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1 INTRODUCTION
Code refactoring is a routine task, necessary to either update or develop software. Correct refactoring

in turn necessitates ensuring that a (new) program𝑞 can be used in place of a program 𝑝 . Usually this

is tackled via refinement relations. In the setting of programming languages, the most well-known

is the extensional preorder defined by Morris [1969, pag. 50], by letting 𝑝 ≤ 𝑞 if for all contexts 𝐶 ,

whenever 𝐶 [𝑝] reduces to a normal form 𝑁 , then 𝐶 [𝑞] also reduces to 𝑁 .

In the setting of nondeterministic asynchronous client-server systems it is natural to reformulate

the preorder by replacing reduction to normal forms (i.e. termination) with a suitable liveness

property. Let 𝑝 V 𝑟 denote an asymmetric parallel composition in which the identities of the

server 𝑝 and the client 𝑟 are distinguished, and whose computations have the form

𝑝 V 𝑟 −→ 𝑝1 V 𝑟1 −→ 𝑝2 V 𝑟2 −→ . . .

where each step represents either an internal computation of one of the two components, or an

interaction between them via message-passing. We express liveness by saying that 𝑝 must pass 𝑟 ,

denoted must (𝑝, 𝑟 ), if in every maximal execution of 𝑝 V 𝑟 , there exists a state 𝑝𝑖 V 𝑟𝑖 such that

𝑟𝑖 good, where good is a decidable predicate indicating that the client has reached a successful

state.

Observe that must (𝑝, 𝑟 ) literally means that “in every execution something good must happen

(on the client side)”.

Servers are then compared according to their capacity to satisfy clients, namely to lead them

to a successful state. In other words, servers are compared only via contexts of the form [−] V 𝑟 ,

as argued also by Thati [2003]. Then Morris preorder, when restricted to computations leading to

successful states, boils down to the must-preorder of De Nicola and Hennessy [1984]:

𝑝 ⊏∼must
𝑞 if ∀𝑟 . must (𝑝, 𝑟 ) implies must (𝑞, 𝑟 ).

The must-preorder is by definition an archetype of a liveness preserving preorder, moreover its

definition is syntax-agnostic: to define must-preorder it is sufficient to have a reduction semantics

for the parallel composition of programs, and some predicate good. For instance, the servers written
in Erlang could be compared according to clients written in Elixir, because we know how to

model their parallel executions. The work of Hirschkoff et al. [2023] provides an analogous example

for the Morris preorder itself.

The must-preorder, like Morris one, is contextual: to prove that 𝑝 ⊏∼must
𝑞, a quantification over an

infinite number of clients is required, and so the definition of the preorder does not entail an effective

proof method. The solution to this problem is to devise an alternative (semantic) characterisation of

the preorder ⊏∼must
, i.e. a preorder ≼alt endowed with a practical proof method and such that the

equality ≼alt = ⊏∼must
is true.

In synchronous settings, that is when both inputs and output actions are blocking, such charac-

terisations have been thoroughly investigated, and typical techniques to define them are either

behavioural or logical. In the asynchronous setting, i.e. when send actions are not blocking, and

communication takes places via a shared unordered buffer, the must-preorder has received com-

paratively less attention. Paul Laforgue, under the supervision of Giovanni Bernardi, though, has

recently mechanised a characterisation of the must-preorder for the output-buffered agents with
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feedback proposed by Selinger [1997]. The code is available online [Bernardi et al. 2023], and a pub-

lication in under preparation.
1
These agents are a very general setting to reason on asynchronous

behaviours. In particular, asynchronous CCS and asynchronous 𝜋-calculus are instances of this

family of agents.

2 RESEARCH LINES FOR SUMMER INTERNS
Much research remains to be done, and we are looking for outstanding interns willing to work

ideally with pen-and-paper and possibly in Coq. We present here a series of topics that we would

like to investigate together with interns, possibly leading to a PhD thesis. Note that the following

list of problems is not exhaustive, and we encourage any potential candidate to contact directly G.

Bernardi.

Characterisation of the may-preorder. The simplest preorder in testing theory is the may-preorder,

which is obtained stating that a server 𝑝 satisfies a client 𝑟 if there exists a maximal computation

of 𝑝 V 𝑟 in which the client reaches a good state.

We would like to characterise the ⊏∼may
using the same technique we used to reason on ⊏∼must

,

namely treating programs as forwarders. We claim that this is possible, and easy to be done. The

result would be stronger than (i.e. implies) the ones that exists in the literature by [Castellani and

Hennessy 1998; Boreale et al. 2002].

Characterisations for infinite branching state transition systems. The current characterisation of

the must-preorder does not treat infinite branching LTSs. However it is easy to define them in Coq.

Following Bernardi and Hennessy [2015], what seems sufficient and necessary is to add to the

characterisation a condition on the inclusion of infinite traces. In the synchronous settings, this

amount to proving that if 𝑝 ⊏∼must
𝑞 and 𝑞 performs an infinite trace𝑤 , so does 𝑝 .

At present, it is not clear how to state this condition neither with pen-and-paper, neither in Coq.

The difficulties with pen-and-paper are due to the asymmetry between output and input actions,

while the difficulties in Coq are due to the finitary treatment of infinite traces. To make things

worse, in the asynchronous setting not all traces can be tested.

This is certainly a path worth investigating for theoretical reasons.

Treating input-buffered agents. The axioms for output-buffered agents by Selinger [1997] have a

symmetric set of axioms for input-buffered agents. It would be interesting to know if the proofs we

devised so far can be adapted “out-of-the-box” to the LTS of input-buffered agents.

At present, this is interesting for theoretical reasons, and in particular to understand how general

are our proofs.

Semantic models of subtyping for session types. Testing preorders provide semantic models of

subtyping for binary session types, both in synchronous and asynchronous settings [Bernardi and

Hennessy 2016a,b; Bravetti et al. 2021]. We would like to mechanise in our framework these results,

in particular the ones about asynchronous semantics, and contrast and compare the various testing

preorders used in the literature.

This venue is worth attention for practical purposes, and in particular to devise provably sound

algorithms to prove that two types in a testing preorder. The problem is not trivial because in

general it is undecidable.

Preorders for Erlang. Both Tanti and Francalanza [2015] and Caruana [2019] define LTSs for

Erlang. We wish to study whether at least one of these LTS is an instance of output-buffered

1
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agents with feedback. If this is not the case we would like define an LTS that satisfies Selinger’s

axioms.

This study is definitely geared towards practical applications, and in particular devising sound

techniques for code refactoring in Erlang and Elixir.

Liveness preserving choreographies. We would like to give to the compositional choreographies

introduced by Montesi and Yoshida [2013] an asynchronous semantics, and then use the must-

preorder to prove the correctness of the projection function EPP, i.e. prove the following fact,

∀ choreography𝐶.𝐶 ⊏∼must
Π𝑎∈names (𝐶 )𝐸𝑃𝑃 (𝐶, 𝑎)

We expect this notion of correctness to be less restrictive than the one based on bisimulation.
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