
Typage

Types

2018-2019

Giovanni Bernardi, gioXYZirif.fr

http://www.irif.fr/~gio/index.xhtml

Université Paris Diderot

1

gio XYZ irif.fr
http://www.irif.fr/~gio/index.xhtml

Types

2

Motivations

I Avoid nonsensical programs (1 + true)

I Avoid memory violations

I Avoid code whose behaviour is not de�ned

I Partially specify programs

3

Plan

I Monomorphic types

À la Church
À la Curry

I Uni�cation
I Type inference

I Polymorphic types

À la Church
À la Curry (+ type inference)

4

Monomorphic types à la Church

5

Expressions à la Church

Types
A ::= T | A× A | A→ A

T ::= int | bool

Expressions
M ::= x |

ct |
〈M,M〉 |
M M |
λx : A.M |
let x : A = M in M

Few types
int → bool
bool × bool
bool → (bool → int)
bool × (bool → int)
(bool → bool)→ int

6

Few examples

let x : int = 3 in x + 1

let x : int = (if true then 1 else 2) in x + 1

let x : int = 4 in (let y : int = x + 1 in x ∗ y)

let f : int → int = (λx : int.x + 1) in f (f x)

fix(λfact : int → int.λx : int.if x then 1 else (x ∗ fact (x − 1))

7

Reduction semantics

(λx : A.M) N ⇒ M{x/N}
let x : A = N in M ⇒ M{x/N}
fix M ⇒ M (fix M)
fst〈M,N〉 ⇒ M
snd〈M,N〉 ⇒ N
if true then M else N ⇒ M
if false then M else N ⇒ N
if 0 then M else N ⇒ M
if n then M else N ⇒ N, n 6= 0

8

Typing rules à la Church

For every ct there exists a type A, denoted TC (ct) : A. A type

environement Γ is a set of the form x1 : A1, . . . , xn : An.

We write Γ(xi) to denote Ai .

Γ ` xi : Γ(xi) Γ ` ct : TC (ct)

Γ ` M : A→ B Γ ` N : A

Γ ` M N : B

Γ, x : A ` M : B

Γ ` λx : A.M : A→ B

Γ ` M : A Γ ` N : B

Γ ` 〈M,N〉 : A× B

Γ ` M : A Γ, x : A ` N : B

Γ ` let x : A = M in N : B

9

Examples

Let (∗) = f : int → int ` f : int → int

x : int ` + : int × int → int

x : int ` x : int x : int ` 1 : int

x : int ` 〈x , 1〉 : int × int

x : int ` +〈x , 1〉 : int

∅ ` λx : int.+ 〈x , 1〉 : int → int

...

∅ ` λx : int.+ 〈x , 1〉 : int → int

(∗)

(∗) f : int → int ` 3 : int

f : int → int ` f 3 : int

f : int → int ` f (f 3) : int

∅ ` let f : int → int = (λx : int.+ 〈x , 1〉) in f (f 3) : int

10

Properties of the relation `

Universal quanti�ers are left implicit.

I (Uniqueness): If Γ ` M : A and Γ ` M : B then A ≡ B .

I (Weakening): Let Γ = {x : B | x ∈ FV (M)} and Γ ⊆ ∆. We

have that Γ ` M : A i� ∆ ` M : A.

I (Preservation): If Γ ` M : A and M ⇒ M ′ then Γ ` M ′ : A.

I (Subject reduction): If Γ ` M : A then M ⇒ or M normal

form.

11

Typing algorithm

Type(Γ, ct) = TC (ct)
Type(Γ, x) = A if x : A ∈ Γ
Type(Γ, λx : A.M) = A→ B if Type((Γ, x : A),M) = B
Type(Γ, 〈M,N〉) = A× B if Type(Γ,M) = A and

Type(Γ,N) = B
Type(Γ,M N) = B if Type(Γ,M) = A→ B and

Type(Γ,N) = A
Type(Γ, let x : A = M in N) = B if Type(Γ,M) = A and

Type((Γ, x : A),N) = B
Type(Γ,M) = error otherwise

12

Properties of the algorithm

For every term M and environment Γ,

I (Termination): Type(Γ,M) terminates.

I (Soundness): If Type(Γ,M) = A then Γ ` M : A.

I (Completeness): If Γ ` M : A then Type(Γ,M) = A.

In other terms,

if Type(Γ,M) = error then M is not typeable in Γ.

13

Uni�cation theory

14

Σ-algebras

Σ: Set of function symbols with an arity n ∈ IN.

X : Set of variables.

T (X ,Σ): Set of terms over X and Σ, inductively de�ned by

x ∈ X

x ∈ T (X ,Σ)

t1, . . . , tn ∈ T (X ,Σ) f has arity n ∈ Σ

f (t1, . . . , tn) ∈ T (X ,Σ)

We denote Var(t) the set of all the variables in a term t.
A term t is closed if Var(t) = ∅.

15

Substitutions

De�nition

I A substitution is a function σ : X → T (Σ,X).

I The domain of a substitution σ is the set

Dom(σ) = {x ∈ X | σ(x) 6= x}.
I The codomain of a substitution σ is the set

Codom(σ) = {Var(σ(x)) | x ∈ Dom(σ)}.
I A renaming is an injective substitution σ s.t.

∀x ∈ Dom(σ). σ(x) = y .
Example: σ = {x/y , y/w} is arenaming. Every permutation is

a renaming, but not the inverse, as shown by the example.

I If the the domain of a substitution σ is �nite we denote σ as

{x1/t1, . . . , xn/tn} if σ(xi) = ti and xi ∈ Dom(σ).

I The application of a substitution to a term is de�ned

inductively by σ(f (t1, . . . , tn)) = f (σ(t1), . . . , σ(tn)).

16

Comparing substitutions

Let σ and τ be two substitutions.

The composition of σ with τ , denoted σ ◦ τ , is de�ned as expected

by letting (σ ◦ τ)(x) = σ(τ(x)).

Example

{y/b, z/h(c)} ◦ {x/f (y), y/z} = {x/f (b), y/h(c), z/h(c)}

De�nition (22.4.1 in Pierce book)

The substitution σ is an instance of the substitution τ (or τ is more

general than σ), denoted σ ≤ τ , i� ∃ρ. ∀x ∈ X . σ(x) = (ρ ◦ τ)(x).

Example

{x/f (y), y/z} is more general than {x/f (b), y/h(c), z/h(c)}

17

Equivalence for substitutions

The relation ≤ is not antisymmetric.1

Example

Let σ1 = {x/y} and σ2 = {y/x}. We have that

σ1 ≤ σ2 as σ1 = {x/y} ◦ σ2, and
σ2 ≤ σ1 as σ2 = {y/x} ◦ σ1,
but σ1 6= σ2.

Let σ1 = {x/y} and σ3 = {x/y , z/w ,w/z}. We have that

σ1 ≤ σ3 as σ1 = {z/w ,w/z} ◦ σ3, and
σ3 ≤ σ1 as σ3 = {z/w ,w/z} ◦ σ1,
but σ1 6= σ3.

De�nition
σ ∼ σ′ i� ∃ renaming ρ s.t. σ = ρ ◦ σ′.
And thus for instance σ1 ∼ σ2 ∼ σ3.

1R antisymmetric if aRb and bRa imply a = b.
18

Principal substitution(s)
Let S be a set of substitutions and let τ ∈ S.
We say that τ is principal2 for S i� every σ ∈ S is an instance of τ .

Example

Let S = {σ1, σ2, σ3, σ4, σ5}, where

σ1 = {x/y} σ2 = {y/x}
σ3 = {x/y ,w/z , z/w} σ4 = {x/u, y/u}
σ5 = {x/a, y/a}

We have that σ1, σ2 et σ3 are principal for S, because

σ2, σ3, σ4, σ5 ≤ σ1
σ1, σ3, σ4, σ5 ≤ σ2
σ1, σ2, σ4, σ5 ≤ σ3

and σ1 6≤ σ4 and σ1 6≤ σ5.
2Also most general.

19

Uni�er of a system of equations

De�nition
Two terms A and B are uni�able i� there exists a substitution σ
s.t. σ(A) = σ(B) (σ is called a uni�er of A and B).

I An equation A
.

= B is formally just a pair of terms, and we say

that it is uni�able i� the terms A and B are so.

I A system of equations E is a set of equations. We say that it

is uni�able i� there exists one substitution that is the uni�er of

all the equations in E . This substitution is called solution of E .

We'll focus on �nite systems of equations.

Example

f (x , g(x , a)) and f (f (a), y) uni�able, for instance via

{x/f (a), y/g(f (a), a)}.

f (x , g(x , a)) and f (f (a), f (b, a)) are not uni�able.

20

Uniqueness

1. We consider as uni�ers of a system E only the substitutions σ
s.t. Dom(σ) ⊆ Var(E).

2. Let σ and σ′ be uni�er of a system E . We identify them if

they di�er only in variable renaming, i.e. if σ ∼ σ′.

Example

Let S = {x .
= y} and let

σ1 = {x/y}, σ2 = {y/x}, σ3 = {x/y , z/w ,w/z}

While σ1 = σ2 (for [σ1]∼ = [σ2]∼) and they are principal uni�ers of

S, σ3 is not considered as a uni�er of S.
The principal uni�er3 of a system E is unique up-to renaming, that

is: if σ and σ′ are two principal uni�ers of a system E then σ ∼ σ′.

3Also called most general uni�er or mgu.
21

Solved form

De�nition
A system of equations E is in solved form i� it has the form

{α1
.

= t1, . . . , αn
.

= tn}, where
I all variables αi are distinct (∀i , j . i 6= j implies αi 6= αj)

I no αi appears in a tj (∀i . αi /∈
⋃

1≤j≤n Var(tj))

Notation : If E is a system in solved form {α1
.

= t1, . . . , αn
.

= tn}
we denote ~E the substitution {α1/t1, . . . , αn/tn}.

22

How to solve equations ?
Manipulation rules

E ∪ {s .
= s}

E
(elimination)

E ∪ {t .
= α} t /∈ X

E ∪ {α .
= t}

(exchange)

E ∪ {f (s1, . . . , sn)
.

= f (t1, . . . , tn)}
E ∪ {s1

.
= t1, . . . , sn

.
= tn}

(decomposition)

E ∪ {α .
= s} α ∈ Var(E) α /∈ Var(s)

E{α/s} ∪ {α .
= s}

(replacement)

23

Uni�cation algorithm

1. The input of the algorithm is a system E

2. The algorithm applies the manipulation rules as long as

possible, and computes a system E ′

3. If the system E ′ is in solved form

it returns ~E ′ .
else it returns Nothing

24

Example

Let E = {f (x , h(b), c)
.

= f (g(y), y , c)}.

f (x , h(b), c)
.

= f (g(y), y , c)
d

x
.

= g(y), h(b)
.

= y , c
.

= c
e

x
.

= g(y), h(b)
.

= y
x

x
.

= g(y), y
.

= h(b)
r

x
.

= g(h(b)), y
.

= h(b)

The principal uni�er of E is σ = {x/g(h(b)), y/h(b)}.
Also, σf (x , h(b), c) = f (g(h(b)), h(b), c) = σf (g(y), y , c).

Try exercise 22.4.3 in Pierce book.

25

Towards the soundness and completeness of the algorithm

Lemma

1. The uni�cation algorithm terminates.

2. If σ is a uni�er of a solved form E then σ = σ ~E .

3. If a rule transforms a system E into a system E ′ then the

solutions of E and E ′ are the same.

4. If E is in solved form, then ~E is a solution of the system E .

26

Proof of termination

A variable is not solved in a system E if it appears in it more than

once. The termination of the uni�cation algorithm can be shown

reasoning by induction on the triplet 〈n1, n2, n3〉 equipped with the

lexicographic order, where

n1: nb of variables not solved

n2: size of the system

n3: nb of equation sof the form t = x

We have indeed that,

n1 n2 n3

Remplacement >

Elimination ≥ >

Decomposition = >

Exchange = = >

27

For every �nite system of equations E ,

Theorem
(Soundness) If the algorithm executed on E returns a solution ~S ,

then E is uni�able and ~S is a principal uni�er for E . If the

algorithm returns Nothing then E is not uni�able.

Theorem
(Completeness) If E is uni�able, the algorithm returns a principal

uni�er of E . If the system E is not uni�able then the algorithm

returns Nothing.

28

Monomorphic types à la Curry

29

Expressions à la Curry

N,M ::= x |
cte |
〈M,N〉 |
M N |
λx .M |
let x = N in M

Example

let x : int = 3 in x + 1 is now let x = 3 in x + 1, and

let x : int = 4 in (let y : int = x + 1 in x ∗ y))
is now let x = 4 in (let y = x + 1 in x ∗ y))

30

Typing rules à la Curry

Γ ` x : Γ(x) Γ ` cte : TC (cte)

Γ ` M : A→ B Γ ` N : A

Γ ` M N : B

Γ, x : A ` M : B

Γ ` λx .M : A→ B

Γ ` M : A Γ ` N : B

Γ ` 〈M,N〉 : A× B

Γ ` M : A Γ, x : A ` N : B

Γ ` let x = M in N : B

31

Properties of `

Uniqueness is false.

Example

` λx .x : int → int ` λx .x : bool → bool

But the two functions are an instance of a same identitify function

that behaves in the same manner in both cases: we have

Polymorphism!

32

Towards a typing algorithm

I Substitutions

I Principal uni�ers of systems of equations

I Uni�cation algorithm for �nite systems of equations

I How to build system of equations starting from a program ?

I Typing algorithm via uni�cation

Algorithmic di�culties

Type(Γ, λx .M) = A→ B if there exists A s.t

Type((Γ, x : A),M) = B

Type(Γ, let x = M in N) = B if there exists A s.t.

Type(Γ,M) = A and

Type((Γ, x : A),N) = B

33

Typing algorithm Inference + uni�cation

Let STC of type schemas for the constants (for example

STC (fst) = α× β → α), and let M be a term to be typed.

1. For every variable x of M algo. introduces variable of type αx ,

for every subterm N of M algo. introduces variable of type αN .

2. The algorithm transforms M into a system of equations

SE (M) as follows,

M SE (M)

x {αM
.

= αx}
cte {αM

.
= STC (cte)}

〈N, L〉 {αM
.

= αN × αL} ∪ SE (N) ∪ SE (L)

N L {αN
.

= αL → αM} ∪ SE (N) ∪ SE (L)

λx .N {αM
.

= αx → αN} ∪ SE (N)

let x = N in L {αM
.

= αL;αx
.

= αN} ∪ SE (N) ∪ SE (L)

3. Uni�cation algorithm solves the system SE (M)

34

Soundness and completeness of the typing algorithm
Rough sketch

Theorem
(Soundness) If σ is a solution of SE (M), then ∆ ` M : τ(αM),
where ∆ = {x : τ(αx) | x ∈ FV (M)} and τ is an instance of σ.

Theorem
(Completeness) If there exist a ∆ and a type A s.t. ∆ ` M : A,

then SE (M) is uni�able.

Theorem
If there exist a ∆ and a type A s.t. ∆ ` M : A, then A is an

instance of σ(αM), where σ is a principal uni�er of the system

SE (M).

35

