Typage

Syntax and semantics

Practical information

Teaching			
Lectures	wednesdays	2027	$09 \mathrm{~h} 30-11 \mathrm{~h} 00$
TP	wednesdays	2027	$11 \mathrm{~h} 00-12 \mathrm{~h} 30$

No lecture/TP 16 Jan!!!

```
OPCT'19
```

Final grade

- Exam 40\%
- Projet 60\%

1. One .ml file that contains
2. Type inference + unification algorithms finite types
3. Type unification algorithm recursive types

Material

http://www.irif.fr/~gio/index.xhtml

"Types and Programming Languages"
B. Pierce
few chapters

"Introduction To Bisimulation and Coinduction"
D. Sangiori
one chapter

don't be shy :-)
Do ask questions!!!
feedback helps

Overall aim
Make you understand (co)induction.
Show you different

- standpoints on the subject matter
- applications

First part of the lectures

1. Mini functional language
λ-calculus
2. Operational semantics
3. Monomorphic types
4. Polymorphic types

Who introduced λ-calculus?

An Unsolvable Problem

 of Elementary Number Theory Alonzo Church, 1936annus mirabilis CS

$$
1936
$$

https://functionaljobs.com/

A functional language

Syntax

$M, N::=$	x	$($ variable $)$
	$c t$	(constant)
	$\langle M, N\rangle$	(pair)
	$M N$	(application)
	$\lambda x . M$	(abstraction)
	let $x=M$ in N	(let)

Some constants :
fst, snd, fix, ifthenelse, $+, *, \ldots$, true, false, $0,1,2,3, \ldots$

- Do you understand the syntax above?
- Note circularity: M, N appear left and right of $::=$
questions questions
What does a program do? And why ?

Notations

$$
\begin{array}{ll}
M_{1} M_{2} \ldots M_{n} & \equiv\left(\ldots\left(\left(M_{1} M_{2}\right) M_{3}\right) \ldots M_{n-1}\right) M_{n} \\
N \vec{M} & \left.\equiv\left(\ldots\left(\left(N M_{1}\right) M_{2}\right) M_{3}\right) \ldots M_{n-1}\right) M_{n} \\
M+N & \equiv+\langle M, N\rangle \\
\text { if } E \text { then } M \text { else } N & \equiv \text { ifthenelse }\langle E,\langle M, N\rangle\rangle
\end{array}
$$

Free variables

$$
\begin{array}{ll}
F V(x) & =\{x\} \\
F V(c t) & =\emptyset \\
F V(\langle M, N\rangle) & =F V(M) \cup F V(N) \\
F V(M N) & =F V(M) \cup F V(N) \\
F V(\lambda x . M) & =F V(M) \backslash\{x\} \\
F V(\text { let } x=M \text { in } N) & =F V(M) \cup F V(N) \backslash\{x\}
\end{array}
$$

A variable x is free in M if $x \in F V(M)$.
A term M is closed iff it has no free variable, i.e. $F V(M)=\emptyset$.
Example

- $M=\lambda z \cdot((\lambda x \cdot x z)(\lambda y \cdot y))$ is closed

$$
\begin{array}{r}
F V(M)=\emptyset \\
F V(M)=\{z\}
\end{array}
$$

- $M=(\lambda x \cdot x z)(\lambda y \cdot y)$ is not closed

Note circularity: FV appears left and right of $=$

Bound variables

$B V(x)$	$=\emptyset$
$B V(c t)$	$=\emptyset$
$B V(\langle M, N\rangle)$	$=B V(M) \cup B V(N)$
$B V(M N)$	$=B V(M) \cup B V(N)$
$B V(\lambda x . M)$	$=B V(M) \cup\{x\}$
$B V($ let $x=M$ in $N)$	$=B V(M) \cup B V(N) \cup\{x\}$

A variable x is bound in M if $x \in B V(M)$.
Example

- x not bound in x
- x bound in $\lambda x . x$
- x free and bound in $x(\lambda x . x)$

Note circularity: $B V$ appears left and right of $=$

Alpha-conversion

$={ }_{\alpha}$ equivalence allowing renaming bound variables.
Example

- $x(\lambda x . x y)={ }_{\alpha} x(\lambda z . z y)$
- let $x=x^{\prime}$ in $x y={ }_{\alpha}$ let $z=x^{\prime}$ in $z y$
- more in general $\int x^{2} d x=\alpha \int y^{2} d y$

Theorem

For every term M there is a term M^{\prime} such that

1. $M={ }_{\alpha} M^{\prime}$
2. Barendregt's Convention:

- $F V\left(M^{\prime}\right) \cap B V\left(M^{\prime}\right)=\emptyset$.
- All the bound variables of M^{\prime} are distinct.

Substitution

The application of a substitution $\sigma=\left\{x_{1} / M_{1}, \ldots, x_{n} / M_{n}\right\}$ to a term M is defined by induction ${ }^{1}$ as follows:

$$
\begin{array}{lll}
\sigma x_{i} & =M_{i} & \text { If } i \in\{1, \ldots, n\} \\
\sigma y & =y & \text { If } y \notin\left\{x_{1}, \ldots, x_{n}\right\} \\
\sigma c t & =c t & \\
\sigma\langle M, N\rangle & =\langle\sigma M, \sigma N\rangle & \\
\sigma(M N) & =\sigma M \sigma N & \\
\sigma(\lambda x . M) & =\lambda x .(\sigma M) & \text { If no capture of variables } \\
\sigma(\text { let } x=M \text { in } N) & =\text { let } x=\sigma M \text { in } \sigma N & \text { If no capture of variables }
\end{array}
$$

Example
$\{y / x\}(\lambda x . y x)=\lambda z .(\{y / x\} x z)=\lambda z . x z$

Operational Semantics

Defining an Operational Semantics

- Granularity
- Big-step
- Small-step
- Order of evaluation

■ Call-by-value
■ Call-by-name
■ . . .

- Inference rules + derivation trees
inference rule
$\frac{\text { premise }_{1} \quad \ldots \quad \text { premise }_{n}}{\text { conclusion }}$ side condition

Big-step Semantics

Each rule ${ }^{2}$ completely evaluates the expression to a value.
Sketch

- a arithmetic expression, σ state, n value
- in state σ the expression a evaluates to n

$$
\begin{gathered}
\frac{(n, \sigma) \Downarrow n}{(X, \sigma) \Downarrow \sigma(X)} \\
\frac{\left(a_{1}, \sigma\right) \Downarrow n_{1} \quad\left(a_{2}, \sigma\right) \Downarrow n_{2}}{\left(a_{1}+a_{2}, \sigma\right) \Downarrow n} n \text { is " } n_{1} \text { plus } n_{2}{ }^{\prime} \text { " }
\end{gathered}
$$

We write $(a, \sigma) \Downarrow n$ if there exists finite derivation tree $\overline{(a, \sigma) \Downarrow n}$

[^0]
Properties

- Abstract
- Allows to avoid details
- No specification of evaluation order (e.g. $(1+3)+(5-3))$
- No specification of control of errors
- No specification of interleaving

Who introduced small-step semantics ?

A Structural Approach to
Operational Semantics
Gordon Plotkin, 1981

It is the purpose of these notes to develop a simple and direct method for specifying the semantics of programming languages. Very little is required in the way of mathematical background; all that will be involved is "symbolpushing" [...]

Small-step Semantics

Evaluation is sequence of state changes of an abstract machine which terminates when the state cannot be reduced further.
Sketch ${ }^{3}$

$$
\begin{aligned}
& \overline{(X, \sigma) \rightsquigarrow(\sigma(X), \sigma)} \quad \overline{\left(n_{1}+n_{2}, \sigma\right) \rightsquigarrow(n, \sigma)} n \text { is " } n_{1} \text { plus } n_{2} \text { " } \\
& \frac{\left(a_{1}, \sigma\right) \rightsquigarrow\left(a_{1}^{\prime}, \sigma^{\prime}\right)}{\left(a_{1}+a_{2}, \sigma\right) \rightsquigarrow\left(a_{1}^{\prime}+a_{2}, \sigma^{\prime}\right)} \quad \frac{\left(a_{2}, \sigma\right) \rightsquigarrow\left(a_{2}^{\prime}, \sigma^{\prime}\right)}{\left(n_{1}+a_{2}, \sigma\right) \rightsquigarrow\left(n_{1}+a_{2}^{\prime}, \sigma^{\prime}\right)}
\end{aligned}
$$

We write $(a, \sigma) \rightsquigarrow\left(a^{\prime}, \sigma^{\prime}\right)$ if there exists finite derivation tree $\overline{(a, \sigma) \rightsquigarrow\left(a^{\prime}, \sigma^{\prime}\right)}$
${ }^{3}$ Note circularity: \rightsquigarrow appears in premises and conclusions of rules

Properties

- Less abstract
- Specification of order of evaluation
- Control of errors: $\frac{n_{2} \neq 0}{n_{1} / n_{2} \rightsquigarrow n}$, where n is " n_{1} divided by n_{2} ".
- Interleaving: $\frac{\left\langle c_{1}, \sigma\right\rangle \rightsquigarrow\left\langle c_{1}^{\prime}, \sigma^{\prime}\right\rangle}{\left\langle c_{1} \| c_{2}, \sigma\right\rangle \rightsquigarrow\left\langle c_{1}^{\prime} \| c_{2}, \sigma^{\prime}\right\rangle}$

From Small-step to Multi-step Semantics

The multi-step semantics is given by the relation $t \rightsquigarrow^{*} t^{\prime}$ which is the reflexive and transitive closure of $t \rightsquigarrow t^{\prime}$.
(P1) $t \rightsquigarrow^{*} t$ for every t
(P2) $t \rightsquigarrow t^{\prime}$ implies $t \rightsquigarrow^{*} t^{\prime}$
(P3) $t \rightsquigarrow^{*} t^{\prime}$ and $t^{\prime} \rightsquigarrow^{*} t^{\prime \prime}$ implies $t \rightsquigarrow^{*} t^{\prime \prime}$

Properties of the small and big step semantics

- The relation \rightsquigarrow is deterministic.
- The relation \Downarrow is deterministic.
- $t \Downarrow v$ iff $t \rightsquigarrow^{*} v$, where v is a "value".

Normal Forms

- A normal form is a term that cannot be evaluated any further: is a state where the abstract machine is halted (result of the evaluation).

Big-step versus small-step semantics

- In small-step semantics evaluation stops at errors. In big-step semantics errors occur deeply inside derivation trees.
- The order of evaluation is explicit in small-step semantics but implicit in big-step semantics.
- Big-step semantics is more abstract, but less precise.
- Small-step semantics allows to make difference between non-termination and "getting stuck".

Reduction Rules

$(\lambda x . M) N$		$\beta M\{x / N\}$
let $x=N$ in M	$\rightarrow M\{x / N\}$	
fix M	$\rightarrow M($ fix $M)$	
$f s t\langle M, N\rangle$	$\rightarrow M$	
snd $\langle M, N\rangle$	$\rightarrow M$	
if true then M else N	$\rightarrow M$	
if false then M else N	$\rightarrow N$	
if 0 then M else N	$\rightarrow M$	
if n then M else N	$\rightarrow N, n \neq 0$	

WARNING!: The reduction relation \rightarrow is non-deterministic.

Call-by-value lambda-calculus (big-step semantics)

(Values) $V::=c t|\langle V, V\rangle| \lambda x . M \mid$ fix M
Meaningless expressions such as $(\langle 1,1\rangle 3)$ or (true 3) are not considered as values.

$$
\begin{gathered}
\overline{V \Downarrow_{v} V} \vee \text { is a value } \frac{M_{1} \Downarrow_{v} V_{1} M_{2} \Downarrow_{v} V_{2}}{\left\langle M_{1}, M_{2}\right\rangle \Downarrow_{v}\left\langle V_{1}, V_{2}\right\rangle} \\
\frac{M \Downarrow_{v} \lambda x . L \quad N \Downarrow_{v} W \quad L\{x / W\} \Downarrow_{v} V}{M N \Downarrow_{v} V} \\
\frac{N \Downarrow_{v} V \quad L\{x / V\} \Downarrow_{v} W}{\text { let } x=N \text { in } L \Downarrow_{v} W}
\end{gathered}
$$

$\frac{M \Downarrow_{v} \text { fix } L \quad N \Downarrow_{v} W \quad(L(f i x L)) W \Downarrow_{v} V}{M N \Downarrow_{v} V}$
$\frac{M \Downarrow_{v} \text { fst } N \Downarrow_{v}\left\langle V_{1}, V_{2}\right\rangle}{M N \Downarrow_{v} V_{1}} \frac{M \Downarrow_{v} \text { snd } N \Downarrow_{v}\left\langle V_{1}, V_{2}\right\rangle}{M N \Downarrow_{v} V_{2}}$
$M \Downarrow_{v}$ true $N \Downarrow_{v} V$
if M then N else $L \Downarrow_{v} V$
$\begin{array}{cccccc}M \Downarrow_{v} 0 & N \\ \Downarrow_{v} V\end{array} \begin{array}{ll}M \Downarrow_{v} n & n \neq 0\end{array} \quad L \Downarrow_{v} V$
if M then N else $L \Downarrow_{v} V$
$M \Downarrow_{v}$ false $\quad L \Downarrow_{v} V$
if M then N else $L \Downarrow_{v} V$
if M then N else $L \Downarrow_{v} V$

Particular case: closed pure lambda-terms

(Values) $V::=\lambda x \cdot M$
$\frac{}{V \Downarrow_{v} V} \frac{M \Downarrow_{v} \lambda x . L \quad N \Downarrow_{v} W \quad L\{x / W\} \Downarrow_{v} V}{M N \Downarrow_{v} V}$

An example

$$
M=\lambda f \cdot \lambda x \cdot\langle x, f x\rangle \text { and } N=\lambda y \cdot y .
$$

$$
\frac{M \Downarrow_{v} M \quad N \Downarrow_{v} N \quad \lambda x \cdot\langle x, f x\rangle\{f / N\} \Downarrow_{v} \lambda x \cdot\langle x, N x\rangle}{M N \Downarrow_{v} \lambda x \cdot\langle x, N x\rangle}
$$

$\overline{M N \Downarrow_{v} \lambda x .\langle x, N x\rangle \vdots} 1 \Downarrow_{v} 1 \frac{1 \Downarrow_{v} 1}{} \frac{\frac{N \Downarrow_{v} N 1 \Downarrow_{v} 1}{} \frac{N\{y / 1\} \Downarrow_{v} 1}{N \Downarrow_{v} 1}}{\langle 1, N 1\rangle \Downarrow_{v}\langle 1,1\rangle}$
$M N 1 \Downarrow_{v}\langle 1,1\rangle$

Call-by-value lambda calculus (small-step semantics)

$$
\frac{M \rightsquigarrow_{V} M^{\prime}}{M N \rightsquigarrow_{v} M^{\prime} N} \quad \frac{N \rightsquigarrow_{v} N^{\prime}}{V N \rightsquigarrow_{v} V N^{\prime}}
$$

$$
\begin{gathered}
\overline{(\lambda x . M) V \rightsquigarrow_{v} M\{x / V\}} \quad \overline{(f i x M) V \rightsquigarrow_{v}(M(f i x M)) V} \\
\text { let } x=N \text { in } L \rightsquigarrow_{v}{ }_{v} \text { let } x=N^{\prime} \text { in } L \quad \frac{N}{\text { let } x=V \text { in } L \rightsquigarrow_{v} L\{x / V\}} \\
\frac{M \rightsquigarrow_{v} M^{\prime}}{\langle M, N\rangle \rightsquigarrow_{v}\left\langle M^{\prime}, N\right\rangle} \quad \frac{N \rightsquigarrow_{v} N^{\prime}}{\langle V, N\rangle \rightsquigarrow_{v}\left\langle V, N^{\prime}\right\rangle} \\
\frac{f_{s s t}\left\langle V_{1}, V_{2}\right\rangle \rightsquigarrow_{v} V_{1}}{} \frac{\text { snd }\left\langle V_{1}, V_{2}\right\rangle \rightsquigarrow_{v} V_{2}}{}
\end{gathered}
$$

$\frac{M \rightsquigarrow_{v} M^{\prime}}{\text { if } M \text { then } N \text { else } L \rightsquigarrow_{v} \text { if } M^{\prime} \text { then } N \text { else } L}$
if true then N else $L \rightsquigarrow_{v} N \quad$ if false then N else $L \rightsquigarrow_{v} L$

$$
\frac{n \neq 0}{\text { if } 0 \text { then } N \text { else } L \rightsquigarrow_{v} N} \quad \frac{n}{\text { if } n \text { then } N \text { else } L \rightsquigarrow_{v} L}
$$

The same example

Small-step semantics

Let $M=\lambda f \cdot \lambda x \cdot\langle x, f x\rangle$ and $N=\lambda y \cdot y$.

$$
\begin{array}{ll}
M N 1 & \rightsquigarrow_{v} \\
(\lambda x \cdot\langle x, N x\rangle) 1 & \rightsquigarrow_{v} \\
\langle 1, N 1\rangle & \rightsquigarrow_{v} \\
\langle 1,1\rangle &
\end{array}
$$

Call-by-name lambda-calculus (big-step semantics)
(Lazy Forms) $P::=c t|\langle M, N\rangle| \lambda x . M \mid$ fix M

$M \Downarrow_{n} \lambda x . L \quad L\{x / N\}$	\} $\Downarrow_{n} P \quad P$ is a lazy form
$M N \Downarrow_{n} P$	$P \Downarrow_{n} P$
$L\{x / N\} \Downarrow_{n} P \quad M$	$M \Downarrow_{n}$ fix $L \quad(L(f i x L)) N \Downarrow_{n} P$
let $x=N$ in $L \Downarrow_{n} P$	$M N \Downarrow_{n} P$
$M \Downarrow_{n}\left\langle M_{1}, M_{2}\right\rangle \quad M_{1} \Downarrow_{n} P_{1}$	$M \Downarrow_{n}\left\langle M_{1}, M_{2}\right\rangle \quad M_{2} \Downarrow_{n} P_{2}$
fst $M \Downarrow_{n} P_{1}$	snd $M \Downarrow_{n} P_{2}$
$M \Downarrow_{n}$ true $\quad N \Downarrow_{n} P$	$M \Downarrow_{n}$ false $\quad L \Downarrow_{n} P$
if M then N else $L \Downarrow_{n} P$	if M then N else $L \Downarrow_{n} P$
$M \Downarrow_{n} 0 \quad N \Downarrow_{n} P$	$M \Downarrow_{n} n \quad n \neq 0 \quad L \Downarrow_{n} P$
if M then N else $L \Downarrow_{n} P$	if M then N else $L \Downarrow_{n} P$

Particular case: closed pure lambda-terms

(Lazy Forms) $P::=\lambda x \cdot M$

$$
\frac{}{P \Downarrow_{n} P} \frac{M \Downarrow_{n} \lambda x . L \quad L\{x / N\} \Downarrow_{n} P}{M N \Downarrow_{n} P}
$$

An example

Let $M=\lambda f . \lambda x \cdot\langle x,(f x)\rangle$ and $M_{f}=f i x M$.
$\frac{\vdots}{\frac{\vdots}{M M_{f} \Downarrow_{n} \lambda x .\left\langle x, M_{f} x\right\rangle} \frac{M \Downarrow_{n} \text { fix } M}{\frac{M(f i x M) 1 \Downarrow_{n}\langle 1, \text { fix } M 1\rangle}{\left\langle x M_{f} x\right\rangle\{x / 1\} \Downarrow_{n}\left\langle 1, M_{f} 1\right\rangle}}}$

$$
\frac{\overline{M \Downarrow_{n} M}(\lambda x .\langle x, f x\rangle)\left\{f / M_{f}\right\} \Downarrow_{n} \lambda x \cdot\left\langle x, M_{f} x\right\rangle}{M M_{f} \Downarrow_{n} \lambda x \cdot\left\langle x, M_{f} x\right\rangle}
$$

Exercice

Try to evaluate fix $M 1 \Downarrow_{v}$.

Call-by-name lambda calculus (small-step semantics)

$$
\frac{M \rightsquigarrow_{n} M^{\prime}}{M N \rightsquigarrow_{n} M^{\prime} N}
$$

let $x=M$ in $L \rightsquigarrow_{n} L\{x / M\}$

$$
\begin{array}{cl}
\frac{M \rightsquigarrow_{n} M^{\prime}}{f s t M \rightsquigarrow_{n} \text { fst } M^{\prime}} & \\
\frac{M \rightsquigarrow_{n} M^{\prime}}{\text { st }\langle M, N\rangle \rightsquigarrow_{n} M} \\
\frac{\text { snd } M \rightsquigarrow_{n} \text { snd } M^{\prime}}{} \quad & \\
\text { snd }\langle M, N\rangle \rightsquigarrow_{n} N
\end{array}
$$

$$
\frac{M \rightsquigarrow_{n} M^{\prime}}{\text { if } M \text { then } N \text { else } L \rightsquigarrow_{n} \text { if } M^{\prime} \text { then } N \text { else } L}
$$

if true then N else $L \rightsquigarrow_{n} N$
if 0 then N else $L \rightsquigarrow_{n} N$
if false then N else $L \rightsquigarrow_{n} L$
$\frac{n \neq 0}{\text { if } n \text { then } N \text { else } L \rightsquigarrow_{n} L}$

The same example

Small-step semantics

$$
\text { Let } M=\lambda f . \lambda x .\langle x,(f x)\rangle \text {. }
$$

fix M 1
$M($ fix $M) 1$
\rightsquigarrow_{n}
$(\lambda x .\langle x,($ fix $M x)\rangle) 1 \rightsquigarrow_{n}$
$\langle 1,($ fix $M 1)\rangle$

Coherence of results

- If $M \Downarrow_{v} N$, then N is a value.
- If $M \Downarrow_{n} N$, then N is a lazy form.

Deterministic properties

- If $M \Downarrow_{v} V$ and $M \Downarrow_{v} V^{\prime}$, then $V=V^{\prime}$.
- If $M \Downarrow_{n} P$ and $M \Downarrow_{n} P^{\prime}$, then $P=P^{\prime}$.
- If $M \rightsquigarrow{ }_{v} N$ and $M \rightsquigarrow_{v} N^{\prime}$, then $N=N^{\prime}$.
- If $M \rightsquigarrow_{n} N$ and $M \rightsquigarrow_{n} N^{\prime}$, then $N=N^{\prime}$.

Relating big and small-steps semantics

- If $M \Downarrow_{v} V$, then $M \rightsquigarrow_{v}^{*} V$.
- If $M \Downarrow_{n} P$, then $M \rightsquigarrow_{n}^{*} P$.
- If $M \rightsquigarrow_{v}^{*} N$ and N is a value, then $M \Downarrow_{v} N$.
- If $M \rightsquigarrow_{n}^{*} N$ and N is a lazy form, then $M \Downarrow_{n} N$.

Problem

Try evaluating

- $1+$ true
- if $\lambda x . x$ then $\lambda x . x$ else $\lambda x . \lambda y . x y$

[^0]: ${ }^{2}$ Note circularity: \Downarrow appears in premises and conclusions of rules

