Typage

Further issues (and a solution)

'	2018-2019
${ }_{\text {¢ }}^{\sim}$	Giovanni Bernardi, gioXYZirif.fr
	http://www.irif.fr/~gio/index.xhtml
«은	Université Paris Diderot

Questions questions questions ...

1. What is a partial order / poset?

Questions questions questions ...

1. What is a partial order / poset?
2. When is a function over a poset monotone?

Questions questions questions ...

1. What is a partial order / poset?
2. When is a function over a poset monotone?
3. What is a complete lattice ?

Questions questions questions ...

1. What is a partial order / poset?
2. When is a function over a poset monotone?
3. What is a complete lattice ?
4. What is a fixed-point of a function ?

Questions questions questions ...

1. What is a partial order / poset?
2. When is a function over a poset monotone?
3. What is a complete lattice ?
4. What is a fixed-point of a function ?
5. What does the Knaster-Tarski theorem state ?

Plan

1. History
2. Reality check
3. Types as open terms
4. Semantic equivalence
5. Types as graphs
6. Unification for graphs

Subtyping and recursive types are common in modern programming languages. For example, Java [14] [...] allows interfaces to be mutually recursive, although there is no unfolding rule. [...] What is not common is type inference for real languages with subtyping and recursive types.

- T. Jim, J. Palsberg,

Type inference in systems of recursive types with subtyping, 1999

Typing $\lambda x . x x$

desiderata: type derivation

$$
\frac{\frac{x: A \rightarrow y}{} \quad \frac{x: A \rightarrow y \vdash x: A \rightarrow y}{x: A \rightarrow y \vdash x: A}}{\frac{x: A \rightarrow y \vdash x x: y}{\vdash \lambda x \cdot x x:(A \rightarrow y) \rightarrow y}} A \approx A \rightarrow y
$$

Typing $\lambda x . x x$

desiderata: type derivation

$$
\frac{\frac{x: A \rightarrow y}{} \quad \frac{x: A \rightarrow y \vdash x: A \rightarrow y}{x: A \rightarrow y \vdash x: A}}{\frac{x: A \rightarrow y \vdash x x: y}{\vdash \lambda x \cdot x x:(A \rightarrow y) \rightarrow y}} A \approx A \rightarrow y
$$

inference of constraints

$$
\frac{\overline{x: t_{1} \vdash x: t_{3} \rightarrow t_{2}} t_{1}=t_{3} \rightarrow t_{2} \overline{x: t_{1} \vdash x: t_{3}}}{\frac{x: t_{1} \vdash x x: t_{2}}{\vdash \lambda x \cdot x x: t} t=t_{1} \rightarrow t_{2}}=t_{3}
$$

underdetermined system of equations

$$
\begin{aligned}
t_{1} & \stackrel{?}{=} t_{3} \\
t_{1} & \stackrel{?}{=} t_{3} \rightarrow t_{2} \\
t & \stackrel{?}{=} t_{1} \rightarrow t_{2}
\end{aligned}
$$

Type expressions

$$
\sigma, \tau::=t \mid \text { int }|\mu t . \sigma| \sigma \rightarrow \sigma \text { where } t \in \text { Vars }
$$

- $\mu x . \sigma$ binds x in σ, free and bound variables as expected
- σ contractive if for any subexpression of σ of the form $\mu x . \mu t_{1} . \mu t_{2} \ldots \mu t_{n} . \tau$, the term τ is not x
- T_{μ} set of contractive terms

when are two type expressions equal ?

$$
\begin{array}{ll}
\mu t .\left(t \rightarrow t^{\prime}\right) \rightarrow t^{\prime} & \stackrel{?}{=} \mu t . t \rightarrow t^{\prime} \\
\mu t .(\text { int } \rightarrow t) & \stackrel{?}{=} \text { int } \times \mu t .(\text { int } \rightarrow t) \\
\mu t . t \rightarrow t & \stackrel{?}{=}(\mu t . t \rightarrow t) \rightarrow(\mu t . t \rightarrow t)
\end{array}
$$

Type equivalence semantic approach

Let
$\Sigma=\operatorname{Vars} \cup\{\rightarrow, i n t\}$
ranked alphabet
$\operatorname{arity}(i n t)=\operatorname{arity}(t)=0$
$\operatorname{arity}(\rightarrow)=2$

Tree over Σ is

Type equivalence semantic approach

Let
$\Sigma=\operatorname{Vars} \cup\{\rightarrow, i n t\}$
$\operatorname{arity}(i n t)=\operatorname{arity}(t)=0$
$\operatorname{arity}(\rightarrow)=2$

Tree over Σ is a partial function $f: \mathbb{N}_{+}^{\star} \rightarrow \Sigma$ such that

Type equivalence semantic approach

Let
$\Sigma=\operatorname{Vars} \cup\{\rightarrow, i n t\}$
$\operatorname{arity}(i n t)=\operatorname{arity}(t)=0$ $\operatorname{arity}(\rightarrow)=2$

Tree over Σ is a partial function $f: \mathbb{N}_{+}^{\star} \rightarrow \Sigma$ such that $\operatorname{dom}(f)$ is a tree-domain:
(a) $\operatorname{dom}(f)$ non-empty, (b) dom(f) prefix-closed, (c) for all
$\pi \in \operatorname{dom}(f)$

- $i, j \in N_{+}^{\star}, 1 \leq i \leq j$ and $\pi j \in \operatorname{dom}(f)$ imply $\pi i \in \operatorname{dom}(f)$
- $f(\pi)=A$ of arity $k \geq 0$ implies for $i \in \mathbb{N}_{+}, \pi i \in \operatorname{dom}(f)$ iff $1 \leq i \leq k$
see Section 1.2, Courcelle 1983; Definition 21.2.1 TALP

Type equivalence semantic approach

from [Cardone and Coppo, '91]

Let

- T_{R} be set of regular trees over $\hat{\Sigma}$
-treeof $(-): T_{\mu} \rightarrow T_{R}$ be defined inductively by

$$
\begin{array}{ll}
\operatorname{treeof}(t) & =t \\
\text { treeof }(\text { int }) & =\text { int } \\
\text { treeof }(\sigma \rightarrow \tau) & =\operatorname{treeof}(\sigma) \rightarrow \operatorname{treeof}(\tau) \\
\text { treeof }(\mu t . \sigma) & =\mu F
\end{array}
$$

$$
t \in \text { Vars }
$$

where

- $F \triangleq \lambda z .\left(\operatorname{treeof}(\sigma)\left\{z^{z} / t\right\}\right): T_{R} \rightarrow T_{R}$
- μF exists

Theorem 4.10.1, Courcelle '83
Let $\sigma \stackrel{\text { ext }}{=} \tau$ whenever treeof $(\sigma) \stackrel{\text { ext }}{=} \operatorname{treeof}(\tau)$

Type equivalence semantic approach
from [Cardone and Coppo, '91]
Let

- T_{R} be set of regular trees over $\hat{\Sigma}$
- treeof(-): $T_{\mu} \rightarrow T_{R}$ be defined inductively by
things are getting complicated

$$
\operatorname{treeof}(\mu t . \sigma)=\mu F
$$

where

- $F \triangleq \lambda z$. $\left(\operatorname{treeof}(\sigma)\left\{{ }^{z} / t\right\}\right): T_{R} \rightarrow T_{R}$
- μF exists

Theorem 4.10.1, Courcelle '83
Let $\sigma \stackrel{\text { ext }}{=} \tau$ whenever treeof $(\sigma) \stackrel{\text { ext }}{=} \operatorname{treeof}(\tau)$

Types as graphs

$$
\begin{array}{lll}
\sigma, \tau=t \mid \text { int }|\mu t . \sigma| \sigma \rightarrow \sigma & & \text { where } t \in \operatorname{Vars} \\
\Sigma & =\operatorname{Vars} \cup\{\rightarrow, \text { int }\} &
\end{array} \text { type constructors }
$$

Graph: (V, E)

- $V \subseteq \Sigma \times I d$
- $E \subseteq V \times V$
set of nodes
set of edges

Types as graphs

$$
\begin{array}{lll}
\sigma, \tau::=t \mid \text { int }|\mu t . \sigma| \sigma \rightarrow \sigma & \text { where } t \in \text { Vars } \\
\Sigma=\operatorname{Vars} \cup\{\rightarrow, \text { int }\} & \text { type constructors }
\end{array}
$$

Graph: (V, E)

- $V \subseteq \Sigma \times I d$
set of nodes
- $E \subseteq V \times V$
set of edges
intuitive mapping

$\begin{gathered} \mu x .(i n t \rightarrow x) \\ n_{i n t} \end{gathered}$	

Unifier

Exercice 7.4 notes par X . Leroy

Let

- (V, E) be a graph
-cns: $V \rightarrow \Sigma$
- child $: V \rightarrow \mathbb{N} \rightarrow V$
type constructors in node
$i^{\text {th }}$ child of a node

A substitution is equivalence relation $R \subseteq V \times V$ such that if $n_{1} R n_{2}$ and $\operatorname{cns}\left(n_{1}\right), \operatorname{cns}\left(n_{2}\right) \notin$ Vars then
$-\operatorname{cns}\left(n_{1}\right)=\operatorname{cns}\left(n_{2}\right)$

- $\forall i \in\left[1, \operatorname{arity}\left(\operatorname{cns}\left(n_{1}\right)\right)\right]$.child $\left(i, n_{1}\right) R \operatorname{child}\left(i, n_{2}\right)$

A unifier for a system of equations E is a substitution R such that $n_{1} R n_{2}$ for every $n_{1} \stackrel{?}{=} n_{2} \in E$. A unifier R for a system E is principal if for every unifier R^{\prime} of $E, R^{\prime} \subseteq R$.

Computing principal unifier

$$
\begin{aligned}
& m g u(\emptyset, R)=R \\
& m g u\left(\left\{n_{1} \stackrel{?}{=} n_{2}\right\} \cup E, R\right)= m g u(E, R) \text { if } n_{1} R n_{2} \\
& m g u\left(\left\{n_{1} \stackrel{?}{=} n_{2}\right\} \cup E, R\right)= m g u\left(E, R+\left\{\left(n_{1}, n_{2}\right)\right\}\right) \\
& \text { if } \operatorname{cns}\left(n_{1}\right) \in \operatorname{Vars} \text { or } \operatorname{cns}\left(n_{2}\right) \in \operatorname{Vars} \\
& m g u\left(\left\{n_{1} \stackrel{?}{=} n_{2}\right\} \cup E, R\right)= m g u\left(E \cup\left\{\left(\operatorname{child}\left(1, n_{1}\right) \stackrel{?}{=} \operatorname{child}\left(1, n_{2}\right)\right)\right\},\right. \\
& \vdots \\
&\left.\quad\left(\operatorname{child}\left(k, n_{1}\right) \stackrel{?}{=} \operatorname{child}\left(k, n_{2}\right)\right)\right\}, \\
&\left.R+\left\{\left(\left(n_{1}, n_{2}\right)\right)\right\}\right)
\end{aligned} \quad \begin{aligned}
& \text { if } \operatorname{cns}\left(n_{1}\right) \notin \operatorname{Vars} \text { and } \operatorname{cns}\left(n_{1}\right)=\operatorname{cns}\left(n_{2}\right) \\
m g u\left(\left\{n_{1} \stackrel{?}{=} n_{2}\right\} \cup E, R\right)= & \text { Nothing } \\
& \text { if } \operatorname{cns}\left(n_{1}\right) \notin \operatorname{Vars} \text { and } \operatorname{cns}\left(n_{1}\right) \neq \operatorname{cns}\left(n_{2}\right)
\end{aligned}
$$

where
$R+\left\{\left(n_{1}, n_{2}\right)\right\}$ smallest equivalence relation containing R and $\left\{\left(n_{1}, n_{2}\right)\right\}$;
and $k=\operatorname{arity}\left(\operatorname{cns}\left(n_{1}\right)\right)$

Problem

How to transform syntactic types into graphs ??

How to transform graphs into syntactic types??

Material

- Section 7.4 notes cours "Typage et programmation", X. Leroy
- Type Inference with Recursive Types: Syntax and Semantics, F. Cardone, M. Coppo, 1991

