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Who conceived types ?



Who conceived types ?

Mathematical Logic
as Based on the Theory of Types

B. Russell
1908
Why?
A={x| x¢&x}

I'm being brief here. ..



Who brought types into PL?



Who brought types into PL?

rem
X 5

; "“ﬁ;

A Formulation of the
/ Simple Theory of Types
’ A. Church

1940

Think of properties of well-typed terms



Circularity

fact £ Ax.if x =0 then 1 else x x (fact(x — 1))

List’a 2 []| 'a:List’a

How to treat with circularity?
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Circularity

fact £ Ax.if x =0 then 1 else x x (fact(x — 1))

List’a 2 []| 'a:List’a

structure

XéF(X)

x fixed point of F

How to treat with circularity?

least fixed points induction recursion
greatest fixed points coinduction corecursion

notation

wuf
vf



Induction  order-theoretic appoach?

Theorem (Kleene, 1936)

Let (P, <) be a CPO and f : P — P a continuous function.
We have puf = J,>o f"(L).

!See Section 2.3 book by Sangiorgi.

O
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Induction  order-theoretic appoach?

A non-empty set D is a poset if equipped with a binary relation R
reflexive, antisymmetric, and transitive. Notation (D, R).
A poset (D, <) is

» directed if D # () andVa,be D.3ce D.a<cand b< c.

» a complete partial order (CPO) if

m D has a bottom L element
m | | D’ exists for every directed subset of D’ of D

Let (P, <), (Q,C) be CPO. A function f : P — Q is continuous if
for every directed subet D of P

» (D) is directed
> f(UD)=U"(D)
Theorem (Kleene, 1936)

Let (P, <) be a CPO and f : P — P a continuous function.
We have puf = J,>o f"(L). O

!See Section 2.3 book by Sangiorgi.
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A typical CPO

Let parts(S) = {S'| S’ C S}.

For every non-empty set S the poset (S, C) is a CPO.

Example
Let S = {a, b, c}. The poset (parts(S),C) is

S
RN
{a,b} {a,c} {b,c}
X X
{a}  {b} {c}
\@/
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Factorial as least fixed point

F(Z) 2 ax ifx:Othenlelsex*(X(x—l))
F . (N—=N)— (N—=N)

» (NN <) CPO with bottom () and F(y) continuous in y,

ny-Fy) = |J F"(0)

n>0

» NB: uy.F(y) is a function!
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Factorial as least fixed point

F(Z) 2 ax ifx:Othenlelsex*(X(x—l))
F . (N—=N)— (N—=N)

fact 2 py-F(y)

» (NN <) CPO with bottom () and F(y) continuous in y,

ny-Fy) = |J F"(0)

n>0
» NB: uy.F(y) is a function!

from “definition” to property
‘ fact(x) = if x =0 then 1 else x x (fact(x — 1)) ‘
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Least fixed point A-theoretic approach

F

Ay.Ax. if x =0 then 1 else x * (y(x — 1))
VY 2 A F(x))(Ax.F(xx))

Theorem (Kleene, 1936)

For every A\-term M we have YM £ M(YM). O
Theorem (Morris, 1968)
For every A-term M, A if A2 MA then YM < A. 0
We get:

> )VF is a fixed point of F B £ F(B)

» VF is the least fixed point of F

15



Can y be typed ? intuitive argument

Let M = Ax.f(xx) and T = {x: A, x:A— A f:A— B}.

type derivation of sub-term of )

[Fx:A=> A [Fx:A
'Ff:A—B [Fxx: A
Ff(xx):B
[ Ax.f(xx) : A— B

We need a type that satisfies

A=A—-A




p-Types

A= T | x| uxA| AxA| A=A

» ux.T binds x in T, free and bound variables as expected
» u-types are closed and contractive terms

when are two types equal ?
?

fy-y = px.z

fLy-y = px.x

px.(int X x) L int x px.(int X x)

UX.X —> X z (ux.x = x) = (ux.x = x)




p-Types

A= T | x| uxA| AxA| A=A

» ux.T binds x in T, free and bound variables as expected
» u-types are closed and contractive terms

A contractive if for any subexpression of A of the form

WX X - [4XD. . . . [1Xn. B

the term B is not x.

1y.y = pxx

px.(int X x) L int x px.(int X x)

UX.X —> X z (ux.x = x) = (ux.x = x)
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p-Types

A= T | x| uxA| AxA| A=A

» ux.T binds x in T, free and bound variables as expected
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Type equivalence semantic approach

> set of symbols with an arity ranked alphabet

A tree over a ranked alphabet ¥ is a
partial function t : N — ¥ such that
» dom(t) non-empty
» dom(t) prefix-closed
» for all m € dom(t)
mi,jeN;,1<i<jand mje€ dom(t)imply 7i € dom(t)

m t(7) = A of arity k > 0 implies for i € N, wi € dom(t) iff
1<i<k

Extensional equivalence (naive)

> f, g functions
> = g if dom(f) = dom(g) and Vx € dom(f). f(x) = g(x)

20



Type equivalence semantic approach

Y=TU{x,—}
treeof (¢)(¢) = c where c € T
treeof (A1 — A)(e) = —

treeof (A1 — Ap)(im) = treeof (A;)(r)

:treeof(ux.A)(ﬁ) = treeof (A{x/ux.A})(r)

Lemma
For every ji-type A the treeof (A) is defined. ~ Why 7

Let A= B whenever treeof (A) = treeof (B)

21



Type equivalence semantic approach

Y=TU{x,—}
treeof (¢)(¢) = c where c € T
treeof (A1 — A)(e) = —

treeof (A1 — Ap)(im) = treeof (A;)(r)

:treeof(ux.A)(ﬁ) = treeof (A{x/ux.A})(r)

Lemma
For every ji-type A the treeof (A) is defined. ~ Why 7 ]

Let A= B whenever treeof (A) = treeof (B)

How to decide & ?

22



Type equivalence semantic approach

Let A= B whenever treeof (A) = treeof (B)

» Fix two u-types A, B

» to prove A = B we show

V7

€ {1,2}". treeof (A)(7) = treeof (B)(~)

general issue
universal quantification

not a problem if trees regular

real question: axiomatisation

. t .
Can we characterise = syntactically?
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» Try typing ) in ocaml
» Find useful sections in Chapter 21 Pierce book

» Implement treeof

» Work on the project
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