into QIR.

At this stage, we have defined a perfectly viable Query Interme-

diate Representation in the form of a λ-calculus extended with data

operators. We next address the two following problems:

(1) How to create database drivers in practice?

(2) How to avoid query avalanches as much as possible?

4 DATABASE TRANSLATION
In this section, we describe how a database driver can define a

translation from QIR to a database language. This translation must

be able to translate QIR expressions into equivalent efficient queries

of a database language, and handle QIR expressions in which sub-

terms target different databases. Additionally, it must be seamlessly

extendable with new database drivers. To that end, we separate this

translation in two phases: a generic translation that determines the

targeted query language for all subterms of a QIR expression, and

a specific translation that makes use of database drivers.

4.1 Generic translation
The goal of the generic translation is to produce a QIR expression

where as many subterms as possible have been translated into na-

tive database queries. Ideally, we want the whole QIR expression

to be translated into a single database query, but this is not al-

ways possible and, in that case, parts of the expression have to be

evaluated in the client side (where the QIR runtime resides). The

QIR evaluator therefore relies on two components. First, a “fall-

back” implementation of QIR operators using the QIR itself, that

we dub MEM for in-memory evaluation. MEM is a trivial database

language for which the translations to and from the QIR are the

identity function, and that supports the operators Filter, Project,
and Join defined as plain QIR recursive functions. The full defi-

nition of MEM is straightforward and given in Section A of our

appendix [6]. Second, to allow the QIR evaluator to send queries

to a database and translate the results back into QIR values, we

assume that for each supported database language D ∈ D, we have

a basic QIR operator, evalD defined as:

σ , e D
→σ ′,v

σ , evalD (e)↠ σ ′,D
−−→
VAL(v)

Notice that in the case of theMEM language, the operator evalMEM

is simply the reduction of a QIR term.

The generic translation is given by the judgment q { e,D
where q ∈ EQIR and e ∈ ED ∪ {Ω}, which means a QIR expression

q can either be rewritten into an expression e of the language ED
of the database D, or fail when e = Ω. An excerpt of the set of

inference rules used to derive this judgment is given in Figure 2.

Rule (db-op) states that given a database operator, if there exists a

database D distinct fromMEM such that all data arguments can be

translated into expressions of ED , then if the specific translation

−−→
EXPD called on the operator yields a fully translated ED expression

e , then e is returned as a translation in ED . This rule may fail in

two cases: the data arguments of the operator could be translated

to more than one database language; or the specific translation

for ED could yield an error Ω even if all data arguments of the

operator have been successfully translated into expressions of the

same language ED , for instance, when the operator is not supported

by D, or when the specific translation of a configuration qi fails. If
the operator o at issue is one of the supported operators of MEM,

then both cases are handled by the rule (mem-op): each translated

subexpression ei is wrapped in a call to the evalDi
operator and

o is evaluated with its MEM semantics. All the other rules are

bureaucratic and propagate the translation recursively to subterms.

(db-op)

q′i { ei , D, i ∈ 1..m
−−→
EXPD (o ⟨q1, . . . , qn | q′

1
, . . . , q′m ⟩) = e D ∈ D \MEM e , Ω

o ⟨q1, . . . , qn | q′
1
, . . . , q′m ⟩ { e, D

(fun)

q { e, D

funf (x)→q { funf (x)→evalD (e), MEM
(mem-op)

q′i { ei , Di , ∈ 1..m
o ∈ OMEM
ei , Ω

o ⟨q1, . . . , qn | q′
1
, . . . , q′m ⟩ { −−→

EXPMEM(o ⟨q1, . . . , qn | evalD1

(e1), . . . , evalD
m
(em)⟩), MEM

(app)

q1 { e1, D1 q2 { e2, D2

q1 q2 { (evalD
1

(e1)) (evalD
2

(e2)), MEM

Figure 2: Some rules of the generic translation

4.2 Specific translation: SQL
We document how to define specific translations using SQL as

an example of a database language. QIR to SQL is an important

translation as it allows BOLDR to target most relational databases

and some distributed databases such as Hive or Cassandra. We

assume that the set of values for SQL only contains basic constants

(strings, numbers, Booleans, . . .) and tables. The set of expressions

ESQL is the set of syntactically valid SQL queries [1]. The set of

supported operators OSQL we consider is { Filter, Project, Join,
From, GroupBy, Sort }. Due to space constraints, we describe these

operators and the full translation from QIR to SQL in Section A

and B of our appendix [6]. The translation from QIR to SQL is

mostly straightforward. However, ensuring that it does not fail is

challenging. Indeed, SQL is not Turing complete and relies on a

flat data model: a SQL query should only deal with sequences of

records whose fields have basic types. Another important aspect of

this translation is to avoid query avalanche by translating as many

QIR expressions as possible.

We obtain these strong guarantees using an ad hoc SQL type

system for QIR terms described in Figure 3. This type system is

straightforward, but in accordance with the semantics of SQL we

require applications of basic operators and conditional expressions

to take as arguments and return expressions that have basic types B,
and data operators to take as sources flat record lists. We also use a

rule to type a flat record list as a base type since SQL automatically

extracts the contents of a table containing only one value (one line

of one column). For instance, (SELECT 1)+ 1 is allowed and returns 2.

Note that we do not require the host language to be statically

typed. Given a QIR term q of type T in the SQL type system, we

ensure that the reduction relation of Definition 3.2 terminates on q
and yields a term q′ that has typeT , and that if q is in normal form,

then the generic translation of Figure 2 yields a single, syntactically

correct SQL expression (using the translation of Section B of our

appendix [6]).

We restrict EQIR to non-recursive functions and by removing

untranslatable terms (such as list destructors) as well as host expres-

sions since we limit ourselves to pure queries, and by restricting

data operators to Project, From, Filter, Join, GroupBy, and Sort.
What we obtain is a simply typed λ-calculus extended with records

and sequences without recursive functions, which entails strong

normalization. We also state an expected subject reduction theorem

Theorem 4.1 (Subject reduction). Let q ∈ EQIR and Γ an envi-
ronment from QIR variables to QIR types. If Γ ⊢ q : T , and q → q′,
then Γ ⊢ q′ : T .

and are now equipped to state our soundness of translation theorem

Theorem 4.2 (Soundness of translation). Let q ∈ EQIR such
that ∅ ⊢ q : T , q →∗ v , and v is in normal form. IfT ≡ B orT ≡ R or
T ≡ R list then v { s, SQL.

Proofs of these theorems are detailed in Section B of our appen-

dix [6] in which we show that typable QIR terms have particular

normal forms imposed by their type that can be translated into SQL

expressions.

5 QIR HEURISTIC NORMALIZATION
Our guarantees only hold for a QIR query targeting one database

supporting SQL. However, a QIR term may mix several databases or

use features that escape the hypotheses of Theorem 4.2. In particu-

lar, outside these hypotheses, we cannot guarantee the termination

of the normalization. We are therefore stuck between two unsat-

isfactory options: either (i) trying to normalize the term (to fully

reduce all applications) and yield the best possible term w.r.t. query

translation but risk diverging, or (ii) translate the term as-is at the

risk of introducing query avalanches. We tackle this problem with

a heuristic normalization procedure that tries to reduce QIR terms

enough to produce a good translation by combining subqueries.

To that end, we define a measure of “good” QIR terms, and ask

that each reduction step taken yields a term with a smaller measure.

To formally define this measure, we first introduce a few concepts.

Definition 5.1 (Compatible data operator application). Let D be

the set of database languages. A QIR data operator o⟨q1, . . . ,qn |
q′
1
, . . . ,q′m⟩ is a compatible operator application if and only if:

∃D ∈ D, e1, . . . , em ∈ ED s.t.

−−→
EXPD (o,q1, . . . ,qn , e1, . . . , em) , Ω

Intuitively, a compatible data operator application is one where

the configuration arguments are in a form that is accepted by the

specific translation of the database language D. We now define the

related notion of fragment.

Definition 5.2 (Fragment). A fragment F is a subterm of a QIR

term q such that q = C[T (q1, . . . ,qi−1, F [e1, . . . , en],qi+1, . . . ,qj)]
where C is a one-hole context made of arbitrary expressions; T is

a non-compatible j-ary expression; q1, . . . ,qi−1,qi+1, . . . ,qj and F
are the children ofT ; F is ann-hole context made only of compatible

operators applications of the same database language D; and all

e1, . . . , en have head expressions that are not compatible.

Figure 4 gives a graphical representation of a fragment. We can

now define a measure of “good” QIR terms.

B ::= string | int | bool | . . .

T ::= B | T → T | T list | {l : T , . . . , l : T }

R ::= {l : B, . . . , l : B }

Γ ⊢ x : Γ(x)
Γ, x : T1 ⊢ q : T2

Γ ⊢ fun(x)→q : T1 → T2

Γ ⊢ q1 : T1 → T2 Γ ⊢ q2 : T1
Γ ⊢ q1 q2 : T2 Γ ⊢ c : typeof(c)

Γ ⊢ q : T
Γ ⊢ q :: [] : T list

Γ ⊢ q1 : T Γ ⊢ q2 : T list
Γ ⊢ q1 ::q2 : T list

(q2.[])
Γ ⊢ q1 : T list Γ ⊢ q2 : T list

Γ ⊢ q1@@@q2 : T list

Γ ⊢ op : B1 → . . . → Bn → B Γ ⊢ bi : Bi i ∈ 1..n
Γ ⊢ op (b1, . . . , bn) : B

Γ ⊢ b1 : bool Γ ⊢ b2 : B Γ ⊢ b3 : B
Γ ⊢ ifb1 thenb2 elseb3 : B

Γ ⊢ qi : Ti i ∈ 1..n
Γ ⊢ { l1 :q1, . . . , ln :qn } : {l1 : T1, . . . , ln : Tn }

Γ ⊢ q1 : R2 → R1 Γ ⊢ q2 : R2 list
Γ ⊢ Project⟨q1 | q2 ⟩ : R1 list

Γ ⊢ n : string

Γ ⊢ From⟨n⟩ : R list
Γ ⊢ q1 : R → bool Γ ⊢ q2 : R list

Γ ⊢ Filter⟨q1 | q2 ⟩ : R list

Γ ⊢ q1 : R3 → R4 → R1

Γ ⊢ q2 : R3 → R4 → bool
Γ ⊢ q3 : R3 list
Γ ⊢ q4 : R4 list

Γ ⊢ Join⟨q1, q2 | q3, q4 ⟩ : R1 list

Γ ⊢ q1 : R3 → R1 list Γ ⊢ q2 : R1 list → R2 Γ ⊢ q3 : R3 list
Γ ⊢ GroupBy⟨q1, q2 | q3 ⟩ : R2 list

Γ ⊢ q1 : R2 → R1 Γ ⊢ q2 : R2 list
Γ ⊢ Sort⟨q1 | q2 ⟩ : R2 list

Γ ⊢ q : {l : B, . . . } list
Γ ⊢ q : B

Γ ⊢ q : {l : T , . . . }
Γ ⊢ q · l : T

Figure 3: QIR type system for SQL

C
T

F

e1 en… …

C: surrounding context

F : fragment

T : non-compatible expression

e1, . . . , en : non-compatible ex-

pressions

Figure 4: A fragment within a larger QIR term

Definition 5.3 (measure). Let q ∈ EQIR be a QIR expression, we

define the measure of q as the pair

M(q) = (Op(q) − Comp(q), Frag(q))
where Op(q) is the number of occurrences of data operators in q,
Comp(q) is the number of occurrences of compatible data operator
applications in q and Frag(q) is the number of fragments in q. The
order associated withM is the lexicographic order on pairs.

This measure works as follows. During a step of reduction of a

term q into a term q′, q′ is considered a better term either if the

number of operators decreases, or if q′ possesses more occurrences

of compatible operator applications, meaning less cycles between

QIR and the databases, or lastly, if the number of data operators

does not change but the number of fragments decreases, meaning

that some data operators were combined into a larger fragment.

Our heuristic-based normalization procedure uses this measure

as a guide through the reduction of a QIR term: it applies all possible

combinations of reduction steps to the term as long as its measure

decreases after a number of steps fixed by heuristic. This allows us

to generate a more efficient translation while ensuring termination.

Some practical choices impact the effectiveness of the QIR nor-

malization such as choosing which reduction rule to apply at each

step (e.g., choosing those with more arguments), or which maxi-

mum number of steps to use. Extensive experiments for both points

are detailed in a technical report[22]. In particular, we measure that

the normalization represents a negligible fraction of the execution

time of the whole process compared to tasks such as parsing, or

exchanges on the network with databases.

6 FROM A HOST LANGUAGE TO QIR
In this section, we outline how to interface a general-purpose pro-

gramming languagewith BOLDR. As explained in Section 1, our aim

is to allow programmers to write queries using the constructs of the

language they already master. Therefore, instead of extending the

syntax of the language, we extend its runtime by reusing existing

functionalities, in particular by overloading existing functions.

We use the programming language R as example of a host lan-

guage to show how to implement a language driver. The full details

of our treatment to R can be found in Section C of our appendix [6].

R programs include first-class functions; side effects (“=” being the

assignment operator as well as the variable definition operator);

sequences of expressions separated by “;” or a newline; structured

data types such as vectors and tables with named columns (called

data frames in R’s lingo); and static scoping as it is usually im-

plemented in dynamic languages (e.g., as in Python or JavaScript)

where identifiers that are not in the current static scope are assumed

to be global identifiers even if they are undefined when the scope

is created. For instance, the R program:

f = function (x) { x + y }; y = 3; z = f(2);

is well-defined and stores 5 in z (but calling f before defining y yields

an error). We next define the core syntax of R.

Definition 6.1. The set ER of expressions (e) and values (v) of R
are generated by the following grammars:

e ::= c | x | function(x , . . . ,x){e} | e(e, . . . , e) | op e . . . e

| x = e | e; e | if (e) e else e
v ::= c | functionσ (x, . . . , x) {e} | c(v, . . . ,v)

where c represents constants, x ∈ IR, and σ ∈ 2
IR×VR

is the envi-

ronment of the closure.

We recall that, in R, c(e1, . . . , en) builds a vector. Definition 6.1 only

defines expressions that can be translated to QIR. Expressions not

listed in the definition are translated into host expression nodes.

We now highlight how data frames are manipulated in standard

R. As mentioned in Section 1, the subset function filters a data frame:

12 subset(t, sal >= minSalary * getRate("USD", cur), c(name))

This function returns the data frame given as first argument, filtered

by the predicate given as second argument, and restricted to the

columns listed in the third argument. Note that before resolving its

second and third arguments, and for every row of the first argument,

subset binds the values of each column of the row to a variable of

the corresponding name. This is why in our example the variables

sal and name occur free: they represent columns of the data frame t.

The join between two data frames is implemented with the func-

tion merge. We recall that the join operation returns the set of all

combinations of rows in two tables that satisfy a given predicate.

To integrate R with BOLDR, we define two builtin functions:

• tableRef takes the name of a table and the name of the database

the table belongs to, and returns a reference to the table

• executeQuery takes a QIR expression, closes it by binding its

free variables to the translation to QIR of their value from

the current R environment, sends it to the QIR runtime for

evaluation, and translate the results into R values

We also extend the set of values VR:
v ::= . . . | tableRef(v, ...,v) | qσ

where qσ are QIR closure values representing queries associated

with the R environment σ used at their definition.

The functions subset and merge are overloaded to call the transla-

tion
R−−→EXP on themselves if their first argument is a reference to a

database table created by tableRef, yielding a QIR term q to which

the current scope is affixed, creating a QIR closure qσ . Free vari-
ables in qσ that are not in σ are global identifiers whose bindings

are to be resolved when qσ is executed using executeQuery.

We now illustrate the whole process on the introductory exam-

ple of Section 1.

Evaluation of the query expression: When an expression rec-

ognized as a query is evaluated, it is translated to QIR (using Def-

inition C.2 in Section C of our appendix [6]). In the introductory

example, the function call

14 richUSPeople = atLeast(2000, "USD")

triggers the evaluation of the function atLeast:

9 atLeast = function(minSalary, cur) {

10 # table employee has two columns: name, sal

11 t = tableRef("employee", "PostgreSQL")

12 subset(t, sal >= minSalary * getRate("USD", cur), c(name))
13 }

in which the function subset (Line 12) is evaluated with a table

reference as first argument, and is therefore translated into a QIR

expression. richUSPeople is then bound to the QIR closure value:

Project⟨fun(t)→{ name : t · name } |
Filter⟨fun(e)→e · sal ≥ minSalary ∗ (getRate "USD" cur)) |
From⟨employee⟩⟩⟩
{minSalary 7→2000, getRate 7→functionσ (rfrom,rto){. . .},cur 7→”USD”}

Query execution: A QIR closure is executed using the function

executeQuery. In our example, this happens at Line 16 and 17:

16 print(executeQuery(richUSPeople))
17 print(executeQuery(richEURPeople))

executeQuery then resolves each free variable by applying them to

the translation to QIR of their value in the R environment:

(fun(getRate)→
(fun(minSalary, cur)→

Project⟨fun(t)→{ name : t · name } |
Filter⟨fun(e)→ ≥ (e · sal, ∗ (minSalary, getRate "USD" cur)) |
From⟨employee⟩⟩⟩

)(2000, "USD")
)(fun(rfrom, rto)→ . . .)

Next, the QIR runtime is called, and the query is normalized to:

Project⟨fun(t)→{ name : t · name } |
Filter⟨fun(e)→ ≥ (e · sal, 2000) |
From⟨employee⟩⟩⟩

then translated to SQL as:

SELECT T.name AS name FROM (

SELECT * FROM (SELECT * FROM employee) AS E WHERE E.sal >= 2000

) AS T

This query is sent to PostgreSQL, and the results are translated

back to QIR using
PostgreSQL

−−→
VAL, then to R using

−−→
VALR .

7 IMPLEMENTATION AND RESULTS
Implementation. BOLDR consists of QIR, host languages, and

databases. To evaluate our approach, we implemented the full stack,

with R and SimpleLanguage as host languages and PostgreSQL,

HBase and Hive as databases. Table 1 gives the numbers of lines of

Java code for each component to gauge the relative development

effort needed to interface a host language or a database to BOLDR.

All developments are done in Java using the Truffle framework.

Component l.o.c. Remark
FastR / SimpleLanguage 173000 / 12000 not part of the framework

Detection of queries (in R and SL) 600 modification of builtins/operators
R to QIR / SL to QIR 750 / 1000 the translation of Section 6

QIR 4000 norm/generic translation/evaluator

QIR to SQL / HBase language 500 / 400 the translation
SQL
{ /

HBase
{

PostgreSQL / Hbase / Hive binding 150 / 100 / 100 low-level interface
Table 1: BOLDR components and their sizes in lines of code.

As expected, the bulk of our development lies in the QIR (its

definition and normalization) which is completely shared between

all languages and database backends. Compared to its 4000 l.o.c.,

the development cost of languages or database drivers, including

translations to and from QIR is modest (between 700 and 1000 l.o.c.).

Even though our main focus is on Truffle-based languages, on

which we have full control over their interpreters, all our require-

ments are also met by the introspection capabilities of modern

dynamic languages. For instance, in R, the environment function re-

turns the environment affixed to a closure as a modifiable R value,

the body function returns the body of a closure as a manipulable

abstract syntax tree, and the formals function returns the modifiable

names of the arguments of a function. These introspection capabil-

ities could be used to achieve an even more seamless integration.

Experiments. The results of our evaluation
1
are reported in

Table 2. Queries named TPCH-n are SQL queries taken from the

TPC-H performance benchmark [21]. These queries feature joins,

nested queries, grouping, ordering, and various arithmetic subex-

pressions. Table 2.A and 2.B illustrate how our approach fare against

hand-written SQL queries. Each row reports the expected cost (in

disk page fetches as reported by the EXPLAIN ANALYZE commands)

as well as the actual execution time on a 1GB dataset. Row SQL
represents the hand-written SQL queries, Row SQL+UDFs represents
the same SQL queries where some subexpressions are expressed

as function calls of stored functions written in PL/SQL. Row R rep-
resents the SQL queries generated by BOLDR from equivalent R
expressions, and Row R+UDFs represents the same SQL queries as in

Row SQL+UDFs generated by BOLDR from equivalent R expressions

with R UDFs. Lastly, for R+■, we added untranslatable subexpres-

sions kept as host language nodes to impose a call to the database

1
The test machine was a PC with Ubuntu 16.04.2 LTS, kernel 4.4.0-83, with the latest

master from the Truffle/Graal framework and PostgreSQL 9.5, Hive 2.1.1, and HBase

1.2.6 all with default parameters.

A TPCH-1 TPCH-2 TPCH-3 TPCH-4 TPCH-5 TPCH-6 TPCH-9 TPCH-10 TPCH-11 TPCH-12 TPCH-13 TPCH-14 TPCH-15 TPCH-16 TPCH-18 TPCH-19
103 page fetches time (s)

SQL 424 9.44 99 0.42 353 0.99 161 0.49 200 0.59 248 1.03 336 5.54 270 1.72 65 0.33 320 1.61 258 2.07 217 1.05 412 2.06 45 0.94 1462 4.33 306 1.31
SQL+UDFs 1753 15.50 655 0.43 426 2.21 424 0.79 617 1.69 1719 1.90 677 5.34 869 2.90 43 ∞ 1798 1.95 493 3.20 1766 5.26 207∗ ∞ 133 206.11 1118∗ ∞ 216 1.25

R 424 9.37 52 0.66 359 0.97 49939 0.53 200 0.76 248 1.02 300 3.20 272 1.73 65 0.31 334 1.37 258 2.03 217 0.97 412 2.00 39 0.41 2069 4.45 338 1.54
R+UDFs 424 9.51 52 0.68 359 0.95 49939 0.53 200 0.71 248 0.95 300 3.09 272 1.85 65 0.31 334 1.41 258 1.99 217 0.95 412 1.95 39 0.40 2069 4.35 338 1.58

B TPCH-1 TPCH-3 TPCH-5 Ex. 1
SQL+UDFs 1753 15.50 426 2.21 617 1.69 0.9 0.05
R+■ 1720 37.56 97 2.01 471 8.99 0.9 0.11

C (in s) Query 1 Query 2 Query 3
Hive 1.24 6.27 6.27
Hive+R 1.25 6.31 6.33

D (in s) PostgreSQL (atLeast) HBase (atLeast) Hive (atLeast)
PostgreSQL (getRate) 0.34 1.47 1.17
HBase (getRate) 1.44 1.33 2.07
Hive (getRate) 0.74 1.78 0.66

∞: evaluation took more than 5 minutes. ∗ wrong cost estimation due to complex PL/SQL function

Table 2: Evaluation of BOLDR’s performances

embedded R runtime. The results show that we can successfully

match the performances of Row SQL with Row R, and that BOLDR

outperforms PostgreSQL in Row R+UDFs against Row SQL+UDFs. This
last result comes from the fact that PostgreSQL is not always able to

inline function calls, even for simple functions written in PL/SQL. In

stark contrast, no overhead is introduced for a SQL query generated

from an R program, since the normalization is able to inline func-

tion calls properly, yielding a query as efficient as a hand-written

one. As an example, the TPCH-15 query was written in R+UDFs as:
supplier = tableRef("supplier", "PostgreSQL", "postg.conf", "tpch")

revenue = tableRef("revenue", "PostgreSQL", "postg.conf", "tpch")

max_rev = function() max(subset(revenue, TRUE, c(total_revenue)))
q = subset(merge(supplier, revenue, function(x, y) x$s_suppkey ==

y$supplier_no),

total_revenue == max_rev(),

c(s_suppkey, s_name, s_address, s_phone, total_revenue)

)[order(s_suppkey),]

print(executeQuery(q))

BOLDR was able to inline this query, whereas the equivalent in

SQL+UDFs could not be inlined by the optimizer of PostgreSQL.

Table 2.B illustrates the overhead of calling the host language

evaluator from PostgreSQL by comparing the cost of a non-inlined
pure PL/SQL function with the cost of the same function embed-

ded in a host expression within the query. While it incurs a high

overhead, it remains reasonable even for expensive queries (such

as TPCH-1) compared to the cost of network delays that would

happen otherwise since host expressions represent expressions that

are impossible to inline or to translate in the database language.

Table 2.C illustrates the overhead of calling the host language

evaluator from Hive against a pure inlined Hive query. For instance

SELECT * FROM movie WHERE year > 1974 ORDER BY title

against

SELECT * FROM movie WHERE R.APPLY('@...', array(year))ORDER BY title

where '@...' is the serialization of an R closure, and R.APPLY is a

function we defined that applies an R closure to an array of values

from Hive (including the necessary translations between Hive, QIR,

and R). The results are that with one (Query 1/2) or two (Query 3)

calls to the external language runtime, the overhead is negligible

compared to the execution of the query in Map/Reduce.

Table 2.D gives the performances of queries mixing two data

sources between a PostgreSQL, a HBase, and a Hive database.We ex-

ecuted the example in the Introduction and varied the data sources

for the functions getRate and atLeast. In the current implementa-

tion, a join between tables from different databases is performed on

the client side (see our future work in the Conclusion), therefore the

queries in which the two functions target the same database per-

form better, since they are evaluated in a unique database implying

less network delays and less work on the client side.

8 RELATEDWORK
The work in the literature closest to BOLDR is T-LINQ and P-LINQ

by Cheney et al. [7] which subsumes previous work on LINQ and

Links and gives a comprehensive “practical theory of language

integrated queries”. In particular, it gives the strongest results to

date for a language-integrated queries framework. Among their

contributions stand out: (i) a quotation language (a λ-calculus with
list comprehensions) used to express queries in a host language,

(ii) a normalization procedure ensuring that the translation of a

query cannot cause a query avalanche, (iii) a type system which

guarantees that well-typed queries can be normalized, (iv) a general
recipe to implement language-integrated queries and (v) a practical
implementation that outperforms Microsoft’s LINQ. Some parts of

our work are strikingly similar: our intermediate representation is a

λ-calculus using reduction as a normalization procedure. However,

our work diverges radically from their approach because we target

a different kind of host languages. T-LINQ requires a pure host

language, with quotation and anti-quotation support and a type-

system. Also, T-LINQ only supports one (type of) database per query

and a limited set of operators (essentially, selection, projection,

and join, expressed as comprehensions). While definitely possible,

extending T-LINQ with other operators (e.g., “group by”) or other

data models (e.g., graph databases) seems challenging since their

normalization procedure hard-codes in several places the semantics

of SQL. The host languages we target do not lend themselves as

easily to formal treatment, as they are highly dynamic, untyped,

and impure programming languages. We designed BOLDR to be

target databases agnostic, and to be easily extendable to support

new languages and databases. We also endeavored to lessen the

work of driver implementers (adding support for a new language or

database) through the use of embedded host language expressions,

which take advantage of the capability of modern databases to

execute foreign code. This contrasts with LINQ where adding new

back-ends is known to be a difficult task [10]. Lastly, we obtained

formal results corresponding to those of T/P-LINQ by grafting a

specific SQL type system on our framework.

QIR is not the first intermediate language of its kind. While LINQ

proposes the most used intermediate query representation, recent

work by Ong et al. [16] introduced SQL++, an intermediary query

representation whose goal is to subsume SQL and NoSQL. In this

work, a carefully chosen set of operators is shown to be sufficient

to express relational queries as well as NoSQL queries (e.g., queries

over JSON databases). Each operator supports configuration options

to account for the subtle differences in semantics for distinct query

languages and data models (treatment of the special value NULL,

semantics of basic operators such as equality, . . .). In opposite, we

chose to let the database expose the operators it supports in a driver.

Grust et al. [12] present an alternative compilation scheme for

LINQ, where SQL and XML queries are compiled into an interme-

diate table algebra expression that can be efficiently executed in

any modern relational database. While this algebra supports di-

verse querying primitives, it is designed to specifically target SQL

databases, making it unfit for other back-ends.

Our current implementation of BOLDR is at an early stage and,

as such, it suffers several shortcomings. Some are already addressed

in existing literature. First, since we target dynamic programming

languages, some forms of error cannot be detected until query

evaluation. This problem has been widely studied and, besides T-

LINQ, works such as SML# [15] or ScalaDB [11] use the static type

system of the language to ensure the absence of a large class of run-

time errors in generated queries. Second, our treatment of effects is

rather crude. Local side effects, such as updating mutable references

scoped inside a query, work as expected while observable effects,

such as reading from a file on host machine memory, is unspecified

behavior. The work of Cook andWiedermann [8] shows how client-

side effects can be re-ordered and split apart from queries. Third, at

the moment, when two subqueries target different databases, their

aggregation is done in the QIR runtime. Costa Seco et al. [9] present

a language which allows manipulation of data coming from differ-

ent sources, abstracting their nature and localization. A drawback

of their work is the limitation in the set of expressions that can be

handled. Our use of arbitrary host expressions would allow us to

circumvent this problem.

9 CONCLUSION AND FUTUREWORK
We presented BOLDR, a framework that allows programming lan-

guages to express complex queries containing application logic

such as user-defined functions. These queries can target any source

of data as long as it is interfaced with the framework, more pre-

cisely, with our intermediate language QIR. We provided methods

for programming languages and databases to interface with QIR, as

well as an implementation of the framework and interfaces for R,

SimpleLanguage, PostgreSQL, HBase, and Hive. We described how

QIR reduces and partially evaluates queries in order to take the

most of database optimizations, and showed that BOLDR generates

queries performing on a par with hand-written SQL queries.

Future work includes the creation of a domain-specific language

to define translations from QIR to database languages, leaving the

implementation details to the language itself, with the associated

gains of speed, clarity, and concision. Currently, queries targeting

more than one data sources are partially executed in the host lan-

guage runtime. We plan to determine when such queries could be

executed efficiently in one of the targeted data sources instead. For

instance, in a join between two distinct data sources, it could be

more efficient to send data from one data source to the other that

will complete the join. ORMs and LINQ can type queries since they

know the type of the data source. BOLDR cannot do it yet since

QIR queries may contain dynamic code, and we do not want to

type-check the whole host language. While we cannot foresee any

general solution, we believe that to exploit any type information

available we could use gradual typing [20], a recent technique blend-
ing static and dynamic typing in the same language. In particular,

we would be able to use type information from database schemas

(when available) to infer types for the queries.

REFERENCES
[1] 2016. ISO/IEC 9075-2:2016, Information technology-Database languages–SQL–

Part 2: Foundation (SQL/Foundation). (2016).

[2] Amazon 2017. Python Language Support for UDFs. (2017). http://docs.aws.

amazon.com/redshift/latest/dg/udf-python-language-support.html

[3] Apache 2017. Hive Manual - MapReduce scripts. (2017). https://cwiki.apache.

org/confluence/display/Hive/LanguageManual+Transform

[4] Apache 2017. PySpark documentation - pyspark.sql.functions. (2017). http:

//spark.apache.org/docs/1.6.2/api/python/pyspark.sql.html

[5] Apache 2017. User Defined Functions in Cassandra 3.0. (2017). http://www.

datastax.com/dev/blog/user-defined-functions-in-cassandra-3-0

[6] BOLDR 2018. Online appendix. (2018). https://www.lri.fr/~lopez/www.pdf

[7] J. Cheney, S. Lindley, and P. Wadler. 2013. A Practical Theory of Language-

Integrated Query. In ICFP 2013. ACM, New York, NY, USA, 403–416.

[8] William R. Cook and Ben Wiedermann. 2011. Remote Batch Invocation for SQL

Databases. In Database Programming Languages - DBPL 201, 13th International
Symposium, Seattle, Washington, USA, August 29, 2011. Proceedings. http://www.

cs.cornell.edu/conferences/dbpl2011/papers/dbpl11-cook.pdf

[9] João Costa Seco, Hugo Lourenço, and Paulo Ferreira. 2015. A Common Data

Manipulation Language for Nested Data in Heterogeneous Environments. In

Proceedings of the 15th Symposium on Database Programming Languages (DBPL
2015). ACM, NewYork, NY, USA, 11–20. https://doi.org/10.1145/2815072.2815074

[10] O. Eini. 2011. The Pain of Implementing LINQ Providers. Commun. ACM 54, 8

(Aug. 2011), 55–61.

[11] Miguel Garcia, Anastasia Izmaylova, and Sibylle Schupp. 2010. Extending Scala

with Database Query Capability. Journal of Object Technology 9, 4 (2010), 45–68.

[12] Torsten Grust, Jan Rittinger, and Tom Schreiber. 2010. Avalanche-Safe LINQCom-

pilation. PVLDB 3, 1 (2010), 162–172. http://www.comp.nus.edu.sg/~vldb2010/

proceedings/files/papers/R14.pdf

[13] Microsoft 2017. LINQ (Language-Integrated Query). (2017). https://msdn.

microsoft.com/en-us/library/bb397926.aspx

[14] MongoDB 2017. MongoDB User Manual - Server-side JavaScript. (2017). https:

//docs.mongodb.com/manual/core/server-side-javascript/

[15] A. Ohori and K. Ueno. 2011. Making standard ML a practical database program-

ming language. In ICFP. ACM, New York, NY, USA, 307–319.

[16] K. W. Ong, Y. Papakonstantinou, and R. Vernoux. 2014. The SQL++ Semi-

structured Data Model and Query Language: A Capabilities Survey of SQL-on-

Hadoop, NoSQL and NewSQL Databases. CoRR abs/1405.3631 (2014). http:

//arxiv.org/abs/1405.3631

[17] Oracle 2017. FastR. (2017). https://github.com/graalvm/fastr

[18] Oracle 2017. Oracle R Enterprise. (2017). http://www.oracle.com/technetwork/

database/database-technologies/r

[19] PostgreSQL 2017. PL/Python - Python Procedural Language. (2017). https:

//www.postgresql.org/docs/9.5/static/plpython.html

[20] J. G. Siek and W. Taha. 2006. Gradual Typing for Functional Languages. In

Proceedings, Scheme and Functional Programming Workshop 2006. University of

Chicago TR-2006-06, Chicago, USA, 81–92.

[21] TPC. 2017. The TPC-H benchmark. (2017). http://www.tpc.org/tpch/

[22] Romain Vernoux. 2016. Design of an intermediate representation for query

languages. CoRR abs/1607.04197 (2016). arXiv:1607.04197 http://arxiv.org/abs/

1607.04197

[23] T.Würthinger, C.Wimmer, A.Wöß, L. Stadler, G. Duboscq, C. Humer, G. Richards,

D. Simon, and M. Wolczko. 2013. One VM to Rule Them All. In Onward! 2013 Pro-
ceedings of the 2013 ACM international symposium on New ideas, new paradigms,
and reflections on programming and software. ACM, New York, NY, USA, 187–204.

http://docs.aws.amazon.com/redshift/latest/dg/udf-python-language-support.html
http://docs.aws.amazon.com/redshift/latest/dg/udf-python-language-support.html
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Transform
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Transform
http://spark.apache.org/docs/1.6.2/api/python/pyspark.sql.html
http://spark.apache.org/docs/1.6.2/api/python/pyspark.sql.html
http://www.datastax.com/dev/blog/user-defined-functions-in-cassandra-3-0
http://www.datastax.com/dev/blog/user-defined-functions-in-cassandra-3-0
https://www.lri.fr/~lopez/www.pdf
http://www.cs.cornell.edu/conferences/dbpl2011/papers/dbpl11-cook.pdf
http://www.cs.cornell.edu/conferences/dbpl2011/papers/dbpl11-cook.pdf
https://doi.org/10.1145/2815072.2815074
http://www.comp.nus.edu.sg/~vldb2010/proceedings/files/papers/R14.pdf
http://www.comp.nus.edu.sg/~vldb2010/proceedings/files/papers/R14.pdf
https://msdn.microsoft.com/en-us/library/bb397926.aspx
https://msdn.microsoft.com/en-us/library/bb397926.aspx
https://docs.mongodb.com/manual/core/server-side-javascript/
https://docs.mongodb.com/manual/core/server-side-javascript/
http://arxiv.org/abs/1405.3631
http://arxiv.org/abs/1405.3631
https://github.com/graalvm/fastr
http://www.oracle.com/technetwork/database/database-technologies/r
http://www.oracle.com/technetwork/database/database-technologies/r
https://www.postgresql.org/docs/9.5/static/plpython.html
https://www.postgresql.org/docs/9.5/static/plpython.html
http://www.tpc.org/tpch/
http://arxiv.org/abs/1607.04197
http://arxiv.org/abs/1607.04197
http://arxiv.org/abs/1607.04197

	Abstract
	1 introduction
	2 Definitions
	3 Query Intermediate Representation
	3.1 Core calculus
	3.2 Extended semantics

	4 Database translation
	4.1 Generic translation
	4.2 Specific translation: SQL

	5 QIR heuristic normalization
	6 From a host language to QIR
	7 Implementation and results
	8 Related work
	9 Conclusion and future work
	References

