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Questions questions questions . . .

1. In which year was the first paper on types published ?

2. What does Kleene fixed point theorem state ?

3. What is a tree ?
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Σ = {a, b, f , k , h}

s(ε) = f
s(1) = s(11) = k s(111) = a
s(2) = h s(21) = b

f

k

k

a

h

b

what about the arities?



Questions questions questions . . .

1. In which year was the first paper on types published ?

2. What does Kleene fixed point theorem state ?

3. What is a tree ?

7

Σ = {a, b, f , k , h}

s(ε) = f
s(1) = s(11) = k s(111) = a
s(2) = h s(21) = b

f

k

k

a

h

b

what about the arities?



1908, Russell

A type is defined as the range of
significance of a propositional function,
i.e. as the collection of arguments for
which that said function has values.

1968, Morris

[. . . ] types and type declarations are
often described as communications to a
compiler to aid it in allocating storage,
etc.
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What was the problem again?

A ::= T | x | µx .A | A× A | A→ A

I µx .T binds x in T , free and bound variables as expected
I µ-types are closed and contractive terms

when are two types equal ?

µy .y
?
= µx .z

µy .y
?
= µx .x

µx .(int × x)
?
= int × µx .(int × x)

µx .x → x
?
= (µx .x → x)→ (µx .x → x)
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A contractive if for any subexpression of A of the form

µx .µx1.µx2. . . . µxn.B

the term B is not x .

I not contractive: µx .x

I contractive: µx .y but not closed

I not contractive: int → µx .x

I contractive: µx .x → x



Type equivalence semantic approach

Σ = T ∪ {×,→}

treeof (c)(ε) = c where c ∈ T
treeof (A1 → A2)(ε) = →
treeof (A1 → A2)(iπ) = treeof (Ai)(π)
...
treeof (µx .A)(π) = treeof (A{x/µx .A})(π)

Lemma
For every µ-type A the treeof (A) is defined. Why ?

Let A
ext
= B whenever treeof (A)

ext
= treeof (B)

How to decide
ext
= ?
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More on fixed points

A poset 〈L,≤〉 is a complete lattice if

I L 6= ∅, and

I for every S ∈ parts(L).
⊔

S and
d

S exist

Lemma
Every complete lattice is a CPO.

Theorem (Knaster 1928 - Tarski 1955)

If 〈L,≤〉 complete lattice, f : L→ L monotone function then

I µf =
d
{ x | f (x) ≤ x }

I νf =
⊔
{ x | x ≤ f (x) }
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Type equivalence syntactic approach

F : parts(Types2
µ)→ parts(Types2

µ)

F (R)
∆
= { (c , c) | c ∈ T }
∪ { (A1 × A2,B1 × B2) | ∀i ∈ {1, 2}.Ai R Bi }
∪ { (A1 → A2,B1 → B2) | B1 R A1,A2 R B2 }
∪ { (A, µx .B) | A R B{x/µx .B} }
∪ { (µx .A,B) | A{x/µx .A} R B }

I 〈parts(Types2
µ),⊆〉 complete lattice, F monotone

I νF exists by Knaster-Tarski

I Let

≤:
∆
= νF

≈ ∆
= ≤: ∩ ≤:−1
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Type equivalence

Syntactic definition justified by semantic one

≈ =
ext
=

How to show A ≈ B? Show A <: B and B <: A no brainer

Coinductive proof method

How to show A <: B ?

1. By definition <: = νF

2. By Knaster-Tarski <: =
⋃
{R | R ⊆ F (R) }

3. It suffices to define relation R such that

A R B , R ⊆ F (R)
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Example

Let A = µx .x → x , why A ≈ A→ A ?

Let

R = {(A,A→ A)

, (A→ A,A→ A),
(A→ A,A), (A,A)

}

1. By definition A R A→ A

2. Routine work shows that R ⊆ F (R) and R−1 ⊆ F (R−1),

A <: A→ A, A→ A <: A

Write a decision procedure for ≈
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λ-calculus
typing rules from [Cardone and Coppo, 1991]

M,N ::= x | c | MN | λx .M

An equi-recursive system

Γ, x : A ` x : A Γ, c : A ` c : Ac(c)

Γ, x : A ` M : B

Γ ` λx .M : A→ B
Γ ` M : A→ B Γ ` N : A

Γ ` MN : B

Γ ` M : B
Γ ` M : A

A ≈ B
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Example

Let A = µx .((x → x)→ x)

x : A→ A ` x : A→ A
x : A→ A ` x : A→ A

x : A→ A ` x : A
(≈)

x : A→ A ` xx : (A→ A)→ A

x : A→ A ` xx : A
(≈)

` λx .xx : (A→ A)→ A

x : A ` x : A
x : A ` x : A→ ((A→ A)→ A)

(≈)
x : A ` x : A

(≈)

x : A ` xx : (A→ A)→ A

` λx .xx : A→ ((A→ A)→ A)

...
` λx .xx : A

` (λx .xx)(λx .xx) : (A→ A)→ A
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λ-calculus
typing rules from [Cardone and Coppo, 1991]

An equi-recursive system

Γ, x : A ` x : A Γ, c : A ` c : Ac(c)

Γ, x : A ` M : B

Γ ` λx .M : A→ B
Γ ` M : A→ B Γ ` N : A
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Γ ` M : B
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A ≈ B

I Strong Normalisation is false! ` (λx .(xx))(λx .(xx))
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Implement

I treeof

I decision procedure for ≈

I Work on the project
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