PARIS

:DIDEROT

Typage

Proof-theoretic approach to (co)induction

2018-2019

Giovanni Bernardi, gioXYZirif.fr
http://www.irif.fr/~gio/index.xhtml
Université Paris Diderot

gio XYZ irif.fr
http://www.irif.fr/~gio/index.xhtml

Plan

O R b=

Historical remark

Recap a few points
Questions

Proof theoretic approach
Examples examples examples

and its set-theoretic explanation

1908, Russell

These fallacies [...] are to be avoided by what
may be called the ‘“vicious-circle principle;”
i.e., [...] whatever contains an apparent
variable must be of a different type from the
possible values of that variable [...] This is
the guiding principle in what follows.

This construction is shown to be lacking [...]
the type system makes the A-calculus an
uninteresting programming language; i.e. one
without non-terminating computations.

1908, Russell

1996

Vicious
Circles

ﬂ

Jon Barwise and
Lawrence Moss

Thus far . ..

Motivated by circularities, we discussed

Theory
1. Functions over partial orders F, (P,<)
2. Fixed points x = F(x)
- least induction Kleene fp theorem uF
- greatest coinduction Knaster-Tarski theorem vF
Applications

» Subtyping / equality for recursive types

» Equi-recursive type system how to type ¥

relations

Assuming sets, C, €
XxY={(x,y)| alxeXandy €Y} Cartesian product

partS(X) = {Z | Z C X} powerset

A relation R between sets X and Y is a subset of X x Y

R € parts(X x Y)
Notation: x R y means (x,y) €R

A relation RC X x X is

reflexive if x R x Vx € X
symmetric if x R y implies y R x Vx,y € X
antisymmetric if x R y and y R x imply x =y Vx,y € X
transitive if x Ry and y R z imply xR z Vx,y,z € X
total if x R y or y R x for every x,y € X

a preorder if it is reflexive and transitive

a partial order if it is reflexive, antisymmetric, and transitive
an equivalence if is reflexive, symmetric, and transitive

Recap: orders

» Notation: (P, <) where P set and < C P x P partial order

» (P, <) partially ordered set: poset
» If (P, <) poset and S C P

mS'={xeP|VseS s<x} S upper
m x € S” is an upper bound of S Vx
m x € §Y is the least upper bound of S if Vy € S¥.x <y Vx
m | | S denotes the least upper bound of S
Sf={xeP|VseS x<s} S lower
x € §% is an lower bound of S Vx

x € S% is the greatest lower bound of Sif Vy € S.y < x Vx
[]S denotes the greatest lower bound of S

A-calculus
typing rules from [Cardone and Coppo, 1991]

M,N:=x | c | MN | Ax.M

An equi-recursive system

Mx:AFEx:A I, g : typeof(g) - g : typeof(g)
x:AFM:B r’FM:A—B THEN:A
N >xM:A— B = MN:B

r-M:B

rEmM.AA~B

Powerful type system, for instance we can type)

Type equivalence syntactic approach

F : parts(Types) — parts(Types)

{(c.c) | ceT}

{(A1 X A2, B x By) | vie {1,2}.A; R B; }
U{(A1—>A2,Bl—>82) | B]_RA]_,A2RB2}
U{(A,ux.B) | AR B{x/ux.B}}
U{(ux.A,B) | A{x/ux.A} R B}

1>

We have

> (parts(Types), C) complete lattice, F monotone

> vF = U{R € parts(Types) | RC F(R)} by Knaster-Tarski

> Let <§, = VF and <§bt N (<_§bt)_

Questions questions questions . . .

1. What is a complete lattice?

10

Questions questions questions . . .

1. What is a complete lattice?

2. What is a complete partial order (CPO) ?

11

Questions questions questions . . .

1. What is a complete lattice?
2. What is a complete partial order (CPO) ?

3. What does the Knaster-Tarski theorem state ?

12

Questions questions questions . . .

1. What is a complete lattice?
2. What is a complete partial order (CPO) ?
3. What does the Knaster-Tarski theorem state 7

4. What does Kleene fixed point theorem state ?

13

Let's change perspective

inference rule

premise; ... premise, N
; side condition
conclusion
example

A~ B

r'-=M:B
r-M:A

14

Back to non-recursive types

Minimal language of types A, B == int | real | A— A
Subtyping relation ground types

int <g int real <, real int <g real

How to define subtyping <., on types A, B,...?

15

Back to non-recursive types

Minimal language of types A, B == int | real | A— A
Subtyping relation ground types

int <g int real <, real int <g real
How to define subtyping <., on types A, B,...?

inference rules

c1 < o Bl >sbt Al A2 >sbt B2
a<etC ¢ Al = Ay <t B1 = B

Inductive definition

Relation <gp contains all pairs (A, B) s.t. set theoretic ideas
> we can derive A <, B,
» via a finite derivation tree

16

Back to non-recursive types

A derivation tree of depth 2 (i.e. finite)

int < real int < real

real — int < int — real

c1 < o Bl >sbt Al A2 >sbt BQ
a<etC ¢ Al = Ay <t B1 = B

Inductive definition

Relation <gp contains all pairs (A, B) s.t. set theoretic ideas
> we can derive A <, B,
» via a finite derivation tree

17

Back to non-recursive types

A derivation tree of depth 2 (i.e. finite)

int < real int < real

real — int < int — real

c1 < o Bl >sbt Al A2 >sbt BQ
a<etC ¢ Al = Ay <t B1 = B

Inductive definition

How to express this using sets/functions ?

18

From rules to functions

inference rules

——a<g¢
€1 <spt @

Bl ~sbt Al A2 ~sbt B2

A1 — Ay <o B1 = B>

What do the rules mean?

19

From rules to functions

inference rules

(B1, A1) (A2, By)

a<g o

(c1, @) (A1 = Ay, Bi = By)

What do the rules mean?

To define a binary relation <g;

20

From rules to functions

inference rules
(B1, A1) (A2, B))
(A1 — AQ, Bl — BQ)

a<g o

(c1, @)

What do the rules mean?

To define a binary relation <, the rules define
F . parts(Types?) — parts(Types?)

FR) £ {(a.@) | a<sal
U{(A1—>A2,B]_—)Bz)|B]_RA]_,AQRBQ}

21

From rules to functions

inference rules
(B1, A1) (A2, B))
(A1 — AQ, Bl — BQ)

a<g o

(c1, @)

What do the rules mean?
To define a binary relation <, the rules define
F . parts(Types?) — parts(Types?)
F(R) 2 {(int, int), (real, real), (int, real)}

U{(A1—>A27B]_—)Bz) | B]_RA]_,AQRBQ}

22

From derivation trees to function application

F(R) = {(int, int), (real, real), (int, real)}
U{(Al —)Az,Bl — BQ) ’ BlRAl,AQRBQ}

Let's use F,

Fo(0) = 0 by convention
FY0) =

F2(0) =

23

From derivation trees to function application

F(R) = {(int, int), (real, real), (int, real)}
U{(Al —)Az,Bl — BQ) ’ BlRAl,AQRBQ}

Let's use F,

Fo(0) = 0 by convention
FY(0) = {(int,int),(real, real), (int,real)} = <,
F(0) =

24

From derivation trees to function application

F(R) = {(int, int), (real, real), (int, real)}
U{(Al —)Az,Bl — BQ) ’ BlRAl,AQRBQ}

Let's use F,
Fo(0) = 0 by convention
FY(0) = {(int,int),(real, real), (int,real)} = <,

F2(0) = {(real — int,int — real),(int — int,int — int),..

U<,

3

25

From derivation trees to function application

The same derivation tree of depth 2

(int, real) (int, real)
(real — int,int — real)

Fo(0) = @ by convention
FY(0) = {(int,int),(real, real),(int,real)} = <,
F2(0) = {(real — int,int — real),(int — int,int — int),...

U<,

From derivation trees to function application

Definition
Relation <¢p; contains all pairs (A, B) s.t.
> we can derive A <, B,

» via a finite derivation tree

Lemma

A derivation tree (A,.B) has depth n iff (A, B) € F"(0).

but then ...

27

From derivation trees to function application

Definition

Relation <¢p; contains all pairs (A, B) s.t.
> we can derive A <, B,
» via a finite derivation tree

Lemma

A derivation tree (A, B) has depth n iff (A, B) € F"(). O

but then ...

Corollary
<sbt = Un:O Fn(@), thus by Kleene fixed point theorem

<ebt = ,uF

28

Recursive types

A == nt | real | x | ux. A | A=A

F ; partS(Types) — partS(Types)

F(R) = {(int, int), (real, real), (int, real)}
U{(Al —>A2,B]_ — Bz) | B]_RA]_,AzRBz}
U{(A,ux.B) | AR B{x/ux.B}}
U{(ux.A,B) | A{x/ux.A} R B}

> (parts(Typest), C) complete lattice, F monotone
» vF exists by Knaster-Tarski

> Let <g, = VF ~=<g N (S(s:bt)

29

Recursive types

A = int | real | x | ux. A | A=A
inference rules
/
& <. G Bi <ope A1 A2 < B
C1 Slsbt (8)) —¢ A1 — A2 Slsbt Bl — BQ
A <sbt B{X/:LLXB} A{X//LX A} <sbt
A<, ux.B ux.A<..B

Coinductive definition
Relation <!, contains all pairs (A, B) s.t

B
» via a finite or a circular derivation tree

» we can derive A </,

30

A circular derivation tree

Example

Let A= px.x — int, let's show that A <., A — int.

A<, A—int

A< A int <, int
A—int <. A—int
A< A— int

—sbt

31

A circular derivation tree

Example

Let A= px.x — int, let's show that A <., A — int.

A<, A—int

A< A int <, int
A—int <. A—int
A< A— int

—sbt

'What's the relation with vF ??

32

A circular derivation tree

Example

Let A= px.x — int, let's show that A <., A — int.

A<, A—int
A< A int <, int
A—int <. A—int
A<, A—int

—sbt

|What's the relation with vF 77|

> RZ{(A A= int),(A— int, A~ int),(A,A), (int, int)}
> R C F(R) post-fixed point
> R C vF = <sbt

/
> In fact we have <{, = <.

33

Summary

Induction

» |east fixed points Kleene fp theorem

» finite derivation trees

Coinduction

> greatest fixed points Knaster-Tarski fp theorem

» finite and circular derivation trees

Example
Subtyping relation

Other more abstract approaches exist category theory

34

