Typage

Proof-theoretic approach to (co)induction

	2018-2019
	Giovanni Bernardi, gioXYZirif.fr
	http://www.irif.fr/~gio/index.xhtml
¢	Université Paris Dide

Plan

1. Historical remark
2. Recap a few points
3. Questions
4. Proof theoretic approach
and its set-theoretic explanation
5. Examples examples examples

These fallacies [...] are to be avoided by what may be called the "vicious-circle principle;" i.e., [...] whatever contains an apparent variable must be of a different type from the possible values of that variable [...] This is the guiding principle in what follows.

1968, Morris

This construction is shown to be lacking [...] the type system makes the λ-calculus an uninteresting programming language; i.e. one without non-terminating computations.

1968, Morris

1996

Vicious Circles

Jon Barwise and Lawrence Moss

Thus far ...

Motivated by circularities, we discussed
Theory

1. Functions over partial orders

$$
\begin{aligned}
& F,\langle P, \leq\rangle \\
& x=F(x)
\end{aligned}
$$

2. Fixed points

- least induction Kleene fp theorem μF
- greatest coinduction Knaster-Tarski theorem νF

Applications

- Subtyping / equality for recursive types
- Equi-recursive type system

Recap: relations

- Assuming sets, \subseteq, \in
- $X \times Y=\{(x, y) \mid$ all $x \in X$ and $y \in \mathcal{Y}\} \quad$ Cartesian product
- parts $(X)=\{Z \mid Z \subseteq X\}$
powerset
- A relation R between sets X and Y is a subset of $X \times Y$
- $R \in \operatorname{parts}(X \times Y)$
- Notation: $x R$ y means $(x, y) \in R$
- A relation $R \subseteq X \times X$ is
- reflexive if x R
- symmetric if $x R$ implies $y R x$
- antisymmetric if $x R y$ and $y R x$ imply $x=y \quad \forall x, y \in X$
- transitive if $x R y$ and $y R z$ imply $x R z \quad \forall x, y, z \in X$
- total if $x R$ y or $y R \times$ for every $x, y \in X$
- a preorder if it is reflexive and transitive
- a partial order if it is reflexive, antisymmetric, and transitive
- an equivalence if is reflexive, symmetric, and transitive

Recap: orders

- Notation: $\langle P, \leq\rangle$ where P set and $\leq \subseteq P \times P$ partial order
- $\langle P, \leq\rangle$ partially ordered set: poset
- If $\langle P, \leq\rangle$ poset and $S \subseteq P$

■ $S^{u}=\{x \in P \mid \forall s \in S . s \leq x\} \quad S$ upper

- $x \in S^{u}$ is an upper bound of S
- $x \in S^{u}$ is the least upper bound of S if $\forall y \in S^{u} . x \leq y \quad \forall x$
- $\downarrow S$ denotes the least upper bound of S
- $S^{\ell}=\{x \in P \mid \forall s \in S . x \leq s\}$
S lower
- $x \in S^{\ell}$ is an lower bound of S
$\forall x$
- $x \in S^{\ell}$ is the greatest lower bound of S if $\forall y \in S^{\ell} . y \leq x \quad \forall x$
- ΠS denotes the greatest lower bound of S

λ-calculus

typing rules from [Cardone and Coppo, 1991]

$$
M, N::=x|c| M N \mid \lambda x \cdot M
$$

An equi-recursive system

$$
\begin{gathered}
\overline{\Gamma, x: A \vdash x: A} \quad \overline{\Gamma, g: \text { typeof }(g) \vdash g: \text { typeof }(g)} \\
\frac{\Gamma, x: A \vdash M: B}{\Gamma \vdash \lambda x \cdot M: A \rightarrow B} \quad \frac{\Gamma \vdash M: A \rightarrow B \quad \Gamma \vdash N: A}{\Gamma \vdash M N: B} \\
\frac{\Gamma \vdash M: B}{\Gamma \vdash M: A} A \approx B
\end{gathered}
$$

Powerful type system, for instance we can type \mathcal{Y}

Type equivalence syntactic approach

$$
\begin{aligned}
F: & \operatorname{parts}\left(\text { Types }_{\mu}^{2}\right) \rightarrow \operatorname{parts}\left(\text { Types }_{\mu}^{2}\right) \\
F(\mathcal{R}) \triangleq & \{(c, c) \mid c \in \mathcal{T}\} \\
& \cup\left\{\left(A_{1} \times A_{2}, B_{1} \times B_{2}\right) \mid \forall i \in\{1,2\} . A_{i} \mathcal{R} B_{i}\right\} \\
& \cup\left\{\left(A_{1} \rightarrow A_{2}, B_{1} \rightarrow B_{2}\right) \mid B_{1} \mathcal{R} A_{1}, A_{2} \mathcal{R} B_{2}\right\} \\
& \cup\{(A, \mu x . B) \mid A \mathcal{R} B\{x / \mu x . B\}\} \\
& \cup\{(\mu x . A, B) \mid A\{x / \mu x . A\} \mathcal{R} B\}
\end{aligned}
$$

We have

- $\left\langle\right.$ parts $\left(\right.$ Types $\left.\left._{\mu}^{2}\right), \subseteq\right\rangle$ complete lattice, F monotone
- $\nu F=\bigcup\left\{\mathcal{R} \in \operatorname{parts}\left(\right.\right.$ Types $\left.\left._{\mu}^{2}\right) \mid \mathcal{R} \subseteq F(\mathcal{R})\right\}$ by Knaster-Tarski
- Let $\leq_{s b t}^{c} \triangleq \nu F \quad$ and $\quad \approx \triangleq \leq_{s b t}^{c} \cap\left(\leq_{s b t}^{c}\right)^{-1}$

Questions questions questions ...

1. What is a complete lattice?

Questions questions questions ...

1. What is a complete lattice?
2. What is a complete partial order (CPO) ?

Questions questions questions ...

1. What is a complete lattice?
2. What is a complete partial order (CPO) ?
3. What does the Knaster-Tarski theorem state ?

Questions questions questions ...

1. What is a complete lattice?
2. What is a complete partial order (CPO) ?
3. What does the Knaster-Tarski theorem state ?
4. What does Kleene fixed point theorem state ?

Let's change perspective

inference rule

$\frac{\text { premise }_{1} \quad \ldots \quad \text { premise }_{n}}{\text { conclusion }}$ side condition

example
$\frac{\Gamma \vdash M: B}{\Gamma \vdash M: A} A \approx B$

Back to non-recursive types

Minimal language of types $\quad A, B \quad::=$ int \mid real $\mid A \rightarrow A$
Subtyping relation ground types

$$
\text { int } \leq_{g} \text { int } \quad \text { real } \leq_{g} \text { real } \quad \text { int } \leq_{g} \text { real }
$$

How to define subtyping $\leq_{s b t}$ on types A, B, \ldots ?

Back to non-recursive types

Minimal language of types $\quad A, B \quad::=$ int \mid real $\mid A \rightarrow A$ Subtyping relation ground types

$$
\text { int } \leq_{g} \text { int } \quad \text { real } \leq_{g} \text { real } \quad \text { int } \leq_{g} \text { real }
$$

How to define subtyping $\leq_{s b t}$ on types A, B, \ldots ?
inference rules

$$
\overline{c_{1} \leq_{s b t} c_{2}} c_{1} \leq_{g} c_{2}
$$

$$
\frac{B_{1} \leq_{s b t} A_{1} \quad A_{2} \leq_{s b t} B_{2}}{A_{1} \rightarrow A_{2} \leq_{s b t} B_{1} \rightarrow B_{2}}
$$

Inductive definition
Relation $\leq_{s b t}$ contains all pairs (A, B) s.t. set theoretic ideas

- we can derive $A \leq_{s b t} B$,
- via a finite derivation tree

Back to non-recursive types

A derivation tree of depth 2 (i.e. finite)

$$
\frac{\text { int } \leq_{\text {sbt }} \text { real } \quad \overline{\text { int } \leq_{\text {sbt }} \text { real }}}{\text { real } \rightarrow \text { int } \leq_{\text {sbt }} \text { int } \rightarrow \text { real }}
$$

$\overline{c_{1} \leq_{s b t} C_{2}} c_{1} \leq_{g} C_{2}$

$$
\frac{B_{1} \leq_{s b t} A_{1} \quad A_{2} \leq_{s b t} B_{2}}{A_{1} \rightarrow A_{2} \leq_{s b t} B_{1} \rightarrow B_{2}}
$$

Inductive definition
Relation $\leq_{s b t}$ contains all pairs (A, B) s.t. set theoretic ideas

- we can derive $A \leq_{s b t} B$,
- via a finite derivation tree

Back to non-recursive types

A derivation tree of depth 2 (i.e. finite)

$$
\frac{\overline{\text { int } \leq_{\text {sbt }} \text { real }} \quad \overline{\text { int } \leq_{\text {sbt }} \text { real }}}{\text { real } \rightarrow \text { int } \leq_{\text {sbt }} \text { int } \rightarrow \text { real }}
$$

$\overline{c_{1} \leq_{s b t} C_{2}} c_{1} \leq_{g} C_{2}$

$$
\frac{B_{1} \leq_{s b t} A_{1} \quad A_{2} \leq_{s b t} B_{2}}{A_{1} \rightarrow A_{2} \leq_{s b t} B_{1} \rightarrow B_{2}}
$$

Inductive definition
How to express this using sets/functions ?

From rules to functions

inference rules

$$
\frac{c_{1} \leq_{s b t} c_{2}}{c_{1}} c_{g} c_{2} \quad \frac{B_{1} \leq_{s b t} A_{1} \quad A_{2} \leq_{s b t} B_{2}}{A_{1} \rightarrow A_{2} \leq_{s b t} B_{1} \rightarrow B_{2}}
$$

What do the rules mean?

From rules to functions

inference rules

$$
\overline{\left(c_{1}, c_{2}\right)} c_{1} \leq_{g} c_{2} \quad \frac{\left(B_{1}, A_{1}\right) \quad\left(A_{2}, B_{2}\right)}{\left(A_{1} \rightarrow A_{2}, B_{1} \rightarrow B_{2}\right)}
$$

What do the rules mean?
To define a binary relation $\leq_{s b t}$

From rules to functions

inference rules

$$
\overline{\left(c_{1}, c_{2}\right)} c_{1} \leq_{g} c_{2} \quad \frac{\left(B_{1}, A_{1}\right) \quad\left(A_{2}, B_{2}\right)}{\left(A_{1} \rightarrow A_{2}, B_{1} \rightarrow B_{2}\right)}
$$

What do the rules mean?

To define a binary relation $\leq_{s b t}$, the rules define

$$
F \quad: \quad \operatorname{parts}\left(\text { Types }^{2}\right) \rightarrow \operatorname{parts}\left(\text { Types }^{2}\right)
$$

$$
F(\mathcal{R}) \triangleq\left\{\left(c_{1}, c_{2}\right) \mid c_{1} \leq_{g} c_{2}\right\}
$$

$$
\cup\left\{\left(A_{1} \rightarrow A_{2}, B_{1} \rightarrow B_{2}\right) \mid B_{1} \mathcal{R} A_{1}, A_{2} \mathcal{R} B_{2}\right\}
$$

From rules to functions

inference rules

$$
\overline{\left(c_{1}, c_{2}\right)} c_{1} \leq_{g} c_{2} \quad \frac{\left(B_{1}, A_{1}\right) \quad\left(A_{2}, B_{2}\right)}{\left(A_{1} \rightarrow A_{2}, B_{1} \rightarrow B_{2}\right)}
$$

What do the rules mean?

To define a binary relation $\leq_{s b t}$, the rules define

$$
F \quad: \quad \text { parts }\left(\text { Types }^{2}\right) \rightarrow \operatorname{parts}\left(\text { Types }^{2}\right)
$$

$$
F(\mathcal{R}) \triangleq \quad\{(\text { int }, \text { int }),(\text { real }, \text { real }),(\text { int }, \text { real })\}
$$

$$
\cup\left\{\left(A_{1} \rightarrow A_{2}, B_{1} \rightarrow B_{2}\right) \mid B_{1} \mathcal{R} A_{1}, A_{2} \mathcal{R} B_{2}\right\}
$$

From derivation trees to function application

$$
\begin{aligned}
F(\mathcal{R}) \triangleq & \{(\text { int }, \text { int }),(\text { real }, \text { real }),(\text { int }, \text { real })\} \\
& \cup\left\{\left(A_{1} \rightarrow A_{2}, B_{1} \rightarrow B_{2}\right) \mid B_{1} \mathcal{R} A_{1}, A_{2} \mathcal{R} B_{2}\right\}
\end{aligned}
$$

Let's use F,

$$
\begin{array}{ll}
F^{0}(\emptyset) & =\emptyset \quad \text { by convention } \\
F^{1}(\emptyset) & = \\
F^{2}(\emptyset) & =
\end{array}
$$

From derivation trees to function application

$$
\begin{aligned}
F(\mathcal{R}) \triangleq & \{(\text { int }, \text { int }),(\text { real }, \text { real }),(\text { int }, \text { real })\} \\
& \cup\left\{\left(A_{1} \rightarrow A_{2}, B_{1} \rightarrow B_{2}\right) \mid B_{1} \mathcal{R} A_{1}, A_{2} \mathcal{R} B_{2}\right\}
\end{aligned}
$$

Let's use F,

$$
\begin{aligned}
& F^{0}(\emptyset)=\emptyset \quad \text { by convention } \\
& F^{1}(\emptyset)=\{(\text { int }, \text { int }),(\text { real }, \text { real }),(\text { int }, \text { real })\}=\leq_{g} \\
& F^{2}(\emptyset)=
\end{aligned}
$$

From derivation trees to function application

$$
\begin{aligned}
F(\mathcal{R}) \triangleq & \{(\text { int, int }),(\text { real }, \text { real }),(\text { int }, \text { real })\} \\
& \cup\left\{\left(A_{1} \rightarrow A_{2}, B_{1} \rightarrow B_{2}\right) \mid B_{1} \mathcal{R} A_{1}, A_{2} \mathcal{R} B_{2}\right\}
\end{aligned}
$$

Let's use F,

$$
\begin{aligned}
F^{0}(\emptyset) & =\emptyset \quad \text { by convention } \\
F^{1}(\emptyset) & =\{(\text { int }, \text { int }),(\text { real }, \text { real }),(\text { int }, \text { real })\}=\leq_{g} \\
F^{2}(\emptyset) & =\{(\text { real } \rightarrow \text { int }, \text { int } \rightarrow \text { real }),(\text { int } \rightarrow \text { int, int } \rightarrow \text { int }), \ldots\} \\
& \cup \leq_{g}
\end{aligned}
$$

From derivation trees to function application

The same derivation tree of depth 2

$$
\frac{\overline{(\text { int, real })}}{\left(\begin{array}{l}
\text { real } \rightarrow i n t, ~ i n t ~
\end{array} \rightarrow \text { real }\right)}
$$

$$
\begin{aligned}
F^{0}(\emptyset) & =\emptyset \quad \text { by convention } \\
F^{1}(\emptyset) & =\{(\text { int }, \text { int }),(\text { real , real }),(\text { int }, \text { real })\}=\leq_{g} \\
F^{2}(\emptyset) & =\{(\text { real } \rightarrow \text { int, int } \rightarrow \text { real }),(\text { int } \rightarrow \text { int, int } \rightarrow \text { int }), \ldots\} \\
& \cup \leq_{g}
\end{aligned}
$$

From derivation trees to function application

Definition
Relation $\leq_{\text {sbt }}$ contains all pairs (A, B) s.t.

- we can derive $A \leq_{s b t} B$,
- via a finite derivation tree

Lemma
A derivation tree $\overline{(A, B)}$ has depth n iff $(A, B) \in F^{n}(\emptyset) . \quad \square$ but then...

From derivation trees to function application

Definition
Relation $\leq_{s b t}$ contains all pairs (A, B) s.t.

- we can derive $A \leq_{s b t} B$,
- via a finite derivation tree

Lemma
A derivation tree $\overline{(A, B)}$ has depth n iff $(A, B) \in F^{n}(\emptyset) . \quad \square$ but then...

Corollary
$\leq_{s b t}=\bigcup_{n=0} F^{n}(\emptyset)$, thus by Kleene fixed point theorem

$$
\leq_{s b t}=\mu F
$$

Recursive types

$$
A::=\text { int } \mid \text { real }|x| \mu x . A \mid A \rightarrow A
$$

$F \quad: \quad \operatorname{parts}\left(\operatorname{Types}_{\mu}^{2}\right) \rightarrow \operatorname{parts}\left(\operatorname{Types}_{\mu}^{2}\right)$
$F(\mathcal{R}) \triangleq\{($ int, int $),($ real, real $),($ int, real $)\}$

$$
\begin{aligned}
& \cup\left\{\left(A_{1} \rightarrow A_{2}, B_{1} \rightarrow B_{2}\right) \mid B_{1} \mathcal{R} A_{1}, A_{2} \mathcal{R} B_{2}\right\} \\
& \cup\{(A, \mu x . B) \mid A \mathcal{R} B\{x / \mu x . B\}\} \\
& \cup\{(\mu x . A, B) \mid A\{x / \mu x . A\} \mathcal{R} B\}
\end{aligned}
$$

- $\left\langle\right.$ parts $\left(\right.$ Types $\left.\left._{\mu}^{2}\right), \subseteq\right\rangle$ complete lattice, F monotone
- νF exists
by Knaster-Tarski
- Let $\leq_{s b t}^{c} \triangleq \nu F, \quad \approx \triangleq \leq_{s b t}^{c} \cap\left(\leq_{s b t}^{c}\right)^{-1}$

Recursive types

$$
A::=\text { int } \mid \text { real }|x| \mu x . A \mid A \rightarrow A
$$

inference rules

$$
\begin{array}{cc}
\frac{B_{1} \leq_{s b t}^{\prime} A_{1} \quad A_{2} \leq_{s b t}^{\prime} B_{2}}{c_{1} \leq_{s b t}^{\prime} c_{2}} c_{1} \leq_{g} c_{2} & \frac{A}{A_{1} \rightarrow A_{2} \leq_{s b t}^{\prime} B_{1} \rightarrow B_{2}} \\
\frac{A \leq_{s b t}^{\prime} B\{x / \mu x . B\}}{A \leq_{s b t}^{\prime} \mu x . B} & \frac{A\{x / \mu x . A\} \leq_{s b t}^{\prime} B}{\mu x . A \leq_{s b t}^{\prime} B}
\end{array}
$$

Coinductive definition
Relation $\leq_{s b t}^{\prime}$ contains all pairs (A, B) s.t.

- we can derive $A \leq_{s b t}^{\prime} B$
- via a finite or a circular derivation tree

A circular derivation tree

Example

Let $A=\mu x . x \rightarrow i n t$, let's show that $A \leq_{s b t}^{\prime} A \rightarrow$ int.

$$
\frac{\frac{\operatorname{A}_{s b t}^{\prime} A \rightarrow \text { int }}{A \leq_{s b t}^{\prime} A} \overline{\text { int } \leq_{s b t}^{\prime} \text { int }}}{\frac{A \rightarrow \text { int } \leq_{s b t}^{\prime} A \rightarrow \text { int }}{A \leq_{s b t}^{\prime} A \rightarrow i n t}}
$$

A circular derivation tree

Example

Let $A=\mu x . x \rightarrow i n t$, let's show that $A \leq_{s b t}^{\prime} A \rightarrow$ int.

$$
\frac{\frac{x_{s b t}^{\prime} A \rightarrow i n t}{A \leq_{s b t}^{\prime} A}}{\frac{A \rightarrow i n t \leq_{s b t}^{\prime} A \rightarrow i n t}{\prime}} \frac{\leq_{s b t}^{\prime}}{A \leq_{s b t}^{\prime} A \rightarrow i n t}
$$

What's the relation with νF ??

A circular derivation tree

Example

Let $A=\mu x . x \rightarrow i n t$, let's show that $A \leq_{s b t}^{\prime} A \rightarrow i n t$.

$$
\frac{\frac{\operatorname{A}_{s b t}^{\prime} A \rightarrow \text { int }}{A \leq_{s b t}^{\prime} A} \quad \overline{\text { int } \leq_{s b t}^{\prime} i n t}}{\frac{A \rightarrow \text { int } \leq_{s b t}^{\prime} A \rightarrow \text { int }}{A \leq_{s b t}^{\prime} A \rightarrow i n t}}
$$

What's the relation with νF ??

- $\mathcal{R} \triangleq\{(A, A \rightarrow i n t),(A \rightarrow i n t, A \rightarrow i n t),(A, A),(i n t, i n t)\}$
- $\mathcal{R} \subseteq F(\mathcal{R}) \quad$ post-fixed point
- $\mathcal{R} \subseteq \nu F=\leq_{s b t}^{c}$
- In fact we have $\leq_{s b t}^{c}=\leq_{s b t}^{\prime}$

Summary

Induction

- least fixed points
- finite derivation trees

Coinduction

- greatest fixed points

Knaster-Tarski fp theorem

- finite and circular derivation trees

Example
Subtyping relation

Other more abstract approaches exist

Thats all Folles!
J

