
Typage

Proof-theoretic approach to (co)induction

2018-2019
Giovanni Bernardi, gioXYZirif.fr
http://www.irif.fr/~gio/index.xhtml

Université Paris Diderot

1

gio XYZ irif.fr
http://www.irif.fr/~gio/index.xhtml

Plan

1. Historical remark

2. Recap a few points

3. Questions

4. Proof theoretic approach and its set-theoretic explanation

5. Examples examples examples

2

1908, Russell
These fallacies [. . .] are to be avoided by what
may be called the “vicious-circle principle;”
i.e., [. . .] whatever contains an apparent
variable must be of a different type from the
possible values of that variable [. . .] This is
the guiding principle in what follows.

1968, Morris

This construction is shown to be lacking [. . .]
the type system makes the λ-calculus an
uninteresting programming language; i.e. one
without non-terminating computations.

3

1908, Russell
These fallacies [. . .] are to be avoided by what
may be called the “vicious-circle principle;”
i.e., [. . .] whatever contains an apparent
variable must be of a different type from the
possible values of that variable [. . .] This is
the guiding principle in what follows.

1968, Morris

This construction is shown to be lacking [. . .]
the type system makes the λ-calculus an
uninteresting programming language; i.e. one
without non-terminating computations.

4

1996

Thus far . . .

Motivated by circularities, we discussed

Theory

1. Functions over partial orders F , 〈P,≤〉

2. Fixed points x = F (x)

- least induction Kleene fp theorem µF

- greatest coinduction Knaster-Tarski theorem νF

Applications

I Subtyping / equality for recursive types

I Equi-recursive type system how to type Y

5

Recap: relations

I Assuming sets, ⊆, ∈
I X × Y = { (x , y) | all x ∈ X and y ∈ Y } Cartesian product

I parts(X) = {Z | Z ⊆ X } powerset

I A relation R between sets X and Y is a subset of X × Y

R ∈ parts(X × Y)
Notation: x R y means (x , y) ∈R

I A relation R ⊆ X × X is
reflexive if x R x ∀x ∈ X

symmetric if x R y implies y R x ∀x , y ∈ X

antisymmetric if x R y and y R x imply x = y ∀x , y ∈ X

transitive if x R y and y R z imply x R z ∀x , y , z ∈ X

total if x R y or y R x for every x , y ∈ X
a preorder if it is reflexive and transitive
a partial order if it is reflexive, antisymmetric, and transitive
an equivalence if is reflexive, symmetric, and transitive

6

Recap: orders

I Notation: 〈P,≤〉 where P set and ≤ ⊆ P × P partial order

I 〈P,≤〉 partially ordered set: poset

I If 〈P,≤〉 poset and S ⊆ P

Su = { x ∈ P | ∀s ∈ S . s ≤ x } S upper

x ∈ Su is an upper bound of S ∀x
x ∈ Su is the least upper bound of S if ∀y ∈ Su. x ≤ y ∀x⊔
S denotes the least upper bound of S

S` = { x ∈ P | ∀s ∈ S . x ≤ s } S lower

x ∈ S` is an lower bound of S ∀x
x ∈ S` is the greatest lower bound of S if ∀y ∈ S`. y ≤ x ∀xd
S denotes the greatest lower bound of S

7

λ-calculus
typing rules from [Cardone and Coppo, 1991]

M,N ::= x | c | MN | λx .M

An equi-recursive system

Γ, x : A ` x : A Γ, g : typeof (g) ` g : typeof (g)

Γ, x : A ` M : B

Γ ` λx .M : A→ B
Γ ` M : A→ B Γ ` N : A

Γ ` MN : B

Γ ` M : B
Γ ` M : A

A ≈ B

Powerful type system, for instance we can type Y

8

Type equivalence syntactic approach

F : parts(Types2
µ)→ parts(Types2

µ)

F (R)
∆
= { (c, c) | c ∈ T }
∪ { (A1 × A2,B1 × B2) | ∀i ∈ {1, 2}.Ai R Bi }
∪ { (A1 → A2,B1 → B2) | B1 R A1,A2 R B2 }
∪ { (A, µx .B) | A R B{x/µx .B} }
∪ { (µx .A,B) | A{x/µx .A} R B }

We have

I 〈parts(Types2
µ),⊆〉 complete lattice, F monotone

I νF =
⋃
{R ∈ parts(Types2

µ) | R ⊆ F (R) } by Knaster-Tarski

I Let ≤c
sbt

∆
= νF and ≈ ∆

= ≤c
sbt ∩ (≤c

sbt)−1

9

Questions questions questions . . .

1. What is a complete lattice?

2. What is a complete partial order (CPO) ?

3. What does the Knaster-Tarski theorem state ?

4. What does Kleene fixed point theorem state ?

10

Questions questions questions . . .

1. What is a complete lattice?

2. What is a complete partial order (CPO) ?

3. What does the Knaster-Tarski theorem state ?

4. What does Kleene fixed point theorem state ?

11

Questions questions questions . . .

1. What is a complete lattice?

2. What is a complete partial order (CPO) ?

3. What does the Knaster-Tarski theorem state ?

4. What does Kleene fixed point theorem state ?

12

Questions questions questions . . .

1. What is a complete lattice?

2. What is a complete partial order (CPO) ?

3. What does the Knaster-Tarski theorem state ?

4. What does Kleene fixed point theorem state ?

13

Let’s change perspective

inference rule

premise1 . . . premisen
conclusion

side condition

example

Γ ` M : B
Γ ` M : A A ≈ B

14

Back to non-recursive types

Minimal language of types A,B ::= int | real | A→ A
Subtyping relation ground types

int ≤g int real ≤g real int ≤g real

How to define subtyping ≤sbt on types A,B , . . .?

inference rules

c1 ≤sbt c2
c1 ≤g c2

B1 ≤sbt A1 A2 ≤sbt B2

A1 → A2 ≤sbt B1 → B2

Inductive definition
Relation ≤sbt contains all pairs (A,B) s.t. set theoretic ideas

I we can derive A ≤sbt B ,

I via a finite derivation tree

15

Back to non-recursive types

Minimal language of types A,B ::= int | real | A→ A
Subtyping relation ground types

int ≤g int real ≤g real int ≤g real

How to define subtyping ≤sbt on types A,B , . . .?

inference rules

c1 ≤sbt c2
c1 ≤g c2

B1 ≤sbt A1 A2 ≤sbt B2

A1 → A2 ≤sbt B1 → B2

Inductive definition
Relation ≤sbt contains all pairs (A,B) s.t. set theoretic ideas

I we can derive A ≤sbt B ,

I via a finite derivation tree

16

Back to non-recursive types

Minimal language of types A,B ::= int | real | A→ A
Subtyping relation ground types

int ≤g int real ≤g real int ≤g real

How to define subtyping ≤sbt on types A,B , . . .?

inference rules

c1 ≤sbt c2
c1 ≤g c2

B1 ≤sbt A1 A2 ≤sbt B2

A1 → A2 ≤sbt B1 → B2

Inductive definition
Relation ≤sbt contains all pairs (A,B) s.t. set theoretic ideas

I we can derive A ≤sbt B ,

I via a finite derivation tree

17

A derivation tree of depth 2 (i.e. finite)

int ≤sbt real int ≤sbt real

real → int ≤sbt int → real

Back to non-recursive types

Minimal language of types A,B ::= int | real | A→ A
Subtyping relation ground types

int ≤g int real ≤g real int ≤g real

How to define subtyping ≤sbt on types A,B , . . .?

inference rules

c1 ≤sbt c2
c1 ≤g c2

B1 ≤sbt A1 A2 ≤sbt B2

A1 → A2 ≤sbt B1 → B2

Inductive definition
Relation ≤sbt contains all pairs (A,B) s.t. set theoretic ideas

I we can derive A ≤sbt B ,

I via a finite derivation tree

18

A derivation tree of depth 2 (i.e. finite)

int ≤sbt real int ≤sbt real

real → int ≤sbt int → real

How to express this using sets/functions ?

From rules to functions

inference rules

c1 ≤sbt c2
c1 ≤g c2

B1 ≤sbt A1 A2 ≤sbt B2

A1 → A2 ≤sbt B1 → B2

What do the rules mean?

To define a binary relation ≤sbt

, the rules define

F : parts(Types2)→ parts(Types2)

F (R)
∆
=

∪ { (A1 → A2,B1 → B2) | B1 R A1,A2 R B2 }

19

From rules to functions

inference rules

(c1, c2)
c1 ≤g c2

(B1,A1) (A2,B2)

(A1 → A2,B1 → B2)

What do the rules mean?

To define a binary relation ≤sbt

, the rules define

F : parts(Types2)→ parts(Types2)

F (R)
∆
=

∪ { (A1 → A2,B1 → B2) | B1 R A1,A2 R B2 }

20

From rules to functions

inference rules

(c1, c2)
c1 ≤g c2

(B1,A1) (A2,B2)

(A1 → A2,B1 → B2)

What do the rules mean?

To define a binary relation ≤sbt , the rules define

F : parts(Types2)→ parts(Types2)

F (R)
∆
= { (c1, c2) | c1 ≤g c2 }

∪ { (A1 → A2,B1 → B2) | B1 R A1,A2 R B2 }

21

From rules to functions

inference rules

(c1, c2)
c1 ≤g c2

(B1,A1) (A2,B2)

(A1 → A2,B1 → B2)

What do the rules mean?

To define a binary relation ≤sbt , the rules define

F : parts(Types2)→ parts(Types2)

F (R)
∆
= {(int, int), (real , real), (int, real)}

∪ { (A1 → A2,B1 → B2) | B1 R A1,A2 R B2 }

22

From derivation trees to function application

F (R)
∆
= {(int, int), (real , real), (int, real)}
∪ { (A1 → A2,B1 → B2) | B1 R A1,A2 R B2 }

Let’s use F ,

F 0(∅) = ∅ by convention

F 1(∅) =

{(int, int), (real , real), (int, real)} = ≤g

F 2(∅) =

{(real → int, int → real), (int → int, int → int), . . .}
∪ ≤g

...
...

23

From derivation trees to function application

F (R)
∆
= {(int, int), (real , real), (int, real)}
∪ { (A1 → A2,B1 → B2) | B1 R A1,A2 R B2 }

Let’s use F ,

F 0(∅) = ∅ by convention

F 1(∅) = {(int, int), (real , real), (int, real)} = ≤g

F 2(∅) =

{(real → int, int → real), (int → int, int → int), . . .}
∪ ≤g

...
...

24

From derivation trees to function application

F (R)
∆
= {(int, int), (real , real), (int, real)}
∪ { (A1 → A2,B1 → B2) | B1 R A1,A2 R B2 }

Let’s use F ,

F 0(∅) = ∅ by convention

F 1(∅) = {(int, int), (real , real), (int, real)} = ≤g

F 2(∅) = {(real → int, int → real), (int → int, int → int), . . .}
∪ ≤g

...
...

25

From derivation trees to function application

F (R)
∆
= {(int, int), (real , real), (int, real)}
∪ { (A1 → A2,B1 → B2) | B1 R A1,A2 R B2 }

Let’s use F ,

F 0(∅) = ∅ by convention

F 1(∅) = {(int, int), (real , real), (int, real)} = ≤g

F 2(∅) = {(real → int, int → real), (int → int, int → int), . . .}
∪ ≤g

...
...

26

The same derivation tree of depth 2

(int, real) (int, real)

(real → int, int → real)

From derivation trees to function application

Definition
Relation ≤sbt contains all pairs (A,B) s.t.

I we can derive A ≤sbt B ,

I via a finite derivation tree

Lemma

A derivation tree

...
(A,B) has depth n iff (A,B) ∈ F n(∅).

but then . . .

Corollary

≤sbt =
⋃

n=0 F
n(∅), thus by Kleene fixed point theorem

≤sbt = µF

27

From derivation trees to function application

Definition
Relation ≤sbt contains all pairs (A,B) s.t.

I we can derive A ≤sbt B ,

I via a finite derivation tree

Lemma

A derivation tree

...
(A,B) has depth n iff (A,B) ∈ F n(∅).

but then . . .

Corollary

≤sbt =
⋃

n=0 F
n(∅), thus by Kleene fixed point theorem

≤sbt = µF

28

Recursive types

A ::= int | real | x | µx .A | A→ A

F : parts(Types2
µ)→ parts(Types2

µ)

F (R)
∆
= {(int, int), (real , real), (int, real)}
∪ { (A1 → A2,B1 → B2) | B1 R A1,A2 R B2 }
∪ { (A, µx .B) | A R B{x/µx .B} }
∪ { (µx .A,B) | A{x/µx .A} R B }

I 〈parts(Types2
µ),⊆〉 complete lattice, F monotone

I νF exists by Knaster-Tarski

I Let ≤c
sbt

∆
= νF , ≈ ∆

= ≤c
sbt ∩ (≤c

sbt)−1

29

Recursive types

A ::= int | real | x | µx .A | A→ A

inference rules

c1 ≤′sbt c2
c1 ≤g c2

B1 ≤′sbt A1 A2 ≤′sbt B2

A1 → A2 ≤′sbt B1 → B2

A ≤′sbt B{x/µx .B}
A ≤′sbt µx .B

A{x/µx .A} ≤′sbt B

µx .A ≤′sbt B

Coinductive definition
Relation ≤′sbt contains all pairs (A,B) s.t.

I we can derive A ≤′
sbt B

I via a finite or a circular derivation tree
30

A circular derivation tree
Example

Let A = µx .x → int, let’s show that A ≤′
sbt A→ int.

A ≤′
sbt A→ int

A ≤′
sbt A int ≤′

sbt int

A→ int ≤′
sbt A→ int

A ≤′
sbt A→ int

What’s the relation with νF ??

I R ∆
= {(A,A→ int), (A→ int,A→ int), (A,A), (int, int)}

I R ⊆ F (R) post-fixed point

I R ⊆ νF = ≤c
sbt

I In fact we have ≤c
sbt = ≤′sbt

31

A circular derivation tree
Example

Let A = µx .x → int, let’s show that A ≤′
sbt A→ int.

A ≤′
sbt A→ int

A ≤′
sbt A int ≤′

sbt int

A→ int ≤′
sbt A→ int

A ≤′
sbt A→ int

What’s the relation with νF ??

I R ∆
= {(A,A→ int), (A→ int,A→ int), (A,A), (int, int)}

I R ⊆ F (R) post-fixed point

I R ⊆ νF = ≤c
sbt

I In fact we have ≤c
sbt = ≤′sbt

32

A circular derivation tree
Example

Let A = µx .x → int, let’s show that A ≤′
sbt A→ int.

A ≤′
sbt A→ int

A ≤′
sbt A int ≤′

sbt int

A→ int ≤′
sbt A→ int

A ≤′
sbt A→ int

What’s the relation with νF ??

I R ∆
= {(A,A→ int), (A→ int,A→ int), (A,A), (int, int)}

I R ⊆ F (R) post-fixed point

I R ⊆ νF = ≤c
sbt

I In fact we have ≤c
sbt = ≤′sbt

33

Summary

Induction

I least fixed points Kleene fp theorem

I finite derivation trees

Coinduction

I greatest fixed points Knaster-Tarski fp theorem

I finite and circular derivation trees

Example

Subtyping relation

Other more abstract approaches exist category theory

34

35

