
Analysing and Optimising Parallel Snapshot Isolation

Giovanni Bernardi1, Andrea Cerone1, Alexey Gotsman1, and Hongseok Yang2

1IMDEA Software Institute 2 University of Oxford

Introduction. To achieve availability and scalability, modern Internet services often rely on geo-
replicated databases, which maintain multiple replicas of data in geographically distinct locations. The
database clients can execute transactions on the data at any of the replicas, and these replicas commu-
nicate changes to each other using message passing. Ideally, we want the database to provide strong
guarantees about transaction processing, such as serialisability. Unfortunately, achieving this requires
excessive synchronisation among replicas, which increases latency and limits scalability. This has mo-
tivated a recent exploration of consistency models for transactions that weaken the consistency guaran-
tees in exchange for gains in availability and scalability (e.g., [8, 6, 2]). The models being proposed
for geo-replicated databases differ in how much they weaken consistency and, in particular, which non-
serialisable behaviours (anomalies) they expose to application programmers. Unfortunately, we cur-
rently lack a systematic understanding of when programmers can use a particular weaker consistency
model without violating correctness. And when an application is correct on a given consistency model,
we do not know whether the model can safely be weakened even further to improve performance.

We report on a work in progress to address these issues. As a first step, we focus on just one
consistency model—Parallel Snapshot Isolation (PSI) [8, 6], which weakens the classical snapshot iso-
lation [3] in a way that allows more scalable geo-replicated implementations. We propose two static
analysis techniques for applications using a PSI database. First, we present a criterion for checking if
an application is robust, i.e., behaves the same whether using a PSI database or a serialisable one. This
follows up on an existing robustness criterion for the classical snapshot isolation [5], which has proved
useful for understanding when it is safe to use this consistency level. Second, we propose a criterion
for checking when transactions running on PSI can be chopped into smaller pieces without introducing
new behaviours [7]. Chopping transactions can improve performance [9]. Thus, when PSI is acceptable
for an application, our criterion enables programmers to optimise the code of their transactions to im-
prove scalability even further. The proofs of soundness of our static analyses exploit a novel axiomatic
formulation of PSI that we describe in a companion submission [4].

Our results are initial steps towards understanding how the behaviour of applications is affected by
consistency models of geo-replicated databases. We hope that further work in this direction will allow
us to come up with consistency models that strike an optimal trade-off between achieving scalability
and providing meaningful guarantees to applications.

rw
, xrw

, y

wr, x

wr, y

wr(x, 1) rd(x, 1) rd(y, 0)
prog. order

wr(y, 1) rd(y, 1) rd(x, 0)
prog. order

Parallel snapshot isolation. A PSI database con-
sists of a number of replicas, each storing all objects
in the database. A transaction initially executes at a
single replica and reads object values from a snap-
shot of the replica state. PSI precludes write conflicts:
when two concurrent transactions write to the same
object, one of them must abort. A transaction first
commits at the original replica, after which its effects are propagated asynchronously to other replicas.
Unlike snapshot isolation, PSI does not enforce a global ordering on committed transactions: these are
propagated between replicas in causal order. For this reason, PSI admits executions that are not allowed
by snapshot isolation (and, consequently, serialisability). One of such executions is a long fork anomaly
shown in the figure (boxes denote transactions; edges between them are explained in the following). We

1



have two concurrent transactions writing to objects x and y. A third transaction sees the write to x, but
not y, and a fourth one sees the write to y, but not x. This anomaly can happen when each transaction
executes at a separate replica, and the messages about the writes to x and y are delivered to the replicas
executing the reading transactions in different orders.

Robustness. We assume a set P = {P1, . . . , Pn} of transactional programs, defining the code of
transactions in an application. At run-time, an application can call each program multiple times, thus
giving rise to multiple transactions. We do not fix a particular programming language, but assume that,
for each Pi ∈ P , we are given the sets of the objects that may be read or written by a transaction
arising from executing Pi (sets R+

i and W+
i ), or must be written by every transaction arising from Pi

(set W−i ); in particular W−i ⊆ W+
i . Based on these sets, we construct a static dependency graph

SDG(P) = (P, 99K,←→). Its nodes are transactional programs, and its edges describe possible depen-
dencies between different programs, analogous to those in serialisation graphs [1]. The directed edges
99K describe the dependencies that may exist at run-time, and the undirected edges←→ the dependen-
cies that must always exist. We define the edges between programs Pi and Pj as follows:

• Pi
wr,x−−→ Pj , if x ∈W+

i ∩R
+
j : Pj may read the value of an object x written by Pi;

• Pi
rw,x−−→ Pj , if x ∈ R+

i ∩W
+
j : Pj may overwrite the value of an object x read by Pi;

• Pi
ww,x−−→ Pj , if x ∈W+

i ∩W
+
j : Pj may overwrite the value of an object x written by Pi;

• Pi
ww,x←−−→ Pj , if x ∈ W−i ∩W

−
j : Pi must overwrite the value of an object x written by Pi or

vice versa.

The following notion of necessity generalises that of vulnerability used in the robustness criterion
for classical snapshot isolation [5]. In a path π in the graph SDG(P), an edge P

rw,− → Q is necessary, if
for every P ′ before P on π (or equal to it), and every Q′ after Q on π (or equal to it), SDG(P) contains
no must edge P ′

ww,←−−→ Q′. For instance, in the following path the edge P
rw,− → Q is not necessary:

π = · · · P ′ · · · P Q · · · Q′ · · ·
rw,

ww,

Theorem 1 (Robustness). Assume SDG(P) has no cycle that contains at least two necessary edges
P

rw,x−−→ Q and P ′
rw,y− → Q′ with x 6= y. Then P behaves the same whether using a PSI database or

a serialisable one.

As shown in the figure with a long fork anomaly, the dependency graph of the corresponding pro-
gram must contain a critical cycle. We now apply Theorem 1 to prove an application robust. Consider a
database with tables CUST and SSN, respectively for customers and social security numbers. The fields
of CUST are an identifier, a balance, and a foreign key into the SSN table. The following transactional
programs satisfy the conditions of the theorem and, hence, produce only serialisable behaviours:

withdraw(id, amount) {

(bal, _) = CUST(id).read;

if (bal>amount)

CUST(id).write(bal-amount);

}

check(id) {

(bal, ssn_id)=

CUST(id).read;

if (bal<threshold)

ssn_cust =

SSN(ssn_id).read;

}

withdraw(id, amt) check(id)

ww, CUST(id)

wr, CUST(id)

rw, CUST(id)

2



Transaction chopping. We assume a set P = {P1, . . . , Pn} of chain programs. Each Pi defines the
code of a transaction, chopped into a chain of pieces Qi,1, . . . , Qi,ki . A program Pi can be executed
either as a single coarse-grained transaction, or as a sequence of fine-grained transactions arising from
executing its pieces; the latter is potentially more efficient [9]. The criterion we now define ensures that
both ways of executing the programs in P lead to the same behaviour. As before, we assume that for
each piece Qi,j we are given the sets R+

i,j and W+
i,j of objects that it may read or write; the must-write

set is not used in this case. The static chopping graph SCG(P) has the set of all pieces Qi,j as vertices
and contains the following edges:

• wr,−−→,
rw,−−→ and

ww,−−→, defined as before;
• Qi,j1

s−→ Qi,j2 , if j1 < j2: Qi,j2 succeeds Qi,j1 in a chain;

• Qi,j1
p−→ Qi,j2 , if j1 > j2: Qi,j2 preceeds Qi,j1 in a chain.

Theorem 2 (Chopping). Assume SCG(P) has no cycle that contains at most one rw edge and con-

tains a subpath of the form λ1−→ p−→ λ2−→, where λ1, λ2 ∈ {(wr, ), (ww, ), (rw, )}. Then executing
the programs in P using a PSI database as coarse-grained transactions or as chains of fined-grained
transactions produces the same set of behaviours.

wr(x) rd(y) rd(y)

wr(y) rd(y) rd(x)

s

p

s

p

wr,

rw,

wr,

rw,

wr,

wr,

rw,

rw,

The theorem gives conditions under which
chopping transactions does not introduce new be-
haviours. These conditions are more permissive
than those for transaction chopping under serial-
isability [7]. As an example, consider the static
chopping graph shown below, which could be
obtained from an application producing the long
fork anomaly. The dashed boxes group pieces
into chains. Since the graph has no cycle with
at most one rw-edge, we can safely optimise the
application by running each of the two read-only
transaction as a chain of two smaller transactions.

References

[1] A. Adya. Weak Consistency: A Generalized Theory and Optimistic Implementations for Distributed Transac-
tions. Ph.D., MIT, 1999.

[2] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Highly Available Transactions:
virtues and limitations. In VLDB, 2014.

[3] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil. A critique of ANSI SQL isolation
levels. In SIGMOD, 1995.

[4] G. Bernardi, A. Cerone, and A. Gotsman. A uniform formalisation of modern transactional consistency models,
2015. Companion submission.

[5] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D. Shasha. Making snapshot isolation serializable. ACM
Trans. Database Syst., 30(2), 2005.

[6] M. Saeida Ardekani, P. Sutra, and M. Shapiro. Non-monotonic snapshot isolation: Scalable and strong consis-
tency for geo-replicated transactional systems. In SRDS, 2013.

[7] D. Shasha, F. Llirbat, E. Simon, and P. Valduriez. Transaction chopping: Algorithms and performance studies.
ACM Trans. Database Syst., 20(3), 1995.

[8] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional storage for geo-replicated systems. In SOSP,
2011.

[9] Y. Zhang, R. Power, S. Zhou, Y. Sovran, M. K. Aguilera, and J. Li. Transaction chains: achieving serializability
with low latency in geo-distributed storage systems. In SOSP, 2013.

3


