Typage

Recursive types

5	2018-2019
¢	Giovanni Bernardi, gioXYZirif.fr
	http://www.irif.fr/~gio/index.xhtml
¢ ${ }^{\prime \prime}$	Université Paris Dide

Plan

1. Questions
2. Mini historical remarks
3. More fixed points
4. Deciding type equivalence
5. A type system with recursive types

Who conceived types ?

Who conceived types ?

Mathematical Logic as Based on the Theory of Types B. Russell 1908

Why?

$$
A=\{x \mid x \notin x\}
$$

I'm being brief here...

Who brought types into PL?

Who brought types into PL?

A Formulation of the Simple Theory of Types
A. Church

1940

Why?

Think of properties of well-typed terms

Circularity

fact $\triangleq \lambda x$. if $x=0$ then 1 else $x *(\operatorname{fact}(x-1))$
List'a $\triangleq[] \mid$ 'a: List'a

How to treat with circularity?

Circularity

$$
\begin{aligned}
& \underline{\text { fact }} \triangleq \lambda x . \text { if } x=0 \text { then } 1 \text { else } x *(\underline{\text { fact }}(x-1)) \\
& \underline{\text { List } a} \triangleq[]\left|\left.\right|^{\prime} a: \underline{\text { List 'a }}\right.
\end{aligned}
$$

How to treat with circularity?

Circularity

$$
\begin{gathered}
\underline{\text { fact }} \triangleq \lambda x . \text { if } x=0 \text { then } 1 \text { else } x *(\underline{f a c t}(x-1)) \\
\underline{\text { List } a} \triangleq[]\left|\left.\right|^{\prime} a: \underline{\text { List 'a }}\right. \\
\begin{array}{l}
x \triangleq F(x) \\
x \text { structure } \\
x \triangleq
\end{array}
\end{gathered}
$$

How to treat with circularity?

least fixed points	induction	recursion	μf
greatest fixed points	coinduction	corecursion	νf

Induction order-theoretic appoach ${ }^{1}$

Theorem (Kleene, 1936)
Let $\langle P, \leq\rangle$ be a CPO and $f: P \rightarrow P$ a continuous function. We have $\mu f=\bigcup_{n \geq 0} f^{n}(\perp)$.
${ }^{1}$ See Section 2.3 book by Sangiorgi.

Induction order-theoretic appoach ${ }^{1}$

A non-empty set D is a poset if equipped with a binary relation \mathcal{R} reflexive, antisymmetric, and transitive. Notation $\langle D, \mathcal{R}\rangle$.
A poset $\langle D, \leq\rangle$ is

- directed if $D \neq \emptyset$ and $\forall a, b \in D . \exists c \in D . a \leq c$ and $b \leq c$.
- a complete partial order (CPO) if
- D has a bottom \perp element
- $\bigsqcup D^{\prime}$ exists for every directed subset of D^{\prime} of D

Let $\langle P, \leq\rangle,\langle Q, \sqsubseteq\rangle$ be CPO. A function $f: P \rightarrow Q$ is continuous if for every directed subet D of P

- $f(D)$ is directed
- $f(\bigsqcup D)=\bigsqcup f(D)$

Theorem (Kleene, 1936)
Let $\langle P, \leq\rangle$ be a CPO and $f: P \rightarrow P$ a continuous function. We have $\mu f=\bigcup_{n \geq 0} f^{n}(\perp)$.
${ }^{1}$ See Section 2.3 book by Sangiorgi.

A typical CPO

Let parts $(S)=\left\{S^{\prime} \mid S^{\prime} \subseteq S\right\}$.
For every non-empty set S the poset $\langle S, \subseteq\rangle$ is a CPO.

Example

Let $S=\{a, b, c\}$. The poset $\langle\operatorname{parts}(S), \subseteq\rangle$ is

Factorial as least fixed point

$$
\begin{aligned}
& F(\underline{y}) \triangleq \lambda x . \text { if } x=0 \text { then } 1 \text { else } x *(\underline{y}(x-1)) \\
& F \quad: \quad(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow(\mathbb{N} \rightarrow \mathbb{N})
\end{aligned}
$$

- $\left\langle\mathbb{N}^{\mathbb{N}}, \leq\right\rangle$ CPO with bottom \emptyset and $F(y)$ continuous in y,

$$
\mu y \cdot F(y)=\bigcup_{n \geq 0} F^{n}(\emptyset)
$$

- NB: $\mu y . F(y)$ is a function!

Factorial as least fixed point

$$
\begin{aligned}
& F(\underline{y}) \triangleq \lambda x . \text { if } x=0 \text { then } 1 \text { else } x *(\underline{y}(x-1)) \\
& F \quad:(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow(\mathbb{N} \rightarrow \mathbb{N}) \\
& \text { fact } \triangleq \mu y \cdot F(y)
\end{aligned}
$$

- $\left\langle\mathbb{N}^{\mathbb{N}}, \leq\right\rangle$ CPO with bottom \emptyset and $F(y)$ continuous in y,

$$
\mu y \cdot F(y)=\bigcup_{n \geq 0} F^{n}(\emptyset)
$$

- NB: $\mu y . F(y)$ is a function!

$$
\begin{aligned}
& \text { from "definition" to property } \\
& \text { fact }(x)=\text { if } x=0 \text { then } 1 \text { else } x *(\operatorname{fact}(x-1))
\end{aligned}
$$

Least fixed point λ-theoretic approach

$$
\begin{aligned}
& F \triangleq \lambda y \cdot \lambda x . \text { if } x=0 \text { then } 1 \text { else } x *(y(x-1)) \\
& \mathcal{Y} \triangleq \lambda f \cdot(\lambda x \cdot f(x x))(\lambda x \cdot f(x x))
\end{aligned}
$$

Theorem (Kleene, 1936)
For every λ-term M we have $\mathcal{Y} M \stackrel{\beta}{=} M(\mathcal{Y} M)$.

Theorem (Morris, 1968)
For every λ-term M, A if $A \stackrel{\beta}{=} M A$ then $\mathcal{Y} M \leq A$.
We get:

- $\mathcal{Y F}$ is a fixed point of F
$B \stackrel{\beta}{F} F(B)$
- $\mathcal{Y F}$ is the least fixed point of F

Can \mathcal{Y} be typed ? intuitive argument

Let $M=\lambda x \cdot f(x x)$ and $\Gamma=\{x: A, x: A \rightarrow A, f: A \rightarrow B\}$.
type derivation of sub-term of \mathcal{Y}

$$
\overline{\Gamma \vdash f: A \rightarrow B \quad \frac{\overline{\Gamma \vdash x: A \rightarrow A} \quad \overline{\Gamma \vdash x: A}}{\Gamma \vdash x x: A}} \frac{\Gamma \vdash f(x x): B}{\Gamma \vdash \lambda x \cdot f(x x): A \rightarrow B}
$$

We need a type that satisfies

$$
A=A \rightarrow A
$$

μ-Types

$$
A::=\mathcal{T}|\underline{x}| \underline{\mu x . A}|A \times A| A \rightarrow A
$$

- μx. T binds x in T, free and bound variables as expected
- μ-types are closed and contractive terms
when are two types equal ?

$\mu y \cdot y$	$\stackrel{?}{=} \mu x \cdot z$
$\mu y \cdot y$	$\stackrel{?}{=} \mu x \cdot x$
$\mu x \cdot($ int $\times x)$	$\stackrel{?}{=}$ int $\times \mu x \cdot($ int $\times x)$
$\mu x \cdot x \rightarrow x$	$\stackrel{?}{=}(\mu x \cdot x \rightarrow x) \rightarrow(\mu x \cdot x \rightarrow x)$

μ-Types

$$
A::=\mathcal{T}|\underline{x}| \underline{\mu x . A}|A \times A| A \rightarrow A
$$

- μx. T binds x in T, free and bound variables as expected
- μ-types are closed and contractive terms
A contractive if for any subexpression of A of the form

$$
\mu x . \mu x_{1} \cdot \mu x_{2} \ldots, \mu x_{n} . B
$$

the term B is not x.

$$
\begin{array}{ll}
\mu y \cdot y & =\mu x \cdot x \\
\mu x \cdot(\text { int } \times x) & \stackrel{?}{=} \text { int } \times \mu x \cdot(\text { int } \times x) \\
\mu x \cdot x \rightarrow x & \stackrel{?}{=}(\mu x \cdot x \rightarrow x) \rightarrow(\mu x \cdot x \rightarrow x)
\end{array}
$$

μ-Types

$$
A::=\mathcal{T}|\underline{x}| \underline{\mu x . A}|A \times A| A \rightarrow A
$$

- μx. T binds x in T, free and bound variables as expected
- μ-types are closed and contractive terms
when are two types equal ?

$\mu y \cdot y$	$\stackrel{?}{=} \mu x \cdot z$
$\mu y \cdot y$	$\stackrel{?}{=} \mu x \cdot x$
$\mu x \cdot($ int $\times x)$	$\stackrel{?}{=}$ int $\times \mu x \cdot($ int $\times x)$
$\mu x \cdot x \rightarrow x$	$\stackrel{?}{=}(\mu x \cdot x \rightarrow x) \rightarrow(\mu x \cdot x \rightarrow x)$

Type equivalence semantic approach

Σ : set of symbols with an arity
A tree over a ranked alphabet Σ is a partial function $t: \mathbb{N}_{+}^{\star} \rightarrow \Sigma$ such that

- $\operatorname{dom}(t)$ non-empty
- $\operatorname{dom}(t)$ prefix-closed
- for all $\pi \in \operatorname{dom}(t)$
- $i, j \in N_{+}^{\star}, 1 \leq i \leq j$ and $\pi j \in \operatorname{dom}(t)$ imply $\pi i \in \operatorname{dom}(t)$
- $t(\pi)=A$ of arity $k \geq 0$ implies for $i \in \mathbb{N}_{+}, \pi i \in \operatorname{dom}(t)$ iff $1 \leq i \leq k$

Extensional equivalence (naïve)

- f, g functions
- $f \stackrel{\text { ext }}{=} g$ if $\operatorname{dom}(f)=\operatorname{dom}(g)$ and $\forall x \in \operatorname{dom}(f) \cdot f(x)=g(x)$

Type equivalence semantic approach

$$
\Sigma=\mathcal{T} \cup\{\times, \rightarrow\}
$$

$$
\begin{array}{ll}
\operatorname{treeof}(c)(\varepsilon) & =c \quad \text { where } c \in \mathcal{T} \\
\text { treeof }\left(A_{1} \rightarrow A_{2}\right)(\varepsilon) & =\rightarrow \\
\text { treeof }\left(A_{1} \rightarrow A_{2}\right)(i \pi) & =\operatorname{treeof}\left(A_{i}\right)(\pi)
\end{array}
$$

$$
\operatorname{treeof}(\mu x . A)(\pi) \quad=\operatorname{treeof}(A\{x / \mu x . A\})(\pi)
$$

Lemma
For every μ-type A the treeof (A) is defined. Why ?
Let $A \stackrel{\text { ext }}{=} B$ whenever $\operatorname{treeof}(A) \stackrel{\text { ext }}{=} \operatorname{treeof}(B)$

Type equivalence semantic approach

$$
\Sigma=\mathcal{T} \cup\{\times, \rightarrow\}
$$

$$
\begin{array}{ll}
\operatorname{treeof}(c)(\varepsilon) & =c \quad \text { where } c \in \mathcal{T} \\
\text { treeof }\left(A_{1} \rightarrow A_{2}\right)(\varepsilon) & =\rightarrow \\
\text { treeof }\left(A_{1} \rightarrow A_{2}\right)(i \pi) & =\operatorname{treeof}\left(A_{i}\right)(\pi) \\
\vdots & \\
\text { treeof }(\mu x . A)(\pi) & \operatorname{treeof}(A\{x / \mu x . A\})(\pi)
\end{array}
$$

Lemma
For every μ-type A the treeof (A) is defined. Why ?
Let $A \stackrel{\text { ext }}{=} B$ whenever $\operatorname{treeof}(A) \stackrel{\text { ext }}{=} \operatorname{treeof}(B)$

How to decide $\stackrel{\text { ext }}{=}$?

Type equivalence semantic approach
Let $A \stackrel{\text { ext }}{=} B$ whenever treeof $(A) \stackrel{\text { ext }}{=} \operatorname{treeof}(B)$

- Fix two μ-types A, B
- to prove $A \stackrel{\text { ext }}{=} B$ we show
$\forall \pi \in\{1,2\}^{\star} . \operatorname{treeof}(A)(\pi)=\operatorname{treeof}(B)(\pi)$
general issue
universal quantification
not a problem if trees regular
real question: axiomatisation
Can we characterise $\stackrel{\text { ext }}{=}$ syntactically?
- Try typing \mathcal{Y} in ocaml
- Find useful sections in Chapter 21 Pierce book
- Implement treeof
- Work on the project

