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Questions questions questions . . .

1. In which year was the first paper on types published ?
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2. What does Kleene fixed point theorem state ?



Questions questions questions . . .

1. In which year was the first paper on types published 7
2. What does Kleene fixed point theorem state ?

3. What is a tree ?
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what about the arities?




1908, Russell

A type is defined as the range of
significance of a propositional function,
i.e. as the collection of arguments for
which that said function has values.

[...] types and type declarations are
often described as communications to a
compiler to aid it in allocating storage,
etc.



What was the problem again?

A= T | x| uxA| AxA| A=A

» ux.T binds x in T, free and bound variables as expected
» u-types are closed and contractive terms

when are two types equal ?
?

fy-y = px.z

fLy-y = px.x

px.(int X x) L int x px.(int X x)

UX.X —> X z (ux.x = x) = (ux.x = x)




What was the problem again?

A= T | x| uxA| AxA| A=A

» ux.T binds x in T, free and bound variables as expected
» u-types are closed and contractive terms

A contractive if for any subexpression of A of the form
WX X - [4XD. . . . [1Xn. B

the term B is not x.
» not contractive: jx.x
» contractive: ux.y but not closed
» not contractive: int — px.x
» contractive: ux.x — x
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Type equivalence semantic approach

Y=TU{x,—}
treeof (¢)(¢) = c where c € T
treeof (A1 — A)(e) = —

treeof (A1 — Ap)(im) = treeof (A;)(r)

:treeof(ux.A)(ﬁ) = treeof (A{x/ux.A})(r)

Lemma
For every ji-type A the treeof (A) is defined. ~ Why 7 ]

Let A= B whenever treeof (A) = treeof (B)

How to decide & ?
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More on fixed points

Theorem (Knaster 1928 - Tarski 1955)

If (L, <) complete lattice, f : L — L monotone function then

b uf =[x | F(x) < x}
> uf = {x | x<f(x)} O
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More on fixed points

A poset (L, <) is a complete lattice if
» L £, and
» for every S € parts(L). | |S and [ ]S exist

Lemma
Every complete lattice is a CPO.

Theorem (Knaster 1928 - Tarski 1955)

If (L, <) complete lattice, f : L — L monotone function then
b uf =l{x | F(x) < x}

> vf = {x | x<f(x)} O
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More on fixed points

A poset (L, <) is a complete lattice if
» L £, and
» for every S € parts(L). | |S and [ ]S exist

Lemma
Every complete lattice is a CPO.

Theorem (Knaster 1928 - Tarski 1955)

If (L, <) complete lattice, f : L — L monotone function then

> uf =[x | f(x) <x}
> vf = {x | x<f(x)} coinduction O

14



Type equivalence syntactic approach

parts(Typesi) o parts(Typesi)

{(c.c) [ ceT}

U{ (A1 X Az, B1 X By) | vie{1,2}.A; R B; }
U{(AL— Ay, B — Bo) | BLR AL, A R By }
U{ (A, ux.B) | AR B{x/ux.B}}
U{(ux.A,B) | A{x/ux.A} R B}

> (parts(Typest), C) complete lattice, F monotone

» vF exists

> Let

by Knaster-Tarski

A
> 11>

Q
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Type equivalence

Syntactic definition justified by semantic one

@
~

X

Y — —
~N = =

How to show A ~ B? Show A <: Band B <: A no brainer

Coinductive proof method
How to show A <: B 7

1. By definition <: = vF
2. By Knaster-Tarski <: = J{R| R C F(R) }
3. It suffices to define relation R such that

ARB, RCF(R)
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Example
Let A=pux.x—x, why AxA— A7
Let

R = {(A A= A)

1. By definiton AR A— A

2. Routine work shows that R C F(R) and Rt C F(R™1),

A< A A AsA<A

17



Example
Let A=pux.x—x, why AxA— A7
Let

R = {(AA=A), (A= A A= A),
h

1. By definiton AR A— A
2. Routine work shows that R C F(R) and Rt C F(R™1),

A< A A AsA<A
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Example
Let A=pux.x—x, why AxA— A7
Let

R = {(AA=A), (A= A A= A),
(A, A)}

1. By definiton AR A— A
2. Routine work shows that R C F(R) and Rt C F(R™1),

A< A A AsA<A

19



Example
Let A=pux.x—x, why AxA— A7
Let

R = {(AA=A), (A= A A= A),
(A= A A), (A A}

1. By definiton AR A— A
2. Routine work shows that R C F(R) and Rt C F(R™1),

A< A A AsA<A
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Example
Let A=pux.x—x, why AxA— A7
Let

R = {(AA=A), (A= A A= A),
(A= A A), (A A}

1. By definiton AR A— A
2. Routine work shows that R C F(R) and Rt C F(R™1),

A< A A AsA<A

Write a decision procedure for ~
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A-calculus
typing rules from [Cardone and Coppo, 1991]

M,N:=x | c | MN | A>x.M

An equi-recursive system

MHx:AbEx:A Mc:Akc:Alc)

x:A-M:B TEFM:A—->B TEN:A

NMN-AxM:A—- B - MN:B
[=M:

rEM:B
FrEM:A

22



Example

Let A= ux.((x = x) = x)

X:A—)AFX:A—)A(%)
xX:A>AFX A A X:A>AFXx:A
x: A Abxx: (A=A —A
X:A—>AFxx: A (=)
FAxxx:(A—A)— A

x:AFXx:A (~) (=)
x:AEx: A= (A= A)— A x:AFx: A"
x:AbExx: (A= A)— A

F axxx A (A A) — A) F o A

F (Ax.xx)(Ax.xx) 1 (A— A) — A

23



A-calculus
typing rules from [Cardone and Coppo, 1991]

An equi-recursive system

MNMx:AkFx:A Mc:AkFc:Ac)
Nx:AFM:B r’M:A—B THN:A
- \>x.M:A—B ' MN:B

r'=M: B
rFmM-AA~B

» Strong Normalisation is false! F (Ax.(xx)) (Ax.(xx))
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Implement
» treeof

» decision procedure for =

» Work on the project
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