Typage

Coinduction

-	2018-2019
¢	Giovanni Bernardi, gioXYZirif.fr
	http://www.irif.fr/~gio/index.xhtml
¢	Université Paris Diderot

Plan

1. Questions
2. Mini historical remarks
3. More fixed points
4. Deciding type equivalence
5. A type system with recursive types

Questions questions questions ...

1. In which year was the first paper on types published ?

Questions questions questions...

1. In which year was the first paper on types published ?
2. What does Kleene fixed point theorem state ?

Questions questions questions...

1. In which year was the first paper on types published ?
2. What does Kleene fixed point theorem state ?
3. What is a tree ?

Questions questions questions ...

$$
\begin{aligned}
& \Sigma=\{a, b, f, k, h\} \\
& s(\varepsilon)=f \\
& s(1)=s(11)=k \quad s(111)=a \\
& s(2)=h \\
& s(21)=b
\end{aligned}
$$

Questions questions questions ...

$$
\begin{aligned}
& \quad \Sigma=\{a, b, f, k, h\} \\
& s(\varepsilon)=f \\
& s(1)=s(11)=k \\
& s(2)=h \\
& \\
& l
\end{aligned}
$$

A type is defined as the range of significance of a propositional function, i.e. as the collection of arguments for which that said function has values.

1968, Morris

[...] types and type declarations are often described as communications to a compiler to aid it in allocating storage, etc.

What was the problem again?

$$
A::=\mathcal{T}|\underline{x}| \underline{\mu x . A}|A \times A| A \rightarrow A
$$

- $\mu x . T$ binds x in T, free and bound variables as expected
- μ-types are closed and contractive terms
when are two types equal ?

$\mu y \cdot y$	$\stackrel{?}{=} \mu x \cdot z$
$\mu y \cdot y$	$\stackrel{?}{=} \mu x \cdot x$
$\mu x \cdot($ int $\times x)$	$\stackrel{?}{=}$ int $\times \mu x \cdot($ int $\times x)$
$\mu x \cdot x \rightarrow x$	$\stackrel{?}{=}(\mu x \cdot x \rightarrow x) \rightarrow(\mu x \cdot x \rightarrow x)$

What was the problem again?

$$
A::=\mathcal{T}|\underline{x}| \underline{\mu x . A}|A \times A| A \rightarrow A
$$

- $\mu x . T$ binds x in T, free and bound variables as expected
- μ-types are closed and contractive terms
A contractive if for any subexpression of A of the form

$$
\mu x . \mu x_{1}, \mu x_{2} \ldots, \mu x_{n} . B
$$

the term B is not x.

- not contractive: $\mu x \cdot x$
- contractive: $\mu x . y$
- not contractive: int $\rightarrow \mu x . x$
- contractive: $\mu x . x \rightarrow x$

Type equivalence semantic approach

$$
\Sigma=\mathcal{T} \cup\{\times, \rightarrow\}
$$

$$
\begin{array}{ll}
\operatorname{treeof}(c)(\varepsilon) & =c \quad \text { where } c \in \mathcal{T} \\
\text { treeof }\left(A_{1} \rightarrow A_{2}\right)(\varepsilon) & =\rightarrow \\
\text { treeof }\left(A_{1} \rightarrow A_{2}\right)(i \pi) & =\operatorname{treeof}\left(A_{i}\right)(\pi) \\
\vdots & \\
\text { treeof }(\mu x . A)(\pi) & \operatorname{treeof}(A\{x / \mu x . A\})(\pi)
\end{array}
$$

Lemma
For every μ-type A the treeof (A) is defined. Why ?
Let $A \stackrel{\text { ext }}{=} B$ whenever $\operatorname{treeof}(A) \stackrel{\text { ext }}{=} \operatorname{treeof}(B)$

How to decide $\stackrel{\text { ext }}{=}$?

More on fixed points

Theorem (Knaster 1928 - Tarski 1955)
If $\langle L, \leq\rangle$ complete lattice, $f: L \rightarrow L$ monotone function then

- $\mu f=\rceil\{x \mid f(x) \leq x\}$
- $\nu f=\bigsqcup\{x \mid x \leq f(x)\}$ \square

More on fixed points

A poset $\langle L, \leq\rangle$ is a complete lattice if

- $L \neq \emptyset$, and
- for every $S \in \operatorname{parts}(L) . \bigsqcup S$ and ΠS exist

Lemma
Every complete lattice is a CPO.
Theorem (Knaster 1928 - Tarski 1955)
If $\langle L, \leq\rangle$ complete lattice, $f: L \rightarrow L$ monotone function then
$\rightarrow \mu f=\prod\{x \mid f(x) \leq x\}$
$>\nu f=\bigsqcup\{x \mid x \leq f(x)\}$

More on fixed points

A poset $\langle L, \leq\rangle$ is a complete lattice if

- $L \neq \emptyset$, and
- for every $S \in \operatorname{parts}(L) . \bigsqcup S$ and ΠS exist

Lemma
Every complete lattice is a CPO.
Theorem (Knaster 1928 - Tarski 1955)
If $\langle L, \leq\rangle$ complete lattice, $f: L \rightarrow L$ monotone function then
$\rightarrow \mu f=\bigcap\{x \mid f(x) \leq x\}$

- $\nu f=\bigsqcup\{x \mid x \leq f(x)\} \quad$ coinduction

Type equivalence syntactic approach

$F: \quad$ parts $\left(\operatorname{Types}_{\mu}^{2}\right) \rightarrow \operatorname{parts}\left(\operatorname{Types}_{\mu}^{2}\right)$

$$
\begin{aligned}
F(\mathcal{R}) \triangleq & \{(c, c) \mid c \in \mathcal{T}\} \\
& \cup\left\{\left(A_{1} \times A_{2}, B_{1} \times B_{2}\right) \mid \forall i \in\{1,2\} \cdot A_{i} \mathcal{R} B_{i}\right\} \\
& \cup\left\{\left(A_{1} \rightarrow A_{2}, B_{1} \rightarrow B_{2}\right) \mid B_{1} \mathcal{R} A_{1}, A_{2} \mathcal{R} B_{2}\right\} \\
& \cup\{(A, \mu x . B) \mid A \mathcal{R} B\{x / \mu x . B\}\} \\
& \cup\{(\mu x \cdot A, B) \mid A\{x / \mu x . A\} \mathcal{R} B\}
\end{aligned}
$$

- $\left\langle\right.$ parts $\left.\left(\operatorname{Types}_{\mu}^{2}\right), \subseteq\right\rangle$ complete lattice, F monotone
- νF exists

- Let

$$
\begin{aligned}
& \leq: \triangleq \nu F \\
& \approx \triangleq \leq: \cap \leq:^{-1}
\end{aligned}
$$

Type equivalence

Syntactic definition justified by semantic one

$$
\approx=\stackrel{e x t}{=}
$$

How to show $A \approx B$? Show $A<: B$ and $B<: A$
no brainer

Coinductive proof method
How to show $A<: B$?

1. By definition $<:=\nu F$
2. By Knaster-Tarski $<:=\bigcup\{\mathcal{R} \mid \mathcal{R} \subseteq F(\mathcal{R})\}$
3. It suffices to define relation \mathcal{R} such that

$$
A \mathcal{R} B, \quad \mathcal{R} \subseteq F(\mathcal{R})
$$

Example

Let $A=\mu x \cdot x \rightarrow x$, why $A \approx A \rightarrow A$?
Let

$$
\mathcal{R}=\{(A, A \rightarrow A)
$$

$$
\}
$$

1. By definition $A \mathcal{R} A \rightarrow A$
2. Routine work shows that $\mathcal{R} \subseteq F(\mathcal{R})$ and $\mathcal{R}^{-1} \subseteq F\left(\mathcal{R}^{-1}\right)$,

$$
A<: A \rightarrow A, \quad A \rightarrow A<: A
$$

Example

Let $A=\mu x \cdot x \rightarrow x$, why $A \approx A \rightarrow A$?
Let

$$
\mathcal{R}=\{(A, A \rightarrow A),(A \rightarrow A, A \rightarrow A),
$$

1. By definition $A \mathcal{R} A \rightarrow A$
2. Routine work shows that $\mathcal{R} \subseteq F(\mathcal{R})$ and $\mathcal{R}^{-1} \subseteq F\left(\mathcal{R}^{-1}\right)$,

$$
A<: A \rightarrow A, \quad A \rightarrow A<: A
$$

Example

Let $A=\mu x \cdot x \rightarrow x$, why $A \approx A \rightarrow A$?
Let

$$
\begin{gathered}
\mathcal{R}=\{(A, A \rightarrow A),(A \rightarrow A, A \rightarrow A) \\
(A, A)\}
\end{gathered}
$$

1. By definition $A \mathcal{R} A \rightarrow A$
2. Routine work shows that $\mathcal{R} \subseteq F(\mathcal{R})$ and $\mathcal{R}^{-1} \subseteq F\left(\mathcal{R}^{-1}\right)$,

$$
A<: A \rightarrow A, \quad A \rightarrow A<: A
$$

Example

Let $A=\mu x \cdot x \rightarrow x$, why $A \approx A \rightarrow A$?
Let

$$
\begin{aligned}
\mathcal{R}=\{ & (A, A \rightarrow A),(A \rightarrow A, A \rightarrow A) \\
& (A \rightarrow A, A),(A, A)\}
\end{aligned}
$$

1. By definition $A \mathcal{R} A \rightarrow A$
2. Routine work shows that $\mathcal{R} \subseteq F(\mathcal{R})$ and $\mathcal{R}^{-1} \subseteq F\left(\mathcal{R}^{-1}\right)$,

$$
A<: A \rightarrow A, \quad A \rightarrow A<: A
$$

Example

Let $A=\mu x \cdot x \rightarrow x$, why $A \approx A \rightarrow A$?
Let

$$
\begin{aligned}
\mathcal{R}=\{ & (A, A \rightarrow A),(A \rightarrow A, A \rightarrow A) \\
& (A \rightarrow A, A),(A, A)\}
\end{aligned}
$$

1. By definition $A \mathcal{R} A \rightarrow A$
2. Routine work shows that $\mathcal{R} \subseteq F(\mathcal{R})$ and $\mathcal{R}^{-1} \subseteq F\left(\mathcal{R}^{-1}\right)$,

$$
A<: A \rightarrow A, \quad A \rightarrow A<: A
$$

Write a decision procedure for \approx

λ-calculus

typing rules from [Cardone and Coppo, 1991]

$$
M, N::=x|c| M N \mid \lambda x \cdot M
$$

An equi-recursive system

$$
\begin{gathered}
\overline{\Gamma, x: A \vdash x: A} \quad \overline{\Gamma, c: A \vdash c: A_{c}(c)} \\
\frac{\Gamma, x: A \vdash M: B}{\Gamma \vdash \lambda x \cdot M: A \rightarrow B} \quad \frac{\Gamma \vdash M: A \rightarrow B \quad \Gamma \vdash N: A}{\Gamma \vdash M N: B} \\
\frac{\Gamma \vdash M: B}{\Gamma \vdash M: A} A \approx B
\end{gathered}
$$

Example

Let $A=\mu x .((x \rightarrow x) \rightarrow x)$

$$
\frac{\frac{\frac{x: A \rightarrow A \vdash x: A \rightarrow A}{x: A \rightarrow A \vdash x: A \rightarrow A}}{x: A \vdash x: A}}{\frac{x: A \rightarrow A \vdash x x:(A \rightarrow A) \rightarrow A}{\frac{x: A \rightarrow A \vdash x x: A}{\vdash \lambda x \cdot x x:(A \rightarrow A) \rightarrow A}}(\approx)}(\approx)
$$

$$
\begin{array}{cc}
\frac{x: A \vdash x: A}{x: A \vdash x: A \rightarrow((A \rightarrow A) \rightarrow A)}(\approx) \overline{x: A \vdash x: A} \\
\frac{x: A \vdash x x:(A \rightarrow A) \rightarrow A}{\vdash \lambda x \cdot x x: A \rightarrow((A \rightarrow A) \rightarrow A)} & \\
& \\
& \\
\hline \vdash \lambda x \cdot x x: A \\
\vdash
\end{array}
$$

λ-calculus

typing rules from [Cardone and Coppo, 1991]

An equi-recursive system

$$
\begin{gathered}
\overline{\Gamma, x: A \vdash x: A} \quad \overline{\Gamma, c: A \vdash c: A_{c}(c)} \\
\frac{\Gamma, x: A \vdash M: B}{\Gamma \vdash \lambda x \cdot M: A \rightarrow B} \quad \frac{\Gamma \vdash M: A \rightarrow B \quad \Gamma \vdash N: A}{\Gamma \vdash M N: B} \\
\frac{\Gamma \vdash M: B}{\Gamma \vdash M: A} A \approx B
\end{gathered}
$$

- Strong Normalisation is false!

$$
\vdash(\lambda x .(x x))(\lambda x .(x x))
$$

Implement

- treeof
- decision procedure for \approx
- Work on the project

