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@ Motivations and goals.

© Formal setting.

© Explicit type-substitutions.

@ Inference of type-substitutions.
© Efficient evaluation.

@ Conclusion.
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1. Motivations — IHP 14

Motivations and goals

i.e., why unions, intersections, and negations
of types are useful (and not just for XML)
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1. Motivations —

Set-theoretic types for classic data structures

Red-black trees are balanced binary search trees that must satisfy 4 invariants:
@ the root of the tree is black
@ the leaves of the tree are black
© no red node has a red child
@ every path from root to a leaf contains the same number of black nodes
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1. Motivations —

Set-theoretic types for classic data structures

Red-black trees are balanced binary search trees that must satisfy 4 invariants:

@ the root of the tree is black

@ the leaves of the tree are black

© no red node has a red child

@ every path from root to a leaf contains the same number of black nodes
The key to implement insert is the function balance which transforms an
unbalanced tree, into a valid red tree (as long as a, b, ¢, and d are valid):

d d a a
a C d b
a b c d
b c ab b c cd
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Set-theoretic types for classic data structures

Red-black trees are balanced binary search trees that must satisfy 4 invariants:

@ the root of the tree is black

@ the leaves of the tree are black

© no red node has a red child

@ every path from root to a leaf contains the same number of black nodes
The key to implement insert is the function balance which transforms an
unbalanced tree, into a valid red tree (as long as a, b, ¢, and d are valid):

Wk A

b c ab

In ML-like languages this y|elds a S|mple pattern-matchlng implementation:
[due to Okasaki: Purely Functional Data Structures, Cambridge Univ Press, 1998]
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1. Motivations — IHP 14

The code as written in Okasaki's book

type «RBtree =
| Leaf
| Red( o« , RBtree , RBtree)
| Blk( « , RBtree , RBtree)

let balance =
function
| Blk( z , Red( x, a, Red(y,b,c) ) , d)
I z , Red( y, Red(x,a,b), ¢ ) , d)
| Blk( x , a , Red( z, Red(y,b,c), d ) )
| x , a, Red( y, b, Red(z,c,d) ) )
-> Red ( y, Blk(x,a,b), Blk(z,c,d) )

| x > x

let insert =
function ( x , t ) ->
let ins =
function
| Leaf -> Red(x,Leaf,Leaf)
| c(y,a,b) as z —>
if x < y then balance c( y, (ins a), b ) else
if x > y then balance c( y, a, (ins b) ) else z
in let _(y,a,b) = ins t in Blk(y,a,b)
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Notice that ML types do not enforce the invariants of the previous slide
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| Leaf

| Red( « , RBtree , RBtree)
| BT®( « , ®BUTOE , RBTred)
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| Blk( x , a , Red( y, b, Red(z,c,d) ) )
-> Red ( y, Blk(x,a,b), Blk(z,c,d) )
| x > x

let insert =
function ( x , t ) ->
let ins =
function
| Leaf -> Red(x,Leaf,Leaf)
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ML needs extra auxiliary functions and GADTs to enforce these invariants.
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In set-theoretic types these functions are straightforwardly typed as they are

@ White the cortect fype definitions
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type

o RBtree = @ Whrite the correck fype definiLions

| Leaf

let

function
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fun
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type «RBtree =
| Leaf
| Red( o« , RBtree , RBtree)
| Blk( « , RBtree , RBtree)
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1. Motivations — IHP 14

type RBtree = Btree | Rtree <:>
type Rtree = Red(«, Btree , Btree )

type Btree Blk(«, RBtree, RBtree) | Leaf
type Wrong = Red( «, (Rtree,RBtree) | (RBtree,Rtree) )
type Unbal = Blk( «, (Wrong,RBtree) | (RBtree,Wrong) )
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let balance =

function
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| x -> x
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1. Motivations — IHP 14
« @
«

«
v

let balance: (Unbal —Rtree) & ( (8\Unbal) — (B\Unbal)) =

let insert: (v, Btree) — Btree =

let ins:(Leaf —Rtree) & (Btree — RBtree\Leaf) & (Rtree — Rtree|Wrong)=
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1. Motivalions.—

typ, Btree Btree | Rtree @ @
tyfe Rtree Red(«, Btree , Btree ) '+_
type Btree Blk(«, RBtree, RBtree) | Leaf

tyRN

ed( «, (Rtree,RBtree) | (RBtree,Rtree) )
typ

Blk( «, (Wrong,RBtree) | (RBtree,Wrong) )

let balance: (Unbal —Rtree) & ( (8\Unbal) — (B\Unbal)) =

Unbal

@ recursive types

let insert: (o, Btree) — Btree =

let ins:(Leaf — Rtree) & (Btree — RBtree\Leaf) & (Rtree — Rtree|Wrong)=
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type RBtree = Btree@Rtree @ @
type Rtree = Red(«, Btree , Btree ) —I_

type Btree Blk(«, RBtree, RBtree)(])Leaf
type Wrong = Red( «, (Rtree,RBtree@ERBtree,Rtree) )
type Unbal = Blk( «, (Wrong,RBtree RBtree,Wrong) )

let balance: (Unbal — Rtree)(&)( (B\Unbal) — (3\Uabal)) =

o recursive types
e set-theoretic types

let insert: (o, Btree) — Btree =

let ins:(Leaf —Rtree) &XBtree — RBtret\Deaf)& [Rtree —)Rtre@rong)=
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1. Motivations —

type RBtree

Btree | Rtree @ @
Red(«, Btree , Btree ) '+_

type Rtree =

type Btree = Blk(«a, RBtree, RBtree) | Leaf

type Wrong = Red( «, (Rtree,RBtree) | (RBtree,Rtree) )
type Unbal = Blk( «, (Wrong,RBtree) | (RBtree,Wrong) )

let balance: (Unbal—éRtre{E& ( (B\Unbal) — (B\Unbal) ) 5

o recursive types
o set-theoretic types
@ polymorphic functions

let insert: (o, Btree) — Btree =

let ins:(Leaf — Rtree) & (Btree — RBtree\Leaf) & (Rtree — Rtree|Wrong)=
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1. Motivations — IHP 14

A simpler example of the same pattern
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1. Motivations —

A motivating example in Haskell

map :: (a—pf)— [a] — [F]
map f 1 = case 1 of

| [1 > [

| (x : xs) -> (f x : map f xs)
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1. Motivations —

A motivating example in Haskell

map :: (a—pf)— [a] — [F]
map f 1 = case 1 of
| 1 -> [

| (x : xs) -> (f x : map f xs)

even :: (Int—Bool) A ((a\Int) — (a\Int))
even x = case x of

| Int > (x ‘mod‘ 2) ==

| > x
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A motivating example in Haskell (almost)
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@ Expression: if the argument is an integer then return the
Boolean expression otherwise return the argument
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@ Expression: if the argument is an integer then return the

Boolean expression otherwise return the argument

@ Type: when applied to an Int it returns a Bool; when applied
to an argument that is not an Int it returns a result of the
same type.
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1. Motivations — POPL’14

A motivating example in Haskell (almost) [no XML]

map :: (a—pf)— [a]l — [B]
map f 1 = case 1 of

| [1 > 1[]

| (x : xs) => (f x : map f xs)

even :: (Int—Bool) A ((a\Int) — (a\Int))

even X = cas of
ﬁ—> (x ‘mod® 2) ==
typc-am:, — > x

@ Expression: if the argument is an integer then return the
Boolean expression otherwise return the argument

@ Type: when applied to an Int it returns a Bool; when applied
to an argument that is not an Int it returns a result of the
same type.
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POPL’14

1. Motivations —

A motivating example in Haskell (almost) [no XML]

| (x : xs) —> (£ : map £ xs)
even :: (Int— Bool) nt))
even X = cas of
R DENC .
tyPc—Ca,sc, — > x bookOMTyP( wonhectives

@ Expression: if the argument is an integer then return the
Boolean expression otherwise return the argument

@ Type: when applied to an Int it returns a Bool; when applied
to an argument that is not an Int it returns a result of the
same type.
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1. Motivations —

A motivating example in Haskell (almost)

map :: (a—pf)— [a] — [F]
map f 1 = case 1 of

| [1 > [

| (x : xs) -> (f x : map f xs)

even :: (Int—Bool) A ((@\Int) — (a\Int))
even x = case x of

| Int > (x ‘mod‘ 2) ==

| > x

@ Expression: if the argument is an integer then return the
Boolean expression otherwise return the argument

@ Type: when applied to an Int it returns a Bool; when applied
to an argument that is not an Int it returns a result of the
same type.

Common pattern for functional data structures: red-black
trees balancing; ZDD operations; XML nodes modification
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1. Motivations —

A motivating example in Haskell (almost)

map :: (a—pf)— [a] — [F]
map f 1 = case 1 of

| [1 > [

| (x : xs) -> (f x : map f xs)

even :: (Int—Bool) A ((@\Int) — (a\Int))
even x = case x of

| Int > (x ‘mod‘ 2) ==

| > x

@ Expression: if the argument is an integer then return the
Boolean expression otherwise return the argument

@ Type: when applied to an Int it returns a Bool; when applied
to an argument that is not an Int it returns a result of the
same type.

The combination of type-case and intersections
yields statically typed dynamic overloading. J
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A motivating example in Haskell (almost)

map :: (a—pf)— [a] — [F]
map f 1 = case 1 of
| [ —> ]

| (x : xs) -> (f x : map f xs)

even :: (Int—Bool) A ((a\Int) — (a\Int))
even x = case x of

| Int > (x ‘mod‘ 2) ==

| > x

This example as a yardstick. | want to define a language that:
© Can define both map and even
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@ Can check the types specified in the signature
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A motivating example in Haskell (almost)

map :: (a—pf)— [a] — [F]
map f 1 = case 1 of
| [ —> ]

| (x : xs) -> (f x : map f xs)

even :: (Int—Bool) A ((@\Int) — (a\Int))
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k. | want to define a language that:
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© Can deduce the type of the partial application map even
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1. Motivations —

A motivating example in Haskell (almost)

map :: (a—pf)— [a] — [F]
map f 1 = case 1 of

| [1 > [

| (x : xs) -> (f x : map f xs)

even :: (Int—Bool) A ((@\Int) — (a\Int))
even x = case x of

| Int > (x ‘mod‘ 2) ==

| > x

We expect map even to have the following type:

[Int] — [Booll) A
[a\Int] — [@\Int]) A
[aVInt] — [(e\Int)VBool])
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1. Motivations —

A motivating example in Haskell (almost)

map :: (a—pf)— [a] — [F]
map f 1 = case 1 of
| [ —> ]

| (x : xs) -> (f x : map f xs)

even :: (Int—Bool) A ((@\Int) — (a\Int))
even x = case x of

| Int -> (x ‘mod® 2) == 0

| > x

We expect map even to have the following type:

[Int] — [Bool] ) A int lists are transformed into bool lists
[a\Int] — [a\Int] ) A lists w/o ints return the same type
[aVInt] — [(a\Int)VBool]) intsin the arg. are replaced by bools

Giuseppe Castagna Polymorphic Functions with Set-Theoretic Types 7/39



1. Motivations —

A motivating example in Haskell (almost)

map :: (a—pf)— [a] — [F]
map f 1 = case 1 of

| [1 > [

| (x : xs) -> (f x : map f xs)

even :: (Int—Bool) A ((@\Int) — (a\Int))
even x = case x of

| Int -> (x ‘mod® 2) == 0

| > x

We expect map even to have the following type:

[Int] — [Bool] ) A int lists are transformed into bool lists
[a\Int] — [a\Int] ) A lists w/o ints return the same type
[aVInt] — [(a\Int)VBool]) intsin the arg. are replaced by bools

Difficult because of expansion: needs a set of type substitutions —
rather than just one— to unify the domain and the argument types.
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2. Formal setting — IHP'14

Formal framework

i.e., all the gory details you do not
want the programmer to ever know
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2. Formal setting — IHP'14

Formal calculus

Exprs e = x | ee | \MelSivlixe | ect?e:e

Types t = B | t=t | tvt | tAt | =t | 0 | 1 | «
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A type-case:
@ abstracts regular type patterns
@ makes dynamic overloading possible
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2. Formal setting — IHP'14

Formal calculus

Exprs e = x | ee | \NVelsivlixe | ect?e:e

Expressions include:

A type-case:

@ abstracts regular type patterns

@ makes dynamic overloading possible

Explicitly-typed functions:

@ Needed by the type-case

@ More expressive with the result type (parameter type not enough)

\Niersi—tix e well typed if for all i€l from x : s; we can deduce e : t,-.J
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Types t = B | t=t | tvt | tAt | =t | 0 | 1 | «

Types may be recursive and have a set-theoretic interpretation:
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Formal calculus

Types t = B | t=t | tvt | tAt | =t | 0 | 1 | «

Types may be recursive and have a set-theoretic interpretation:

Constructors: [Int]={0,1,—1,...}. [s — t] = all A-abstractions
that applied to arguments in [s] return only results in [t].
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Types t = B | t=t | tvt | tAt | =t | 0 | 1 | «

Types may be recursive and have a set-theoretic interpretation:

Constructors: [Int]={0,1,—1,...}. [s — t] = all A-abstractions
that applied to arguments in [s] return only results in [t].

Connectives have the corresponding set-theoretic interpretation:
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2. Formal setting — IHP'14

Formal calculus

Types t = B | t=t | tvt | tAt | =t | 0 | 1 | «

Types may be recursive and have a set-theoretic interpretation:

Constructors: [Int]={0,1,—1,...}. [s — t] = all A-abstractions
that applied to arguments in [s] return only results in [t].

Connectives have the corresponding set-theoretic interpretation:
[svil =[sJult]  [sAtl=[sIn(e]  [-t] =[]\ [¢]

Subtyping:

o , : def
@ it is defined as set-containment: s<t & [s] C[t];

Giuseppe Castagna Polymorphic Functions with Set-Theoretic Types



2. Formal setting — IHP'14

Formal calculus

Exprs e = x | ee | \MelSivlixe | ect?e:e

Types t = B | t=t | tvt | tAt | =t | 0 | 1 | «

Types may be recursive and have a set-theoretic interpretation:

Constructors: [Int]={0,1,—1,...}. [s — t] = all A-abstractions
that applied to arguments in [s] return only results in [t].

Connectives have the corresponding set-theoretic interpretation:
[svil =[sJult]  [sAtl=[sIn(e]  [-t] =[]\ [¢]

Subtyping with type variables:

@ it is defined as set-containment: s<t & [s] < [t]:
@ it is such that forall type-substitutions 0: s <t = so < to;
@ it is decidable. [ICFP2011].
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2. Formal setting — IHP'14

Formal calculus: new stuff

Exprs e = x | ee | \NVelsivlixe | ect?e:e

Types t = B | t=t | tvt | tAt | =t | 0 | 1 | «

Polymorphic functions.
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2. Formal setting — POPL 14

Formal calculus

Exprs e = x | ee | \Nelsivlixe | ect?e:e

Types t = B | t=t | tvt | tAt | =t | 0 | 1 [(a)

Polymorphic functions: The novelty of this work is that type vari-
ables can occur in the interfaces.
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Formal calculus: new stuff

Exprs e = x | ee | \MelSivlixe | ect?e:e

Types t = B | t=t | tvt | tAt | =t | 0 | 1 | «

Polymorphic functions: The novelty of this work is that type vari-
ables can occur in the interfaces.
Y A(}—)(}X‘X

polymorphic identity
° )\(aﬁ\ﬁ)/\aﬁﬁx.xx

auto-application
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Formal calculus: new stuff

Exprs e = x | ee | \MelSivlixe | ect?e:e

Types t = B | t=t | tvt | tAt | =t | 0 | 1 | «

Polymorphic functions: The novelty of this work is that type vari-
ables can occur in the interfaces.

o N\Y7%.x polymorphic identity
o Mo=BHha=Py sy auto-application

Meaning: types obtained by subsumption and by instantiation

e N 7% x:0—1 subsumption
@ A\ 7%.x:-Int subsumption
@ M\*7%.x:Int — Int instantiation-Q@zzg
@ \*7%x.x:Bool — Bool instantiation-Qzzg
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with intersection types and dynamic type-case
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2. Formal setting —

Formal calculus: new stuff

Exprs e = x | ee | \MelSivlixe | ect?e:e

Types t = B | t=t | tvt | tAt | =t | 0 | 1 | «

Problem

Define an explicitly typed, polymorphic calculus
with intersection types and dynamic type-case

Four simple points to show why dealing
with this blend is quite problematic J

Giuseppe Castagna
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2. Formal setting — IHP'14

1. Polymorphism needs instantiation:
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2. Formal setting — IHP'14

1. Polymorphism needs instantiation:
To apply A*7“x.x to 42 we must use the instance obtained by the
type substitution {Int/,}:

()\Int%lntx_x)42

we relabel the function by instantiating its interface.
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1. Polymorphism needs instantiation:
To apply A*7“x.x to 42 we must use the instance obtained by the
type substitution {Int/,}:

()\Int%lntx_x)42

we relabel the function by instantiating its interface.

2. Type-case needs explicit relabeling:

(A% N7 x)42 € Int—Int

(A% A7y x)true ¢ Int—Int

Interfaces determine A-abstractions'’s types [intrinsic semantics]
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3. Relabeling must be applied also on function bodies:
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1. Polymorphism needs instantiation:
To apply A*7“x.x to 42 we must use the instance obtained by the

type substitution {Int/,}:
()\Int%lntx_x)d‘cz

we relabel the function by instantiating its interface.

2. Type-case needs explicit relabeling:

(A7 79x A\ 7% .x)42 € Int—Int Ao NInt= Ity 49
(A0 OX N7y x)true ¢ Int—Int ~» \Bool=Booly tr e
Interfaces determine A-abstractions'’s types [intrinsic semantics]

3. Relabeling must be applied also on function bodies:
A “daffy” definition of identity:
()\QA)OLX'()\D(*)O(y'X)X)
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2. Formal setting — IHP'14

1. Polymorphism needs instantiation:
To apply A*7“x.x to 42 we must use the instance obtained by the
type substitution {Int/,}:

()\Int%lntx_x)42

we relabel the function by instantiating its interface.

2. Type-case needs explicit relabeling:

(A7 79x A\ 7% .x)42 € Int—Int Ao NInt= Ity 49
(A0 OX N7y x)true ¢ Int—Int ~» \Bool=Booly tr e
Interfaces determine A-abstractions'’s types [intrinsic semantics]

3. Relabeling must be applied also on function bodies:
A “daffy” definition of identity:

(A 7% (AT .x)x)
To apply it to 42, relabeling the outer A by {Int/,} does not
suffice:

(A0 42)42

is not well typed. The body must be relabeled as well, by applying
the {Int/,} yielding: (ATt 7Inty 42)42
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2. Formal setting — IHP'14

4. Relabeling the body is not always so straightforward:

Giuseppe Castagna Polymorphic Functions with Set-Theoretic Types 11/39



2. Formal setting — IHP'14

4. Relabeling the body is not always so straightforward:

© More than one type-substitution needed
@ Relabeling depends on the dynamic type of the argument
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4. Relabeling the body is not always so straightforward:

© More than one type-substitution needed
(2]

The identity function A*7“x.x has both these types:

Int—Int Bool—Bool
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4. Relabeling the body is not always so straightforward:

© More than one type-substitution needed
(2]

The identity function A*7“x.x has both these types:
(Int—Int) A (Bool—Bool)

So it has their intersection.
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4. Relabeling the body is not always so straightforward:

© More than one type-substitution needed
(2]

The identity function A*7“x.x has both these types:
(Int—Int) A (Bool—Bool)

So it has their intersection.
We can feed the identity A“7“x.x to a function which expects an
argument of the type above. But how do we relabel it?

Giuseppe Castagna Polymorphic Functions with Set-Theoretic Types 11/39



2. Formal setting — IHP'14

4. Relabeling the body is not always so straightforward:

© More than one type-substitution needed
(2]

The identity function A*7“x.x has both these types:
(Int—Int) A (Bool—Bool)

So it has their intersection.

We can feed the identity A“7“x.x to a function which expects an
argument of the type above. But how do we relabel it?
Intuitively: apply {Int/,} and {Bool/,} to the interface and
replace it by the intersection of the two instances:
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2. Formal setting — IHP'14

4. Relabeling the body is not always so straightforward:

© More than one type-substitution needed
(2]

The identity function A*7“x.x has both these types:
(Int—Int) A (Bool—Bool)

So it has their intersection.

We can feed the identity A“7“x.x to a function which expects an
argument of the type above. But how do we relabel it?
Intuitively: apply {Int/,} and {Bool/,} to the interface and
replace it by the intersection of the two instances:

(A(M%(XX.X)[{Int/Q{}, {Bool/a}] ~s A(Int—)Int)/\(Bool—>Bool)X.X

Giuseppe Castagna Polymorphic Functions with Set-Theoretic Types 11/39



2. Formal setting — IHP'14

4. Relabeling the body is not always so straightforward:

© More than one type-substitution needed
(2]

The identity function A*7“x.x has both these types:
(Int—Int) A (Bool—Bool)

So it has their intersection.

We can feed the identity A“7“x.x to a function which expects an
argument of the type above. But how do we relabel it?
Intuitively: apply {Int/,} and {Bool/,} to the interface and
replace it by the intersection of the two instances:

(A(k%(XX.X)[{Int/Q}, {Bool/a}] ~s A(Int—)Int)/\(Bool—>Bool)X.X

We applied a set of type substitutions: t[o;];c; = /\jc/to;
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4. Relabeling the body is not always so straightforward:

o
@ Relabeling depends on the dynamic type of the argument
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4. Relabeling the body is not always so straightforward:

o
@ Relabeling depends on the dynamic type of the argument

Consider again the daffy identity (A“7%x.(A“7%y.x)x).
It also has type

(Int—Int) A (Bool—Bool)
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4. Relabeling the body is not always so straightforward:

o

@ Relabeling depends on the dynamic type of the argument
Consider again the daffy identity (A“7%x.(A“7%y.x)x).
It also has type

(Int—Int) A (Bool—Bool)

Applying the set of substitutions [{Int/,}, {Bool/,}]| both to the
interface and the body yields an ill-typed term:

()\(Intﬂlnt)/\(BoolaBool) ()\(Intﬁlnt)A(BoolﬂBool

X )y .x)x)
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4. Relabeling the body is not always so straightforward:
o
@ Relabeling depends on the dynamic type of the argument
Consider again the daffy identity (A“7%x.(A“7%y.x)x).
It also has type

(Int—Int) A (Bool—Bool)

Applying the set of substitutions [{Int/,}, {Bool/,}]| both to the
interface and the body yields an ill-typed term:

()\(Intﬂlnt)/\(BoolaBool) ()\(Intﬁlnt)A(BoolﬂBool

X )y .x)x)

Let us see why
it is not well typed J
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2. Formal setting — IHP'14

In order to type

()\(Int—>Int)/\(Bool—>Bool) ‘()\(Int—>Int)/\(Bool—>Bool)

X y.x)x)

we must check that it has both types of the interface:
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2. Formal setting — IHP'14

In order to type

()\(Int—>Int)/\(Bool—>Bool)X‘()\(Int—>Int)/\(Bool—>Bool)y'X)X)

we must check that it has both types of the interface:
@ x:Inth ()\(Int—ﬂnt)/\(Bool—)Bool)y.X)X - Int

@ x :Bool ()\(Int—>1nt)/\(Bool—)Bool)y.X)X - Bool
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2. Formal setting — IHP'14

In order to type

()\(Int—>Int)/\(Bool—>Bool)X‘()\(Int—>Int)/\(Bool—>Bool)y'X)X)

we must check that it has both types of the interface:
@ x:Inth ()\(Int—ﬂnt)/\(Bool—)Bool)y.X)X - Int
@ x :Bool ()\(Int—>1nt)/\(Bool—)Bool)y.X)X - Bool

Both fail because \(Irt—+Int)A(Bool—Bool)y,  is not well typed
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2. Formal setting — IHP'14

In order to type

()\(Int—>Int)/\(Bool—>Bool)X‘()\(Int—>Int)/\(Bool—>Bool)y'X)X)

we must check that it has both types of the mterface
Q@ x:Inth ()\(Int—)Int)/\(Bool—)Bool)y X x: In »
@ x :Bool ()\(Int—ﬂnt)/\(Bool—)Bool)y X é}/

Both fail because )\(Int_)I“t)A(B°°1_>B°°1)y.X is not well typed
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2. Formal setting — IHP'14

In order to type

()\(Int—>Int)/\(Bool—>Bool) ()\(Int—>Int)/\(Bool—>Bool)

X. y.x)x)

we must check that it has both types of the mterface

Q@ x:Inth ( (Int—)Int)/\(Bool—)Bool)y X e i{' »
S

@ x :Bool ()\(Int—ﬂnt)/\(Bool—)Bool)y X S

Both fail because \(Irt—+Int)A(Bool—Bool)y,  is not well typed

Key idea

The relabeling of the body must change
according to the type of the parameter

Giuseppe Castagna Polymorphic Functions with Set-Theoretic Types 13/39
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In order to type

()\(Int—>Int)/\(Bool—>Bool) ()\(Int—>Int)/\(Bool—>Bool)

X. y.x)x)

we must check that it has both types of the mterface
Q@ x:Inth ()\(Int—)Int)/\(Bool—)Bool)y X x: In »
@ x :Bool ()\(Int—ﬂnt)/\(Bool—)Bool)y X é}/

Both fail because )\(Int_)I“t)A(B°°1_>B°°1)y.X is not well typed

Key idea

The relabeling of the body must change
according to the type of the parameter

In our example with (A“7%x.(A*7“y.x)x) and [{Int/,}, {Bool/,}]:
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In order to type

()\(Int—>Int)/\(Bool—>Bool) ()\(Int—>Int)/\(Bool—>Bool)

X. y.x)x)

we must check that it has both types of the mterface
Q@ x:Inth ()\(Int—)Int)/\(Bool—)Bool)y X x: In \)
@ x :Bool ()\(Int—ﬂnt)/\(Bool—)Bool)y X é}/

Both fail because )\(Int_*lnt)/\(B°°1_>B°°1)y.X is not well typed

Key idea

The relabeling of the body must change
according to the type of the parameter

In our example with (A*7*x.(A*7%y.x)x) and [{Int/,}, {Bool/,}]:
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2. Formal setting — IHP'14

In order to type

()\(Int—>Int)/\(Bool—>Bool) ()\(Int—>Int)/\(Bool—>Bool)

X. y.x)x)

we must check that it has both types of the mterface
Q@ x:Inth ()\(Int—)Int)/\(Bool—)Bool)y X x: In »
@ x :Bool ()\(Int—ﬂnt)/\(Bool—)Bool)y X é}/

Both fail because )\(Int_)I“t)A(B°°1_>B°°1)y.X is not well typed

Key idea

The relabeling of the body must change
according to the type of the parameter

In our example with (A*7*x.(A*7%y.x)x) and [{Int/,}, {Bool/,}]:

e (A\*7%y.x) must be relabeled as (\™** 72ty x) when x : Int;
o (A\“7“y.x) must be relabeled as (\B°°1Booly x) when x : Bool
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2. Formal setting — IHP'14

A new technique

Observation

This “dependent relabeling” is the stumbling block for the
definition of an explicitly-typed A-calculus with intersection types.
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A new technique

Observation

This “dependent relabeling” is the stumbling block for the
definition of an explicitly-typed A-calculus with intersection types.

Our new technique: “lazy” relabeling of bodies.

@ Decorate \-abstractions by sets of type-substitutions:
To pass the daffy identity to a function that expects
arguments of type (Int—Int) A (Bool—Bool)
first “lazily” relabel it as follows:

(At ooy (A7 y X))

Giuseppe Castagna Polymorphic Functions with Set-Theoretic Types 14/39



IHP 14

2. Formal setting —

A new technique

Observation

This “dependent relabeling” is the stumbling block for the
definition of an explicitly-typed A-calculus with intersection types.

Our new technique: “lazy” relabeling of bodies.

@ Decorate \-abstractions by sets of type-substitutions:
To pass the daffy identity to a function that expects
arguments of type (Int—Int) A (Bool—Bool)

first “lazily” relabel it as follows:
a—a a
(Al grooyy, X-(A" Ty x)x)

@ The decoration indicates that the function must be relabeled
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Observation

This “dependent relabeling” is the stumbling block for the
definition of an explicitly-typed A-calculus with intersection types.

Our new technique: “lazy” relabeling of bodies.

@ Decorate \-abstractions by sets of type-substitutions:
To pass the daffy identity to a function that expects
arguments of type (Int—Int) A (Bool—Bool)
first “lazily” relabel it as follows:

(At ooy (A7 y X))

@ The decoration indicates that the function must be relabeled
@ The relabeling will be actually propagated to the body of the
function at the moment of the reduction (lazy relabeling)
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2. Formal setting —

A new technique

Observation

This “dependent relabeling” is the stumbling block for the
definition of an explicitly-typed A-calculus with intersection types.

Our new technique: “lazy” relabeling of bodies.

@ Decorate \-abstractions by sets of type-substitutions:
To pass the daffy identity to a function that expects
arguments of type (Int—Int) A (Bool—Bool)
first “lazily” relabel it as follows:

(Ao ey - (A7 yx)x)

@ The decoration indicates that the function must be relabeled
@ The relabeling will be actually propagated to the body of the
function at the moment of the reduction (lazy relabeling)

@ The new decoration is statically used by the type system to

ensure soundness.
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2. Formal setting — IHP'14

Details follow, but remember we want to program in this language
en=x|ee| \NelsiTlixe|ect?e: e

No decorations: We do not want to oblige the programmer to
write any explicit type substitution.
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Details follow, but remember we want to program in this language
en=x|ee| \NelsiTlixe|ect?e: e

No decorations: We do not want to oblige the programmer to
write any explicit type substitution.

The technical development will proceed as follows:

@ Define a calculus with explicit type-substitutions and
decorated A-abstractions.

@ Define an inference system that deduces where to insert
explicit type-substitutions in a term of the language above

© Define a compilation and execution technique thanks to which
type substitutions are computed only when strictly necessary
(in general, as efficient as a monomorphic execution).
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2. Formal setting — IHP'14

Details follow, but remember we want to program in this language
en=x|ee| \NelsiTlixe|ect?e: e

No decorations: We do not want to oblige the programmer to
write any explicit type substitution.

The technical development will proceed as follows:

@ Define a calculus with explicit type-substitutions and
decorated A-abstractions.

@ Define an inference system that deduces where to insert
explicit type-substitutions in a term of the language above

© Define a compilation and execution technique thanks to which
type substitutions are computed only when strictly necessary
(in general, as efficient as a monomorphic execution).

Before proceeding we can already check our first yardstick:

even = \(It—Bool)A(a\Int—e\Int)y yeTnt? (x mod 2) =0 : x

a—f)—[al—[p]

map = ,um( o f.
Aed=Uy penil ?nil @ (F(mil), mf(mal))

Giuseppe Castagna Polymorphic Functions with Set-Theoretic Types



3. Explicit substitutions — IHP 14

A calculus with explicit
type-substitutions
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3. Explicit substitutions —

A calculus with explicit type-substitutions

Explicitly pinpoint where sets of type substitutions are applied:

Nie1si—t;

en=x|ee|A x.e|ect?e:e
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3. Explicit substitutions —

A calculus with explicit type-substitutions

Explicitly pinpoint where sets of type substitutions are applied:
NielSi—t;

en=x|ee| )\[O'j]jej x.e|ect?e: e elojic

Some examples:
© (A*7x.x)42

@ (x~oxx)[{Inta)]a2
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Some examples:

© (A*7x.x)42

@ (x~oxx)[{Inta)]a2

@ (a2
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3. Explicit substitutions —

A calculus with explicit type-substitutions

Explicitly pinpoint where sets of type substitutions are applied:

en=x|ee| )\[Aa’ﬁjf:ft"x.e |ect?e: e eloi]ic

Some examples:
© (A*7x.x)42

X ) (Tt |42

(
(Affr )42
(

A7 %% x)[{Bool/y }]42

Vg
Vg
©
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3. Explicit substitutions —

A calculus with explicit type-substitutions

Explicitly pinpoint where sets of type substitutions are applied:

/\/QISIAH:I

e: fx|ee|)\ x.e|ect?e: e elojic

Some examples:

© (A*7x.x)42
(A7 0% x)[{Int/a }]42
( u{ggg/ }]x.x)42

(A7 %x.x)[{BooL/n }]42
()\ IntHInt)HInty_yB)()\u’%ux_x)
(

AT Ity 3) (N0 xx) [{ Tt/ )

QO Q9K
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3. Explicit substitutions —

A calculus with explicit type-substitutions

Explicitly pinpoint where sets of type substitutions are applied:

/\/QISIAH:I

e: fx|ee|)\ x.e|ect?e: e elojic

Some examples:

© (A*7x.x)42

X ) [{ T 1|42
u{ggg/ ks X)42

X x)[{Booly 1|42

(
(
(
(AmeoIne)=Int ),y g)(\a—rax x)
(
(

QO Q9K

A Int~>Int)~>Inty y3)(A*7x.x)[{Int/y }])

\((Int—Int) A(Bool%Bool))%ty_e)(()\aﬁuxlx)[{lnt/(y}7 {Bool/a}])
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3. Explicit substitutions —

Reduction semantics

en=x|ee| /\[Aojﬁjf:’ft’x.e | ect?e: el e[oi]ic
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3. Explicit substitutions —

Reduction semantics

en=x|ee| /\[Aojﬁjf:’ft’x.e | ect?e: el e[oi]ic J

Relabeling operation eQ[o/];c ;: pushes the type substitutions
into the decorations of the \'s inside e
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3. Explicit substitutions —

Reduction semantics

Nielsi—ti
e =x|ee| )\[aﬁjf;_)tx.e | ect?e: el e[oi]ie J
Relabeling operation eQ[o/];c : [Pushes o's down into \'s]
x@lojljes = x
eltj i def iellj i
()\[A(;L]lktgis X'e)©[(rj]j€J - [ACM\]/:;:?;[U/]J'?JX'G
(e12)Q[o]jes = (e10Q[oj]jes)(€20[0]je )
def
(eEt?el : 32)©[O'j]j6_j = e@[(TJ'LgJGt?el@[(fj]ng : 62@[0'j]j6_j
def
(eloklkek)@lojljcs = e@([ok]kek © [ojljes)
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3. Explicit substitutions —

Reduction semantics

e:=x|ee| )\[Aa’ﬁjfz_)t’x.e |ect?e: e e[oi]ic J
Relabeling operation eQ[o/];c : [Pushes o's down into \'s]

def Nielti—s;

Nieiti—>s;
Modeer X@)Clojlies = Aoq,liologe, €

[ok]kek
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3. Explicit substitutions — POPL’'14

Reduction semantics

en=x|ee| )\[Ag’ﬁjf:ft"x.e | ect?e: e e[oi]ie J
Relabeling operation eQ[o/];c : [Pushes o's down into \'s]

Aieiti—s; {
A €T x e
( [oklkek )

Giuseppe Castagna Polymorphic Functions with Set-Theoretic Types



3. Explicit substitutions —

Reduction semantics

e:=x|ee| )\[Aa’ﬁjfz_)t’x.e |ect?e: e e[oi]ic J
Relabeling operation eQ[o/];c : [Pushes o's down into \'s]

def Nielti—s;

Nieiti—>s;
Modeer X@)Clojlies = Aoq,liologe, €

[ok]kek
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3. Explicit substitutions —

Reduction semantics

e:=x|ee| )\[Aa’ﬁjfz_)t’x.e |ect?e: e e[oi]ic J
Relabeling operation eQ[o/];c : [Pushes o's down into \'s]

def Nielti—s;

Nieiti—>s;
Modeer X@)Clojlies = Aoq,liologe, €

[ok]kek

Notions of reduction:
elojlics ~ eQ[ojljey
(AS50ix ey~ (eQ[ojljep){Wx} P ={jeJ | 3icl,F v tio;}

lojljes
eqg if Fv:t

vEtTe e ~~» .
ctre: e {ez otherwise
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3. Explicit substitutions —

Reduction semantics

e:=x|ee| )\[Aa’ﬁjfz_)t’x.e |ect?e: e e[oi]ic J
Relabeling operation eQ[o/];c : [Pushes o's down into \'s]

Notions of reduction:
elojlics ~ eQ[ojljcy
()\[Aa’ﬁ;et’fs’x.e)v ~  (eQ[ojliep){Vix} P ={jeJ|3icl,Fv: tio;}

eg if Fv:t
? : i
vet7e e ~ { e otherwise
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3. Explicit substitutions —

Reduction semantics

e:=x|ee| )\[Aa’ﬁjfz_)t’x.e |ect?e: e e[oi]ic J
Relabeling operation eQ[o/];c : [Pushes o's down into \'s]

Only keep the substitutions

that make the type of the

argument v match at least
one input type of the interface

Notions of reductiorm
elojlics ~ e@lojljey
Al xe)v ~ (e@lojliep){vi} P ={jeJ | JielF v : tioj}

eg if Fv:t
? : i
vet7e e ~ { e otherwise
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3. Explicit substitutions —

Example

()\“_mx.()\“‘_my.x)x)
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3. Explicit substitutions —

Example

)\(Int%Int)/\(Bool%Bool)Z.()\o—)ox‘()\a—w),y.x)x)z
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3. Explicit substitutions —

Example

)\(Int%Int)/\(Bool%Bool)z.()\o—)nx‘()\a—ﬂly.x)x) [{Int/ﬂ}7 {Bool/n,}]z
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3. Explicit substitutions — IHP 14

Example

()\(Int—)Int)/\(Bool%Bool)Z.(An—)nx‘()\a—ﬂly.x)x) [{Int/ﬂ}a {5001/01}12)42
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3. Explicit substitutions — IHP 14

Example

()\(Int—)Int)/\(Bool%Bool)Z.(An—)nx‘()\a—ﬂly.x)x) [{Int/ﬂ}a {5001/01}12)42

IO (AR
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3. Explicit substitutions — IHP 14

Example

()\(Int—)Int)/\(Bool%Bool)Z.(An—)nx‘()\a—ﬂly.x)x) [{Int/ﬂ}a {5001/01}12)42
~ (Au—ﬂx,x‘()\(\c—w\cy'x)x) [{Int/a}_/ {Bool/(y}]42

>

( ([L{ﬁ(t“,'/ﬂ}{BoOl/“}] X. ()\(l,—>u,y.x)x)42

Giuseppe Castagna Polymorphic Functions with Set-Theoretic Types 19/39



3. Explicit substitutions — IHP 14

Example

()\(Int—)Int)/\(Bool%Bool)Z.(An—)nx‘()\a—ﬂly.x)x) [{Int/ﬂ}a {5001/01}12)42
~ (Au—ﬂx,x‘()\(\c—w\cy'x)x) [{Int/a}_/ {Bool/(y}]42

>

( ([L{ﬁ(t“,'/ﬂ}{BoOl/“}] X. ()\(l,—>u,y.x)x)42

~ ()\Int—)lnty.42)42
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3. Explicit substitutions — POPL'14

Example

()\(Int%Int)/\(Bool%Bool)Z.()\a—)t}X‘(Aa—)ay‘X)X) [{Int/a}7 {BOO]./Q}]Z)ZLQ
o (AT x)x) (I8t ), {Bool/o }]a2

a—Q
A[(Tat),} {Bool, )X
{Boolya)

e

~  (KIm1a8) 40)a0

/)

~

(AT Yy x)x)42

no Bool here
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3. Explicit substitutions — IHP 14

Example

()\(Int—)Int)/\(Bool%Bool)Z.(An—)nx‘()\a—ﬂly.x)x) [{Int/ﬂ}a {5001/01}12)42
~ (Au—ﬂx,x‘()\(\c—w\cy'x)x) [{Int/a}_/ {Bool/(y}]42

>

( i){ﬁ(%/(y}7{B001/a}] X. ()\(l,—>u,y.x)x)42

~ ()\Int—)lnty.42)42
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3. Explicit substitutions — IHP 14

Example

()\(Int%lnt)/\(Bool%Bool)z.()\0—>0X‘()\Oc—>azy.x)x) [{Int/ﬂ}a {5001/01}12)42

o (A7 (AT x)x)[{Int/, }, {Bool/, }]a2

~> (Ai){ﬁ(%/(Y}]X()\(}_)[}yX)X)42

~  (AIREIREy 40Yg0 = ((A\*7*y.x)x)Q[{Int/q }]){42/x}

Giuseppe Castagna Polymorphic Functions with Set-Theoretic Types 19/39



3. Explicit substitutions — IHP 14

Example

()\(Int%lnt)/\(Bool%Bool)z.()\0—>0X‘()\Oc—>azy.x)x) [{Int/ﬂ}a {5001/01}12)42

o (A7 (AT x)x)[{Int/, }, {Bool/, }]a2

> O g 0 y00)e2

~  (AIREIREy 40Yg0 = ((A\*7*y.x)x)Q[{Int/q }]){42/x}

~ 42
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3. Explicit substitutions — IHP 14

Type system

(subsumption) (appl)
e 1 <t et — b lFe:f
lFe:tb ety
(inst)
[Fe:t ir
0j
M+ e[oj]jeJ Z/\ to;
jed
(abstr)
r,X:t,'Uer[Uj]ZS,'(Tj iel
Nie1ti—>s; . . L JG J
I )\[Uj]jg x.e: /\ tioj — si0;
ieljed

[plus the rules for type-case and variables]
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3. Explicit substitutions — IHP 14

Type system

(subsumption) (appl)
e 1 <t et — b lFe:f
lFe:tb ety
(inst)
[Fe:t ir
0j
I+ elojljcy :/\ to;
jed
(abstr)
M,x:tiojF el[oj] : sioj icl
Nielti—s; ) . i JGJ
r )\[Uj]jeJ Xx.e: /\ tioj — sio;j
ieljed

[plus the rules for type-case and variables]
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3. Explicit substitutions — IHP 14

Type system

(subsumption) (appl)
e 1 <t et — b lFe:f
lFe:tb ety
(inst)
et ir
gj
I+ elojljcy :/\ to;
Jjed
(abstr)
Nx:t ke . Si iel
([ /\/\ielt'.ﬁsix.e : /\ ti —s;
i€l

[plus the rules for type-case and variables]
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3. Explicit substitutions — IHP 14

Type system

(subsumption) (appl)
e 1 <t et — b lFe:f
lFe:tb ety
(inst)
[Fe:t ir
0j
I+ elojljcy :/\ to;
jed
(abstr)
r,X:t,'UJ'F(:‘[O'J']ZS,'O'J' iel
Niel1ti—s; . jp . JEJ
I /\[Uj]jeJ x.e: /\ tioj — si0;
ieljed

[plus the rules for type-case and variables]
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3. Explicit substitutions — IHP 14

Properties

Theorem (Subject Reduction)
For every term e and type t, ifT - e:tand e~ €', thenT - ¢’ : t.

Theorem (Progress)

Let e be a well-typed closed term. If e is not a value, then there
exists a term €' such that e ~ €.
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3. Explicit substitutions — IHP 14

Properties

Theorem (Subject Reduction)
For every term e and type t, if - e:tand e~ €, thenl - ¢ : t.

Theorem (Progress)

Let e be a well-typed closed term. If e is not a value, then there
exists a term €' such that e ~ €.

Theorem

| \

Let Fpcp be Barendregt, Coppo, and Dezani, typing, and [e] the
type erasure of e. Ifbgcp a: t, then Je s.t. e : t and [e] = a.

v
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3. Explicit substitutions — IHP 14

Properties

Theorem (Subject Reduction)
For every term e and type t, if - e:tand e~ €, thenl - ¢ : t.

Theorem (Progress)

Let e be a well-typed closed term. If e is not a value, then there
exists a term €' such that e ~ €.

| \

Theorem

Let Fpcp be Barendregt, Coppo, and Dezani, typing, and [e] the
type erasure of e. Ifbgcp a: t, then Je s.t. e : t and [e] = a.

v

Note that

e = x ‘ ce | )\/\ielsi_>fi
- o]

e, xe |ect?e:e | eloic
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3. Explicit substitutions — IHP 14

Properties

Theorem (Subject Reduction)
For every term e and type t, if - e:tand e~ €, thenl - ¢ : t.

Theorem (Progress)

Let e be a well-typed closed term. If e is not a value, then there
exists a term €' such that e ~ €.

| \

Theorem

Let Fpcp be Barendregt, Coppo, and Dezani, typing, and [e] the
type erasure of e. Ifbgcp a: t, then Je s.t. e : t and [e] = a.

v

Note that

e = x ‘ ce | )\/\ielsi_>fi
- o]

e, xe |ect?e:e | eloilic
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3. Explicit substitutions — IHP 14

Properties

Theorem (Subject Reduction)
For every term e and type t, if - e:tand e~ €, thenl - ¢ : t.

Theorem (Progress)

Let e be a well-typed closed term. If e is not a value, then there
exists a term €' such that e ~ €.

| \

Theorem

Let Fpcp be Barendregt, Coppo, and Dezani, typing, and [e] the
type erasure of e. Ifbgcp a: t, then Je s.t. e : t and [e] = a.

v

Note that

Nieisi—t;
e = x|ee| 'S ’x.e\eEt?e:eW
[ojljes :
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3. Explicit substitutions — IHP 14

Properties

Theorem (Subject Reduction)
For every term e and type t, if - e:tand e~ €, thenl - ¢ : t.

Theorem (Progress)

Let e be a well-typed closed term. If e is not a value, then there
exists a term €' such that e ~ €.

| \

Theorem

Let Fpcp be Barendregt, Coppo, and Dezani, typing, and [e] the
type erasure of e. Ifbgcp a: t, then Je s.t. e : t and [e] = a.

v

Note that

Nieisi—t;
e = x|ee| 'S ’x.e\eEt?e:eW
[ojljes :

satisfies the above theorem and is closed by reduction.
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3. Explicit substitutions — IHP 14

Properties

Theorem (Subject Reduction)
For every term e and type t, if[ -e:tand e~ €, thenT ¢’ : t

Theorem (Progress)

Let e be a well-typed closed term. If e is not a value, then there
exists a term €' such that e ~ €

| \

Theorem

Let Fpcp be Barendregt, Coppo, and Dezani, typing, and [e] the
type erasure of e. Ifbgcp a: t, then Je s.t. e : t and [e] = a.

v

Note that

e = x|ee] )\A’G’s’_)t’ x.e | W W

satisfies the above theorem and is closed by reduction, too.
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3. Explicit substitutions — IHP 14

Properties

Theorem (Subject Reduction)
For every term e and type t, if - e:tand e~ €, thenl - ¢ : t.

Theorem (Progress)

Let e be a well-typed closed term. If e is not a value, then there
exists a term €' such that e ~ €.

| \

Theorem

Let Fpcp be Barendregt, Coppo, and Dezani, typing, and [e] the
type erasure of e. Ifbgcp a: t, then Je s.t. e : t and [e] = a.

v

Note that

Nielsi—t;

o, X€ |ect?e:e | eloi]ie

e = x|ee|A

The first n terms (n = 3,4,5) form an explicitly-typed A-calculus
with intersection types subsuming BCD.
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3. Explicit substitutions — IHP 14

Properties

The definitions we gave:

even = \(Int—=Bool)A(a\Int—o\Int)y s eTnt 2 (x mod2) =0: x

a—f)—[al—[5] F

AI=01y penil 7nil : (F(ml), mf(mal))

map = puml

are well typed.
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3. Explicit substitutions — IHP 14

Properties

The definitions we gave:

even = \(Int—=Bool)A(a\Int—o\Int)y s eTnt 2 (x mod2) =0: x
map = Mm(a%;ff)%[a]%[ﬁ] f.
Aed=Uy penil ?nil : (F(mil), mf(mal))

are well typed.

A vyardstick for the language

« Can define both map and even
' Can check the types specified in the signature

@ Can deduce the type of the partial application map even
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4. Inference system — IHP'14

Inference of explicit
type-substitutions
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4. Inference system — IHP'14

Two problems:

@ Local type-substitution inference: Given a term of

e=x|ee| \NVesiZtixe| ect?e: e |

find a sound & complete algorithm that, whenever possible, in-
serts sets of type-substitutions making it a well-typed term of

en=x| ee| )\f\]ielsi_)tix-e |ect?e: e elojjey J
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4. Inference system — IHP'14

Two problems:

@ Local type-substitution inference: Given a term of

e=x|ee| \NVesiZtixe| ect?e: e |

find a sound & complete algorithm that, whenever possible, in-
serts sets of type-substitutions making it a well-typed term of

en=x| ee| )\f\]ielsi_)tix-e |ect?e: e elojjey J

(and, yes, the type inferred for map even is as expected)
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4. Inference system — IHP'14

Two problems:

@ Local type-substitution inference: Given a term of

e=x|ee| \NVesiZtixe| ect?e: e |

find a sound & complete algorithm that, whenever possible, in-
serts sets of type-substitutions making it a well-typed term of

/\,615,—)1’,

e: _x|ee])\ x.e|ect?e: e|efoj]jcy J

(and, yes, the type inferred for map even is as expected)

@ Type reconstruction: Given a term

Ax.e )
find, if possible, a set of type-substitutions [o}];c; such that
a— 3

)\[O?]ZEJ J

is well typed
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4. Inference system —

Local Type-Substitution Inference

Given a term of

en=x|ee| \Vi€lSi7lixe|ect?e: e J

Infer whether it is possible to insert sets of type-substitutions in it
to make it a well-typed term of

e =x|ee| )\E\]"E’sﬁt"x-e |ect?e:e|e[oj]jes J
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4. Inference system —

Local Type-Substitution Inference

Given a term of

en=x|ee| \Vi€lSi7lixe|ect?e: e J

Infer whether it is possible to insert sets of type-substitutions in it
to make it a well-typed term of

e =x|ee| )\E\]"E’sﬁt"x-e |ect?e:e|e[oj]jes J

No inference for
decorations of A's
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4. Inference system —

Local Type-Substitution Inference

Given a term of

en=x|ee| \Vi€lSi7lixe|ect?e: e J

Infer whether it is possible to insert sets of type-substitutions in it
to make it a well-typed term of

e =x|ee| )\E\]"E’sﬁt"x-e |ect?e:e|e[oj]jes J

No inference for
decorations of A's

The reason is purely practical:

@ \“7%x.3 must return a static type error
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4. Inference system —

Local Type-Substitution Inference

Given a term of

en=x|ee| \Vi€lSi7lixe|ect?e: e J

Infer whether it is possible to insert sets of type-substitutions in it
to make it a well-typed term of

e =x|ee| )\E\]"E’sﬁt"x-e |ect?e:e|e[oj]jes J

No inference for
decorations of A's

The reason is purely practical:
@ \“7%x.3 must return a static type error

o If we infer decorations, then it can be typed: f{‘ﬁé}u}XB
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4. Inference system — IHP'14

The rule for applications

1. In the type system: [with explicit type-subst.]

(AppL)
e :s—u lFe:s

Fl—eleg:u

[The type of the function is subsumed to an arrow and the type of the
argument is subsumed to the domain of this arrow].
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4. Inference system — IHP'14

The rule for applications

1. In the type system: [with explicit type-subst.]
(AppL)
e :s—u lFe:s
M+ €16 . U
2. Subsumption elimination: [with explicit type-subst.]

(APPL-ALGORITHM)
r}_.Ael:t rl__Ae2:5 t<0—1
MFaere:min{u |t <s— u} s < dom(t)
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The rule for applications

1. In the type system: [with explicit type-subst.]
(AppL)
e :s—u lFe:s
M+ €16 . U
2. Subsumption elimination: [with explicit type-subst.]

(APPL-ALGORITHM)
r}_.Ael:t rl__Ae2:5 t<0—1
MFaere:min{u |t <s— u} s < dom(t
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The rule for applications

1. In the type system: [with explicit type-subst.]
(AppL)
e :s—u lFe:s
M+ €16 . U
2. Subsumption elimination: [with explicit type-subst.]

(APPL-ALGORITHM)
r}_.Ael:t rl__Ae2:5 t<0—1
MFaere:min{u |t <s— u} s < dom(t)
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4. Inference system — IHP'14

The rule for applications

1. In the type system: [with explicit type-subst.]
(AppL)
e :s—u lFe:s
M+ €16 . U
2. Subsumption elimination: [with explicit type-subst.]

(APPL-ALGORITHM)
r}_.Ael:t rl__Ae2:5 t<0—1
MFaere:min{u |t <s— u} s < dom(t)

3. Inference of type substitutions [w/o explicit type-subst.]
(APPL-INFERENCE)
oiicr lojlies Thre:t Thre:s 4., <051
Mz erer s min{u | tlofljes < soilie — u} sl < dom(tlojle))
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4. Inference system — IHP'14

The rule for applications

1. In the type system: [with explicit type-subst.]
(AppL)
e :s—u lFe:s
M+ €16 . U
2. Subsumption elimination: [with explicit type-subst.]

(APPL-ALGORITHM)
r}_.Ael:t rl__Ae2:5 t<0—1
MFaere:min{u |t <s— u} s < dom(t)

Tion
3. Inference of type su%qgo'holl o.bisli1>/° explicit type-subst.]

(APRL-INEERENZE)
3[0,’],‘@,[0’}]]6_/ [Fre :t rl—zegisﬁ;.go_ﬂl

~——— . /
Mz ee: min{u| tlof]jes < sloilier — u} s[oi]ier < dom(t[o]]je
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4. Inference system — IHP'14

Tallying problem

The problem of inferring the type of an application is thus to find
for s and t given, two sets [0]c/, [07]je, such that:

tloiljes <0—1 and  s[oilies < dom(t[o}]jes)
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4. Inference system — IHP'14

Tallying problem

The problem of inferring the type of an application is thus to find
for s and t given, two sets [0]c/, [07]je, such that:

tloiljes <0—1 and  s[oilies < dom(t[o}]jes)

This can be reduced to solving a suite of tallying problems:

Definition (Type tallying)

Let s and t be two types. A type-substitution o is a solution for
the tallying of (s, t) iff so < to.
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4. Inference system — IHP'14

Tallying problem

The problem of inferring the type of an application is thus to find
for s and t given, two sets [0]c/, [07]je, such that:

tloiljes <0—1 and  s[oilies < dom(t[o}]jes)

This can be reduced to solving a suite of tallying problems:

Definition (Type tallying)
Let s and t be two types. A type-substitution o is a solution for
the tallying of (s, t) iff so < to.

Generally: let C = {(s1 < t1),...,(sn < tn)} a constraint set. A
type-substitution o is a solution for the tallying of C iff so < to
forall (s <t)e C.
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4. Inference system — IHP'14

Tallying problem

The problem of inferring the type of an application is thus to find
for s and t given, two sets [0]c/, [07]je, such that:

tloiljes <0—1 and  s[oilies < dom(t[o}]jes)

This can be reduced to solving a suite of tallying problems:

Definition (Type tallying)

Let s and t be two types. A type-substitution o is a solution for
the tallying of (s, t) iff so < to.

Generally: let C = {(s1 < t1),...,(sn < tn)} a constraint set. A

type-substitution o is a solution for the tallying of C iff so < to
forall (s <t)e C.

Type tallying is decidable and a sound and complete set of
solutions for every tallying problem can be effectively found in
three simple steps.
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4. Inference system — IHP'14

Step 1: Decompose constraints.
Use the set-theoretic decomposition rules to transform C into a set
of constraint sets whose constraints are of the form o < tor t < .
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4. Inference system — IHP'14

Step 1: Decompose constraints.
Use the set-theoretic decomposition rules to transform C into a set
of constraint sets whose constraints are of the form a < tor t < a.

Example:
1. {(51 -t <s— tz)} ~r {(52 < 0)} or {(52 < 51),(1'1 < tg)}
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4. Inference system — IHP'14

Step 1: Decompose constraints.
Use the set-theoretic decomposition rules to transform C into a set
of constraint sets whose constraints are of the form o < tor t < a.
Step 2: Merge constraints on the same variable.
o if a<t; and o<t are in C, then replace them by o < t1Aty;
o if s;<a and sp<a are in C, then replace them by s1Vs, < o
Possibly decompose the new constraints generated by transitivity.
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4. Inference system — IHP'14

Step 1: Decompose constraints.
Use the set-theoretic decomposition rules to transform C into a set
of constraint sets whose constraints are of the form o < tor t < a.
Step 2: Merge constraints on the same variable.
o if a<t; and o<t are in C, then replace them by o < t1Aty;
o if s;<a and sp<a are in C, then replace them by s1Vs, < o
Possibly decompose the new constraints generated by transitivity.

Example:

2. {(Int < ),(Bool < a)} ~ {(IntVBool <a)}
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4. Inference system — IHP'14

Step 1: Decompose constraints.
Use the set-theoretic decomposition rules to transform C into a set
of constraint sets whose constraints are of the form o < tor t < a.
Step 2: Merge constraints on the same variable.
o if a<t; and o<t are in C, then replace them by o < t1Aty;
o if s;<a and sp<a are in C, then replace them by s1Vs, < o
Possibly decompose the new constraints generated by transitivity.
Step 3: Transform into a set of equations.
After Step 2 we have constraint-sets of the form
{si<a;<tj | i € [1..n]} where «; are pairwise distinct.
@ select s < o < t and replace it by av = (sV3)At with /3 fresh.
@ substitute (sV/3)At for all a in the other constraints of C
© repeat with another constraint
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Step 1: Decompose constraints.
Use the set-theoretic decomposition rules to transform C into a set
of constraint sets whose constraints are of the form o < tor t < a.
Step 2: Merge constraints on the same variable.
o if a<t; and o<t are in C, then replace them by o < t1Aty;
o if s;<a and sp<a are in C, then replace them by s1Vs, < o
Possibly decompose the new constraints generated by transitivity.
Step 3: Transform into a set of equations.
After Step 2 we have constraint-sets of the form
{si<a;<tj | i € [1..n]} where «; are pairwise distinct.
@ select s < o < t and replace it by av = (sV3)At with /3 fresh.
@ substitute (sV/3)At for all a in the other constraints of C
© repeat with another constraint

Example:

3. {(Int < a3 < Real), (a2 < ayAInt)}
~ {aj; = (IntVS)AReal), (ap = Int)}
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4. Inference system — IHP'14

Step 1: Decompose constraints.
Use the set-theoretic decomposition rules to transform C into a set
of constraint sets whose constraints are of the form oo < tor t < «.
Step 2: Merge constraints on the same variable.
o if a<t; and o<t are in C, then replace them by o < t1Aty;
o if s;<a and s,<« are in C, then replace them by s1Vs, < o
Possibly decompose the new constraints generated by transitivity.
Step 3: Transform into a set of equations.
After Step 2 we have constraint-sets of the form
{si<a;<tj | i € [1..n]} where «; are pairwise distinct.
@ select s < o < t and replace it by oo = (sV)At with /3 fresh.
@ substitute (sV3)At for all o in the other constraints of C
© repeat with another constraint

At the end we have a sets of equations {«; = uj | i € [1..n]} that
(with some care) are contractive. By Courcelle there exists a
solution, ie, a substitution for a1, ..., v, into (possibly recursive
regular) types ti, ..., t, (in which the fresh 's are free variables).
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4. Inference system — IHP'14

Example: map even

Start with the following tallying problem:
((M1—>331)—> [(1’1] — [“[))1] < sy
where s = (Int—Bool)A(a\Int—a\Int) is the type of even
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4. Inference system — IHP'14

Example: map even

Start with the following tallying problem:
((M1—>331)—> [(1’1] — [“[))1] < sy
where s = (Int—Bool)A(a\Int—a\Int) is the type of even
@ The algorithm generates 9 constraint-sets: one is unsatisfiable

(s < 0); four are implied by the others; remain
{y 2 laul—=1[51] , 1 <0},
{v > [e1]1—=[51]1, a1<Int, Bool<[;},
{v> [a1l—=1[p1] , aa<a\Int, o\Int<f;},
{v > [1]1—=1[/1] , aca<aVInt, (o\Int)VBool<f;};
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4. Inference system — IHP'14

Example: map even

Start with the following tallying problem:
((M1—>331)—> [(1’1] — [“[))1] < sy
where s = (Int—Bool)A(a\Int—a\Int) is the type of even
@ The algorithm generates 9 constraint-sets: one is unsatisfiable
(s < 0); four are implied by the others; remain
{y 2 laul—=1[51] , 1 <0},
{v > [e1]1—=[51]1, a1<Int, Bool<[;},
{v> [a1l—=1[p1] , aa<a\Int, o\Int<f;},
{v > [1]1—=1[/1] , aca<aVInt, (o\Int)VBool<f;};
@ Four solutions for 7y:
{v=0-10},
{y = [Int]—[Booll},
{v = [@\Int] —[a\Int]},
{7 = [aVInt]l— [(o/\Int)VBooll }.
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4. Inference system — IHP'14

Example: map even

Start with the following tallying problem:
((M1—>331)—> [(1’1] — [“[))1] < sy
where s = (Int—Bool)A(a\Int—a\Int) is the type of even
@ The algorithm generates 9 constraint-sets: one is unsatisfiable
(s < 0); four are implied by the others; remain
{y 2 laul—=1[51] , 1 <0},
{v > [e1]1—=[51]1, a1<Int, Bool<[;},
{v> [a1l—=1[p1] , aa<a\Int, o\Int<f;},
{v > [1]1—=1[/1] , aca<aVInt, (o\Int)VBool<f;};
@ Four solutions for 7y:
{v=0-10},
{y = [Int]—[Booll},
{v = [@\Int] —[a\Int]},
{7 = [aVInt]l— [(o/\Int)VBooll }.
@ The last two are minimal and we take their intersection:
{7 = ([\Int]— [\ Int])A([aVInt] — [(o\Int)VBooll)}
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4. Inference system — IHP'14

On completeness and decidability

The algorithm produces a set of solutions that is sound (it finds
only correct solutions) and complete (any other solution can be
derived from them).
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4. Inference system — IHP'14

On completeness and decidability

The algorithm produces a set of solutions that is sound (it finds
only correct solutions) and complete (any other solution can be
derived from them).

Decidability: The algorithm is a semi-decision procedure. We
conjecture decidability (N.B.: the problem is unrelated to type-
reconstruction for intersection types since we have recursive types).
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4. Inference system — IHP'14

On completeness and decidability

The algorithm produces a set of solutions that is sound (it finds
only correct solutions) and complete (any other solution can be
derived from them).

Decidability: The algorithm is a semi-decision procedure. We
conjecture decidability (N.B.: the problem is unrelated to type-
reconstruction for intersection types since we have recursive types).

Completeness: For every solution of the inference problem, our
algorithm finds an equivalent or more general solution. However,
this solution is not necessary the first solution found.

In a dully execution of the algorithm on map even the good
solution is the second one.
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4. Inference system — IHP'14

On completeness and decidability

The algorithm produces a set of solutions that is sound (it finds
only correct solutions) and complete (any other solution can be
derived from them).

Decidability: The algorithm is a semi-decision procedure. We
conjecture decidability (N.B.: the problem is unrelated to type-
reconstruction for intersection types since we have recursive types).

Completeness: For every solution of the inference problem, our
algorithm finds an equivalent or more general solution. However,
this solution is not necessary the first solution found.

In a dully execution of the algorithm on map even the good
solution is the second one.

Principality: This raises the problem of the existence of principal
types: may an infinite sequence of increasingly general solutions
exist?
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4. Inference system — IHP'14

Type reconstruction

@ Solve sets of contraint-sets by the tallying algorithm:

MNx:abre:t~S
MNg x:T(x)~ {2} N Mxe:a— B~ST{{(t<B8)}}

NlNre:ti ~8 NlFre:th~ S N rule for
Fhree:a~ S NS M{(t<t—a)}} typecase
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4. Inference system — IHP'14

Type reconstruction

@ Solve sets of contraint-sets by the tallying algorithm:

MNx:abre:t~S
MNg x:T(x)~ {2} N Mxe:a— B~ST{{(t<B8)}}

NlNre:ti ~8 NlFre:th~ S N rule for
Fhree:a~ S NS M{(t<t—a)}} typecase

@ Sound. it's a variant: fix interfaces and infer decorations
A3 7Px.e

Not complete: reconstruction is undecidable
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4. Inference system — IHP'14

Type reconstruction

@ Solve sets of contraint-sets by the tallying algorithm:

MNx:abre:t~S
MNg x:T(x)~ {2} N Mxe:a— B~ST{{(t<B8)}}

NlNre:ti ~8 NlFre:th~ S N rule for
Fhree:a~ S NS M{(t<t—a)}} typecase

@ Sound. it's a variant: fix interfaces and infer decorations
Ao x.e
Not complete: reconstruction is undecidable
@ It types more than ML
Ax.xx o pX.(aAN(X—=p)) = B (£ an(a—B))—B)
and for functions typable in ML, it deduces a type at least as good:
map: ((a—p) = lal—=[B1) A ((0—1) — [1—0)
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5. Evaluation — IHP 14

Efficient evaluation
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5. Evaluation —

orphic language

c| x| Mxe | ee | ect?e:e
= ¢ | (\'x.e &)
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5. Evaluation —

Monomorphic language

C
(CLOSURE) EFm Mx.ell (\x.e, &)

Ermerd (Nx.e &) EFmelw E x—wrmelv
Ermeelv

(AppPLY)
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5. Evaluation — POPL’14

Monomorphic language

m A'x.e |l (\'x.e

Ermerl (Mx.e &) EFmelw E x—wrmelv
Ermeelv

(AppPLY)
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5. Evaluation —

Monomorphic language

Ax.el (\'x.e

ey EFm et x. (€M) Sl—megllvoﬂb%vol— elv

EFm el

trestore The environment

POPL’14
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5. Evaluation —

Monomorphic language

c| x| AMxe | e | ectre:e
n= ¢ | (\'x.e,&)

(CLOSURE) — : :
Erm A xel (A'x.e &)

(A )ETFmeliL(/\tx.e.S’> Etme | w E x—wvtmelv
APPLY
Elrmee v
(TYPECASE TRUE) (TYPECASE FALSE)
5}_m61“V0 Vo Em t gFmEQ»U/V SFmelUvo Vogmt El—me3llv
Erme€t?e :e3lv Ermecet?e:e35v

cemt ¥ {c}<t
(Ax.eE)ent & s<t
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5. Evaluation —

Polymorphic language: naive implementation

e 1= c| x| Axe|e |ect?e:e | e
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5. Evaluation —

Polymorphic language: naive implementation

x| Aoxe| e | ect?re:e | eo

= ¢ |
n= ¢ | (AL x.e & o))
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5. Evaluation —

Polymorphic language: naive implementation

CLOSURE
( ) o€k, )\ffjx.e [} <)\§Jx.e,5,al>
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5. Evaluation — POPL’14

Polymorphic language: naive implementation

e u= c| x| Axe| e |ect?e:e| e
n= ¢ | (AL x.e & o))

sove The environment:

a/@p A x.e | (X x el Efay)

(CLOSURE)
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5. Evaluation — POPL’14

Polymorphic language: naive implementation

e u= c| x| Axe| e |ect?e:e| e
n= ¢ | (AL x.e & o))
sove The enw'ronmmt
(CLOSURE)

save cnrrent t}fac-ﬁu.bsl:‘latanf
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5. Evaluation —

Polymorphic language: naive implementation

ojoo;EFpellv

(CLOSURE) (INSTANCE)

o1, € Fp AL x.e | (X x.e,E,0y) o;EFyeo; v
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5. Evaluation —

Polymorphic language: naive implementation

e 1= c| x| Axe|e |ect?e:e | e
= c | (A xe& o))
oo, EF el v
(CLOSURE) : . (INSTANCE) = p e
o€ Fp Ay xe (A, x.e, & 0/) o;EFyeo; v
(ApPPLY)

on€Fpeald ()\é\}fﬂsf_}t‘fx.e,gl,am onétpelvw op i x—whpelv

o EFpee v

where 0y =oqookand P={je J |3l el: vy & se0j}
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5. Evaluation — POPL’14

Polymorphic language: naive implementation

e = x| Myxe| e | ect?e:e | eg

c |
n= ¢ | (AL x.e & 0y)

ojoo;EFpelv
(INSTANCE) o e

EFp AL x. A x.e &, EF
UI P O'_/X eU’< O—J):‘:ST&'CO-&}QQ ch-IYOhMch‘t UI P e(TJ‘U’ v

(AppPLY) \
o Ekperd ()\Q}fELS‘f—”‘fx.e@ onétpelvw op& i x—whpelv
o, EFpere v

(CLOSURE)

where 0y =oqookand P={je J |3 el: v & se0j}
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5. Evaluation — POPL’14

Polymorphic language: naive implementation

e 1= c| x| ANxe| e |ect?e:e | e
= c | (\,xe& o)
ojoo;EFpelv

(CLOSURE) : (INSTANCE) P

a/;é’l—p)\gjx.eil< xe501> o€ eo; v

res fore the cnv|ror\m<,nt

(AppPLY)
o€k e | ELs‘f_”‘fxe o€y el v JPE x> vohkpelv

J/E}— ee v
where 0y =oyoox and P={jle J |3l e L: vy & se0}

restore the type subshifufions
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5. Evaluation —

Polymorphic language: naive implementation

e 1= c| x| Axe| e |ect?e:e | e
= c | (\,xe& 0y
ojoo;EFpelv
(CLOSURE) : . (INSTANCE) J p e
o€ Fp Ay xe (A, x.e, & 0/) opEFyeo; v
(ApPPLY)
on€Fpeald ()\é\}fﬂsf_}t‘fx.e,gl,am o€y el Vo((;p; "'x—whkpelv

o EFpee v N~

where 0y =oqookand P={je J |3l el: vy & se0j}
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5. Evaluation —

Polymorphic language: naive implementation

e 1= c| x| Axe| e |ect?e:e | e
= c | (\,xe& 0y
ojoo;EFpelv
(CLOSURE) : . (INSTANCE) J p e
o€ Fp Ay xe (A, x.e, & 0/) opEFyeo; v
(ApPPLY)
on€Fpeald ()\é\}fﬂsf_}t‘fx.e,gl,am o€y el Vo((;p; "'x—whkpelv

o EFpee v N~

where 0y =oqookand P={je J |3l el: vy & se0j}

At every application compute op:
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5. Evaluation —

Polymorphic language: naive implementation

ojoo;EFpellv

(INSTANCE)

(CLOSURE)

o1, € Fp AL x.e | (X x.e,E,0y) opEFyeo; v

(ApPPLY)
on€Fpeald ()\é\}fﬂsf_}t‘fx.e,gl,am onétpelvw op & i x—whpelv
o EFpee v
Where@nd P={jeJd|3el:vwe,suj}

At every application compute op:

© compose of two sets of type-substitution
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5. Evaluation —

Polymorphic language: naive implementation

ojoo;EFpellv

(CLOSURE) (INSTANCE)

o1, € Fp AL x.e | (X x.e,E,0y) opEFyeo; v

(ApPPLY)
on€Fpeald ()\é\}fﬂsf_}t‘fx.e,gl,am onétpelvw op & i x—whpelv

o EFpee v
Where@n P={jeJd|3el:we,s0o;

At every application compute op:

© compose of two sets of type-substitution

@ select the substitutions compatible with the argument vy
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5. Evaluation —

Polymorphic language: naive implementation

x|)\xe\ee|e€t te | eoy
Hlxega/

oo, EF el v
(INSTANCE) = p e

CLOSURE
( q "‘)\txelL )\txeé’a/> opEFyeo; v

ﬁz\'s%tlx.e,g,,o'l_ﬁ O'I,g I—pegllVo O-P;EI,X'_)VO |_Pe‘U’V

o EFpee v
Where@n P={jeJd|3el:we,s0o;
"\\_\;\_

At every application compute op:

© compose of two sets of type-substitution

@ select the substitutions compatible with the argument vy
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5. Evaluation —

Polymorphic language: naive implementation

@

0J = OH © OK PI{j€J|E|€€LIVQEpSgO'j}

Compute compositions and selections lazily.
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5. Evaluation —

Intermediate language as compilation target

e = c| x| Axe|e | ect?e:e
= ¢ | (\'x.e€)
(CLOSURE)

EFAxel (\xe&)

ErFe | A\ x.e &) Erelw E x—whkelv

(AppPLY)
Erhee v
(TYPECASE TRUE) (TYPECASE FALSE)
Erelw wet EFelv Erelw Vogt Erheslv
EFecet?e 63V EFecet?e 63V

cet = {c}<t
Mxellet € s<t
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5. Evaluation — IHP 14
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Intermediate language as compilation target

e m= c| x| Axe | e | ectre:e

v o= ¢ | (Abx.e &)

Y == oy |comp(X,Y)|sel(x,t,X) symbolic substitutions
(CLOSURE)

EF Aixel (Mix.e &)

Ere | M\ixe &) Erelw E x—whkelv

(AppPLY)

EFee v
(TYPECASE TRUE) (TYPECASE FALSE)
Erelw wet EFelv Erelw V) Gomts El—e%llv
EFecet?e 63V EFe €t?el: V"y ’
<
o di evre/hC
( £x-e, et T s(eval(E, X)) <t
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Compilation

@ Compile into the intermediate language

[x]z = x
[[)\;X.e]]z - Azomp():’g,)x'[[eﬂsel(x,t,comp():,al))
[[€1€2ﬂz = [[ﬁﬂz[[@ﬂz
[[eo/]]): - [[EH comp(X,07)

[[el ct?e: G3HX Helﬂz ct? Iezﬂi : Ie3ﬂ2
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[[€1€2ﬂz = [[ﬁﬂz[[@ﬂz
[[eo/]]): - [[EH comp(X,07)

[[el ct?e: G3HX Helﬂz ct? Iezﬂi : Ie3ﬂ2

Q For (A\yx.e,&) et ' s(eval(£, X)) < t we have
s(eval(&,X)) # s only if \3-x.e results from the partial
application of a polymorphic function
(e, in s there occur free variables bound in the context).
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Compilation

@ Compile into the intermediate language

[x]z = x
[[)\;X.e]]z - Azomp():’g,)x'[[eﬂsel(x,t,comp():,al))
[[6162ﬂz = [[ﬁﬂz[[@ﬂz
[[eo/]]): - [eﬂ comp(X,0/)

[[el ct?e: 6‘3ﬂz Helﬂz ct? IGQHZ : Ie3ﬂ2

def

@ For (A\3x.e, &) €t = s(eval(£,X)) <t we have
s(eval(&,X)) # s only if \3-x.e results from the partial
application of a polymorphic function
(e, in s there occur free variables bound in the context).

Execution may be slowed only when testing the type of the
result of a partial application of a polymorphic function. J
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© Compilation can flag the functions that may require to
compute eval:

)\tzx.[[e]] sel(x,t,x) if var(t) Ndom(X) = &

Dxels = { A

’\)t:X' [e] sel(x,t,y) otherwise

and then we evaluate the symbolic substitutions only for
marked functions:

(Asxe)et — s<t
<5\Szx.e,5> et <5 s(eval(&,X)) <t
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© Compilation can flag the functions that may require to
compute eval:

)‘tzx-[[e]]sel(x,t,i) if var(t) N'dom(X) = &

Dxels = { A

’\)t:X' [e] sel(x,t,y) otherwise

and then we evaluate the symbolic substitutions only for
marked functions:

(\ixe&)et &5 s<t

<5\Szx.e,5> et <5 s(eval(&,X)) <t

@ This holds also with products (used to encode lists records and
XML), whose testing accounts for most of the execution time.
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© Compilation can flag the functions that may require to
compute eval:

[Mx.e]s = l)\‘tZX-[[e]]sel(x,t,z) if var(t) N'dom(X) = &
o ’\)tjx-[[e]]sel(x,tz) otherwise

and then we evaluate the symbolic substitutions only for

marked functions:

(\ixe&)et &5 s<t

<5\Szx.e,5> et <5 s(eval(&,X)) <t

@ This holds also with products (used to encode lists records and
XML), whose testing accounts for most of the execution time.

Bottom Line

The execution is as efficient as in the monorphic case, apart from a
single well identified exception
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Conclusion
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Theory: All the theoretical machinery necessary to design and
implement a programming language is there. The practical
relevance of the open theoretical issues is negligible.
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Runtime: Relabeling cannot be avoided but it is materialized only
in case of partial polymorphic applications that end up in
type-cases, that is, just when it is needed.

Implementation: Subtyping of polymorphic types require minimal
modifications to the implementation. Existing data structures
(e.g., binary decision trees with lazy unions) and optimizations
mostly transpose smoothly.
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Theory: All the theoretical machinery necessary to design and
implement a programming language is there. The practical
relevance of the open theoretical issues is negligible.

Languages: The implementation of the polymorphic extension of
CDuce is almost done (see git); we intend to study the definition
of polymorphic extensions of XQuery and to embed some of this
type machinery in ML (e.g., type balance for red-black trees).

Runtime: Relabeling cannot be avoided but it is materialized only
in case of partial polymorphic applications that end up in
type-cases, that is, just when it is needed.

Implementation: Subtyping of polymorphic types require minimal
modifications to the implementation. Existing data structures
(e.g., binary decision trees with lazy unions) and optimizations
mostly transpose smoothly.

Type reconstruction: Full usage needs more research, expecially
about the production of human readable types and helpful error
messages, but it is mature enough to use it to type local functions.
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Tallying problem

The problem of inferring the type of an application is thus to find
for s and t given, [o/]ic/, [0]]jes such that:

t[O’J/-]jGJ <0—1 and s[o]ie < dom(t[gj/’]jeJ)

This can be reduced to solving a suite of tallying problems:

Definition (Type tallying)

Let C ={(s1,t1),-..,(sn, tn)} a constraint set. A type-substitution
o is a solution for the tallying of C iff so < to for all (s, t) € C.
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Tallying problem

The problem of inferring the type of an application is thus to find
for s and t given, [o/]ic/, [0]]jes such that:

t[O’J/-]jGJ <0—1 and s[o]ie < dom(t[gj/’]jeJ)

This can be reduced to solving a suite of tallying problems:

Definition (Type tallying)

Let C ={(s1,t1),-..,(sn, tn)} a constraint set. A type-substitution
o is a solution for the tallying of C iff so < to for all (s, t) € C.

Type tallying is decidable and a sound and complete set of
solutions for every tallying problem can be effectively found in
three simple steps.
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Step 1: Decompose constraints.
Use the set-theoretic decomposition rules to transform C into a set
of constraint sets whose constraints are of the form («, t) or (¢, ).
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@ if (s1,) and (sp, ) are in C, then replace them by (s1Vs, @);
Possibly decompose the new constraints generated by transitivity.
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e if (o, t1) and (v, tp) are in C, then replace them by (o, tiAt2);
@ if (s1,) and (sp, ) are in C, then replace them by (s1Vs, @);
Possibly decompose the new constraints generated by transitivity.

Step 3: Transform into a set of equations.

After Step 2 we have constraint-sets of the form

{si<a;<t;j | i € [1..n]} where «; are pairwise distinct.
Q select s < a <t and replace it by oo = (sV3)At with [ fresh.
@ in all other constraints in replace every a by (sVJ)At
© repeat with another constraint
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Step 1: Decompose constraints.
Use the set-theoretic decomposition rules to transform C into a set
of constraint sets whose constraints are of the form («, t) or (¢, ).

Step 2: Merge constraints on the same variable.
e if (o, t1) and (v, tp) are in C, then replace them by (o, tiAt2);
@ if (s1,) and (s, ) are in C, then replace them by (s1Vsp, @);
Possibly decompose the new constraints generated by transitivity.

Step 3: Transform into a set of equations.

After Step 2 we have constraint-sets of the form

{si<a;<t;j | i € [1..n]} where «; are pairwise distinct.
Q select s < a <t and replace it by oo = (sV3)At with [ fresh.
@ in all other constraints in replace every a by (sVJ)At
© repeat with another constraint

At the end we have a sets of equations {«; = u; | i € [1..n]} that
(with some care) are contractive. By Courcelle there exists a
solution, ie, a substitution for a1, ..., v, into (possibly recursive
regular) types t1, ..., t, (in which the fresh 's are free variables).
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The application problem

Definition (Inference application problem)

Given s and t types, find [0/];c/ and [07];c; such that:
/\ta,- < 0—1 and /\saj < dom(/\to;)

icl JjeJ i€l

Giuseppe Castagna Polymorphic Functions with Set-Theoretic Types 44/39



6. Conclusion — IHP 14

The application problem

Definition (Inference application problem)

Given s and t types, find [0/];c/ and [07];c; such that:
/\ta,- < 0—1 and /\saj < dom(/\to;)

icl JjeJ i€l

@ Fix the cardinalities of / and J (at the beginning both 1);
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Definition (Inference application problem)

Given s and t types, find [0/];c/ and [07];c; such that:
/\ta,- < 0—1 and /\saj < dom(/\to;)

icl JjeJ i€l

@ Fix the cardinalities of / and J (at the beginning both 1);

@ Split each substitution o (for ke/UJ) in two: o) = py o o),
where pj is a renaming substitution mapping each variable of
the domain of o into a fresh variable:
Nie/(tpi)o; <0=1 and A\ (spj)o; < dom( A (tpi)or);
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Definition (Inference application problem)

Given s and t types, find [0/];c/ and [07];c; such that:
/\ta,- < 0—1 and /\saj < dom(/\to;)

icl JjeJ i€l

@ Fix the cardinalities of / and J (at the beginning both 1);
@ Split each substitution o (for ke/UJ) in two: o) = py o o),

where pj is a renaming substitution mapping each variable of

the domain of o into a fresh variable:

(Aies tpi)o <0—=1 and (Ao, spj)o < dom((Ac; tpi)o);
© Solve the tallying problem for

{(tl, 0—)1), (tl, t2—>"/)}
with ty = )\, tpi, ta = /\jEJspj, and v fresh
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Definition (Inference application problem)
Given s and t types, find [0/];c/ and [07];c; such that:

/\ta,- < 0—1 and /\saj < dom(/\to;)

icl JjeJ i€l

@ Fix the cardinalities of / and J (at the beginning both 1);
@ Split each substitution o (for ke/UJ) in two: o) = py o o),

where pj is a renaming substitution mapping each variable of
the domain of o into a fresh variable:
(Aies tpi)o <0—=1 and (Ao, spj)o < dom((Ac; tpi)o);
© Solve the tallying problem for
{(t1,0-1), (1, t2—7)}
with ty = )\, tpi, ta = /\jEJspj, and v fresh
o if it fails at Step 1, then fail.
o if it fails at Step 2, then change cardinalities (dove-tail)
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The application problem

Definition (Inference application problem)
Given s and t types, find [0/];c/ and [07];c; such that:
/\ta,- < 0—1 and /\saj < dom(/\to;)

icl JjeJ i€l

@ Fix the cardinalities of / and J (at the beginning both 1);

@ Split each substitution o (for ke/UJ) in two: o) = py o o),
where pj is a renaming substitution mapping each variable of
the domain of o into a fresh variable:

(Aies tpi)o <0—=1 and (A, spj)o < dom((A;c; tpi)o);
© Solve the tallying problem for
{(t1,0-1), (1, t2—7)}
with ty = )\, tpi, ta = /\jEJspj, and v fresh
o if it fails at Step 1, then fail.
o if it fails at Step 2, then change cardinalities (dove-tail)
= Every solution for « is a solution for the application.
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Example: map even

Start with the following tallying problem:
{(c1—=1)—= L1l —=[F1] < t—v}
where t = (Int—Bool)A(a\Int—«\Int) is the type of even
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Example: map even

Start with the following tallying problem:
{(c1—=1)—= L1l —=[F1] < t—v}
where t = (Int—Bool)A(a\Int—«\Int) is the type of even
@ At step 2 the algorithm generates 9 constraint-sets: one is
unsatisfiable (¢t < 0); four are implied by the others; remain
{y = laul =151, 1 <0},
{v > [e1]1—=[51]1, a1<Int, Bool<[;},
{v> [a1l—=1[p1] , aa<a\Int, o\Int<f;},
{v > [1]1—=1[/1] , aca<aVInt, (a\Int)VBool<f;};
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Start with the following tallying problem:
{(c1—=1)—= L1l —=[F1] < t—v}
where t = (Int—Bool)A(a\Int—«\Int) is the type of even
@ At step 2 the algorithm generates 9 constraint-sets: one is
unsatisfiable (¢t < 0); four are implied by the others; remain
{y = laul =151, 1 <0},
{v > [e1]1—=[51]1, a1<Int, Bool<[;},
{v> [a1l—=1[p1] , aa<a\Int, o\Int<f;},
{v > [1]1—=1[/1] , aca<aVInt, (a\Int)VBool<f;};
@ Four solutions for 7y:
{v=0-10},
{y = [Int]—[Booll},
{v = [@\Int] —[a\Int]},
{7 = [aVInt]l— [(o/\Int)VBooll }.
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Example: map even

Start with the following tallying problem:
{(c1—=1)—= L1l —=[F1] < t—v}
where t = (Int—Bool)A(a\Int—«\Int) is the type of even
@ At step 2 the algorithm generates 9 constraint-sets: one is
unsatisfiable (¢t < 0); four are implied by the others; remain
{y = laul =151, 1 <0},
{v > [e1]1—=[51]1, a1<Int, Bool<[;},
{v> [a1l—=1[p1] , aa<a\Int, o\Int<f;},
{v > [1]1—=1[/1] , aca<aVInt, (a\Int)VBool<f;};
@ Four solutions for 7y:
{v=0-10},
{y = [Int]—[Booll},
{v = [@\Int] —[a\Int]},
{7 = [aVInt]l— [(o/\Int)VBooll }.
@ The last two are minimal and we take their intersection:
{7 = ([\Int]— [\ Int])A([aVInt] — [(o\Int)VBooll)}
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Type Reconstruction Algorithm

Frrc b (2] WOONT) E o oy (VAR)
MR my:t; ~ 81 FTEr my:tr~ 82 (R APPL)
Thr mm:a~S NS {{(t<t—a)}}
Nx:abrm:t~S
Frn doem o 8w SA (< )] TABSTR)
(ReAm) 5= (s (i < 0)})
U (SonSim{{(to <t),(tr <a)}})
U (SonS&:m{{(to < t),(t2 < )}})
U (SonSinSn{{(ave< )}})
[ I—R mg : to’v‘rSo I }—72 my t1«,>81 I |_ tQMSQ

Mg (moet?ml : mg):a«»S

where o, «; and 3 in each rule are fresh type variables.
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Semantic subtyping with type variables

The subtyping relation is decidable in EXPTIME. J
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The subtyping relation is decidable in EXPTIME. J

We can prove relevant relations on infinite types, eg., for the type
of generic a-lists:

[a] Y yz.(axz)Vnil
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Semantic subtyping with type variables

The subtyping relation is decidable in EXPTIME. J

We can prove relevant relations on infinite types, eg., for the type
of generic a-lists:

[a] Y yz.(axz)Vnil
we can prove that it contains both the a-lists of even length
pz.(ax(axz)) Vil < pz.(axz)Vnil

e e

and the a-lists with of odd length
pz.(ax(axz))V (axnil) < pz.(axz)Vnil

« «
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Semantic subtyping with type variables

The subtyping relation is decidable in EXPTIME. J

We can prove relevant relations on infinite types, eg., for the type
of generic a-lists:

[a] Y yz.(axz)Vnil
we can prove that it contains both the a-lists of even length
pz.(ax(axz)) Vil < pz.(axz)Vnil

e e

and the a-lists with of odd length
pz.(ax(axz))V (axnil) < pz.(axz)Vnil
and that it is itself contained in the union of the two, that is:
[a] ~ (pz.(ax(axz))Vnil) V (pz.(ax(axz))V (axnil))
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Axiomatic properties of intersection types are here deduced from
the semantic interpretation:

(@ = IANB =) ~ aVB =~
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Axiomatic properties of intersection types are here deduced from
the semantic interpretation:

(a = VAB —=7) ~ aVp = v
as well as classic distributivity laws:

(VB xy) ~ (axy)V(Bx7)
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6. Conclusion — IHP 14

Axiomatic properties of intersection types are here deduced from
the semantic interpretation:

(a = VAB —=7) ~ aVp = v
as well as classic distributivity laws:
(V3 x7v) ~ (axy)V(x7)

Most importantly we can use standard set-theoretic laws to show:

@ that every type is equivalent to a type in disjunctive normal
form

@ to deduce decomposition rules used in algorithms such as

sixs < tixty < (s1<0ors<0or(sy<t;ands, <tr) )
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Expressions
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Giuseppe Castagna Polymorphic Functions with Set-Theoretic Types 49/39



6. Conclusion — IHP 14

Expressions

en=x|ee| \NVielSitixe | ectre:e| (e e) | mie J

Why a type-case:
@ Intersection types with “real” overloading vs. coherent one
[eg, non diverging functions in (Int—Bool) A (Bool—Int)]

Why explicitly-typed functions:
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Why a type-case:
@ Intersection types with “real” overloading vs. coherent one
[eg, non diverging functions in (Int—Bool) A (Bool—Int)]
@ The following containment is strict:
s1Vs >t Aty < (51—>t1)/\(52—>t2)
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Expressions

eu=x|ee| NV lixe|ect?e:e| (e €) ]| me J
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Why a type-case:
@ Intersection types with “real” overloading vs. coherent one
[eg, non diverging functions in (Int—Bool) A (Bool—Int)]
@ The following containment is strict:
s1Vs >t Aty < (51—>t1)/\(52—>t2)

=

Why explicitly-typed functions:  [a consequence of the type-case]
Avoid paradoxes:

puf Ax.fe(l—Int)? true : 42
It has type 1—1Int iff it does not have type 1—1Int.

o Explicitly assign the type 1 — IntVBool to it.
@ More expressive with the result type (type of x not enough)
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How to type-annotate functions?

)\(Int—>Bool)/\(Bool—>Int)X‘ (xGInt ?true : 42) J

It has type (Int—Bool)A(—Int—Int) but we will be content with
(Int — Bool)A(Bool — Int)

@ Church style?
If we assign IntVBool to x the type , we can only deduce
IntVBool — IntVBool

@ CDuce solution: annotate A's with their intersection type

Syntax for \-abstractions

Add to expressions
)\/\iEIS/")t/X.e

Well typed if from x : s; we can deduce e : t;, for all i€l.
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