Questions questions questions . . .

- What is a partial order over a set S?
- What is an equivalence relation over a set S?
- What is the greatest lower bound of a set S?
- When a system of equations is in solved form?
État Projet
Consider the famous fixed-point combinator

\[Y \equiv \lambda x. (\lambda y. x(yy))(\lambda y. x(yy)) \]

[...] It is not typable [...] But \(Y \) has considerable practical importance [...] and a theory that excludes it seems rather over restrictive. Can we find a more generous type-theory, one that assigns a type to \(Y \)?

Types with Intersection: An Introduction

J.R. Hindley, 1992
Consider the famous fixed-point combinator

\[Y \equiv \lambda x. (\lambda y. x(yy))(\lambda y. x(yy)) \]

It is not typable

But \(Y \) has considerable practical importance, and a theory that excludes it seems rather over restrictive. Can we find a more generous type-theory, one that assigns a type to \(Y \)?

Types with Intersection: An Introduction
J.R. Hindley, 1992

1979
Intuition

Is term \(\lambda x.xx \) typeable in the simply typed \(\lambda \)-calculus?
Intuition

Is term $\lambda x.x \cdot x$ typeable in the simply typed λ-calculus?

Simple types not enough

$\frac{x : A \vdash x : A \rightarrow B \quad x : A \vdash x : A}{\vdash xx : B}$

Possible approaches,

- Have a type A such that $A \approx A \rightarrow B$ involved equivalence
- Have a type C that is A and $A \rightarrow B$

$C = A \land (A \rightarrow B)$
Formally

- \(M, N ::= x \mid MN \mid \lambda x. M \) \hspace{1cm} \(\lambda \)-calculus
- \(A, B ::= a \mid \omega \mid A \rightarrow A \mid A \land A \) \hspace{1cm} types

Typing rules,

\[
\begin{align*}
\Gamma, x : A & \vdash x : A \\
\Gamma \vdash \lambda x. M : A \rightarrow B \\
\Gamma \vdash M : A \rightarrow B & \quad \Gamma \vdash N : A \\
\Gamma \vdash MN : B \\
\Gamma \vdash M : \omega \\
\Gamma \vdash M : A \land B & \\
\Gamma \vdash M : A \land B & \quad \Gamma \vdash M : A \\
\Gamma \vdash M : B \\
\Gamma \vdash \lambda x. M(x) : A & \quad x \notin FV(M)
\end{align*}
\]
Examples

Let $C = (A \rightarrow B) \land A$ for some A, B, and $\Gamma = \{ f : B \rightarrow D \}$

What about \mathcal{Y}??
Typing \mathcal{Y}

Intuitively

Recall $\mathcal{Y} = \lambda f. ZZ$ where $Z = \lambda x. f(xx)$

for every term F

$F(\mathcal{Y}F) =_{\beta} \mathcal{Y}F$

(1) Suppose F function with codomain A

(2) FM has type A whenever M “outputs” at all

$F : \omega \to A$

(3) As $\mathcal{Y}F$ in range of F we have $\mathcal{Y}F : A$

(4) Because of (2) and (3)

$\mathcal{Y} : (\omega \to A) \to A$
Typing \(\mathcal{U} \)

Formally

Let \(Z = \lambda x. f(xx) \) and \(B = \omega \to A \) for some \(A \)

\[
\text{1. } f : B, x : B \vdash f : \omega \to A \quad f : \omega \to A, x : \omega \to A \vdash xx : \omega \\
\quad f : B, x : B \vdash f(xx) : A \\
\quad f : B \vdash Z : B \to A \\
\]

\[
\text{2. } f : B, x : \omega \vdash f : \omega \to A \quad f : B, x : \omega \vdash xx : \omega \\
\quad f : B, x : \omega \vdash f(xx) : A \\
\quad f : B \vdash Z : B \\
\]
Properties

Uniqueness false:

\[\vdash Y : \omega \quad \vdash Y : (\omega \rightarrow A) \rightarrow A \]

Theorem (Characterisation terms with NF)

A \lambda-term \(M \) has a NF if and only if \(\Gamma \vdash M : A \) for some context \(\Gamma \) and type \(A \), neither of which contains \(\omega \).
Towards practice

Suppose we have a function

\[
plus : \text{int} \rightarrow \text{int} \rightarrow \text{int} \land \text{string} \rightarrow \text{string} \rightarrow \text{string}
\]

What is the type of the following function?

\[
mult x y = \text{if } y == 0 \text{ then } 0 \text{ else } plus x (mult x (y - 1))
\]
Towards practice

Suppose we have a function

\[
plus : \text{int} \rightarrow \text{int} \rightarrow \text{int} \land \text{string} \rightarrow \text{string} \rightarrow \text{string}
\]

What is the type of the following function?

\[
mult \ x \ y = \text{if } y == 0 \text{ then } 0 \text{ else } plus \ x \ (mult \ x \ (y - 1))
\]

A compiler for a language with intersection types might even provide two different object-code sequences for the different versions of \(plus\) [\ldots]

– B.C. Pierce, Intersection Types and Bounded Polymorphism

\[\text{C}Duce\]
http://www.cduce.org/

A working programming language
So why recursive types?

Recursive types are not necessary to type \(\mathcal{Y} \ldots \)
So why recursive types?

Recursive types are not necessary to type \(\mathcal{U} \)...

but we still have

Circular definitions

\[
\text{IntList} = [] \mid \text{int} : \text{IntList}
\]

(1)

It is convenient to have a

- finitary object \(A \)
- that satisfies equations as (1).
So why recursive types?

Recursive types are not necessary to type $\mathcal{Y} \ldots$

but we still have

Circular definitions

\[
\text{IntList} = [] \mid \text{int} : \text{IntList}
\]

\[
F(X) = \{\epsilon\} \cup \mathbb{Z} \times X
\]

(1)

It is convenient to have a

- finitary object A

- that satisfies equations as (1).
Pour le TP

Projet projet projet!!

implement type inference for recursive types