Theory and practice of XML processing programming languages

Giuseppe Castagna

CNRS
Université Paris 7 - Denis Diderot
MPRI Lectures on Theory of Subtyping

Outline of the lecture

(1) XML Programming in $\mathbb{C D u c e}$
(2) Theoretical Foundations
(3) Polymorphic Subtyping

4 Polymorphic Language

Outline of the lecture

(1) XML Programming in $\mathbb{C D u c e}$

- XML Regular Expression Types and Patterns
- XML Programming in CDuce
- Tools on top of $\mathbb{C D u c e}$
(2) Theoretical Foundations
(3) Polymorphic Subtyping

4 Polymorphic Language

Outline of the lecture

(1) XML Programming in $\mathbb{C D u c e}$

- XML Regular Expression Types and Patterns
- XML Programming in CDuce
- Tools on top of $\mathbb{C D u c e}$
(2) Theoretical Foundations
- Semantic subtyping
- Subtyping algorithms
- CDuce functional core
(3) Polymorphic Subtyping

4 Polymorphic Language

Outline of the lecture

(1) XML Programming in $\mathbb{C D u c e}$

- XML Regular Expression Types and Patterns
- XML Programming in CDuce
- Tools on top of $\mathbb{C D u c e}$
(2) Theoretical Foundations
- Semantic subtyping
- Subtyping algorithms
- CDuce functional core

3 Polymorphic Subtyping

- Current status
- Semantic solution
- Subtyping algorithm

4 Polymorphic Language

Outline of the lecture

(1) XML Programming in $\mathbb{C D u c e}$

- XML Regular Expression Types and Patterns
- XML Programming in CDuce
- Tools on top of $\mathbb{C D u c e}$
(2) Theoretical Foundations
- Semantic subtyping
- Subtyping algorithms
- CDuce functional core
(3) Polymorphic Subtyping
- Current status
- Semantic solution
- Subtyping algorithm

4 Polymorphic Language

- Motivating example
- Formal setting
- Explicit substitutions
- Inference System
- Efficient implementation

PART 1: XML PROGRAMMING IN CDUCE

- Level 0: textual representation of XML documents
- AWK, sed, Perl

Programming with XML

- Level 0: textual representation of XML documents
- AWK, sed, Perl
- Level 1: abstract view provided by a parser - SAX, DOM, ...

Programming with XML

- Level 0: textual representation of XML documents
- AWK, sed, Perl
- Level 1: abstract view provided by a parser - SAX, DOM, ...
- Level 2: untyped XML-specific languages
- XSLT, XPath

Programming with XML

- Level 0: textual representation of XML documents
- AWK, sed, Perl
- Level 1: abstract view provided by a parser - SAX, DOM, ...
- Level 2: untyped XML-specific languages
- XSLT, XPath
- Level 3: XML types taken seriously (aka: related work)
- XDuce, Xtatic
- XQuery
- C_{ω} (Microsoft)
- ...

Programming with XML

- Level 0: textual representation of XML documents
- AWK, sed, Perl
- Level 1: abstract view provided by a parser - SAX, DOM, ...
- Level 2: untyped XML-specific languages
- XSLT, XPath
- Level 3: XML types taken seriously (aka: related work)
- XDuce, Xtatic
- XQuery
- C_{ω} (Microsoft)
- ...

Presentation of CDuce

Features:

- Oriented to XML processing
- Type centric
- General-purpose features
- Very efficient

Presentation of CDuce

Features:

- Oriented to XML processing
- Type centric
- General-purpose features
- Very efficient

Intended use:

- Small "adapters" between different XML applications
- Larger applications that use XML
- Web development
- Web services

Presentation of $\mathbb{C D}$ uce

Features:

- Oriented to XML processing
- Type centric
- General-purpose features
- Very efficient

Intended use:

- Small "adapters" between different XML applications
- Larger applications that use XML
- Web development
- Web services

Status:

- Public release available (0.5.3) in all major Linux distributions.
- Integration with standards
- Internally: Unicode, XML, Namespaces, XML Schema
- Externally: DTD, WSDL
- Some tools: graphical queries, code embedding (à la php)

Presentation of $\mathbb{C D}$ uce

Features:

- Oriented to XML processing
- Type centric
- General-purpose features
- Very efficient

Intended use:

- Small "adapters" between different XML applications
- Larger applications that use XML
- Web development
- Web services

Status:

- Public release available (0.5.3) in all major Linux distributions.
- Integration with standards
- Internally: Unicode, XML, Namespaces, XML Schema
- Externally: DTD, WSDL
- Some tools: graphical queries, code embedding (à la php)

Used both for teaching and in production code.

Types are pervasive in $\mathbb{C D u c e}$:

Types, Types, Types!!!

Types are pervasive in $\mathbb{C D u c e}$:

- Static validation
- E.g.: does the transformation produce valid XHTML ?

Types are pervasive in $\mathbb{C D u c e}$:

- Static validation
- E.g.: does the transformation produce valid XHTML ?
- Type-driven programming semantics
- At the basis of the definition of patterns
- Dynamic dispatch
- Overloaded functions

Types, Types, Types!!!

Types are pervasive in $\mathbb{C D u c e}$:

- Static validation
- E.g.: does the transformation produce valid XHTML ?
- Type-driven programming semantics
- At the basis of the definition of patterns
- Dynamic dispatch
- Overloaded functions
- Type-driven compilation
- Optimizations made possible by static types
- Avoids unnecessary and redundant tests at runtime
- Allows a more declarative style

Regular Expression Types and Patterns for XML

- Types are sets of values
- Values are decomposed by patterns
- Patterns are roughly values with capture variables
- Types are sets of values
- Values are decomposed by patterns
- Patterns are roughly values with capture variables

Instead of

```
let x = fst(e) in
let y = snd(e) in (y,x)
```

- Types are sets of values
- Values are decomposed by patterns
- Patterns are roughly values with capture variables

Instead of

$$
\begin{aligned}
& \text { let } x=\operatorname{fst}(e) \text { in } \\
& \text { let } y=\operatorname{snd}(e) \text { in }(y, x)
\end{aligned}
$$

with pattern one can write

$$
\text { let }(x, y)=e \operatorname{in}(y, x)
$$

Types \& patterns: the functional languages perspective

- Types are sets of values
- Values are decomposed by patterns
- Patterns are roughly values with capture variables

Instead of

```
let x = fst(e) in
let y = snd(e) in (y,x)
```

with pattern one can write

$$
\operatorname{let}(x, y)=e \operatorname{in}(y, x)
$$

which is syntactic sugar for

$$
\text { match e with }(x, y) \text {-> (y,x) }
$$

Types \& patterns: the functional languages perspective

- Types are sets of values
- Values are decomposed by patterns
- Patterns are roughly values with capture variables

Instead of
let $\mathrm{x}=\mathrm{fst}(\mathrm{e})$ in
let $y=\operatorname{snd}(e)$ in (y, x)
with pattern one can write
let $(x, y)=e \operatorname{in}(y, x)$
which is syntactic sugar for
match e with (x, y) -> (y, x)
"match" is more interesting than "let", since it can test several " \mid "-separated patterns.

Example: tail-recursive version of length for lists:

type List = (Any,List) | 'nil

Example: tail-recursive version of length for lists:

```
type List = (Any,List) | 'nil
fun length (x:(List,Int)) : Int =
    match x with
    |('nil , n) -> n
```


Example: tail-recursive version of length for lists:

```
type List = (Any,List) | 'nil
fun length (x:(List,Int)) : Int =
    match x with
    | ('nil , n) -> n
    ((_,t), n) -> length(t,n+1)
```


Example: tail-recursive version of length for lists:

$$
\begin{aligned}
& \text { type List }=\text { (Any,List) | 'nil } \\
& \text { fun length (x:(List, Int)) : Int = } \\
& \text { match } x \text { with } \\
& \text { |('nil, n) }->n \\
& \quad((-, t), n)->\text { length }(t, n+1)
\end{aligned}
$$

So patterns are values with

Example: tail-recursive version of length for lists:

```
type List = (Any,List) | 'nil
fun length (x:(List,Int)) : Int =
    match x with
    | ('nil , n) -> n
        ((_,t), n) -> length(t,n+1)
```

So patterns are values with capture variables,

Example: tail-recursive version of length for lists:

```
type List = (Any,List) | 'nil
fun length (x:(List,Int)) : Int =
    match x with
    | ('nil , n) -> n
        ((-,t), n) -> length(t,n+1)
```

So patterns are values with capture variables, wildcards,

Example: tail-recursive version of length for lists:

```
type List = (Any,List) | 'nil
fun length (x:(List,Int)): Int =
    match x with
    | ('nil , n) -> n
        ((_,t), n) -> length(t,n+1)
```

So patterns are values with capture variables, wildcards, constants.

Example: tail-recursive version of length for lists:

```
type List = (Any,List) | 'nil
fun length (x:(List,Int)): Int =
    match x with
    | ('nil , n) -> n
        ((_,t), n) -> length(t,n+1)
```

So patterns are values with capture variables, wildcards, constants.

But if we:

Example: tail-recursive version of length for lists:

```
type List = (Any,List) | 'nil
fun length (x:(List,Int)) : Int =
    match x with
    |('nil , n) -> n
```

So patterns are values with capture variables, wildcards, constants.

But if we:

(1) use for types the same constructors as for values (e.g. (s, t) instead of $s \times t$)

Example: tail-recursive version of length for lists:

```
type List = (Any,List) | 'nil
fun length (x:(List,Int)) : Int =
    match x with
        |('nil , n) -> n
```

So patterns are values with capture variables, wildcards, constants.

But if we:

(1) use for types the same constructors as for values (e.g. (s, t) instead of $s \times t$)

Example: tail-recursive version of length for lists:

```
type List = (Any,List) | 'nil
fun length (x:(List,Int)) : Int =
    match x with
        | ('nil , n) -> n 
```

So patterns are values with capture variables, wildcards, constants.

But if we:

(1) use for types the same constructors as for values (e.g. (s, t) instead of $s \times t$)
(2) use values to denote singleton types (e.g. 'nil in the list type);

Example: tail-recursive version of length for lists:

```
type List = (Any,List) | 'nil
fun length (x:(List,Int)) : Int =
    match x with
        | ('nil , n) -> n 
```

So patterns are values with capture variables, wildcards, constants.

But if we:

(1) use for types the same constructors as for values (e.g. (s, t) instead of $s \times t$)
(2) use values to denote singleton types (e.g. 'nil in the list type);

Example: tail-recursive version of length for lists:

```
type List = (Any,List) | 'nil
fun length (x:(List,Int)) : Int =
    match x with
        | ('nil , n) -> n 
```

So patterns are values with capture variables, wildcards, constants.

But if we:

(1) use for types the same constructors as for values (e.g. (s, t) instead of $s \times t$)
(2) use values to denote singleton types (e.g. 'nil in the list type);
(3) consider the wildcard "-" as synonym of Any

Example: tail-recursive version of length for lists:

```
type List = (Any,List) | 'nil
fun length (x:(List,Int)) : Int =
    match x with
        | ('nil , n) -> n 
```

So patterns are values with capture variables, wildcards, constants.

But if we:

(1) use for types the same constructors as for values (e.g. (s, t) instead of $s \times t$)
(2) use values to denote singleton types (e.g. 'nil in the list type);
(3) consider the wildcard "-" as synonym of Any

Example: tail-recursive version of length for lists:

$$
\begin{aligned}
& \text { type List }=\text { (Any, List) | 'nil } \\
& \text { fun length (x: (List, Int)) : Int = } \\
& \text { match } x \text { with } \\
& \text { |('nil , n) } \rightarrow \text { n } \\
& \quad((-, t), n) \rightarrow \text { length }(t, n+1)
\end{aligned}
$$

So patterns are values with capture variables, wildeards, constants.

Key idea behind regular patterns

Patterns are types with capture variables

Example: tail-recursive version of length for lists:

$$
\begin{aligned}
& \text { type List }=\text { (Any,List) | 'nil } \\
& \text { fun length (x: (List, Int)) : Int = } \\
& \text { match } x \text { with } \\
& \text { ('nil, n) }->\text { n } \\
& \quad((-, t), n) \rightarrow \text { length }(t, n+1)
\end{aligned}
$$

So patterns are values with capture variables, wildeards, constants.

Key idea behind regular patterns

Patterns are types with capture variables

Example: tail-recursive version of length for lists:

```
type List = (Any,List) | 'nil
fun length (x:(List,Int)) : Int =
    match x with
```

```
| ('nil , n) \(->n\)
```

| ('nil , n) $->n$
| ((\quad, t) , n) $->$ length ($\mathrm{t}, \mathrm{n}+1$)

```
| (( \(\quad\), t) , n) \(->\) length ( \(\mathrm{t}, \mathrm{n}+1\) )
```

So patterns are values with capture variables, wildeards, constants.

Key idea behind regular patterns

Patterns are types with capture variables

Define types: patterns come for free.

Which types should we start from?

Patterns are tightly connected to boolean type constructors, that is unions (\mid), intersections ($\&$) and differences (\backslash):

Which types should we start from?

Patterns are tightly connected to boolean type constructors, that is unions (\mid), intersections (\&) and differences (\backslash):
$t=\{v \mid v$ value of type $t\}$

Which types should we start from?

Patterns are tightly connected to boolean type constructors, that is unions (\mid), intersections (\&) and differences (\backslash):
$t=\{v \mid v$ value of type $t\}$ and $2 p \int=\{v \mid v$ matches pattern $p\}$

Which types should we start from?

Patterns are tightly connected to boolean type constructors, that is unions (\mid), intersections ($\&$) and differences (\backslash):

- Boolean operators are needed to type pattern matching:

$$
t=\{v \mid v \text { value of type } t\} \text { and }\left\langle p \int=\{v \mid v \text { matches pattern } p\}\right.
$$

Which types should we start from?

Patterns are tightly connected to boolean type constructors, that is unions (\mid), intersections ($\&$) and differences (\backslash):

- Boolean operators are needed to type pattern matching:

```
match e with p1 -> e}\mp@subsup{e}{1}{|}\mp@subsup{p}{2}{\prime->}\mp@subsup{e}{2}{
```

$t=\{v \mid v$ value of type $t\}$ and $\ p \int=\{v \mid v$ matches pattern $p\}$

Which types should we start from?

Patterns are tightly connected to boolean type constructors, that is unions (\mid), intersections ($\&$) and differences (\backslash):

- Boolean operators are needed to type pattern matching: match e with $p_{1}->e_{1} \mid p_{2} \rightarrow e_{2}$
- To infer the type t_{1} of e_{1} we need $t \& \ p_{1} \int \quad$ (where $e: t$);
$t=\{v \mid v$ value of type $t\}$ and $2 p \int=\{v \mid v$ matches pattern $p\}$

Which types should we start from?

Patterns are tightly connected to boolean type constructors, that is unions (\mid), intersections ($\&$) and differences (\backslash):

- Boolean operators are needed to type pattern matching: match e with $p_{1}->e_{1} \mid p_{2}->e_{2}$
- To infer the type t_{1} of e_{1} we need $t \&\left\lceil p_{1} \int \quad\right.$ (where $e: t$);
- To infer the type t_{2} of e_{2} we need $\left(t \backslash \ p_{1} \int\right) \& ~ p_{2} \int$;
$t=\{v \mid v$ value of type $t\}$ and $\left\langle p \int=\{v \mid v\right.$ matches pattern $p\}$

Which types should we start from?

Patterns are tightly connected to boolean type constructors, that is unions (\mid), intersections ($\&$) and differences (\backslash):

- Boolean operators are needed to type pattern matching: match e with $p_{1}->e_{1} \mid p_{2} \rightarrow e_{2}$
- To infer the type t_{1} of e_{1} we need $t \& \ p_{1} \int \quad$ (where $e: t$);
- To infer the type t_{2} of e_{2} we need $\left(t \backslash \ p_{1} \int\right) \& \ p_{2} \int$;
- The type of the match is $t_{1} \mid t_{2}$.
$t=\{v \mid v$ value of type $t\}$ and $\ p \int=\{v \mid v$ matches pattern $p\}$

Which types should we start from?

Patterns are tightly connected to boolean type constructors, that is unions (\mid), intersections ($\&$) and differences (\backslash):

- Boolean operators are needed to type pattern matching: match e with $p_{1}->e_{1} \mid p_{2} \rightarrow e_{2}$
- To infer the type t_{1} of e_{1} we need $t \& ~ \ p_{1} \int \quad$ (where $e: t$);
- To infer the type t_{2} of e_{2} we need $\left(t \backslash \ p_{1} \int\right) \& ~<p_{2} \int$;
- The type of the match is $t_{1} \mid t_{2}$.
$t=\{v \mid v$ value of type $t\}$ and $\eta p \int=\{v \mid v$ matches pattern $p\}$

Which types should we start from?

Patterns are tightly connected to boolean type constructors, that is unions (\mid), intersections ($\&$) and differences (\backslash):

- Boolean operators are needed to type pattern matching: match e with $p_{1}->e_{1} \mid p_{2}->e_{2}$
- To infer the type t_{1} of e_{1} we need $t \& ~ \ p_{1} \int \quad$ (where $e: t$);
- To infer the type t_{2} of e_{2} we need $\left(t \backslash \ p_{1} \int\right) \& \ p_{2} \int$;
- The type of the match is $t_{1} \mid t_{2}$.
- Boolean type constructors are useful for programming: map catalogue with

$$
\mathrm{x}::(\operatorname{Car} \&(\text { Guaranteed } \mid(\text { Any } \backslash \text { Used })) \rightarrow x
$$

Select in catalogue all cars that if used then are guaranteed.

Which types should we start from?

Patterns are tightly connected to boolean type constructors, that is unions (\mid), intersections ($\&$) and differences (\backslash):

- Boolean operators are needed to type pattern matching: match e with $p_{1}->e_{1} \mid p_{2}->e_{2}$
- To infer the type t_{1} of e_{1} we need $t \&\left\lceil p_{1} \int\right.$ (where $e: t$);
- To infer the type t_{2} of e_{2} we need $\left(t \backslash \ p_{1} \int\right) \& ~ p_{2} \int$;
- The type of the match is $t_{1} \mid t_{2}$.
- Boolean type constructors are useful for programming: map catalogue with
x : : (Car \& (Guaranteed|(Any\Used)) -> x
Select in catalogue all cars that if used then are guaranteed.

Roadmap to extend it to XML:

Which types should we start from?

Patterns are tightly connected to boolean type constructors, that is unions (\mid), intersections ($\&$) and differences (\backslash):

- Boolean operators are needed to type pattern matching: match e with $p_{1}->e_{1} \mid p_{2} \rightarrow e_{2}$
- To infer the type t_{1} of e_{1} we need $t \&\left\lceil p_{1} \int\right.$ (where $e: t$);
- To infer the type t_{2} of e_{2} we need $\left(t \backslash \ p_{1} \int\right) \& \ p_{2} \int$;
- The type of the match is $t_{1} \mid t_{2}$.
- Boolean type constructors are useful for programming: map catalogue with
x : : (Car \& (Guaranteed|(Any\Used)) -> x
Select in catalogue all cars that if used then are guaranteed.

Roadmap to extend it to XML:

(1) Define types for XML documents,

Which types should we start from?

Patterns are tightly connected to boolean type constructors, that is unions (\mid), intersections ($\&$) and differences (\backslash):

- Boolean operators are needed to type pattern matching: match e with $p_{1}->e_{1} \mid p_{2}->e_{2}$
- To infer the type t_{1} of e_{1} we need $t \&\left\lceil p_{1} \int\right.$ (where $e: t$);
- To infer the type t_{2} of e_{2} we need $\left(t \backslash \ p_{1} \int\right) \& \ p_{2} \int$;
- The type of the match is $t_{1} \mid t_{2}$.
- Boolean type constructors are useful for programming: map catalogue with
x : : (Car \& (Guaranteed|(Any\Used)) -> x
Select in catalogue all cars that if used then are guaranteed.

Roadmap to extend it to XML:

(1) Define types for XML documents,
(2) Add boolean type constructors,

Which types should we start from?

Patterns are tightly connected to boolean type constructors, that is unions (\mid), intersections (\&) and differences (\backslash):

- Boolean operators are needed to type pattern matching: match e with $p_{1}->e_{1} \mid p_{2}->e_{2}$
- To infer the type t_{1} of e_{1} we need $t \& ~ \ p_{1} \int \quad$ (where $e: t$);
- To infer the type t_{2} of e_{2} we need $\left(t \backslash \ p_{1} \int\right) \& \ p_{2} \int$;
- The type of the match is $t_{1} \mid t_{2}$.
- Boolean type constructors are useful for programming: map catalogue with
x : : (Car \& (Guaranteed|(Any\Used)) -> x
Select in catalogue all cars that if used then are guaranteed.

Roadmap to extend it to XML:

(1) Define types for XML documents,
(2) Add boolean type constructors,
(3) Define patterns as types with capture variables

XML syntax

```
<bib>
    <book year="1997">
        <title> Object-Oriented Programming </title>
        <author>
            <last> Castagna </last>
            <first> Giuseppe </first>
        </author>
        <price> 56 </price>
            Bikhäuser
    </book>
    <book year="2000">
        <title> Regexp Types for XML </title>
        <editor>
            <last> Hosoya </last>
            <first> Haruo </first>
        </editor>
        UoT
    </book>
</bib>
```


XML syntax

```
<bib> [
    <book year="1997">[
        <title>['Object-Oriented Programming']
        <author>[
            <last> ['Castagna']
            <first>['Giuseppe']
        ]
        <price>['56']
        'Bikhäuser'
    ]
    <book year="2000"> [
        <title>['Regexp Types for XML']
        <editor>
            <last>['Hosoya']
            <first>['Haruo']
        ]
        'UoT'
    ]
]
```


XML syntax

```
type Bib = <bib>[
    <book year="1997">[
    <title>['Object-Oriented Programming']
    <author>[
                <last> ['Castagna']
                <first>['Giuseppe']
    ]
    <price>['56']
    'Bikhäuser'
    ]
    <book year="2000">[
        <title>['Regexp Types for XML']
        <editor>
            <last>['Hosoya']
            <first>['Haruo']
        ]
        'UoT'
    ]
]
```


XML syntax

```
type Bib = <bib>[
    <book year=String>[
    <title>
    <author>[
                <last>[PCDATA]
                <first>[PCDATA]
            ]
            <price>[PCDATA]
            PCDATA
    ]
    <book year=String> [
            <title>[PCDATA]
            <editor>
                <last>[PCDATA]
                <first>[PCDATA]
            ]
            PCDATA
    ]
]
```


XML syntax

```
type Bib = <bib>[Book Book]
type Book = <book year=String>[
                                    Title
                                    (Author | Editor )
                                    Price?
                                    PCDATA]
type Author = <author> [Last First]
type Editor = <editor>[Last First]
type Title = <title>[PCDATA]
type Last = <last> [PCDATA]
type First = <first> [PCDATA]
type Price = <price> [PCDATA]
```


XML syntax

```
type Bib = <bib> [Book*]
type Book = <book year=String>[
                                    Title
                                    (Author+ | Editor+)
                                    Price?
                                    PCDATA]
type Author = <author>[Last First]
type Editor = <editor> [Last First]
type Title = <title> [PCDATA]
type Last = <last> [PCDATA]
type First = <first> [PCDATA]
type Price = <price> [PCDATA]
```


XML syntax

```
type Bib = <bib> [Book*]
type Book = <book year=String>[
                                    Title
                                    (Author+ | Editor+)
                                    Price?
                                    PCDATA]
type Author = <author>[Last First]
type Editor = <editor> [Last First]
type Title = <title> [PCDATA]
type Last = <last> [PCDATA]
type First = <first> [PCDATA]
type Price = <price> [PCDATA]
```


XML syntax

```
type Bib = <bib> [Book*]
Kleene star
type Book = <book year=String> [
                                    Title
                                    (Author+ | Editor+)
                                    Price?
                                    PCDATA]
type Author = <author>[Last First]
type Editor = <editor> [Last First]
type Title = <title>[PCDATA]
type Last = <last>[PCDATA]
type First = <first>[PCDATA]
type Price = <price> [PCDATA]
```


XML syntax

```
type Bib = <bib>[Book*]
type Book = <book year=String>[
                                    attribute types
                                    Title
                                    (Author+ | Editor+)
                                    Price?
                                    PCDATA]
type Author = <author>[Last First]
type Editor = <editor> [Last First]
type Title = <title> [PCDATA]
type Last = <last> [PCDATA]
type First = <first> [PCDATA]
type Price = <price> [PCDATA]
```


XML syntax

```
type Bib = <bib> [Book*]
type Book = <book year=String>[
    Title nested elements
    (Author+ | Editor+)
    Price?
    PCDATA]
type Author = <author> [Last First]
type Editor = <editor> [Last First]
type Title = <title> [PCDATA]
type Last = <last> [PCDATA]
type First = <first> [PCDATA]
type Price = <price> [PCDATA]
```


XML syntax

```
type Bib = <bib> [Book*]
type Book = <book year=String>[
                Title
                    (Author+ | Editor+) unions
                    Price?
                                    PCDATA]
type Author = <author>[Last First]
type Editor = <editor> [Last First]
type Title = <title> [PCDATA]
type Last = <last> [PCDATA]
type First = <first> [PCDATA]
type Price = <price> [PCDATA]
```


XML syntax

```
type Bib = <bib>[Book*]
type Book = <book year=String>[
                                    Title
                                    (Author+ | Editor+)
                                    Price?
                                    PCDATA]
type Author = <author> [Last First]
type Editor = <editor> [Last First]
type Title = <title> [PCDATA]
type Last = <last> [PCDATA]
type First = <first> [PCDATA]
type Price = <price> [PCDATA]
```


XML syntax

```
type Bib = <bib> [Book*]
type Book = <book year=String>[
                                    Title
                                    (Author+ | Editor+)
                                    Price?
                                    PCDATA]
                                    mixed content
type Author = <author>[Last First]
type Editor = <editor> [Last First]
type Title = <title> [PCDATA]
type Last = <last> [PCDATA]
type First = <first> [PCDATA]
type Price = <price> [PCDATA]
```


XML syntax

```
type Bib = <bib> [Book*]
type Book = <book year=String>[
                        Title
                        (Author+ | Editor+)
                    Price?
                    PCDATA]
type Author = <author>[Last First]
type Editor = <editor> [Last First]
type Title = <title> [PCDATA]
type Last = <last> [PCDATA]
type First = <first> [PCDATA]
type Price = <price> [PCDATA]
```

This and: singletons, intersections, differences, Empty, and Any.

Patterns

Patterns $=$ Types + Capture variables

Patterns

Patterns $=$ Types + Capture variables

$$
\text { type } \mathrm{Bib}=\text { <bib>[Book*] }
$$

Patterns

Patterns $=$ Types + Capture variables

ひ type Bib = <bib>[Book*]
<bib>[x::Book*]

Patterns

Patterns $=$ Types + Capture variables

```
type Bib = <bib> [Book*]
    <bib>[x::Book*]
```

 The pattern binds x to the sequence of all books in the bibliography

Patterns

Patterns $=$ Types + Capture variables

```
type Bib = <bib>[Book*]
match bibs with
        <bib>[x::Book*] -> x
```


Patterns

Patterns $=$ Types + Capture variables

```
type Bib = <bib> [Book*]
match bibs with
        <bib>[x::Book*] -> x
    Returns the content of bibs.
```


Patterns

Patterns $=$ Types + Capture variables

Patterns

Patterns $=$ Types + Capture variables

Patterns

Patterns $=$ Types + Capture variables

```
type Bib = <bib>[Book*]
match bibs with
    <bib>[( x::<book year="2005">_ | y::_ )*] -> x@y
```


Patterns

Patterns $=$ Types + Capture variables

Patterns

Patterns $=$ Types + Capture variables

```
type Bib = <bib>[Book*]
type Book = <book year=String>[Title Author+ Publisher]
type Publisher = String
<bib>[(x::<book year="1990">[ _* Publisher\"ACM"] | _)*]
```


Patterns

Patterns $=$ Types + Capture variables

```
type Bib = <bib>[Book*]
type Book = <book year=String>[Title Author+ Publisher]
type Publisher = String
    <bib>[(x::<book year="1990">[ -* Publisher\"ACM"] | _)*]
    Binds x to the sequence of books published in 1990 from publishers
    others than "ACM" and discards all the others.
```


Patterns

Patterns $=$ Types + Capture variables

```
type Bib \(=\langle b i b\rangle[B o o k *]\)
type Book \(=\) <book year=String>[Title Author+ Publisher]
type Publisher = String
match bibs with
        <bib> [(x::<book year="1990">[ _* Publisher 1 "ACM"] | \() *\) ] \(->\mathrm{x}\)
```


Patterns

Patterns $=$ Types + Capture variables

```
type Bib = <bib>[Book*]
type Book = <book year=String>[Title Author+ Publisher]
type Publisher = String
match bibs with
    <bib>[(x::<book year="1990">[ _* Publisher\"ACM"] | _) *] -> x
```

 Returns all the captured books

Patterns

Patterns $=$ Types + Capture variables

```
type Bib = <bib> [Book*]
type Book = <book year=String>[Title Author+ Publisher]
type Publisher = String
match bibs with
    <bib>[(x::<book year="1990">[ _* Publisher\"ACM"] | _)*] -> x
Returns all the captured books
```


Exact type inference:

E.g.: if we match the pattern [(x::Int|_)*] against an expression of type [Int* String Int] the type deduced for x is [Int+]

Patterns

Patterns $=$ Types + Capture variables

```
type Bib = <bib> [Book*]
type Book = <book year=String>[Title Author+ Publisher]
type Publisher = String
match bibs with
    <bib>[(x::<book year="1990">[ _* Publisher\"ACM"] | _)*] -> x
Returns all the captured books
```


Exact type inference:

E.g.: if we match the pattern [(x::Int|_)*] against an expression of type [Int* String Int] the type deduced for x is [Int+]

XML-programming in CDuce

Functions: basic usage

```
type Program = <program>[ Day* ]
type Day = <day date=String>[ Invited? Talk+ ]
type Invited = <invited>[ Title Author+ ]
type Talk = <talk>[ Title Author+ ]
```


Functions: basic usage

```
type Program = <program>[ Day* ]
type Day = <day date=String>[ Invited? Talk+ ]
type Invited = <invited>[ Title Author+ ]
type Talk = <talk>[ Title Author+ ]
```

Extract subsequences (union polymorphism)

```
fun (Invited|Talk -> [Author+])
    <_>[ Title x::Author* ] -> x
```


Functions: basic usage

```
type Program = <program>[ Day* ]
type Day = <day date=String>[ Invited? Talk+ ]
type Invited = <invited>[ Title Author+ ]
type Talk = <talk>[ Title Author+ ]
```

Extract subsequences (union polymorphism)

```
fun (Invited|Talk -> [Author+])
    <_>[ Title x::Author* ] -> x
```

Extract subsequences of non-consecutive elements:

```
fun ([(Invited|Talk|Event)*] -> ([Invited*], [Talk*]))
    [ (i::Invited | t::Talk | _)* ] -> (i,t)
```


Functions: basic usage

```
type Program = <program>[ Day* ]
type Day = <day date=String>[ Invited? Talk+ ]
type Invited = <invited>[ Title Author+ ]
type Talk = <talk>[ Title Author+ ]
```

Extract subsequences (union polymorphism)
fun (Invited|Talk -> [Author+])
<_>[Title x::Author*] -> x
Extract subsequences of non-consecutive elements:

```
fun ([(Invited|Talk|Event)*] -> ([Invited*], [Talk*]))
    [ (i::Invited | t::Talk | _)* ] -> (i,t)
```

Perl-like string processing (String $=[$ Char $*$]
fun parse_email (String -> (String,String))

```
    [ local::_* '@' domain::_* ] -> (local,domain)
```

 -> raise "Invalid email address"

Functions: advanced usage

```
type Program = <program>[ Day* ]
type Day = <day date=String>[ Invited? Talk+ ]
type Invited = <invited>[ Title Author+ ]
type Talk = <talk>[ Title Author+ ]
```


Functions: advanced usage

type Program = <program>[Day*]
type Day = <day date=String>[Invited? Talk+]
type Invited = <invited>[Title Author+]
type Talk = <talk>[Title Author+]

Functions can be higher-order and overloaded

let patch_program
(p : [Program], f :(Invited-> Invited) \& (Talk-> Talk)) : [Program] = xtransform p with (Invited | Talk) \& x-> [(f x)]

Functions: advanced usage

```
type Program = <program>[ Day* ]
type Day \(=\) <day date=String>[ Invited? Talk+ ]
type Invited = <invited>[ Title Author+ ]
type Talk \(=\) <talk>[ Title Author+ ]
```

Functions can be higher-order and overloaded
let patch_program
(p : [Program], f :(Invited-> Invited) \& (Talk-> Talk)) : [Program] = xtransform p with (Invited | Talk) \& x-> [(f x)]

Functions: advanced usage

```
type Program = <program>[ Day* ]
type Day = <day date=String>[ Invited? Talk+ ]
type Invited = <invited>[ Title Author+ ]
type Talk = <talk>[ Title Author+ ]
```

Functions can be higher-order and overloaded
let patch_program
(p : [Program], f :(Invited-> Invited) \& (Talk-> Talk)) : [Program] = xtransform p with (Invited | Talk) \& x-> [(f x)]

Functions: advanced usage

```
type Program = <program>[ Day* ]
type Day = <day date=String>[ Invited? Talk+ ]
type Invited = <invited> [ Title Author+ ]
type Talk = <talk>[ Title Author+ ]
```

Functions can be higher-order and overloaded

```
let patch_program
```

(p : [Program], f :(Invited-> Invited) \& (Talk-> Talk)): [Program]
= xtransform p with (Invited | Talk) \& x -> [(f x)]

Higher-order, overloading, subtyping provide name/code sharing...

Functions: advanced usage

```
type Program = <program>[ Day* ]
type Day = <day date=String>[ Invited? Talk+ ]
type Invited = <invited>[ Title Author+ ]
type Talk = <talk>[ Title Author+ ]
```


Functions can be higher-order and overloaded

```
let patch_program
(p :[Program], f :(Invited-> Invited) & (Talk-> Talk)): [Program]
    = xtransform p with (Invited | Talk) & x -> [ (f x) ]
```

Higher-order, overloading, subtyping provide name/code sharing...

```
let first_author ([Program] -> [Program];
    Invited -> Invited;
    Talk -> Talk)
[ Program ] & p -> patch program (p,first_author)
<invited>[ t a _* ] -> <invited>[ t a ]
<talk>[ t a _* ] -> <talk>[ t a ]
```


Functions: advanced usage

```
type Program = <program>[ Day* ]
type Day = <day date=String>[ Invited? Talk+ ]
type Invited = <invited>[ Title Author+ ]
type Talk = <talk>[ Title Author+ ]
```


Functions can be higher-order and overloaded

```
let patch_program
(p :[Program], f :(Invited -> Invited) & (Talk-> Talk)): [Program]
    = xtransform p with (Invited | Talk) & x -> [ (f x) ]
```

Higher-order, overloading, subtyping provide name/code sharing...

```
let first_author ([Program] -> [Program];
    Invited -> Invited;
    Talk -> Talk)
[ Program ] & p -> patch_program (p,first_author)
<invited>[ t a _* ] -> <invited>[ t a ]
<talk>[ t a _* ] -> <talk>[ t a ]
```


Functions: advanced usage

Functions can be higher-order and overloaded

```
let patch_program
(p :[Program], f :(Invited -> Invited) & (Talk-> Talk)): [Program]
    = xtransform p with (Invited | Talk) & x -> [ (f x) ]
```

Higher-order, overloading, subtyping provide name/code sharing...

```
let first_author ([Program] -> [Program];
    Invited -> Invited;
    Talk -> Talk)
| [ Program ] & p -> patch_program (p,first_author)
<invited>[ t a _* ] -> <invited>[ t a ]
<talk>[ t a _* ] -> <talk>[ t a ]
```

Even more compact: replace the last two branches with:
< (k) $>$ [t a _*] -> < (k) $>$ [t a]

Functions: advanced usage

```
type Program = <program>[ Day* ]
type Day = <day date=String>[ Invited? Talk+ ]
type Invited = <invited>[ Title Author+ ]
type Talk = <talk>[ Title Author+ ]
```


Functions can be higher-order and overloaded

```
let patch_program
(p :[Program], f :(Invited -> Invited) & (Talk-> Talk)): [Program]
    = xtransform p with (Invited | Talk) & x -> [ (f x) ]
```

Higher-order, overloading, subtyping provide name/code sharing...

```
let first_author ([Program] -> [Program];
    Invited -> Invited;
    Talk -> Talk)
[ Program ] & p -> patch program (p,first_author)
    <invited>[ t a _* ] -> <invited>[ t a ]
    <talk>[ t a _* ] -> <talk>[ t a ]
```

Even more compact: replace the last two branches with:

```
<(k)>[ t a _* ] -> <(k)>[ t a ]
```


. . . it is all syntactic sugar!

Types

$$
t::=\text { Int }|\vee|(t, t)|t \rightarrow t| t \vee t|t \wedge t| \neg t \mid \text { Any }
$$

. . . it is all syntactic sugar!

Types

$$
t::=\text { Int }|\vee|(t, t)|t \rightarrow t| t \vee t|t \wedge t| \neg t \mid \text { Any }
$$

Patterns

$$
p::=t|x|(p, p)|p \vee p| p \wedge p
$$

. . . it is all syntactic sugar!

Types

$$
t::=\text { Int }|\vee|(t, t)|t \rightarrow t| t \vee t|t \wedge t| \neg t \mid \text { Any }
$$

Patterns

$$
p::=t|x|(p, p)|p \vee p| p \wedge p
$$

Example:
type Book = <book>[Title (Author+|Editor+) Price?]

. . . it is all syntactic sugar!

Types

$$
t::=\text { Int }|\vee|(t, t)|t \rightarrow t| t \vee t|t \wedge t| \neg t \mid \text { Any }
$$

Patterns

$$
p::=t|x|(p, p)|p \vee p| p \wedge p
$$

Example:
type Book = <book>[Title (Author+|Editor+) Price?]
encoded as

$$
\begin{aligned}
\text { Book } & =(\text { 'book, }(\text { Title, } X \vee Y)) \\
X & =(\text { Author, } X \vee(\text { Price, 'nil) } \vee \text { 'nil) } \\
Y & =(\text { Editor, } Y \vee(\text { Price, 'nil) } \vee \text { 'nil })
\end{aligned}
$$

Some reasons to consider regular expression types and patterns

Some good reasons to consider regexp patterns/types

- Theoretical reason: very compact

Some good reasons to consider regexp patterns/types

- Theoretical reason: very compact (\neq simple)

Some good reasons to consider regexp patterns/types

- Theoretical reason: very compact (\neq simple)
- Nine practical reasons:

Some good reasons to consider regexp patterns/types

- Theoretical reason: very compact (\neq simple)
- Nine practical reasons:
(1) Classic usage
(2) Informative error messages
(3) Error mining
(ㄷ) Efficient execution
(5) Compact programs
(0) Logical optimisation of pattern-based queries
(3) Pattern matches as building blocks for iterators
(8) Type/pattern-based data pruning for memory usage optimisation
(0) Type-based query optimisation

Some good reasons to consider regexp patterns/types

- Theoretical reason: very compact (\neq simple)
- Nine practical reasons:
(1) Classic usage
(2) Informative error messages \leftarrow
(3) Error mining
(4) Efficient execution \leftarrow
(5) Compact programs
(0) Logical optimisation of pattern-based queries
(c) Pattern matches as building blocks for iterators
(8) Type/pattern-based data pruning for memory usage optimisation
(0) Type-based query optimisation

2. Informative error messages

In case of error return a sample value in the difference of the inferred type and the expected one

2. Informative error messages

In case of error return a sample value in the difference of the inferred type and the expected one

List of books of a given year, stripped of the Editors and Price

2. Informative error messages

In case of error return a sample value in the difference of the inferred type and the expected one

type Book $=$ <book year=String>[Title (Author+|Editor+) Price?]
List of books of a given year, stripped of the Editors and Price fun onlyAuthors (year:Int,books:[Book*]): [Book*] =

2. Informative error messages

In case of error return a sample value in the difference of the inferred type and the expected one

type Book = <book year=String>[Title (Author+|Editor+) Price?]
List of books of a given year, stripped of the Editors and Price

```
fun onlyAuthors (year:Int,books:[Book*]):[Book*] =
    select <book year=y>(t@a) from
        <book year=y>[(t::Title | a::Author | _)+] in books
    where int_of(y) = year
```


2. Informative error messages

In case of error return a sample value in the difference of the inferred type and the expected one

type Book = <book year=String>[Title (Author+|Editor+) Price?]
List of books of a given year, stripped of the Editors and Price

```
fun onlyAuthors (year:Int,books:[Book*]):[Book*] =
    select <book year=y>(t@a) from
        <book year=y>[(t::Title | a::Author | _)+] in books
    where int_of(y) = year
```


2. Informative error messages

In case of error return a sample value in the difference of the inferred type and the expected one

type Book = <book year=String>[Title (Author+|Editor+) Price?]
List of books of a given year, stripped of the Editors and Price
fun onlyAuthors (year:Int,books:[Book*]): [Book*] = select <book year=y>(t@a) from
<book year=y>[(t::Title | a::Author | _)+] in books where int_of $(y)=$ year
Returns the following error message:
Error at chars 81-83:
select <book year=y>(t@a) from
This expression should have type:
[Title (Editor+|Author+) Price?]
but its inferred type is:
[Title Author+ | Title]
which is not a subtype, as shown by the sample:
[<title>[]]

2. Informative error messages

In case of error return a sample value in the difference of the inferred type and the expected one

type Book = <book year=String>[Title (Author+|Editor+) Price?]
List of books of a given year, stripped of the Editors and Price
fun onlyAuthors (year:Int,books:[Book*]): [Book*] = select <book year=y>(t@a) from
<book year=y>[(t::Title | a::Author | _) +] in books where int_of (y) = year
Returns the following error message:

```
Error at chars 81-83:
            select <book year=y>(t@a) from
This expression should have type:
[ Title (Editor+|Author+) Price? ]
but its inferred type is:
[ Title Author+ | Title ]
which is not a subtype, as shown by the sample:
[ <title>[ ] ]
```


2. Informative error messages

In case of error return a sample value in the difference of the inferred type and the expected one

type Book = <book year=String>[Title (Author+|Editor+) Price?]
List of books of a given year, stripped of the Editors and Price
fun onlyAuthors (year:Int,books:[Book*]): [Book*] = select <book year=y>(t@a) from
<book year=y>[(t::Title | a::Author | _) +] in books where int_of (y) = year
Returns the following error message:

```
Error at chars 81-83:
            select <book year=y>(t@a) from
This expression should have type:
[ Title (Editor+|Author+) Price? ]
but its inferred type is:
[ Title Author+ | Title ]
which is not a subtype, as shown by the sample:
    [ <title>[ ] ]
```


2. Informative error messages

In case of error return a sample value in the difference of the inferred type and the expected one

type Book = <book year=String>[Title (Author+|Editor+) Price?]
List of books of a given year, stripped of the Editors and Price
fun onlyAuthors (year:Int,books:[Book*]): [Book*] = select <book year=y>(t@a) from
<book year=y>[t::Title a::Author+ _*] in books where int_of (y) = year

Returns the following error message:

```
Error at chars 81-83:
            select <book year=y>(t@a) from
This expression should have type:
[ Title (Editor+|Author+) Price? ]
but its inferred type is:
[ Title Author+ | Title ]
which is not a subtype, as shown by the sample:
    [ <title>[ ] ]
```


5. Efficient execution

Use static type information to perform an optimal set of tests

5. Efficient execution

Use static type information to perform an optimal set of tests

Idea: if types tell you that something cannot happen, don't test it.

5. Efficient execution

Use static type information to perform an optimal set of tests

Idea: if types tell you that something cannot happen, don't test it.

$$
\begin{aligned}
& \text { type } A=\langle\mathrm{a}\rangle[\mathrm{A} *] \\
& \text { type } \mathrm{B}=\langle\mathrm{b}\rangle[\mathrm{B} *]
\end{aligned}
$$

5. Efficient execution

Use static type information to perform an optimal set of tests

Idea: if types tell you that something cannot happen, don't test it.

$$
\begin{aligned}
& \text { type } A=\langle a\rangle[A *] \\
& \text { type } B=\langle b\rangle[B *] \\
& \text { fun check }(x: A \mid B)=\operatorname{match} x \text { with } A \quad \rightarrow 1 \mid B \rightarrow 0
\end{aligned}
$$

5. Efficient execution

Use static type information to perform an optimal set of tests

Idea: if types tell you that something cannot happen, don't test it.

$$
\begin{aligned}
& \text { type } A=\langle a\rangle[A *] \\
& \text { type } B=\langle b\rangle[B *] \\
& \text { fun check }(x: A \mid B)=\operatorname{match} x \text { with } A \quad \rightarrow 1 \mid B \rightarrow 0
\end{aligned}
$$

5. Efficient execution

Use static type information to perform an optimal set of tests

Idea: if types tell you that something cannot happen, don't test it.

$$
\begin{aligned}
& \text { type } A=\langle a\rangle[A *] \\
& \text { type } B=\langle b\rangle[B *] \\
& \text { fun check }(x: A \mid B)=\operatorname{match} x \text { with } A \quad->1 \mid B \rightarrow 0 \\
& \text { fun } \operatorname{check}(x: A \mid B)=\operatorname{match} x \text { with }\langle a\rangle_{-} 1 \mid{ }_{-} \quad->0
\end{aligned}
$$

5. Efficient execution

Use static type information to perform an optimal set of tests

Idea: if types tell you that something cannot happen, don't test it.

$$
\begin{aligned}
& \text { type } A=\langle a\rangle[A *] \\
& \text { type } B=\langle b\rangle[B *] \\
& \text { fun check }(x: A \mid B)=\operatorname{match} x \text { with } A \quad->1 \mid B \rightarrow 0 \\
& \text { fun } \operatorname{check}(x: A \mid B)=\operatorname{match} x \text { with }\langle a\rangle_{-} 1 \mid{ }_{-} \quad->0
\end{aligned}
$$

- No backtracking.

5. Efficient execution

Use static type information to perform an optimal set of tests

Idea: if types tell you that something cannot happen, don't test it.

$$
\begin{aligned}
& \text { type } A=\langle a\rangle[A *] \\
& \text { type } B=\langle b\rangle[B *] \\
& \text { fun check }(x: A \mid B)=\operatorname{match} x \text { with } A \quad->1 \mid B \rightarrow 0 \\
& \text { fun } \operatorname{check}(x: A \mid B)=\operatorname{match} x \text { with }\langle a\rangle_{-} 1 \mid{ }_{-} \quad->0
\end{aligned}
$$

- No backtracking.
- Whole parts of the matched data are not checked

5. Efficient execution

Use static type information to perform an optimal set of tests

Idea: if types tell you that something cannot happen, don't test it.

$$
\begin{aligned}
& \text { type } A=\langle a\rangle[A *] \\
& \text { type } B=\langle b\rangle[B *] \\
& \text { fun check }(x: A \mid B)=\operatorname{match} x \text { with } A \quad-\rangle 1 \mid B \rightarrow 0 \\
& \text { fun } \operatorname{check}(x: A \mid B)=\operatorname{match} x \text { with }\langle a\rangle_{-} 1 \mid{ }_{-} \quad->0
\end{aligned}
$$

- No backtracking.
- Whole parts of the matched data are not checked

Computing the optimal solution requires to fully exploit intersections and differences of types

5. Efficient execution

Use static type information to perform an optimal set of tests

Idea: if types tell you that something cannot happen, don't test it.

```
type \(A=\langle a\rangle[A *]\)
type \(B=\langle b\rangle[B *]\)
fun \(\operatorname{check}(x: A \mid B)=\operatorname{match} x\) with \(A \quad->1 \mid B->0\)
fun check \((x: A \mid B)=\) match \(x\) with \(\left.\left.\langle a\rangle_{-}\right|_{->}\right|_{->}\)
```

- No backtracking.
- Whole parts of the matched data are not checked

Specific kind of push-down tree automata

On top of $\mathbb{C D u c e}$

- Full integration with OCaml
- Embedding of $\mathbb{C D u c e}$ code in XML documents
- Graphical queries
- Security (control flow analysis)
- Web-services
- Full integration with OCaml
- Embedding of $\mathbb{C D u c e}$ code in XML documents
- Graphical queries
- Security (control flow analysis)
- Web-services

CDuce $<$ OCaml Integration

A CDuce application that requires OCaml code

CDuce \leftrightarrow OCaml Integration

A CDuce application that requires OCaml code

- Reuse existing librairies
- Abstract data structures : hash tables, sets, ...
- Numerical computations, system calls
- Bindings to C libraries: databases, networks, ...

CDuce \leftrightarrow OCaml Integration

A CDuce application that requires OCaml code

- Reuse existing librairies
- Abstract data structures : hash tables, sets, ...
- Numerical computations, system calls
- Bindings to C libraries: databases, networks, ...
- Implement complex algorithms

CDuce \leftrightarrow OCaml Integration

A CDuce application that requires OCaml code

- Reuse existing librairies
- Abstract data structures : hash tables, sets, ...
- Numerical computations, system calls
- Bindings to C libraries : databases, networks, ...
- Implement complex algorithms

An OCaml application that requires \mathbb{C} Duce code

CDuce \leftrightarrow OCaml Integration

A CDuce application that requires OCaml code

- Reuse existing librairies
- Abstract data structures : hash tables, sets, ...
- Numerical computations, system calls
- Bindings to C libraries : databases, networks, ...
- Implement complex algorithms

An OCaml application that requires \mathbb{C} Duce code

- $\mathbb{C D}$ uce used as an XML input/output/transformation layer

CDuce \leftrightarrow OCaml Integration

A CDuce application that requires OCaml code

- Reuse existing librairies
- Abstract data structures : hash tables, sets, ...
- Numerical computations, system calls
- Bindings to C libraries: databases, networks, ...
- Implement complex algorithms

An OCaml application that requires $\mathbb{C D}$ uce code

- $\mathbb{C D}$ uce used as an XML input/output/transformation layer
- Configuration files
- XML serialization of datas
- XHTML code production

CDuce \leftrightarrow OCaml Integration

A CDuce application that requires OCaml code

- Reuse existing librairies
- Abstract data structures : hash tables, sets, ...
- Numerical computations, system calls
- Bindings to C libraries: databases, networks, ...
- Implement complex algorithms

An OCaml application that requires \mathbb{C} Duce code

- $\mathbb{C D}$ uce used as an XML input/output/transformation layer
- Configuration files
- XML serialization of datas
- XHTML code production

Need to seamlessly call OCaml code in $\mathbb{C D}$ uce and viceversa

Main Challenges

Main Challenges

(1) Seamless integration:

Main Challenges

(1) Seamless integration:

No explicit conversion function in programs:

Main Challenges

(1) Seamless integration:

No explicit conversion function in programs:
the compiler performs the conversions

Main Challenges

(1) Seamless integration:

No explicit conversion function in programs:
the compiler performs the conversions
(2) Type safety:

Main Challenges

(1) Seamless integration:

No explicit conversion function in programs:
the compiler performs the conversions
(2) Type safety:

No explicit type cast in programs:

Main Challenges

(1) Seamless integration:

No explicit conversion function in programs:
the compiler performs the conversions
(2) Type safety:

No explicit type cast in programs:
the standard type-checkers ensure type safety

Main Challenges

(1) Seamless integration:

No explicit conversion function in programs:
the compiler performs the conversions
(2) Type safety:

No explicit type cast in programs: the standard type-checkers ensure type safety

What we need:

A mapping between OCaml and \mathbb{C} Duce types and values

The translation can go just one way: OCaml $\rightarrow \mathbb{C}$ Duce

The translation can go just one way: OCaml $\rightarrow \mathbb{C}$ Duce
$\oplus \mathbb{C}$ Duce uses (semantic) subtyping; OCaml does not

The translation can go just one way: OCaml $\rightarrow \mathbb{C}$ Duce
$\oplus \mathbb{C}$ Duce uses (semantic) subtyping; OCaml does not If we translate $\mathbb{C D}$ Duce types into OCaml ones:

- soundness requires the translation to be monotone;
- no subtyping in Ocaml implies a constant translation;

The translation can go just one way: OCaml $\rightarrow \mathbb{C}$ Duce
$\oplus \mathbb{C}$ Duce uses (semantic) subtyping; OCaml does not If we translate $\mathbb{C D}$ Duce types into OCaml ones:

- soundness requires the translation to be monotone;
- no subtyping in Ocaml implies a constant translation; $\Rightarrow \mathbb{C}$ Duce typing would be lost.

The translation can go just one way: OCaml $\rightarrow \mathbb{C}$ Duce
$\oplus \mathbb{C}$ Duce uses (semantic) subtyping; OCaml does not If we translate $\mathbb{C D}$ Duce types into OCaml ones:

- soundness requires the translation to be monotone;
- no subtyping in Ocaml implies a constant translation; $\Rightarrow \mathbb{C}$ Duce typing would be lost.
$\oplus \mathbb{C}$ Duce has unions, intersections, differences, heterogeneous lists; OCaml does not

How to integrate the two type systems?

The translation can go just one way: OCaml $\rightarrow \mathbb{C}$ Duce
$\oplus \mathbb{C}$ Duce uses (semantic) subtyping; OCaml does not If we translate $\mathbb{C D}$ Duce types into OCaml ones :

- soundness requires the translation to be monotone;
- no subtyping in Ocaml implies a constant translation; $\Rightarrow \mathbb{C}$ Duce typing would be lost.
$\oplus \mathbb{C}$ Duce has unions, intersections, differences, heterogeneous lists; OCaml does not
\Rightarrow OCaml types are not enough to translate \mathbb{C} Duce types.

How to integrate the two type systems?

The translation can go just one way: OCaml $\rightarrow \mathbb{C}$ Duce
$\oplus \mathbb{C}$ Duce uses (semantic) subtyping; OCaml does not If we translate $\mathbb{C D u c e}$ types into OCaml ones :

- soundness requires the translation to be monotone;
- no subtyping in Ocaml implies a constant translation;
$\Rightarrow \mathbb{C}$ Duce typing would be lost.
$\oplus \mathbb{C}$ Duce has unions, intersections, differences, heterogeneous lists; OCaml does not
\Rightarrow OCaml types are not enough to translate \mathbb{C} Duce types.
\ominus OCaml supports type polymorphism; \mathbb{C} Duce does not.

How to integrate the two type systems?

The translation can go just one way: OCaml $\rightarrow \mathbb{C}$ Duce

$\oplus \mathbb{C}$ Duce uses (semantic) subtyping; OCaml does not If we translate $\mathbb{C D u c e}$ types into OCaml ones :

- soundness requires the translation to be monotone;
- no subtyping in Ocaml implies a constant translation;
$\Rightarrow \mathbb{C}$ Duce typing would be lost.
$\oplus \mathbb{C}$ Duce has unions, intersections, differences, heterogeneous lists; OCaml does not
\Rightarrow OCaml types are not enough to translate \mathbb{C} Duce types.
\ominus OCaml supports type polymorphism; \mathbb{C} Duce does not.
\Rightarrow Polymorphic OCaml libraries/functions must be first instantied to be used in \mathbb{C} Duce

In practice

(1) Define a mapping \mathbb{T} from OCaml types to $\mathbb{C D}$ Duce types.

In practice

(1) Define a mapping \mathbb{T} from OCaml types to $\mathbb{C D}$ uce types.

$t \quad(O C a m /)$	$\mathbb{T}(t) \quad$ (CDuce)
int	min_int--max_int
string	Latin1
$t_{1} * t_{2}$	$\left(\mathbb{T}\left(t_{1}\right), \mathbb{T}\left(t_{2}\right)\right)$
$t_{1} \rightarrow t_{2}$	$\mathbb{T}\left(t_{1}\right) \rightarrow \mathbb{T}\left(t_{2}\right)$
t list	$[\mathbb{T}(t) *]$
t array	$[\mathbb{T}(t) *]$
t option	$[\mathbb{T}(t) ?]$
t ref	$r e f \mathbb{T}(t)$
A_{1} of $t_{1}\|\ldots.\| A_{n}$ of t_{n}	$\left.\left({ }^{\prime} A_{1}, \mathbb{T}\left(t_{1}\right)\right)\|\ldots\|{ }^{\prime} A_{n}, \mathbb{T}\left(t_{n}\right)\right)$
$\left\{I_{1}=t_{1} ; \ldots ; I_{n}=t_{n}\right\}$	$\left\{I_{1}=\mathbb{T}\left(t_{1}\right) ; \ldots ; I_{n}=\mathbb{T}\left(t_{n}\right)\right\}$

In practice

(1) Define a mapping \mathbb{T} from OCaml types to $\mathbb{C D}$ uce types.

$t \quad(O C a m /)$	$\mathbb{T}(t) \quad($ CDuce $)$
int	min_int--max_int
string	Latin1
$t_{1} * t_{2}$	$\left.\mathbb{T}\left(t_{1}\right), \mathbb{T}\left(t_{2}\right)\right)$
$t_{1} \rightarrow t_{2}$	$\mathbb{T}\left(t_{1}\right) \rightarrow \mathbb{T}\left(t_{2}\right)$
t list	$[\mathbb{T}(t) *]$
t array	$[\mathbb{T}(t) *]$
t option	$[\mathbb{T}(t) ?]$
t ref	ref $\mathbb{T}(t)$
A_{1} of $t_{1}\|\ldots\| A_{n}$ of t_{n}	$\left({ }^{\prime} A_{1}, \mathbb{T}\left(t_{1}\right)\right)\|\ldots\|\left({ }^{\prime} A_{n}, \mathbb{T}\left(t_{n}\right)\right)$
$\left\{I_{1}=t_{1} ; \ldots ; I_{n}=t_{n}\right\}$	$\left\{I_{1}=\mathbb{T}\left(t_{1}\right) ; \ldots ; I_{n}=\mathbb{T}\left(t_{n}\right)\right\}$

(2) Define a retraction pair between OCaml and $\mathbb{C D}$ uce values.

In practice

(1) Define a mapping \mathbb{T} from OCaml types to $\mathbb{C D}$ uce types.

$t \quad(O C a m /)$	$\mathbb{T}(t) \quad($ CDuce $)$
int	min_int--max_int
string	Latin1
$t_{1} * t_{2}$	$\left(\mathbb{T}\left(t_{1}\right), \mathbb{T}\left(t_{2}\right)\right)$
$t_{1} \rightarrow t_{2}$	$\mathbb{T}\left(t_{1}\right) \rightarrow \mathbb{T}\left(t_{2}\right)$
t list	$[\mathbb{T}(t) *]$
t array	$[\mathbb{T}(t) *]$
t option	$[\mathbb{T}(t) ?]$
t ref	ref $\mathbb{T}(t)$
A_{1} of $t_{1}\|\ldots\| A_{n}$ of t_{n}	$\left({ }^{\prime} A_{1}, \mathbb{T}\left(t_{1}\right)\right)\|\ldots\|\left({ }^{\prime} A_{n}, \mathbb{T}\left(t_{n}\right)\right)$
$\left\{I_{1}=t_{1} ; \ldots ; I_{n}=t_{n}\right\}$	$\left\{I_{1}=\mathbb{T}\left(t_{1}\right) ; \ldots ; I_{n}=\mathbb{T}\left(t_{n}\right)\right\}$

(2) Define a retraction pair between OCaml and $\mathbb{C D}$ uce values.
ocaml2cduce: $t \rightarrow \mathbb{T}(t)$
cduce2ocaml: $\mathbb{T}(t) \rightarrow t$

Calling OCaml from $\mathbb{C D u c e}$

Easy

Use $M . f$ to call the function f exported by the OCaml module M

Calling OCaml from $\mathbb{C D u c e}$

Easy

Use M.f to call the function f exported by the OCaml module M
The \mathbb{C} Duce compiler checks type soundness and then

Calling OCaml from $\mathbb{C D}$ uce

Easy

Use M.f to call the function f exported by the OCaml module M
The $\mathbb{C D}$ uce compiler checks type soundness and then

- applies cduce2ocaml to the arguments of the call

Calling OCaml from $\mathbb{C D}$ uce

Easy

Use M.f to call the function f exported by the OCaml module M
The $\mathbb{C D}$ uce compiler checks type soundness and then

- applies cduce2ocaml to the arguments of the call
- calls the OCaml function

Calling OCaml from CDuce

Easy

Use M.f to call the function f exported by the OCaml module M
The $\mathbb{C D}$ uce compiler checks type soundness and then

- applies cduce2ocaml to the arguments of the call
- calls the OCaml function
- applies ocaml2cduce to the result of the call

Calling OCaml from $\mathbb{C D}$ uce

Easy

Use M.f to call the function f exported by the OCaml module M
The $\mathbb{C D}$ uce compiler checks type soundness and then

- applies cduce2ocaml to the arguments of the call
- calls the OCaml function
- applies ocaml2cduce to the result of the call

Example: use ocaml-mysql library in $\mathbb{C D u c e}$
let $d b=$ Mysql.connect Mysql.defaults;
match Mysql.list_dbs db 'None [] with
| ('Some,l) -> print ['Databases: ' !(string_of l) '\ n']
| 'None -> []; ;

Calling CDuce from OCaml

Needs little work

Compile a $\mathbb{C D u c e}$ module as an OCaml binary module by providing a OCaml (.mli) interface. Use it as a standard Ocaml module.

Calling CDuce from OCaml

Needs little work

Compile a $\mathbb{C D u c e}$ module as an OCaml binary module by providing a OCaml (.mli) interface. Use it as a standard Ocaml module.

The $\mathbb{C D}$ uce compiler:

Calling CDuce from OCaml

Needs little work

Compile a $\mathbb{C D u c e}$ module as an OCaml binary module by providing a OCaml (.mli) interface. Use it as a standard Ocaml module.

The $\mathbb{C D u c e}$ compiler:
(1) Checks that if val $f: t$ in the .mli file, then the $\mathbb{C D u c e}$ type of f is a subtype of $\mathbb{T}(t)$

Calling CDuce from OCaml

Needs little work

Compile a $\mathbb{C D u c e}$ module as an OCaml binary module by providing a OCaml (.mli) interface. Use it as a standard Ocaml module.

The $\mathbb{C D u c e}$ compiler:
(1) Checks that if val $f: t$ in the .mli file, then the $\mathbb{C D u c e}$ type of f is a subtype of $\mathbb{T}(t)$
(2) Produces the OCaml glue code to export CDuce values as OCaml ones and bind OCaml values in the CDuce module.

Calling CDuce from OCaml

Needs little work

Compile a $\mathbb{C D u c e}$ module as an OCaml binary module by providing a OCaml (.mli) interface. Use it as a standard Ocaml module.

The $\mathbb{C D u c e}$ compiler:
(1) Checks that if val $f: t$ in the .mli file, then the $\mathbb{C D u c e}$ type of f is a subtype of $\mathbb{T}(t)$
(2) Produces the OCaml glue code to export CDuce values as OCaml ones and bind OCaml values in the CDuce module.
Example: use \mathbb{C} Duce to compute a factorial:
(* File cdnum.mli: *)
val fact: Big_int.big_int -> Big_int.big_int
(* File cdnum.cd: *)
let aux ((Int,Int) -> Int)
| ($\mathrm{x}, \mathrm{0} \mid 1$ 1) $->{ }^{\mathrm{x}}$ (x, n) $->$ aux $(\mathrm{x} * \mathrm{n}, \mathrm{n}-1)$
let fact (x : Int) : Int $=\operatorname{aux}(1, x)$

PART 2: THEORETICAL FOUNDATIONS

The goal is to show how to take your favourite type constructors

Goal

The goal is to show how to take your favourite type constructors

$$
x, \rightarrow,\{\ldots\}, \operatorname{chan}(), \ldots
$$

Goal

The goal is to show how to take your favourite type constructors

$$
x, \rightarrow,\{\ldots\}, \operatorname{chan}(), \ldots
$$

and add boolean combinators:

$$
\vee, \wedge, \neg
$$

so that they behave set-theoretically w.r.t. \leq

Goal

The goal is to show how to take your favourite type constructors

$$
\times, \rightarrow,\{\ldots\}, \operatorname{chan}(), \ldots
$$

and add boolean combinators:

$$
\vee, \wedge, \neg
$$

so that they behave set-theoretically w.r.t. \leq

Short answer: YOU JUST SAW IT!
Recap:

- to encode XML types
- to define XML patterns
- to precisely type pattern matching

In details

$$
t::=B|t \times t| t \rightarrow t
$$

In details

$$
t::=B|t \times t| t \rightarrow t|t \vee t| t \wedge t|\neg t| \mathbb{0} \mid \mathbb{1}
$$

In details

$$
t::=B|t \times t| t \rightarrow t|t \vee t| t \wedge t|\neg t| 0 \mid \mathbb{1}
$$

- Handling subtyping without combinators is easy: constructors do not mix,

In details

$$
t::=B|t \times t| t \rightarrow t|t \vee t| t \wedge t|\neg t| 0 \mid \mathbb{1}
$$

- Handling subtyping without combinators is easy: constructors do not mix, e.g. :

$$
\frac{s_{2} \leq s_{1} \quad t_{1} \leq t_{2}}{s_{1} \rightarrow t_{1} \leq s_{2} \rightarrow t_{2}}
$$

In details

$$
t::=B|t \times t| t \rightarrow t|t \vee t| t \wedge t|\neg t| 0 \mid \mathbb{1}
$$

- Handling subtyping without combinators is easy: constructors do not mix, e.g. :

$$
\frac{s_{2} \leq s_{1} \quad t_{1} \leq t_{2}}{s_{1} \rightarrow t_{1} \leq s_{2} \rightarrow t_{2}}
$$

- With combinators is much harder: combinators distribute over constructors,

In details

$$
t::=B|t \times t| t \rightarrow t|t \vee t| t \wedge t|\neg t| 0 \mid \mathbb{1}
$$

- Handling subtyping without combinators is easy: constructors do not mix, e.g. :

$$
\frac{s_{2} \leq s_{1} \quad t_{1} \leq t_{2}}{s_{1} \rightarrow t_{1} \leq s_{2} \rightarrow t_{2}}
$$

- With combinators is much harder: combinators distribute over constructors, e.g.

$$
\left(s_{1} \vee s_{2}\right) \rightarrow t \quad \gtreqless \quad\left(s_{1} \rightarrow t\right) \wedge\left(s_{2} \rightarrow t\right)
$$

In details

$$
t::=B|t \times t| t \rightarrow t|t \vee t| t \wedge t|\neg t| 0 \mid \mathbb{1}
$$

- Handling subtyping without combinators is easy: constructors do not mix, e.g. :

$$
\frac{s_{2} \leq s_{1} \quad t_{1} \leq t_{2}}{s_{1} \rightarrow t_{1} \leq s_{2} \rightarrow t_{2}}
$$

- With combinators is much harder: combinators distribute over constructors, e.g.

$$
\left(s_{1} \vee s_{2}\right) \rightarrow t \quad \gtreqless \quad\left(s_{1} \rightarrow t\right) \wedge\left(s_{2} \rightarrow t\right)
$$

MAIN IDEA

Instead of defining the subtyping relation so that it conforms to the semantic of types, define the semantics of types and derive the subtyping relation.

In details

$t::=B|t \times t| t \rightarrow t|t \vee t| t \wedge t|\neg t| 0 \mid \mathbb{1}$

- Not a particularly new idea. Many attempts (e.g. Aiken\&Wimmers, Damm,..., Hosoya\&Pierce).

MAIN IDEA

Instead of defining the subtyping relation so that it conforms to the semantic of types, define the semantics of types and derive the subtyping relation.

In details

$t::=B|t \times t| t \rightarrow t|t \vee t| t \wedge t|\neg t| 0 \mid \mathbb{1}$

- Not a particularly new idea. Many attempts (e.g. Aiken\&Wimmers, Damm,..., Hosoya\&Pierce).
- None fully satisfactory. (no negation, or no function types, or restrictions on unions and intersections, ...)

MAIN IDEA

Instead of defining the subtyping relation so that it conforms to the semantic of types, define the semantics of types and derive the subtyping relation.

In details

$t::=B|t \times t| t \rightarrow t|t \vee t| t \wedge t|\neg t| 0 \mid \mathbb{1}$

- Not a particularly new idea. Many attempts (e.g. Aiken\&Wimmers, Damm,..., Hosoya\&Pierce).
- None fully satisfactory. (no negation, or no function types, or restrictions on unions and intersections, ...)
- Starting point of what follows: the approach of Hosoya\&Pierce.

MAIN IDEA

Instead of defining the subtyping relation so that it conforms to the semantic of types, define the semantics of types and derive the subtyping relation.

Semantic subtyping

Semantic subtyping

Semantic subtyping

(1) Define a set-theoretic semantics of the types:

$$
\llbracket \rrbracket: \text { Types } \longrightarrow \mathcal{P}(\mathcal{D})
$$

Semantic subtyping

(1) Define a set-theoretic semantics of the types:

$$
\llbracket \rrbracket: \text { Types } \longrightarrow \mathcal{P}(\mathcal{D})
$$

(2) Define the subtyping relation as follows:

$$
s \leq t \quad \stackrel{\text { def }}{\Longleftrightarrow} \llbracket s \rrbracket \subseteq \llbracket t \rrbracket
$$

Semantic subtyping

(1) Define a set-theoretic semantics of the types:

$$
\llbracket \rrbracket: \text { Types } \longrightarrow \mathcal{P}(\mathcal{D})
$$

(2) Define the subtyping relation as follows:

$$
s \leq t \quad \stackrel{\text { def }}{\Longleftrightarrow} \llbracket s \rrbracket \subseteq \llbracket t \rrbracket
$$

KEY OBSERVATION 1:

The model of types may be independent from a model of terms

Semantic subtyping

(1) Define a set-theoretic semantics of the types:

$$
\llbracket \rrbracket: \text { Types } \longrightarrow \mathcal{P}(\mathcal{D})
$$

(2) Define the subtyping relation as follows:

$$
s \leq t \quad \stackrel{\text { def }}{\Longleftrightarrow} \llbracket s \rrbracket \subseteq \llbracket t \rrbracket
$$

KEY OBSERVATION 1:

The model of types may be independent from a model of terms

Hosoya and Pierce use the model of values:

$$
\llbracket t \rrbracket_{\mathcal{V}}=\{v \mid \vdash v: t\}
$$

Ok because the only values of XDuce are XML documents (no first-class functions)

Step 1 : Model

Define when $\llbracket \rrbracket:$ Types $\longrightarrow \mathcal{P}(\mathcal{D})$ yields a set-theoretic model.

Step 1 : Model

Define when $\llbracket \rrbracket$: Types $\longrightarrow \mathcal{P}(\mathcal{D})$ yields a set-theoretic model.

- Easy for the combinators:

$$
\begin{array}{ll}
\llbracket t_{1} \vee t_{2} \rrbracket & =\llbracket t_{1} \rrbracket \cup \llbracket t_{2} \rrbracket \\
\llbracket t_{1} \wedge t_{2} \rrbracket & =\llbracket t_{1} \rrbracket \cap \llbracket t_{2} \rrbracket \\
\llbracket \neg t \rrbracket & =\mathbb{D} \backslash \llbracket t \rrbracket \\
\llbracket \mathbb{O} \rrbracket & =\emptyset \\
\llbracket \mathbb{1} \rrbracket & =\mathcal{D}
\end{array}
$$

Step 1 : Model

Define when $\llbracket \rrbracket$: Types $\longrightarrow \mathcal{P}(\mathcal{D})$ yields a set-theoretic model.

- Easy for the combinators:

$$
\begin{array}{ll}
\llbracket t_{1} \vee t_{2} \rrbracket & =\llbracket t_{1} \rrbracket \cup \llbracket t_{2} \rrbracket \\
\llbracket t_{1} \wedge t_{2} \rrbracket & =\llbracket t_{1} \rrbracket \cap \llbracket t_{2} \rrbracket \\
\llbracket \neg t \rrbracket & =\mathbb{D} \backslash \llbracket t \rrbracket \\
\llbracket \mathbb{O} \rrbracket & =\emptyset \\
\llbracket \mathbb{1} \rrbracket & =\mathcal{D}
\end{array}
$$

- Hard for constructors:

$$
\begin{aligned}
& \llbracket t_{1} \times t_{2} \rrbracket= \\
& \llbracket t_{1} \rightarrow t_{2} \rrbracket=
\end{aligned}
$$

Step 1 : Model

Define when $\llbracket \rrbracket$: Types $\longrightarrow \mathcal{P}(\mathcal{D})$ yields a set-theoretic model.

- Easy for the combinators:

$$
\begin{array}{ll}
\llbracket t_{1} \vee t_{2} \rrbracket & =\llbracket t_{1} \rrbracket \cup \llbracket t_{2} \rrbracket \\
\llbracket t_{1} \wedge t_{2} \rrbracket & =\llbracket t_{1} \rrbracket \cap \llbracket t_{2} \rrbracket \\
\llbracket \neg t \rrbracket & =\mathcal{D} \backslash \llbracket t \rrbracket \\
\llbracket \mathbb{O D \rrbracket} & =\emptyset \\
\llbracket \mathbb{1} \rrbracket & =\mathcal{D}
\end{array}
$$

- Hard for constructors:

$$
\begin{aligned}
& \llbracket t_{1} \times t_{2} \rrbracket=\llbracket t_{1} \rrbracket \times \llbracket t_{2} \rrbracket \\
& \llbracket t_{1} \rightarrow t_{2} \rrbracket=
\end{aligned}
$$

Step 1 : Model

Define when $\llbracket \rrbracket$: Types $\longrightarrow \mathcal{P}(\mathcal{D})$ yields a set-theoretic model.

- Easy for the combinators:

$$
\begin{array}{ll}
\llbracket t_{1} \vee t_{2} \rrbracket & =\llbracket t_{1} \rrbracket \cup \llbracket t_{2} \rrbracket \\
\llbracket t_{1} \wedge t_{2} \rrbracket & =\llbracket t_{1} \rrbracket \cap \llbracket t_{2} \rrbracket \\
\llbracket \neg t \rrbracket & =\mathbb{D} \backslash \llbracket t \rrbracket \\
\llbracket \mathbb{O} \rrbracket & =\emptyset \\
\llbracket \mathbb{1} \rrbracket & =\mathcal{D}
\end{array}
$$

- Hard for constructors:

$$
\begin{aligned}
\llbracket t_{1} \times t_{2} \rrbracket & =\llbracket t_{1} \rrbracket \times \llbracket t_{2} \rrbracket \\
\llbracket t_{1} \rightarrow t_{2} \rrbracket & =? ? ?
\end{aligned}
$$

Step 1 : Model

Define when $\llbracket \rrbracket$: Types $\longrightarrow \mathcal{P}(\mathcal{D})$ yields a set-theoretic model.

- Easy for the combinators:

$$
\begin{array}{ll}
\llbracket t_{1} \vee t_{2} \rrbracket & =\llbracket t_{1} \rrbracket \cup \llbracket t_{2} \rrbracket \\
\llbracket t_{1} \wedge t_{2} \rrbracket & =\llbracket t_{1} \rrbracket \cap \llbracket t_{2} \rrbracket \\
\llbracket \neg t \rrbracket & =\mathbb{D} \backslash \llbracket t \rrbracket \\
\llbracket \mathbb{O} \rrbracket & =\emptyset \\
\llbracket \mathbb{1} \rrbracket & =\mathcal{D}
\end{array}
$$

- Hard for constructors:

$$
\begin{aligned}
\llbracket t_{1} \times t_{2} \rrbracket & =\llbracket t_{1} \rrbracket \times \llbracket t_{2} \rrbracket \\
\llbracket t_{1} \rightarrow t_{2} \rrbracket & =? ? ?
\end{aligned}
$$

Think semantically!

Intuition

$$
\llbracket t \rightarrow s \rrbracket=? ? ?
$$

Intuition

$$
\llbracket t \rightarrow s \rrbracket=\{\text { functions from } \llbracket t \rrbracket \text { to } \llbracket s \rrbracket\}
$$

Intuition

$$
\llbracket t \rightarrow s \rrbracket=\left\{f \subseteq \mathcal{D}^{2} \mid \forall\left(d_{1}, d_{2}\right) \in f . d_{1} \in \llbracket t \rrbracket \Rightarrow d_{2} \in \llbracket s \rrbracket\right\}
$$

Intuition

$$
\llbracket t \rightarrow s \rrbracket=\mathcal{P}(\overline{\llbracket t \rrbracket \times \overline{\llbracket s \rrbracket})} \quad(\bar{X})
$$

Intuition

$$
\begin{equation*}
\llbracket t \rightarrow s \rrbracket=\mathcal{P}(\overline{\llbracket t \rrbracket \times \overline{\llbracket s \rrbracket}}) \tag{*}
\end{equation*}
$$

Impossible since it requires $\mathcal{P}\left(\mathcal{D}^{2}\right) \subseteq \mathcal{D}$

Intuition

$$
\begin{equation*}
\llbracket t \rightarrow s \rrbracket=\mathcal{P}(\overline{\llbracket t \rrbracket \times \overline{\llbracket \varsigma \rrbracket})} \tag{*}
\end{equation*}
$$

KEY OBSERVATION 2:

We need the model to state how types are related rather than what the types are

Intuition

$$
\llbracket t \rightarrow s \rrbracket=\mathcal{P}(\overline{\llbracket t \rrbracket \times \bar{\llbracket} \rrbracket})
$$

KEY OBSERVATION 2:
 We need the model to state how types are related

Accept every 【】 that behaves w.r.t. \subseteq as if equation $(*)$ held,

Intuition

$$
\begin{equation*}
\llbracket t \rightarrow s \rrbracket=\mathcal{P}(\llbracket t \rrbracket \times \overline{\llbracket s \rrbracket}) \tag{*}
\end{equation*}
$$

KEY OBSERVATION 2:

We need the model to

Accept every 【】 that behaves w.r.t. \subseteq as if equation $(*)$ held, namely

$$
\llbracket t_{1} \rightarrow s_{1} \rrbracket \subseteq \llbracket t_{2} \rightarrow s_{2} \rrbracket \quad \Longleftrightarrow \quad \mathcal{P}\left(\overline{\left.\llbracket t_{1} \rrbracket \times \overline{\llbracket s_{1} \rrbracket}\right) \subseteq \mathcal{P}\left(\overline{\llbracket t_{2} \rrbracket \times \llbracket s_{2} \rrbracket}\right), ~}\right.
$$

Intuition

$$
\begin{equation*}
\llbracket t \rightarrow s \rrbracket=\mathcal{P}(\llbracket t \rrbracket \times \overline{\llbracket s \rrbracket}) \tag{*}
\end{equation*}
$$

KEY OBSERVATION 2:

We need the model to

Accept every 【】 that behaves w.r.t. \subseteq as if equation $(*)$ held, namely

$$
\llbracket t_{1} \rightarrow s_{1} \rrbracket \subseteq \llbracket t_{2} \rightarrow s_{2} \rrbracket \quad \Longleftrightarrow \quad \mathcal{P}\left(\overline{\left.\llbracket t_{1} \rrbracket \times \overline{\llbracket s_{1} \rrbracket}\right) \subseteq \mathcal{P}\left(\overline{\llbracket t_{2} \rrbracket \times \llbracket \overline{s_{2} \rrbracket}}\right), ~}\right.
$$

and similarly for any boolean combination of arrow types.

Technically ...

(1) Take 【-】: Types $\rightarrow \mathcal{P}(\mathcal{D})$ such that

$$
\begin{aligned}
\llbracket t_{1} \vee t_{2} \rrbracket & =\llbracket t_{1} \rrbracket \cup \llbracket t_{2} \rrbracket & \llbracket t_{1} \wedge t_{2} \rrbracket & =\llbracket t_{1} \rrbracket \cap \llbracket t_{2} \rrbracket \\
\llbracket \mathbb{O \rrbracket} & =\emptyset & \llbracket \mathbb{1} \rrbracket & =\mathcal{D}
\end{aligned}
$$

Technically ...

(1) Take 【-】: Types $\rightarrow \mathcal{P}(\mathcal{D})$ such that

$$
\begin{aligned}
\llbracket t_{1} \vee t_{2} \rrbracket & =\llbracket t_{1} \rrbracket \cup \llbracket t_{2} \rrbracket & \llbracket t_{1} \wedge t_{2} \rrbracket & =\llbracket t_{1} \rrbracket \cap \llbracket t_{2} \rrbracket \\
\llbracket \mathbb{O} & =\emptyset & & \llbracket \mathbb{1} \rrbracket
\end{aligned}=\mathcal{D} .
$$

Technically ...

(1) Take 【-』: Types $\rightarrow \mathcal{P}(\mathcal{D})$ such that

$$
\left.\begin{array}{rlrl}
\llbracket t_{1} \vee t_{2} \rrbracket & =\llbracket t_{1} \rrbracket \cup \llbracket t_{2} \rrbracket & \llbracket t_{1} \wedge t_{2} \rrbracket & =\llbracket t_{1} \rrbracket \cap \llbracket t_{2} \rrbracket \\
\llbracket \mathbb{~} \rrbracket & =\emptyset & & \llbracket \mathbb{1} \rrbracket
\end{array}\right)=\mathcal{D} 9 .
$$

(2) Define $\mathbb{E}(-)$: Types $\rightarrow \mathcal{P}\left(\mathcal{D}^{2}+\mathcal{P}\left(\mathcal{D}^{2}\right)\right)$ as follows

$$
\begin{array}{rlll}
\mathbb{E}\left(t_{1} \times t_{2}\right) & \stackrel{\text { def }}{=} \llbracket t_{1} \rrbracket \times \llbracket t_{2} \rrbracket & \subseteq \mathcal{D}^{2} & \\
\mathbb{E}\left(t_{1} \rightarrow t_{2}\right) & \stackrel{\text { def }}{=} \mathcal{P}\left(\llbracket t_{1} \rrbracket \times \llbracket t_{2} \rrbracket\right) & \subseteq \mathcal{P}\left(\mathcal{D}^{2}\right) & \\
\mathbb{E}\left(t_{1} \vee t_{2}\right) & \stackrel{\text { def }}{=} \mathbb{E}\left(t_{1}\right) \cup \mathbb{E}\left(t_{2}\right) & \mathbb{E}\left(t_{1} \wedge t_{2}\right) & \stackrel{\text { def }}{=} \mathbb{E}\left(t_{1}\right) \cap \mathbb{E}\left(t_{2}\right) \\
\mathbb{E}(\mathbb{O}) & \stackrel{\text { def }}{=} \emptyset & \mathbb{E}(\mathbb{1}) & \stackrel{\text { def }}{=} \mathcal{D}^{2}+\mathcal{P}\left(\mathcal{D}^{2}\right)
\end{array}
$$

$$
\mathbb{E}(\neg t) \quad \stackrel{\text { def }}{=} \mathbb{E}(\mathbb{1}) \backslash \mathbb{E}(t)
$$

Technically ．．．

（1）Take 【－』：Types $\rightarrow \mathcal{P}(\mathcal{D})$ such that

$$
\begin{aligned}
& \llbracket t_{1} \vee t_{2} \rrbracket=\llbracket t_{1} \rrbracket \cup \llbracket t_{2} \rrbracket \quad \llbracket t_{1} \wedge t_{2} \rrbracket=\llbracket t_{1} \rrbracket \cap \llbracket t_{2} \rrbracket \\
& \text { 【O】 }=\emptyset \\
& \llbracket \neg t \rrbracket=\llbracket \mathbb{1} \rrbracket \backslash \llbracket t \rrbracket
\end{aligned}
$$

（2）Define $\mathbb{E}(-)$ ：Types $\rightarrow \mathcal{P}\left(\mathcal{D}^{2}+\mathcal{P}\left(\mathcal{D}^{2}\right)\right)$ as follows

$$
\begin{array}{lll}
\mathbb{E}\left(t_{1} \times t_{2}\right) & \stackrel{\text { def }}{=} \llbracket t_{1} \rrbracket \times \llbracket t_{2} \rrbracket & \subseteq \mathcal{D}^{2} \\
\mathbb{E}\left(t_{1} \rightarrow t_{2}\right) & \stackrel{\text { def }}{=} & \mathcal{P}\left(\llbracket t_{1} \rrbracket \times \overline{\llbracket t_{2} \rrbracket}\right)
\end{array} \subseteq \mathcal{P}\left(\mathcal{D}^{2}\right) .
$$

Technically ...

(1) Take 【-』: Types $\rightarrow \mathcal{P}(\mathcal{D})$ such that

$$
\begin{aligned}
\llbracket t_{1} \vee t_{2} \rrbracket & =\llbracket t_{1} \rrbracket \cup \llbracket t_{2} \rrbracket & \llbracket t_{1} \wedge t_{2} \rrbracket & =\llbracket t_{1} \rrbracket \cap \llbracket t_{2} \rrbracket \\
\llbracket \mathbb{O} & =\emptyset & \llbracket \mathbb{1} \rrbracket & =\mathcal{D}
\end{aligned}
$$

$$
\llbracket \neg t \rrbracket=\llbracket \mathbb{1} \rrbracket \backslash \llbracket t \rrbracket
$$

[connective semantics]
(2) Define $\mathbb{E}(-)$: Types $\rightarrow \mathcal{P}\left(\mathcal{D}^{2}+\mathcal{P}\left(\mathcal{D}^{2}\right)\right)$ as follows

$$
\begin{aligned}
& \mathbb{E}\left(t_{1} \times t_{2}\right) \stackrel{\text { def }}{=} \llbracket t_{1} \rrbracket \times \llbracket t_{2} \rrbracket \\
& \mathbb{E}\left(t_{1} \rightarrow t_{2}\right) \stackrel{\text { def }}{=} \mathcal{P}\left(\llbracket \mathcal{D}^{2} \rrbracket \times \overline{\llbracket t_{2} \rrbracket}\right) \\
& \subseteq \mathcal{P}\left(\mathcal{D}^{2}\right)
\end{aligned}
$$

(3) Model: Instead of requiring $\llbracket t \rrbracket=\mathbb{E}(t)$, accept $\llbracket \rrbracket$ if

$$
\llbracket t \rrbracket=\emptyset \Longleftrightarrow \mathbb{E}(t)=\emptyset
$$

Technically ...

(1) Take 【-』: Types $\rightarrow \mathcal{P}(\mathcal{D})$ such that

$$
\begin{aligned}
\llbracket t_{1} \vee t_{2} \rrbracket & =\llbracket t_{1} \rrbracket \cup \llbracket t_{2} \rrbracket & \llbracket t_{1} \wedge t_{2} \rrbracket & =\llbracket t_{1} \rrbracket \cap \llbracket t_{2} \rrbracket \\
\llbracket \cup \rrbracket & =\emptyset & \llbracket \mathbb{1} \rrbracket & =\mathcal{D}
\end{aligned}
$$

$$
\llbracket \neg t \rrbracket=\llbracket \mathbb{1} \rrbracket \backslash \llbracket t \rrbracket \quad \text { [connective semantics] }
$$

(2) Define $\mathbb{E}(-)$: Types $\rightarrow \mathcal{P}\left(\mathcal{D}^{2}+\mathcal{P}\left(\mathcal{D}^{2}\right)\right)$ as follows

$$
\begin{aligned}
\mathbb{E}\left(t_{1} \times t_{2}\right) & \stackrel{\text { def }}{=} \llbracket t_{1} \rrbracket \times \llbracket t_{2} \rrbracket \\
\mathbb{E}\left(t_{1} \rightarrow t_{2}\right) & \stackrel{\text { def }}{=} \\
\mathcal{P}\left(\llbracket t_{1} \rrbracket \times \overline{\iota_{2} \rrbracket}\right) & \subseteq \mathcal{P}\left(\mathcal{D}^{2}\right)
\end{aligned}
$$

(3) Model: Instead of requiring $\llbracket t \rrbracket=\mathbb{E}(t)$, accept $\llbracket \rrbracket$ if

$$
\llbracket t \rrbracket=\emptyset \Longleftrightarrow \mathbb{E}(t)=\emptyset
$$

(which is equivalent to $\llbracket s \rrbracket \subseteq \llbracket t \rrbracket \Longleftrightarrow \mathbb{E}(s) \subseteq \mathbb{E}(t)$)

To characterize \leq all is needed is the test of emptyness

The main intuition

To characterize \leq all is needed is the test of emptyness
Indeed: $\quad s \leq t \Leftrightarrow \llbracket s \rrbracket \subseteq \llbracket t \rrbracket \Leftrightarrow \llbracket s \rrbracket \cap \overline{\llbracket t \rrbracket}=\varnothing \Leftrightarrow \llbracket s \wedge \neg t \rrbracket=\varnothing$

The main intuition

To characterize \leq all is needed is the test of emptyness
Indeed: $\quad s \leq t \Leftrightarrow \llbracket s \rrbracket \subseteq \llbracket t \rrbracket \Leftrightarrow \llbracket s \rrbracket \cap \overline{\llbracket t \rrbracket}=\varnothing \Leftrightarrow \llbracket s \wedge \neg t \rrbracket=\varnothing$
Instead of $\llbracket t \rrbracket=\mathbb{E}(t)$, the weaker $\llbracket t \rrbracket=\emptyset \Leftrightarrow \mathbb{E}(t)=\emptyset$ suffices for \leq.

The main intuition

To characterize \leq all is needed is the test of emptyness
Indeed: $\quad s \leq t \Leftrightarrow \llbracket s \rrbracket \subseteq \llbracket t \rrbracket \Leftrightarrow \llbracket s \rrbracket \cap \overline{\llbracket t \rrbracket}=\varnothing \Leftrightarrow \llbracket s \wedge \neg t \rrbracket=\varnothing$
Instead of $\llbracket t \rrbracket=\mathbb{E}(t)$, the weaker $\llbracket t \rrbracket=\emptyset \Leftrightarrow \mathbb{E}(t)=\emptyset$ suffices for \leq.
$\llbracket \rrbracket$ and $\mathbb{E}()$ must have the same zeros

The main intuition

To characterize \leq all is needed is the test of emptyness
Indeed: $\quad s \leq t \Leftrightarrow \llbracket s \rrbracket \subseteq \llbracket t \rrbracket \Leftrightarrow \llbracket s \rrbracket \cap \overline{\llbracket t \rrbracket}=\varnothing \Leftrightarrow \llbracket s \wedge \neg t \rrbracket=\varnothing$ Instead of $\llbracket t \rrbracket=\mathbb{E}(t)$, the weaker $\llbracket t \rrbracket=\emptyset \Leftrightarrow \mathbb{E}(t)=\emptyset$ suffices for \leq.

$\llbracket \rrbracket$ and $\mathbb{E}()$ must have the same zeros

We relaxed our requirement but ...

DOES A MODEL EXIST?

Is it possible to define 【-』: Types $\rightarrow \mathcal{P}(\mathcal{D})$ that satisfies the model conditions, in particular a $\llbracket \rrbracket$ such that $\llbracket t \rrbracket=\emptyset \Leftrightarrow \mathbb{E}(t)=\emptyset$?

The main intuition

To characterize \leq all is needed is the test of emptyness
Indeed: $\quad s \leq t \Leftrightarrow \llbracket s \rrbracket \subseteq \llbracket t \rrbracket \Leftrightarrow \llbracket s \rrbracket \cap \overline{\llbracket t \rrbracket}=\varnothing \Leftrightarrow \llbracket s \wedge \neg t \rrbracket=\varnothing$ Instead of $\llbracket t \rrbracket=\mathbb{E}(t)$, the weaker $\llbracket t \rrbracket=\emptyset \Leftrightarrow \mathbb{E}(t)=\emptyset$ suffices for \leq.

$\llbracket \rrbracket$ and $\mathbb{E}()$ must have the same zeros

We relaxed our requirement but ...

DOES A MODEL EXIST?

Is it possible to define 【-』: Types $\rightarrow \mathcal{P}(\mathcal{D})$ that satisfies the model conditions, in particular a $\llbracket \rrbracket$ such that $\llbracket t \rrbracket=\emptyset \Leftrightarrow \mathbb{E}(t)=\emptyset$?

YES: an example within two slides
$\mathbb{E}()$ characterizes the behavior of types (for what it concerns \leq one can consider $\llbracket t \rrbracket=\mathbb{E}(t))$: it depends on the language the types are intended for.
$\mathbb{E}()$ characterizes the behavior of types (for what it concerns \leq one can consider $\llbracket t \rrbracket=\mathbb{E}(t))$: it depends on the language the types are intended for.

Variations are possible. Our choice

$$
\mathbb{E}\left(t_{1} \rightarrow t_{2}\right)=\mathcal{P}\left(\overline{\llbracket t_{1} \rrbracket \times \overline{\llbracket t_{2} \rrbracket}}\right)
$$

accounts for languages that are:

The role of $\mathbb{E}()$

$\mathbb{E}()$ characterizes the behavior of types (for what it concerns \leq one can consider $\llbracket t \rrbracket=\mathbb{E}(t))$: it depends on the language the types are intended for.

Variations are possible. Our choice

$$
\mathbb{E}\left(t_{1} \rightarrow t_{2}\right)=\mathcal{P}\left(\llbracket t_{1} \rrbracket \times \overline{\llbracket t_{2} \rrbracket}\right)
$$

accounts for languages that are:
(1) Non-deterministic:

Admits functions in which $\left(d, d_{1}\right)$ and $\left(d, d_{2}\right)$ with $d_{1} \neq d_{2}$.
$\mathbb{E}()$ characterizes the behavior of types (for what it concerns \leq one can consider $\llbracket t \rrbracket=\mathbb{E}(t))$: it depends on the language the types are intended for.

Variations are possible. Our choice

$$
\mathbb{E}\left(t_{1} \rightarrow t_{2}\right)=\mathcal{P}\left(\llbracket t_{1} \rrbracket \times \overline{\llbracket t_{2} \rrbracket}\right)
$$

accounts for languages that are:
(1) Non-deterministic:

Admits functions in which $\left(d, d_{1}\right)$ and $\left(d, d_{2}\right)$ with $d_{1} \neq d_{2}$.
(2) Non-terminating:
a function in $\llbracket t \rightarrow s \rrbracket$ may be not total on $\llbracket t \rrbracket$.
$\mathbb{E}()$ characterizes the behavior of types (for what it concerns \leq one can consider $\llbracket t \rrbracket=\mathbb{E}(t))$: it depends on the language the types are intended for.

Variations are possible. Our choice

$$
\mathbb{E}\left(t_{1} \rightarrow t_{2}\right)=\mathcal{P}\left(\llbracket t_{1} \rrbracket \times \overline{\llbracket t_{2} \rrbracket}\right)
$$

accounts for languages that are:
(1) Non-deterministic:

Admits functions in which $\left(d, d_{1}\right)$ and $\left(d, d_{2}\right)$ with $d_{1} \neq d_{2}$.
(2) Non-terminating:
a function in $\llbracket t \rightarrow s \rrbracket$ may be not total on $\llbracket t \rrbracket$.E.g.

$$
\llbracket t \rightarrow \mathbb{O} \rrbracket=\text { functions diverging on } t
$$

The role of $\mathbb{E}()$

$\mathbb{E}()$ characterizes the behavior of types (for what it concerns \leq one can consider $\llbracket t \rrbracket=\mathbb{E}(t))$: it depends on the language the types are intended for.

Variations are possible. Our choice

$$
\mathbb{E}\left(t_{1} \rightarrow t_{2}\right)=\mathcal{P}\left(\llbracket t_{1} \rrbracket \times \overline{\llbracket t_{2} \rrbracket}\right)
$$

accounts for languages that are:
(1) Non-deterministic:

Admits functions in which $\left(d, d_{1}\right)$ and $\left(d, d_{2}\right)$ with $d_{1} \neq d_{2}$.
(2) Non-terminating:
a function in $\llbracket t \rightarrow s \rrbracket$ may be not total on $\llbracket t \rrbracket$.E.g.

$$
\llbracket t \rightarrow \mathbb{O} \rrbracket=\text { functions diverging on } t
$$

(3) Overloaded:

$$
\llbracket\left(t_{1} \vee t_{2}\right) \rightarrow\left(s_{1} \wedge s_{2}\right) \rrbracket \nsubseteq \llbracket\left(t_{1} \rightarrow s_{1}\right) \wedge\left(t_{2} \rightarrow s_{2}\right) \rrbracket
$$

Closing the circle

(1) Take any model $\left(\mathcal{B}, \rrbracket_{\mathcal{B}}\right)$ to bootstrap the definition.

Closing the circle

(1) Take any model $\left(\mathcal{B}, \rrbracket_{\mathcal{B}}\right)$ to bootstrap the definition.
(2) Define

$$
s \leq_{\mathcal{B}} t \quad \Longleftrightarrow \quad \llbracket s \rrbracket_{\mathcal{B}} \subseteq \llbracket t \rrbracket_{\mathcal{B}}
$$

Closing the circle

(1) Take any model $\left(\mathcal{B}, \rrbracket_{\mathcal{B}}\right)$ to bootstrap the definition.
(2) Define

$$
s \leq_{\mathcal{B}} t \quad \Longleftrightarrow \quad \llbracket s \rrbracket_{\mathcal{B}} \subseteq \llbracket t \rrbracket_{\mathcal{B}}
$$

(3) Take any "appropriate" language \mathcal{L} and use $\leq_{\mathcal{B}}$ to type it

$$
\Gamma \vdash_{\mathcal{B}} e: t
$$

Closing the circle

(1) Take any model $\left(\mathcal{B}, \rrbracket_{\mathcal{B}}\right)$ to bootstrap the definition.
(2) Define

$$
s \leq_{\mathcal{B}} t \quad \Longleftrightarrow \quad \llbracket s \rrbracket_{\mathcal{B}} \subseteq \llbracket t \rrbracket_{\mathcal{B}}
$$

(3) Take any "appropriate" language \mathcal{L} and use $\leq_{\mathcal{B}}$ to type it

$$
\Gamma \vdash_{\mathcal{B}} e: t
$$

(9) Define a new interpretation $\llbracket t \rrbracket_{\mathcal{V}}=\left\{v \in \mathcal{V} \mid \vdash_{\mathcal{B}} v: t\right\}$ and $s \leq_{\mathcal{V}} t \Longleftrightarrow \llbracket s \rrbracket_{\mathcal{V}} \subseteq \llbracket t \rrbracket_{\mathcal{V}}$

Closing the circle

(1) Take any model $\left(\mathcal{B}, \rrbracket_{\mathcal{B}}\right)$ to bootstrap the definition.
(2) Define

$$
s \leq_{\mathcal{B}} t \quad \Longleftrightarrow \quad \llbracket s \rrbracket_{\mathcal{B}} \subseteq \llbracket t \rrbracket_{\mathcal{B}}
$$

(3) Take any "appropriate" language \mathcal{L} and use $\leq_{\mathcal{B}}$ to type it

$$
\Gamma \vdash_{\mathcal{B}} e: t
$$

(9) Define a new interpretation $\llbracket t \rrbracket_{\mathcal{V}}=\left\{v \in \mathcal{V} \mid \vdash_{\mathcal{B}} v: t\right\}$ and

$$
s \leq_{\mathcal{V}} t \quad \Longleftrightarrow \quad \llbracket s \rrbracket_{\mathcal{V}} \subseteq \llbracket t \rrbracket_{\mathcal{V}}
$$

(3) If \mathcal{L} is "appropriate" $\left(\vdash_{\mathcal{B}} v: t \Longleftrightarrow \nvdash \mathcal{B} v: \neg t\right)$ then $\llbracket \rrbracket_{\mathcal{V}}$ is a model and

$$
s \leq_{\mathcal{B}} t \quad \Longleftrightarrow \quad s \leq_{\mathcal{V}} t
$$

Closing the circle

(1) Take any model $\left(\mathcal{B}, \rrbracket_{\mathcal{B}}\right)$ to bootstrap the definition.
(2) Define

$$
s \leq_{\mathcal{B}} t \quad \Longleftrightarrow \quad \llbracket s \rrbracket_{\mathcal{B}} \subseteq \llbracket t \rrbracket_{\mathcal{B}}
$$

(3) Take any "appropriate" language \mathcal{L} and use $\leq_{\mathcal{B}}$ to type it

$$
\Gamma \vdash_{\mathcal{B}} e: t
$$

(9) Define a new interpretation $\llbracket t \rrbracket_{\mathcal{V}}=\left\{v \in \mathcal{V} \mid \vdash_{\mathcal{B}} v: t\right\}$ and

$$
s \leq_{\mathcal{V}} t \quad \Longleftrightarrow \quad \llbracket s \rrbracket_{\mathcal{V}} \subseteq \llbracket t \rrbracket_{\mathcal{V}}
$$

(5) If \mathcal{L} is "appropriate" $\left(\vdash_{\mathcal{B}} v: t \Longleftrightarrow \nvdash \mathcal{B} v: \neg t\right)$ then $\llbracket \rrbracket_{\mathcal{V}}$ is a model and

$$
s \leq_{\mathcal{B}} t \quad \Longleftrightarrow \quad s \leq_{\mathcal{V}} t
$$

The circle is closed

Exhibit a model

Does a model exists? (i.e. a $\llbracket \rrbracket$ such that $\llbracket t \rrbracket=\emptyset \Longleftrightarrow \mathbb{E}(t)=\emptyset$)

Exhibit a model

Does a model exists? (i.e. a $\llbracket \rrbracket$ such that $\llbracket t \rrbracket=\emptyset \Longleftrightarrow \mathbb{E}(t)=\emptyset$) YES: take $\left(\mathcal{U}, \llbracket \rrbracket_{\mathcal{U}}\right)$ where

Exhibit a model

Does a model exists? (i.e. a $\llbracket \rrbracket$ such that $\llbracket t \rrbracket=\emptyset \Longleftrightarrow \mathbb{E}(t)=\emptyset$) YES: take $\left(\mathcal{U}, \llbracket \rrbracket_{\mathcal{U}}\right)$ where
(1) \mathcal{U} least solution of $X=X^{2}+\mathcal{P}_{f}\left(X^{2}\right)$

Exhibit a model

Does a model exists? (i.e. a $\llbracket \rrbracket$ such that $\llbracket t \rrbracket=\emptyset \Longleftrightarrow \mathbb{E}(t)=\emptyset$) YES: take $\left(\mathcal{U}, \llbracket \rrbracket_{\mathcal{U}}\right)$ where
(1) \mathcal{U} least solution of $X=X^{2}+\mathcal{P}_{f}\left(X^{2}\right)$

Exhibit a model

Does a model exists? (i.e. a $\llbracket \rrbracket$ such that $\llbracket t \rrbracket=\emptyset \Longleftrightarrow \mathbb{E}(t)=\emptyset$) YES: take $\left(\mathcal{U}, \llbracket \rrbracket_{\mathcal{U}}\right)$ where
(1) \mathcal{U} least solution of $X=X^{2}+\mathcal{P}_{f}\left(X^{2}\right)$
(2) $\llbracket \rrbracket_{\mathcal{U}}$ is defined as:

Exhibit a model

Does a model exists? (i.e. a $\llbracket \rrbracket$ such that $\llbracket t \rrbracket=\emptyset \Longleftrightarrow \mathbb{E}(t)=\emptyset$) YES: take $\left(\mathcal{U}, \llbracket \rrbracket_{\mathcal{U}}\right)$ where
(1) \mathcal{U} least solution of $X=X^{2}+\mathcal{P}_{f}\left(X^{2}\right)$
(2) $\llbracket \rrbracket_{\mathcal{U}}$ is defined as:

$$
\begin{array}{ll}
\llbracket \cup \rrbracket_{\mathcal{U}}=\emptyset \quad \llbracket \mathbb{1} \rrbracket_{\mathcal{U}}=\mathcal{U} & \llbracket \neg t \rrbracket_{\mathcal{U}}=\mathcal{U} \backslash \llbracket t \rrbracket_{\mathcal{U}} \\
\llbracket s \vee t \rrbracket_{\mathcal{U}}=\llbracket s \rrbracket_{\mathcal{U}} \cup \llbracket t \rrbracket_{\mathcal{U}} & \llbracket s \wedge t \rrbracket_{\mathcal{U}}=\llbracket s \rrbracket_{\mathcal{U}} \cap \llbracket t \rrbracket_{\mathcal{U}}
\end{array}
$$

Exhibit a model

Does a model exists? (i.e. a $\llbracket \rrbracket$ such that $\llbracket t \rrbracket=\emptyset \Longleftrightarrow \mathbb{E}(t)=\emptyset$) YES: take $\left(\mathcal{U}, \llbracket \rrbracket_{\mathcal{U}}\right)$ where
(1) \mathcal{U} least solution of $X=X^{2}+\mathcal{P}_{f}\left(X^{2}\right)$
(2) $\llbracket \rrbracket_{\mathcal{U}}$ is defined as:

$$
\begin{array}{lc}
\llbracket 0 \rrbracket_{\mathcal{U}}=\emptyset \quad \llbracket \mathbb{1} \rrbracket_{\mathcal{U}}=\mathcal{U} & \llbracket \neg t \rrbracket_{\mathcal{U}}=\mathcal{U} \backslash \llbracket t \rrbracket_{\mathcal{U}} \\
\llbracket s \vee t \rrbracket_{\mathcal{U}}=\llbracket s \rrbracket_{\mathcal{U}} \cup \llbracket t \rrbracket_{\mathcal{U}} & \llbracket s \wedge t \rrbracket_{\mathcal{U}}=\llbracket s \rrbracket_{\mathcal{U} \cap} \cap t \rrbracket_{\mathcal{U}} \\
\llbracket s \times t \rrbracket_{\mathcal{U}}=\llbracket s \rrbracket_{\mathcal{U}} \times \llbracket t \rrbracket_{\mathcal{U}} & \llbracket t \rightarrow s \rrbracket_{\mathcal{U}}=\mathcal{P}_{f}\left(\llbracket t \rrbracket_{\mathcal{U}} \times \overline{\llbracket s \rrbracket_{\mathcal{U}}}\right)
\end{array}
$$

Exhibit a model

Does a model exists? (i.e. a $\llbracket \rrbracket$ such that $\llbracket t \rrbracket=\emptyset \Longleftrightarrow \mathbb{E}(t)=\emptyset$) YES: take $\left(\mathcal{U}, \llbracket \rrbracket_{\mathcal{U}}\right)$ where
(1) \mathcal{U} least solution of $X=X^{2}+\mathcal{P}_{f}\left(X^{2}\right)$
(2) $\llbracket \rrbracket_{\mathcal{U}}$ is defined as:

$$
\begin{array}{lc}
\llbracket 0 \rrbracket_{\mathcal{U}}=\emptyset \quad \llbracket \mathbb{1} \rrbracket_{\mathcal{U}}=\mathcal{U} & \llbracket \neg t \rrbracket_{\mathcal{U}}=\mathcal{U} \backslash \llbracket t \rrbracket_{\mathcal{U}} \\
\llbracket s \vee t \rrbracket_{\mathcal{U}}=\llbracket s \rrbracket_{\mathcal{U}} \cup \llbracket t \rrbracket_{\mathcal{U}} & \llbracket s \wedge t \rrbracket_{\mathcal{U}}=\llbracket s \rrbracket_{\mathcal{U}} \cap \llbracket t \rrbracket_{\mathcal{U}} \\
\llbracket s \times t \rrbracket_{\mathcal{U}}=\llbracket s \rrbracket_{\mathcal{U}} \times \llbracket t \rrbracket_{\mathcal{U}} & \llbracket t \rightarrow s \rrbracket_{\mathcal{U}}=\mathcal{P}_{f}\left(\llbracket t \rrbracket_{\mathcal{U}} \times \overline{\llbracket s \rrbracket_{\mathcal{U}}}\right)
\end{array}
$$

Exhibit a model

Does a model exists? (i.e. a $\llbracket \rrbracket$ such that $\llbracket t \rrbracket=\emptyset \Longleftrightarrow \mathbb{E}(t)=\emptyset$) YES: take $\left(\mathcal{U}, \llbracket \rrbracket_{\mathcal{U}}\right)$ where
(1) \mathcal{U} least solution of $X=X^{2}+\mathcal{P}_{f}\left(X^{2}\right)$
(2) $\llbracket \rrbracket_{\mathcal{U}}$ is defined as:

$$
\begin{array}{lc}
\llbracket 0 \rrbracket_{\mathcal{U}}=\emptyset \quad \llbracket \mathbb{1} \rrbracket_{\mathcal{U}}=\mathcal{U} & \llbracket \neg t \rrbracket_{\mathcal{U}}=\mathcal{U} \backslash \llbracket t \rrbracket_{\mathcal{U}} \\
\llbracket s \vee t \rrbracket_{\mathcal{U}}=\llbracket s \rrbracket_{\mathcal{U}} \cup \llbracket t \rrbracket_{\mathcal{U}} & \llbracket s \wedge t \rrbracket_{\mathcal{U}}=\llbracket s \rrbracket_{\mathcal{U} \cap \llbracket t \rrbracket_{\mathcal{U}}} \\
\llbracket s \times t \rrbracket_{\mathcal{U}}=\llbracket s \rrbracket_{\mathcal{U}} \times \llbracket t \rrbracket_{\mathcal{U}} & \llbracket t \rightarrow s \rrbracket_{\mathcal{U}}=\mathcal{P}_{f}\left(\llbracket t \rrbracket_{\mathcal{U}} \times \overline{\llbracket s \rrbracket_{\mathcal{U}}}\right)
\end{array}
$$

It is a model: $\mathcal{P}_{f}\left(\overline{\llbracket t \rrbracket_{\mathcal{U}} \times \overline{\llbracket s \rrbracket_{\mathcal{U}}}}\right)=\varnothing \Longleftrightarrow \mathcal{P}\left(\overline{\llbracket t \rrbracket_{\mathcal{U}} \times \overline{\llbracket s \rrbracket_{\mathcal{U}}}}\right)=\varnothing$

Exhibit a model

Does a model exists? (i.e. a $\llbracket \rrbracket$ such that $\llbracket t \rrbracket=\emptyset \Longleftrightarrow \mathbb{E}(t)=\emptyset$) YES: take $\left(\mathcal{U}, \llbracket \rrbracket_{\mathcal{U}}\right)$ where
(1) \mathcal{U} least solution of $X=X^{2}+\mathcal{P}_{f}\left(X^{2}\right)$
(2) $\llbracket \rrbracket_{\mathcal{U}}$ is defined as:

$$
\begin{array}{lc}
\llbracket 0 \rrbracket_{\mathcal{U}}=\emptyset \quad \llbracket \mathbb{1} \rrbracket_{\mathcal{U}}=\mathcal{U} & \llbracket \neg t \rrbracket_{\mathcal{U}}=\mathcal{U} \backslash \llbracket t \rrbracket_{\mathcal{U}} \\
\llbracket s \vee t \rrbracket_{\mathcal{U}}=\llbracket s \rrbracket_{\mathcal{U}} \cup \llbracket t \rrbracket_{\mathcal{U}} & \llbracket s \wedge t \rrbracket_{\mathcal{U}}=\llbracket s \rrbracket_{\mathcal{U} \cap \llbracket t \rrbracket_{\mathcal{U}}} \\
\llbracket s \times t \rrbracket_{\mathcal{U}}=\llbracket s \rrbracket_{\mathcal{U}} \times \llbracket t \rrbracket_{\mathcal{U}} & \llbracket t \rightarrow s \rrbracket_{\mathcal{U}}=\mathcal{P}_{f}\left(\llbracket t \rrbracket_{\mathcal{U}} \times \overline{\llbracket s \rrbracket_{\mathcal{U}}}\right)
\end{array}
$$

It is a model: $\mathcal{P}_{f}\left(\overline{\llbracket t \rrbracket_{\mathcal{U}} \times \overline{\llbracket_{\rrbracket_{\mathcal{U}}}}}\right)=\varnothing \Longleftrightarrow \mathcal{P}\left(\overline{\llbracket t \rrbracket_{\mathcal{U}} \times \overline{\llbracket s \rrbracket_{\mathcal{U}}}}\right)=\varnothing$
It is the best model: for any other model $\llbracket \rrbracket_{\mathcal{D}}$

$$
t_{1} \leq_{\mathcal{D}} t_{2} \quad \Rightarrow \quad t_{1} \leq_{\mathcal{U}} t_{2}
$$

Subtyping Algorithms.

Canonical forms

Every (recursive) type

$$
t::=B|t \times t| t \rightarrow t|t \vee t| t \wedge t|\neg t| \mathbb{0} \mid \mathbb{1}
$$

Canonical forms

Every (recursive) type

$$
t::=B|t \times t| t \rightarrow t|t \vee t| t \wedge t|\neg t| \mathbb{0} \mid \mathbb{1}
$$

is equivalent (semantically, w.r.t. \leq) to a type of the form
(I omitted base types):

$$
\bigvee_{(P, N) \in \Pi}\left(\left(\bigwedge_{s \times t \in P} s \times t\right) \wedge\left(\bigwedge_{s \times t \in N} \neg(s \times t)\right)\right) \bigvee_{(P, N) \in \Sigma}\left(\left(\bigwedge_{s \rightarrow t \in P} s \rightarrow t\right) \wedge\left(\bigwedge_{s \rightarrow t \in N} \neg(s \rightarrow t)\right)\right)
$$

Canonical forms

Every (recursive) type

$$
t::=B|t \times t| t \rightarrow t|t \vee t| t \wedge t|\neg t| \mathbb{0} \mid \mathbb{1}
$$

is equivalent (semantically, w.r.t. \leq) to a type of the form
(I omitted base types):

$$
\bigvee_{(P, N) \in \Pi}\left(\left(\bigwedge_{s \times t \in P} s \times t\right) \wedge\left(\bigwedge_{s \times t \in N} \neg(s \times t)\right)\right) \bigvee_{(P, N) \in \Sigma}\left(\left(\bigwedge_{s \rightarrow t \in P} s \rightarrow t\right) \wedge\left(\bigwedge_{s \rightarrow t \in N} \neg(s \rightarrow t)\right)\right)
$$

(1) Put it in disjunctive normal form, e.g.

$$
\left(a_{1} \wedge a_{2} \wedge \neg a_{3}\right) \vee\left(a_{4} \wedge \neg a_{5}\right) \vee\left(\neg a_{6} \wedge \neg a_{7}\right) \vee\left(a_{8} \wedge a_{9}\right)
$$

Canonical forms

Every (recursive) type

$$
t::=B|t \times t| t \rightarrow t|t \vee t| t \wedge t|\neg t| \mathbb{0} \mid \mathbb{1}
$$

is equivalent (semantically, w.r.t. \leq) to a type of the form
(I omitted base types):

$$
\bigvee_{(P, N) \in \Pi}\left(\left(\bigwedge_{s \times t \in P} s \times t\right) \wedge\left(\bigwedge_{s \times t \in N} \neg(s \times t)\right)\right) \bigvee_{(P, N) \in \Sigma}\left(\left(\bigwedge_{s \rightarrow t \in P} s \rightarrow t\right) \wedge\left(\bigwedge_{s \rightarrow t \in N} \neg(s \rightarrow t)\right)\right)
$$

(1) Put it in disjunctive normal form, e.g.

$$
\left(a_{1} \wedge a_{2} \wedge \neg a_{3}\right) \vee\left(a_{4} \wedge \neg a_{5}\right) \vee\left(\neg a_{6} \wedge \neg a_{7}\right) \vee\left(a_{8} \wedge a_{9}\right)
$$

(2) Transform to have only homogeneous intersections, e.g.

$$
\left(\left(s_{1} \times t_{1}\right) \wedge \neg\left(s_{2} \times t_{2}\right)\right) \vee\left(\neg\left(s_{3} \rightarrow t_{3}\right) \wedge \neg\left(s_{4} \rightarrow t_{4}\right)\right) \vee\left(s_{5} \times t_{5}\right)
$$

Canonical forms

Every (recursive) type

$$
t::=B|t \times t| t \rightarrow t|t \vee t| t \wedge t|\neg t| \mathbb{0} \mid \mathbb{1}
$$

is equivalent (semantically, w.r.t. \leq) to a type of the form
(I omitted base types):

$$
\bigvee_{(P, N) \in \Pi}\left(\left(\bigwedge_{s \times t \in P} s \times t\right) \wedge\left(\bigwedge_{s \times t \in N} \neg(s \times t)\right)\right) \bigvee_{(P, N) \in \Sigma}\left(\left(\bigwedge_{s \rightarrow t \in P} s \rightarrow t\right) \wedge\left(\bigwedge_{s \rightarrow t \in N} \neg(s \rightarrow t)\right)\right)
$$

(1) Put it in disjunctive normal form, e.g.

$$
\left(a_{1} \wedge a_{2} \wedge \neg a_{3}\right) \vee\left(a_{4} \wedge \neg a_{5}\right) \vee\left(\neg a_{6} \wedge \neg a_{7}\right) \vee\left(a_{8} \wedge a_{9}\right)
$$

(2) Transform to have only homogeneous intersections, e.g.

$$
\left(\left(s_{1} \times t_{1}\right) \wedge \neg\left(s_{2} \times t_{2}\right)\right) \vee\left(\neg\left(s_{3} \rightarrow t_{3}\right) \wedge \neg\left(s_{4} \rightarrow t_{4}\right)\right) \vee\left(s_{5} \times t_{5}\right)
$$

(3) Group negative and positive atoms in the intersections:

$$
\bigvee_{(P, N) \in S}\left(\left(\bigwedge_{a \in P} a\right) \wedge\left(\bigwedge_{a \in N} \neg a\right)\right)
$$

Decision procedure

$$
s \leq t ?
$$

Decision procedure

$$
s \leq t ?
$$

Recall that:

$$
s \leq t \Longleftrightarrow \llbracket s \rrbracket \cap \overline{\llbracket t \rrbracket}=\varnothing \Longleftrightarrow \llbracket s \wedge \neg t \rrbracket=\varnothing \Longleftrightarrow s \wedge \neg t=0
$$

Decision procedure

$$
s \leq t ?
$$

Recall that:

$$
s \leq t \Longleftrightarrow \llbracket s \rrbracket \cap \overline{\llbracket t \rrbracket}=\varnothing \Longleftrightarrow \llbracket s \wedge \neg t \rrbracket=\varnothing \Longleftrightarrow s \wedge \neg t=0
$$

(1) Consider $s \wedge \neg t$

Decision procedure

$$
s \leq t ?
$$

Recall that:

$$
s \leq t \Longleftrightarrow \llbracket s \rrbracket \cap \overline{\llbracket t \rrbracket}=\varnothing \Longleftrightarrow \llbracket s \wedge \neg t \rrbracket=\varnothing \Longleftrightarrow s \wedge \neg t=0
$$

(1) Consider $s \wedge \neg t$
(2) Put it in canonical form

$$
\bigvee_{(P, N) \in \Pi}\left(\left(\bigwedge_{s \times t \in P} s \times t\right) \wedge\left(\bigwedge_{s \times t \in N} \neg(s \times t)\right)\right) \bigvee_{(P, N) \in \Sigma}\left(\left(\bigwedge_{s \rightarrow t \in P} s \rightarrow t\right) \wedge\left(\bigwedge_{s \rightarrow t \in N} \neg(s \rightarrow t)\right)\right)
$$

Decision procedure

$$
s \leq t ?
$$

Recall that:

$$
s \leq t \Longleftrightarrow \llbracket s \rrbracket \cap \overline{\llbracket t \rrbracket}=\varnothing \Longleftrightarrow \llbracket s \wedge \neg t \rrbracket=\varnothing \Longleftrightarrow s \wedge \neg t=0
$$

(1) Consider $s \wedge \neg t$
(2) Put it in canonical form

$$
\bigvee_{(P, N) \in \Pi}\left(\left(\bigwedge_{s \times t \in P} s \times t\right) \wedge\left(\bigwedge_{s \times t \in N} \neg(s \times t)\right)\right) \bigvee_{(P, N) \in \Sigma}\left(\left(\bigwedge_{s \rightarrow t \in P} s \rightarrow t\right) \wedge\left(\bigwedge_{s \rightarrow t \in N} \neg(s \rightarrow t)\right)\right)
$$

(3) Decide (coinductively) whether all the intersections occuring above are empty by applying the set theoretic properties stated in the next slide.

Subtyping decomposition

Decomposition law for products:

$$
\begin{aligned}
& \bigwedge_{i \in I} t_{i} \times s_{i} \leq \bigvee_{j \in J} t_{j} \times s_{j} \\
& \Longleftrightarrow \forall J^{\prime} \subseteq J . \quad\left(\bigwedge_{i \in I} t_{i} \leq \bigvee_{j \in J^{\prime}} t_{j}\right) \text { or }\left(\bigwedge_{i \in I} s_{i} \leq \bigvee_{j \in J \backslash J^{\prime}} s_{j}\right)
\end{aligned}
$$

Decomposition law for arrows:

$$
\bigwedge_{i \in I} t_{i} \rightarrow s_{i} \leq \bigvee_{j \in J} t_{j} \rightarrow s_{j}
$$

$$
\Longleftrightarrow \exists j \in J . \forall I^{\prime} \subseteq I .\left(t_{j} \leq \bigvee_{i \in I^{\prime}} t_{i}\right) \text { or }\left(I^{\prime} \neq I \text { et } \bigwedge_{i \in \Lambda \backslash I^{\prime}} s_{i} \leq s_{j}\right)
$$

Exercise

Using the laws of the previous slide prove the following equivalences:

$$
\begin{aligned}
& t_{1} \times s_{1} \leq t_{2} \times s_{2} \quad \Longleftrightarrow \quad t_{1} \leq \emptyset \text { or } s_{1} \leq \emptyset \text { or }\left(t_{1} \leq t_{2} \text { and } s_{1} \leq s_{2}\right) \\
& t_{1} \rightarrow s_{1} \leq t_{2} \rightarrow s_{2} \quad \Longleftrightarrow \quad t_{2} \leq \emptyset \text { or or }\left(t_{2} \leq t_{1} \text { and } s_{1} \leq s_{2}\right)
\end{aligned}
$$

Application to a language.

Language

$$
\begin{aligned}
& e::=x \quad \text { variable } \\
& \mu f^{\left(s_{1} \rightarrow t_{1} ; \ldots ; s_{n} \rightarrow t_{n}\right)}(x) . e \quad \text { abstraction, } n \geq 1 \\
& e_{1} e_{2} \\
& \left(e_{1}, e_{2}\right) \\
& \pi_{i}(e) \\
& (x=e \in t) ? e_{1}: e_{2} \\
& \text { application } \\
& \text { pair } \\
& \text { projection, } i=1,2 \\
& \text { binding type case }
\end{aligned}
$$

$\frac{\Gamma \vdash e: s \leq_{\mathcal{B}} t}{\Gamma \vdash e: t}$ (subsumption)

$$
\frac{\Gamma \vdash e: s \leq_{\mathcal{B} t}}{\Gamma \vdash e: t} \text { (subsumption) }
$$

$$
\frac{\Gamma \vdash e: s \leq_{\mathcal{B}} t}{\Gamma \vdash e: t} \text { (subsumption) }
$$

$$
\frac{(\forall i) \Gamma,\left(f: s_{1} \rightarrow t_{1} \wedge \ldots \wedge s_{n} \rightarrow t_{n}\right),\left(x: s_{i}\right) \vdash e: t_{i}}{\Gamma \vdash \mu f^{\left(s_{1} \rightarrow t_{1} ; \ldots ; s_{n} \rightarrow t_{n}\right)}(x) \cdot e: s_{1} \rightarrow t_{1} \wedge \ldots \wedge s_{n} \rightarrow t_{n}}(\text { abstr })
$$

$$
\begin{gathered}
\frac{\Gamma \vdash e: s \leq_{\mathcal{B}} t}{\Gamma \vdash e: t}(\text { subsumption }) \\
\frac{(\forall i) \Gamma,\left(f: s_{1} \rightarrow t_{1} \wedge \ldots \wedge s_{n} \rightarrow t_{n}\right),\left(x: s_{i}\right) \vdash e: t_{i}}{\Gamma \vdash \mu f\left(s_{1} \rightarrow t_{1} ; \ldots ; s_{n} \rightarrow t_{n}\right)(x) . e: s_{1} \rightarrow t_{1} \wedge \ldots \wedge s_{n} \rightarrow t_{n}} \text { (abstr) }
\end{gathered}
$$

(for $s_{1} \equiv s \wedge t, s_{2} \equiv s \wedge \neg t$)

$$
\frac{\Gamma \vdash e: s \quad \Gamma,\left(x: s_{1}\right) \vdash e_{1}: t_{1} \quad \Gamma,\left(x: s_{2}\right) \vdash e_{2}: t_{2}}{\Gamma \vdash(x=e \in t) ? e_{1}: e_{2}: \bigvee_{\left\{i \mid s_{i} \neq 0\right\}} t_{i}} \text { (typecase) }
$$

$$
\begin{gathered}
\frac{\Gamma \vdash e: s \leq_{\mathcal{B}} t}{\Gamma \vdash e: t}(\text { subsumption }) \\
\frac{(\forall i) \Gamma,\left(f: s_{1} \rightarrow t_{1} \wedge \ldots \wedge s_{n} \rightarrow t_{n}\right),\left(x: s_{i}\right) \vdash e: t_{i}}{\Gamma \vdash \mu f\left(s_{1} \rightarrow t_{1} ; \ldots ; s_{n} \rightarrow t_{n}\right)(x) . e: s_{1} \rightarrow t_{1} \wedge \ldots \wedge s_{n} \rightarrow t_{n}} \text { (abstr) }
\end{gathered}
$$

$$
\text { (for } s_{1} \equiv s \wedge t, s_{2} \equiv s \wedge \neg t \text {) }
$$

$$
\Gamma \vdash e: s \quad \Gamma,\left(x: s_{1}\right) \vdash e_{1}: t_{1} \quad \Gamma,\left(x: s_{2}\right) \vdash e_{2}: t_{2}
$$

$$
\begin{equation*}
\Gamma \vdash(x=e \in t) ? e_{1}: e_{2}: \bigvee_{\left\{i \mid s_{i} \neq 0\right\}} t_{i} \tag{typecase}
\end{equation*}
$$

$$
\begin{gathered}
\frac{\Gamma \vdash e: s \leq_{\mathcal{B}} t}{\Gamma \vdash e: t}(\text { subsumption }) \\
\frac{(\forall i) \Gamma,\left(f: s_{1} \rightarrow t_{1} \wedge \ldots \wedge s_{n} \rightarrow t_{n}\right),\left(x: s_{i}\right) \vdash e: t_{i}}{\Gamma \vdash \mu f\left(s_{1} \rightarrow t_{1} ; \ldots ; s_{n} \rightarrow t_{n}\right)(x) . e: s_{1} \rightarrow t_{1} \wedge \ldots \wedge s_{n} \rightarrow t_{n}} \text { (abstr) }
\end{gathered}
$$

$$
\text { (for } s_{1} \equiv s \wedge t, s_{2} \equiv s \wedge \neg t \text {) }
$$

$$
\frac{\Gamma \vdash e: s \quad \Gamma,\left(x: s_{1}\right) \vdash e_{1}: t_{1} \quad \Gamma,\left(x: s_{2}\right) \vdash e_{2}: t_{2}}{\Gamma \vdash(x=e \in t) ? e_{1}: e_{2}: \bigvee_{\left\{i \mid s_{i} \neq 0\right\}} t_{i}} \text { (typecase) }
$$

Consider:

$$
\boldsymbol{\mu} \mathrm{f}^{(\operatorname{lnt} \rightarrow \operatorname{lnt} ; \text { Bool } \rightarrow \text { Bool })}(x) \cdot(y=x \in \operatorname{lnt}) ?(y+1): \operatorname{not}(y)
$$

Reduction

$$
\begin{aligned}
(\boldsymbol{\mu f}(\ldots)(x) \cdot e) v & \rightarrow e[x / v,(\boldsymbol{\mu} f(\ldots)(x) \cdot e) / f] \\
(x=v \in t) ? e_{1}: e_{2} & \rightarrow e_{1}[x / v] \\
(x=v \in t) e_{1}: e_{2} & \rightarrow e_{2}[x / v]
\end{aligned}
$$

Reduction

$$
\begin{aligned}
\left(\boldsymbol{\mu} f^{(\cdots)}(x) \cdot e\right) v & \rightarrow e\left[x / v,\left(\boldsymbol{\mu} f^{(\cdots)}(x) \cdot e\right) / f\right] \\
(x=v \in t) ? e_{1}: e_{2} & \rightarrow e_{1}[x / v] \\
(x=v \in t) ? e_{1}: e_{2} & \rightarrow e_{2}[x / v]
\end{aligned}
$$

where

$$
v::=\mu f^{(\cdots)}(x) \cdot e \mid(v, v)
$$

Reduction

$$
\begin{aligned}
(\boldsymbol{\mu} f(\cdots)(x) \cdot e) v & \rightarrow e[x / v,(\boldsymbol{\mu} f(\cdots)(x) \cdot e) / f] \\
(x=v \in t) ? e_{1}: e_{2} & \rightarrow e_{1}[x / v] \\
(x=v \in t) ? e_{1}: e_{2} & \rightarrow e_{2}[x / v]
\end{aligned}
$$

where

$$
v::=\mu f^{(\cdots)}(x) . e \mid(v, v)
$$

And we have

$$
s \leq_{\mathcal{B}} t \quad \Longleftrightarrow \quad s \leq_{\mathcal{V} t}
$$

Reduction

$$
\begin{array}{rll}
\left(\boldsymbol{\mu} f^{(\cdots)}(x) \cdot e\right) v & \rightarrow e\left[x / v,\left(\boldsymbol{\mu} f^{(\cdots)}(x) \cdot e\right) / f\right] & \\
(x=v \in t) ? e_{1}: e_{2} & \rightarrow e_{1}[x / v] & \text { if } v \in \llbracket t \rrbracket \\
(x=v \in t) ? e_{1}: e_{2} & \rightarrow e_{2}[x / v] & \text { if } v \notin \llbracket t \rrbracket
\end{array}
$$

where

$$
v::=\mu f^{(\cdots)}(x) \cdot e \mid(v, v)
$$

And we have

$$
s \leq_{\mathcal{B}} t \quad \Longleftrightarrow \quad s \leq \mathcal{V} t
$$

The circle is closed

Why does it work?

$$
\begin{equation*}
s \leq_{\mathcal{B}} t \quad \Longleftrightarrow \quad s \leq_{\mathcal{V}} t \tag{1}
\end{equation*}
$$

Equation (1) (actually, \Rightarrow) states that the language is quite rich, since there always exists a value to separate two distinct types; i.e. its set of values is a model of types with "enough points"

Why does it work?

$$
\begin{equation*}
s \leq_{\mathcal{B}} t \quad \Longleftrightarrow \quad s \leq_{\mathcal{V}} t \tag{1}
\end{equation*}
$$

Equation (1) (actually, \Rightarrow) states that the language is quite rich, since there always exists a value to separate two distinct types; i.e. its set of values is a model of types with "enough points"

For any model \mathcal{B},
$s \not \mathbb{L B}_{\mathcal{B}} t \Longrightarrow$ there exists v such that $\vdash v: s$ and $\vdash v: t$

Why does it work?

$$
\begin{equation*}
s \leq_{\mathcal{B}} t \quad \Longleftrightarrow \quad s \leq_{\mathcal{V}} t \tag{1}
\end{equation*}
$$

Equation (1) (actually, \Rightarrow) states that the language is quite rich, since there always exists a value to separate two distinct types; i.e. its set of values is a model of types with "enough points"

For any model \mathcal{B},
$s \not \mathbb{Z}_{\mathcal{B}} t \Longrightarrow$ there exists v such that $\vdash v: s$ and $\vdash v: t$
In particular, thanks to multiple arrows in λ-abstractions:

$$
\bigwedge_{i=1 . . k} s_{i} \rightarrow t_{i} \not \leq t
$$

then the two types are distinguished by $\boldsymbol{\mu} f^{\left(s_{1} \rightarrow t_{1} ; \ldots ; s_{k} \rightarrow t_{k}\right)}(x) . e$

Advantages for the programmer

The programmer does not need to know the gory details. All s/he needs to retain is

Advantages for the programmer

The programmer does not need to know the gory details. All s/he needs to retain is
(1) Types are the set of values of that type

Advantages for the programmer

The programmer does not need to know the gory details. All s/he needs to retain is
(1) Types are the set of values of that type
(2) Subtyping is set inclusion

Advantages for the programmer

The programmer does not need to know the gory details. All s/he needs to retain is
(1) Types are the set of values of that type
(2) Subtyping is set inclusion

Furthermore the property
$s \not z t \Longrightarrow$ there exists v such that $\vdash v: s$ and $\forall v: t$ is fundamental for meaningful error messages:

Advantages for the programmer

The programmer does not need to know the gory details. All s/he needs to retain is
(1) Types are the set of values of that type
(2) Subtyping is set inclusion

Furthermore the property

$$
s \not z t \Longrightarrow \text { there exists } v \text { such that } \vdash v: s \text { and } \forall v: t
$$

is fundamental for meaningful error messages:

Exibit the v at issue rather than pointing to the failure of some deduction rule.

Summary of the theory

La morale de l'histoire est . . .

If you have a strong semantic intuition of your favorite language and you want to add set-theoretic \vee, \wedge, \neg types then:

La morale de l'histoire est . . .

If you have a strong semantic intuition of your favorite language and you want to add set-theoretic \vee, \wedge, \neg types then:
(1) Define $\mathbb{E}()$ for your type constructors so that it matches your semantic intuition

La morale de l'histoire est . . .

If you have a strong semantic intuition of your favorite language and you want to add set-theoretic \vee, \wedge, \neg types then:
(1) Define $\mathbb{E}()$ for your type constructors so that it matches your semantic intuition
(2) Find a model (any model).

La morale de l'histoire est . . .

If you have a strong semantic intuition of your favorite language and you want to add set-theoretic \vee, \wedge, \neg types then:
(1) Define $\mathbb{E}()$ for your type constructors so that it matches your semantic intuition
(2) Find a model (any model).
(3) Use the subtyping relation induced by the model to type your language: if the intuition was right then the set of values is also a model, otherwise tweak it.

La morale de l'histoire est ...

If you have a strong semantic intuition of your favorite language and you want to add set-theoretic \vee, \wedge, \neg types then:
(1) Define $\mathbb{E}()$ for your type constructors so that it matches your semantic intuition
(2) Find a model (any model).
(3) Use the subtyping relation induced by the model to type your language: if the intuition was right then the set of values is also a model, otherwise tweak it.
(9) Use the set-theoretic properties of the model (actually of $\mathbb{E}())$ to decompose the emptyness test for your type constructors, and hence derive a subtyping algorithm.

La morale de l'histoire est . . .

If you have a strong semantic intuition of your favorite language and you want to add set-theoretic \vee, \wedge, \neg types then:

(1) Define $\mathbb{E}()$ for your type constructors so that it matches your semantic intuition
(2) Find a model (any model). [may be not easy/possible]
(3) Use the subtyping relation induced by the model to type your language: if the intuition was right then the set of values is also a model, otherwise tweak it. [may be not easy/possible]
(9) Use the set-theoretic properties of the model (actually of $\mathbb{E}())$ to decompose the emptyness test for your type constructors, and hence derive a subtyping algorithm.
[may be not easy/possible]

La morale de l'histoire est ...

If you have a strong semantic intuition of your favorite language and you want to add set-theoretic \vee, \wedge, $ᄀ$ types then:
(1) Define $\mathbb{E}()$ for your type constructors so that it matches your semantic intuition
(2) Find a model (any model).
(3) Use the subtyping relation induced by the model to type your language: if the intuition was right then the set of values is also a model, otherwise tweak it.
(9) Use the set-theoretic properties of the model (actually of $\mathbb{E}())$ to decompose the emptyness test for your type constructors, and hence derive a subtyping algorithm.
(6) Enjoy.

PART 3: POLYMORPHIC SUBTYPING

Part 3: Polymorphic subtyping

We want to add Type variables:

$$
(X \times Y \rightarrow X) \wedge((X \rightarrow Y) \rightarrow X \rightarrow Y)
$$

and define for them an intuitive semantics

We want to add Type variables:

$$
(X \times Y \rightarrow X) \wedge((X \rightarrow Y) \rightarrow X \rightarrow Y)
$$

and define for them an intuitive semantics

WHY?

We want to add Type variables:

$$
(X \times Y \rightarrow X) \wedge((X \rightarrow Y) \rightarrow X \rightarrow Y)
$$

and define for them an intuitive semantics

WHY?

Short answers:

- Parametric polymorphism is very useful in practice.
- It covers new needs peculiar to XML processing (eg, SOAP envelopes).
- It would make the interface with OCaml complete
- The extension shoud shed new light on the notion of parametricity

Concrete answer: an example in web development

We need parametric polymorphism to statically type service registration in the Ocsigen web server:

Concrete answer: an example in web development

We need parametric polymorphism to statically type service registration in the Ocsigen web server:

- To every page possibly with parameters

corresponds a function that takes the parameters (the query string) and dynamically generates the appropriate Xhtml page:

```
let wikipage (p : WikiParams) : Xhtml = ...
type WikiParams = <params>
        <title> String </title>
                        <action> "raw"|"edit" <action>
                </params>
```

- The binding between the URL \$WEBROOT/w/index and the function wikipage is done by the Ocsigen function register_new_service:
register_new_service(wikipage,"w.index")
- The binding between the URL \$WEBROOT/w/index and the function wikipage is done by the Ocsigen function register_new_service:
register_new_service(wikipage,"w.index") whenever the page \$WEBROOT/w/index is selected, Ocsigen passes the XML encoding of the query string to wikipage and returns its result.
- The binding between the URL \$WEBROOT/w/index and the function wikipage is done by the Ocsigen function register_new_service:
register_new_service(wikipage, "w.index")
whenever the page \$WEBROOT/w/index is selected, Ocsigen passes the XML encoding of the query string to wikipage and returns its result.
- We would like to give register_new_service the type

$$
\forall(X \leq \text { QueryString }) .(X \rightarrow \text { Xhtml }) \times \text { Path } \rightarrow \text { unit }
$$

where QueryString is the XML type that includes all query strings and Path specifies the paths of the server.

- The binding between the URL \$WEBROOT/w/index and the function wikipage is done by the Ocsigen function register_new_service:
register_new_service(wikipage,"w.index")
whenever the page \$WEBROOT/w/index is selected, Ocsigen passes the XML encoding of the query string to wikipage and returns its result.
- We would like to give register_new_service the type

$$
\forall(X \leq \text { QueryString }) .(X \rightarrow \text { Xhtml }) \times \text { Path } \rightarrow \text { unit }
$$

where QueryString is the XML type that includes all query strings and Path specifies the paths of the server.

Notice

We need both higher-order polymorphic functions

- The binding between the URL \$WEBROOT/w/index and the function wikipage is done by the Ocsigen function register_new_service:
register_new_service(wikipage,"w.index")
whenever the page \$WEBROOT/w/index is selected, Ocsigen passes the XML encoding of the query string to wikipage and returns its result.
- We would like to give register_new_service the type

$$
\forall(X \leq \text { QueryString }) .(X \rightarrow \text { Xhtml }) \times \text { Path } \rightarrow \text { unit }
$$

where QueryString is the XML type that includes all query strings and Path specifies the paths of the server.

Notice

We need both higher-order polymorphic functions and bounded quantification

A very hard problem

Naive solution

$$
t::=B|t \times t| t \rightarrow t
$$

Naive solution

$$
t::=B|t \times t| t \rightarrow t|t \vee t| t \wedge t|\neg t| 0 \mid \mathbb{1}
$$

Naive solution

$$
t::=B|t \times t| t \rightarrow t|t \vee t| t \wedge t|\neg t| 0|\mathbb{1}| X
$$

Naive solution

$$
t::=B|t \times t| t \rightarrow t|t \vee t| t \wedge t|\neg t| \mathbb{O}|\mathbb{1}| X
$$

Now use the previous relation. This is defined for "ground types" Let $\sigma:$ Vars \rightarrow Types $_{\text {ground }}$ denote ground substitutions then define:

$$
s \leq t \stackrel{\text { def }}{\Longleftrightarrow} \forall \sigma \cdot s \sigma \leq t \sigma
$$

Naive solution

$$
t::=B|t \times t| t \rightarrow t|t \vee t| t \wedge t|\neg t| \mathbb{O}|\mathbb{1}| X
$$

Now use the previous relation. This is defined for "ground types" Let $\sigma:$ Vars \rightarrow Types $_{\text {ground }}$ denote ground substitutions then define:

$$
s \leq t \stackrel{\text { def }}{\Longleftrightarrow} \forall \sigma \cdot s \sigma \leq t \sigma
$$

or equivalently

$$
s \leq t \quad \stackrel{\text { def }}{\Longleftrightarrow} \forall \sigma \cdot \llbracket s \sigma \rrbracket \subseteq \llbracket t \sigma \rrbracket
$$

Naive solution

$$
t::=B|t \times t| t \rightarrow t|t \vee t| t \wedge t|\neg t| 0|\mathbb{1}| X
$$

Now use the previous relation. This is defined for "ground types" Let $\sigma:$ Vars \rightarrow Types $_{\text {ground }}$ denote ground substitutions then define:

or equivalently

This is a wrong way

Problems with the naive solution

(1) Haruo Hosoya conjectured that deciding $\forall \sigma . s \sigma \leq t \sigma$ is equivalent to solve Diophantine equations

Problems with the naive solution

(1) Haruo Hosoya conjectured that deciding $\forall \sigma . s \sigma \leq t \sigma$ is equivalent to solve Diophantine equations
(2) It breaks parametricity:

Problems with the naive solution

(1) Haruo Hosoya conjectured that deciding $\forall \sigma . s \sigma \leq t \sigma$ is equivalent to solve Diophantine equations
(2) It breaks parametricity:

$$
(t \times X) \leq(t \times \neg t) \vee(X \times t)
$$

Problems with the naive solution

(1) Haruo Hosoya conjectured that deciding $\forall \sigma . s \sigma \leq t \sigma$ is equivalent to solve Diophantine equations
(2) It breaks parametricity:

$$
(t \times X) \leq(t \times \neg t) \vee(X \times t)
$$

This inclusion holds if and only if t is an atomic type:

Problems with the naive solution

(1) Haruo Hosoya conjectured that deciding $\forall \sigma . s \sigma \leq t \sigma$ is equivalent to solve Diophantine equations
(2) It breaks parametricity:

$$
(t \times X) \leq(t \times \neg t) \vee(X \times t)
$$

This inclusion holds if and only if t is an atomic type: Imagine that t is a singleton or a basic type (both are special cases of atomic types), then for all possible interpretation of X it holds

$$
t \leq X \quad \text { or } \quad X \leq \neg t
$$

Problems with the naive solution

(1) Haruo Hosoya conjectured that deciding $\forall \sigma . s \sigma \leq t \sigma$ is equivalent to solve Diophantine equations
(2) It breaks parametricity:

$$
(t \times X) \leq(t \times \neg t) \vee(X \times t)
$$

This inclusion holds if and only if t is an atomic type: Imagine that t is a singleton or a basic type (both are special cases of atomic types), then for all possible interpretation of X it holds

$$
t \leq X \quad \text { or } \quad X \leq \neg t
$$

- If $X \leq \neg t$ then the left element of the union suffices

Problems with the naive solution

(1) Haruo Hosoya conjectured that deciding $\forall \sigma . s \sigma \leq t \sigma$ is equivalent to solve Diophantine equations
(2) It breaks parametricity:

$$
(t \times X) \leq(t \times \neg t) \vee(X \times t)
$$

This inclusion holds if and only if t is an atomic type: Imagine that t is a singleton or a basic type (both are special cases of atomic types), then for all possible interpretation of X it holds

$$
t \leq X \quad \text { or } \quad X \leq \neg t
$$

- If $X \leq \neg t$ then the left element of the union suffices
- If $t \leq X$, then $X=(X \backslash t) \vee t$ and, therefore, $(t \times X)=(t \times(X \backslash t)) \vee(t \times t)$. This union is contained component-wise in the one above.

Problems with the naive solution

The fact that

$$
(t \times X) \leq(t \times \neg t) \vee(X \times t)
$$

holds if and only if t is an atomic type is really catastrophic:

Problems with the naive solution

The fact that

$$
(t \times X) \leq(t \times \neg t) \vee(X \times t)
$$

holds if and only if t is an atomic type is really catastrophic:

- It means that to decide subtyping one has to decide atomicity of types which in general is very hard (cf. [Castagna, DeNicola, Varacca TCS 2008])

Problems with the naive solution

The fact that

$$
(t \times X) \leq(t \times \neg t) \vee(X \times t)
$$

holds if and only if t is an atomic type is really catastrophic:

- It means that to decide subtyping one has to decide atomicity of types which in general is very hard (cf. [Castagna, DeNicola, Varacca TCS 2008])
- It means that subtyping breaks parametricity since by subsumption we can consider a function generic in its first argument, as one generic on its second argument.

Problems with the naive solution

The fact that

$$
(t \times X) \leq(t \times \neg t) \vee(X \times t)
$$

holds if and only if t is an atomic type is really catastrophic:

- It means that to decide subtyping one has to decide atomicity of types which in general is very hard (cf. [Castagna, DeNicola, Varacca TCS 2008])
- It means that subtyping breaks parametricity since by subsumption we can consider a function generic in its first argument, as one generic on its second argument.

We can eschew the problem by resorting to syntactic solutions:

- Castagna, Frisch, Hosoya [POPL 05]
- Vouillon [POPL 06]

It implies to give up to the underlying semantic intuition

Problems with the naive solution

The fact that

$$
(t \times X) \leq(t \times \neg t) \vee(X \times t)
$$

holds if and only if t is an atomic type is really catastrophic:

- It means that to decide subtyping one has to decide atomicity of types which in general is very hard (cf. [Castagna, DeNicola, Varacca TCS 2008])
- It means that subtyping breaks parametricity since by subsumption we can consider a function generic in its first argument, as one generic on its second argument.

We can eschew the problem by resorting to syntactic solutions:

- Castagna, Frisch, Hosoya [POPL 05]
- Vouillon [POPL 06]

It implies to give up to the underlying semantic intuition NO!

A semantic solution

Some faint intuition

The loss of parametricity is only due to the interpretation of atomic types, all the rest works (more or less) smoothly

A semantic solution

Some faint intuition

The loss of parametricity is only due to the interpretation of atomic types, all the rest works (more or less) smoothly

Indeed it seems that the crux of the problem is that for an atomic type a

$$
a \leq X \quad \text { or } \quad X \leq \neg a
$$

validity can stutter from one formula to another, missing in this way the uniformity typical of parametricity

A semantic solution

Some faint intuition

The loss of parametricity is only due to the interpretation of atomic types, all the rest works (more or less) smoothly

Indeed it seems that the crux of the problem is that for an atomic type a

$$
a \leq X \quad \text { or } \quad X \leq \neg a
$$

validity can stutter from one formula to another, missing in this way the uniformity typical of parametricity
If we can give a semantic characterization of models in which this stuttering is absent, then this should yield a subtyping relation that is:

- Semantic
- Intuitive for the programmer
- Decidable

Semantic solution

A semantic solution

Rough idea

We must make atomic types "splittable" so that type variables can range over strict subsets of every type, atomic types included

A semantic solution

Rough idea

We must make atomic types "splittable" so that type variables can range over strict subsets of every type, atomic types included

Since this cannot be done at syntactic level, move to the semantic one and replace ground substitutions by semantic assignements:
$\eta:$ Vars $\rightarrow \mathcal{P}(\mathcal{D})$

A semantic solution

Rough idea

We must make atomic types "splittable" so that type variables can range over strict subsets of every type, atomic types included

Since this cannot be done at syntactic level, move to the semantic one and replace ground substitutions by semantic assignements:

$$
\eta: \text { Vars } \rightarrow \mathcal{P}(\mathcal{D})
$$

and now the interpretation function takes an extra parameter

$$
\llbracket \rrbracket: \text { Types } \rightarrow \mathcal{P}(\mathcal{D})^{\text {Vars }} \rightarrow \mathcal{P}(\mathcal{D})
$$

A semantic solution

Rough idea

We must make atomic types "splittable" so that type variables can range over strict subsets of every type, atomic types included

Since this cannot be done at syntactic level, move to the semantic one and replace ground substitutions by semantic assignements:

$$
\eta: \text { Vars } \rightarrow \mathcal{P}(\mathcal{D})
$$

and now the interpretation function takes an extra parameter

$$
\llbracket \rrbracket: \text { Types } \rightarrow \mathcal{P}(\mathcal{D})^{\text {Vars }} \rightarrow \mathcal{P}(\mathcal{D})
$$

with

$$
\begin{array}{llll}
\llbracket X \rrbracket \eta & =\eta(X) & & \llbracket \neg t \rrbracket \eta \\
\boxed{\sim}) & =\mathcal{D} \backslash \llbracket t \rrbracket \eta \\
\llbracket t_{1} \vee t_{2} \rrbracket \eta & =\llbracket t_{1} \rrbracket \eta \cup \llbracket t_{2} \rrbracket \eta & & \llbracket t_{1} \wedge t_{2} \rrbracket \eta \\
\llbracket 0 \rrbracket \eta & =\llbracket t_{1} \rrbracket \eta \cap \llbracket t_{2} \rrbracket \eta \\
\llbracket 0 & & \llbracket \mathbb{1} \rrbracket \eta & =\mathcal{D}
\end{array}
$$

Subtyping relation

In this framework the natural definition of subtyping is

$$
s \leq t \quad \stackrel{\text { def }}{\Longleftrightarrow} \forall \eta \cdot \llbracket s \rrbracket \eta \subseteq \llbracket t \rrbracket \eta
$$

It just remains to find the uniformity condition to recover parametricity.

The magic property

Consider only models of semantic subtyping in which the following convexity property holds
$\forall \eta \cdot\left(\llbracket t_{1} \rrbracket \eta=\varnothing\right.$ or $\left.\llbracket t_{2} \rrbracket \eta=\varnothing\right) \Longleftrightarrow\left(\forall \eta \cdot \llbracket t_{1} \rrbracket \eta=\varnothing\right)$ or $\left(\forall \eta \cdot \llbracket t_{2} \rrbracket \eta=\varnothing\right)$

The magic property

Consider only models of semantic subtyping in which the following convexity property holds
$\forall \eta \cdot\left(\llbracket t_{1} \rrbracket \eta=\varnothing\right.$ or $\left.\llbracket t_{2} \rrbracket \eta=\varnothing\right) \Longleftrightarrow\left(\forall \eta \cdot \llbracket t_{1} \rrbracket \eta=\varnothing\right)$ or $\left(\forall \eta \cdot \llbracket t_{2} \rrbracket \eta=\varnothing\right)$

- It avoids stuttering: $(\llbracket a \wedge \neg X \rrbracket \eta=\varnothing$ or $\llbracket a \wedge X \rrbracket \eta=\varnothing)$ holds true if and only if a is empty.

The magic property

Consider only models of semantic subtyping in which the following convexity property holds
$\forall \eta \cdot\left(\llbracket t_{1} \rrbracket \eta=\varnothing\right.$ or $\left.\llbracket t_{2} \rrbracket \eta=\varnothing\right) \Longleftrightarrow\left(\forall \eta \cdot \llbracket t_{1} \rrbracket \eta=\varnothing\right)$ or $\left(\forall \eta \cdot \llbracket t_{2} \rrbracket \eta=\varnothing\right)$

- It avoids stuttering: $(\llbracket a \wedge \neg X \rrbracket \eta=\varnothing$ or $\llbracket a \wedge X \rrbracket \eta=\varnothing)$ holds true if and only if a is empty.
- There is a natural model: every model in which all types are interpreted as infinite sets satisfies it (we recover the initial faint intuition).

The magic property

Consider only models of semantic subtyping in which the following convexity property holds

$$
\forall \eta \cdot\left(\llbracket t_{1} \rrbracket \eta=\varnothing \text { or } \llbracket t_{2} \rrbracket \eta=\varnothing\right) \Longleftrightarrow\left(\forall \eta \cdot \llbracket t_{1} \rrbracket \eta=\varnothing\right) \text { or }\left(\forall \eta \cdot \llbracket t_{2} \rrbracket \eta=\varnothing\right)
$$

- It avoids stuttering: $(\llbracket a \wedge \neg X \rrbracket \eta=\varnothing$ or $\llbracket a \wedge X \rrbracket \eta=\varnothing)$ holds true if and only if a is empty.
- There is a natural model: every model in which all types are interpreted as infinite sets satisfies it (we recover the initial faint intuition).
- A sound and complete algorithm: the condition gives us exactly the right conditions needed to reuse the subtyping algorithm for ground types (though, decidability is an open problem, yet).

The magic property

Consider only models of semantic subtyping in which the following convexity property holds
$\forall \eta \cdot\left(\llbracket t_{1} \rrbracket \eta=\varnothing\right.$ or $\left.\llbracket t_{2} \rrbracket \eta=\varnothing\right) \Longleftrightarrow\left(\forall \eta \cdot \llbracket t_{1} \rrbracket \eta=\varnothing\right)$ or $\left(\forall \eta \cdot \llbracket t_{2} \rrbracket \eta=\varnothing\right)$

- It avoids stuttering: $(\llbracket a \wedge \neg X \rrbracket \eta=\varnothing$ or $\llbracket a \wedge X \rrbracket \eta=\varnothing)$ holds true if and only if a is empty.
- There is a natural model: every model in which all types are interpreted as infinite sets satisfies it (we recover the initial faint intuition).
- A sound and complete algorithm: the condition gives us exactly the right conditions needed to reuse the subtyping algorithm for ground types (though, decidability is an open problem, yet).
- An intuitive relation: the algorithm returns intuitive results (actually, it helps to better understand twisted examples)

Examples of subtyping relations

Examples

We can internalize properties such as:

$$
(\alpha \rightarrow \gamma) \wedge(\beta \rightarrow \gamma) \sim \alpha \vee \beta \rightarrow \gamma
$$

Examples

We can internalize properties such as:

$$
(\alpha \rightarrow \gamma) \wedge(\beta \rightarrow \gamma) \sim \alpha \vee \beta \rightarrow \gamma
$$

or distributivity laws:

$$
\begin{equation*}
(\alpha \vee \beta \times \gamma) \sim(\alpha \times \gamma) \vee(\beta \times \gamma) \tag{2}
\end{equation*}
$$

Examples

We can internalize properties such as:

$$
(\alpha \rightarrow \gamma) \wedge(\beta \rightarrow \gamma) \sim \alpha \vee \beta \rightarrow \gamma
$$

or distributivity laws:

$$
\begin{equation*}
(\alpha \vee \beta \times \gamma) \sim(\alpha \times \gamma) \vee(\beta \times \gamma) \tag{2}
\end{equation*}
$$

combining them we deduce:

$$
\left(\alpha \times \gamma \rightarrow \delta_{1}\right) \wedge\left(\beta \times \gamma \rightarrow \delta_{2}\right) \leq(\alpha \vee \beta \times \gamma) \rightarrow \delta_{1} \vee \delta_{2}
$$

Examples

We can internalize properties such as:

$$
(\alpha \rightarrow \gamma) \wedge(\beta \rightarrow \gamma) \sim \alpha \vee \beta \rightarrow \gamma
$$

or distributivity laws:

$$
\begin{equation*}
(\alpha \vee \beta \times \gamma) \sim(\alpha \times \gamma) \vee(\beta \times \gamma) \tag{2}
\end{equation*}
$$

combining them we deduce:

$$
\left(\alpha \times \gamma \rightarrow \delta_{1}\right) \wedge\left(\beta \times \gamma \rightarrow \delta_{2}\right) \leq(\alpha \vee \beta \times \gamma) \rightarrow \delta_{1} \vee \delta_{2}
$$

We can prove relevant relations on infinite types. Consider generic lists:

$$
\alpha \text { list }=\mu x \cdot(\alpha \times x) \vee \text { nil }
$$

It contains both the α-lists with an even number of elements

$$
\mu x .(\alpha \times(\alpha \times x)) \vee \text { nil } \leq \mu x .(\alpha \times x) \vee \text { nil }
$$

and the α-lists with an odd number of elements

$$
\mu x .(\alpha \times(\alpha \times x)) \vee(\alpha \times \text { nil }) \leq \mu x .(\alpha \times x) \vee \text { nil }
$$

It contains both the α-lists with an even number of elements

$$
\mu x .(\alpha \times(\alpha \times x)) \vee \text { nil } \leq \mu x .(\alpha \times x) \vee \text { nil }
$$

and the α-lists with an odd number of elements

$$
\mu x .(\alpha \times(\alpha \times x)) \vee(\alpha \times \text { nil }) \leq \mu x .(\alpha \times x) \vee \text { nil }
$$

and it is itself contained in the union of the two, that is:
α list $\sim(\mu x .(\alpha \times(\alpha \times x)) \vee$ nil $) \vee(\mu x .(\alpha \times(\alpha \times x)) \vee(\alpha \times$ nil $))$

It contains both the α-lists with an even number of elements

$$
\mu x .(\alpha \times(\alpha \times x)) \vee \text { nil } \leq \mu x .(\alpha \times x) \vee \text { nil }
$$

and the α-lists with an odd number of elements

$$
\mu x .(\alpha \times(\alpha \times x)) \vee(\alpha \times \text { nil }) \leq \mu x .(\alpha \times x) \vee \text { nil }
$$

and it is itself contained in the union of the two, that is:
α list $\sim(\mu x .(\alpha \times(\alpha \times x)) \vee$ nil $) \vee(\mu x .(\alpha \times(\alpha \times x)) \vee(\alpha \times$ nil $))$

And we can prove far more complicated relations (see later).

Subtyping algorithm

Subtyping Algorithm

Step 1: Transform the subtyping problem into an emptiness

 decision problem:$$
\begin{aligned}
& t_{1} \leq t_{2} \Longleftrightarrow \forall \eta \cdot \llbracket t_{1} \rrbracket \eta \subseteq \llbracket t_{2} \rrbracket \eta \Longleftrightarrow \forall \eta \cdot \llbracket t_{1} \wedge \neg t_{2} \rrbracket \eta=\varnothing \Longleftrightarrow \\
& t_{1} \wedge \neg t_{2} \leq 0
\end{aligned}
$$

Subtyping Algorithm

Step 1: Transform the subtyping problem into an emptiness decision problem:
$t_{1} \leq t_{2} \Longleftrightarrow \forall \eta \cdot \llbracket t_{1} \rrbracket \eta \subseteq \llbracket t_{2} \rrbracket \eta \Longleftrightarrow \forall \eta \cdot \llbracket t_{1} \wedge \neg t_{2} \rrbracket \eta=\varnothing \Longleftrightarrow$ $t_{1} \wedge \neg t_{2} \leq \mathbb{O}$
Step 2: Put the type whose emptiness is to be decided in disjunctive normal form.

$$
\bigvee_{i \in I} \bigwedge_{j \in J} \ell_{i j}
$$

where $a::=b|t \times t| t \rightarrow t|\mathbb{O}| \mathbb{1} \mid \alpha$ and $\ell::=a \mid \neg a$

Subtyping Algorithm

Step 1: Transform the subtyping problem into an emptiness decision problem:
$t_{1} \leq t_{2} \Longleftrightarrow \forall \eta \cdot \llbracket t_{1} \rrbracket \eta \subseteq \llbracket t_{2} \rrbracket \eta \Longleftrightarrow \forall \eta \cdot \llbracket t_{1} \wedge \neg t_{2} \rrbracket \eta=\varnothing \Longleftrightarrow$ $t_{1} \wedge \neg t_{2} \leq \mathbb{0}$
Step 2: Put the type whose emptiness is to be decided in disjunctive normal form.

$$
\bigvee_{i \in I} \bigwedge_{j \in J} \ell_{i j}
$$

where $a::=b|t \times t| t \rightarrow t|\mathbb{O}| \mathbb{1} \mid \alpha$ and $\ell::=a \mid \neg a$
Step 3: Simplify mixed intersections:
Consider each summand of the union: cases such as $t_{1} \times t_{2} \wedge t_{1} \rightarrow t_{2}$ or $t_{1} \times t_{2} \wedge \neg\left(t_{1} \rightarrow t_{2}\right)$ are straightforward.

Solve:

$$
\bigwedge_{i \in I} a_{i} \bigwedge_{j \in J} \neg a_{j}^{\prime} \bigwedge_{h \in H} \alpha_{h} \bigwedge_{k \in K} \neg \beta_{k}
$$

where all a are of the same kind.

Step 4: Eliminate toplevel negative variables.,

$$
\forall \eta \cdot \llbracket t \rrbracket \eta=\varnothing \Longleftrightarrow \forall \eta \cdot \llbracket t\{\neg \alpha / \alpha\} \rrbracket \eta=\varnothing
$$

so replace $\neg \beta_{k}$ for β_{k} (forall $k \in K$)
Solve:

$$
\bigwedge_{i \in I} a_{i} \bigwedge_{j \in J} \neg a_{j}^{\prime} \bigwedge_{h \in H} \alpha_{h}
$$

Step 4: Eliminate toplevel negative variables.,

$$
\forall \eta \cdot \llbracket t \rrbracket \eta=\varnothing \Longleftrightarrow \forall \eta \cdot \llbracket t\{\neg \alpha / \alpha\} \rrbracket \eta=\varnothing
$$

so replace $\neg \beta_{k}$ for β_{k} (forall $k \in K$)
Solve:

$$
\bigwedge_{i \in I} a_{i} \bigwedge_{j \in J} \neg a_{j}^{\prime} \bigwedge_{h \in H} \alpha_{h}
$$

Step 5: Eliminate toplevel variables.

$$
\bigwedge_{t_{1} \times t_{2} \in P} t_{1} \times t_{2} \bigwedge_{h \in H} \alpha_{h} \leq \bigvee_{t_{1}^{\prime} \times t_{2}^{\prime} \in N} t_{1}^{\prime} \times t_{2}^{\prime}
$$

holds if and only if

$$
\begin{array}{cc}
\bigwedge_{t_{1} \times t_{2} \in P} t_{1} \sigma \times t_{2} \sigma \bigwedge_{h \in H} \gamma_{h}^{1} \times \gamma_{h}^{2} \leq & \bigvee_{t_{1}^{\prime} \times t_{2}^{\prime} \in N} t_{1}^{\prime} \sigma \times t_{2}^{\prime} \sigma \\
\text { where } \sigma=\left\{\left(\gamma_{h}^{1} \times \gamma_{h}^{2}\right) \vee \alpha_{h} / \alpha_{h}\right\}_{h \in H} \quad \text { (similarly for arrows) }
\end{array}
$$

Step 6: Eliminate toplevel constructors, memoize, and recurse. Thanks to convexity and the product decomposition rules

$$
\begin{equation*}
\bigwedge_{t_{1} \times t_{2} \in P} t_{1} \times t_{2} \leq \bigvee_{t_{1}^{\prime} \times t_{2}^{\prime} \in N} t_{1}^{\prime} \times t_{2}^{\prime} \tag{3}
\end{equation*}
$$

is equivalent to

$$
\forall N^{\prime} \subseteq N .\left(\bigwedge_{t_{1} \times t_{2} \in P} t_{1} \leq \bigvee_{t_{1}^{\prime} \times t_{2}^{\prime} \in N^{\prime}} t_{1}^{\prime}\right) \text { or }\left(\bigwedge_{t_{1} \times t_{2} \in P} t_{2} \leq \bigvee_{t_{1}^{\prime} \times t_{2}^{\prime} \in N \backslash N^{\prime}} t_{2}^{\prime}\right)
$$

(similarly for arrows)

PART 4: POLYMORPHIC LANGUAGE

Motivating example

```
map : : \((\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta]\)
\(\operatorname{map} f 1=\) case 1 of
```


A motivating example in Haskell

```
\(\operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta]\)
map \(f\) l \(=\) case 1 of
    | [] -> [] \(\quad\) ( x : xs ) -f : map f x )
even : : (Int \(\rightarrow\) Bool) \(\wedge((\alpha \backslash\) Int \() \rightarrow(\alpha \backslash\) Int \())\)
even \(x=\) case \(x\) of
    Int -> (x 'mod' 2) \(==0\)
    _ \(->x\)
```


A motivating example in Haskell (almost)

```
\(\operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta]\)
map \(f\) l \(=\) case 1 of
    | [] -> [] \(\quad\) ( x : xs ) -f : map f x )
even : : (Int \(\rightarrow\) Bool) \(\wedge((\alpha \backslash\) Int \() \rightarrow(\alpha \backslash\) Int \())\)
even \(x=\) case \(x\) of
    Int -> ( \(x\) 'mod' 2) \(=0\)
    _ -> x
```


A motivating example in Haskell (almost)

```
\(\operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta]\)
\(\operatorname{map} f 1=\) case 1 of
    \(\left.\left\lvert\, \begin{array}{ll}{[]} & -> \\ & (x] \\ x S\end{array}\right.\right) \rightarrow(f x: \operatorname{map} f x s)\)
even : : (Int \(\rightarrow\) Bool) \(\wedge((\alpha \backslash\) Int \() \rightarrow(\alpha \backslash\) Int \())\)
even \(x=\) case \(x\) of
    Int \(->\left(x{ }^{\prime} \bmod ^{\prime} 2\right)=0\)
    _ \(->x\)
```

- Expression: if the argument is an integer then return the Boolean expression otherwise return the argument

A motivating example in Haskell (almost)

```
\(\operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta]\)
\(\operatorname{map} f 1=\) case 1 of
    \(\left.\left\lvert\, \begin{array}{ll}{[]} & -> \\ (x: x)\end{array}\right.\right](f x: \operatorname{map} f x s)\)
even : : (Int \(\rightarrow\) Bool) \(\wedge((\alpha \backslash\) Int \() \rightarrow(\alpha \backslash\) Int \())\)
even \(x=\) case \(x\) of
    Int \(->\left(x{ }^{\prime} \bmod ^{\prime} 2\right)=0\)
    _ \(->x\)
```

- Expression: if the argument is an integer then return the Boolean expression otherwise return the argument
- Type: when applied to an Int it returns a Bool; when applied to an argument that is not an Int it returns a result of the same type.

A motivating example in Haskell (almost)

- Expression: if the argument is an integer then return the Boolean expression otherwise return the argument
- Type: when applied to an Int it returns a Bool; when applied to an argument that is not an Int it returns a result of the same type.

A motivating example in Haskell (almost)

- Expression: if the argument is an integer then return the Boolean expression otherwise return the argument
- Type: when applied to an Int it returns a Bool; when applied to an argument that is not an Int it returns a result of the same type.

A motivating example in Haskell (almost)

- Expression: if the argument is an integer then return the Boolean expression otherwise return the argument
- Type: when applied to an Int it returns a Bool; when applied to an argument that is not an Int it returns a result of the same type.

```
\(\operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta]\)
\(\operatorname{map} f 1=\) case 1 of
    \(\left\lvert\, \begin{array}{ll}{[]} & -> \\ \mid x & \text { : } x s)\end{array}\right.\) (f \(\left.x: \operatorname{map} f x s\right)\)
even : : (Int \(\rightarrow\) Bool) \(\wedge((\alpha \backslash\) Int \() \rightarrow(\alpha \backslash\) Int \())\)
even \(x=\) case \(x\) of
    Int \(->\left(x{ }^{\prime} \bmod ^{\prime} 2\right)=0\)
    _ \(->x\)
```

- Expression: if the argument is an integer then return the Boolean expression otherwise return the argument
- Type: when applied to an Int it returns a Bool; when applied to an argument that is not an Int it returns a result of the same type.

> Typical function used to modify some nodes of an XML tree leaving the others unchanged.

```
\(\operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta]\)
\(\operatorname{map} f 1=\) case 1 of
    \(\left.\left\lvert\, \begin{array}{ll}{[]} & -> \\ (x: x)\end{array}\right.\right](f x: \operatorname{map} f x s)\)
even : : (Int \(\rightarrow\) Bool) \(\wedge((\alpha \backslash\) Int \() \rightarrow(\alpha \backslash\) Int \())\)
even \(x=\) case \(x\) of
    Int \(->\left(x{ }^{\prime} \bmod ^{\prime} 2\right)=0\)
    _ \(->\mathrm{x}\)
```

- Expression: if the argument is an integer then return the Boolean expression otherwise return the argument
- Type: when applied to an Int it returns a Bool; when applied to an argument that is not an Int it returns a result of the same type.

The combination of type-case and intersections yields statically typed dynamic overloading.

A motivating example in Haskell (almost)

$$
\begin{aligned}
& \text { map : : }(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} \mathrm{f}=\text { case } 1 \text { of } \\
& \text { | [] -> [] } \quad \text { (} \mathrm{x} \text { : } \mathrm{xs} \text {) } \rightarrow(\mathrm{f} x \text { : map } \mathrm{f} x \text {) } \\
& \text { even : : (Int } \rightarrow \text { Bool) } \wedge((\alpha \backslash \text { Int }) \rightarrow(\alpha \backslash \text { Int })) \\
& \text { even } x=\text { case } x \text { of } \\
& \text { Int -> (} x \text { 'mod' 2) }=0 \\
& \text { _ }->x
\end{aligned}
$$

This example as a yardstick. I want to define a language that:
(1) Can define both map and even

A motivating example in Haskell (almost)

```
map : : \((\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta]\)
\(\operatorname{map} \mathrm{f}=\) case 1 of
    | [] -> [] \(\quad\) ( x ) \(->\) ( \(\mathrm{x}: \operatorname{map} \mathrm{f}\) xs)
even :: (Int \(\rightarrow\) Bool) \(\wedge((\alpha \backslash\) Int \() \rightarrow(\alpha \backslash\) Int \())\)
even \(x=\) case \(x\) of
        Int -> ( \(x\) 'mod' 2) \(=0\)
    _ \(->x\)
```

This example as a yardstick. I want to define a language that:
(1) Can define both map and even
(2) Can check the types specified in the signature

A motivating example in Haskell (almost)

$$
\begin{aligned}
& \operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f 1=\text { case } 1 \text { of } \\
& \left.\left\lvert\, \begin{array}{ll}
{[]} & -> \\
(x: x)
\end{array}\right.\right](f x: \operatorname{map} f x s) \\
& \text { even : : (Int } \rightarrow \text { Bool) } \wedge((\alpha \backslash \text { Int }) \rightarrow(\alpha \backslash \text { Int })) \\
& \text { even } x=\text { case } x \text { of } \\
& \text { Int }->\left(x{ }^{\prime} \mathrm{mod}^{\prime} 2\right)=0 \\
& \text { _ -> } \mathrm{x}
\end{aligned}
$$

This example as a yardstick. I want to define a language that:
(1) Can define both map and even
(2) Can check the types specified in the signature
(3) Can deduce the type of the partial application map even

A motivating example in Haskell (almost)

```
\(\operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta]\)
\(\operatorname{map} \mathrm{f}=\) case 1 of
    \(\left.\left\lvert\, \begin{array}{ll}{[]} & -> \\ (x: x)\end{array}\right.\right](f x: \operatorname{map} f x s)\)
even : : (Int \(\rightarrow\) Bool) \(\wedge((\alpha \backslash\) Int \() \rightarrow(\alpha \backslash\) Int \())\)
even \(x=\) case \(x\) of
        Int \(->\left(x{ }^{\prime} \bmod ^{\prime} 2\right)=0\)
    _ \(->x\)
```

This example as a yardstick. I want to define a language that:
(1) Can define both map and even
(2) Can check the types specified in the signature
(3) Can deduce the type of the partial application map even

A motivating example in Haskell (almost)

```
map :: (\alpha,\beta)->[\alpha]->[\beta]
map f l = case l of
        | [] -> [] 
even :: (Int }->\mathrm{ Bool) ^ (( }\alpha\\mathrm{ Int) }->(\alpha\\mathrm{ Int))
even x = case x of
        Int -> (x 'mod' 2) == 0
    _ -> x
```

This example a k. I want to define a language that:
(1) Can defin Tough! nnd even
(2) Can check ing espes specified in the signature
(3) Can deduce the type of the partial application map even

A motivating example in Haskell (almost)

```
\(\operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta]\)
\(\operatorname{map} f l=\) case \(l\) of
    | [] -> [] \(\quad\) ( x : xs ) \(->\) ( \(\mathrm{x}: \operatorname{map} \mathrm{f} x\) )
even : : (Int \(\rightarrow\) Bool) \(\wedge((\alpha \backslash\) Int \() \rightarrow(\alpha \backslash\) Int \())\)
even \(x=\) case \(x\) of
    Int -> ( \(x\) 'mod' 2) \(=0\)
    _ \(->x\)
```

We expect map even to have the following type:
(Int list \rightarrow Bool list) \wedge
$(\alpha \backslash$ Int list $\rightarrow \alpha$ Int list) \wedge
$(\alpha \vee$ Int list $\rightarrow(\alpha \backslash$ Int $)$ VBool list $)$

A motivating example in Haskell (almost)

```
\(\operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta]\)
\(\operatorname{map} f 1=\) case \(l\) of
    \(\left.\left\lvert\, \begin{array}{ll}{[]} & -> \\ (x] & x S\end{array}\right.\right) \rightarrow(f x: \operatorname{map} f x s)\)
even : : (Int \(\rightarrow\) Bool) \(\wedge((\alpha \backslash\) Int \() \rightarrow(\alpha \backslash\) Int \())\)
even \(x=\) case \(x\) of
    Int \(->\left(x{ }^{\prime} \bmod ^{\prime} 2\right)=0\)
    _ \(->x\)
```

We expect map even to have the following type:
(Int list \rightarrow Bool list $) \wedge \quad$ int lists are transformed into bool lists $(\alpha \backslash$ Int list $\rightarrow \alpha \backslash$ Int list $) \wedge \quad$ lists w / o ints return the same type $(\alpha \vee$ Int list $\rightarrow(\alpha \backslash$ Int $) \vee$ Bool list $)$ ints in the arg. are replaced by bools

A motivating example in Haskell (almost)

```
\(\operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta]\)
\(\operatorname{map} f 1=\) case \(l\) of
    \(\left.\left\lvert\, \begin{array}{ll}{[]} & -> \\ (x] & x s\end{array}\right.\right) \rightarrow(f x: \operatorname{map} f x s)\)
even : : (Int \(\rightarrow\) Bool) \(\wedge((\alpha \backslash\) Int \() \rightarrow(\alpha \backslash\) Int \())\)
even \(x=\) case \(x\) of
    Int \(->\left(x{ }^{\prime} \bmod ^{\prime} 2\right)=0\)
    _ \(->x\)
```

We expect map even to have the following type:
(Int list \rightarrow Bool list $) \wedge \quad$ int lists are transformed into bool lists $(\alpha \backslash$ Int list $\rightarrow \alpha \backslash$ Int list $) \wedge \quad$ lists w / o ints return the same type $(\alpha \vee$ Int list $\rightarrow(\alpha \backslash$ Int $) \vee$ Bool list $)$ ints in the arg. are replaced by bools

Difficult because of expansion: needs a set of type substitutions rather than just one- to unify the domain and the argument types.

Formal framework

Formal calculus

$$
\begin{array}{lll}
\text { Exprs } & e & ::=x \mid \text { ee }\left|\lambda^{\wedge} \in I s_{i} \rightarrow t_{i} x . e\right| e \in t ? e: e \\
\text { Types } t & ::=B|t \rightarrow t| t \vee t|t \wedge t| \neg t|\mathbb{O}| \mathbb{1} \mid \alpha
\end{array}
$$

Formal calculus

$$
\text { Exprs } e \quad::=x \mid \text { ee }\left|\lambda^{\wedge}{ }_{i \in I} S_{i} \rightarrow t_{i} x . e\right| e \in t ? e: e
$$

Expressions include:

Formal calculus

$$
\text { Exprs } e \quad::=x \mid \text { ee }\left|\lambda^{\wedge}{ }_{i \in I} S_{i} \rightarrow t_{i} x . e\right| e \in t ? e: e
$$

Expressions include:
A type-case:

- abstracts regular type patterns
- makes dynamic overloading possible

Formal calculus

$$
\text { Exprs } e \quad::=x \mid \text { ee }\left|\lambda^{\wedge} \wedge_{i \in I} \rightarrow t_{i} x . e\right| e \in t ? e: e
$$

Expressions include:
A type-case:

- abstracts regular type patterns
- makes dynamic overloading possible

Explicitly-typed functions:

- Needed by the type-case
- More expressive with the result type (parameter type not enough)
$\lambda^{\wedge_{i \in I} s_{i} \rightarrow t_{i}}$.e: well typed if for all $i \in I$ from $x: s_{i}$ we can deduce $e: t_{i}$.

Formal calculus

Exprs e $::=x \mid$ ee $\mid \lambda^{\wedge i \in I S_{i} \rightarrow t_{i}}$ x.e $\mid e \in t$? e:e
 Types $t::=B|t \rightarrow t| t \vee t|t \wedge t| \neg t|\mathbb{O}| \mathbb{1} \mid \alpha$

Types may be recursive and have a set-theoretic interpretation:

Formal calculus

Exprs e $::=x \mid$ ee $\mid \lambda^{\wedge i \in I S_{i} \rightarrow t_{i}}$ X.e $\mid e \in t$? e:e
 Types $t::=B|t \rightarrow t| t \vee t|t \wedge t| \neg t|\mathbb{O}| \mathbb{1} \mid \alpha$

Types may be recursive and have a set-theoretic interpretation:
Constructors: $\llbracket \operatorname{Int} \rrbracket=\{0,1,-1, \ldots\} . \llbracket s \rightarrow t \rrbracket=\lambda$-abstractions that when applied to arguments in $\llbracket s \rrbracket$ return only results in $\llbracket t \rrbracket$.

Formal calculus

Exprs

$$
\text { Types } t::=B|t \rightarrow t| t \vee t|t \wedge t| \neg t|\mathbb{O}| \mathbb{1} \mid \alpha
$$

Types may be recursive and have a set-theoretic interpretation:
Constructors: $\llbracket \operatorname{Int} \rrbracket=\{0,1,-1, \ldots\} . \llbracket s \rightarrow t \rrbracket=\lambda$-abstractions that when applied to arguments in $\llbracket s \rrbracket$ return only results in $\llbracket t \rrbracket$.

Connectives have the corresponding set-theoretic interpretation:

$$
\llbracket s \vee t \rrbracket=\llbracket s \rrbracket \cup \llbracket t \rrbracket \quad \llbracket s \wedge t \rrbracket=\llbracket s \rrbracket \cap \llbracket t \rrbracket \quad \llbracket \neg t \rrbracket=\llbracket \mathbb{1} \rrbracket \backslash \llbracket t \rrbracket
$$

Formal calculus

Exprs

$$
\text { Types } t::=B|t \rightarrow t| t \vee t|t \wedge t| \neg t|\mathbb{O}| \mathbb{1} \mid \alpha
$$

Types may be recursive and have a set-theoretic interpretation:
Constructors: $\llbracket \operatorname{Int} \rrbracket=\{0,1,-1, \ldots\} . \llbracket s \rightarrow t \rrbracket=\lambda$-abstractions that when applied to arguments in $\llbracket s \rrbracket$ return only results in $\llbracket t \rrbracket$.

Connectives have the corresponding set-theoretic interpretation:

$$
\llbracket s \vee t \rrbracket=\llbracket s \rrbracket \cup \llbracket t \rrbracket \quad \llbracket s \wedge t \rrbracket=\llbracket s \rrbracket \cap \llbracket t \rrbracket \quad \llbracket \neg t \rrbracket=\llbracket \mathbb{1} \rrbracket \backslash \llbracket t \rrbracket
$$

Subtyping:

- it is defined as set-containment: $\quad s \leq t \stackrel{\text { def }}{\Longleftrightarrow} \llbracket s \rrbracket \subseteq \llbracket t \rrbracket$;

Formal calculus

$$
\begin{array}{lll}
\text { Exprs } & e & ::=x \mid \text { ee }\left|\lambda^{\wedge} \in I s_{i} \rightarrow t_{i} x . e\right| e \in t ? e: e \\
\text { Types } t::=B|t \rightarrow t| t \vee t|t \wedge t| \neg t|\mathbb{O}| \mathbb{1} \mid \alpha
\end{array}
$$

Types may be recursive and have a set-theoretic interpretation:
Constructors: $\llbracket \operatorname{Int} \rrbracket=\{0,1,-1, \ldots\} . \llbracket s \rightarrow t \rrbracket=\lambda$-abstractions that when applied to arguments in $\llbracket s \rrbracket$ return only results in $\llbracket t \rrbracket$.

Connectives have the corresponding set-theoretic interpretation:

$$
\llbracket s \vee t \rrbracket=\llbracket s \rrbracket \cup \llbracket t \rrbracket \quad \llbracket s \wedge t \rrbracket=\llbracket s \rrbracket \cap \llbracket t \rrbracket \quad \llbracket \neg t \rrbracket=\llbracket \mathbb{1} \rrbracket \backslash \llbracket t \rrbracket
$$

Subtyping with type variables:

- it is defined as set-containment: $\quad s \leq t \stackrel{\text { def }}{\Longleftrightarrow} \llbracket s \rrbracket \subseteq \llbracket t \rrbracket$;
- it is such that forall type-substitutions $\sigma: \quad s \leq t \Rightarrow s \sigma \leq t \sigma$;
- it is decidable.
[ICFP2011].

Formal calculus: new stuff

$$
\begin{array}{lll}
\text { Exprs } & e & ::=x \mid \text { ee }\left|\lambda^{\wedge} \in\right| s_{i} \rightarrow t_{i} x . e \mid e \in t ? e: e \\
\text { Types } t & ::=B|t \rightarrow t| t \vee t|t \wedge t| \neg t|\mathbb{0}| \mathbb{1} \mid \alpha
\end{array}
$$

Polymorphic functions.

Formal calculus

$$
\begin{aligned}
& \text { Exprs } e::=x|e e| \lambda^{\wedge_{i \in} \mid S_{i} \rightarrow t_{i} x . e} \mid e \in t ? e: e \\
& \text { Types } t::=B|t \rightarrow t| t \vee t|t \wedge t| \neg t|0| \mathbb{1} \mid @
\end{aligned}
$$

Polymorphic functions: The novelty of this work is that type variables can occur in the interfaces.

Formal calculus: new stuff

$$
\begin{array}{lll}
\text { Exprs } & e & ::=x \mid \text { ee }\left|\lambda^{\wedge} \in\right| s_{i} \rightarrow t_{i} x . e \mid e \in t ? e: e \\
\text { Types } t & ::=B|t \rightarrow t| t \vee t|t \wedge t| \neg t|\mathbb{0}| \mathbb{1} \mid \alpha
\end{array}
$$

Polymorphic functions: The novelty of this work is that type variables can occur in the interfaces.

- $\lambda^{\alpha \rightarrow \alpha} x \cdot x$
- $\lambda^{(\alpha \rightarrow \beta) \wedge \alpha \rightarrow \beta} x . x x$
polymorphic identity auto-application

Formal calculus: new stuff

$$
\begin{array}{lll}
\text { Exprs } & e & ::=x|e e| \lambda^{\wedge} \in\left|s_{i} \rightarrow t_{i} x . e\right| e \in t ? e: e \\
\text { Types } t & ::=B|t \rightarrow t| t \vee t|t \wedge t| \neg t|\mathbb{O}| \mathbb{1} \mid \alpha
\end{array}
$$

Polymorphic functions: The novelty of this work is that type variables can occur in the interfaces.

- $\lambda^{\alpha \rightarrow \alpha} x$.x
- $\lambda^{(\alpha \rightarrow \beta) \wedge \alpha \rightarrow \beta} x . x x$
polymorphic identity
auto-application

Meaning: types obtained by subsumption and by instantiation

- $\lambda^{\alpha \rightarrow \alpha} x . x: \mathbb{0} \rightarrow \mathbb{1}$
- $\lambda^{\alpha \rightarrow \alpha} x . x: \neg$ Int
- $\lambda^{\alpha \rightarrow \alpha} x$.x: Int \rightarrow Int
- $\lambda^{\alpha \rightarrow \alpha} x . x:$ Bool \rightarrow Bool
subsumption subsumption instantiation enew instantiation CNOW

Formal calculus: new stuff

$$
\begin{array}{lll}
\text { Exprs } & e & ::=x|e e| \lambda^{\wedge} \in\left|s_{i} \rightarrow t_{i} x . e\right| e \in t ? e: e \\
\text { Types } t & ::=B|t \rightarrow t| t \vee t|t \wedge t| \neg t|\mathbb{0}| \mathbb{1} \mid \alpha
\end{array}
$$

Problem

Define an explicitly typed, polymorphic calculus with intersection types and dynamic type-case

Formal calculus: new stuff

$$
\begin{array}{lll}
\text { Exprs } & e & ::=x|e e| \lambda^{\wedge} \in I s_{i} \rightarrow t_{i} x . e \mid e \in t ? e: e \\
\text { Types } t & ::=B|t \rightarrow t| t \vee t|t \wedge t| \neg t|\mathbb{O}| \mathbb{1} \mid \alpha
\end{array}
$$

Problem

Define an explicitly typed, polymorphic calculus with intersection types and dynamic type-case

Formal calculus: new stuff

$$
\begin{array}{lll}
\text { Exprs } & e & ::=x|e e| \lambda^{\wedge} \in\left|s_{i} \rightarrow t_{i} x . e\right| e \in t ? e: e \\
\text { Types } t & ::=B|t \rightarrow t| t \vee t|t \wedge t| \neg t|\mathbb{0}| \mathbb{1} \mid \alpha
\end{array}
$$

Problem

Define an explicitly typed, polymorphic calculus with intersection types and dynamic type-case

Four simple points to show why dealing with this blend is quite problematic

1. Polymorphism needs instantiation:

1. Polymorphism needs instantiation:

To apply $\lambda^{\alpha \rightarrow \alpha} x . x$ to 42 we must use the instance obtained by the type substitution $\{\operatorname{Int} / \alpha\}$:

$$
\left(\lambda^{\text {Int } \rightarrow \text { Int }} x \cdot x\right) 42
$$

we relabel the function by instantiating its interface.

1. Polymorphism needs instantiation:

To apply $\lambda^{\alpha \rightarrow \alpha} x . x$ to 42 we must use the instance obtained by the type substitution $\{\operatorname{Int} / \alpha\}$:

$$
\left(\lambda^{\text {Int } \rightarrow \text { Int }} x \cdot x\right) 42
$$

we relabel the function by instantiating its interface.
2. Type-case needs explicit relabeling:

$$
\left(\lambda^{\alpha \rightarrow \alpha \rightarrow \alpha} x \cdot \lambda^{\alpha \rightarrow \alpha} y \cdot x\right) 42 \in \text { Int } \rightarrow \text { Int }
$$

$$
\left(\lambda^{\alpha \rightarrow \alpha \rightarrow \alpha} x \cdot \lambda^{\alpha \rightarrow \alpha} y . x\right) \text { true } \notin \text { Int } \rightarrow \text { Int }
$$

Interfaces determine λ-abstractions's types

1. Polymorphism needs instantiation:

To apply $\lambda^{\alpha \rightarrow \alpha} x . x$ to 42 we must use the instance obtained by the type substitution $\{\operatorname{Int} / \alpha\}$:

$$
\left(\lambda^{\text {Int } \rightarrow \text { Int }} x \cdot x\right) 42
$$

we relabel the function by instantiating its interface.
2. Type-case needs explicit relabeling:

$$
\left(\lambda^{\alpha \rightarrow \alpha \rightarrow \alpha} x \cdot \lambda^{\alpha \rightarrow \alpha} y \cdot x\right) 42 \in \text { Int } \rightarrow \text { Int }
$$

$$
\left(\lambda^{\alpha \rightarrow \alpha \rightarrow \alpha} x \cdot \lambda^{\alpha \rightarrow \alpha} y . x\right) \text { true } \notin \text { Int } \rightarrow \text { Int }
$$

Interfaces determine λ-abstractions's types

1. Polymorphism needs instantiation:

To apply $\lambda^{\alpha \rightarrow \alpha} x . x$ to 42 we must use the instance obtained by the type substitution $\{$ Int $/ \alpha\}$:

$$
\left(\lambda^{\text {Int } \rightarrow \text { Int }} x \cdot x\right) 42
$$

we relabel the function by instantiating its interface.
2. Type-case needs explicit relabeling:

$$
\begin{aligned}
& \left(\lambda^{\alpha \rightarrow \alpha \rightarrow \alpha} x \cdot \lambda^{\alpha \rightarrow \alpha} y \cdot x\right) 42 \in \text { Int } \rightarrow \text { Int } \\
& \left(\lambda^{\alpha \rightarrow \alpha \rightarrow \alpha} x \cdot \lambda^{\alpha \rightarrow \alpha} y \cdot x\right) \text { true } \notin \text { Int } \rightarrow \text { Int }
\end{aligned}
$$

Interfaces determine λ-abstractions's types

$$
\begin{aligned}
& \leadsto \lambda^{\text {Int } \rightarrow \text { Int } y . ~} 42 \\
& \leadsto \lambda^{\text {Bool } \rightarrow \text { Bool } y . \text { true }} \\
& \text { [intrinsic semantics] }
\end{aligned}
$$

3. Relabeling must be applied also on function bodies:
4. Polymorphism needs instantiation:

To apply $\lambda^{\alpha \rightarrow \alpha} x . x$ to 42 we must use the instance obtained by the type substitution $\{$ Int $/ \alpha\}$:

$$
\left(\lambda^{\text {Int } \rightarrow \text { Int }} x \cdot x\right) 42
$$

we relabel the function by instantiating its interface.
2. Type-case needs explicit relabeling:

$$
\left(\lambda^{\alpha \rightarrow \alpha \rightarrow \alpha} x \cdot \lambda^{\alpha \rightarrow \alpha} y \cdot x\right) 42 \in \operatorname{Int} \rightarrow \text { Int }
$$

$$
\left(\lambda^{\alpha \rightarrow \alpha \rightarrow \alpha} x \cdot \lambda^{\alpha \rightarrow \alpha} y \cdot x\right) \text { true } \notin \text { Int } \rightarrow \text { Int } \quad \sim \lambda^{\text {Bool } \rightarrow \text { Bool } y . t r u e ~}
$$

Interfaces determine λ-abstractions's types

$$
\begin{gathered}
\leadsto \lambda^{\text {Int } \rightarrow \text { Int }} y .42 \\
\\
\sim \lambda^{\text {Bool } \rightarrow \text { Bool }} y . \operatorname{trL} \\
\text { [intrinsic semantics] }
\end{gathered}
$$

3. Relabeling must be applied also on function bodies:

A "daffy" definition of identity:

$$
\left(\lambda^{\alpha \rightarrow \alpha} x \cdot\left(\lambda^{\alpha \rightarrow \alpha} y \cdot x\right) x\right)
$$

1. Polymorphism needs instantiation:

To apply $\lambda^{\alpha \rightarrow \alpha} x . x$ to 42 we must use the instance obtained by the type substitution $\{$ Int $/ \alpha\}$:

$$
\left(\lambda^{\text {Int } \rightarrow \text { Int }} x \cdot x\right) 42
$$

we relabel the function by instantiating its interface.
2. Type-case needs explicit relabeling:

$$
\left(\lambda^{\alpha \rightarrow \alpha \rightarrow \alpha} x \cdot \lambda^{\alpha \rightarrow \alpha} y \cdot x\right) 42 \in \text { Int } \rightarrow \text { Int }
$$

$$
\left(\lambda^{\alpha \rightarrow \alpha \rightarrow \alpha} x \cdot \lambda^{\alpha \rightarrow \alpha} y \cdot x\right) \text { true } \notin \text { Int } \rightarrow \text { Int } \quad \leadsto \lambda^{\text {Bool } \rightarrow \text { Bool }} y \text {.true }
$$

Interfaces determine λ-abstractions's types
3. Relabeling must be applied also on function bodies:

A "daffy" definition of identity:

$$
\left(\lambda^{\alpha \rightarrow \alpha} x \cdot\left(\lambda^{\alpha \rightarrow \alpha} y \cdot x\right) x\right)
$$

To apply it to 42, relabeling the outer λ by $\{$ Int $/ \alpha\}$ does not suffice:

$$
\left(\lambda^{\alpha \rightarrow \alpha} y .42\right) 42
$$

is not well typed. The body must be relabeled as well, by applying the $\{\operatorname{Int} / \alpha\}$ yielding: $\left(\lambda^{\text {Int } \rightarrow \operatorname{Int}} y .42\right) 42$

4. Relabeling the body is not always straightforward:

4. Relabeling the body is not always straightforward:
(1) More than one type-substitution needed
(2) Relabeling depends on the dynamic type of the argument
5. Relabeling the body is not always straightforward:
(1) More than one type-substitution needed
(2) Relabeling depends on the dynamic type of the argument
6. Relabeling the body is not always straightforward:
(1) More than one type-substitution needed
(2) Relabeling depends on the dynamic type of the argument

The identity function $\lambda^{\alpha \rightarrow \alpha} x . x$ has both these types:

Int \rightarrow Int Bool \rightarrow Bool
4. Relabeling the body is not always straightforward:
(1) More than one type-substitution needed
(2) Relabeling depends on the dynamic type of the argument

The identity function $\lambda^{\alpha \rightarrow \alpha} x . x$ has both these types:

$$
(\text { Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })
$$

So it has their intersection.
4. Relabeling the body is not always straightforward:
(1) More than one type-substitution needed
(2) Relabeling depends on the dynamic type of the argument

The identity function $\lambda^{\alpha \rightarrow \alpha} x . x$ has both these types:

$$
(\text { Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })
$$

So it has their intersection.
We can feed the identity to a function which expects argument of that type. But how do we relabel it?
4. Relabeling the body is not always straightforward:
(1) More than one type-substitution needed
(2) Relabeling depends on the dynamic type of the argument

The identity function $\lambda^{\alpha \rightarrow \alpha} x . x$ has both these types:

$$
(\text { Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })
$$

So it has their intersection.
We can feed the identity to a function which expects argument of that type. But how do we relabel it?
Intuitively: apply $\{\operatorname{Int} / \alpha\}$ and $\{\mathrm{Bool} / \alpha\}$ to the interface and replace it by the intersection of the two instances:
4. Relabeling the body is not always straightforward:
(1) More than one type-substitution needed
(2) Relabeling depends on the dynamic type of the argument

The identity function $\lambda^{\alpha \rightarrow \alpha} x . x$ has both these types:

$$
(\operatorname{Int} \rightarrow \operatorname{Int}) \wedge(\mathrm{Bool} \rightarrow \mathrm{Bool})
$$

So it has their intersection.
We can feed the identity to a function which expects argument of that type. But how do we relabel it? Intuitively: apply $\{\operatorname{Int} / \alpha\}$ and $\{\mathrm{Bool} / \alpha\}$ to the interface and replace it by the intersection of the two instances:

$$
\left(\lambda^{\alpha \rightarrow \alpha} x . x\right)[\{\operatorname{Int} / \alpha\},\{\mathrm{Bool} / \alpha\}] \leadsto \lambda^{(\operatorname{Int} \rightarrow \operatorname{Int}) \wedge(\text { Bool } \rightarrow \text { Bool })} x . x
$$

4. Relabeling the body is not always straightforward:
(1) More than one type-substitution needed
(2) Relabeling depends on the dynamic type of the argument

The identity function $\lambda^{\alpha \rightarrow \alpha} x . x$ has both these types:

$$
(\operatorname{Int} \rightarrow \operatorname{Int}) \wedge(\mathrm{Bool} \rightarrow \mathrm{Bool})
$$

So it has their intersection.
We can feed the identity to a function which expects argument of that type. But how do we relabel it? Intuitively: apply $\{\operatorname{Int} / \alpha\}$ and $\{\mathrm{Bool} / \alpha\}$ to the interface and replace it by the intersection of the two instances:

$$
\left(\lambda^{\alpha \rightarrow \alpha} x . x\right)[\{\operatorname{Int} / \alpha\},\{\mathrm{Bool} / \alpha\}] \leadsto \lambda^{(\operatorname{Int} \rightarrow \operatorname{Int}) \wedge(\text { Bool } \rightarrow \text { Bool })} x . x
$$

We applied a set of type substitutions: $t\left[\sigma_{i}\right]_{i \in I}=\bigwedge_{i \in I} t \sigma_{i}$

4. Relabeling the body is not always straightforward:

4. Relabeling the body is not always straightforward:
(1) More than one type-substitution needed
(2) Relabeling depends on the dynamic type of the argument
5. Relabeling the body is not always straightforward:
(1) More than one type-substitution needed
(2) Relabeling depends on the dynamic type of the argument
6. Relabeling the body is not always straightforward:
(1) More than one type-substitution needed
(2) Relabeling depends on the dynamic type of the argument

The identity function $\lambda^{\alpha \rightarrow \alpha} x . x$ has both these types:

Int \rightarrow Int Bool \rightarrow Bool
4. Relabeling the body is not always straightforward:
(1) More than one type-substitution needed
(2) Relabeling depends on the dynamic type of the argument

The identity function $\lambda^{\alpha \rightarrow \alpha} x . x$ has both these types:

$$
(\text { Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })
$$

So it has their intersection.
4. Relabeling the body is not always straightforward:
(1) More than one type-substitution needed
(2) Relabeling depends on the dynamic type of the argument

The identity function $\lambda^{\alpha \rightarrow \alpha} x . x$ has both these types:

$$
(\text { Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })
$$

So it has their intersection.
We can feed the identity to a function which expects argument of that type. But how do we relabel it?
4. Relabeling the body is not always straightforward:
(1) More than one type-substitution needed
(2) Relabeling depends on the dynamic type of the argument

The identity function $\lambda^{\alpha \rightarrow \alpha} x . x$ has both these types:

$$
(\text { Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })
$$

So it has their intersection.
We can feed the identity to a function which expects argument of that type. But how do we relabel it?
Intuitively: apply $\{\operatorname{Int} / \alpha\}$ and $\{\mathrm{Bool} / \alpha\}$ to the interface and replace it by the intersection of the two instances:
4. Relabeling the body is not always straightforward:
(1) More than one type-substitution needed
(2) Relabeling depends on the dynamic type of the argument

The identity function $\lambda^{\alpha \rightarrow \alpha} x . x$ has both these types:

$$
(\operatorname{Int} \rightarrow \operatorname{Int}) \wedge(\mathrm{Bool} \rightarrow \mathrm{Bool})
$$

So it has their intersection.
We can feed the identity to a function which expects argument of that type. But how do we relabel it? Intuitively: apply $\{\operatorname{Int} / \alpha\}$ and $\{\mathrm{Bool} / \alpha\}$ to the interface and replace it by the intersection of the two instances:

$$
\left(\lambda^{\alpha \rightarrow \alpha} x . x\right)[\{\operatorname{Int} / \alpha\},\{\mathrm{Bool} / \alpha\}] \leadsto \lambda^{(\operatorname{Int} \rightarrow \operatorname{Int}) \wedge(\text { Bool } \rightarrow \text { Bool })} x . x
$$

4. Relabeling the body is not always straightforward:
(1) More than one type-substitution needed
(2) Relabeling depends on the dynamic type of the argument

The identity function $\lambda^{\alpha \rightarrow \alpha} x . x$ has both these types:

$$
(\operatorname{Int} \rightarrow \operatorname{Int}) \wedge(\mathrm{Bool} \rightarrow \mathrm{Bool})
$$

So it has their intersection.
We can feed the identity to a function which expects argument of that type. But how do we relabel it? Intuitively: apply $\{\operatorname{Int} / \alpha\}$ and $\{\mathrm{Bool} / \alpha\}$ to the interface and replace it by the intersection of the two instances:

$$
\left(\lambda^{\alpha \rightarrow \alpha} x . x\right)[\{\operatorname{Int} / \alpha\},\{\mathrm{Bool} / \alpha\}] \leadsto \lambda^{(\operatorname{Int} \rightarrow \operatorname{Int}) \wedge(\text { Bool } \rightarrow \text { Bool })} x . x
$$

We applied a set of type substitutions: $t\left[\sigma_{i}\right]_{i \in I}=\bigwedge_{i \in I} t \sigma_{i}$
4. Relabeling the body is not always straightforward:
(1) More than one type-substitution needed
(2) Relabeling depends on the dynamic type of the argument

4. Relabeling the body is not always straightforward:
(1) More than one type-substitution needed
(2) Relabeling depends on the dynamic type of the argument

Consider again the daffy identity $\left(\lambda^{\alpha \rightarrow \alpha} x .\left(\lambda^{\alpha \rightarrow \alpha} y . x\right) x\right)$.
It also has type

$$
(\text { Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })
$$

4. Relabeling the body is not always straightforward:

(1) More than one type-substitution needed

(2) Relabeling depends on the dynamic type of the argument

Consider again the daffy identity $\left(\lambda^{\alpha \rightarrow \alpha} x .\left(\lambda^{\alpha \rightarrow \alpha} y . x\right) x\right)$.
It also has type

$$
(\text { Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })
$$

Applying the set of substitutions [$\{\operatorname{Int} / \alpha\},\{\mathrm{Bool} / \alpha\}]$ both to the interface and the body yields an ill-typed term:

$$
\left(\lambda^{(\operatorname{Int} \rightarrow \operatorname{Int}) \wedge(\text { Bool } \rightarrow \text { Bool })} x \cdot\left(\lambda^{(\operatorname{Int} \rightarrow \operatorname{Int}) \wedge(\text { Bool } \rightarrow \text { Bool })} y \cdot x\right) x\right)
$$

4. Relabeling the body is not always straightforward:

(1) More than one type-substitution needed

(2) Relabeling depends on the dynamic type of the argument

Consider again the daffy identity $\left(\lambda^{\alpha \rightarrow \alpha} x .\left(\lambda^{\alpha \rightarrow \alpha} y . x\right) x\right)$.
It also has type

$$
(\text { Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })
$$

Applying the set of substitutions [$\{\operatorname{Int} / \alpha\},\{\mathrm{Bool} / \alpha\}]$ both to the interface and the body yields an ill-typed term:

$$
\left(\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })} x \cdot\left(\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })} y . x\right) x\right)
$$

Let us see why

it is not well typed

In order to type

$$
\left(\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })} x \cdot\left(\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })} y . x\right) x\right)
$$

we must check that it has both types of the interface:

In order to type

$$
\left(\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })} x \cdot\left(\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })} y . x\right) x\right)
$$

we must check that it has both types of the interface:
(1) $x:$ Int $\vdash\left(\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })} y . x\right) x:$ Int
(2) x : Bool $\vdash\left(\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(B o o l \rightarrow B o o l)} y . x\right) x:$ Bool

In order to type

$$
\left(\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })} x \cdot\left(\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })} y . x\right) x\right)
$$

we must check that it has both types of the interface:
(1) $x:$ Int $\vdash\left(\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })} y . x\right) x:$ Int
(2) x : Bool $\vdash\left(\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })} y . x\right) x$: Bool

Both fail because $\lambda^{(\operatorname{Int} \rightarrow \operatorname{Int}) \wedge(B o o l \rightarrow \text { Bool })} y \cdot x$ is not well typed

In order to type

$$
\left(\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })} x \cdot\left(\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })} y . x\right) x\right)
$$

we must check that it has both types of the interface:
(1) $x: \operatorname{Int} \vdash\left(\lambda^{(\text {Int } \rightarrow \operatorname{Int}) \wedge(\text { Bool } \rightarrow \text { Bool })} y \cdot x\right) x:$ Int
(2) x : Bool $\vdash\left(\lambda^{(\text {Int } \rightarrow \operatorname{Int}) \wedge(\text { Bool } \rightarrow \text { Bool })} y \cdot x\right) x: 1$

Both fail because $\lambda^{(\operatorname{Int} \rightarrow \operatorname{Int}) \wedge(B o o l \rightarrow \text { Bool })} y \cdot x$ is not well typed

In order to type

$$
\left(\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })} x \cdot\left(\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })} y . x\right) x\right)
$$

we must check that it has both types of the interface:
(1) x : Int $\vdash\left(\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })} y . x\right) x:$ Int
(2) x : Bool $\vdash\left(\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(B o o l \rightarrow B o o l)} y . x\right) x:$ in

Both fail because $\lambda^{(\operatorname{Int} \rightarrow \operatorname{Int}) \wedge(B o o l \rightarrow \text { Bool })} y \cdot x$ is not well typed

Key idea

The relabeling of the body must change according to the type of the parameter

In order to type

$$
\left(\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })} x \cdot\left(\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })} y . x\right) x\right)
$$

we must check that it has both types of the interface:
(1) $x:$ Int $\vdash\left(\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(B o o l ~} \rightarrow\right.$ Bool $\left.) y . x\right) x:$ Int
(2) $x:$ Bool $\vdash\left(\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(B o o l ~} \rightarrow\right.$ Bool $\left.) y . x\right) x$:

Both fail because $\lambda^{(\operatorname{Int} \rightarrow \operatorname{Int}) \wedge(B o o l \rightarrow \mathrm{Bool})} y \cdot x$ is not well typed

Key idea

The relabeling of the body must change according to the type of the parameter

In our example with $\left(\lambda^{\alpha \rightarrow \alpha} x .\left(\lambda^{\alpha \rightarrow \alpha} y . x\right) x\right)$ and [\{Int/ $\left.\left.\alpha\right\},\{\mathrm{Bool} / \alpha\}\right]:$

In order to type

$$
\left(\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })} x \cdot\left(\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })} y . x\right) x\right)
$$

we must check that it has both types of the interface:
(1) x : Int $\vdash\left(\lambda^{(\operatorname{Int} \rightarrow \operatorname{Int}) \wedge(\text { Bool } \rightarrow \text { Bool })} y . x\right) x:$ Int
(2) x : Bool $\vdash\left(\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(B o o l \rightarrow B o o l)} y \cdot x\right) x:$

Both fail because $\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })} y . x$ is not well typed

Key idea

The relabeling of the body must change according to the type of the parameter

In our example with $\left(\lambda^{\alpha \rightarrow \alpha} x .\left(\lambda^{\alpha \rightarrow \alpha} y \cdot x\right) x\right)$ and [\{Int/ $\left.\left.\alpha\right\},\{\mathrm{Bool} / \alpha\}\right]$:

In order to type

$$
\left(\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })} x \cdot\left(\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })} y . x\right) x\right)
$$

we must check that it has both types of the interface:
(1) $x:$ Int $\vdash\left(\lambda^{(\operatorname{Int} \rightarrow \operatorname{Int}) \wedge(\text { Bool } \rightarrow \text { Bool })} y . x\right) x:$ Int
(2) x : Bool $\vdash\left(\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(B o o l \rightarrow B o o l)} y . x\right) x$:

Both fail because $\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })} y . x$ is not well typed
Key idea
The relabeling of the body must change according to the type of the parameter

In our example with $\left(\lambda^{\alpha \rightarrow \alpha} x .\left(\lambda^{\alpha \rightarrow \alpha} y \cdot x\right) x\right)$ and [\{Int/ $\left.\left.\alpha\right\},\{\mathrm{Bool} / \alpha\}\right]$:

- $\left(\lambda^{\alpha \rightarrow \alpha} y \cdot x\right)$ must be relabeled as $\left(\lambda^{\operatorname{Int} \rightarrow \operatorname{Int}} y \cdot x\right)$ when x : Int;
- $\left(\lambda^{\alpha \rightarrow \alpha} y . x\right)$ must be relabeled as ($\left.\lambda^{\text {Bool } \rightarrow \text { Bool }} y . x\right)$ when x : Bool

A new technique

Observation

This "dependent relabeling" is the stumbling block for the definition of an explicitly-typed λ-calculus with intersection types.

A new technique

Observation

This "dependent relabeling" is the stumbling block for the definition of an explicitly-typed λ-calculus with intersection types.

A new technique: "lazy" relabeling of bodies.

- Decorate λ-abstractions by sets of type-substitutions:

A new technique

Observation

This "dependent relabeling" is the stumbling block for the definition of an explicitly-typed λ-calculus with intersection types.

A new technique: "lazy" relabeling of bodies.

- Decorate λ-abstractions by sets of type-substitutions: To pass the daffy identity to a function that expects arguments of type $($ Int \rightarrow Int $) \wedge($ Bool \rightarrow Bool $)$ first "lazily" relabel it as follows:

$$
\left(\lambda_{\{\{\mathrm{Int} / \alpha\},\{\mathrm{BPor} / \alpha\}\}}^{\alpha \rightarrow \alpha} x \cdot\left(\lambda^{\alpha \rightarrow \alpha} y \cdot x\right) x\right)
$$

A new technique

Observation

This "dependent relabeling" is the stumbling block for the definition of an explicitly-typed λ-calculus with intersection types.

A new technique: "lazy" relabeling of bodies.

- Decorate λ-abstractions by sets of type-substitutions:

To pass the daffy identity to a function that expects
arguments of type $($ Int \rightarrow Int $) \wedge($ Bool \rightarrow Bool $)$ first "lazily" relabel it as follows:

$$
\left(\lambda_{\{\{\mathrm{Tnt} / \alpha\},\{\mathrm{Bool} / \alpha\}}^{\alpha \rightarrow \alpha} x \cdot\left(\lambda^{\alpha \rightarrow \alpha} y \cdot x\right) x\right)
$$

- The decoration indicates that the function must be relabeled

A new technique

Observation

This "dependent relabeling" is the stumbling block for the definition of an explicitly-typed λ-calculus with intersection types.

A new technique: "lazy" relabeling of bodies.

- Decorate λ-abstractions by sets of type-substitutions: To pass the daffy identity to a function that expects arguments of type $($ Int \rightarrow Int $) \wedge(\mathrm{Bool} \rightarrow \mathrm{Bool})$ first "lazily" relabel it as follows:

$$
\left(\lambda_{\{\{\mathrm{Tnt} / \alpha\},\{\mathrm{Bool} / \alpha\}}^{\alpha \rightarrow \alpha} x \cdot\left(\lambda^{\alpha \rightarrow \alpha} y \cdot x\right) x\right)
$$

- The decoration indicates that the function must be relabeled
- The relabeling will be actually propagated to the body of the function at the moment of the reduction (lazy relabeling)

A new technique

Observation

This "dependent relabeling" is the stumbling block for the definition of an explicitly-typed λ-calculus with intersection types.

A new technique: "lazy" relabeling of bodies.

- Decorate λ-abstractions by sets of type-substitutions:

To pass the daffy identity to a function that expects arguments of type $($ Int \rightarrow Int $) \wedge($ Bool \rightarrow Bool $)$ first "lazily" relabel it as follows:

$$
\left(\lambda_{\left[\left\{\left\{^{\mathrm{Tnt} / \alpha\}\}} \alpha,\{\mathrm{Bool} / \alpha\}\right]\right.\right.}^{\alpha \rightarrow \alpha} x \cdot\left(\lambda^{\alpha \rightarrow \alpha} y \cdot x\right) x\right)
$$

- The decoration indicates that the function must be relabeled
- The relabeling will be actually propagated to the body of the function at the moment of the reduction (lazy relabeling)
- The new decoration is statically used by the type system to ensure soundness.

Details follow, but remember we want to program in this language

$$
e::=x|e e| \lambda^{\wedge} \wedge_{i \in I} s_{i} \rightarrow t_{i} x . e \mid e \in t ? e: e
$$

No decorations: We do not want to oblige the programmer to write any explicit type substitution.

Details follow, but remember we want to program in this language

$$
e::=x|e e| \lambda^{\wedge} \in\left|s_{i} \rightarrow t_{i} x . e\right| e \in t ? e: e
$$

No decorations: We do not want to oblige the programmer to write any explicit type substitution.

The technical development will proceed as follows:
(1) Define a calculus with explicit type-substitutions and decorated λ-abstractions.
(2) Define an inference system that deduces where to insert explicit type-substitutions in a term of the language above
(3) Define a compilation and execution technique thanks to which type substitutions are computed only when strictly necessary (in general, as efficient as a monomorphic execution).

Details follow, but remember we want to program in this language

$$
e::=x|e e| \lambda^{\wedge} \in\left|s_{i} \rightarrow t_{i} x . e\right| e \in t ? e: e
$$

No decorations: We do not want to oblige the programmer to write any explicit type substitution.

The technical development will proceed as follows:
(1) Define a calculus with explicit type-substitutions and decorated λ-abstractions.
(2) Define an inference system that deduces where to insert explicit type-substitutions in a term of the language above
(3) Define a compilation and execution technique thanks to which type substitutions are computed only when strictly necessary (in general, as efficient as a monomorphic execution).
Before proceeding we can already check our first yardstick:

$$
\begin{array}{r}
\text { even }=\lambda^{(\text {Int } \rightarrow \text { Bool }) \wedge(\alpha \backslash \operatorname{Int} \rightarrow \alpha \backslash \text { Int })} x . x \in \operatorname{Int} ?(x \bmod 2)=0: x \\
\operatorname{map}=\mu m^{(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta]} f . \\
\quad \lambda^{[\alpha] \rightarrow[\beta]} \ell . \ell \in \text { nil ? nil }:\left(f\left(\pi_{1} \ell\right), m f\left(\pi_{2} \ell\right)\right)
\end{array}
$$

A calculus with explicit type-substitutions

A calculus with explicit type-substitutions

Explicitly pinpoint where sets of type substitutions are applied:

$$
e::=x|e e| \lambda^{\wedge_{i \in I} s_{i} \rightarrow t_{i}} x . e \mid e \in t ? e: e
$$

A calculus with explicit type-substitutions

Explicitly pinpoint where sets of type substitutions are applied:

$$
e::=x|e e| \lambda_{\left[\sigma_{j}\right]_{j \in J}}^{\wedge_{i \in I} s_{i} \rightarrow t_{i}} x . e|e \in t ? e: e| e\left[\sigma_{i}\right]_{i \in I}
$$

A calculus with explicit type-substitutions

Explicitly pinpoint where sets of type substitutions are applied:

$$
e::=x|e e| \lambda_{\left[\sigma_{j}\right]_{j \in J}}^{\wedge_{i \in I} s_{i} \rightarrow t_{i}} x . e|e \in t ? e: e| e\left[\sigma_{i}\right]_{i \in I}
$$

Some examples:

$$
\begin{aligned}
& \left(\lambda^{\alpha \rightarrow \alpha} x \cdot x\right) 42 \\
& \left(\lambda^{\alpha \rightarrow \alpha} x \cdot x\right)[\{\operatorname{Int} / \alpha\}] 42
\end{aligned}
$$

A calculus with explicit type-substitutions

Explicitly pinpoint where sets of type substitutions are applied:

$$
e::=x|e e| \lambda_{\left[\sigma_{j}\right]_{j \in J}}^{\wedge_{i \in I} s_{i} \rightarrow t_{i}} x . e|e \in t ? e: e| e\left[\sigma_{i}\right]_{i \in I}
$$

Some examples:

$$
\begin{aligned}
& \left(\lambda^{\alpha \rightarrow \alpha} x \cdot x\right) 42 \\
& \left(\lambda^{\alpha \rightarrow \alpha} x \cdot x\right)[\{\operatorname{Int} / \alpha\}] 42 \\
& \left(\lambda_{[\{\operatorname{Int} / \alpha\}]}^{\alpha \rightarrow \alpha} x \cdot x\right) 42
\end{aligned}
$$

A calculus with explicit type-substitutions

Explicitly pinpoint where sets of type substitutions are applied:

$$
e::=x|e e| \lambda_{\left[\sigma_{j}\right]_{j \in J}}^{\wedge_{i \in I} S_{i} \rightarrow t_{i}} x . e|e \in t ? e: e| e\left[\sigma_{i}\right]_{i \in I}
$$

Some examples:

8

$$
\left(\lambda^{\alpha \rightarrow \alpha} x \cdot x\right) 42
$$

$$
\begin{aligned}
& \left(\lambda^{\alpha \rightarrow \alpha} x \cdot x\right)[\{\text { Int } / c \\
& \left(\lambda_{[\{\operatorname{Int} / \alpha\}]}^{\alpha \rightarrow \alpha} x \cdot x\right) 42
\end{aligned}
$$

- $\left(\lambda^{\alpha \rightarrow \alpha} x \cdot x\right)[\{$ Bool $/ \alpha\}] 42$

A calculus with explicit type-substitutions

Explicitly pinpoint where sets of type substitutions are applied:

$$
e::=x|e e| \lambda_{\left[\sigma_{j}\right]_{j \in J}}^{\wedge_{i \in I} S_{i} \rightarrow t_{i}} x . e|e \in t ? e: e| e\left[\sigma_{i}\right]_{i \in I}
$$

Some examples:

*

$$
\begin{aligned}
& \left(\lambda^{\alpha \rightarrow \alpha} x . x\right) 42 \\
& \left(\lambda^{\alpha \rightarrow \alpha} x . x\right)[\{\operatorname{Int} / \alpha\}] 42
\end{aligned}
$$$\left(\lambda_{[\{\operatorname{Int} / \alpha\}]}^{\alpha \rightarrow \alpha} \quad x \cdot x\right) 42$

(x) $\left(\lambda^{\alpha \rightarrow \alpha} x \cdot x\right)[\{$ Bool $/ \alpha\}] 42$

* $\left(\lambda^{\text {(Int } \rightarrow \text { Int })} \rightarrow\right.$ Int $\left.y \cdot y 3\right)\left(\lambda^{\alpha \rightarrow \alpha} x \cdot x\right)$$\left(\lambda^{(\operatorname{Int} \rightarrow \operatorname{Int}) \rightarrow \operatorname{Int}} y \cdot y 3\right)\left(\left(\lambda^{\alpha \rightarrow \alpha} x . x\right)[\{\operatorname{Int} / \alpha\}]\right)$

A calculus with explicit type-substitutions

Explicitly pinpoint where sets of type substitutions are applied:

$$
e::=x|e e| \lambda_{\left[\sigma_{j}\right]_{j \in J}}^{\wedge_{i \in I} S_{i} \rightarrow t_{i}} x . e|e \in t ? e: e| e\left[\sigma_{i}\right]_{i \in I}
$$

Some examples:

$\left(\lambda^{\alpha \rightarrow \alpha} x . x\right) 42$$\left(\lambda^{\alpha \rightarrow \alpha} x . x\right)[\{\operatorname{Int} / \alpha\}] 42$$\left(\lambda_{[\{\operatorname{Int} / \alpha\}]}^{\alpha \rightarrow \alpha}{ }^{x \rightarrow x) 42}\right.$
(x) $\left(\lambda^{\alpha \rightarrow \alpha} x . x\right)[\{$ Bool $/ \alpha\}] 42$$\left(\lambda^{(\text {Int } \rightarrow \text { Int })} \rightarrow\right.$ Int $\left.y \cdot y 3\right)\left(\lambda^{\alpha \rightarrow \alpha} x . x\right)$$\left(\lambda^{(\text {Int } \rightarrow \text { Int })} \rightarrow\right.$ Int $\left.y . y 3\right)\left(\left(\lambda^{\alpha \rightarrow \alpha} x . x\right)[\{\operatorname{Int} / \alpha\}]\right)$$\left(\lambda^{((\operatorname{Int} \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })) \rightarrow t} y . e\right)\left(\left(\lambda^{\alpha \rightarrow \alpha} x . x\right)[\{\right.$ Int $/ \alpha\},\{$ Bool $\left./ \alpha\}]\right)$

Reduction semantics

$$
e::=x \mid \text { ee }\left|\lambda_{\left[\sigma_{j}\right]_{j \in J}}^{\wedge_{i \in I} s_{i} \rightarrow t_{i}} x . e\right| e \in t ? e: e \mid e\left[\sigma_{i}\right]_{i \in I}
$$

Reduction semantics

$$
e::=x \mid \text { ee }\left|\lambda_{\left[\sigma_{j}\right]_{j \in J}}^{\wedge_{i \in I} s_{i} \rightarrow t_{i}} x . e\right| e \in t ? e: e \mid e\left[\sigma_{i}\right]_{i \in I}
$$

Relabeling operation $e @\left[\sigma_{j}\right]_{j \in J}$: pushes the type substitutions into the decorations of the λ 's inside e

Reduction semantics

$$
e::=x \mid \text { ee } \mid \lambda_{\left[\sigma_{j}\right]_{j \in J}}^{\wedge_{i \in I S_{i} \rightarrow t_{i}}^{n_{i}} x . e \mid e \in t ? \text { e }: e \mid e\left[\sigma_{i}\right]_{i \in I}}
$$

Relabeling operation $e @\left[\sigma_{j}\right]_{j \in J}: \quad$ [Pushes $\sigma^{\prime} s$ down into λ 's]

$$
\begin{aligned}
x @\left[\sigma_{j}\right]_{j \in J} & \stackrel{\text { def }}{=} x \\
\left(\lambda_{\left[\sigma_{k}\right]_{k \in K}}^{\wedge_{i \in 1} t_{i} \rightarrow s_{i}} x . e\right) @\left[\sigma_{j}\right]_{j \in J} & \stackrel{\text { def }}{=} \lambda_{\left[\sigma_{k}\right]_{k \in K} i_{k} \rightarrow\left[\sigma_{j}\right]_{j \in J}}^{\wedge_{j \in J}} x . e \\
\left(e_{1} e_{2}\right) @\left[\sigma_{j}\right]_{j \in J} & \stackrel{\text { def }}{=}\left(e_{1} @\left[\sigma_{j}\right]_{j \in J}\right)\left(e_{2} @\left[\sigma_{j}\right]_{j \in J}\right) \\
\left(e \in t ? e_{1}: e_{2}\right) @\left[\sigma_{j}\right]_{j \in J} & \stackrel{\text { def }}{=} e @\left[\sigma_{j}\right]_{j \in J \in t} \in e_{1} @\left[\sigma_{j}\right]_{j \in J}: e_{2} @\left[\sigma_{j}\right]_{j \in J} \\
\left(e\left[\sigma_{k}\right]_{k \in K}\right) @\left[\sigma_{j}\right]_{j \in J} & \stackrel{\text { def }}{=} e @\left(\left[\sigma_{k}\right]_{k \in K} \circ\left[\sigma_{j}\right]_{j \in J}\right)
\end{aligned}
$$

Reduction semantics

$$
e::=x \mid \text { ee } \mid \lambda_{\left[\sigma_{j}\right]_{j \in J}}^{\wedge_{i \in I S_{i} \rightarrow t_{i}}^{n_{i}} x . e \mid e \in t ? \text { e }: e \mid e\left[\sigma_{i}\right]_{i \in I}}
$$

Relabeling operation $e @\left[\sigma_{j}\right]_{j \in J}: \quad$ [Pushes σ 's down into λ 's]

$$
\begin{aligned}
& x @\left[\sigma_{j}\right]_{j \in J} \stackrel{\text { def }}{=} \\
& \left(\lambda_{\left[\sigma_{k}\right]_{k \in K}}^{\wedge_{i \in I} t_{i} \rightarrow s_{i}} x . e\right) @\left[\sigma_{j}\right]_{j \in J} \quad \stackrel{\text { def }}{=} \quad \lambda_{\left[\sigma_{k}\right]_{k \in K} \circ\left[\sigma_{j}\right]_{j \in J}}^{\wedge_{i \in I} t_{i} \rightarrow s_{i}} \text { X.e } \\
& \left(e_{1} e_{2}\right) \oslash\left[\sigma_{j}\right]_{j \in J} \stackrel{\text { def }}{=}\left(e_{1} \oslash\left[\sigma_{j}\right]_{j \in J}\right)\left(e_{2} \oslash\left[\sigma_{j}\right]_{j \in J}\right) \\
& \left(e \in t ? e_{1}: e_{2}\right) @\left[\sigma_{j}\right]_{j \in J} \stackrel{\text { def }}{=} e @\left[\sigma_{j}\right]_{j \in J} \in t ? e_{1} @\left[\sigma_{j}\right]_{j \in J}: e_{2} @\left[\sigma_{j}\right]_{j \in J} \\
& \left(e\left[\sigma_{k}\right]_{k \in K}\right) @\left[\sigma_{j}\right]_{j \in J} \stackrel{\text { def }}{=} e @\left(\left[\sigma_{k}\right]_{k \in K} \circ\left[\sigma_{j}\right]_{j \in J}\right)
\end{aligned}
$$

Reduction semantics

$$
e::=x \mid \text { ee }\left|\lambda_{\left[\sigma_{j}\right]_{j \in J}}^{\wedge_{i \in I S_{i} \rightarrow t_{i}}} x . e\right| e \in t ? e: e \mid e\left[\sigma_{i}\right]_{i \in I}
$$

Relabeling operation $e @\left[\sigma_{j}\right]_{j \in J}: \quad$ [Pushes σ 's down into λ 's]

$$
\begin{aligned}
& \left.\left(e_{1} e_{2}\right) @\left[\sigma_{j}\right]\right] \in J \stackrel{\text { def }}{=}\left(e_{1} @\left[\sigma_{j} \boldsymbol{N} J\right)\left(e_{2} @\left[\sigma_{j}\right]_{j \in J}\right)\right. \\
& \left(e \in t ? e_{1}: e_{2}\right) @\left[\sigma_{j}\right]_{j} \xlongequal{=} e @[\sigma \cdot]_{j \in J \in t ?} e_{1} @\left[\sigma_{j}\right]_{j \in J}: e_{2} @\left[\sigma_{j}\right]_{j \in J} \\
& \left.\left(e\left[\sigma_{k}\right]_{k \in K}\right) @\left[\sigma_{j}\right]_{j \in J} \xlongequal{=} \text { eब }\left[\sigma_{k}\right]_{k \in K} \circ\left[\sigma_{j}\right]_{j \in J}\right)
\end{aligned}
$$

Reduction semantics

$$
e::=x \mid \text { ee } \mid \lambda_{\left[\sigma_{j}\right]_{j \in J}}^{\wedge_{i \in I S_{i} \rightarrow t_{i}}^{n_{i}} x . e \mid e \in t ? \text { e }: e \mid e\left[\sigma_{i}\right]_{i \in I}}
$$

Relabeling operation $e @\left[\sigma_{j}\right]_{j \in J}: \quad$ [Pushes σ 's down into λ 's]

$$
\begin{aligned}
& x @\left[\sigma_{j}\right]_{j \in J} \stackrel{\text { def }}{=} \\
& \left(\lambda_{\left[\sigma_{k}\right]_{k \in K}}^{\wedge_{i \in I} t_{i} \rightarrow s_{i}} x . e\right) @\left[\sigma_{j}\right]_{j \in J} \quad \stackrel{\text { def }}{=} \quad \lambda_{\left[\sigma_{k}\right]_{k \in K} \circ\left[\sigma_{j}\right]_{j \in J}}^{\wedge_{i \in I} t_{i} \rightarrow s_{i}} \text { X.e } \\
& \left(e_{1} e_{2}\right) \oslash\left[\sigma_{j}\right]_{j \in J} \stackrel{\text { def }}{=}\left(e_{1} \oslash\left[\sigma_{j}\right]_{j \in J}\right)\left(e_{2} \oslash\left[\sigma_{j}\right]_{j \in J}\right) \\
& \left(e \in t ? e_{1}: e_{2}\right) @\left[\sigma_{j}\right]_{j \in J} \stackrel{\text { def }}{=} e @\left[\sigma_{j}\right]_{j \in J} \in t ? e_{1} @\left[\sigma_{j}\right]_{j \in J}: e_{2} @\left[\sigma_{j}\right]_{j \in J} \\
& \left(e\left[\sigma_{k}\right]_{k \in K}\right) @\left[\sigma_{j}\right]_{j \in J} \stackrel{\text { def }}{=} e @\left(\left[\sigma_{k}\right]_{k \in K} \circ\left[\sigma_{j}\right]_{j \in J}\right)
\end{aligned}
$$

Reduction semantics

$$
e::=x \mid \text { ee }\left|\lambda_{\left[\sigma_{j}\right]_{j \in J}}^{\wedge_{i \in I} S_{i} \rightarrow t_{i}} x . e\right| e \in t ? e: e \mid e\left[\sigma_{i}\right]_{i \in I}
$$

Relabeling operation $e @\left[\sigma_{j}\right]_{j \in J}: \quad$ [Pushes σ^{\prime} 's down into λ 's]

$$
\begin{aligned}
& x @\left[\sigma_{j}\right]_{j \in J} \stackrel{\text { def }}{=} \\
& \left(\lambda_{\left[\sigma_{k}\right]_{k \in K}}^{\wedge_{i \in I} t_{i} \rightarrow s_{i}} x . e\right) @\left[\sigma_{j}\right]_{j \in J} \quad \stackrel{\text { def }}{=} \quad \lambda_{\left[\sigma_{k}\right]_{k \in K} \circ\left[\sigma_{j}\right]_{j \in J}}^{\wedge_{i \in I} t_{i} \rightarrow s_{i}} \text { X.e } \\
& \left(e_{1} e_{2}\right) @\left[\sigma_{j}\right]_{j \in J} \stackrel{\text { def }}{=}\left(e_{1} \oslash\left[\sigma_{j}\right]_{j \in J}\right)\left(e_{2} @\left[\sigma_{j}\right]_{j \in J}\right) \\
& \left(e \in t ? e_{1}: e_{2}\right) @\left[\sigma_{j}\right]_{j \in J} \stackrel{\text { def }}{=} e @\left[\sigma_{j}\right]_{j \in J} \in t ? e_{1} @\left[\sigma_{j}\right]_{j \in J}: e_{2} @\left[\sigma_{j}\right]_{j \in J} \\
& \left(e\left[\sigma_{k}\right]_{k \in K}\right) @\left[\sigma_{j}\right]_{j \in J} \stackrel{\text { def }}{=} e @\left(\left[\sigma_{k}\right]_{k \in K} \circ\left[\sigma_{j}\right]_{j \in J}\right)
\end{aligned}
$$

Notions of reduction:

$$
\begin{aligned}
e\left[\sigma_{j}\right]_{j \in J} & \leadsto e @\left[\sigma_{j}\right]_{j \in J} \\
\left(\lambda_{\left[\sigma_{j}\right]_{j \in J}}^{\wedge \wedge_{j} t_{i} \rightarrow s_{i}}\right. \text { x.e)v } & \leadsto\left(e @\left[\sigma_{j}\right]_{j \in P}\right)\{v / x\} \quad P=\left\{j \in J \mid \exists i \in I, \vdash v: t_{i} \sigma_{j}\right\} \\
v \in t ? e_{1}: e_{2} & \leadsto \begin{cases}e_{1} & \text { if } \vdash v: t \\
e_{2} & \text { otherwise }\end{cases}
\end{aligned}
$$

Reduction semantics

$$
e::=x \mid \text { ee } \mid \lambda_{\left[\sigma_{j}\right]_{j \in J}}^{\wedge_{i \in I S_{i} \rightarrow t_{i}}} \text { x.e } \mid e \in t ? \text { e : e } \mid e\left[\sigma_{i}\right]_{i \in I}
$$

Relabeling operation $e @\left[\sigma_{j}\right]_{j \in J}: \quad$ [Pushes σ 's down into λ 's]

$$
\begin{aligned}
& x @\left[\sigma_{j}\right]_{j \in J} \stackrel{\text { def }}{=} x \\
& \left(\lambda_{\left[\sigma_{k}\right]_{k \in K}}^{\wedge_{i \in I} t_{i} \rightarrow s_{i}} x . e\right) @\left[\sigma_{j}\right]_{j \in J} \quad \stackrel{\text { def }}{=} \quad \lambda_{\left[\sigma_{k}\right]_{k \in K} \circ\left[\sigma_{j}\right]_{j \in J}}^{\wedge_{i \in I} t_{i} \rightarrow s_{i}} \text { x.e } \\
& \left(e_{1} e_{2}\right) \oslash\left[\sigma_{j}\right]_{j \in J} \stackrel{\text { def }}{=}\left(e_{1} \oslash\left[\sigma_{j}\right]_{j \in J}\right)\left(e_{2} @\left[\sigma_{j}\right]_{j \in J}\right) \\
& \left(e \in t ? e_{1}: e_{2}\right) @\left[\sigma_{j}\right]_{j \in J} \stackrel{\text { def }}{=} e @\left[\sigma_{j}\right]_{j \in J} \in t ? e_{1} @\left[\sigma_{j}\right]_{j \in J}: e_{2} @\left[\sigma_{j}\right]_{j \in J} \\
& \left(e\left[\sigma_{k}\right]_{k \in K}\right) @\left[\sigma_{j}\right]_{j \in J} \stackrel{\text { def }}{=} e \circledast\left(\left[\sigma_{k}\right]_{k \in K} \circ\left[\sigma_{j}\right]_{j \in J}\right)
\end{aligned}
$$

Notions of reduction:

$$
\begin{aligned}
& e\left[\sigma_{j}\right]_{j \in J} \leadsto e @\left[\sigma_{j}\right]_{j \in J} \\
&\left(\lambda_{\left[\sigma_{j}\right]_{j \in J}}^{\wedge} \wedge_{i \in I} t_{i} \rightarrow s_{i}\right. \\
&v \in e) v \leadsto\left(e @\left[\sigma_{j}\right]_{j \in P}\right)\{v / x\} \quad P=\left\{j \in J \mid \exists i \in I, \vdash v: t_{i} \sigma_{j}\right\} \\
& v \in t ? e_{1}: e_{2} \leadsto \begin{cases}e_{1} & \text { if } \vdash v: t \\
e_{2} & \text { otherwise }\end{cases}
\end{aligned}
$$

Reduction semantics

$$
e::=x \mid \text { ee }\left|\lambda_{\left[\sigma_{j}\right]_{j \in J}}^{\wedge_{i \in I s_{i} \rightarrow t_{i}}} x . e\right| e \in t ? e: e \mid e\left[\sigma_{i}\right]_{i \in I}
$$

Relabeling operation $e @\left[\sigma_{j}\right]_{j \in J}: \quad$ [Pushes σ 's down into λ 's]

$$
\begin{array}{rlrl}
e\left[\sigma_{j}\right]_{j \in J} & \leadsto e @\left[\sigma_{j}\right]_{j \in J} & \\
\left(\lambda_{\left[\sigma_{j}\right]_{j \in J}}^{\wedge \wedge_{i \in I} t_{i} \rightarrow s_{i}} x . e\right) v & \leadsto\left(e @\left[\sigma_{j}\right]_{j \in P}\right)\{v / x\} \quad P=\left\{j \in J \mid \exists i \in I, \vdash v: t_{i} \sigma_{j}\right\} \\
v \in t ? e_{1}: e_{2} & \leadsto \begin{cases}e_{1} & \text { if } \vdash v: t \\
e_{2} & \text { otherwise }\end{cases}
\end{array}
$$

Example

$$
\left(\lambda^{\alpha \rightarrow \alpha} x \cdot\left(\lambda^{\alpha \rightarrow \alpha} y \cdot x\right) x\right)
$$

Example

$$
\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })} z \cdot\left(\lambda^{\alpha \rightarrow \alpha} x \cdot\left(\lambda^{\alpha \rightarrow \alpha} y . x\right) x\right) z
$$

Example

$$
\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })} z .\left(\lambda^{\alpha \rightarrow \alpha} x .\left(\lambda^{\alpha \rightarrow \alpha} y . x\right) x\right)[\{\text { Int } / \alpha\},\{\text { Bool/ } \alpha\}] z
$$

Example

$\left(\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })} z .\left(\lambda^{\alpha \rightarrow \alpha} x \cdot\left(\lambda^{\alpha \rightarrow \alpha} y \cdot x\right) x\right)[\{\right.$ Int $/ \alpha\},\{$ Bool $\left./ \alpha\}] z\right) 42$

Example

$$
\begin{gathered}
\left(\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })} z \cdot\left(\lambda^{\alpha \rightarrow \alpha} x \cdot\left(\lambda^{\alpha \rightarrow \alpha} y \cdot x\right) x\right)[\{\text { Int } / \alpha\},\{\text { BooI } / \alpha\}] z\right) 42 \\
\\
\sim\left(\lambda^{\alpha \rightarrow \alpha} x \cdot\left(\lambda^{\alpha \rightarrow \alpha} y \cdot x\right) x\right)[\{\text { Int } / \alpha\},\{\text { BooI } / \alpha\}] 42
\end{gathered}
$$

Example

$$
\begin{aligned}
\left(\lambda^{(\text {Int }} \rightarrow \text { Int }\right) & \wedge(\text { Bool } \rightarrow \text { Bool }) \\
z \cdot & \left.\left(\lambda^{\alpha \rightarrow \alpha} x \cdot\left(\lambda^{\alpha \rightarrow \alpha} y \cdot x\right) x\right)[\{\text { Int } / \alpha\},\{\text { Bool/ } \alpha\}] z\right) 42 \\
& \leadsto\left(\lambda^{\alpha \rightarrow \alpha} x \cdot\left(\lambda^{\alpha \rightarrow \alpha} y . x\right) x\right)[\{\text { Int } / \alpha\},\{\text { Bool } / \alpha\}] 42 \\
& \leadsto\left(\lambda_{[\{\text {Int } / \alpha\},\{\text { Bool } / \alpha\}]}^{\left.\alpha \rightarrow \alpha \cdot\left(\lambda^{\alpha \rightarrow \alpha} y . x\right) x\right) 42}\right.
\end{aligned}
$$

Example

$$
\begin{aligned}
&\left(\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })} z \cdot\left(\lambda^{\alpha \rightarrow \alpha} x \cdot\left(\lambda^{\alpha \rightarrow \alpha} y \cdot x\right) x\right)[\{\operatorname{Int} / \alpha\},\{\mathrm{BooL} / \alpha\}] z\right) 42 \\
& \leadsto\left(\lambda^{\alpha \rightarrow \alpha} x \cdot\left(\lambda^{\alpha \rightarrow \alpha} y \cdot x\right) x\right)[\{\operatorname{Int} / \alpha\},\{\mathrm{BooL} / \alpha\}] 42 \\
& \leadsto\left(\lambda_{[\{\operatorname{Int} / \alpha\},\{\mathrm{Bool} / \alpha\}\}}^{\alpha \cdot} \cdot\left(\lambda^{\alpha \rightarrow \alpha} y \cdot x\right) x\right) 42 \\
& \leadsto\left(\lambda^{\mathrm{Int} \rightarrow \operatorname{Int}} y \cdot 42\right) 42
\end{aligned}
$$

Example

$$
\left(\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })} z \cdot\left(\lambda^{\alpha \rightarrow \alpha} x \cdot\left(\lambda^{\alpha \rightarrow \alpha} y \cdot x\right) x\right)[\{\text { Int } / \alpha\},\{\text { Bool/ } \alpha\}] z\right) 42
$$

$$
\leadsto \quad\left(\lambda^{\alpha \rightarrow \alpha} x \cdot\left(\lambda^{\alpha \rightarrow \alpha} y \cdot x\right) x\right)[\{\operatorname{Int} / \alpha\},\{\mathrm{Bool} / \alpha\}] 42
$$

$$
\leadsto\left(\lambda_{[\{\text {Int } / \alpha\},\{\text { Bool } / \alpha\}]}^{\alpha \rightarrow \alpha} x \cdot\left(\lambda^{\alpha \rightarrow \alpha} y \cdot x\right) x\right) 42
$$

$$
\leadsto\left(\frac{(\text { Int } \rightarrow \text { Int }}{y} .42\right) 42
$$

no Bool here

Example

$$
\begin{aligned}
&\left(\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(\text { Bool } \rightarrow \text { Bool })} z \cdot\left(\lambda^{\alpha \rightarrow \alpha} x \cdot\left(\lambda^{\alpha \rightarrow \alpha} y \cdot x\right) x\right)[\{\operatorname{Int} / \alpha\},\{\mathrm{BooL} / \alpha\}] z\right) 42 \\
& \leadsto\left(\lambda^{\alpha \rightarrow \alpha} x \cdot\left(\lambda^{\alpha \rightarrow \alpha} y \cdot x\right) x\right)[\{\operatorname{Int} / \alpha\},\{\mathrm{BooL} / \alpha\}] 42 \\
& \leadsto\left(\lambda_{[\{\operatorname{Int} / \alpha\},\{\mathrm{Bool} / \alpha\}\}}^{\alpha \cdot} \cdot\left(\lambda^{\alpha \rightarrow \alpha} y \cdot x\right) x\right) 42 \\
& \leadsto\left(\lambda^{\mathrm{Int} \rightarrow \operatorname{Int}} y \cdot 42\right) 42
\end{aligned}
$$

Example

$$
\begin{aligned}
& \left(\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(B o o l \rightarrow B o o l)} z .\left(\lambda^{\alpha \rightarrow \alpha} x \cdot\left(\lambda^{\alpha \rightarrow \alpha} y \cdot x\right) x\right)[\{\text { Int } / \alpha\},\{\mathrm{BooL} / \alpha\}] z\right) 42 \\
& \leadsto\left(\lambda^{\alpha \rightarrow \alpha} x \cdot\left(\lambda^{\alpha \rightarrow \alpha} y \cdot x\right) x\right)[\{\text { Int } / \alpha\},\{\text { Bool } / \alpha\}] 42
\end{aligned}
$$

$$
\begin{aligned}
& \leadsto\left(\lambda^{\text {Int } \rightarrow \text { Int }} y .42\right) 42 \equiv\left(\left(\left(\lambda^{\alpha \rightarrow \alpha} y \cdot x\right) x\right) @[\{\operatorname{Int} / \alpha\}]\right)\{42 / x\}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \left(\lambda^{(\text {Int } \rightarrow \text { Int }) \wedge(B o o l \rightarrow B o o l)} z .\left(\lambda^{\alpha \rightarrow \alpha} x \cdot\left(\lambda^{\alpha \rightarrow \alpha} y \cdot x\right) x\right)[\{\text { Int } / \alpha\},\{\mathrm{BooL} / \alpha\}] z\right) 42 \\
& \leadsto\left(\lambda^{\alpha \rightarrow \alpha} x \cdot\left(\lambda^{\alpha \rightarrow \alpha} y \cdot x\right) x\right)[\{\text { Int } / \alpha\},\{\operatorname{BooL} / \alpha\}] 42
\end{aligned}
$$

$$
\begin{aligned}
& \leadsto\left(\lambda^{\text {Int } \rightarrow \text { Int }} y .42\right) 42 \equiv\left(\left(\left(\lambda^{\alpha \rightarrow \alpha} y \cdot x\right) x\right) @[\{\operatorname{Int} / \alpha\}]\right)\{42 / x\} \\
& \leadsto 42
\end{aligned}
$$

$$
\begin{aligned}
& \text { (subsumption) } \\
& \Gamma \vdash e: t_{1} \quad t_{1} \leq t_{2} \\
& \Gamma \vdash e: t_{2} \\
& \text { (inst) } \\
& \Gamma \vdash e: t \quad \sigma_{j} \# \Gamma \\
& \Gamma \vdash e\left[\sigma_{j}\right]_{j \in J}: \bigwedge_{j \in J} t \sigma_{j} \\
& \text { (app/) } \\
& \frac{\Gamma \vdash e_{1}: t_{1} \rightarrow t_{2} \quad \Gamma \vdash e_{2}: t_{1}}{\Gamma \vdash e_{1} e_{2}: t_{2}} \\
& \text { (astr) } \\
& \frac{\Gamma, x: t_{i} \sigma_{j} \vdash e @\left[\sigma_{j}\right]: s_{i} \sigma_{j}}{\Gamma \vdash \lambda_{\left[\sigma_{j}\right]}^{\wedge, I_{j \in J}} t_{i} \rightarrow s_{i} \text { xe }: \bigwedge_{i \in I, j \in J} t_{i} \sigma_{j} \rightarrow s_{i} \sigma_{j}} \quad \begin{array}{c}
i \in I \\
j \in J
\end{array}
\end{aligned}
$$

[plus the rules for type-case and variables]

$$
\begin{aligned}
& \frac{\text { (subsumption) }}{\begin{array}{l}
\Gamma \vdash e: t_{1} \quad t_{1} \leq t_{2} \\
\Gamma \vdash e: t_{2}
\end{array} \frac{\Gamma \vdash e: t}{\Gamma \vdash e\left[\sigma_{j}\right]_{j \in J}: \bigwedge_{j} \sharp \Gamma} \sigma_{j \in J}} \\
& \frac{(\text { app })}{\Gamma \vdash \sigma_{1}: t_{1} \rightarrow t_{2} \quad \Gamma \vdash e_{2}: t_{1}} \\
& \Gamma \vdash e_{1} e_{2}: t_{2} \\
& \frac{(\text { astr })}{\Gamma \vdash \lambda_{\left.\left[\sigma_{j}\right]\right]_{j \in J}}^{\wedge_{i \in I} t_{i} \rightarrow s_{i}} \text { xe } \bigwedge_{i \in I, j \in J} t_{i} \sigma_{j} \rightarrow s_{i} \sigma_{j}} \\
& i \in I \\
& j \in J
\end{aligned}
$$

[plus the rules for type-case and variables]

$$
\begin{aligned}
& \text { (subsumption) } \\
& \Gamma \vdash e: t_{1} \quad t_{1} \leq t_{2} \\
& \Gamma \vdash e: t_{2} \\
& \text { (inst) } \\
& \Gamma \vdash e: t \quad \sigma_{j} \# \Gamma \\
& \Gamma \vdash e\left[\sigma_{j}\right]_{j \in J}: \bigwedge_{j \in J} t \sigma_{j} \\
& \text { (app/) } \\
& \frac{\Gamma \vdash e_{1}: t_{1} \rightarrow t_{2} \quad \Gamma \vdash e_{2}: t_{1}}{\Gamma \vdash e_{1} e_{2}: t_{2}} \\
& \text { (astr) } \\
& \Gamma, x: t_{i} \vdash e \quad: s_{i} \quad i \in I \\
& \Gamma \vdash \lambda^{\wedge_{i \in I} t_{i} \rightarrow s_{i}} x . e: \bigwedge_{i \in I} t_{i} \rightarrow s_{i}
\end{aligned}
$$

[plus the rules for type-case and variables]

$$
\begin{aligned}
& \text { (subsumption) } \\
& \Gamma \vdash e: t_{1} \quad t_{1} \leq t_{2} \\
& \Gamma \vdash e: t_{2} \\
& \text { (inst) } \\
& \Gamma \vdash e: t \quad \sigma_{j} \sharp \Gamma \\
& \Gamma \vdash e\left[\sigma_{j}\right]_{j \in J}: \bigwedge_{j \in J} t \sigma_{j}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (astr) } \\
& \frac{\Gamma, x: t_{i} \sigma_{j} \vdash e @\left[\sigma_{j}\right]: s_{i} \sigma_{j}}{\Gamma \vdash \lambda_{\left[\sigma_{j}\right]}^{\wedge, I_{j \in J}} t_{i} \rightarrow s_{i} \text { xe }: \bigwedge_{i \in I, j \in J} t_{i} \sigma_{j} \rightarrow s_{i} \sigma_{j}} \quad \begin{array}{c}
i \in I \\
j \in J
\end{array}
\end{aligned}
$$

[plus the rules for type-case and variables]

Properties

Theorem (Subject Reduction)

For every term e and type t, if $\Gamma \vdash e: t$ and $e \leadsto e^{\prime}$, then $\Gamma \vdash e^{\prime}: t$.

Theorem (Progress)

Let e be a well-typed closed term. If e is not a value, then there exists a term e^{\prime} such that $e \leadsto e^{\prime}$.

Properties

Theorem (Subject Reduction)

For every term e and type t, if $\Gamma \vdash e: t$ and $e \leadsto e^{\prime}$, then $\Gamma \vdash e^{\prime}: t$.

Theorem (Progress)

Let e be a well-typed closed term. If e is not a value, then there exists a term e^{\prime} such that $e \leadsto e^{\prime}$.

Theorem

Let $\vdash_{B C D}$ be Barendregt, Coppo, and Dezani, typing, and $\lceil e\rceil$ the type erasure of e. If $\vdash_{B C D} a: t$, then $\exists e$ s.t. $\vdash e: t$ and $\lceil e\rceil=a$.

Properties

Theorem (Subject Reduction)

For every term e and type t, if $\Gamma \vdash e: t$ and $e \leadsto e^{\prime}$, then $\Gamma \vdash e^{\prime}: t$.

Theorem (Progress)

Let e be a well-typed closed term. If e is not a value, then there exists a term e^{\prime} such that $e \leadsto e^{\prime}$.

Theorem

Let $\vdash_{B C D}$ be Barendregt, Coppo, and Dezani, typing, and $\lceil e\rceil$ the type erasure of e. If $\vdash_{B C D} a: t$, then $\exists e$ s.t. $\vdash e: t$ and $\lceil e\rceil=a$.

Note that

$$
e \quad::=x|e e| \lambda_{\left[\sigma_{j}\right]_{j \in J}}^{\wedge_{i \in I} S_{i} \rightarrow t_{i}} x . e|e \in t ? e: e| e\left[\sigma_{i}\right]_{i \in I}
$$

Properties

Theorem (Subject Reduction)

For every term e and type t, if $\Gamma \vdash e: t$ and $e \leadsto e^{\prime}$, then $\Gamma \vdash e^{\prime}: t$.

Theorem (Progress)

Let e be a well-typed closed term. If e is not a value, then there exists a term e^{\prime} such that $e \leadsto e^{\prime}$.

Theorem

Let $\vdash_{B C D}$ be Barendregt, Coppo, and Dezani, typing, and $\lceil e\rceil$ the type erasure of e. If $\vdash_{B C D} a: t$, then $\exists e$ s.t. $\vdash e: t$ and $\lceil e\rceil=a$.

Note that

$$
e \quad::=x|e e| \lambda_{\left[\sigma_{j}\right]_{j \in J}}^{\wedge_{i \in I} S_{i} \rightarrow t_{i}} x . e|e \in t ? e: e| e\left[\sigma_{i}\right]_{i \in I}
$$

Properties

Theorem (Subject Reduction)

For every term e and type t, if $\Gamma \vdash e: t$ and $e \leadsto e^{\prime}$, then $\Gamma \vdash e^{\prime}: t$.

Theorem (Progress)

Let e be a well-typed closed term. If e is not a value, then there exists a term e^{\prime} such that $e \leadsto e^{\prime}$.

Theorem

Let $\vdash_{B C D}$ be Barendregt, Coppo, and Dezani, typing, and $\lceil e\rceil$ the type erasure of e. If $\vdash_{B C D} a: t$, then $\exists e$ s.t. $\vdash e: t$ and $\lceil e\rceil=a$.

Note that

$$
e::=x|e e| \lambda_{\left[\sigma_{j}\right]_{j \in J}}^{\wedge_{\in} s_{i} \rightarrow t_{i}} x . e \mid e \in t ? e: e \text { |extylel }
$$

Properties

Theorem (Subject Reduction)

For every term e and type t, if $\Gamma \vdash e: t$ and $e \leadsto e^{\prime}$, then $\Gamma \vdash e^{\prime}: t$.

Theorem (Progress)

Let e be a well-typed closed term. If e is not a value, then there exists a term e^{\prime} such that $e \leadsto e^{\prime}$.

Theorem

Let $\vdash_{B C D}$ be Barendregt, Coppo, and Dezani, typing, and $\lceil e\rceil$ the type erasure of e. If $\vdash_{B C D} a: t$, then $\exists e$ s.t. $\vdash e: t$ and $\lceil e\rceil=a$.

Note that
satisfies the above theorem and is closed by reduction.

Properties

Theorem (Subject Reduction)

For every term e and type t, if $\Gamma \vdash e: t$ and $e \leadsto e^{\prime}$, then $\Gamma \vdash e^{\prime}: t$.

Theorem (Progress)

Let e be a well-typed closed term. If e is not a value, then there exists a term e^{\prime} such that $e \leadsto e^{\prime}$.

Theorem

Let $\vdash_{B C D}$ be Barendregt, Coppo, and Dezani, typing, and $\lceil e\rceil$ the type erasure of e. If $\vdash_{B C D} a: t$, then $\exists e$ s.t. $\vdash e: t$ and $\lceil e\rceil=a$.

Note that
satisfies the above theorem and is closed by reduction, too.

Properties

Theorem (Subject Reduction)

For every term e and type t, if $\Gamma \vdash e: t$ and $e \leadsto e^{\prime}$, then $\Gamma \vdash e^{\prime}: t$.

Theorem (Progress)

Let e be a well-typed closed term. If e is not a value, then there exists a term e^{\prime} such that $e \leadsto e^{\prime}$.

Theorem

Let $\vdash_{B C D}$ be Barendregt, Coppo, and Dezani, typing, and $\lceil e\rceil$ the type erasure of e. If $\vdash_{B C D} a: t$, then $\exists e$ s.t. $\vdash e: t$ and $\lceil e\rceil=a$.

Note that

$$
e::=x|e e| \lambda_{\left.\left[\sigma_{j}\right]\right]_{j \in J}}^{\wedge_{i \in I}, s_{i} \rightarrow t_{i}} x . e|e \in t ? e: e| e\left[\sigma_{i}\right]_{i \in I}
$$

The first n terms ($n=3,4,5$) form an explicitly-typed λ-calculus with intersection types subsuming BCD.

Properties

The definitions we gave:

$$
\begin{aligned}
\text { even }= & \lambda^{(\text {Int } \rightarrow \text { Bool }) \wedge(\alpha \backslash \operatorname{Int} \rightarrow \alpha \backslash \text { Int })} x . x \in \operatorname{Int} ?(x \bmod 2)=0: x \\
\operatorname{map}= & \mu m^{(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta]} f . \\
& \lambda^{[\alpha] \rightarrow[\beta]} \ell . \ell \in \operatorname{nil} ? \operatorname{nil}:\left(f\left(\pi_{1} \ell\right), m f\left(\pi_{2} \ell\right)\right)
\end{aligned}
$$

are well typed.

Properties

The definitions we gave:

$$
\begin{aligned}
\text { even }= & \lambda^{(\text {Int } \rightarrow \text { Bool }) \wedge(\alpha \backslash \text { Int } \rightarrow \alpha \backslash \text { Int })} x \\
\text { map }= & \mu m^{(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta]} f . \\
& \quad \lambda^{[\alpha] \rightarrow[\beta]} \ell . \ell \in \operatorname{Int} ?(x \bmod 2)=0: x \\
& \text { nil }:\left(f\left(\pi_{1} \ell\right), m f\left(\pi_{2} \ell\right)\right)
\end{aligned}
$$

are well typed.

A yardstick for the language

- Can define both map and even
(Can check the types specified in the signatureCan deduce the type of the partial application map even

Inference of explicit type-substitutions

Two problems:

(1) Local type-substitution inference: Given a term of

$$
e::=x|e e| \lambda^{\wedge_{i \in I} s_{i} \rightarrow t_{i} x . e \mid e \in t ? e: e}
$$

a sound \& complete algorithm that, whenever possible, inserts sets of type-substitutions that make it a well-typed term of

$$
e::=x|e e| \lambda_{[]}^{\wedge_{i} \in s_{i} \rightarrow t_{i}} x . e|e \in t ? e: e| e\left[\sigma_{j}\right]_{j \in J}
$$

Two problems:

(1) Local type-substitution inference: Given a term of

$$
e::=x|e e| \lambda^{\wedge_{i \in I} s_{i} \rightarrow t_{i} x . e \mid e \in t ? e: e}
$$

a sound \& complete algorithm that, whenever possible, inserts sets of type-substitutions that make it a well-typed term of

$$
e::=x|e e| \lambda_{[]}^{\wedge_{i} \in s_{i} \rightarrow t_{i}} x . e|e \in t ? e: e| e\left[\sigma_{j}\right]_{j \in J}
$$

(and, yes, the type inferred for map even is as expected)

Two problems:

(1) Local type-substitution inference: Given a term of

$$
e::=x \mid \text { ee }\left|\lambda^{\wedge} \wedge_{i \in I} s_{i} \rightarrow t_{i} x . e\right| e \in t ? e: e
$$

a sound \& complete algorithm that, whenever possible, inserts sets of type-substitutions that make it a well-typed term of

$$
e::=x|e e| \lambda_{[]}^{\wedge_{i \in} \mid s_{i} \rightarrow t_{i}} x . e|e \in t ? e: e| e\left[\sigma_{j}\right]_{j \in J}
$$

(and, yes, the type inferred for map even is as expected)
(2) Type recostruction: Given a term

$$
\lambda x . e
$$

find, if possible, a set of type-substitutions $\left[\sigma_{j}\right]_{j \in J}$ such that

$$
\lambda_{\left[\sigma_{j}\right]_{j \in J}^{\alpha}}^{\alpha \rightarrow} x . e
$$

is well typed

Local Type-Substitution Inference

Given a term of

$$
e::=x|e e| \lambda^{\wedge} \wedge_{i \in I} s_{i} \rightarrow t_{i} x . e \mid e \in t ? e: e
$$

Infer whether it is possible to insert sets of type-substitutions in it to make it a well-typed term of

$$
e::=x \mid \text { ee }\left|\lambda_{[]}^{\wedge_{i \in I} s_{i} \rightarrow t_{i}} x . e\right| e \in t ? e: e \mid e\left[\sigma_{j}\right]_{j \in J}
$$

Local Type-Substitution Inference

Given a term of

$$
e::=x|e e| \lambda^{\wedge_{i \in I} s_{i} \rightarrow t_{i}} x . e \mid e \in t ? e: e
$$

Infer whether it is possible to insert sets of type-substitutions in it to make it a well-typed term of

$$
e::=x \mid \text { ee }\left|\lambda_{[]}^{\wedge_{i \in I} s_{i} \rightarrow t_{i}} x . e\right| e \in t ? e: e \mid e\left[\sigma_{j}\right]_{j \in J}
$$

No inference for decorations of λ 's

Local Type-Substitution Inference

Given a term of

$$
e::=x|e e| \lambda^{\wedge_{i \in I} s_{i} \rightarrow t_{i}} x . e \mid e \in t ? e: e
$$

Infer whether it is possible to insert sets of type-substitutions in it to make it a well-typed term of

$$
e::=x \mid \text { ee }\left|\lambda_{[]}^{\wedge_{i \in I} s_{i} \rightarrow t_{i}} x . e\right| e \in t ? e: e \mid e\left[\sigma_{j}\right]_{j \in J}
$$

No inference for decorations of λ 's

The reason is purely practical:

- $\lambda^{\alpha \rightarrow \alpha} x .3$ must return a static type error

Local Type-Substitution Inference

Given a term of

$$
e::=x|e e| \lambda^{\wedge_{i \in I} s_{i} \rightarrow t_{i}} x . e \mid e \in t ? e: e
$$

Infer whether it is possible to insert sets of type-substitutions in it to make it a well-typed term of

$$
e::=x \mid \text { ee }\left|\lambda_{[]}^{\wedge_{i \in I} s_{i} \rightarrow t_{i}} x . e\right| e \in t ? e: e \mid e\left[\sigma_{j}\right]_{j \in J}
$$

No inference for

 decorations of λ 'sThe reason is purely practical:

- $\lambda^{\alpha \rightarrow \alpha} x .3$ must return a static type error
- If we infer decorations, then it can be typed: $\lambda_{\{\operatorname{Int} / \alpha\}}^{\alpha \rightarrow \alpha} x .3$

1. In the type system: [with explicit type-subst.]
(Appl)

$$
\frac{\Gamma \vdash e_{1}: s \rightarrow u \quad \Gamma \vdash e_{2}: s}{\Gamma \vdash e_{1} e_{2}: u}
$$

[The type of the function is subsumed to an arrow and the type of the argument is subsumed to the domain of this arrow].

The rule for applications

1. In the type system:
[with explicit type-subst.]
(Appl)

$$
\frac{\Gamma \vdash e_{1}: s \rightarrow u \quad \Gamma \vdash e_{2}: s}{\Gamma \vdash e_{1} e_{2}: u}
$$

[The type of the function is subsumed to an arrow and the type of the argument is subsumed to the domain of this arrow]
2. Subsumption elimination: [with explicit type-subst.]
(Appl-ALGORITHM)

$$
\frac{\Gamma \vdash_{\mathcal{A}} e_{1}: t}{\Gamma \vdash_{\mathcal{A}} e_{1} e_{2}: \min \{u \mid t \leq s \rightarrow u\}} \quad \begin{aligned}
& t \leq 0 \rightarrow \mathbb{1} e_{2}: s \\
& s \leq \operatorname{dom}(t)
\end{aligned}
$$

The rule for applications

1. In the type system:
with explicit type-subst.]
(Appl)

$$
\frac{\Gamma \vdash e_{1}: s \rightarrow u \quad \Gamma \vdash e_{2}: s}{\Gamma \vdash e_{1} e_{2}: u}
$$

[The type of the function is subsumed to an arrow and the type of the argument is subsumed to the domain of this arrow]
2. Subsumption elimination: [with explicit type-subst.]

$$
\begin{aligned}
& \text { (Appl-ALGORITHM) } \\
& \frac{\Gamma \vdash_{\mathcal{A}} e_{1}: t \quad \Gamma \vdash_{\mathcal{A}} e_{2}: s}{\Gamma \vdash_{\mathcal{A}} e_{1} e_{2}: \min \{u \mid t \leq s \rightarrow u\}}\binom{t \leq 0 \rightarrow \mathbb{1}}{s \leq \operatorname{dom}(t)} \\
& \text { for Typeability }
\end{aligned}
$$

The rule for applications

1. In the type system:
[with explicit type-subst.]
(Appl)

$$
\frac{\Gamma \vdash e_{1}: s \rightarrow u \quad \Gamma \vdash e_{2}: s}{\Gamma \vdash e_{1} e_{2}: u}
$$

[The type of the function is subsumed to an arrow and the type of the argument is subsumed to the domain of this arrow]
2. Subsumption elimination: [with explicit type-subst.]
(Appl-ALGORITHM)

$$
\frac{\Gamma \vdash_{\mathcal{A}} e_{1}: t}{\Gamma \vdash_{\mathcal{A}} e_{1} e_{2}: \min \{u \mid t \leq s \rightarrow u\}} \quad \begin{aligned}
& t \leq 0 \rightarrow \mathbb{1} e_{2}: s \\
& s \leq \operatorname{dom}(t)
\end{aligned}
$$

The rule for applications

1. In the type system:
[with explicit type-subst.]
(Appl)

$$
\frac{\Gamma \vdash e_{1}: s \rightarrow u \quad \Gamma \vdash e_{2}: s}{\Gamma \vdash e_{1} e_{2}: u}
$$

[The type of the function is subsumed to an arrow and the type of the argument is subsumed to the domain of this arrow].
2. Subsumption elimination: [with explicit type-subst.]

$$
\begin{aligned}
& \text { (ApPL-ALGORITHM) } \\
& \frac{\Gamma \vdash_{\mathcal{A}} e_{1}: t \quad \Gamma \vdash_{\mathcal{A}} e_{2}: s}{\Gamma \vdash_{\mathcal{A}} e_{1} e_{2}: \min \{u \mid t \leq s \rightarrow u\}} \quad \begin{array}{l}
t \leq 0 \rightarrow \mathbb{1} \\
s \leq \operatorname{dom}(t)
\end{array}
\end{aligned}
$$

3. Inference of type substitutions [w/o explicit type-subst.]
(Appl-Inference)

$$
\frac{\exists\left[\sigma_{i}\right]_{i \in I},\left[\sigma_{j}^{\prime}\right]_{j \in J} \quad \Gamma \vdash_{\mathcal{I}} e_{1}: t \quad \Gamma \vdash_{\mathcal{I}} e_{2}: s}{\Gamma \vdash_{\mathcal{I}} e_{1} e_{2}: \min \left\{u \mid t\left[\sigma_{j}^{\prime}\right]_{j \in J} \leq s\left[\sigma_{i}\right]_{i \in I} \rightarrow u\right\}} \begin{aligned}
& \left.t\left[\sigma_{j}^{\prime}\right]\right]_{\in J} \leq 0 \rightarrow \mathbb{1} \\
& s\left[\sigma_{i}\right]_{i \in I} \leq \operatorname{dom}\left(t\left[\sigma_{j}^{\prime}\right]_{j \in J}\right)
\end{aligned}
$$

The rule for applications

1. In the type system:
[with explicit type-subst.]
(Appl)

$$
\frac{\Gamma \vdash e_{1}: s \rightarrow u \quad \Gamma \vdash e_{2}: s}{\Gamma \vdash e_{1} e_{2}: u}
$$

[The type of the function is subsumed to an arrow and the type of the argument is subsumed to the domain of this arrow].
2. Subsumption elimination:
[with explicit type-subst.]

$$
\begin{aligned}
& \text { (APPL-ALGORITHM) } \\
& \frac{\Gamma \vdash_{\mathcal{A}} e_{1}: t \quad \Gamma \vdash_{\mathcal{A}} e_{2}: s}{\Gamma \vdash_{\mathcal{A}} e_{1} e_{2}: \min \{u \mid t \leq s \rightarrow u\}} \quad \begin{array}{l}
t \leq 0 \rightarrow \mathbb{1} \\
s \leq \operatorname{dom}(t)
\end{array}
\end{aligned}
$$

3. Inference of type substitutitiseability yo explicit type-subst.]

$$
\begin{aligned}
& \text { (Appl-inffreney } \\
& \because\left[\sigma_{i}\right]_{i \in I},\left[\sigma_{j}^{\prime}\right]_{j \in J} \Gamma \vdash_{\mathcal{I}} e_{1}: t \quad \Gamma \vdash_{\mathcal{I}} e_{2}: s \quad t\left[\sigma_{j}^{\prime}\right]_{j \in J} \leq 0 \rightarrow \mathbb{1} \\
& \Gamma \mathcal{F}_{\mathcal{I}} e_{1} e_{2}: \min \left\{u \mid t\left[\sigma_{j}^{\prime}\right]_{j \in J} \leq s\left[\sigma_{i}\right]_{i \in I} \rightarrow u\right\} \quad s\left[\sigma_{i}\right]_{i \in I} \leq \operatorname{dom}\left(t\left[\sigma_{j}^{\prime}\right]_{j \in}\right.
\end{aligned}
$$

Tallying problem

The problem of inferring the type of an application is thus to find for s and t given, $\left[\sigma_{i}\right]_{i \in I},\left[\sigma_{j}^{\prime}\right]_{j \in J}$ such that:

$$
t\left[\sigma_{j}^{\prime}\right]_{j \in J} \leq \mathbb{O} \rightarrow \mathbb{1} \quad \text { and } \quad s\left[\sigma_{i}\right]_{i \in I} \leq \operatorname{dom}\left(t\left[\sigma_{j}^{\prime}\right]_{j \in J}\right)
$$

This can be reduced to solving a suite of tallying problems

Definition (Type tallying)

Let $C=\left\{\left(s_{1}, t_{1}\right), \ldots,\left(s_{n}, t_{n}\right)\right\}$ a constraint set. A type-substitution σ is a solution for the tallying of C iff $s \sigma \leq t \sigma$ for all $(s, t) \in C$.

Tallying problem

The problem of inferring the type of an application is thus to find for s and t given, $\left[\sigma_{i}\right]_{i \in I},\left[\sigma_{j}^{\prime}\right]_{j \in J}$ such that:

$$
t\left[\sigma_{j}^{\prime}\right]_{j \in J} \leq \mathbb{O} \rightarrow \mathbb{1} \quad \text { and } \quad s\left[\sigma_{i}\right]_{i \in I} \leq \operatorname{dom}\left(t\left[\sigma_{j}^{\prime}\right]_{j \in J}\right)
$$

This can be reduced to solving a suite of tallying problems

Definition (Type tallying)

Let $C=\left\{\left(s_{1}, t_{1}\right), \ldots,\left(s_{n}, t_{n}\right)\right\}$ a constraint set. A type-substitution σ is a solution for the tallying of C iff $s \sigma \leq t \sigma$ for all $(s, t) \in C$.

A sound and complete set of solutions for every tallying problem can be effectively found in three simple steps.

Step 1: Decompose constraints.

Use the set-theoretic decomposition rules to transform C into a set of constraint sets whose constraints are of the form (α, t) or (t, α).

Step 1: Decompose constraints.

Use the set-theoretic decomposition rules to transform C into a set of constraint sets whose constraints are of the form (α, t) or (t, α). Step 2: Merge constraints on the same variable.

- if $\left(\alpha, t_{1}\right)$ and $\left(\alpha, t_{2}\right)$ are in C, then replace them by $\left(\alpha, t_{1} \wedge t_{2}\right)$;
- if $\left(s_{1}, \alpha\right)$ and $\left(s_{2}, \alpha\right)$ are in C, then replace them by $\left(s_{1} \vee s_{2}, \alpha\right)$; Possibly decompose the new constraints generated by transitivity.

Step 1: Decompose constraints.

Use the set-theoretic decomposition rules to transform C into a set of constraint sets whose constraints are of the form (α, t) or (t, α).

Step 2: Merge constraints on the same variable.

- if $\left(\alpha, t_{1}\right)$ and $\left(\alpha, t_{2}\right)$ are in C, then replace them by $\left(\alpha, t_{1} \wedge t_{2}\right)$;
- if $\left(s_{1}, \alpha\right)$ and $\left(s_{2}, \alpha\right)$ are in C, then replace them by $\left(s_{1} \vee s_{2}, \alpha\right)$; Possibly decompose the new constraints generated by transitivity.

Step 3: Transform into a set of equations.
After Step 2 we have constraint-sets of the form $\left\{s_{i} \leq \alpha_{i} \leq t_{i} \mid i \in[1 . . n]\right\}$ where α_{i} are pairwise distinct.
(1) select $s \leq \alpha \leq t$ and replace it by $\alpha=(s \vee \beta) \wedge t$ with β fresh.
(2) in all other constraints in replace every α by $(s \vee \beta) \wedge t$
(3) repeat with another constraint

Step 1: Decompose constraints.
Use the set-theoretic decomposition rules to transform C into a set of constraint sets whose constraints are of the form (α, t) or (t, α).

Step 2: Merge constraints on the same variable.

- if $\left(\alpha, t_{1}\right)$ and $\left(\alpha, t_{2}\right)$ are in C, then replace them by $\left(\alpha, t_{1} \wedge t_{2}\right)$;
- if $\left(s_{1}, \alpha\right)$ and $\left(s_{2}, \alpha\right)$ are in C, then replace them by $\left(s_{1} \vee s_{2}, \alpha\right)$; Possibly decompose the new constraints generated by transitivity.
Step 3: Transform into a set of equations.
After Step 2 we have constraint-sets of the form $\left\{s_{i} \leq \alpha_{i} \leq t_{i} \mid i \in[1 . . n]\right\}$ where α_{i} are pairwise distinct.
(1) select $s \leq \alpha \leq t$ and replace it by $\alpha=(s \vee \beta) \wedge t$ with β fresh.
(2) in all other constraints in replace every α by $(s \vee \beta) \wedge t$
(3) repeat with another constraint

At the end we have a sets of equations $\left\{\alpha_{i}=u_{i} \mid i \in[1 . . n]\right\}$ that (with some care) are contractive. By Courcelle there exists a solution, ie, a substitution for $\alpha_{1}, \ldots, \alpha_{n}$ into (possibly recursive regular) types t_{1}, \ldots, t_{n} (in which the fresh β 's are free variables).

The application problem

Definition (Inference application problem)

Given s and t types, find $\left[\sigma_{i}\right]_{i \in I}$ and $\left[\sigma_{j}^{\prime}\right]_{j \in J}$ such that:

$$
\bigwedge_{i \in I} t \sigma_{i} \leq 0 \rightarrow \mathbb{1} \quad \text { and } \quad \bigwedge_{j \in J} s \sigma_{j} \leq \operatorname{dom}\left(\bigwedge_{i \in I} t \sigma_{i}\right)
$$

The application problem

Definition (Inference application problem)

Given s and t types, find $\left[\sigma_{i}\right]_{i \in I}$ and $\left[\sigma_{j}^{\prime}\right]_{j \in J}$ such that:

$$
\bigwedge_{i \in I} t \sigma_{i} \leq \mathbb{O} \rightarrow \mathbb{1} \quad \text { and } \quad \bigwedge_{j \in J} s \sigma_{j} \leq \operatorname{dom}\left(\bigwedge_{i \in I} t \sigma_{i}\right)
$$

(1) Fix the cardinalities of I and J (at the beginning both 1);

The application problem

Definition (Inference application problem)

Given s and t types, find $\left[\sigma_{i}\right]_{i \in I}$ and $\left[\sigma_{j}^{\prime}\right]_{j \in J}$ such that:

$$
\bigwedge_{i \in I} t \sigma_{i} \leq \mathbb{O} \rightarrow \mathbb{1} \text { and } \bigwedge_{j \in J} s \sigma_{j} \leq \operatorname{dom}\left(\bigwedge_{i \in I} t \sigma_{i}\right)
$$

(1) Fix the cardinalities of I and J (at the beginning both 1);
(2) Split each substitution σ_{k} (for $k \in I \cup J$) in two: $\sigma_{k}=\rho_{k} \circ \sigma_{k}^{\prime}$ where ρ_{k} is a renaming substitution mapping each variable of the domain of σ_{k} into a fresh variable:

$$
\bigwedge_{i \in I}\left(t \rho_{i}\right) \sigma_{i}^{\prime} \leq \mathbb{0} \rightarrow \mathbb{1} \quad \text { and } \quad \bigwedge_{j \in J}\left(s \rho_{j}\right) \sigma_{j}^{\prime} \leq \operatorname{dom}\left(\bigwedge_{i \in I}\left(t \rho_{i}\right) \sigma_{i}^{\prime}\right) ;
$$

The application problem

Definition (Inference application problem)

Given s and t types, find $\left[\sigma_{i}\right]_{i \in I}$ and $\left[\sigma_{j}^{\prime}\right]_{j \in J}$ such that:

$$
\bigwedge_{i \in I} t \sigma_{i} \leq \mathbb{O} \rightarrow \mathbb{1} \text { and } \bigwedge_{j \in J} s \sigma_{j} \leq \operatorname{dom}\left(\bigwedge_{i \in I} t \sigma_{i}\right)
$$

(1) Fix the cardinalities of I and J (at the beginning both 1);
(2) Split each substitution σ_{k} (for $k \in I \cup J$) in two: $\sigma_{k}=\rho_{k} \circ \sigma_{k}^{\prime}$ where ρ_{k} is a renaming substitution mapping each variable of the domain of σ_{k} into a fresh variable:
$\left(\bigwedge_{i \in I} t \rho_{i}\right) \sigma \leq \mathbb{O} \rightarrow \mathbb{1} \quad$ and $\quad\left(\bigwedge_{j \in J} \boldsymbol{s} \rho_{j}\right) \sigma \leq \operatorname{dom}\left(\left(\bigwedge_{i \in I} t \rho_{i}\right) \sigma\right)$;

The application problem

Definition (Inference application problem)

Given s and t types, find $\left[\sigma_{i}\right]_{i \in I}$ and $\left[\sigma_{j}^{\prime}\right]_{j \in J}$ such that:

$$
\bigwedge_{i \in I} t \sigma_{i} \leq \mathbb{O} \rightarrow \mathbb{1} \quad \text { and } \quad \bigwedge_{j \in J} s \sigma_{j} \leq \operatorname{dom}\left(\bigwedge_{i \in I} t \sigma_{i}\right)
$$

(1) Fix the cardinalities of I and J (at the beginning both 1);
(2) Split each substitution $\sigma_{k}($ for $k \in I \cup J)$ in two: $\sigma_{k}=\rho_{k} \circ \sigma_{k}^{\prime}$ where ρ_{k} is a renaming substitution mapping each variable of the domain of σ_{k} into a fresh variable:
$\left(\bigwedge_{i \in I} t \rho_{i}\right) \sigma \leq \mathbb{O} \rightarrow \mathbb{1}$ and $\quad\left(\bigwedge_{j \in J} \boldsymbol{s} \rho_{j}\right) \sigma \leq \operatorname{dom}\left(\left(\bigwedge_{i \in I} t \rho_{i}\right) \sigma\right)$;
(3) Solve the tallying problem for

$$
\begin{array}{r}
\left\{\left(t_{1}, \mathbb{D} \rightarrow \mathbb{1}\right),\left(t_{1}, t_{2} \rightarrow \gamma\right)\right\} \\
\text { with } t_{1}=\bigwedge_{i \in I} t \rho_{i}, t_{2}=\bigwedge_{j \in J} s \rho_{j}, \text { and } \gamma \text { fresh }
\end{array}
$$

The application problem

Definition (Inference application problem)

Given s and t types, find $\left[\sigma_{i}\right]_{i \in I}$ and $\left[\sigma_{j}^{\prime}\right]_{j \in J}$ such that:

$$
\bigwedge_{i \in I} t \sigma_{i} \leq \mathbb{O} \rightarrow \mathbb{1} \quad \text { and } \quad \bigwedge_{j \in J} s \sigma_{j} \leq \operatorname{dom}\left(\bigwedge_{i \in I} t \sigma_{i}\right)
$$

(1) Fix the cardinalities of I and J (at the beginning both 1);
(2) Split each substitution $\sigma_{k}($ for $k \in I \cup J)$ in two: $\sigma_{k}=\rho_{k} \circ \sigma_{k}^{\prime}$ where ρ_{k} is a renaming substitution mapping each variable of the domain of σ_{k} into a fresh variable:
$\left(\bigwedge_{i \in I} t \rho_{i}\right) \sigma \leq \mathbb{O} \rightarrow \mathbb{1}$ and $\quad\left(\bigwedge_{j \in J} s \rho_{j}\right) \sigma \leq \operatorname{dom}\left(\left(\bigwedge_{i \in I} t \rho_{i}\right) \sigma\right)$;
(3) Solve the tallying problem for

$$
\left\{\left(t_{1}, 0 \rightarrow \mathbb{1}\right),\left(t_{1}, t_{2} \rightarrow \gamma\right)\right\}
$$

with $t_{1}=\bigwedge_{i \in I} t \rho_{i}, t_{2}=\bigwedge_{j \in J} S \rho_{j}$, and γ fresh

- if it fails at Step 1, then fail.
- if it fails at Step 2, then change cardinalities (dove-tail)

The application problem

Definition (Inference application problem)

Given s and t types, find $\left[\sigma_{i}\right]_{i \in I}$ and $\left[\sigma_{j}^{\prime}\right]_{j \in J}$ such that:

$$
\bigwedge_{i \in I} t \sigma_{i} \leq \mathbb{O} \rightarrow \mathbb{1} \text { and } \bigwedge_{j \in J} s \sigma_{j} \leq \operatorname{dom}\left(\bigwedge_{i \in I} t \sigma_{i}\right)
$$

(1) Fix the cardinalities of I and J (at the beginning both 1);
(2) Split each substitution $\sigma_{k}($ for $k \in I \cup J)$ in two: $\sigma_{k}=\rho_{k} \circ \sigma_{k}^{\prime}$ where ρ_{k} is a renaming substitution mapping each variable of the domain of σ_{k} into a fresh variable:
$\left(\bigwedge_{i \in I} t \rho_{i}\right) \sigma \leq \mathbb{O} \rightarrow \mathbb{1}$ and $\quad\left(\bigwedge_{j \in J} s \rho_{j}\right) \sigma \leq \operatorname{dom}\left(\left(\bigwedge_{i \in I} t \rho_{i}\right) \sigma\right)$;
(3) Solve the tallying problem for

$$
\left\{\left(t_{1}, 0 \rightarrow \mathbb{1}\right),\left(t_{1}, t_{2} \rightarrow \gamma\right)\right\}
$$

with $t_{1}=\bigwedge_{i \in I} t \rho_{i}, t_{2}=\bigwedge_{j \in J} S \rho_{j}$, and γ fresh

- if it fails at Step 1, then fail.
- if it fails at Step 2, then change cardinalities (dove-tail)
\Rightarrow Every solution for γ is a solution for the application.

Example: map even

Start with the following tallying problem:

$$
\left\{\left(\alpha_{1} \rightarrow \beta_{1}\right) \rightarrow\left[\alpha_{1}\right] \rightarrow\left[\beta_{1}\right] \leq t \rightarrow \gamma\right\}
$$

where $t=($ Int \rightarrow Bool $) \wedge(\alpha \backslash$ Int $\rightarrow \alpha \backslash$ Int $)$ is the type of even

Example: map even

Start with the following tallying problem:

$$
\left\{\left(\alpha_{1} \rightarrow \beta_{1}\right) \rightarrow\left[\alpha_{1}\right] \rightarrow\left[\beta_{1}\right] \leq t \rightarrow \gamma\right\}
$$

where $t=($ Int \rightarrow Bool $) \wedge(\alpha \backslash$ Int $\rightarrow \alpha \backslash$ Int $)$ is the type of even

- At step 2 the algorithm generates 9 constraint-sets: one is unsatisfiable ($t \leq \mathbb{0}$); four are implied by the others; remain $\left\{\gamma \geq\left[\alpha_{1}\right] \rightarrow\left[\beta_{1}\right], \alpha_{1} \leq \mathbb{O}\right\}$,
$\left\{\gamma \geq\left[\alpha_{1}\right] \rightarrow\left[\beta_{1}\right], \alpha_{1} \leq\right.$ Int, Bool $\left.\leq \beta_{1}\right\}$,
$\left\{\gamma \geq\left[\alpha_{1}\right] \rightarrow\left[\beta_{1}\right], \alpha_{1} \leq \alpha \backslash\right.$ Int,$\alpha \backslash$ Int $\left.\leq \beta_{1}\right\}$,
$\left\{\gamma \geq\left[\alpha_{1}\right] \rightarrow\left[\beta_{1}\right], \alpha_{1} \leq \alpha \vee\right.$ Int,$(\alpha \backslash$ Int $) \vee$ Bool $\left.\leq \beta_{1}\right\} ;$

Example: map even

Start with the following tallying problem:

$$
\left\{\left(\alpha_{1} \rightarrow \beta_{1}\right) \rightarrow\left[\alpha_{1}\right] \rightarrow\left[\beta_{1}\right] \leq t \rightarrow \gamma\right\}
$$

where $t=($ Int \rightarrow Bool $) \wedge(\alpha \backslash$ Int $\rightarrow \alpha \backslash$ Int $)$ is the type of even

- At step 2 the algorithm generates 9 constraint-sets: one is unsatisfiable ($t \leq \mathbb{0}$); four are implied by the others; remain $\left\{\gamma \geq\left[\alpha_{1}\right] \rightarrow\left[\beta_{1}\right], \alpha_{1} \leq \mathbb{O}\right\}$,
$\left\{\gamma \geq\left[\alpha_{1}\right] \rightarrow\left[\beta_{1}\right], \alpha_{1} \leq\right.$ Int, Bool $\left.\leq \beta_{1}\right\}$,
$\left\{\gamma \geq\left[\alpha_{1}\right] \rightarrow\left[\beta_{1}\right], \alpha_{1} \leq \alpha \backslash\right.$ Int,$\alpha \backslash$ Int $\left.\leq \beta_{1}\right\}$,
$\left\{\gamma \geq\left[\alpha_{1}\right] \rightarrow\left[\beta_{1}\right], \alpha_{1} \leq \alpha \vee\right.$ Int,$(\alpha \backslash$ Int $\left.) \vee B o o l \leq \beta_{1}\right\} ;$
- Four solutions for γ :

$$
\begin{aligned}
& \{\gamma=[] \rightarrow[]\}, \\
& \{\gamma=[\text { Int }] \rightarrow[\text { Bool }]\}, \\
& \{\gamma=[\alpha \backslash \text { Int }] \rightarrow[\alpha \backslash \text { Int }]\}, \\
& \{\gamma=[\alpha \vee \text { Int }] \rightarrow[(\alpha \backslash \text { Int }) \vee \text { Bool }]\} .
\end{aligned}
$$

Example: map even

Start with the following tallying problem:

$$
\left\{\left(\alpha_{1} \rightarrow \beta_{1}\right) \rightarrow\left[\alpha_{1}\right] \rightarrow\left[\beta_{1}\right] \leq t \rightarrow \gamma\right\}
$$

where $t=($ Int \rightarrow Bool $) \wedge(\alpha \backslash$ Int $\rightarrow \alpha \backslash$ Int $)$ is the type of even

- At step 2 the algorithm generates 9 constraint-sets: one is unsatisfiable ($t \leq \mathbb{O}$); four are implied by the others; remain $\left\{\gamma \geq\left[\alpha_{1}\right] \rightarrow\left[\beta_{1}\right], \alpha_{1} \leq \mathbb{O}\right\}$,
$\left\{\gamma \geq\left[\alpha_{1}\right] \rightarrow\left[\beta_{1}\right], \alpha_{1} \leq\right.$ Int, Bool $\left.\leq \beta_{1}\right\}$,
$\left\{\gamma \geq\left[\alpha_{1}\right] \rightarrow\left[\beta_{1}\right], \alpha_{1} \leq \alpha \backslash\right.$ Int,$\alpha \backslash$ Int $\left.\leq \beta_{1}\right\}$,
$\left\{\gamma \geq\left[\alpha_{1}\right] \rightarrow\left[\beta_{1}\right], \alpha_{1} \leq \alpha \vee\right.$ Int,$(\alpha \backslash$ Int $) \vee$ Bool $\left.\leq \beta_{1}\right\} ;$
- Four solutions for γ :

$$
\begin{aligned}
& \{\gamma=[] \rightarrow[]\}, \\
& \{\gamma=[\text { Int }] \rightarrow[\text { Bool }]\}, \\
& \{\gamma=[\alpha \backslash \text { Int }] \rightarrow[\alpha \backslash \text { Int }]\}, \\
& \{\gamma=[\alpha \vee \text { Int }] \rightarrow[(\alpha \backslash \text { Int }) \vee \text { Bool }]\} .
\end{aligned}
$$

- The last two are minimal and we take their intersection:

$$
\{\gamma=([\alpha \backslash \text { Int }] \rightarrow[\alpha \backslash \text { Int }]) \wedge([\alpha \vee \text { Int }] \rightarrow[(\alpha \backslash \text { Int }) \vee \text { Bool }])\}
$$

On completeness and decidability

The algorithm produces a set of solutions that is sound (it finds only correct solutions) and complete (any other solution can be derived from them).

On completeness and decidability

The algorithm produces a set of solutions that is sound (it finds only correct solutions) and complete (any other solution can be derived from them).

Decidability: The algorithm is a semi-decision procedure. We conjecture decidability (N.B.: the problem is unrelated to typereconstruction for intersection types since we have recursive types).

On completeness and decidability

The algorithm produces a set of solutions that is sound (it finds only correct solutions) and complete (any other solution can be derived from them).

Decidability: The algorithm is a semi-decision procedure. We conjecture decidability (N.B.: the problem is unrelated to typereconstruction for intersection types since we have recursive types).

Completeness: For every solution of the inference problem, our algorithm finds an equivalent or more general solution. However, this solution is not necessary the first solution found.
In a dully execution of the algorithm on map even the good solution is the second one.

On completeness and decidability

The algorithm produces a set of solutions that is sound (it finds only correct solutions) and complete (any other solution can be derived from them).

Decidability: The algorithm is a semi-decision procedure. We conjecture decidability (N.B.: the problem is unrelated to typereconstruction for intersection types since we have recursive types).

Completeness: For every solution of the inference problem, our algorithm finds an equivalent or more general solution. However, this solution is not necessary the first solution found.
In a dully execution of the algorithm on map even the good solution is the second one.

Principality: This raises the problem of the existence of principal types: may an infinite sequence of increasingly general solutions exist?

Type reconstruction

- Solve sets of contraint-sets by the tallying algorithm:

$$
\begin{array}{cc}
\frac{\Gamma, x: \alpha \vdash_{\mathcal{R}} e: t \leadsto \mathcal{S}}{\Gamma \vdash_{\mathcal{R}} x: \Gamma(x) \leadsto\{\varnothing\}} & \frac{\Gamma \vdash_{\mathcal{R}} \lambda x \cdot e: \alpha \rightarrow \beta \leadsto \mathcal{S} \sqcap\{\{(t \leq \beta)\}\}}{} \\
\frac{\Gamma \vdash_{\mathcal{R}} e_{1}: t_{1} \leadsto \mathcal{S}_{1}}{\Gamma \vdash_{\mathcal{R}} e_{1} e_{2}: \alpha \leadsto \mathcal{S}_{1} \sqcap \mathcal{S}_{2} \sqcap\left\{\left\{\left(t_{1} \leq t_{2} \rightarrow \alpha\right)\right\}\right\}} \quad+\quad \begin{array}{c}
\text { rule for } \\
\text { typecase }
\end{array}
\end{array}
$$

Type reconstruction

- Solve sets of contraint-sets by the tallying algorithm:

$$
\begin{array}{cc}
\frac{\Gamma, x: \alpha \vdash_{\mathcal{R}} e: t \leadsto \mathcal{S}}{\Gamma \vdash_{\mathcal{R}} x: \Gamma(x) \leadsto\{\varnothing\}} & \frac{\Gamma \vdash_{\mathcal{R}} \lambda x \cdot e: \alpha \rightarrow \beta \leadsto \mathcal{S} \sqcap\{\{(t \leq \beta)\}\}}{} \\
\frac{\Gamma \vdash_{\mathcal{R}} e_{1}: t_{1} \leadsto \mathcal{S}_{1}}{\Gamma \vdash_{\mathcal{R}} e_{1} e_{2}: \alpha \leadsto \mathcal{S}_{1} \sqcap \mathcal{S}_{2} \sqcap\left\{\left\{\left(t_{1} \leq t_{2} \rightarrow \alpha\right)\right\}\right\}} \quad+\quad \begin{array}{c}
\text { rule for } \\
\text { typecase }
\end{array}
\end{array}
$$

- Sound. it's a variant: fix interfaces and infer decorations

$$
\lambda_{[?]}^{\alpha \rightarrow \beta} x . e
$$

Not complete: reconstruction is undecidable

Type reconstruction

- Solve sets of contraint-sets by the tallying algorithm:

$$
\begin{array}{cc}
\frac{\Gamma, x: \alpha \vdash_{\mathcal{R}} e: t \leadsto \mathcal{S}}{\Gamma \vdash_{\mathcal{R}} x: \Gamma(x) \leadsto\{\varnothing\}} & \frac{\Gamma \vdash_{\mathcal{R}} \lambda x \cdot e: \alpha \rightarrow \beta \leadsto \mathcal{S} \sqcap\{\{(t \leq \beta)\}\}}{} \\
\frac{\Gamma \vdash_{\mathcal{R}} e_{1}: t_{1} \leadsto \mathcal{S}_{1}}{\Gamma \vdash_{\mathcal{R}} e_{1} e_{2}: \alpha \leadsto \mathcal{S}_{1} \sqcap \mathcal{S}_{2} \sqcap\left\{\left\{\left(t_{1} \leq t_{2} \rightarrow \alpha\right)\right\}\right\}} \quad+\quad \begin{array}{c}
\text { rule for } \\
\text { typecase }
\end{array}
\end{array}
$$

- Sound. it's a variant: fix interfaces and infer decorations

$$
\lambda_{[?]}^{\alpha \rightarrow \beta} x . e
$$

Not complete: reconstruction is undecidable

- It types more than ML

$$
\lambda x . x x: \mu X .(\alpha \wedge(X \rightarrow \beta)) \rightarrow \beta \quad(\leq \alpha \wedge(\alpha \rightarrow \beta)) \rightarrow \beta)
$$

for functions typable in ML it deduces a type at least as good:

$$
\operatorname{map}:((\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta]) \wedge((\mathbb{O} \rightarrow \mathbb{1}) \rightarrow[] \rightarrow[])
$$

Type Reconstruction Algorithm

$$
\begin{aligned}
& \overline{\Gamma \vdash_{\mathcal{R}} c: b_{c} \leadsto\{\varnothing\}}(\mathrm{R} \text {-CONST }) \quad \overline{\Gamma \vdash_{\mathcal{R}} x: \Gamma(x) \sim\{\varnothing\}}(\mathrm{R}-\mathrm{VAR}) \\
& \frac{\Gamma \vdash_{\mathcal{R}} m_{1}: t_{1} \leadsto \mathcal{S}_{1} \quad \Gamma \vdash_{\mathcal{R}} m_{2}: t_{2} \leadsto \mathcal{S}_{2}}{\Gamma \vdash_{\mathcal{R}} m_{1} m_{2}: \alpha \leadsto \mathcal{S}_{1} \sqcap \mathcal{S}_{2} \sqcap\left\{\left\{\left(t_{1} \leq t_{2} \rightarrow \alpha\right)\right\}\right\}}(\mathrm{R}-\mathrm{APPL}) \\
& \Gamma, x: \alpha \vdash_{\mathcal{R}} m: t \leadsto \mathcal{S} \\
& \Gamma \vdash_{\mathcal{R}} \lambda x . m: \alpha \rightarrow \beta \leadsto \mathcal{S} \sqcap\{\{(t \leq \beta)\}\}(\mathrm{R}-\mathrm{ABSTR}) \\
& \text { (R-CASE) } \\
& \mathcal{S}=\left(\mathcal{S}_{0} \sqcap\left\{\left\{\left(t_{0} \leq \mathbb{0}\right)\right\}\right\}\right) \\
& \sqcup \quad\left(\mathcal{S}_{0} \sqcap \mathcal{S}_{1} \sqcap\left\{\left\{\left(t_{0} \leq t\right),\left(t_{1} \leq \alpha\right)\right\}\right\}\right) \\
& \sqcup\left(\mathcal{S}_{0} \sqcap \mathcal{S}_{2} \sqcap\left\{\left\{\left(t_{0} \leq \neg t\right),\left(t_{2} \leq \alpha\right)\right\}\right\}\right) \\
& \sqcup \quad\left(\mathcal{S}_{0} \sqcap \mathcal{S}_{1} \sqcap \mathcal{S}_{2} \sqcap\left\{\left\{\left(t_{1} \vee t_{2} \leq \alpha\right)\right\}\right\}\right) \\
& \frac{\Gamma \vdash_{\mathcal{R}} m_{0}: t_{0} \leadsto \mathcal{S}_{0} \quad \Gamma \vdash_{\mathcal{R}} m_{1}: t_{1} \leadsto \mathcal{S}_{1} \quad \Gamma \vdash_{\mathcal{R}} m_{2}: t_{2} \leadsto \mathcal{S}_{2}}{\Gamma \vdash_{\mathcal{R}}\left(m_{0} \in t ? m_{1}: m_{2}\right): \alpha \leadsto \mathcal{S}}
\end{aligned}
$$

where α, α_{i} and β in each rule are fresh type variables.

Efficient evaluation

Monomorphic language

$$
\begin{aligned}
& e::=c|x| \lambda^{t} x . e \mid \text { ee } \mid e \in t ? e: e \\
& v::=c \mid\left\langle\lambda^{t} x . e, \mathcal{E}\right\rangle
\end{aligned}
$$

Monomorphic language

$$
\begin{aligned}
e & ::=c|x| \lambda^{t} x . e|e e| e \in t ? e: e \\
v & ::=c \mid\left\langle\lambda^{t} x . e, \mathcal{E}\right\rangle
\end{aligned}
$$

(Closure) $\overline{\mathcal{E} \vdash_{\mathrm{m}} \lambda^{t} \text { x.e } \Downarrow\left\langle\lambda^{t} \text { x.e, } \mathcal{E}\right\rangle}$
$(\mathrm{APPLY}) \frac{\mathcal{E} \vdash_{\mathrm{m}} e_{1} \Downarrow\left\langle\lambda^{t} x . e, \mathcal{E}^{\prime}\right\rangle \quad \mathcal{E} \vdash_{\mathrm{m}} e_{2} \Downarrow v_{0} \quad \mathcal{E}^{\prime}, x \mapsto v_{0} \vdash_{\mathrm{m}} e \Downarrow v}{\mathcal{E} \vdash_{\mathrm{m}} e_{1} e_{2} \Downarrow v}$

Monomorphic language

$$
\begin{aligned}
& e \\
& v::=c|x| \lambda^{t} x . e \mid \text { ae } \mid e \in t ? e: e \\
& v::=c \mid\left\langle\lambda^{t} x . e, \mathcal{E}\right\rangle \quad \text { sere the environment }
\end{aligned}
$$

$($ APPLY $) \frac{\mathcal{E} \vdash_{\mathrm{m}} e_{1} \Downarrow\left\langle\lambda^{t} x . e, \mathcal{E}^{\prime}\right\rangle \quad \mathcal{E} \vdash_{\mathrm{m}} e_{2} \Downarrow v_{0} \quad \mathcal{E}^{\prime}, x \mapsto v_{0} \vdash_{\mathrm{m}} e \Downarrow v}{\mathcal{E} \vdash_{\mathrm{m}} e_{1} e_{2} \Downarrow v}$

Monomorphic language

$$
\begin{aligned}
& e::=c|x| \lambda^{t} x . e \mid \text { eoe } \mid e \in t ? e: e \\
& v::=c \mid\left\langle\lambda^{t} x . e, \mathcal{E}\right\rangle \quad \text { save the environment }
\end{aligned}
$$

 restore the environment

Monomorphic language

$$
\begin{aligned}
& e::=c|x| \lambda^{t} x . e \mid \text { ee } \mid e \in t ? e: e \\
& v::=c \mid\left\langle\lambda^{t} x . e, \mathcal{E}\right\rangle
\end{aligned}
$$

(Closure)

$$
\overline{\mathcal{E} \vdash_{\mathrm{m}} \lambda^{t} x . e \Downarrow\left\langle\lambda^{t} x . e, \mathcal{E}\right\rangle}
$$

(Apply) $\frac{\mathcal{E} \vdash_{\mathrm{m}} e_{1} \Downarrow\left\langle\lambda^{t} x \cdot e, \mathcal{E}^{\prime}\right\rangle \quad \mathcal{E} \vdash_{\mathrm{m}} e_{2} \Downarrow v_{0} \quad \mathcal{E}^{\prime}, x \mapsto v_{0} \vdash_{\mathrm{m}} e \Downarrow v}{\mathcal{E} \vdash_{\mathrm{m}} e_{1} e_{2} \Downarrow v}$
(Typecase True)
$\frac{\mathcal{E} \vdash_{m} e_{1} \Downarrow v_{0} \quad v_{0} \in_{m} t \quad \mathcal{E} \vdash_{m} e_{2} \Downarrow v}{\mathcal{E} \vdash_{m} e_{1} \in t ? e_{2}: e_{3} \Downarrow v}$
(Typecase False)
$\frac{\mathcal{E} \vdash_{m} e_{1} \Downarrow v_{0} \quad v_{0} \nVdash_{m} t \quad \mathcal{E} \vdash_{m} e_{3} \Downarrow v}{\mathcal{E} \vdash_{m} e_{1} \in t ? e_{2}: e_{3} \Downarrow v}$

$$
\begin{aligned}
c \in_{\mathrm{m}} t & \stackrel{\text { def }}{=}\{c\} \leq t \\
\left\langle\lambda^{s} x . e, \mathcal{E}\right\rangle \in_{\mathrm{m}} t & \stackrel{\text { def }}{=} s \leq t
\end{aligned}
$$

Polymorphic language: naive implementation

$$
e::=c|x| \lambda_{\sigma_{l}}^{t} x . e \mid \text { ee }|e \in t ? e: e| e \sigma_{l}
$$

Polymorphic language: naive implementation

$$
\begin{aligned}
e & ::=c|x| \lambda_{\sigma_{l}}^{t} x . e \mid \text { ee }|e \in t ? e: e| e \sigma_{I} \\
v & ::=c \mid\left\langle\lambda_{\sigma_{J}}^{t} x . e, \mathcal{E}, \sigma_{I}\right\rangle
\end{aligned}
$$

Polymorphic language: naive implementation

$$
\begin{aligned}
e & ::=c|x| \lambda_{\sigma_{l}}^{t} x . e \mid \text { ee }|e \in t ? e: e| e \sigma_{I} \\
v & ::=c \mid\left\langle\lambda_{\sigma_{J}}^{t} x . e, \mathcal{E}, \sigma_{I}\right\rangle
\end{aligned}
$$

$($ Closure $) \overline{\sigma_{l} ; \mathcal{E} \vdash_{\mathrm{p}} \lambda_{\sigma_{J}}^{t} x . e \Downarrow\left\langle\lambda_{\sigma_{J}}^{t} x . e, \mathcal{E}, \sigma_{l}\right\rangle}$

Polymorphic language: naive implementation

$$
\begin{aligned}
e & ::=c|x| \lambda_{\sigma_{l}}^{t} x . e \mid \text { ee }|e \in t ? e: e| e \sigma_{I} \\
v & ::=c \mid\left\langle\lambda_{\sigma_{J}}^{t} x . e, \mathcal{E}, \sigma_{I}\right\rangle
\end{aligned}
$$

save the environment

Polymorphic language: naive implementation

$$
\begin{aligned}
e & ::=c|x| \lambda_{\sigma_{I}}^{t} x . e \mid \text { en }|e \in t ? e: e| e \sigma_{I} \\
v & ::=c \mid\left\langle\lambda_{\sigma_{J}}^{t} x . e, \mathcal{E}, \sigma_{I}\right\rangle
\end{aligned}
$$

save the environment
(CLOSURE)

Polymorphic language: naive implementation

$$
\begin{aligned}
e & ::=c|x| \lambda_{\sigma_{l}}^{t} x . e|e e| e \in t ? e: e \mid e \sigma_{l} \\
v & ::=c \mid\left\langle\lambda_{\sigma_{J}}^{t} x . e, \mathcal{E}, \sigma_{I}\right\rangle
\end{aligned}
$$

$$
(\text { INSTANCE }) \frac{\sigma_{l} \circ \sigma_{J} ; \mathcal{E} \vdash_{\mathrm{p}} e \Downarrow v}{\sigma_{l} ; \mathcal{E} \vdash_{\mathrm{p}} e \sigma_{J} \Downarrow v}
$$

Polymorphic language: naive implementation

$\left(\sigma_{l}\right.$ short for $\left.\left[\sigma_{i}\right]_{i \in I}\right)$

$$
\begin{aligned}
e & ::=c|x| \lambda_{\sigma_{l}}^{t} x . e \mid \text { ee }|e \in t ? e: e| e \sigma_{I} \\
v & ::=c \mid\left\langle\lambda_{\sigma_{J}}^{t} x . e, \mathcal{E}, \sigma_{I}\right\rangle
\end{aligned}
$$

(Closure)

$$
\overline{\sigma_{l} ; \mathcal{E} \vdash_{\mathrm{p}} \lambda_{\sigma_{J}}^{t} x . e \Downarrow\left\langle\lambda_{\sigma_{J}}^{t} x . e, \mathcal{E}, \sigma_{l}\right\rangle}
$$

$$
\text { (Instance) } \frac{\sigma_{l} \circ \sigma_{J} ; \mathcal{E} \vdash_{\mathrm{p}} e \Downarrow v}{\sigma_{l} ; \mathcal{E} \vdash_{\mathrm{p}} e \sigma_{J} \Downarrow v}
$$

(Apply)
$\underline{\sigma_{l} ; \mathcal{E} \vdash_{\mathrm{p}} e_{1} \Downarrow\left\langle\lambda_{\sigma_{K}}^{\wedge_{\ell \in L} \mathcal{S}_{\ell} \rightarrow t_{\ell}} X . e, \mathcal{E}^{\prime}, \sigma_{H}\right\rangle \quad \sigma_{l} ; \mathcal{E} \vdash_{\mathrm{p}} e_{2} \Downarrow v_{0} \quad \sigma_{P} ; \mathcal{E}^{\prime}, x \mapsto v_{0} \vdash_{\mathrm{p}} e \Downarrow v}$ $\sigma_{l} ; \mathcal{E} \vdash_{\mathrm{p}} e_{1} e_{2} \Downarrow v$
where $\sigma_{J}=\sigma_{H} \circ \sigma_{K}$ and $P=\left\{j \in J \mid \exists \ell \in L: v_{0} \in_{\mathrm{p}} \mathrm{s}_{\ell} \sigma_{j}\right\}$

Polymorphic language: naive implementation

$\left(\sigma_{l}\right.$ short for $\left.\left[\sigma_{i}\right]_{i \in I}\right)$

$$
\begin{aligned}
e & ::=c|x| \lambda_{\sigma_{I}}^{t} x . e \mid \text { es }|e \in t ? e: e| e \sigma_{I} \\
v & ::=c \mid\left\langle\lambda_{\sigma_{J}}^{t} x . e, \mathcal{E}, \sigma_{I}\right\rangle
\end{aligned}
$$

$$
\text { (Closure) } \overline{\sigma_{l} ; \mathcal{E} \vdash_{\mathrm{p}} \lambda_{\sigma_{J}}^{t} x . e \Downarrow\left\langle\lambda_{\sigma_{J}}^{t} x . e, \mathcal{E}, \sigma_{l}\right\rangle}
$$ restore the environment

$$
\text { (InSTANCE) } \frac{\sigma_{l} \circ \sigma_{J} ; \mathcal{E} \vdash_{\mathrm{p}} e \Downarrow v}{\sigma_{l} ; \mathcal{E} \vdash_{\mathrm{p}} e \sigma_{J} \Downarrow v}
$$

(Apply)
$\underline{\sigma_{l} ; \mathcal{E} \vdash_{\mathrm{p}} e_{1} \Downarrow\left\langle\lambda_{\sigma_{K}}^{\wedge_{l \in L} s_{\ell} \rightarrow t_{\ell}} X . e, \overparen{\mathcal{E}}, \sigma_{H}\right\rangle \quad \sigma_{l} ; \mathcal{E} \vdash_{\mathrm{p}} e_{2} \Downarrow v_{0} \quad \underset{\sigma_{P} ; \mathcal{E}^{\prime}}{ }{ }^{\prime}, x \mapsto v_{0} \vdash_{\mathrm{p}} e \Downarrow v}$ $\sigma_{l} ; \mathcal{E} \vdash_{\mathrm{p}} \mathrm{e}_{1} e_{2} \Downarrow v$
where $\sigma_{J}=\sigma_{H} \circ \sigma_{K}$ and $P=\left\{j \in J \mid \exists \ell \in L: v_{0} \in_{\mathrm{p}} \mathrm{s}_{\ell} \sigma_{j}\right\}$

Polymorphic language: naive implementation

$\left(\sigma_{l}\right.$ short for $\left.\left[\sigma_{i}\right]_{i \in I}\right)$

$$
\begin{aligned}
e & ::=c|x| \lambda_{\sigma_{I}}^{t} x . e \mid \text { es }|e \in t ? e: e| e \sigma_{I} \\
v & ::=c \mid\left\langle\lambda_{\sigma_{J}}^{t} x . e, \mathcal{E}, \sigma_{I}\right\rangle
\end{aligned}
$$

$$
(\mathrm{CLOSURE}) \overline{\sigma_{I} ; \mathcal{E} \vdash_{\mathrm{p}} \lambda_{\sigma_{J}}^{t} x . e \Downarrow\left\langle\lambda_{\sigma_{J}}^{t} \text { x.e, } \mathcal{E}, \sigma_{l}\right\rangle}
$$ restore the environment

$$
\text { (INSTANCE) } \frac{\sigma_{l} \circ \sigma_{j} ; \mathcal{E} \vdash_{\mathrm{p}} e \Downarrow v}{\sigma_{l} ; \mathcal{E} \vdash_{\mathrm{p}} e \sigma_{J} \Downarrow v}
$$

(APPLY)
 $\sigma_{1} ; \mathcal{E} \vdash_{\mathrm{p}} e_{1} e_{2} \Downarrow v$
where $\sigma_{J}=\sigma_{H} \circ \sigma_{K}$ and $P=\left\{j / \in J \mid \exists \ell \in L: v_{0} \in_{\mathrm{p}} s_{\ell} \sigma_{j}\right\}$
restore the type substitutions

Polymorphic language: naive implementation

$\left(\sigma_{l}\right.$ short for $\left.\left[\sigma_{i}\right]_{i \in I}\right)$

$$
\begin{aligned}
& e::=c|x| \lambda_{\sigma_{I}}^{t} x . e \mid \text { ee }|e \in t ? e: e| e \sigma_{I} \\
& v::=c \mid\left\langle\lambda_{\sigma_{J}}^{t} x . e, \mathcal{E}, \sigma_{I}\right\rangle
\end{aligned}
$$

(Closure)

$$
\overline{\sigma_{l} ; \mathcal{E} \vdash_{\mathrm{p}} \lambda_{\sigma_{J}}^{t} x . e \Downarrow\left\langle\lambda_{\sigma_{J}}^{t} x . e, \mathcal{E}, \sigma_{l}\right\rangle}
$$

(Apply)
$\frac{\sigma_{l} ; \mathcal{E} \vdash_{\mathrm{p}} e_{1} \Downarrow\left\langle\lambda_{\sigma_{K}}^{\wedge_{\ell \in L} \mathcal{S}_{\ell} \rightarrow t_{\ell}} X . e, \mathcal{E}^{\prime}, \sigma_{H}\right\rangle \quad \sigma_{l} ; \mathcal{E} \vdash_{\mathrm{p}} e_{2} \Downarrow v_{0} \backsim \sigma_{P} ; \mathcal{E}^{\prime}, x \mapsto v_{0} \vdash_{\mathrm{p}} e \Downarrow v}{\sigma_{l} ; \mathcal{E} \vdash_{\mathrm{p}} e_{1} e_{2} \Downarrow v}$ where $\sigma_{J}=\sigma_{H} \circ \sigma_{K}$ and $P=\left\{j \in J \mid \exists \ell \in L: v_{0} \in_{\mathrm{p}} \mathrm{s}_{\ell} \sigma_{j}\right\}$

Polymorphic language: naive implementation

$\left(\sigma_{l}\right.$ short for $\left.\left[\sigma_{i}\right]_{i \in I}\right)$

$$
\begin{aligned}
e & ::=c|x| \lambda_{\sigma_{l}}^{t} x . e \mid \text { ee }|e \in t ? e: e| e \sigma_{I} \\
v & ::=c \mid\left\langle\lambda_{\sigma_{J}}^{t} x . e, \mathcal{E}, \sigma_{I}\right\rangle
\end{aligned}
$$

(Closure)

$$
\overline{\sigma_{l} ; \mathcal{E} \vdash_{\mathrm{p}} \lambda_{\sigma_{J}}^{t} x . e \Downarrow\left\langle\lambda_{\sigma_{J}}^{t} x . e, \mathcal{E}, \sigma_{l}\right\rangle}
$$

(APPLY)

$$
\begin{aligned}
& \sigma_{l} ; \mathcal{E} \vdash_{p} e_{1} e_{2} \Downarrow v \\
& \text { where } \sigma_{J}=\sigma_{H} \circ \sigma_{K} \text { and } P=\left\{j \in J \mid \exists \ell \in L: v_{0} \in_{\mathrm{p}} s_{\ell} \sigma_{j}\right\}
\end{aligned}
$$

Problem:

At every application compute σ_{P} :

Polymorphic language: naive implementation

$\left(\sigma_{l}\right.$ short for $\left.\left[\sigma_{i}\right]_{i \in I}\right)$

$$
\begin{aligned}
& e::=c|x| \lambda_{\sigma_{I}}^{t} x . e \mid \text { ee }|e \in t ? e: e| e \sigma_{I} \\
& v::=c \mid\left\langle\lambda_{\sigma_{J}}^{t} x . e, \mathcal{E}, \sigma_{I}\right\rangle
\end{aligned}
$$

(Closure)

$$
\overline{\sigma_{l} ; \mathcal{E} \vdash_{\mathrm{p}} \lambda_{\sigma_{J}}^{t} x . e \Downarrow\left\langle\lambda_{\sigma_{J}}^{t} x . e, \mathcal{E}, \sigma_{l}\right\rangle}
$$

(APPLY)
(Instance) $\frac{\sigma_{l} \circ \sigma_{J} ; \mathcal{E} \vdash_{\mathrm{p}} e \Downarrow v}{\sigma_{l} \dot{\mathcal{E}} \vdash_{\mathrm{p}} e \sigma_{J} \Downarrow v}$ $\sigma_{1} ; \mathcal{E} \vdash_{\mathrm{p}} e_{1} \Downarrow\left\langle\lambda_{\sigma_{K}}^{\wedge_{\ell \in L} s_{\ell} \rightarrow t_{\ell}}\right.$ X.e, $\left.\mathcal{E}^{\prime}, \sigma_{H}\right\rangle \quad \sigma_{l} ; \mathcal{E} \vdash_{\mathrm{p}} e_{2} \Downarrow v_{0} \quad \sigma_{P} ; \mathcal{E}^{\prime}, x \mapsto v_{0} \vdash_{\mathrm{p}} e \Downarrow v$ $\sigma_{l} ; \mathcal{E} \vdash_{\mathrm{p}} e_{1} e_{2} \Downarrow v$ where $\sigma_{J}=\sigma_{H} \circ \sigma_{K}$ and $P=\left\{j \in J \mid \exists \ell \in L: v_{0} \in_{\mathrm{p}} s_{\ell} \sigma_{j}\right\}$

Problem:

At every application compute σ_{P} :
(1) compose of two sets of type-substitution

Polymorphic language: naive implementation

$\left(\sigma_{l}\right.$ short for $\left.\left[\sigma_{i}\right]_{i \in I}\right)$

$$
\begin{aligned}
& e \quad:=c|x| \lambda_{\sigma_{l}}^{t} x . e \mid \text { ee }|e \in t ? e: e| e \sigma_{I} \\
& v \quad:=c \mid\left\langle\lambda_{\sigma_{J}}^{t} x . e, \mathcal{E}, \sigma_{I}\right\rangle
\end{aligned}
$$

(Closure)

$$
\overline{\sigma_{l} ; \mathcal{E} \vdash_{\mathrm{p}} \lambda_{\sigma_{J}}^{t} x . e \Downarrow\left\langle\lambda_{\sigma_{J}}^{t} x . e, \mathcal{E}, \sigma_{l}\right\rangle}
$$

(Apply)
$\underline{\sigma_{l} ; \mathcal{E} \vdash_{\mathrm{p}} e_{1} \Downarrow\left\langle\lambda_{\sigma_{K}}^{\wedge_{\ell \in L} \mathcal{S}_{\ell} \rightarrow t_{\ell}} X . e, \mathcal{E}^{\prime}, \sigma_{H}\right\rangle \quad \sigma_{I} ; \mathcal{E} \vdash_{\mathrm{p}} e_{2} \Downarrow v_{0} \quad \sigma_{P} ; \mathcal{E}^{\prime}, x \mapsto v_{0} \vdash_{\mathrm{p}} e \Downarrow v}$ $\sigma_{l} ; \mathcal{E} \vdash_{\mathrm{p}} e_{1} e_{2} \Downarrow v$ where $\sigma_{J}=\sigma_{H} \circ \sigma_{K}$ an $P=\left\{j \in J \mid \exists \ell \in L: v_{0} \in_{\mathrm{p}} s_{\ell} \sigma_{j}\right\}$

Problem:
At every application compute σ_{P} :
(1) compose of two sets of type-substitution
(2) select the substitutions compatible with the argument v_{0}

Polymorphic language: naive implementation

At every application compute σ_{P} :
(1) compose of two sets of type-substitution
(2) select the substitutions compatible with the argument v_{0}

Polymorphic language: naive implementation

$\left(\sigma_{l}\right.$ short for $\left.\left[\sigma_{i}\right]_{i \in I}\right)$

Solution:

Compute compositions and selections lazily.

Intermediate language as compilation target

$$
\begin{aligned}
& e::=c|x| \lambda^{t} x . e \mid \text { ee } \mid e \in t ? e: e \\
& v::=c \mid\left\langle\lambda^{t} x . e, \mathcal{E}\right\rangle
\end{aligned}
$$

(Closure)

$$
\overline{\mathcal{E} \vdash \lambda^{t} x . e \Downarrow\left\langle\lambda^{t} x . e, \mathcal{E}\right\rangle}
$$

(ApPLY) $\frac{\mathcal{E} \vdash e_{1} \Downarrow\left\langle\lambda^{t} x . e, \mathcal{E}^{\prime}\right\rangle \quad \mathcal{E} \vdash e_{2} \Downarrow v_{0} \quad \mathcal{E}^{\prime}, x \mapsto v_{0} \vdash e \Downarrow v}{\mathcal{E} \vdash e_{1} e_{2} \Downarrow v}$
(Typecase True)

$$
\frac{\mathcal{E} \vdash e_{1} \Downarrow v_{0} \quad v_{0} \in t \quad \mathcal{E} \vdash e_{2} \Downarrow v}{\mathcal{E} \vdash e_{1} \in t ? e_{2}: e_{3} \Downarrow v}
$$

$$
c \in t \stackrel{\text { def }}{=}\{c\} \leq t
$$

$$
\left\langle\lambda^{s} x . e, \mathcal{E}\right\rangle \in t \quad \stackrel{\text { def }}{=} \quad s \leq t
$$

(Typecase False)
$\frac{\mathcal{E} \vdash e_{1} \Downarrow v_{0} \quad v_{0} \notin t \quad \mathcal{E} \vdash e_{3} \Downarrow v}{\mathcal{E} \vdash e_{1} \in t ? e_{2}: e_{3} \Downarrow v}$

Intermediate language as compilation target

$$
\begin{array}{rll|l|l|l|l|l|}
e & ::=c|x| \lambda_{\Sigma}^{t} x . e \mid \text { ee } \mid e \in t ? e: e \\
v & ::=c \mid\left\langle\lambda_{\Sigma}^{t} x \cdot e, \mathcal{E}\right\rangle \\
\Sigma & ::=\sigma_{l}\left|\operatorname{comp}\left(\Sigma, \Sigma^{\prime}\right)\right| \operatorname{sel}(x, t, \Sigma) \quad \text { symbolic substitutions }
\end{array}
$$

(Closure)

$$
\overline{\mathcal{E}} \vdash \lambda^{t} \times . e \Downarrow\left\langle\lambda^{t} \times . e, \mathcal{E}\right\rangle
$$

(Typecase True)

$\mathcal{E} \vdash e_{1} \Downarrow v_{0} \quad v_{0} \in t \quad \mathcal{E} \vdash e_{2} \Downarrow v$ $\mathcal{E} \vdash e_{1} \in t ? e_{2}: e_{3} \Downarrow v$

(Typecase False)

$c \in t \quad \stackrel{\text { def }}{=} \quad\{c\} \leq t$
$\left\langle\lambda^{s} x . e, \mathcal{E}\right\rangle \in t \quad \stackrel{\text { def }}{=} \quad s \leq t$

Intermediate language as compilation target

$$
\begin{array}{rll|l|l|l|l|l}
e & ::= & c|x| \lambda_{\Sigma}^{t} x . e \mid \text { ee } \mid e \in t ? e: e \\
v & ::=c \mid\left\langle\lambda_{\Sigma}^{t} x . e, \mathcal{E}\right\rangle & \\
\Sigma & ::= & \sigma_{l}\left|\operatorname{comp}\left(\Sigma, \Sigma^{\prime}\right)\right| \operatorname{sel}(x, t, \Sigma) \quad \text { symbolic substitutions }
\end{array}
$$

(Closure)

$$
\overline{\mathcal{E} \vdash \lambda_{\Sigma}^{t} x . e \Downarrow\left\langle\lambda_{\Sigma}^{t} x . e, \mathcal{E}\right\rangle}
$$

$(\mathrm{APPLY}) \frac{\mathcal{E} \vdash e_{1} \Downarrow\left\langle\lambda_{\Sigma}^{t} x . e, \mathcal{E}^{\prime}\right\rangle \quad \mathcal{E} \vdash e_{2} \Downarrow v_{0} \quad \mathcal{E}^{\prime}, x \mapsto v_{0} \vdash e \Downarrow v}{\mathcal{E} \vdash e_{1} e_{2} \Downarrow v}$

(Typecase True)
 $\mathcal{E} \vdash e_{1} \Downarrow v_{0} \quad v_{0} \in t \quad \mathcal{E} \vdash e_{2} \Downarrow v$ $\mathcal{E} \vdash e_{1} \in t ? e_{2}: e_{3} \Downarrow v$

Intermediate language as compilation target

$$
\begin{array}{rll|l|l|l|l|l|l|}
e & ::= & c|x| \lambda_{\Sigma}^{t} x . e \mid \text { ee } \mid e \in t ? e: e \\
v & ::=c \mid\left\langle\lambda_{\Sigma}^{t} x \cdot e, \mathcal{E}\right\rangle & \\
\Sigma & ::= & \sigma_{l}\left|\operatorname{comp}\left(\Sigma, \Sigma^{\prime}\right)\right| \operatorname{sel}(x, t, \Sigma) \quad \text { symbolic substitutions }
\end{array}
$$

(Closure)

$$
\overline{\mathcal{E}} \vdash \lambda_{\Sigma}^{t} x \cdot e \Downarrow\left\langle\lambda_{\Sigma}^{t} x \cdot e, \mathcal{E}\right\rangle
$$

(Typecase True)

$$
\frac{\mathcal{E} \vdash e_{1} \Downarrow v_{0} \quad v_{0} \in t \quad \mathcal{E} \vdash e_{2} \Downarrow v}{\mathcal{E} \vdash e_{1} \in t ? e_{2}: e_{3} \Downarrow v} \quad \frac{\mathcal{E} \vdash e_{1} \Downarrow v_{0} \quad v_{0} \notin t \quad \mathcal{E} \vdash e_{3} \Downarrow v}{\mathcal{E} \vdash e_{1} \in t ? e_{2}: e_{3} \Downarrow v}
$$

$$
c \in t \quad \stackrel{\text { def }}{=}\{c\} \leq t
$$

$$
\left\langle\lambda^{s} x . e, \mathcal{E}\right\rangle \in t \quad \stackrel{\text { def }}{=} \quad s \leq t
$$

Intermediate language as compilation target

$$
\begin{array}{rll|l|l|l|l|l|l|}
e & ::=c \mid e \in t \\
v & ::=c \mid\left\langle\lambda_{\Sigma}^{t} x \cdot e, \mathcal{E}\right\rangle & \\
\Sigma & ::= & \sigma_{l}\left|\operatorname{comp}\left(\Sigma, \Sigma^{\prime}\right)\right| \operatorname{sel}(x, t, \Sigma) \quad \text { symbolic substitutions }
\end{array}
$$

(Closure)

$$
\overline{\mathcal{E}} \vdash \lambda_{\Sigma}^{t} x . e \Downarrow\left\langle\lambda_{\Sigma}^{t} x . e, \mathcal{E}\right\rangle
$$

(Typecase True)

$$
\begin{aligned}
\frac{\mathcal{E} \vdash e_{1} \Downarrow v_{0} \quad v_{0} \in t \quad \mathcal{E} \vdash e_{2} \Downarrow v}{\mathcal{E} \vdash e_{1} \in t ? e_{2}: e_{3} \Downarrow v} & \frac{\mathcal{E} \vdash e_{1} \Downarrow v}{\mathcal{E} \vdash t} \\
c \in t & \stackrel{\text { def }}{=}\{c \mid / t \\
\left\langle\lambda^{s} x . e, \mathcal{E}\right\rangle \in t & \stackrel{\text { def }}{=} s \leq t
\end{aligned}
$$

Intermediate language as compilation target

$$
\begin{array}{rll}
e & ::=c|x| \lambda_{\Sigma}^{t} x . e \mid \text { ee } \mid e \in t ? e: e \\
v & ::=c \mid\left\langle\lambda_{\Sigma}^{t} x \cdot e, \mathcal{E}\right\rangle \\
\Sigma & ::=\sigma_{l}\left|\operatorname{comp}\left(\Sigma, \Sigma^{\prime}\right)\right| \operatorname{sel}(x, t, \Sigma) \quad \text { symbolic substitutions }
\end{array}
$$

(Closure)

$$
\overline{\mathcal{E}} \vdash \lambda_{\Sigma}^{t} x \cdot e \Downarrow\left\langle\lambda_{\Sigma}^{t} x \cdot e, \mathcal{E}\right\rangle
$$

(Typecase True)

$$
\frac{\mathcal{E} \vdash e_{1} \Downarrow v_{0} \quad v_{0} \in t \quad \mathcal{E} \vdash e_{2} \Downarrow v}{\mathcal{E} \vdash e_{1} \in t ? e_{2}: e_{3} \Downarrow v} \quad \frac{\mathcal{E} \vdash e_{1} \Downarrow v_{0} \quad v_{0} \notin t \quad \mathcal{E} \vdash e_{3} \Downarrow v}{\mathcal{E} \vdash e_{1} \in t ? e_{2}: e_{3} \Downarrow v}
$$

$$
c \in t \quad \stackrel{\text { def }}{=}\{c\} \leq t
$$

$$
\left\langle\lambda_{\Sigma}^{s} x . e, \mathcal{E}\right\rangle \in t \quad \stackrel{\text { def }}{=} \quad s(\operatorname{eval}(\mathcal{E}, \Sigma)) \leq t
$$

Intermediate language as compilation target

$$
\begin{aligned}
& e::=c|x| \lambda_{\Sigma}^{t} x . e|e e| e \in t ? e: e \\
& v::=c \mid\left\langle\lambda_{\Sigma}^{t} x \cdot e, \mathcal{E}\right\rangle \\
& \Sigma::=\sigma_{l}\left|\operatorname{comp}\left(\Sigma, \Sigma^{\prime}\right)\right| \operatorname{sel}(x, t, \Sigma) \quad \text { symbolic substitutions }
\end{aligned}
$$

(Closure)

$$
\overline{\mathcal{E} \vdash \lambda_{\Sigma}^{t} x . e \Downarrow\left\langle\lambda_{\Sigma}^{t} x . e, \mathcal{E}\right\rangle}
$$

(ApPLY) $\frac{\mathcal{E} \vdash e_{1} \Downarrow\left\langle\lambda \lambda^{t} x . e, \mathcal{E}^{\prime}\right\rangle \quad \mathcal{E} \vdash e_{2} \Downarrow v_{0} \quad \mathcal{E}^{\prime}, x \mapsto v_{0} \vdash e \Downarrow v}{\mathcal{E} \vdash e_{1} e_{2} \Downarrow v}$
(Typecase True)

$$
\frac{\mathcal{E} \vdash e_{1} \Downarrow v_{0} \quad v_{0} \in t \quad \mathcal{E} \vdash e_{2} \Downarrow v}{\mathcal{E} \vdash e_{1} \in t ? e_{2}: e_{3} \Downarrow v}
$$

(Typecase False)

$$
\frac{\mathcal{E} \vdash e_{1} \Downarrow v_{0} \quad v_{0} \notin+\mathcal{E} \vdash e_{2} \Downarrow v}{\mathcal{E} \vdash e_{1} \in t ? e_{2}: \operatorname{Ve}^{2}} \boldsymbol{p}
$$

Compilation

(1) Compile into the intermediate language

$$
\begin{aligned}
\llbracket x \rrbracket_{\Sigma} & =x \\
\llbracket \lambda_{\sigma_{0}}^{t} x \cdot \rrbracket_{\Sigma} & =\lambda_{\operatorname{comp}\left(\Sigma, \sigma_{1} x\right.}^{t} \cdot \llbracket e \rrbracket_{\operatorname{sel}\left(x, t, \operatorname{comp}\left(\Sigma, \sigma_{l}\right)\right)} \\
\llbracket e_{1} e_{2} \rrbracket_{\Sigma} & =\llbracket e_{1} \rrbracket_{\Sigma \llbracket e_{2} \rrbracket_{\Sigma}} \\
\llbracket e \sigma_{\sigma} \rrbracket_{\Sigma} & =\llbracket e \rrbracket_{\operatorname{comp}\left(\Sigma, \sigma_{1}\right)} \\
\llbracket e_{1} \in t ? e_{2}: e_{3} \rrbracket_{\Sigma} & =\llbracket e_{1} \rrbracket_{\Sigma} \in t ? \llbracket e_{2} \rrbracket_{\Sigma}: \llbracket e_{3} \rrbracket_{\Sigma}
\end{aligned}
$$

Compilation

(1) Compile into the intermediate language

$$
\begin{aligned}
\llbracket x \rrbracket_{\Sigma} & =x \\
\llbracket \lambda_{\sigma_{0}}^{t} x \cdot \rrbracket_{\Sigma} & =\lambda_{\operatorname{comp}\left(\Sigma, \sigma_{1} x\right.}^{t} \cdot \llbracket e \rrbracket_{\operatorname{sel}\left(x, t, \operatorname{comp}\left(\Sigma, \sigma_{l}\right)\right)} \\
\llbracket e_{1} e_{2} \rrbracket_{\Sigma} & =\llbracket e_{1} \rrbracket_{\Sigma \llbracket e_{2} \rrbracket_{\Sigma}} \\
\llbracket e \sigma_{\sigma} \rrbracket_{\Sigma} & =\llbracket e \rrbracket_{\operatorname{comp}\left(\Sigma, \sigma_{1}\right)} \\
\llbracket e_{1} \in t ? e_{2}: e_{3} \rrbracket_{\Sigma} & =\llbracket e_{1} \rrbracket_{\Sigma} \in t ? \llbracket e_{2} \rrbracket_{\Sigma}: \llbracket e_{3} \rrbracket_{\Sigma}
\end{aligned}
$$

(2) For $\left\langle\lambda_{\Sigma}^{s} x . e, \mathcal{E}\right\rangle \in t \stackrel{\text { def }}{=} s(\operatorname{eval}(\mathcal{E}, \Sigma)) \leq t$ we have $s(\operatorname{eval}(\mathcal{E}, \Sigma)) \neq s$ only if $\lambda_{\Sigma}^{s} x . e$ results from the partial application of a polymorphic function (ie, in s there occur free variables bound in the context).

Compilation

(1) Compile into the intermediate language

$$
\begin{aligned}
& \begin{aligned}
\llbracket x \rrbracket_{\Sigma} & =x \\
\llbracket \lambda_{\sigma_{I}}^{t} x \cdot e \rrbracket_{\Sigma} & =\lambda_{\operatorname{comp}\left(\Sigma, \sigma_{1}\right)}^{t} x \cdot \llbracket e \rrbracket_{\operatorname{sel}\left(x, t, \operatorname{comp}\left(\Sigma, \sigma_{I}\right)\right)}
\end{aligned} \\
& \llbracket e_{1} e_{2} \rrbracket_{\Sigma}=\llbracket e_{1} \rrbracket_{\Sigma} \llbracket e_{2} \rrbracket_{\Sigma} \\
& \llbracket e \sigma_{l} \rrbracket_{\Sigma}=\llbracket e \rrbracket_{\operatorname{comp}\left(\Sigma, \sigma_{l}\right)} \\
& \llbracket e_{1} \in t ? e_{2}: e_{3} \rrbracket_{\Sigma}=\llbracket e_{1} \rrbracket_{\Sigma} \in t ? \llbracket e_{2} \rrbracket_{\Sigma}: \llbracket e_{3} \rrbracket_{\Sigma}
\end{aligned}
$$

(2) For $\left\langle\lambda_{\Sigma}^{s} x . e, \mathcal{E}\right\rangle \in t \stackrel{\text { def }}{=} s(\operatorname{eval}(\mathcal{E}, \Sigma)) \leq t$ we have $s(\operatorname{eval}(\mathcal{E}, \Sigma)) \neq s$ only if $\lambda_{\Sigma}^{s} x . e$ results from the partial application of a polymorphic function (ie, in s there occur free variables bound in the context).

Execution is slowed only when testing the type of the result of a partial application of a polymorphic function.

Compilation

(1) Compile into the intermediate language

$$
\begin{aligned}
& \begin{aligned}
\llbracket x \rrbracket_{\Sigma} & =x \\
\llbracket \lambda_{\sigma_{T}}^{t} x \cdot e \rrbracket_{\Sigma} & =\lambda_{\operatorname{comp}\left(\Sigma, \sigma_{I}\right)}^{t} x \cdot \llbracket e \rrbracket_{\operatorname{sel}\left(x, t, \operatorname{comp}\left(\Sigma, \sigma_{I}\right)\right)}
\end{aligned} \\
& \llbracket e_{1} e_{2} \rrbracket_{\Sigma}=\llbracket e_{1} \rrbracket_{\Sigma} \llbracket e_{2} \rrbracket_{\Sigma} \\
& \llbracket e \sigma_{l} \rrbracket_{\Sigma}=\llbracket e \rrbracket_{\operatorname{comp}\left(\Sigma, \sigma_{l}\right)} \\
& \llbracket e_{1} \in t ? e_{2}: e_{3} \rrbracket_{\Sigma}=\llbracket e_{1} \rrbracket_{\Sigma} \in t ? \llbracket e_{2} \rrbracket_{\Sigma}: \llbracket e_{3} \rrbracket_{\Sigma}
\end{aligned}
$$

(2) For $\left\langle\lambda_{\Sigma}^{s} x . e, \mathcal{E}\right\rangle \in t \stackrel{\text { def }}{=} s(\operatorname{eval}(\mathcal{E}, \Sigma)) \leq t$ we have $s(\operatorname{eval}(\mathcal{E}, \Sigma)) \neq s$ only if $\lambda_{\Sigma}^{s} x . e$ results from the partial application of a polymorphic function (ie, in s there occur free variables bound in the context).

Execution is slowed only when testing the type of the result of a partial application of a polymorphic function.
(3) This holds also with products (used to encode lists records and XML), whose testing accounts for most of the execution time.

Conclusion

Theory: All the theoretical machinery necessary to design and implement a programming language is there. The practical relevance of the open theoretical issues is negligible.

Theory: All the theoretical machinery necessary to design and implement a programming language is there. The practical relevance of the open theoretical issues is negligible.

Languages: The polymorphic extension of $\mathbb{C D u c e}$ is being implemented. Future applications: polymorphic extensions of XQuery and embedding some of this type machinery in ML.

Theory: All the theoretical machinery necessary to design and implement a programming language is there. The practical relevance of the open theoretical issues is negligible.

Languages: The polymorphic extension of $\mathbb{C D u c e}$ is being implemented. Future applications: polymorphic extensions of XQuery and embedding some of this type machinery in ML. Runtime: Relabeling cannot be avoided but it is materialized only in case of partial polymorphic applications that end up in type-cases, that is, just when it is needed.

Theory: All the theoretical machinery necessary to design and implement a programming language is there. The practical relevance of the open theoretical issues is negligible.

Languages: The polymorphic extension of $\mathbb{C D u c e}$ is being implemented. Future applications: polymorphic extensions of XQuery and embedding some of this type machinery in ML. Runtime: Relabeling cannot be avoided but it is materialized only in case of partial polymorphic applications that end up in type-cases, that is, just when it is needed.

Implementation: Subtyping of polymorphic types require minimal modifications to the implementation. Existing data structures (e.g., binary decision trees with lazy unions) and optimizations mostly transpose smoothly.

Theory: All the theoretical machinery necessary to design and implement a programming language is there. The practical relevance of the open theoretical issues is negligible.
Languages: The polymorphic extension of $\mathbb{C D u c e}$ is being implemented. Future applications: polymorphic extensions of XQuery and embedding some of this type machinery in ML.
Runtime: Relabeling cannot be avoided but it is materialized only in case of partial polymorphic applications that end up in type-cases, that is, just when it is needed.
Implementation: Subtyping of polymorphic types require minimal modifications to the implementation. Existing data structures (e.g., binary decision trees with lazy unions) and optimizations mostly transpose smoothly.
Type reconstruction: Full usage needs more research, expecially about the production of human readable types and helpful error messages, but it is mature enough to use it to type local functions.

