Typage

Types

Types

Motivations

- Avoid nonsensical programs ($1+$ true)
- Avoid memory violations
- Avoid code whose behaviour is not defined
- Partially specify programs

Plan

- Monomorphic types
- À la Church
- À la Curry
- Unification
- Type inference
- Polymorphic types
- À la Church
- À la Curry (+ type inference)

Monomorphic types à la Church

Expressions à la Church

Types
$A \quad::=\mathcal{T}|A \times A| A \rightarrow A$
$\mathcal{T}::=$ int \mid bool

Expressions
M ::=x
ct
$\langle M, M\rangle$
$M M$
$\lambda x: A . M$
let $x: A=M$ in M

Few types int \rightarrow bool bool \times bool bool \rightarrow (bool \rightarrow int $)$ bool $\times($ bool \rightarrow int $)$ (bool \rightarrow bool) \rightarrow int

Few examples

$$
\text { let } x: \text { int }=3 \text { in } x+1
$$

let x : int $=($ if true then 1 else 2$)$ in $x+1$
let x : int $=4$ in (let $y:$ int $=x+1$ in $x * y)$
let $f:$ int \rightarrow int $=(\lambda x:$ int. $x+1)$ in $f(f x)$
fix $(\lambda$ fact : int \rightarrow int. $\lambda x:$ int.if x then 1 else $(x *$ fact $(x-1))$

Reduction semantics

$$
\begin{array}{ll}
(\lambda x: A . M) N & \Rightarrow M\{x / N\} \\
\text { let } x: A=N \text { in } M & \Rightarrow M\{x / N\} \\
\text { fix } M & \Rightarrow M(f i x M) \\
f s t\langle M, N\rangle & \Rightarrow M \\
\text { snd }\langle M, N\rangle & \Rightarrow N \\
\text { if } \text { true then } M \text { else } N & \Rightarrow M \\
\text { if false then } M \text { else } N & \Rightarrow N \\
\text { if } 0 \text { then } M \text { else } N & \Rightarrow M \\
\text { if } n \text { then } M \text { else } N & \Rightarrow N, n \neq 0
\end{array}
$$

Typing rules à la Church

For every $c t$ there exists a type A, denoted $T C(c t)$: A. A type environement Γ is a set of the form $x_{1}: A_{1}, \ldots, x_{n}: A_{n}$. We write $\Gamma\left(x_{i}\right)$ to denote A_{i}.

$$
\Gamma \vdash x_{i}: \Gamma\left(x_{i}\right) \quad\lceil\vdash c t: T C(c t)
$$

$$
\begin{gathered}
\frac{\Gamma \vdash M: A \rightarrow B \quad \Gamma \vdash \Lambda}{\Gamma \vdash M N: B} \\
\frac{\Gamma \vdash M: A \quad \Gamma \vdash N: B}{\Gamma \vdash\langle M, N\rangle: A \times B}
\end{gathered}
$$

$$
\frac{\Gamma, x: A \vdash M: B}{\Gamma \vdash \lambda x: A \cdot M: A \rightarrow B}
$$

$$
\frac{\Gamma \vdash M: A \quad \Gamma, x: A \vdash N: B}{\Gamma \vdash \text { let } x: A=M \text { in } N: B}
$$

Examples

$$
\text { Let }(*)=f: \text { int } \rightarrow \text { int } \vdash f: \text { int } \rightarrow \text { int }
$$

$\frac{x: \operatorname{int} \vdash+: \operatorname{int} \times \operatorname{int} \rightarrow \text { int } \quad \frac{x: \operatorname{int} \vdash x: \operatorname{int} \quad x: \operatorname{int} \vdash 1: \operatorname{int}}{x: \operatorname{int} \vdash\langle x, 1\rangle: \operatorname{int} \times \operatorname{int}}}{x: \operatorname{int} \vdash+\langle x, 1\rangle: \operatorname{int}}$
(*) $\quad f:$ int \rightarrow int $\vdash 3:$ int
(*) $\quad f:$ int \rightarrow int $\vdash f 3:$ int $f:$ int \rightarrow int $\vdash f(f 3):$ int

$$
\emptyset \vdash \text { let } f: \text { int } \rightarrow \text { int }=(\lambda x: \text { int. }+\langle x, 1\rangle) \text { in } f(f 3): \text { int }
$$

Properties of the relation \vdash

Universal quantifiers are left implicit.

- (Uniqueness): If $\Gamma \vdash M: A$ and $\Gamma \vdash M: B$ then $A \equiv B$.
- (Weakening): Let $\Gamma=\{x: B \mid x \in F V(M)\}$ and $\Gamma \subseteq \Delta$. We have that $\Gamma \vdash M: A$ iff $\Delta \vdash M: A$.
- (Preservation): If $\Gamma \vdash M: A$ and $M \Rightarrow M^{\prime}$ then $\Gamma \vdash M^{\prime}: A$.
- (Subject reduction): If $\Gamma \vdash M: A$ then $M \Rightarrow$ or M normal form.

Typing algorithm

Type (Г, ct)	$=T C(c t)$	
Type ($\Gamma, x)$	$=A$	if $x: A \in \Gamma$
Type(Г, $\lambda x:$ А.М)	$=A \rightarrow B$	if Type $((\Gamma, x: A), M)=B$
Type ($\Gamma,\langle M, N\rangle)$	$=A \times B$	$\text { if } \begin{gathered} \text { Type }(\Gamma, M)=A \text { and } \\ \text { Type }(\Gamma, N)=B \end{gathered}$
Type(Г, M N	$=B$	$\text { if } \begin{aligned} \text { Type }(\Gamma, M) & =A \rightarrow B \text { and } \\ \text { Type }(\Gamma, N) & =A \end{aligned}$
Type $(\Gamma$, let $x: A=M$ in N)	$=B$	$\begin{aligned} & \text { if } \operatorname{Type}(\Gamma, M)=A \text { and } \\ & \\ & \text { Type }((\Gamma, x: A), N)=B \end{aligned}$
Type (Г, М)	$=$ error	otherwise

Properties of the algorithm

For every term M and environment Γ,

- (Termination): Type (Γ, M) terminates.
- (Soundness): If $\operatorname{Type}(\Gamma, M)=A$ then $\Gamma \vdash M: A$.
- (Completeness): If $\Gamma \vdash M: A$ then $\operatorname{Type}(\Gamma, M)=A$.

In other terms,
if $\operatorname{Type}(\Gamma, M)=$ error then M is not typeable in Γ.

Unification theory

\sum-algebras

Σ : Set of function symbols with an arity $n \in \mathbb{N}$.
\mathcal{X} : Set of variables.
$\mathcal{T}(\mathcal{X}, \Sigma)$: Set of terms over \mathcal{X} and Σ, inductively defined by

$$
\frac{x \in \mathcal{X}}{x \in \mathcal{T}(\mathcal{X}, \Sigma)} \quad \frac{t_{1}, \ldots, t_{n} \in \mathcal{T}(\mathcal{X}, \Sigma) \quad f \text { has arity } n \in \Sigma}{f\left(t_{1}, \ldots, t_{n}\right) \in \mathcal{T}(\mathcal{X}, \Sigma)}
$$

We denote $\operatorname{Var}(t)$ the set of all the variables in a term t. A term t is closed if $\operatorname{Var}(t)=\emptyset$.

Substitutions

Definition

- A substitution is a function $\sigma: \mathcal{X} \rightarrow \mathcal{T}(\Sigma, \mathcal{X})$.
- The domain of a substitution σ is the set $\operatorname{Dom}(\sigma)=\{x \in \mathcal{X} \mid \sigma(x) \neq x\}$.
- The codomain of a substitution σ is the set $\operatorname{Codom}(\sigma)=\{\operatorname{Var}(\sigma(x)) \mid x \in \operatorname{Dom}(\sigma)\}$.
- A renaming is an injective substitution σ s.t. $\forall x \in \operatorname{Dom}(\sigma) . \sigma(x)=y$.
Example: $\sigma=\{x / y, y / w\}$ is arenaming. Every permutation is a renaming, but not the inverse, as shown by the example.
- If the the domain of a substitution σ is finite we denote σ as $\left\{x_{1} / t_{1}, \ldots, x_{n} / t_{n}\right\}$ if $\sigma\left(x_{i}\right)=t_{i}$ and $x_{i} \in \operatorname{Dom}(\sigma)$.
- The application of a substitution to a term is defined inductively by $\sigma\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=f\left(\sigma\left(t_{1}\right), \ldots, \sigma\left(t_{n}\right)\right)$.

Comparing substitutions

Let σ and τ be two substitutions.
The composition of σ with τ, denoted $\sigma \circ \tau$, is defined as expected by letting $(\sigma \circ \tau)(x)=\sigma(\tau(x))$.
Example
$\{y / b, z / h(c)\} \circ\{x / f(y), y / z\}=\{x / f(b), y / h(c), z / h(c)\}$
Definition (22.4.1 in Pierce book)
The substitution σ is an instance of the substitution τ (or τ is more general than σ), denoted $\sigma \leq \tau$, iff $\exists \rho . \forall x \in \mathcal{X} . \sigma(x)=(\rho \circ \tau)(x)$.

Example
$\{x / f(y), y / z\}$ is more general than $\{x / f(b), y / h(c), z / h(c)\}$

Equivalence for substitutions

The relation \leq is not antisymmetric. ${ }^{1}$

Example

Let $\sigma_{1}=\{x / y\}$ and $\sigma_{2}=\{y / x\}$. We have that
$\sigma_{1} \leq \sigma_{2}$ as $\sigma_{1}=\{x / y\} \circ \sigma_{2}$, and
$\sigma_{2} \leq \sigma_{1}$ as $\sigma_{2}=\{y / x\} \circ \sigma_{1}$,
but $\sigma_{1} \neq \sigma_{2}$.
Let $\sigma_{1}=\{x / y\}$ and $\sigma_{3}=\{x / y, z / w, w / z\}$. We have that $\sigma_{1} \leq \sigma_{3}$ as $\sigma_{1}=\{z / w, w / z\} \circ \sigma_{3}$, and
$\sigma_{3} \leq \sigma_{1}$ as $\sigma_{3}=\{z / w, w / z\} \circ \sigma_{1}$, but $\sigma_{1} \neq \sigma_{3}$.

Definition

$\sigma \sim \sigma^{\prime}$ iff \exists renaming ρ s.t. $\sigma=\rho \circ \sigma^{\prime}$.
And thus for instance $\sigma_{1} \sim \sigma_{2} \sim \sigma_{3}$.
${ }^{1} R$ antisymmetric if $a \mathcal{R} b$ and $b \mathcal{R} a$ imply $a=b$.

Principal substitution(s)

Let \mathcal{S} be a set of substitutions and let $\tau \in \mathcal{S}$.
We say that τ is principal ${ }^{2}$ for \mathcal{S} iff every $\sigma \in \mathcal{S}$ is an instance of τ.
Example
Let $\mathcal{S}=\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}, \sigma_{5}\right\}$, where

$$
\begin{aligned}
& \sigma_{1}=\{x / y\} \\
& \sigma_{3}=\{x / y, w / z, z / w\} \quad \sigma_{2}=\{y / x\} \\
& \sigma_{5}=\{x / a, y / a\}
\end{aligned}
$$

We have that σ_{1}, σ_{2} et σ_{3} are principal for \mathcal{S}, because

$$
\begin{aligned}
& \sigma_{2}, \sigma_{3}, \sigma_{4}, \sigma_{5} \leq \sigma_{1} \\
& \sigma_{1}, \sigma_{3}, \sigma_{4}, \sigma_{5} \leq \sigma_{2} \\
& \sigma_{1}, \sigma_{2}, \sigma_{4}, \sigma_{5} \leq \sigma_{3}
\end{aligned}
$$

and $\sigma_{1} \not \leq \sigma_{4}$ and $\sigma_{1} \not \leq \sigma_{5}$.
${ }^{2}$ Also most general.

Unifier of a system of equations

Definition

Two terms A and B are unifiable iff there exists a substitution σ s.t. $\sigma(A)=\sigma(B)(\sigma$ is called a unifier of A and $B)$.

- An equation $A \doteq B$ is formally just a pair of terms, and we say that it is unifiable iff the terms A and B are so.
- A system of equations E is a set of equations. We say that it is unifiable iff there exists one substitution that is the unifier of all the equations in E. This substitution is called solution of E.
We'll focus on finite systems of equations.

Example

$f(x, g(x, a))$ and $f(f(a), y)$ unifiable, for instance via $\{x / f(a), y / g(f(a), a)\}$.
$f(x, g(x, a))$ and $f(f(a), f(b, a))$ are not unifiable.

Uniqueness

1. We consider as unifiers of a system E only the substitutions σ s.t. $\operatorname{Dom}(\sigma) \subseteq \operatorname{Var}(E)$.
2. Let σ and σ^{\prime} be unifier of a system E. We identify them if they differ only in variable renaming, i.e. if $\sigma \sim \sigma^{\prime}$.

Example

Let $\mathcal{S}=\{x \doteq y\}$ and let

$$
\sigma_{1}=\{x / y\}, \quad \sigma_{2}=\{y / x\}, \quad \sigma_{3}=\{x / y, z / w, w / z\}
$$

While $\sigma_{1}=\sigma_{2}$ (for $\left[\sigma_{1}\right]_{\sim}=\left[\sigma_{2}\right]_{\sim}$) and they are principal unifiers of \mathcal{S}, σ_{3} is not considered as a unifier of \mathcal{S}.
The principal unifier ${ }^{3}$ of a system E is unique up-to renaming, that is: if σ and σ^{\prime} are two principal unifiers of a system E then $\sigma \sim \sigma^{\prime}$.

[^0]
Solved form

Definition

A system of equations E is in solved form iff it has the form $\left\{\alpha_{1} \doteq t_{1}, \ldots, \alpha_{n} \doteq t_{n}\right\}$, where

- all variables α_{i} are distinct
- no α_{i} appears in a t_{j}

$$
\begin{array}{r}
\left(\forall i, j . i \neq j \text { implies } \alpha_{i} \neq \alpha_{j}\right) \\
\quad\left(\forall i . \alpha_{i} \notin \bigcup_{1 \leq j \leq n} \operatorname{Var}\left(t_{j}\right)\right)
\end{array}
$$

Notation: If E is a system in solved form $\left\{\alpha_{1} \doteq t_{1}, \ldots, \alpha_{n} \doteq t_{n}\right\}$ we denote \vec{E} the substitution $\left\{\alpha_{1} / t_{1}, \ldots, \alpha_{n} / t_{n}\right\}$.

How to solve equations?

Manipulation rules

$$
\begin{aligned}
& \frac{E \cup\{s \doteq s\}}{E} \quad \text { (elimination) } \quad \frac{E \cup\{t \doteq \alpha\}}{E \cup\{\alpha \doteq t\}} \quad \text { (exchange) } \\
& \frac{E \cup\left\{f\left(s_{1}, \ldots, s_{n}\right) \doteq f\left(t_{1}, \ldots, t_{n}\right)\right\}}{E \cup\left\{s_{1} \doteq t_{1}, \ldots, s_{n} \doteq t_{n}\right\}} \quad \text { (decomposition) } \\
& \frac{E \cup\{\alpha \doteq s\} \quad \alpha \in \operatorname{Var}(E) \quad \alpha \notin \operatorname{Var}(s)}{E\{\alpha / s\} \cup\{\alpha \doteq s\}} \quad \text { (replacement) }
\end{aligned}
$$

Unification algorithm

1. The input of the algorithm is a system E
2. The algorithm applies the manipulation rules as long as possible, and computes a system E^{\prime}
3. If the system E^{\prime} is in solved form

- it returns $\overrightarrow{E^{\prime}}$.
- else it returns Nothing

Example

$$
\begin{aligned}
& \text { Let } E=\{f(x, h(b), c) \doteq f(g(y), y, c)\} \text {. } \\
& \begin{array}{l}
\frac{f(x, h(b), c) \doteq f(g(y), y, c)}{x \doteq g(y), \quad h(b) \doteq y, \quad c \doteq c} \mathrm{~d} \\
\frac{x \doteq g(y), \quad h(b) \doteq y}{x \doteq g(y), \quad y \doteq h(b)} \\
\frac{x \doteq g(h(b)), \quad y \doteq h(b)}{} \mathrm{r} \\
\mathrm{x}
\end{array}
\end{aligned}
$$

The principal unifier of E is $\sigma=\{x / g(h(b)), y / h(b)\}$.
Also, $\sigma f(x, h(b), c)=f(g(h(b)), h(b), c)=\sigma f(g(y), y, c)$.

Try exercise 22.4.3 in Pierce book.

Towards the soundness and completeness of the algorithm

Lemma

1. The unification algorithm terminates.
2. If σ is a unifier of a solved form E then $\sigma=\sigma \vec{E}$.
3. If a rule transforms a system E into a system E^{\prime} then the solutions of E and E^{\prime} are the same.
4. If E is in solved form, then \vec{E} is a solution of the system E.

Proof of termination

A variable is not solved in a system E if it appears in it more than once. The termination of the unification algorithm can be shown reasoning by induction on the triplet $\langle n 1, n 2, n 3\rangle$ equipped with the lexicographic order, where
n 1 : nb of variables not solved
n 2 : size of the system
n3: nb of equation sof the form $t=x$
We have indeed that,

	n 1	n 2	n 3
Remplacement	$>$		
Elimination	\geq	$>$	
Decomposition	$=$	$>$	
Exchange	$=$	$=$	$>$

For every finite system of equations E,
Theorem
(Soundness) If the algorithm executed on E returns a solution \vec{S}, then E is unifiable and \vec{S} is a principal unifier for E. If the algorithm returns Nothing then E is not unifiable.

Theorem
(Completeness) If E is unifiable, the algorithm returns a principal unifier of E. If the system E is not unifiable then the algorithm returns Nothing.

Monomorphic types à la Curry

Expressions à la Curry

Example
let x : int $=3$ in $x+1$ is now let $x=3$ in $x+1$, and let $x:$ int $=4$ in (let $y:$ int $=x+1$ in $x * y)$)
is now let $x=4$ in (let $y=x+1$ in $x * y)$)

Typing rules à la Curry

$$
\Gamma \vdash x: \Gamma(x) \quad\ulcorner\vdash c t e: T C(c t e)
$$

$\frac{\Gamma \vdash M: A \rightarrow B \quad \Gamma \vdash N: A}{\Gamma \vdash M N: B}$

$$
\frac{\Gamma, x: A \vdash M: B}{\Gamma \vdash \lambda x \cdot M: A \rightarrow B}
$$

$$
\Gamma \vdash M: A \quad \Gamma \vdash N: B
$$

$$
\frac{\Gamma \vdash M: A \quad \Gamma, x: A \vdash N: B}{\Gamma \vdash \text { let } x=M \text { in } N: B}
$$

Properties of \vdash

Uniqueness is false.
Example

$$
\vdash \lambda x . x: \text { int } \rightarrow \text { int } \quad \vdash \lambda x . x: \text { bool } \rightarrow \text { bool }
$$

But the two functions are an instance of a same identitify function that behaves in the same manner in both cases: we have

> Polymorphism!

Towards a typing algorithm

- Substitutions
- Principal unifiers of systems of equations
- Unification algorithm for finite systems of equations
- How to build system of equations starting from a program ?
- Typing algorithm via unification

Algorithmic difficulties

$$
\begin{array}{ll}
\operatorname{Type}(\Gamma, \lambda x . M)=A \rightarrow B & \text { if there exists } A \text { s.t } \\
& \operatorname{Type}((\Gamma, x: A), M)=B
\end{array}
$$

Type $(\Gamma$, let $x=M$ in $N)=B \quad$ if there exists A s.t.

$$
\operatorname{Type}(\Gamma, M)=A \text { and }
$$

$$
\operatorname{Type}((\Gamma, x: A), N)=B
$$

Typing algorithm Inference + unification

Let STC of type schemas for the constants (for example $S T C(f s t)=\alpha \times \beta \rightarrow \alpha)$, and let M be a term to be typed.

1. For every variable x of M algo. introduces variable of type α_{x}, for every subterm N of M algo. introduces variable of type α_{N}.
2. The algorithm transforms M into a system of equations $S E(M)$ as follows,

M	$S E(M)$
x	$\left\{\alpha_{M} \doteq \alpha_{x}\right\}$
cte	$\left\{\alpha_{M} \doteq S T C(c t e)\right\}$
$\langle N, L\rangle$	$\left\{\alpha_{M} \doteq \alpha_{N} \times \alpha_{L}\right\} \cup S E(N) \cup S E(L)$
$N L$	$\left\{\alpha_{N} \doteq \alpha_{L} \rightarrow \alpha_{M}\right\} \cup S E(N) \cup S E(L)$
$\lambda x . N$	$\left\{\alpha_{M} \doteq \alpha_{x} \rightarrow \alpha_{N}\right\} \cup S E(N)$
let $x=N$ in L	$\left\{\alpha_{M} \doteq \alpha_{L} ; \alpha_{x} \doteq \alpha_{N}\right\} \cup S E(N) \cup S E(L)$

3. Unification algorithm solves the system $\operatorname{SE}(M)$

Soundness and completeness of the typing algorithm

Rough sketch

Theorem
(Soundness) If σ is a solution of $S E(M)$, then $\Delta \vdash M: \tau\left(\alpha_{M}\right)$, where $\Delta=\left\{x: \tau\left(\alpha_{x}\right) \mid x \in F V(M)\right\}$ and τ is an instance of σ.

Theorem
(Completeness) If there exist a Δ and a type A s.t. $\Delta \vdash M: A$, then $\operatorname{SE}(M)$ is unifiable.

Theorem
If there exist a Δ and a type A s.t. $\Delta \vdash M: A$, then A is an instance of $\sigma\left(\alpha_{M}\right)$, where σ is a principal unifier of the system $S E(M)$.

[^0]: ${ }^{3}$ Also called most general unifier or $m g u$.

