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Goal

1 Take your favorite type constructors

×××, →→→, {. . . }, chan(), . . .

2 add Boolean connectives:

∨∨∨, ∧∧∧, ¬¬¬
3 add type variables

α, β, γ, ...

4 give an intuitive (ie, set-theoretic) semantics so as to deduce

classic distribution laws (for all α, β, γ)

((α∨∨∨β)×××γ) Q (α×××γ) ∨ (β×××γ)

data structure containments (for all α):

µt.(α×××(α×××t))∨∨∨nil︸ ︷︷ ︸
α-lists of even length

≤ µt.(α×××t)∨∨∨nil︸ ︷︷ ︸
α-lists

WHY?
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WHY? briefly:

1 Boolean connectives:
Unions, products and recursive types encode regular trees and
therefore XML
Intersection and negation permit XML typed programming
with overloading and powerful pattern matching.

2 Type variables:
Parametric polymorphism already demonstrated its worth
in practice.
Fulfills new needs specific to XML processing
(eg, SOAP envelopes).
Sheds new light on the notion of parametricity.
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Real case example: active pages

To create a dynamically generated page in the Ocsigen web
development systems:

1 define a function from the query string to Xhtml:
let page_fun(p: {title: string, ...}) : Xhtml = ...

2 bind page fun to the path $WEBROOT/w/index by:

register new serviceregister new serviceregister new service(page fun,"w/index")

The (wished) type of register_new_service is

∀(X ≤ Params).((X→→→ Xhtml)× Path)→ unit

where Params is a specification of all possible query strings
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Current status

Study of a type system of (recursive/regular) types with

t ::= B | t×××t | t→→→t | t∨∨∨t | t∧∧∧t | ¬t | 0 | 1 | ααα

type constructors logical connectives type variables

Logical connectives: Well-known how to implement a
functional language with pattern-matching, higher-order
functions, and connectives with set theoretic interpretation.

Semantic subtyping
(implemented by the language CDuce).

Type variables: A set-theoretic approach was deemed
unfeasible or even impossible:

This work
(built on the work of semantic subtyping)
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Semantic Subtyping
in a nutshell
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Semantic subtyping

t ::= B | t×××t | t→→→t | t∨∨∨t | t∧∧∧t | ¬t | 0 | 1

Constructor subtyping is easy:
constructors do not mix, eg.:

s2 ≤ s1 t1 ≤ t2

s1→→→t1 ≤ s2→→→t2

Connective subtyping is harder:
connectives distribute over constructors, eg.

(s1∨∨∨s2)→→→t R (s1→→→t)∧∧∧(s2→→→t)

Define subtyping semantically: [Hosoya, Pierce]

1 Interpret types as sets (of values)

2 Define subtyping as set containment.

Giuseppe Castagna and Zhiwu Xu Set-theoretic Foundation of Parametric Polymorphism and Subtyping 7/27



logoP7

1. Motivations – 2. Semantic subtyping 3. Polymorphic extension 4. Examples 5. Subtyping algorithm 6. New directions ICFP’11

Semantic subtyping

t ::= B | t×××t | t→→→t | t∨∨∨t | t∧∧∧t | ¬t | 0 | 1

Constructor subtyping is easy:
constructors do not mix, eg.:

s2 ≤ s1 t1 ≤ t2

s1→→→t1 ≤ s2→→→t2

Connective subtyping is harder:
connectives distribute over constructors, eg.

(s1∨∨∨s2)→→→t R (s1→→→t)∧∧∧(s2→→→t)

Define subtyping semantically: [Hosoya, Pierce]

1 Interpret types as sets (of values)

2 Define subtyping as set containment.

Giuseppe Castagna and Zhiwu Xu Set-theoretic Foundation of Parametric Polymorphism and Subtyping 7/27



logoP7

1. Motivations – 2. Semantic subtyping 3. Polymorphic extension 4. Examples 5. Subtyping algorithm 6. New directions ICFP’11

Semantic subtyping

t ::= B | t×××t | t→→→t | t∨∨∨t | t∧∧∧t | ¬t | 0 | 1

Constructor subtyping is easy:
constructors do not mix, eg.:

s2 ≤ s1 t1 ≤ t2

s1→→→t1 ≤ s2→→→t2

Connective subtyping is harder:
connectives distribute over constructors, eg.

(s1∨∨∨s2)→→→t R (s1→→→t)∧∧∧(s2→→→t)

Define subtyping semantically: [Hosoya, Pierce]

1 Interpret types as sets (of values)

2 Define subtyping as set containment.

Giuseppe Castagna and Zhiwu Xu Set-theoretic Foundation of Parametric Polymorphism and Subtyping 7/27



logoP7

1. Motivations – 2. Semantic subtyping 3. Polymorphic extension 4. Examples 5. Subtyping algorithm 6. New directions ICFP’11

Semantic subtyping

t ::= B | t×××t | t→→→t | t∨∨∨t | t∧∧∧t | ¬t | 0 | 1

Constructor subtyping is easy:
constructors do not mix, eg.:

s2 ≤ s1 t1 ≤ t2

s1→→→t1 ≤ s2→→→t2

Connective subtyping is harder:
connectives distribute over constructors, eg.

(s1∨∨∨s2)→→→t R (s1→→→t)∧∧∧(s2→→→t)

Define subtyping semantically: [Hosoya, Pierce]

1 Interpret types as sets (of values)

2 Define subtyping as set containment.

Giuseppe Castagna and Zhiwu Xu Set-theoretic Foundation of Parametric Polymorphism and Subtyping 7/27



logoP7

1. Motivations – 2. Semantic subtyping 3. Polymorphic extension 4. Examples 5. Subtyping algorithm 6. New directions ICFP’11

Semantic subtyping: formalization

First, define an interpretation of types into sets.
J K : Types→ P(D)

such that

Connectives have their set-theoretic interpretation:
J0K = ∅ Jt1∨∨∨t2K = Jt1K∪∪∪Jt2K

J¬¬¬tK =D\\\JtK Jt1∧∧∧t2K = Jt1K∩∩∩Jt2K
Constructors have their natural interpretation:
Jt1×××t2K = Jt1K×××Jt2K D2 ⊆ D
Jt1→→→t2K = {f | f function fromJt1K to Jt2K} DD ⊆ D

Then define the subtyping relation as set-containment.

s ≤ t
def⇐⇒ JsK ⊆ JtK

Giuseppe Castagna and Zhiwu Xu Set-theoretic Foundation of Parametric Polymorphism and Subtyping 8/27
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Semantic subtyping [Benzaken, Castagna, Frisch]

1 Gives an interpretation satisfying the above constraints;
2 Gives an algorithm to decide the induced subtyping relation.
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Polymorphic extension:
adding type variables
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Naive solution

t ::= B | t×××t | t→→→t | t∨∨∨t | t∧∧∧t | ¬t | 0 | 1

| ααα

Idea: Use the previous relation since is defined for “ground types”

Let σ : Vars→ ClosedTypes denote ground substitutions. Define:

s ≤ t
def⇐⇒ ∀σ . sσ ≤ tσ

or equivalently

s ≤ t
def⇐⇒ ∀σ.JsσK ⊆ JtσK

THIS IS A WRONG WAY:
TOO MANY PROBLEMS
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1. Motivations – 2. Semantic subtyping 3. Polymorphic extension 4. Examples 5. Subtyping algorithm 6. New directions ICFP’11

Problems with the naive solution

1 Haruo Hosoya conjectured that deciding ∀σ . sσ ≤ tσ is at
least as hard as solving Diophantine equations

2 It breaks parametricity:

(t×××ααα) ≤ (t×××¬¬¬t)∨∨∨(ααα×××t) (1)

This inclusion holds if and only if t is an indivisible type
(eg., a singleton or a basic type):

Property of indivisible types

If t is an indivisible type, then for
all possible interpretations of ααα

t ≤ ααα or ααα ≤ ¬¬¬t
holds.

If ααα ≤ ¬¬¬t then the left element of the union in (18) suffices;
If t ≤ ααα, then ααα = (ααα\t)∨∨∨t. Thus (t×××ααα) = (t×××(ααα\t))∨∨∨(t×××t).
This union is contained component-wise in the one in (18).
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Problems with the naive solution

The fact that
(t×××ααα) ≤ (t×××¬¬¬t)∨∨∨(ααα×××t)

holds if and only if t is indivisible is really catastrophic:

Deciding subtyping needs deciding indivisibility ... which is
very hard.

This subtyping relation breaks parametricity:
by subsumption a function generic in its first argument,
becomes generic on its second argument.

A semantic solution was deemed unfeasible (even w/o arrows)

Problem eschewed by resorting to syntactic solutions:
[Hosoya, Frisch, Castagna: POPL 05], [Vouillon: POPL 06].

A SEMANTIC SOLUTION IS POSSIBLE

Giuseppe Castagna and Zhiwu Xu Set-theoretic Foundation of Parametric Polymorphism and Subtyping 12/27
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A SEMANTIC SOLUTION IS POSSIBLE
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A semantic solution

A faint intuition

The loss of parametricity is only due to the interpretation of
indivisible types, all the rest works (more or less) smoothly

The crux of the problem is that for an indivisible type iii

iii ≤ ααα or ααα ≤ ¬¬¬iii

validity can stutter from one formula to another, missing in this
way the uniformity typical of parametricity

The leitmotif of this work

A semantic characterization of models where stuttering is absent,
should yield a subtyping relation that is:

1 Semantic
2 Intuitive for the programmer
3 Decidable
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A semantic solution
Rough idea

Make indivisible types “splittable” so that type variables can
range over strict subsets of every type, indivisible types included.

[intuition: interpret all non-empty types into infinite sets]

Since this cannot be done at syntactic level, move to the semantic
one and replace ground substitutions by semantic assignments:

η : Vars→ P(D)
and now the interpretation function takes an extra parameter

J K : Types→ P(D)Vars → P(D)

with
JαααKη = η(ααα) J¬¬¬tKη = D\JtKη
Jt1∨∨∨t2Kη = Jt1Kη ∪ Jt2Kη Jt1∧∧∧t2Kη = Jt1Kη ∩ Jt2Kη
J0Kη = ∅ J1Kη = D

and such that it satisfies:

Jt1→→→s1Kη ⊆ Jt2→→→s2Kη ⇐⇒ P(Jt1Kη × Js1Kη) ⊆ P(Jt2Kη × Js2Kη)
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Subtyping relation

In this framework the natural definition of subtyping is

s ≤ t
def⇐⇒ ∀η . JsKη ⊆ JtKη

It “just” remains to find the uniformity condition
to avoid stuttering and recover parametricity.
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The magic property: convexity

Consider only models of semantic subtyping in which the following
convexity property holds

∀η.(Jt1Kη=∅ or Jt2Kη=∅) ⇐⇒ (∀η.Jt1Kη=∅) or (∀η.Jt2Kη=∅)

It avoids stuttering: ∀η.(Jt∧∧∧¬¬¬αααKη=∅ or Jt∧∧∧αααKη=∅) —that
is, (t ≤ ααα or ααα ≤ ¬¬¬t)— holds if and only if t is empty.

There are natural models: all models that map all non-empty
types into infinite sets satisfy it [our initial intuition].

A sound, complete, and terminating decision algorithm: the
condition gives us exactly the right conditions needed to reuse
the subtyping algorithm devised for ground types.

An intuitive relation: the algorithm returns intuitive results
(actually, it helps to better understand twisted examples)
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Examples of subtyping relations
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Examples

We can internalize properties such as:

(α→ γ) ∧ (β → γ) ∼ α∨β → γ

or distributivity laws:

(α∨β × γ) ∼ (α×γ) ∨ (β×γ)

and combining them deduce:

(α×γ → δ1) ∧ (β×γ → δ2) ≤ (α∨β × γ)→ δ1 ∨ δ2

Of course the problematic relation never holds, whatever the t:

(t×××ααα) 6≤ (t×××¬¬¬t)∨∨∨(ααα×××t)
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We can prove relevant relations on infinite types, eg., for the type
of generic ααα-lists:

ααα-list = µz .(ααα×××z)∨∨∨ nil

we can prove that it contains both the α-lists of even length

µz .(ααα×××(ααα×××z))∨∨∨ nil︸ ︷︷ ︸
α-lists of even length

≤≤≤ µz .(ααα×××z)∨∨∨ nil︸ ︷︷ ︸
α-lists

and the α-lists with of odd length

µz .(ααα×××(ααα×××z))∨∨∨ (ααα×××nil)︸ ︷︷ ︸
α-lists of odd length

≤≤≤ µz .(ααα×××z)∨∨∨ nil︸ ︷︷ ︸
α-lists

and that it is itself contained in the union of the two, that is:

ααα-list ∼∼∼ (µz .(ααα×××(ααα×××z))∨∨∨ nil) ∨∨∨ (µz .(ααα×××(ααα×××z))∨∨∨ (ααα×××nil))

And we can prove far more complicated relations (see paper).
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Subtyping algorithm
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Subtyping Algorithm: t1 ≤ t2

Step 1: Transform the subtyping problem into an emptiness
decision problem:
t1 ≤ t2 ⇐⇒ ∀η.Jt1Kη ⊆ Jt2Kη ⇐⇒ ∀η.Jt1∧¬t2Kη=∅ ⇐⇒
t1∧¬t2 ≤ 0

Step 2: Put the type whose emptiness is to be decided in
disjunctive normal form. ∨

i∈I

∧
j∈J

`ij

where a ::= b | t × t | t → t | 0 | 1 | α and ` ::= a | ¬a
Step 3: Simplify mixed intersections:

Consider each summand of the union: cases such as
t1×t2 ∧ t1→t2 or t1×t2 ∧ ¬(t1→t2) are straightforward.

Solve:
∧
i∈I

ai

∧
j∈J

¬a′j
∧
h∈H

αh

∧
k∈K

¬βk

where all a are of the same kind.
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Subtyping Algorithm: t1 ≤ t2

Step 1: Transform the subtyping problem into an emptiness
decision problem:
t1 ≤ t2 ⇐⇒ ∀η.Jt1Kη ⊆ Jt2Kη ⇐⇒ ∀η.Jt1∧¬t2Kη=∅ ⇐⇒
t1∧¬t2 ≤ 0

Step 2: Put the type whose emptiness is to be decided in
disjunctive normal form. ∨

i∈I

∧
j∈J

`ij

where a ::= b | t × t | t → t | 0 | 1 | α and ` ::= a | ¬a

Step 3: Simplify mixed intersections:
Consider each summand of the union: cases such as
t1×t2 ∧ t1→t2 or t1×t2 ∧ ¬(t1→t2) are straightforward.

Solve:
∧
i∈I

ai

∧
j∈J

¬a′j
∧
h∈H

αh

∧
k∈K

¬βk
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Step 4: Eliminate toplevel negative variables.,

∀η.JtKη = ∅ ⇐⇒ ∀η.Jt{¬α/α}Kη = ∅
so replace ¬βk for βk (forall k ∈ K )

Solve:
∧
i∈I

ai

∧
j∈J

¬a′j
∧
h∈H

αh

Step 5: Eliminate toplevel variables.∧
t1×t2∈P

t1×t2

∧
h∈H

αh ≤
∨

t′
1×t′

2∈N

t ′1×t ′2

holds if and only if∧
t1×t2∈P

t1σ × t2σ
∧
h∈H

γ1
h × γ2

h ≤
∨

t′
1×t′

2∈N

t ′1σ × t ′2σ

where σ = {(γ1
h×γ2

h) ∨ αh/αh}h∈H (similarly for arrows)
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Step 6: Eliminate toplevel constructors, memoize, and recurse.
Thanks to convexity and (set-theoretic) product
decomposition rules∧

t1×t2∈P

t1×t2 ≤
∨

t′
1×t′

2∈N

t ′1×t ′2 (2)

is equivalent to

∀N ′⊆N.

 ∧
t1×t2∈P

t1 ≤
∨

t′
1×t′

2∈N′

t ′1

 or

 ∧
t1×t2∈P

t2 ≤
∨

t′
1×t′

2∈N\N′

t ′2


(similarly for arrows)

Giuseppe Castagna and Zhiwu Xu Set-theoretic Foundation of Parametric Polymorphism and Subtyping 23/27



logoP7

1. Motivations – 2. Semantic subtyping 3. Polymorphic extension 4. Examples 5. Subtyping algorithm 6. New directions ICFP’11

Conclusion and
New Directions
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Conclusion

We presented the first known solution to the problem of
defining a semantic subtyping relation for a polymorphic
regular tree types.

A solution to this problem was considered unfeasible
or even impossible.

Our solution immediately applies to functional XML
processing, but the potential fields of application seem
much more numerous.

Finally, our work opens both practical and theoretical new
directions of research.
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Practical problems

New typing possibilities:

fun eveneveneven =
| Int -> (x mod 2) == 0
| _ -> x

Intuitively we want to type it by

(Int→→→Bool) ∧∧∧ (ααα\\\Int→ ααα\\\Int)

Local type inference:

Let mapmapmap : (α→ β)→ α list→ β list,
then for map evenmap evenmap even we wish to deduce the following type:

( Int list→ Bool list ) ∧∧∧ int lists return bool lists
( (ααα\\\Int) list→ (ααα\\\Int) list ) ∧∧∧ lists w/o ints return the same type
(ααα list→ ((ααα\\\Int)∨∨∨Bool) list ) ints in the argument are replaced by bools

Cannot be obtained by just instantiating the type of map
No principal typing (needs infinite connectives)
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Practical problems

New typing possibilities: new language design

fun eveneveneven =
| Int -> (x mod 2) == 0
| _ -> x

Intuitively we want to type it by

(Int→→→Bool) ∧∧∧ (ααα\\\Int→ ααα\\\Int)

Local type inference: subtyping + instantiation
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Convexity and parametricity?

In reality, the condition to be used is the generalization to n types:

∀η.(Jt1Kη=∅ or · · · or JtnKη=∅)
⇐⇒

(∀η.Jt1Kη=∅) or · · · or (∀η.JtnKη=∅)

The big question

What is the relation of the condition above with parametricity?
Is it a language-independent semantic characterization of it?

Two examples of uniformity:

(t1×××...×××tn) is empty if and only if exists at least one ti empty
Definability in the second-order typed λ-calculus harnesses
expressions to behave uniformity. Similarly, convexity
semantically harnesses the denotations of expressions and
forces them to behave uniformly.

... we have strong flavors of parametricity
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