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Who conceived types ?

Mathematical Logic
as Based on the Theory of Types

B. Russell
1908

Why?
A = { x | x 6∈ x }

I’m being brief here. . .
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Who brought types into PL?

A Formulation of the
Simple Theory of Types

A. Church
1940

Why?

Think of properties of well-typed terms
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Circularity

fact
∆
= λx . if x = 0 then 1 else x ∗ (fact(x − 1))

List ′a
∆
= [] | ′a : List ′a

structure

x
∆
= F (x)

x fixed point of F

How to treat with circularity?

notation

least fixed points induction recursion µf
greatest fixed points coinduction corecursion νf
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Induction order-theoretic appoach1

A non-empty set D is a poset if equipped with a binary relation R
reflexive, antisymmetric, and transitive. Notation 〈D,R〉.
A poset 〈D,≤〉 is

I directed if D 6= ∅ and ∀a, b ∈ D.∃c ∈ D. a ≤ c and b ≤ c .

I a complete partial order (CPO) if

D has a bottom ⊥ element⊔
D ′ exists for every directed subset of D ′ of D

Let 〈P,≤〉, 〈Q,v〉 be CPO. A function f : P → Q is continuous if
for every directed subet D of P

I f (D) is directed

I f (
⊔
D) =

⊔
f (D)

Theorem (Kleene, 1936)

Let 〈P ,≤〉 be a CPO and f : P → P a continuous function.
We have µf =

⋃
n≥0 f

n(⊥).
1See Section 2.3 book by Sangiorgi.
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A typical CPO

Let parts(S) = {S ′ | S ′ ⊆ S}.
For every non-empty set S the poset 〈S ,⊆〉 is a CPO.

Example

Let S = {a, b, c}. The poset 〈parts(S),⊆〉 is

S

{a, b} {a, c} {b, c}

{a} {b} {c}

∅
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Factorial as least fixed point

F (y)
∆
= λx . if x = 0 then 1 else x ∗ (y(x − 1))

F : (N→ N)→ (N→ N)

fact
∆
= µy .F (y)

I 〈NN,≤〉 CPO with bottom ∅ and F (y) continuous in y ,

µy .F (y) =
⋃
n≥0

F n(∅)

I NB: µy .F (y) is a function!

from “definition” to property

fact(x) = if x = 0 then 1 else x ∗ (fact(x − 1))
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Least fixed point λ-theoretic approach

F
∆
= λy .λx . if x = 0 then 1 else x ∗ (y(x − 1))

Y ∆
= λf .(λx .f (xx))(λx .f (xx))

Theorem (Kleene, 1936)

For every λ-term M we have YM β
= M(YM).

Theorem (Morris, 1968)

For every λ-term M ,A if A
β
= MA then YM ≤ A.

We get:

I YF is a fixed point of F B
β
= F (B)

I YF is the least fixed point of F

15



Can Y be typed ? intuitive argument

Let M = λx .f (xx) and Γ = {x : A, x : A→ A, f : A→ B}.

type derivation of sub-term of Y

Γ ` f : A→ B
Γ ` x : A→ A Γ ` x : A

Γ ` xx : A
Γ ` f (xx) : B

Γ ` λx .f (xx) : A→ B

We need a type that satisfies

A = A→ A
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µ-Types

A ::= T | x | µx .A | A× A | A→ A

I µx .T binds x in T , free and bound variables as expected
I µ-types are closed and contractive terms

when are two types equal ?

µy .y
?
= µx .z

µy .y
?
= µx .x

µx .(int × x)
?
= int × µx .(int × x)

µx .x → x
?
= (µx .x → x)→ (µx .x → x)
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µx .µx1.µx2. . . . µxn.B

the term B is not x .
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Type equivalence semantic approach

Σ: set of symbols with an arity ranked alphabet

A tree over a ranked alphabet Σ is a
partial function t : N?+ → Σ such that

I dom(t) non-empty

I dom(t) prefix-closed
I for all π ∈ dom(t)

i , j ∈ N?
+, 1 ≤ i ≤ j and πj ∈ dom(t) imply πi ∈ dom(t)

t(π) = A of arity k ≥ 0 implies for i ∈ N+, πi ∈ dom(t) iff
1 ≤ i ≤ k

Extensional equivalence (näıve)

I f , g functions

I f
ext
= g if dom(f ) = dom(g) and ∀x ∈ dom(f ). f (x) = g(x)
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Type equivalence semantic approach

Σ = T ∪ {×,→}

treeof (c)(ε) = c where c ∈ T
treeof (A1 → A2)(ε) = →
treeof (A1 → A2)(iπ) = treeof (Ai)(π)
...
treeof (µx .A)(π) = treeof (A{x/µx .A})(π)

Lemma
For every µ-type A the treeof (A) is defined. Why ?

Let A
ext
= B whenever treeof (A)

ext
= treeof (B)

How to decide
ext
= ?
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Type equivalence semantic approach

Let A
ext
= B whenever treeof (A)

ext
= treeof (B)

I Fix two µ-types A,B

I to prove A
ext
= B we show

∀π ∈ {1, 2}?. treeof (A)(π) = treeof (B)(π)

general issue

universal quantification
not a problem if trees regular

real question: axiomatisation

Can we characterise
ext
= syntactically?
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I Try typing Y in ocaml

I Find useful sections in Chapter 21 Pierce book

I Implement treeof

I Work on the project
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